
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis in Physics

submitted by

Fynn Beuttenmüller

born in Bremervörde (Germany)

Heidelberg, 2014

Interfacing a Neuronal Accelerator

to a High Performance Computing System

This Bachelor Thesis has been carried out by Fynn Beuttenmüller at the

Institute of Computer Engineering in Mannheim

Supervisor: Christian Leibig

Refery: Prof. Ulrich Brüning

Co-Refery: Prof. Karlheinz Meier

The work at hand describes the connection of configurable neuromorphic computing sub-

strates applying the means of EXTOLL technology. Within the subproject Neuromorphic

Computing—as part of the overall Human Brain Project—research is performed in a hardware

system that emulates accelerated neuronal networks. The high grade in connectivity and

activity of neuronal models, as well as the speed-up factor of 103 to 104 in comparison to

biological real time, are highly demanding with regard to bandwidth and latency for such a

system. At first it is checked within this thesis work whether the EXTOLL technology is suitable

for integration to the neuronal accelerator. A general survey on the accelerated neuromorphic

computing system is performed and the system requirements towards an external data network

are determined. Furthermore the EXTOLL technology with ist most current network board

Tourmalet and its interface is presented. Latency and bandwidth in relevant network topologies

are calculated with regard to neuronal networks and thereby the suitability of EXTOLL asserted.

An EXTOLL interface module was designed and implemented, which is able to communicate

neuronal pulse event information via an EXTOLL network. This interface connection has

potential to be expanded exchanging configuration and system data in addition to the pulse

event information via EXTOLL.

Die vorliegende Arbeit beschreibt die Verbindung neuromorpher Recheneinheiten mithilfe

der EXTOLL Technologie. Im Rahmen der Subprojekts Neuromorphic Computing des Human

Brain Projekts wird an einem Hardwaresystem zur beschleunigten Emulation spikender neu-

ronaler Netzwerke geforscht. Der hohe Grad an Konnektivität und Aktivität neuronaler Modelle

und der Beschleunigungsfaktor von 103 bis 104 ,verglichen zu biologischer Echtzeit, stellen

hohe Anforderungen in Bezug auf Bandbreite und Latenzzeit an ein solches System. Diese

Arbeit prüft zunächst ob sich die EXTOLL Technologie zur Integrierung in den neuronalen

Beschleuniger eignet. Daür wird ein Überblick über das beschleunigte neuromorphe Rechensys-

tem gegeben und dessen Anforderungen an ein externes Datennetzwerk bestimmt. Weiterhin

wird die EXTOLL Technologie in Form der aktuellen Netzwerkkarte Tourmalet vorgestellt und

deren Schnittstelle spezifiziert. Mit Bezug auf neuronale Netzwerkmodelle werden Latenz und

Bandbreite in entsprechenden Netzwerktopologien berechnet und so die Eignung von EXTOLL

festgestellt. Daraufhin wird ein EXTOLL-Verbindungs-Modul entworfen und implementiert,

welches neuronale Pulsinformation über ein EXTOLL Netzwerk kommunizieren kann. Diese

Verbindung hat das Potential weiterentwickelt zu werden, um neben Pulsinformationen auch

Konfigurationsdaten und Systeminformationen über EXTOLL auszutauschen.

Contents

1. Introduction 13

2. The Neuromorphic Computing System 15
2.1. The Wafer Module . 16

2.2. Neuronal Traffic . 17

2.3. Latency . 18

3. The EXTOLL Network Technology 19
3.1. The EXTOLL Tourmalet . 19

3.2. The EXTOLL Network Protocol . 20

3.3. The EXTOLL Network Port Interface . 22

3.4. Latency . 24

3.5. Suitable Network Topologies . 24

4. The FPGA’s Internal Structure 29
4.1. HICANN Interface Specifications . 30

4.2. Signal Timing at the HICANN Interface . 35

5. Designing an EXTOLL Interface Module 37
5.1. Routing Strategy . 38

6. The Extoll Interface Module 39
6.1. Interface Specification . 39

6.2. Inner Structure . 39

6.2.1. hbp_extoll_wrapper . 40

6.2.2. rx_mux . 40

6.2.3. hbp_extoll_rx_arbiter . 41

6.2.4. hbp_extoll_routing . 41

6.2.5. hbp_extoll_accum . 41

6.2.6. hbp_extoll_rx_ctrl . 42

6.2.7. hbp_extoll_tx_ctrl . 43

7. Future Work 45
7.1. Future Implementations . 45

7

7.2. Envisioned Complications . 45

Appendix 47

A. List of Abbreviations 47

B. List of Figures 49

C. References 51

8

1. Introduction

The task at hand is to interface an accelerated neuromorphic system—the core of the Human

Brain Project’s (HBP) Neuromorphic Physical Model (NM–PM) platform—to a high performance

computing system using the EXTOLL network technology. First the suitability of EXTOLL

for this specific application has to be evaluated. In addition to the functional requirements of

the neuronal accelerator two key issues are determined: bandwidth and latency. Demands on

bandwidth are determined by assessing the amount of neuronal traffic that has to be emulated

in such a neuromorphic computing system. The acceptable limit of latency is deduced from

neuronal network models and the performance of the neuronal accelerator’s core logic.

On EXTOLL side the capabilities of Tourmalet, EXTOLL’s most current ASIC, are discussed and

the most current EXTOLL communication protocol and the network port interface are specified.

With these results the potential of an EXTOLL Tourmalet network is gauged.

Using the EXTOLL technology within the Neuromorphic Physical Model (NM–PM) platform

requires compatibility to the EXTOLL network protocol within the control logic of the neural

accelerator. This neuromorphic system is wafer-based. One wafer contains 384 High-Input

Count Analog Neuronal Network chips (HICANNs) that each implement up to 512 neurons and

11 k synapses. In the current state of development the runtime control of these HICANNs is

managed by FPGAs in groups of eight HICANNs. This setup of on-wafer HICANNs, FPGAs

and some additional units is referred to as the Neuromorphic Computing System (NCS) and

will be elucidated with more detail.

To prepare integration of EXTOLL technology into theNCS the implementation in thementioned

FPGAs is analyzed and a suitable interface for an external network is found and specified. In a

next step an EXTOLL interface module is planned to fit the FPGA design. This interface module

is implemented enabling the transmission of pulse events via an EXTOLL network with the

potential of extending the interface to support the distribution of configuration data.

9

2. The Neuromorphic Computing System

Within the Sub-Project 9 – Neuromorphic Computing (SP9) of the Human Brain Project (HBP)

two platforms are under construction: The Neuromorphic Multi-Core (NM–MC) and the Neu-

romorphic Physical Model (NM–PM). Both approaches aim at simulating brain activity with

custom hardware, which is often referred to as brain emulation. The NM–MC uses a mas-

sively parallel system of ARM architecture processors in the Spiking Neural Network Archi-

tecture (SpiNNaker) [10]. This system operates in real-time, which also allows for research

applications in robotic platforms [10]. The Neuromorphic Computing System (NCS) referred

to in this thesis is the core of the NM–PM and will initially comprise four million accelerated

analog neurons and almost one billion synapses on 20 eight-inch silicon wafers manufactured

in 180 nm Complementary Metal-Oxide-Semiconductor (CMOS) technology [24]. Single wafer

setups are currently being tested (Figure 2.1). It is envisioned to apply wafers which are pro-

Figure 2.1.: One operating NM–PM wafer. Photograph from Brain-inspired multiscale computa-

tion in neuromorphic hybrid systems (BrainScaleS) website [2].

duced with a 65 nm process in the long run, allowing for a wider synapse address, an integrated

Plasticity Processing Unit (PPU) for a more advanced synapse plasticity model [9] and on-wafer

ADCs for synchronous analog read-out [6]. The refined manufacturing process will also allow

11

to operate the wafers at lower voltage and thus further lowering energy consumption. The

NM–PM platform provides access to the NCS throughout the HBP, enabling researchers in

other subject areas to conduct their neuronal network experiments. In order to support as many

experimental setups as possible the network topology of the NCS, as well as biological and

electronic cell parameters are configurable [24, 14]. The operating NCS has a speedup factor of

103 to 104 compared to biological real-time [24] and is able to emulate point-like neurons, and

in later versions it will be able to emulate simple multi-compartment neurons [18].

2.1. The Wafer Module

Each of the above mentioned wafers is placed on a 19-inch Printed Circuit Board (PCB) contain-

ing additional electronics for power supply, configuration, communication and analog read-out.

Every wafer is used as a whole, i.e. the complete wafer as manufactured, undivided, and it

partitioned into 48 reticles. The power control of these reticles is realized individually by a

Raspberry Pi single-board computer which coordinates the main power supply PCBs (“PowerIt”

board) and special monitoring and control PCBs (“Cure” boards) [24]. This allows to shut

down individual reticles for an experiment (e.g., lower amount of required reticles within an

experiment) or more importantly due to inoperability (e.g., broken parts, yield).

The communication of reticles is managed by a Kintex-7 XC7K160T FPGA from Xilinx which

enables communication of reticles on any wafers, including the same wafer. Post-processing of

the wafers makes direct on-wafer communication possible, too.

Figure 2.2 illustrates the relation of HICANNs, reticles and FPGA Communication PCBs (FCPs).

Every reticle contains eight HICANNs that each implement the adaptive exponential integrate-

Figure 2.2.: Schematic overview of a NCS with 20 wafers. Graphic adapted from “A wafer-scale

neuromorphic hardware system for large-scale neural modeling” [22].

12

and-fire model for up to 512 spiking neurons with a total of 114 k synapses [24]. The total of 48
reticles per wafer therefore are capable to model 196 k neurons and 44M synapses. This calcu-

lates to 4M neurons, 880M synapses for a system of 20 combined wafers. The commissioning

phase of 20 wafers is planned for March 2015 (month 18 of the HBP) and these should operate

by March 2016 (month 30 of the HBP) [24].

2.2. Neuronal Traffic

In this section, the occurring pulse event traffic within the NCS is estimated. As previously

stated the emulated neurons are partitioned into 48 reticles per wafer, each reticle’s commu-

nication being managed by a FPGA. These 48 FPGAs are the source and target nodes of the

interconnecting network for which the suitability of the EXTOLL Toumalet is evaluated.

SP9 aims for supporting a 20Gbit/s bidirectional bandwidth from and towards each single

HICANN, which can be partitioned in steps of 5Gbit/s for the function of transmitting and

receiving channel [13]. In most models the overall amount of required bandwidth from and

to all HICANNs should reasonably be the same, because every transmitted event has to be

received at some point in time. Differences in experimental in- and output are neglectable in

proportion to the total data transmitted. Due to this global bandwidth balance the number of

HICANN configurations, that do not allow a partition into locally balanced groups of eight

is rapidly declining with an increasing quantity of available HICANNs. However, whether

such an allocation is feasible depends on the modeled neuronal network and its mapping on

the NCS. In case specific neuronal network topologies cannot be mapped in this manner (e.g.,

due to on-wafer connections, very high monitoring bandwidth or massive outside stimuli) the

number of active HICANNs at unbalanced FPGAs could be reduced under the condition enough

HICANNs are available. Therefore, I assume the HICANNs are arranged in a way that each

group of eight HICANNs connected to an FPGA has an average receiving and transmitting

bandwidth of 10Gbit/s each. Otherwise for network technologies like EXTOLL, that do not

support splitting the total bandwidth of one connection unequally, the provided bandwidth

would have to be over-designed for most applied neural network models. With the EXTOLL

capabilities and features it would be advisable for further development of the NCS to separate the

individual HICANN communication paths and balance transmitting and receiving bandwidth.

In the current implementation, pulse events that are exchanged between a HICANN Interface

and its HICANN are 8 bit wide. Combined with 8b/10b encoding the pulse event rate results in

a rate of 1GEv/s (Giga−Events/s). In conclusion the required bandwidth at each FPGA has to

support a throughput of 8GEv/s in each direction. In the FPGA pulse events will be extended

to 27 bit, additionally containing source HICANN ID and timestamp. This implies that even

without any overhead the raw bandwidth demand at an FPGA results in 216Gbit/s. The Kintex-7

XC7K160T FPGA only supports eight 12.5Gbit/s links [1], four of these are used for on-wafer
communication in the current NCS implementation [6], thus due to 8b/10b encoding a total

13

data bandwidth of up to 40Gbit/s is available for network traffic.

This described Kintex setup is not final. At the end of development a bandwidth of 20Gbit/s
might be achieved between FPGA (or a comparable entity) and a HICANN, but currently this

bandwidth attains approximately 1Gbit/s in each direction. This results in 100MEv/s per direc-

tion and HICANN. Thus 21.6Gbit/s of raw data bandwidth at the FPGA for 27 bit wide pulse
events can be obtained.

2.3. Latency

What are the NCS’s requirements with regard to latency? There is no general answer to this

question—it strongly depends on the individual experimental setup. In biological neuronal

networks a target neuron receives an action potential after a delay of under 1ms up to over 10ms

[23, Chapter 8]. In some neuronal models delays between pre- and postsynaptic neuron are

modeled with 1.5ms to 8ms (e.g., 1.5ms to 3ms in “Dynamics of sparsely connected networks

of excitatory and inhibitory spiking neurons” [3] or 2ms to 8ms in “Functional consequences of

correlated excitatory and inhibitory conductances in cortical networks” [15]). Another typical

method is using a delay of 0.1ms (or a multiple of it) with the PyNN API [5] and for example

NEST as its simulator back-end [12], as the default time step in a PyNN script is 0.1ms [21].

With a speedup factor of 103 this implies a latency of 0.1 μs for the NCS. For an off-wafer

network combined with the current implementation, including a FPGA and not a full custom

ASIC, latencies of 0.1 μs are quite a challenge. To put this into perspective of recent research:
measurements with a speedup factor of 104 quantified a minimal latency of 0.12 μs for on-wafer
communication [6]. This corresponds to 1.2ms on a biological time scale.

In conclusion there is no fixed target for latency requirements, but an off-wafer network’s

latency should not differ from the on-wafer latency by more than one order of magnitude to

be compatible with a variety of neuronal models. The current state of the NCS’s development

fulfills the preconditions to realistically acquire a latency of maximal 1 μs.

14

3. The EXTOLL Network Technology

The Computer Architecture Group lead by Prof. Dr. Ulrich Brüning at the University of Hei-

delberg started the EXTOLL project in 2005 [20]. Six years later, in 2011 the spin-off company

EXTOLL GmbH was founded [20]. The EXTOLL network technology is extraordinary in a

number of features: ultra low latency message exchange, extremely high hardware message

rate, low memory footprint, a switchless design and high scalability [20].

In the previous chapter the NCS’s demands on bandwidth and latency were described. Taking

into account these requirements the suitability of the EXTOLL network technology is evaluated.

The latest EXTOLL Application-Specific Integrated Circuit (ASIC) is the Tourmalet, which will

be discussed in the following section.

3.1. The EXTOLL Tourmalet

Figure 3.1.: The Tourmalet network card. Graphic adapted from Introducing EXTOLL Tourmalet,

an HPC Network ASIC [20].

For the work related to this thesis project only a subset of the multiple features of the

EXTOLL Tourmalet are relevant and presented in more detail. The hardware architecture can be

15

differentiated into three entities: The host interface, the network interface and the network part

itself. A x16 PCI Express 3.0 or a x16 HyperTransport (HT) 3.0 with 2600MHz can be used to

interface a host system [8]. Toumalet’s Network Interface Card (NIC) apart from other protocols

supports Open MPI 1.6x for low level API access via the Remote Memory Access (RMA) unit [8].

Arbitrary topologies with a bandwidth of 120Gbit/s per link port and direction can be realized

with the six link ports of a Tourmalet NIC [8]. The NIC’s network switch has one additional

link for board integration [20].

3.2. The EXTOLL Network Protocol

The EXTOLL network protocol defines three protocol layer: the network layer, the link layer

and the physical layer (Figure 3.2). The link layer consists of two link ports for every connection

within the network. Reliable transmission of packet cells between link ports is ensured by a

retransmission protocol [4]. All data traffic between network nodes is also processed by the

physical layer. This layer performs tasks such as link initialization, line coding and detects defect

lanes of a connection [4]. The network layer handles the packet routing. Part of the network

layer is the EXTOLL network port, which can be directly interfaced in a custom hardware

design. In combination a link port and a physical link a Functional Unit (FU) is able to send and

receive EXTOLL packets.

Crossbar

LP

LP

LP

LP

LP

LP

PHY

PHY

PHY

PHY

PHY

PHY

Link
Layer

Physical
Layer

NP

NP

NP

NP

Network Layer

(a) The EXTOLL network protocol layers as imple-
mented in Tourmalet.

LP NP FU

Link
Layer Layer

NetworkPhysical
Layer

PHY

T
ra
ns
ce
iv
er

FPGA

(b) An exemplary custom FPGA design that sup-
ports an EXTOLL network.

Figure 3.2.: Standard and custom implementation of the EXTOLL network protocol layers.

Graphics adapted from the EXTOLL Network Protocol Specification [4].

Section 3.3 describes how the network port can be interfaced. The packet format is described

in the following.

In an EXTOLL network, packets consist of 64 bit wide cells [4]. Apart from data cells, which

carry the payload, there are control cells that frame data cells to form packets [4]. They are also

16

used by the link layer and the physical layer to take care of a variety of network internal tasks,

such as exchanging flow control credits or initializing link connections [4]. Figure 3.3 shows

the structure of control cells. After eight control bits for encoding in the physical layer 4 bit
determine the cell type. The next 36 bit are the control cell payload; its structure depends on
the cell type.

PayloadCell TypePhysical Layer Control CRC

36 bit4 bit8 bit 16 bit

Figure 3.3.: General control cell format

In the current context the Start Of Packet (SOP) control cell is of importance. This type

of control cell contains the routing information for following data cells [4]. As depicted in

Figure 3.4 this routing information is comprised of 1 bit to distinguish between unicast and

multicast packets, 1 bit each for choosing the Adaptive or a Deterministic Virtual Channel

(AVC/DVC), 2 bit Traffic Class (TC), 16 bit node ID, 3 bit Target Unit (TU) and 10 bit virtual
process ID [4].

Virtual Process ID

10 bit

Node ID

16 bit

TU

3 bit

MCreserved

2 bit

TC

2 bit

DVCAVC

Figure 3.4.: Payload of a SOP control cell (cell type 0x4)

In case of a multicast packet the six most significant bits of the node ID are interpreted

as a multicast group ID, thus 64 local multicast groups can be defined. With a sophisticated

mapping algorithm these multicast groups may theoretically overlap one another, effectively

distinguishing between even more different groups. As these multicast groups do not have to

be globally unique, the total number of multicast groups scales up with the size of the network.

If the Adaptive Virtual Channel (AVC) bit is set, the packet is routed adaptively. Such packets

may not be received in sequence. If the adaptive routing buffer at a node is full the routing

falls back on a deterministic channel. There are two deterministic virtual channels, which are

distinguished by the Deterministic Virtual Channel (DVC) bit, when the AVC bit is set to zero.

AVC and DVC bit must not both be set in a single SOP control cell. Network packets can be

assigned to one of four Traffic Classes (TCs), which cannot jam each other. The 16 bit node
ID allows to address a node in a network of 64 k nodes. The Target Unit (TU) bits identify the

target module (e.g., RMA) within the Network Interface of the target node. The virtual process

ID is needed for packets sent to the RMA or another TU called VELO to identify the target

process in environments like Message Passing Interface (MPI).

17

After up to 32 data cells an End Of Packet (EOP) control cell indicates the end of a packet. This

cell contains a 32 bit packet CRC along with four reserved bits [4]. EOP control cells must not

be sent into the network, because they are generated in the EXTOLL network port.

3.3. The EXTOLL Network Port Interface

The Network Port (NP) is divided into sender and receiver. The NP sender forwards data from

the FU to the crossbar, thereby into the network. The NP receiver works inverse. Both data

paths are buffered as depicted in Figure 3.5.

eop_fu2np
sop_fu2np

valid_fu2np

data_fu2np

full_np2fu

Send
Buffer

a_full_np2fu

stop_anp_np2fu

eop_np2fu
sop_np2fu

error_np2fu

data_np2fu

empty_np2fu

Receiver
Buffer

shiftout_fu2np

Crossbar
Interface

Figure 3.5.: The interface between a Functional Unit (FU) and the EXTOLL Network Port (NP),

which is logically divided into a sender and a receiver.

The NP sender’s and receiver’s mode of operation is controlled with a register file. The NP

sender can be adjusted to delay the packet transmission until a threshold of cells is stored in

the send buffer. Other than this, if packets of a size below the appointed threshold are to be

sent, these will be sent when completely buffered [11]. The NP receiver can either operate in a

“cut-through” mode or in a “store-and-forward” mode. In “cut-through” mode single packet

cells are stored in the receive buffer directly on recipience [11]. As a result, the FU has to be able

to handle corrupt packets. Alternatively the NP receiver can operate in “store-and-forward”

mode. In this mode only complete and errorless packets are stored in the receive buffer making

error handling dispensable at the price of slightly higher latency.

In order to be able to use the NP in a custom hardware design the signals at the NP sender’s

and receiver’s interface are explained in in more detail.

18

Fynn
receicEEE

NP sender

data_fu2np This bus transports all 64 bit wide packet cells from the FU to the NP.

Like in all EXTOLL modules the bus width can be a multiple of 64 [11].

However the first cell of a packet has to be a SOP control cell.

sop_fu2np This signal indicates that the current cell is a SOP control cell [11].

eop_fu2np This signal indicates that the current cell is the last cell of the packet [11].

valid_fu2np If this signal is set and full_np2fu is not set the data_fu2np bus is shifted

into the NP Send Buffer [11].

full_np2fu This signal indicates that the NP Send Buffer is full and no data will be

accepted [11].

a_full_np2fu This signal indicates that a whole network packet would exceed the capac-

ity of the NP Send Buffer [11]. This means an ongoing transmission has

not to be disrupted.

stop_anp_np2fu This signal indicates that the packet transmission should be halted before

issuing the next packet [11]. However, within the next three clock cycles

new packets are still accepted and ongoing transmissions may be finished

[11].

NP receiver

data_np2fu Analog to the data_fu2np signal interfacing the NP sender [11].

sop_np2fu Analog to the sop_fu2np signal interfacing the NP sender [11].

eop_np2fu Analog to the eop_fu2np signal interfacing the NP sender [11].

error_np2fu This signal indicates that the current packet from the last received SOP

control cell until the currently transfered cell is corrupt [11].

empty_np2fu This signal indicates if the receive buffer is empty or stores at least one

cell [11].

shiftout_fu2np Via this signal a received cell can be shifted out by the FU. It also allows

to request the next cell, if the empty_np2fu signal is set. In this case a cell

will be send to the FU as soon as it is stored in the receive buffer [11].

19

Fynn

Fynn

3.4. Latency

Within the EXTOLL network one hop takes approximately 60 ns [20]. One hop into the network
is obligatory, as well as an offset delay of about 484 ns to 640 ns for this specific application
of the current NCS. This offset delay consists of a short delay in the HICANN (< 4 ns [6]), the
transmission delay between HICANN and hicann_if module (224 ns in “rx” plus 184 ns in
“tx” direction [7]) and the pulse event processing in the hbp_extoll_if module (18 to 42 clock

cycles at 250MHz plus up to 60 ns delay in the accumulation time slot resulting in 72 ns to
228 ns as later discussed in more detail in section 6.2).

The achievable latency depends on network size and topology. There is always a minimum

latency of about 550 ns plus 60 ns per network hop.

3.5. Suitable Network Topologies

With regard to the network topology, the neuronal model topology of a random network is the

one with the highest demands. Regarding this worst case, the best scalable Tourmalet network

topology is a three dimensional torus. To be able to compare different tori topologies two

variables are defined: 𝑑T, the topology diameter—the maximum number of hops through the

torus network—and 𝐵T, the supported utilization per I/O link, assuming homogeneous traffic

distribution within the network. 𝐵T serves for comparison only, as homogeneous network

traffic is the best case scenario for bandwidth utilization within the network. To estimate 𝐵 the

average number of required hops 𝑑a = 𝑑T

2 (for random network traffic), the number of I/O links

𝑙IO and the number of intra-network connections 𝑙intra is used. In complete symmetric tori with

𝑁T nodes and 3𝑁T connections 𝑑T and 𝐵T can be calculated as follows:

𝑑T = ⌈3
2 ⋅ 󰙯 3󰞎𝑁T − 1󰙰⌉ (3.1)

𝐵T = 𝑙intra
𝑙IO ⋅ 𝑑a

= 3𝑁T ⋅ 2
𝑁T ⋅ 𝑑T

= 6
𝑑T

(3.2)

As the FPGA bandwidth is limited to 40Gbit/s (section 2.2) and a single EXTOLL Tourmalet

link is capable of forwarding 120Gbit/s, concentrator nodes have already been proposed in

advance of this thesis [16]. With its total of seven links a Tourmalet concentrator node can

combine up to six FPGAs, as shown in Figure 3.6.

Considering a 20 wafer NCS 20 ⋅ 48 = 960 FPGAs or at least 960/6 = 160 concentrator nodes

have to be connected. This large number excludes any trivial topology solutions like all-to-all,

therefore a 3-torus with or without concentrator nodes is the selected network topology. In

torus networks with one layer of concentrator nodes the maximum number of hops through

the whole network is 𝑑 = 𝑑T+2. The merging of several concentrator nodes with a second layer

of concentrator nodes is inefficient, as supported bandwidth would be reduced extremely.

20

Fynn

EXTOLL EXTOLL

Kintex

8
HICANN

8
HICANN

Kintex
XC7K160T

48x 48x

EXTOLL
ASIC

8
HICANN

Kintex

8
HICANN

Kintex

8
HICANN

Kintex

8
HICANN

Kintex

8x

8r2r1Gbit/s

Wafer

8
HICANN

Kintex

3D-TorusrNetwork

EXTOLL
ASIC

EXTOLL EXTOLL

x4rlinks

6r2r40Gbit/s

x12rlink

120Gbit/s

EXTOLL
ASIC

EXTOLL EXTOLL

EXTOLL EXTOLL

EXTOLL
ASIC

EXTOLL
ASIC

ConcentratorrNodes

Figure 3.6.: Design of an EXTOLL network with a 3-torus topology and concentrator nodes that

combine six FPGAs (6:1). Graphic adapted from hbp_extoll_networking_v2 [16].

Independent of the emulated neuronal network’s activity it is reasonable to combine a

minimum of three FPGAswith one concentrator node (3:1)—three FPGAs’ maximum bandwidths

sum up to the maximum bandwidth of one Tourmalet link. A special scenario is the combination

of five FPGAs, as this allows for a double connection between the concentrator node and the

network (5:2), supporting full bandwidth for five FPGAs at each concentrator node (two or

more network connections for lower ratios would be overdesigned). There are two possible

network configurations to fit the 5:2 concentration: Two parallel 3-tori each of the size to

fit a 5:1 concentration and an “open” 3-torus. The later is a 3-torus like topology with only

𝑙intra = 2𝑁T intra-network connections, leaving additional 𝑁T connections free to connect

additional concentrator nodes (𝑙IO = 2𝑁T). Different concentrator node setups are compared in

Figure 3.7

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

 4

 6

 8

 10

 12

 14

I/
O

 l
in

k
 b

a
n
d
w

id
th

 u
ti
liz

a
ti
o
n
 B

m
a
x
im

u
m

 h
o
p
s

th
ro

u
g
h
 n

e
tw

o
rk

 d

 total number of required ASICs for 960 FPGAs N

d and B for different concentrator setups

bandwidth surplus

 at concentrator nodes

320 384 480 576 640 960

d

6:1 B

5:2 "open" B

5:1 B

4:1 B

5:2 B

3:1 B

1:1 B

Figure 3.7.: Possible average utilization of I/O node links and maximal number of necessary

network hops in a 3-torus topology, assuming every node has one I/O link and six

intra-network connection links.

It is evident that the 1:1 setup is overdesigned. It is even disadvantageous compared to the

concentrated networks, due to its large 3-torus diameter and despite the fact that concentrated

networks require two additional nodes. A large number of EXTOLL ASICs (1:1 and 3:1) has little

advantage over low (6:1, 5:2 “open” and 5:1) to medium numbers of network nodes (4:1 and 5:2).

Comparing the 5:2 setup to the 3:1 setup it is more likely that the 3:1 setup jams for high overall

network load. This conclusion is incomplete, as three free links at each concentrator node in

a 3:1 setup was neglected in this analysis. It might be possible that the 3:1 configuration has

an advantage for locally coupled networks. However, a symmetric network topology with 3:1

concentrator nodes is not feasible. Both 5:2 configurations have the advantage of full bandwidth

support at the concentrator nodes. This allows the network to handle local bursts, if the overall

network traffic is not too high. In case of high overall network traffic a problem for the 5:2 “open”

setup could arise, as the overall average of I/O traffic may not exceed 60% of the maximum

bandwidth per Kintex.

All the discussed network topologies implemented in EXTOLL ASICs with a price of approxi-

mately $ 1000 per ASIC are cheaper and possess a higher performance than comparable FPGA

switch designs. In order to keep costs as low as possible the 6:1 setup allows for efficient

networking, but its concentrator nodes limit bandwidth to half of the full maximum of six

22

FPGAss. If this is not sufficient emulated neural network activity bursts could be managed by

an “open” 5:2 configuration which only needs 20% more resources. If overall network traffic is

the limiting factor a 5:1 or 4:1 setup might be required. The largest efficient configuration—the

5:2 setup—requires almost doubled resources compared to a 6:1 setup, but wont cause any

additional delays neither due to bandwidth peaks nor due to high overall network traffic rates.

To gauge the most suitable configuration more simulations of neural network models have be

performed with the discussed topologies.

23

4. The FPGA’s Internal Structure

As mentioned in section 2.1 the current neural accelerator’s control logic is implemented in 48

Kintex-7 XC7K160T FPGAs per wafer unit. The structure of such a FPGA is now examined as a

preparation for integrating an EXTOLL interface module.

The FPGA’s structure is divided into interface and core logic as depicted in Figure 4.1. All data

for configuration is forwarded by the UDP interface to which a Joint Test Action Group (JTAG)

interface is connected for testing purposes. There is a System monitor module connected to

an I²C interface for observing the systems performance, e.g. occurring CRC errors or system

temperature. The host Automatic Repeat Request (ARQ) module implements a retransmission

protocol. There are three DDR3 interfaces to connect one 256MB DDR3-1600 SDRAM for

Ethernet buffering (connected to the host ARQ) and two—one each for trace and playback

data—512MB DDR3-800 SDRAMs with a 32 bit interface to their controller modules. The trace

memory tracks the occurring pulse events during an experiment and can be read out afterwards.

The playback memory can be filled with pulse events to set the preconditions for an experiment.

Figure 4.1.: Main modules of the Kintex-7 FPGA firmware. Graphic apdapted from the Neuro-

morphic Platform Specification [24].

The HICANN ARQ ensures configuration data communication with the HICANNs, which

are interfaced through eight HICANN interfaces. From these interfaces pulse events are sent to

25

a routing module (and vice versa), which is connected to to the playback controller and also

interfaces the Kintex’ GTX links. A routing module with the described capabilities is still in

development. Still the HICANN Interfaces are the best module to connect an external network

to and are therefore described more closely in the following section 4.1.

As the structure of the FPGA is liable to change, refer to most current details on this matter in

the Neuromorphic Platform Specification [24].

4.1. HICANN Interface Specifications

In order to communicate with the HICANN Interface, in- and outgoing signals at the edge of the

module are analyzed. To identify the signals’ exact content, also the inner structure is examined.

The HICANN Interface provides a source synchronous serial DDR transmission from and to-

wards one HICANN, and additionally handles en- and decoding of pulse and configuration

packets. These functionalities are separated in four submodules: The ddr_lvds_if_7series,
the fpga_link_channel, the fpga_proto_link_ctrl and the packet_ctrl. Additionally
there is the test_hicann_if_jtag_sync module for testing purposes. The main signals

within the HICANN Interface relevant for transmitting and receiving pulse and configuration

data are shown in Figure 4.2. This figure also serves the purpose of displaying the interfaces of

the hicann_if module towards the HICANN and the hbp_extoll_if module, the implemen-

tation of which is part of this thesis.

As shown in the bottom of Figure 4.2 connections to and from the HICANN are implemented

solely in the ddr_lvds_if_7series module. As the HICANN operates on a slower run-

ning clock than the FPGA (1:8) and possesses no buffer capabilities, asynchronous FIFOs are

used in the ddr_lvds_if_7series module to segregate the two clock cycles and to buffer

incoming as well as outgoing data. For data transmission Low-Voltage Differential Signal-

ing (LVDS) is used. The eight bit data units from/to the HICANN are combined/segmented in

the fpga_link_channel module, which also initiates the link training.

The fpga_proto_link_ctrl module converts the link channel data into 64 bit packets and
vice versa. These packets may contain configuration data or one or two pulse events. To-

wards the packet_ctrl module this is encoded as part of the packet format, in the reverse

direction these options are flagged by the config_enable signals for configuration data, the

pulse_enable signal indicates one pulse event and the pulse_64bit signal two, respectively. The

fpga_proto_link_ctrl module is also capable of counting the occurred CRC errors.

At the hicann_if module’s interface within the FPGA (shown at the top of Figure 4.2),

the packet_ctrl module buffers incoming packets, which will be sent to the HICANN

(tx_pulse_event and tx_config_data) in separate FIFOs (tx_pulse_fifo_full and tx_config_fifo_full).

Outgoing packets (rx_pulse_event and rx_config_data) are directly forwarded and are lost if not

processed by the receiving module.

26

packet_ctrl

hbp_extoll_wrapper

rx_pulse_event[23:0]

tx_pulse_fifo_full

tx_config_data[63:0]

tx_config_data_en

tx_pulse_event[23:0]

tx_pulse_event_en

rx_pulse_event_en

fpga_proto_link_ctrl

fpga_link_channel

ch_rx_data[79:0] ch_sts_[6:0] ch_tx_data[79:0] ch_ctrl[5:0]

ddr_lvds_if_7series

tx_data[7:0]
tx_data_valid

training_en

HICANN

rx_config_data[63:0]

rx_config_data_en

tx_config_fifo_full

packet_rx[63:0] packet_tx[63:0] config_enable pulse_enable pulse_64bit

rx_data[7:0]
rx_data_valid

training_done

I_CLK_RX_N

I_CLK_RX_P

I_DAT_RX_N

I_DAT_RX_P

O_CLK_TX_N

O_CLK_TX_P

O_DAT_TX_N

O_DAT_TX_P

Figure 4.2.: Overview of the HICANN Interface’s submodules and main signals. The top of the

figure already suggests the EXTOLL interface with one of its wrapper modules. This

part is discussed in more detail in chapter 6.

Within this thesis work the names of modules and signals mainly begin with rx_ or tx_,
where “rx” stands for receiving channel and “tx” for transmitting channel with regard to a

HICANN. This annotation was chosen in analogy to the hicann_if module implementation in

the subproject s_hmf_fpga of the p_brainscales project.

All signals at the hicann_if module’s interface, which are relevant for pulse event and config-

uration data transmission, originate from or are received by the packet_ctrl module. This

allows focusing solely on pulse events in the first implementation of an EXTOLL module. As

explained pulse events and configuration data are completely separated from another at this

point of data communication.

27

The 24 bit wide rx/tx_pulse_event signals contain a 15 bit timestamp, which encodes its time

of origin. As the hicann_if module itself is work in progress, too, in future implementations

this timestamp may instead mark the point of time at which the pulse event should take effect.

The other part of a pulse event packet contains a 9 bit synapse identifier, labeling the pulse

event’s origin. This synapse driver address is unique within the FPGA domain, as its three most

significant bits identify its source HICANN. It is envisioned to extend the 6 bit synapse address
to 9 bit in further development, which is why the calculations within this thesis are based on

27 bit wide pulse events instead of the found 24 bit.

+synapse IDtimestamp

15 bit

on HICANN synapse IDHICANN ID

3 bit 6 bit 3 bit

Figure 4.3.: The bit structure of pulse events at the HICANN interface.

Signals Relevant for the EXTOLL Network

clk_sys The general clock signal within the FPGA is operating at a fre-

quency of 125MHz.

a_reset_sys_h Within the FPGA exists an asynchronous, active high reset signal.

[23:0]tx_pulse_event
[23:0]rx_pulse_event

A neuronal pulse event received by (“rx”) or going to be trans-

mitted to (“tx”) a HICANN. The most significant bits of these

buses consists of a 15 bit timestamp, which indicates time of the

pulse’s origin. The remaining bits encode the source synapse

driver including its source HICANN ID at the three most signifi-

cant bits.

tx_pulse_event_en

rx_pulse_event_en

These signals indicate the validity of the above elucidated “tx” and

“rx” pulse event buses. If one signal is not set the corresponding

bus value is undefined.

tx_pulse_fifo_full If this signal is set the receive buffer for pulse events in “tx”

direction is full. Pulse events wont be shifted in.

[63:0]tx_config_data
[63:0]rx_config_data

These buses transfer configuration data in and out of the

hicann_if complying with the ARQ protocol.

tx_config_data_en

rx_config_data_en

These signals indicate the validity of the above elucidated “tx”

and “rx” data buses. If one signal is not set the corresponding

bus’ value is undefined.

28

tx_config_fifo_full If this signal is set the receive buffer for configuration data in

“tx” direction is full. Configuration data wont be shifted in.

[14:0]systime The system’s time counter, used to generate a pulse event’s times-

tamp. The three least significant bits are generated locally. The

implementation of systime is work in progress.

loopback_en This signal enables an internal loopback, sending back received

pulse events without using the analog connection towards the

HICANN. This is used for testing purposes only.

use_timestamp If this signal is set the hicann_ifmodule uses eight heap buffers

to schedule pulse events in “tx” direction according to their

timestamp.

[63:0]kill_stat For each of the above mentioned heap buffers kill_stat provides

an 8 bit counter for the number of those pulse events that had

to be discarded due to full heap buffers or if they were received

behind schedule.

[7:0]kill_stat_reset For each discarded pulse event counter exists a separate reset

signal.

Other Signals

[7:0]channel_status The channel_status holds information about the data channel

from the hicann_if module to the corresponding interface in

the HICANN.

channel_status [0]: ready to send a pulse event packet

channel_status [1]: initializing link [7]

channel_status [2]: CRC error occurred [7]

channel_status [3]: reserved (was used in an earlier implementa-

tion) [7]

channel_status [4]: received valid configuration packet if no CRC

error occurred

channel_status [5]: received valid pulse event packet if no CRC

error occurred

channel_status [6]: ready to send a configuration packet

channel_status [7]: pulse event packet contains two pulse events

channel_reset This signal resets the channel_status register.

29

clk_hs The clk_hs signal is a reference clock for the HICANNs with a

frequency of 62.5MHz [24].

reset_hs The HICANN has this seperate active high reset signal.

[7:0]crc_count This register counts the occurring CRC errors for all packets

received from the HICANN.

crc_count_rst This signal resets the above named CRC error counter to zero.

auto_init This signal enables the use of an automatic eye pattern search

algorithm in the HICANN [7]. It is set by default.

init_master This signal determines the master communication partner for the

connection between FPGA and HICANN. As default the FPGA

is the master and its HICANN is the slave [7].

start_link This signal initiates the link training for the HICANN connection

[7].

pulse_protocol

config_protocol

These signals indicate a successful CRC for received pulse events

and configuration data, respectively. They are not used any

anymore [7].

dc_coding This signal enabled the use of 8b/10b encoding within the FPGA.

As this method did not lead to any measurable improvements it

was abandoned [7].

[99:0]routing_data
routing_data_en

[7:0]heap_mode

[10:0]limit auto_limit

These four buses and signals can be used to enable special buffer

functionalities that are not necessary for standard usage [7].

O_CLK_TX_P

O_CLK_TX_N

These signals transfer the reference clock signal towards the

HICANN using LVDS.

I_CLK_RX_P

I_CLK_RX_N

These signals transmit the HICANN clock signal to the

hicann_if, where it is needed in the asynchronous FIFOs.

O_DAT_RX_P

O_DAT_RX_N

These signals implement the LVDS communication path towards

the HICANN.

I_DAT_RX_P

I_DAT_RX_N

These signals implement the LVDS communication from the

HICANN into the hicann_if.

30

4.2. Signal Timing at the HICANN Interface

The signal timing is a crucial element of interfacing a module. FUs connected to the hicann_if
module have to process incoming “rx” data instantaneously, because there are no “rx” output

buffers integrated. This applies to pulse events and configuration data alike. The timing in this

case is depicted in Figure 4.4 using the example of pulse events.

clk_sys

rx_pulse_event_en

[23:0] rx_pulse_event Data DataX X X

Figure 4.4.: Signal changes at clock edge of “rx” pulse event signals at the hicann_if interface.

As there are input buffers for the “tx” communications paths, valid data will be shifted in,

unless the corresponding input buffer is full. The connected transmitter unit in the pulse event

example represented by Figure 4.5 detects the full-status of the pulse event input buffer and

reapplies the data2 signal until the input buffer has free capacity.

clk_sys

tx_pulse_event_en

[23:0] tx_pulse_event Data1 Data2X X X

tx_pulse_fifo_full

Data2

Figure 4.5.: Signal changes at clock edge of “tx” pulse event signals at the hicann_if interface.

31

5. Designing an EXTOLL Interface Module

To establish EXTOLL as part of the implementation in the Kintex, first a simplified module

will be included in the existing implementation. The first design should enable the system to

use an EXTOLL network for direct pulse communication between different FPGAs, omitting

configuration data and read-out functionality for the time being. As latency is not as crucial

for read-out and configuration functionality, as it is for pulse event transmission, it is not a

problem to focus on pulse events for the first design draft. Moreover, pulse event packets are

potentially the smallest packets passing through the network, thus probably causing the highest

overhead. Several strategies have to be analyzed to determine a basic design of an EXTOLL

Interface module. However, the top level integration into the existing hmf_fpga module has to

be structured like shown in Figure 5.1 to be consistent with the FPGA structure described in

chapter 4.

Hicann_if

x8

hicann_if

clk_sys
clk_hs

a_reset_sync_h
reset_hs

clk_rst_genhbp_extoll_if

tx_pulse_event_bus

tx_pulse_event_en

tx_pulse_fifo_full rx_pulse_event_en

extoll_np

rx_pulse_event_bus

extoll_lp

rx_data rx_sop
rx_eop
rx_valid

rx_stop_anp
rx_full

rx_a_full

tx_data tx_empty
tx_shiftout

Pulse
Memory
Interface

Trace
Memory
Interface

HICANN
ARQ

tx_sop
tx_eop

tx_error

Other
FPGA

Modules

Figure 5.1.: FPGA structure with an integrated hbp_extoll_if module.

33

5.1. Routing Strategy

As pointed out in section 3.2 a 64 bit wide SOP control cell is inevitable for any packet within

the EXTOLL network and all data within the network has to be aligned to 64 bit. A pulse events

only takes up 27 bit. To avoid massive overhead, pulse events with the same destination node

could be sent together. The limited time frame each pulse event is valid is disadvantageous in

this, but the network’s low latency may allow for further delay.

Another very appealing method is the use of multicast packages, because naturally a single

pulse event reaches lots of neurons, as a single neuron has lots of synapses. How common the

applicability of multicast packets is, strongly depends on the properties of the neural network

which is to be emulated. In uniform random networks—a widely used model for neuronal

networks [19, 3]—it is obvious that almost every pulse event has to be forwarded to a number of

EXTOLL network nodes as all target neurons are uniformly distributed over the whole network.

On the other hand in locally coupled networks—another suggested model [17]—it might often

be the case that all postsynaptic neurons are placed within a single reticle, thus the pulse

event would only have to be passed through the EXTOLL network once. As the maximum of

implemented neurons in a reticle is currently limited to 4096, the target neurons often have

to distributed over more than one reticle. In conclusion the EXTOLL Interface module should

definitively support multicast packets. Due to the current limit of 64 local multicast groups the

implementation should not be restricted to multicast packets. In analogy to unicast packets

multicast pulse events could be accumulated in order to reduce the necessary overhead.

If several pulse events are sent in a single packet (unicast or multicast) the duration of accu-

mulation has to be determined. The simplest method is to compare the difference between the

pulse event’s timestamp and the current system time to a constant threshold. This threshold

has to correspond to the difference between the minimally acceptable delay of a pulse event

and the maximally occurring latency in an EXTOLL network utilized to its capacity. A more

exact approach is the adaptation of this threshold to the specific delay of the pulse events that

are on hold or to the worst case latency of the specific node connection (or connections in case

of a multicast packet).

34

6. The Extoll Interface Module

In this chapter the implemented hbp_extoll_if module is documented. In its described state

of development it supports the communication of pulse event data.

6.1. Interface Specification

For a better overview of the hbp_extoll_if module the communication channels from and

towards the EXTOLL NP and HICANN Interface are illustrated in Figure 6.1.

from hicann_if
receive channel

general input
clk_sys
clk_extoll
res_n

[8*24-1:0] rx_pulse_event_bus
[7:0] rx_pulse_event_en

[63:0] tx_data_np2ctrl
sop_np2ctrl
eop_np2ctrl
error_np2ctrl
empty_np2ctrl
shiftout_ctrl2np

towards extoll_np
transmit channel

towards hicann_if
[8*24-1:0] tx_pulse_event_bus

[7:0] tx_pulse_event_en
[7:0] tx_pulse_fifo_full

[63:0] rx_data_ctrl2np
sop_ctrl2np
eop_ctrl2np

valid_ctrl2np
full_np2ctrl

a_full_np2ctrl
stop_anp_np2ctrl

transmit channel

receive channel
from extoll_np

Figure 6.1.: The hbp_extoll_if module interface.

6.2. Inner Structure

Figure 6.2 depicts the inner structure of the hbp_extoll_if module. “tx” and “rx” commu-

nication paths are completely seperated. Only due to the analogy of the “tx” and “rx” FIFOs

that buffer data transmission and seperate EXTOLL’s clock domain, the hbp_extoll_wrapper
module is part of both communication paths.

35

x8

hbp_extoll_
rx_mux

hbp_extoll_
tx_ctrl

hbp_extoll_
rx_ctrl

hbp_extoll_
rx_arbiter

Hicann_if
hbp_extoll_wrapper

hbp_extoll_
routing

[7:0]
rx_hicann_sel

rx_shift_out

hbp_extoll_
accum

[26:0]
rx_pulse_event

rx_pulse_event_valid

[16:0]
rx_node_id

wait_for_accum

[11:0] w_synapse

[15:0] w_node_id

w_multicast

w_valid

tx_wrapper_full

tx_hicann_sel

tx_pulse_event

shiftout_ctrl2np

empty_np2ctrl
error_np2ctrl

sop_np2ctrl
eop_np2ctrl

[63:0]
tx_data_np2ctrl

[511:0] acc_rx_pulse_event

[15:0]
acc_rx_node_id

acc_rx_multicast

acc_rx_pulse_
event_valid

acc_nextstop_anp_np2ctrl

full_np2ctrl
valid_ctrl2np

sop_ctrl2np

eop_ctrl2np

a_full_np2ctrl

tx_empty
tx_shift_out rx_shift_in[26:0] rx_pulse_event

rx_full rx_a_full

[63:0]
rx_data_ctrl2np

rx_empty

routed_rx_pulse_event_valid

rx_multicast
[26:0] routed_rx_pulse_event

[26:0] rx_data

[26:0] tx_pulse_event

Figure 6.2.: The inner structure of the hbp_extoll_if module.

For the whole hbp_extoll_if the worst case number of clock cycles add up to 42 plus

additional 15 clock cycles that it may take to process pulse events scheduled in the same time

slot (refer to subsection 6.2.5 for more detail on this). This corresponds to a delay of 228 ns for a
250MHz clock signal. If all buffers are empty the minimum number of clock cycles is 18, which

corresponds to a delay of 72 ns.

6.2.1. hbp_extoll_wrapper

This module consists of two register based First In, First Out buffer structures (FIFOs). One

of them buffers rx_pulse_events, that are received from the hicann_if module via the

rx_pulse_event_bus, the other one buffers outgoing tx_pulse_events towards the hicann_if
module (via tx_pulse_event_bus). To support a different clock signal within the hbp_extoll_if
module (clk_sys and clk_extoll) these FIFOs have to be asynchronous.

There are as many hbp_extoll_wrapper in a hbp_extoll_if, as there are hicann_if mod-

ules in the hmf_fpga_top module (equals the number of HICANNs per FPGA).

6.2.2. rx_mux

This multiplexer (mux) forwards one of the pulse_event signals of all hbp_extoll_wrapper
towards the hbp_extoll_routing module. From which hbp_extoll_wrapper a pulse

event is selected is determined by the one-hot rx_hicann_sel bus and indicated towards the

36

hbp_extoll_wrapper modules by the rx_shift_out bus. If the incoming wait_for_ctrl signal is

high the mux pauses, not providing any pulse events for the routing module nor shifting out

any data with rx_shift_out.

6.2.3. hbp_extoll_rx_arbiter

Given the rx_empty bus, which contains the rx_empty signals from all hbp_extoll_wrapper,
this module generates the above mentioned rx_hicann_sel bus in a round-robin manner.

6.2.4. hbp_extoll_routing

This module provides the routing information in form of a Random Access Memory (RAM)

based LookUp Table (LUT). This block memory saves 1 bit for the multicast command and

another 16 bit for an EXTOLL node ID in case of unicast (rx_multicast = 0), or a 6 bit multicast

group ID in case of multicast events. Further more the block memory holds a 4 bit wide “durable
delay” that indicates the acceptable latency for each pulse event. For a quick and efficient

accumulation of pulse events this durable delay has to be the same for every neuron connection

with the same destination node (see also subsection 6.2.5 hbp_extoll_accum). During the

routing lookup the incoming rx_pulse_event is buffered, hence after routing the rx_multicast

flag and the rx_node_id are valid contemporaneously with the forwarded routed_rx_pulse_event.

As the LUT consumes two clock periods, the whole module finishes processing after three clock

cycles.

The LUT can be modified through the w_multicast signal and the w_node_id bus by setting the

w_valid signal. This writing access on the block memory is independent of the routing process,

because the LUT is implemented as a simple dual-port RAM. If a conflict occurs writing has

priority and the pulse event being looked up is discarded.

6.2.5. hbp_extoll_accum

The purpose of this module is to accumulate pulse events that have to be send to the same target

node. It buffers the pulse events after they have been processed by the hbp_extoll_routing
module. The routed pulse events are delayed 5 clock cycles plus “durable delay” value times

60 ns at maximum. The pulse event format in the accumulation buffer is compatible with the

EXTOLL cell format.

37

6.2.6. hbp_extoll_rx_ctrl

This module sends EXTOLL network packets into the data network.

PAYLOAD WAIT

NP FULLIDLE

acc_rx_pulse_event_valid
&& !a_full_np2ctrl

&& !stop_anp_np2ctrl

!acc_rx_pulse_event_valid

accum_length_send < 3

a_full_np2ctrl
|| stop_anp_np2ctrl!accum_length_send < 3

acc_rx_pulse_event_valid
&& (a_full_np2ctrl

|| stop_anp_np2ctrl)

!a_full_np2ctrl
&& !stop_anp_np2ctrl

LAST
PAYLOAD

 a_full_np2ctrl
|| stop_anp_np2ctrl

!a_full_np2ctrl
&& !stop_anp_np2ctrl

accum_length_send
 <= accum_length_send -2

sop_ctrl2np <= 0
accum_next <= 0

valid_ctrl2np <= 0
eop_ctrl2np <= 0
acc_next <= 0;

valid_ctrl2np <= 0;
acc_next <= 1;

acc_length_send <= accum_rx_pulse_event
acc_rx_pulse_event_buffer <= acc_rx_pulse_event

valid_ctrl2np <= 0
eop_ctrl2np <= 0
accum_next <= 0;

accum_next <= 1

Figure 6.3.: The behavior of the hbp_extoll_rx_ctrl module as a state machine.

38

6.2.7. hbp_extoll_tx_ctrl

This module coordinates the work flow in tx direction, that is from the EXTOLL network port

towards the hicann_if module.

PAYLOAD FULL

BUFFERIDLE

!empty_np2ctrl

error

tx_hicann_sel_buffer
& ~tx_wrapper_full

!sop_received

sop_received

empty_np2ctrl

tx_hicann_sel & tx_wrapper_full
&& !empty_np2ctrl

&& !error

tx_hicann_sel_buffer
& tx_wrapper_full

(empty_np2ctrl
|| (tx_hicann_sel &
~tx_wrapper_full))

&& !error

sop_received <= 1
tx_buffer_valid <= 1

tx_hicann_sel <= tx_data_np2ctrl

tx_pulse_event <= tx_pulse_event_buffer
hicann_sel <= hicann_sel_buffer

tx_buffer_valid <= 0

sop_received <= 0
shiftout_ctrl2np <= 1

tx_hicann_sel <= 0

shiftout_ctrl2np <= 0
tx_hicann_sel <= 0

Figure 6.4.: The behavior of the hbp_extoll_tx_ctrl module as a state machine.

39

7. Future Work

The EXTOLL technology was not only found to be applicable for the current state of develope-

ment of the neuronal accelerator, but also revealed its potential for future implementations.

7.1. Future Implementations

The current implementation of the HBP EXTOLL Interface could be further developed by

• including a register in the implementation that provides general information, e.g. number

of packet errors.

• adding support of configuration packets that could be sent via the RMA unit.

• adding of read-out capabilities for the planned 65 nm wafer version that is envisioned to

posses on-wafer ADCs for synchronous analog read-out.

7.2. Envisioned Complications

In the current EXTOLL revision 2 only 16 bit in a SOP control cell are reserved for the node ID.

This could be a problem for very large networks (over 1365 wafers without concentrator nodes),

as the address space is limited to 65 k nodes. When the NCSs will realize this expansion level,

EXTOLL will have progressed as well to revision three or higher, and thus most likely will be

able to allow for larger networks by assigning more than 16 bit for the node ID, if an NCS of

that size will ever be built based on this technology.

41

A. List of Abbreviations

ADC Analog-to-Digital Converter

API Application Programming Interface

ARQ Automatic Repeat Request

ASIC Application-Specific Integrated Circuit

ATOLL ATOmic Low Latency

AVC Adaptive Virtual Channel

CMOS Complementary Metal-Oxide-Semiconductor

CRC Cyclic Redundancy Check

DDR Double Data Rate

DVC Deterministic Virtual Channel

EOP End Of Packet

EXTOLL Extended ATOLL

FCP FPGA Communication PCB

FIFO First In, First Out buffer structure

FPGA Field-Programmable Gate Array

FU Functional Unit

HBP Human Brain Project

HICANN High-Input Count Analog Neuronal Network chip

HT HyperTransport

I²C Inter-Integrated Circuit

I/O Input/Output

43

JTAG Joint Test Action Group

LUT LookUp Table

LVDS Low-Voltage Differential Signaling

mux multiplexer

MPI Message Passing Interface

NCS Neuromorphic Computing System

NIC Network Interface Card

NM–MC Neuromorphic Multi-Core

NM–PM Neuromorphic Physical Model

NP Network Port

PCB Printed Circuit Board

PCI Peripheral Component Interconnect

PPU Plasticity Processing Unit

RAM Random Access Memory

RMA Remote Memory Access

SOP Start Of Packet

SP9 Sub-Project 9 – Neuromorphic Computing

SpiNNaker Spiking Neural Network Architecture

TC Traffic Class

TU Target Unit

UDP User Datagram Protocol

44

B. List of Figures

2.1. One operating NM–PM wafer. Photograph from Brain-inspired multiscale com-

putation in neuromorphic hybrid systems (BrainScaleS) website [2]. 15

2.2. Schematic overview of a NCS with 20 wafers. Graphic adapted from “A wafer-

scale neuromorphic hardware system for large-scale neural modeling” [22]. . . 16

3.1. The Tourmalet network card. Graphic adapted from Introducing EXTOLL Tour-

malet, an HPC Network ASIC [20]. 19

3.2. Standard and custom implementation of the EXTOLL network protocol layers.

Graphics adapted from the EXTOLL Network Protocol Specification [4]. . . . 20

3.3. General control cell format . 21

3.4. Payload of a SOP control cell (cell type 0x4) . 21

3.5. The interface between a Functional Unit (FU) and the EXTOLL Network Port

(NP), which is logically divided into a sender and a receiver. 22

3.6. Design of an EXTOLL network with a 3-torus topology and concentrator nodes

that combine six FPGAs (6:1). Graphic adapted from hbp_extoll_networking_v2

[16]. 25

3.7. Possible average utilization of I/O node links and maximal number of necessary

network hops in a 3-torus topology, assuming every node has one I/O link and

six intra-network connection links. 26

4.1. Main modules of the Kintex-7 FPGA firmware. Graphic apdapted from the

Neuromorphic Platform Specification [24]. 29

4.2. Overview of the HICANN Interface’s submodules and main signals. The top

of the figure already suggests the EXTOLL interface with one of its wrapper

modules. This part is discussed in more detail in chapter 6. 31

4.3. The bit structure of pulse events at the HICANN interface. 32

4.4. Signal changes at clock edge of “rx” pulse event signals at the hicann_if interface. 35

4.5. Signal changes at clock edge of “tx” pulse event signals at the hicann_if interface. 35

5.1. FPGA structure with an integrated hbp_extoll_if module. 37

6.1. The hbp_extoll_if module interface. 39

6.2. The inner structure of the hbp_extoll_if module. 40

45

6.3. The behavior of the hbp_extoll_rx_ctrl module as a state machine. 42

6.4. The behavior of the hbp_extoll_tx_ctrl module as a state machine. 43

46

C. References

[1] 7 Series FPGAs Overview. DS180 (v1.15). Xilinx. Feb. 2014.

[2] Brain-inspiredmultiscale computation in neuromorphic hybrid systems (BrainScaleS) website.

as of 1𝑠𝑡 August 2014. : https://brainscales.kip.uni-heidelberg.de/.

[3] Nicolas Brunel. “Dynamics of sparsely connected networks of excitatory and inhibitory

spiking neurons.” In: Journal of Computational Neuroscience 8.3 (2000), pp. 183–208.

[4] Niels Burkhardt. Extoll Network Protocol Specification v2. internal Document. Computer

Architecture Group. University of Heidelberg.

[5] Andrew P. Davison et al. “PyNN: a common interface for neuronal network simulators.”

In: Frontiers in Neuroinformatics 2 (2008).

[6] direct communication with Dr. Andreas Grübl, Eric Müller and Paul Müller. involved in SP9

of HBP at University of Heidelberg. July 2014.

[7] direct communication with Stefan Scholze. involved in SP9 of HBP at TU-Dresden. July

2014.

[8] Extoll website. as of 17𝑡ℎ July 2014. : http://www.extoll.de/.

[9] Simon Friedmann. “A new approach to learning in neuromorphic hardware.” PhD thesis.

University of Heidelberg, 2013.

[10] Steve B. Furber et al. “The SpiNNaker Project.” In: Proceedings of the IEEE 102 (2014),

pp. 652–665.

[11] Benjamin Geib. EXTOLL Network Port Specification. v2.0. Computer Architecture Group.

University of Heidelberg.

[12] Marc-Oliver Gewaltig and Markus Diesmann. “NEST (neural simulation tool).” In: Schol-

arpedia 2.4 (2007), p. 1430.

[13] Stephan Hartmann et al. “Highly integrated packet-based AER communication infras-

tructure with 3Gevent/s throughput.” In: 17th IEEE International Conference on Electronics,

Circuits, and Systems (ICECS). IEEE. 2010, pp. 950–953.

[14] Human Brain Project website. as of 27𝑡ℎ June 2014. : www.humanbrainproject.eu.

[15] Jens Kremkow et al. “Functional consequences of correlated excitatory and inhibitory

conductances in cortical networks.” In: Journal of Computational Neuroscience 28.3 (2010),

pp. 579–594.

47

https://brainscales.kip.uni-heidelberg.de/
http://www.extoll.de/
www.humanbrainproject.eu

[16] Christian Leibig. “HBP EXTOLL Networking v2.” Internal technical documentation. Com-

puter Architecture Group at the Institute of Computer Engineering, University of Heidel-

berg. 2014.

[17] Carsten Mehring et al. “Activity dynamics and propagation of synchronous spiking in

locally connected random networks.” In: Biological Cybernetics 88.5 (2003), pp. 395–408.

[18] Sebastian Millner et al. “Towards biologically realistic multi-compartment neuron model

emulation in analog VLSI.” In: European Symposium on Artificial Neural Networks, Com-

putational Intelligence and Machine Learnin (ESANN). 2012.

[19] Mark E. J. Newman. “The structure and function of complex networks.” In: SIAM Review

45.2 (2003), pp. 167–256.

[20] Mondrian Nüssle. Introducing EXTOLL Tourmalet, an HPC Network ASIC. 13th HLRS/hww

Workshop on Scalable Global Parallel File Systems - Self-Managing Data & High Perfor-

mance Networking Forum (HNF) Europe Spring Meeting. May 2014.

[21] PyNNAPI reference: Simulation control. as of 27𝑡ℎ July 2014. : http://neuralensemble.
org/docs/PyNN/reference/simulationcontrol.html.

[22] Johannes Schemmel et al. “A wafer-scale neuromorphic hardware system for large-scale

neural modeling.” In: IEEE International Symposium on Circuits and Systems (ISCAS). 2010,

pp. 1947–1950.

[23] Gordon M. Shepherd. The synaptic organization of the brain. Vol. 3. Oxford University

Press New York, 2004.

[24] SP9 partners: UHEI, UMAN, CNRS-UNIC, TUD, KTH. “Neuromorphic Platform Specifica-

tion.” work in progress. 2014.

48

http://neuralensemble.org/docs/PyNN/reference/simulationcontrol.html
http://neuralensemble.org/docs/PyNN/reference/simulationcontrol.html

Declaration

I confirm that I have authored this thesis work independently and that I have not used other

than the listed sources and auxiliary means.

Heidelberg, August 6, 2014

49

	Introduction
	The Neuromorphic Computing System
	The Wafer Module
	Neuronal Traffic
	Latency

	The EXTOLL Network Technology
	The EXTOLL Tourmalet
	The EXTOLL Network Protocol
	The EXTOLL Network Port Interface
	Latency
	Suitable Network Topologies

	The FPGA's Internal Structure
	HICANN Interface Specifications
	Signal Timing at the HICANN Interface

	Designing an EXTOLL Interface Module
	Routing Strategy

	The Extoll Interface Module
	Interface Specification
	Inner Structure
	hbp_extoll_wrapper
	rx_mux
	hbp_extoll_rx_arbiter
	hbp_extoll_routing
	hbp_extoll_accum
	hbp_extoll_rx_ctrl
	hbp_extoll_tx_ctrl

	Future Work
	Future Implementations
	Envisioned Complications
	Appendix
	List of Abbreviations
	List of Figures
	References

