
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis in Physics

submitted by

David Hinrichs

born in Bergisch Gladbach, Germany

2014

Software Development in the context of Dendrite

Membrane Simulation

This Bachelor Thesis has been carried out by David

Hinrichs at the

Kirchhof Institute for Physics

Ruprecht-Karls-University Heidelberg

under the supervision of
Prof. Dr. Karlheinz Meier

Abstract

The aim of this Bachelor Thesis was to extend the functionality of the neuron circuit

simulation, the so called SimDenMem. The SimDenMem is based on a common abstraction

layer for hardware access, neural network simulation and neuron behaviour simulation

called Hardware Abstraction Layer Backend (HALbe). The core objective was to include

synaptic input data into the SimDenMem. Furthermore, the software environment was

advanced to allow multi-user access. Finally, the software and simulation were tested by

a series of consistency checks.

Zusammenfassung

Ziel dieser Bachelorarbeit war es die Verwendungsmoeglichkeiten der Neuronenschalt-

kreissimulation, der sogenannten SimDenMem, zu erweitern. Die SimDenMem basiert

auf einer gemeinsamen Abstraktionsschicht, HALbe, die sowohl fuer Hardwarezugriffe,

fuer neuronale Netzwerksimulationen als auch fuer praezise Neuronverhaltenssimulationen

verwendet wird. Das Erweitern dieser Simulation um den synaptischen Eingang war das

Hauptaugenmerk dieser Arbeit. Des Weiteren wurden Veraenderungen an der Softwa-

reumgebung durchgefuehrt um den Mehrbenutzerbetrieb zu ermoeglichen. Abschliessend

wurde das Softwarepaket getestet und verschiedene Simulationen durchgefuehrt.

i

ii

Contents

1 Introduction 1

1.1 Motivation and Scope . 2

1.1.1 Simulation . 2

1.1.2 Software . 4

2 Results 5

2.1 Simulation . 5

2.1.1 Verifying the simulation . 5

2.2 Software development . 8

2.2.1 Towards synaptic input . 9

2.2.2 C++ Client-Server-Connection . 11

3 Conclusion 13

3.1 SimDenMem . 13

3.2 Software . 14

4 Outlook 15

4.1 SimDenMem . 15

4.2 Software . 15

References 17

A Simulation manual 19

A.1 HALbe Environment . 19

A.1.1 Building and simulating the JSON file 19

A.1.2 Data Analysis . 21

iii

iv

Chapter 1

Introduction

The Electronic Visions research group in Heidelberg develops neuromorphic hardware

and software in accordance to the Brainscales [1] and Human Brain Project (HBP) [2]

research projects. As a participant of the HBP’s subdivision SP9 the Electronic Visions

groups foremost objective is the development of a Neuromorphic Computing Platform, the

Neuromorphic Physical Model (NM-PM) [3]. The NM-PM, or PM, as a platform enables

the emulation of neural networks shaped after the image of the human brain and aims to

supply researches with the possibility to explore brain models in great depth and detail.

To reach this objective the PM employs a VLSI hardware system, at the core of which

are circuit implementations of the AdEx neuron model and conductance-based synapses.

These neurons and synapses can be configured to implement arbitrary neural networks.

These array blocks, called ANNCORE (Analog Neural Network Core) [3] are the actual

heart of the system. The neurons inside the ANNCORE, which consist of 512 neuron and

114k synapse circuits, are designed to implement the ’Adaptive Exponential Integrate and

Fire’ model [4]. This model provides the system with the capacity to emulate biological

neurons to a very precise extent. The design of the circuitry that implements the AdEx

on the ANNCORE is described in the PhD Thesis of [5] Sebastian Millner.

This thesis presents the further development, integration and testing of the SimDenMem1,

a simulation of the transistor level implementation of the DenMem circuit2. In this

context the SimDenMem is a part of the supporting framework for testing and calibration,

1Simulation of the DenMem circuit
2Dendrite Membrane, the representation of a neuron cell body

1

the Hardware Abstraction Layer Backend (HALbe), which in turn is a low level software

interface that provides configuration access to the PM.

The presented thesis details the further development of SimDenMem’s functionality, as

well as the extension of the software supporting its usage.

The first chapter will give an introduction to the SimDenMem and the adjacent software.

Following, the motivation for the work presented in this thesis, as well as the general

scope of the attempted goals will be explained. In the third and final chapter, in the

discussion the results are evaluated and suggestions for further development are given.

1.1 Motivation and Scope

1.1.1 Simulation

The DenmemSim provides its users with a virtual implemention of two Denmem circuits

which in turn are each connected to a synapse circuit delivering synaptic input.

Figure 1.1: The simulation contains two denmem circuits, as well as two synapses

This way, the DenmemSim provides a simple-access method to test the circuit implemen-

tation of theAdaptive Exponential Integrate and Fire Model [4], but more importantly it

is a tool for understanding the most basic neural networks the PM is able to implement.

Since it is anticipated, that the emulation of more complex networks on the PM is going

to yield new and previously unknown results in neuronal behaviour, it is important to

2

have a detailed understanding of the functioning of simple neuron circuits, from which an

attempt to understand quantitavely larger phenomena can be made. Also, the DenmenSim

enables to read out every node for current and voltage for each timestep, a feature that

the actual silicon-cast ANNCORE circuits on the PM machine cannot perform, as there

is no way to obtain the data. Therefore, the SimDenMem is an important tool regarding

the calibration and analysis of the PM system. Moreover, since the capacity3 of the

silicon-cast PM is currently limited, and software-based simulation can be implemented

with much less ado and complication, the usage of the SimDenMem frees up more time

for large-scale tasks being performed on the wafer, whereas basic testing and calibration

can be looked into via the simulation.

Figure 1.2: The simulated circuit. The work presented in this thesis revolves around the

integration of the synaptic input into the input data

Therefore the first step in further developing the SimDenMem lay in expanding its

functionality towards synaptic input, which had not been included yet, as shown in figure

1.2.

Secondly, the ability to succesfully emulate the AdEx-model was explored shortly in a

series of consistency tests.

3As of runtime, since at this point only one wafer is accessible whilst the rest of the system is being

set up

3

1.1.2 Software

Since the SimDenMem at the time of this Bachelor Thesis was only used by a sly handful

of people directly involved with it’s development, there was no need to account for

access of a notable number of users working with it at the same time. Consequentially,

the functionality of the SimDenMem’s implementation left a couple of things to desire

when aiming for a broader access by a larger number of users not as involved with the

simulation’s software framework.

Foremost, the objective was to enable multi-user access.

Additionally, a functionality to verify the input data against a user-defined standard was

included into the simulation’s toolset.

4

Chapter 2

Results

This chapter presents the results achieved in the course of this thesis.

The first section will present the improvement and consistency checks in respect to

the SimDenMem, while the second section describes the advances made in scaling the

simulation’s software framework up to multi-access while also adding some functionality.

2.1 Simulation

2.1.1 Verifying the simulation

To verify the correct implementation of all functionalities, new and old, a series of

consistency checks was run. The goal was to reproduce well-known results through

variation of single parameters, thus providing a test case for the SimDenMem.

5

Neuron Membrane

The behaviour of the neuron membrane was examined under the variation of some basic

parameters such as the threshold-potential Vt and the leakage potential El.

Figure 2.1: Swap of El and Vt. As expected, the membrane reacts to this with constant

spiking

6

Current Input

The current input feature was tested via a continuous signal. The plot 2.2 also shows

a problem with the result data: Random spikes appear in the current line. Although

these spikes do not seem to influence the membrane potential, they may appear due to

mis-configuration of the simulator (especially since they are only one timestep wide).

Figure 2.2: The membrane is excited with a continuous current input. Additionally to

the actual current input (the flatline starting at about 7 micro seconds), random artifacts

from the simulation appear.

7

Synaptic Input and Synapse Weights

The biggest advance regarding the functionality of the simulation was the integration of

synaptic input. This enabled the use of synaptic pulses from either of the two synapses.

Figure 2.3: Synaptic Input on the left DenMem. The spike trace from both synapse lines

- top and bottom - are symmetrical and thus overlap here

2.2 Software development

The software framework (figure 2.4) of the SimDenMem evolves around two major parts.

Firstly, the input file realised as a JSON1 file container is written by a series of scripts.

1JavaScript Object Notation, a data interchange format

8

Secondly, the JSON file is uploaded to the server via a C++ client-server connection

using the Remote Control Framework (RCF)2. The server then submits the JSON file to

the simulation and returns the results to the client.

Figure 2.4: Software framework

2.2.1 Towards synaptic input

The first step in further developing the SimDenMem revolved around the addition of

previously unavailable parameters (figure 2.5) concerning the synaptic input. This

was accomplished by the modification of several scripts from the HALbe environment

controlling the writing of the JSON-based input file that is passed to the simulation. This

Figure 2.5: This circuit represents the extend of input data written passed to the sim. As

opposed to the previous mention in figure 1.2, synaptic input is now included

2A C++ framework used to establish remote connections bewteen a client and a server

9

process also lead to several modifications and additions of new functionalities and scripts

to the HALbe environment, a detailed manual of which can be found in the appendix of

this thesis.

10

2.2.2 C++ Client-Server-Connection

Scaling the client-server application up to a multi-user access level presented another task

in the attempt to further develop the software framework of the SimDenMem. Previous

to the work presented in this section (as illustrated by figure 2.6, the server would refuse

a new client connection if there was already another one currently established, causing an

abort on the client side. This presented an immediate opportunity to enhance the utility

of the entire simulation drastically.

Figure 2.6: The client-server-application before the work presented here

To enable multi-user access to the simulation, the server employs a thread pool that scales

with the load of incoming calls up to a fixed maximum. When a client connects, the

specific JSON file is uploaded and stored in a file-handling system, as shown in figure 2.7.

This is realised with a call-specific ID generated on the server side. The ID is used as

a name for the uploaded input data "upl-ID" and the result data passed back to the

client "res-ID". For the client to be able to request the correct result file in the download

process, the server hands it the ID as a return value of the upload function.

As a happy accident, this also allows for asynchronous data retrieval, as the client can

now request a download anytime by giving the call-spefic ID that connects input data

and results.

11

Figure 2.7: The client-server-application after the work presented here

After the uploaded JSON file is stored on the server in the described way, it is submitted

for simulation. To prevent a race condition on the server-side, the execution of the

simulation is protected by a semaphore 3. Thus, the server still uploads the input data of

other clients but only simulates one at a time. During the time of connection, all clients

are passed a "heartbeat signal" to push the remote connection timeout and serve as a

"still running"feedback for the user.

In case another client connects while the simulation is still running, the server again

uploads and stores the JSON file.

3variable to control access to common ressources in a multi-user environment

12

Chapter 3

Conclusion

In this thesis several improvements to the SimDenMem and it’s software framework have

been described.

3.1 SimDenMem

The simulation of the Dendrite Membrane Circuit has been executed to a lesser extent as

previously intended, as the work on the software environment took up a larger part of

the thesis work than anticipated. Yet, the primary goal of including and simulating the

synaptic input has been achieved, albeit to a rather qualitative extent on the simulation

part.

As for the executed consistency checks for the Neuron Membrane2.1.1, the Current

Input2.1.1 and Synaptic Input2.1.1 all simulation results appear in their expected range

(save the artifacts in the current input data).

Also, a verification of the findings concerning the saturation effect of the synaptic input

circuit as presented in the work of Kiene [6] has been attempted. This particular point

requires further inquiry, since not all the data necessary to reproduce the effect could be

obtained yet.

13

3.2 Software

The software environment is now able to handle multiple clients on the user side, which

was one of the core objectives set out to be accomplished. Also, the HALbe script1

now writes the necessary data to generate the synaptic input for the simulation. As a

byproduct of the verification process for the input data, a python script to compare two

different JSON files (for example "is" and "should") has been created and included in the

appendix.

1Hardware Abstraction Layer Backend

14

Chapter 4

Outlook

This chapter will detail several possibilities to further advance the functionality of the

SimDenMem and the software suite built around it.

4.1 SimDenMem

Since the work presented here has concerned software for the larger part, a lot of testing

and simulating is still to be done. Especially the synaptic input has only been looked

into qualitatively. This could as well be the endeavour of another Bachelor Thesis.

4.2 Software

Certain aspects and ideas have not been persued for lack of time. The first further

enhancement that comes to mind is the enabling of real parallelism on the server-side of

the client-server-application. This would allow to run four different simulations at a time

instead of one, but would also require additional licenses and a new workspace for each to

prevent possible interferances. This effort seems only warranted if the simulation is used

by a signficantly larger number of users in the future than now. Also, as mentioned in

section 2.2.2, asynchronous data retrieval is possible now, though it has not been included

yet. Since this would mainly be a comfort feature, again an implementation seems only

necessary for a larger number of users.

15

Also, the readout artifacts in the current trace 2.1.1 should be looked into. This introduces

the server-side of the simulation as a field of possible advance, referring to the scripts and

processes involved after the input data is uploaded via the client-server-connection.

16

References

[1] BrainScaleS. Research. http://brainscales.kip.uni-heidelberg.de/public/ index.html,

2012.

[2] The Human Brain Project. URL: https://www.humanbrainproject.eu/. [online; ac-

cessed: 2014-08-15]

[3] Neuromorphic Platform Specification, Human Brain Project Internal File

[4] Brette R. and Gerstner W. (2005), Adaptive Exponential Integrate-and-Fire Model as

an Effective Description of Neuronal Activity, J. Neurophysiol. 94: 3637 - 3642

[5] Sebastian Millner (2012), Development of a Multi-Compartment Neuron Model Emu-

lation

[6] Gerd Kiene (2014), Evaluating the Synaptic Input of a Neuromorphic Circuit

17

18

Appendix A

Simulation manual

A.1 HALbe Environment

On the user side, several scripts are involved in the process of writing the JSON input file

for the simulation and analysing the retrieved data. The name, respository and location

within the repository are given below, including a call example and some additional notes.

For a graphic overview of how these scripts interact, see fig Figure A.1.

A.1.1 Building and simulating the JSON file

The following three scripts allow you to create a new JSON file and submit it to the

simulation.

1. The XML dumpscript

task: This script from HALbe creates a new data container in accordance with the C++

namespace of HALbe and dumps it into a XML file.

repository: halbe/davhin_enhance_simdenmem

call example: "HALBE_DUMP_FILE=dump.xml python synaptic_input.py"

Dumps the parameters set in the script "synaptic_input.py" into an XML file called

"dump.xml"

19

notes: Be sure to match the following address convention when setting synpatic pulses

and snyaptic weights:

neuron_address = 0: syn0.0 (left top)

neuron_address = 1: syn0.1 (left bottom)

neuron_address = 2: syn1.0 (right top)

neuron_address = 3: syn1.1 (right bottom)

in

pulse_address_d = p.FPGA.PulseAddress(

p.Coordinate.DNCOnFPGA(0),

p.Coordinate.HICANNOnDNC(p.Coordinate.Enum(0)),

p.Coordinate.GbitLinkOnHICANN(0),

p.HICANN.Neuron.address_t(neuron_address))

This is an arbitrary convention, that simply hardcodes certain adresses to be associated

with the places for the pre-pulses in the synapses for easier conversion. Check lines

592-595 of xmldump_to_simdenmem.py for further inquiry.

2. xmldump_to_simdenmem.py

task: converts the HALbe containers into simulation-readable values and stores them in a

dictionary. This dictionary then is exported in the form of a JSON file container.

repository: halbe/davhin_enhance_simdenmem

call example: "python halbe/halbe/pyhalbe/tools/xmldump_to_simdenmem.py -i dump.xml

-o dump.json -N 0 -H 280"

Takes the previously dumped xml-file and converts it into a json-file called "dump.json",

-N and -H give the adressed Neuron and HICANN and need to remain fixed

notes: If you expand the data range by writing new functions into the script1.py, you

also need to define new conversion functions in the dumpscript in order to retrieve the

data from the xml-dump and add them to the json.

20

3. run_denmem_simulation

task: The C++ binary that uploads the json and returns the results

repository: halbe/davhin_enhance_simdenmem

call example: "halbe/halbe/tools/run_denmem_simulation –in=dump.json –out=results

–timeout=60000 –host=vmimas"

uploads dump.json to the server and returns results to the directory "results". Host needs

to be set accordingly, timeout should be chosen long enough (seconds)

notes: Make sure to have enough diskspace on server

A.1.2 Data Analysis

These two scripts allow you to analyse your data, both before and after the json file is

submitted to the simulation.

1. compare_json.py

task: Compares two json input files (preferably at least one of which you know to be

correct) in regard to keys and values

repository: halbe/davhin_enhance_simdenmem

call example: "python halbe/halbe/tools/compare_json.py -i1 halbe/halbe/pyhalbe/test/simdenmem/reference_neu.json

-i2 dump.json"

Compares the two files, prints out missing keys and values that are off. The first file is

taken as the "should be" state. notes: When sweeping, comparing the actual values will

not be interesting, so do not be alarmed in case of value errors. Watch out for "key error"

and "apples and oranges" though, since this indicates that value in file a is a list, while

being a float in file b.

2. plot_simdenmem.py

task: The plotscript for the results returned from the simulation

21

repository: halbe/davhin_enhance_simdenmem

call example: "python halbe/halbe/tools/plot_simdenmem.py –input-directory results

–output-file=results.png"

Plots the data stored inside your directory "results" written by run_denmem_simulation

and plots it into the current working directory als "results.png"

notes: The input file needs to be the only file inside the input directory.

As a summation and a general piece of overview, this schematic illustrates the functions

and connections of the five scripts previously described.

Figure A.1: HALBE Environment

22

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 18.08.2014,

	Introduction
	Motivation and Scope
	Simulation
	Software

	Results
	Simulation
	Verifying the simulation

	Software development
	Towards synaptic input
	C++ Client-Server-Connection

	Conclusion
	SimDenMem
	Software

	Outlook
	SimDenMem
	Software

	References
	Simulation manual
	HALbe Environment
	Building and simulating the JSON file
	Data Analysis

