Kai-Hajo Husmann

Handling Spike Data in an Accelerated
Neuromorphic System

Bachelor Thesis
Bachelorarbeit

Handling Spike Data in an Accelerated
Neuromorphic System

This bachelor thesis has been carried out by Kai-Hajo Husmann

under the supervision of

Prof. Dr. Karlheinz Meier
KIRCHHOFF INSTITUTE FOR PHYSICS
&

Prof. Dr. Artur Andrzejak

INSTITUTE OF COMPUTER SCIENCE

at the

RUPRECHT-KARLS-UNIVERSITAT HEIDELBERG

Handling Spike Data in an Accelerated
Neuromorphic System
The EsterProxy Suite

Kai-Hajo Husmann

December 17, 2012

Electronic Vision(s), Kirchhoff-Institut fiir Physik,
Ruprecht-Karls-Universitat Heidelberg

For
Alexandra Tribout
&

our daughter

Zora Anne Laurence Tribout-- Husmann

Handling Spike Data in an Accelerated Neuromorphic System

This bachelor thesis deals with the transport of data in a novel hybrid system, which
is being developed as part of the BrainScaleS research project of the EU. This system
is an innovative combination consisting of neuromorphic hardware and a conventional
cluster. For optimal use of the facility an efficient transmission of configuration data and
action potentials (spikes) between the control computer and the neuromorphic hardware
is important. During experiment operation, a high throughput of configuration data
is of great importance, because runtimes in the order of milliseconds are sought. So-
called closed-loop experiments, in which the neuromorphic hardware is supplied with
sensory data and in turn provides motor data, also make demands on the latency of
single transmissions. Given that the neuromorphic part of the facility works with time
constants that are shortened in comparison to the biological equivalent by a factor 103
10°, low latencies are required. In this thesis, a software to efficiently transfer spike-
data (from the control cluster to the neuromorphic hardware) was developed. Based on
this implementation important characteristics (e.g., bandwidth and latency) have been
determined, which allowed for evaluating the problems described. The maximal achieved
throughput is 88.2 £ 0.8 MEv/s (spikes). The minimal available latency is 371 + 44 us .

Handhabung von Spikedaten in einem beschleunigten neuromorphen System

Die vorliegende Bachelorarbeit behandelt den Datentransport in einem neuartigen hy-
briden System, das im Rahmen des BrainScaleS Forschungprojekts der EU entwickelt
wird. Dieses System ist eine innovative Kombination bestehend aus neuromorpher Hard-
ware und konventionellem Cluster. Fiir eine optimale Nutzung des Systems ist eine effi-
ziente Ubertragung von Konfigurationsdaten und Aktionspotentialen (Spikes) zwischen
Kontrollrechner und neuromorpher Hardware wichtig. Im Experimentbetrieb ist ein hoher
Durchsatz der Konfigurationsdaten von grofer Bedeutung, da hier Laufzeiten im Bereich
weniger Millisekunden angestrebt werden. Sogenannte Closed-Loop-Experimente, bei de-
nen die neuromorphe Hardware mit sensorischen Daten versorgt wird und im Gegenzug
motorische Daten zuriickliefert, stellen allerdings auch Anforderungen an die Latenz ei-
ner einzelnen Ubertragung. Da der neuromorphe Teil des Systems mit Zeitkonstanten
arbeitet, die im Vergleich zum biologischen Pendant um einen Faktor 103-10° verkiirzt
sind, sind hier niedrige Ubertragungslatenzen erforderlich. Im Rahmen dieser Arbeit wur-
de eine Software zur effizienten Ubertragung von Spike-Daten (vom Kontrollcluster zur
neuromorphen Hardware) entwickelt. Anhand dieser Implementierung konnten wichtige
Kenngrofen (z.B. Bandbreite und Latenz) ermittelt werden, die die Evaluierung der be-
schriebenen Problematik ermdglicht haben. Der erreichte maximale Durchsatz liegt bei
88.2 £ 0.8 MEv/s (Spikes). Die bestmogliche Latenz bei 371 £ 44 us .

Contents

1.

Introduction
1.1. Motivation: CarverMead, BrainScaleS
1.1.1. Hybrid Multiscale Facility
HMF Neuromorphic Part
HMF Conventional Part
The Closed Loop Experiment
1.2, Assignment
1.2.1. EsterProxy Suite

2.1. ShamemlIPC . .

2.1.1. Usage .
2.2. TimeSpanRnd .
2.3. UserDummy . .
2.4. Test Benches .

. Design and Code Presentation

2.4.1. EsterProxyTest

2.5. Test Results . .
2.6. ARQ Drain . .
2.7. The EsterProxy

program oL oL Lo oL e e

2.7.1. Serialization

2.7.2. RCF Serva

Nt . .o e

2.7.3. SpikesQueue: DoubleSidedMutexedQueue
2.74. The Packager

Discussion and Results

3.1. RCF in General

3.2. ShamemIPC in General
3.3. EsterProxy Evaluation
3.3.1. Single Spike Transfer oL
3.3.2. Container Serialization
3.3.3. Minimal Latency
3.3.4. Maximal Throughput
3.3.5. TSR-Simulated Environment

Conclusion - Outlook

4.1. ShamemIPC Pointer-Access Method

4.2. Real ARQ Drain

11
12
14
15
17
21
21
22
24
25
27
29
30

31
32
35
38
39
41
43
45
48

52
52
53

III

Contents

4.3. Multiple Packagers — Multiple FPGAs
4.4. Latency-Dependent Packaging
4.5, CHHI1-3Fy . ..
4.6. Container Formato
4.7. ShamemIPC Initialization
4.8. Sizeof Pitfall / Packed Attribute
4.9. ShamemIPC Throughput
4.10. Operating System Support
4.11. Network Protocol
Appendices
A. Caipc/ Code Package
A1, Repository
A.1.1. Caipc Directory Environment
A.1.2. EsterProxy Directory
A2 RCF Calls
A.3. Evaluation Data
B. HMF Host-FPGA Communication
B.1. Current State
B.2. Current Work and Future Improvements
B.3. ARQ e
C. Acronyms
C.1. Technical Terms
C.2. Thesis Projects
C.3. External Libraries
C.4. Superordinate Project

IV

. List of Figures

. Bibliography

59

59
59
59
60
60
62

64
64
65
65

66
66
67
68
68

69

71

1. Introduction

1.1. Motivation

Carver Mead In the late 1980s Carver Mead developed the concept of neuromorphic
engineering based on analogue electronic circuits implemented on a Very-Large-Scale
Integration (VLSI) system (Mead and Mahowald, 1988; Mead, 1989).

With his concept Carver Mead attempts to emulate neuro-biological models. Neurons
and synapses are implemented in-silico and they act as real —though simplified— neu-
rons or synapses. In contrast to software simulation, where the interaction of neurons
and synapses is realized using complex and time-consuming integral calculus, analogue
hardware has a major advantage:

Analogue hardware is able to emulate as opposed to simulate neuro-biological
models, as the aggregation of electrical currents works in hardware just as in
the human brain.

It is the aspect of emulation which characterises neuromorphic systems.

Institute The Electronic Vision(s) Group is part of the Kirchhoff-Institute for Physics,
founded in 1995, at the Ruprecht-Karls-University Heidelberg. The Vision(s) Group
works on novel computing paradigms in the field of neuromorphic engineering. Currently
the Vision(s) Group takes part in a BrainScaleS research project.

This project is called the Hybrid Multiscale Facility (HMF) (BrainScaleS, 2012).

1.1.1. Hybrid Multiscale Facility

The Hybrid Multiscale Facility (HMF) is an advanced implementation of the Carver
Mead concept combined with software simulation. It is understood as the combination
of neuromorphic hardware with conventional hard- and software leading to Closed Loop
experiments in simulated software environments. In the following paragraphs the HMF
Neuromorphic Part (NP) -the actual research-, the HMF Conventional Part (CP) —
the necessarily supportive, though not less important part— as well as the Closed Loop
Experiment (CL-Experiment) —as a potential “aim”- are outlined.

This bachelor thesis itself centres on the data streams within the CP as well as between
the CP and the NP. The following describes the HMF in more detail and contains the
rationale why it is important to evaluate these streams.

1. Introduction

HMF Neuromorphic Part

We begin with a presentation of the HMF Neuromorphic Part (NP) outlining the state
of affairs of this research task. Single chips have been developed and manufactured
which implement 512 neuron circuits with 224 synapses each. However, the main system
features much higher neuron and connection densities using Wafer-Scale Integration®.
Connections between the repeating structures —i.e. units of 8 chips— are added in a post-
production step to maximize inter-connectivity. This is referred to as the Wafer-Scale
Neuromorphic System (Schemmel et al., 2010; Millner et al., 2010). The mentioned
chips are called High Input Count Analog Neural Network (HICANN) and a single wafer
integrates 384 of those. Therefore, in total —on a single wafer— we have

384 x 512 = 196 608 neurons
384 x 512 x 224 = 44040 192 synapses

The underlying neuron model is an enhanced Integrate-and-Fire spiking neuron model
which is called Adaptive Exponential Integrate-and-Fire (AdEx) (Brette and Gerstner,
2005). Compared to the biological model the hardware parameter ranges are optimized
—in terms of area consumption and technology-dependent modifications— for the in-silico
implementation. Thus, the hardware model parameters are scaled compared to the bio-
logical model description. In particular, the time constants are scaled down by a factor of
103-10° compared to the biological real-time. This operational speed-up is largely con-
figurable by changing the model parameters (e.g., leak conductances or disabling parts
of the neuron capacitance), but interdependencies within the model might add further
constraints on the usable parameter range.

Communication Spike data has to be conveyed between the various parts of the NP.
We can distinguish between: (a) on-chip or on-wafer (i.e. inter-chip using the post-
processing connections), and (b) inter-wafer /host-wafer communication. These com-
munication streams have been split into two layers. The lower layer handles on-chip
and on-wafer communication. On this layer events themselves only encode the source
neuron address; the routing to —possibly multiple— target neurons is determined by a
programmable routing grid. The higher layer handles inter-wafer and off-wafer commu-
nication. On this layer spike data is mediated through 12 Printed Circuit Boards (PCBs)
per wafer which are equipped with one Field Programmable Gate Array (FPGA) each.
Through programming the FPGAs one can determine the routing in this layer. Figure 1.1
shows a schematic of the communication layers.

HMF Transmitter The handling of the host-wafer communication —on software side—
was discussed in the HMF Transmitter internship report (Husmann, 2011). In this
internship I prototyped and evaluated a circular buffer resident in shared memory.

!Both, multiple single-chip-based systems and the WSI-system are in active use for debugging purposes
and neural network testing.

1.1. Motivation: CarverMead, BrainScaleS

Wafer ! Layer 1!
(‘ ‘)

Conventional

Hardware \

Layer 2

(packet-based) async, statically routed

Figure 1.1.: Schematic of the wafer-scale system. On-wafer communication relies on asyn-
chronous events which are statically routed; off-wafer events are wrapped
into packets adding the event time. Communication involving the CP adds
several more layers (i.e. custom transport layer on top of raw UDP).

This shared-memory buffer technique is expected to be used as primary communica-
tion method between the different software parts and the network interface controller, as
it is —in interplay with the Remote Direct Memory Access (RDMA) technology— consid-
ered to be the fastest solution available.

In parts this bachelor thesis is a continuation of the HMF Transmitter.

HMF Conventional Part

The second part, which is called the HMF Conventional Part (CP) is made up of highly in-
terconnected ~Commercial Off-The-Shelf (COTS)— computers. They have been equipped
with 10 GiB/s Ethernet cards (Intel® NetEffect’ NEO020) and host services like the
MappingTool (Ehrlich et al., 2010; Wendt et al., 2010; Briderle et al., 2011), software
to control peripheral hardware (e.g., power control of the system, recording analogue
membrane traces from oscilloscopes) as well as the interface to the simulated “real” world
and the user.

The MappingTool translates biological experiment specifications using biological units
and statistical parameter descriptions into wafer configuration data which in the end
defines the neuron parameters and connections between neurons and synapses in the
hardware. Thereby each neuron circuit (denmem) is configured by 23 individual analogue
parameters and each synapse is configured by a 4 bit weight and a 4 bit (listening) address.
Assuming analogue parameters to be 10 bit precise, i.e. ADC digital resolution, we have
(per wafer):

196608 neurons x 23 x 10 bit ~ 5.4 MiB
44040192 synapses x 8 bit ~ 42.0 MiB

1. Introduction

As one can see the total configuration space is approximately 50 MiB.

Application In neuroscience parameter sweeps are a common research method (Davi-
son, 2012; Brette et al., 2007). A parameter sweep is understood to consist of a set
of trials of repeated similar experiments but with in some detail highly varying pa-
rameters (“sweeping their range”). In general these parameters are rather indepen-
dent and the number of trials grows exponentially with the number of parameters:
(#trials = parRange; X parRangey X ... X parRange,). Especially changes to net-
work topology or statistical parameters might require reconfiguration of major hardware
parts, and hence might require transfer of large amounts of configuration data. Addi-
tionally a single trial might run as short as 100 ms biological time — on the NP this scales
down to the order of 10-100 us. For such a kind of experiment we need to maximize trial
throughput. And —as the trials itself are of short duration— that considerably depends on
the time spend for the configuration.

Also one is interested to look into a running experiment. The available runtime data
consists of spikes (resp. their fire time) and membrane traces which can be observed using
Analog-to-Digital Converter (ADC) boards or oscilloscopes. The hardware is specified
to support up to? 2gigabytes/s. To encode a single event approximately 4 bytes are
required (UHEI and TUD, 2011, cf. section 1.3.5). This yields? 500 megaevents/s. The
timely availability (latency) of this data is especially important for so called Closed Loop
Ezperiments (CL-Ezperiments).

The Closed Loop Experiment

Vague Definition A Closed Loop Experiment (CL-Experiment) is understood as a con-
nection of the NP with a simulated (real world) environment such that the NP triggers
some action in that environment which in turn triggers back to the NP. In neuro-scientific
terms, the simulated environment creates sensory input for the neuronal network which,
in turn, creates a motor response. Amidst this loop stands the CP whose job it is to con-
nect the interfaces of the NP with the simulated environment. This is a vague definition
as the CL-Experiment is still in its infancy.

I write simulated environment here because the hardware is running about 10* times
faster than the “real world”. Therefore a real real world environment, presumably, would
be to slow for the NP.

An Example In an example of a closed loop the job of the CP is to translate the NP
output into movements of a wvirtual camera. The resulting camera output is then trans-
lated back into neural spikes to again trigger neural activity in the NP. This again leads
to further movement of the camera, and so on.

However, interfacing other real-time neuromorphic hardware (e.g., silicon retinas (Del-
briick and Liu, 2004)) is difficult due to the already mentioned acceleration factor which
leads to mismatching time constants. A possible solution to that is a simplified simulated

2hardware time domain

1.2. Assignment

environment which calculates response (sensor data) to input from the NP (i.e., motor
control).

In this case, the software has to respond very fast. The slowest reasonable (in terms
of parameter ranges) acceleration factor of the present hardware system is approx. 103.
Thus, latencies of, e.g., 1ms in the biological time domain are scaled down to 1 us.
Depending on the neuronal model, latencies up to 100 ms in biological real-time (100 ps
in hardware domain) might be possible to handle. This is why the system has to be as
responsive (low-latency communication) as possible.

Summing Up

For the Closed Loop Experiment (CL-Experiment) as well as for the configuration we
need fast data transport between the NP, the CP and the simulated environment. This
transfer has strong constraints considering throughput and latency.

This thesis centres on finding a transfer methodology which has the potential to satisfy
these constraints.

1.2. Assignment

Currently, the HMF is in the debugging/launching phase (cf. Appendix B). Therefore the
thesis focuses on standalone tests of present software and software that was developed
during my work. The different parts are described below.

Shared Memory Continuing the internship mentioned in the motivation, one aim of
this bachelor thesis was to reuse the internship’s shared memory circular buffer code to
construct a set of fully-fledged C++ classes offering a fast and productive library to easily
create and access arbitrary (via templated buffer entries) shared memory circular buffer
instances. These must be safe for concurrent access by different threads as well as by
different processes (resp. programs). Furthermore the internal data must be packed and
cleanly aligned to make it accessible by an RDMA-capable NIC (RDMA-NIC). This is
the Shared Memory Inter-Process Communication Library (ShamemIPC).

Simulation Secondly it seemed useful to create a fast event dispatcher specialized on dis-
patching events at randomly generated intervals. The interval generator (e.g., regularly-
spaced, Poisson distribution, ...) should be highly configurable. Such a tool was con-
sidered to be useful to rudimentarily simulate the NP for various tests. This is the Time
Span Randomizer (TimeSpanRnd).

Application Last but not least the above should be used to create a tool to emulate
the data transfer of a typical situation on the CP. That is a user program generating
some arbitrary spike data and transferring these to the NP. For this, an intermedi-
ate proxy should be used which job it is to receive that user data and repack it into
NP /hardware-formatted packets queued in a shared memory. Finally there should follow

1. Introduction

a drain program which job it is to add the Automatic Repeat reQuest (ARQ) header
and offer the data to the RDMA-NIC. This is one direction of a conceptual Closed
Loop Experiment. Configuring the NP will relay on such a system as well. This assign-
ment is the lion’s share of this bachelor thesis and we call it the EsterProzy Evaluation
Suite (EsterProzy Suite).

1.2.1. EsterProxy Suite

Ester in this case is the working name for the code base which takes care of:
“Experiment start — Experiment run”

The aim of the EsterProzy Evaluation Suite (EsterProxzy Suite) is to evaluate on
what terms spikes can be transported from software to hardware. In this function we
try to keep close to the requirements of the CL-Experiment to which the dependencies
between latency and throughput are of considerable importance.

The EsterProzy Suite thereby gives a conceptual overview of the transferring software
part of a general experiment. It does not consist of independent contrived test cases but
it rather reflects the complete chain to realise the spike data transportation. In its
basics the code can be used for productive use. The EsterProzy Suite has an integrated
measurement setup and is configurable in a sense that one can enable/disable various
features and transportations to evaluate latency, throughput, reliability, stability, as well
as the interdependence of those.

As already mentioned it consists of three programs representing various sub-groups of
the CP software part of an experiment (e.g. the Closed Loop Experiment or the parameter
sweep)

1. UserDummy program (UserDummy): data source
2. EsterProxy program (EsterProxy): data handling

3. ARQ_Drain program (ArqDrain): data drain®

The UserDummy and the EsterProxy are expected to reside on different machines and
to use a transportation based on TCP/IP. But the EsterProxy and the ArgDrain reside
on the same machine and use the ShamemIPC to exchange data. The UserDummy as well as
the ArgDrain are simulators only whereas the EsterProxy is a conceptual but nonethe-
less functional implementation handling the path from the UserDummy to the ArqDrain.
The UserDummy simulates spike input by generating configurable spike data and the
ArgDrain simulates the part of transferring data packets to the NP. The EsterProxy in
the middle is the actual thing to be evaluated. It receives arbitrary spike data and has
the job to pack this data into a shared memory in such a manner that a real ArgDrain
implementation could use that shared memory data —without any understanding of its
payload— to transfer that data to the NP. That means that the payload data packed into

3For further information on the Vision(s) Group’s ARQ implementation see Appendix B.3.

1.2. Assignment

the shared memory is understandable by the NP already and that further data is put
into the shamem such that the ArgDrain has an easy job transferring this data to the
NP. A real ArgDrain is supposed to be unaware of the internals —i.e. the expected data
structures— of the NP. Of course in this evaluation the ArgDrain understands enough to
do some evaluation.

2. Design and Code Presentation

As the Vision(s) Group low-level code base is written in the C++ Programming Language
it was clear that the programming language to be used for this assignment had to be
the same.! As a well-known and mature language C++ can unquestionably be called
stable. Also C++ promises to potentially produce highly efficient and fast programs.
But as a very modular and feature-rich language C++ is also highly dependent on the
programmer’s knowledge. If not used correctly the last two advantages can be quickly
undermined and result in segmentation faults and other hard to track errors as well as
undefined behaviour.

In the following paragraphs the used tools and libraries are outlined and then in the fol-
lowing sections an assortment of interesting code pieces and design decisions will be pre-
sented. The most important section in this chapter is the one about the EsterProxy (2.7)
as it puts everything together whereas the other sections look into the elements which
form the EsterProxy’s environment. For a first schematic overview of the EsterProzy
Suite one may look at the figure 2.1. It shows the physical location of the EsterProzy
Suite’s parts as well as the communications within.

CP Host

Communication Wafer
Subgroup N P

ARQ Drain FPGA

ShmIPC
" User Host

|

EsterProxy RCF UserDummy

\/

Figure 2.1.: Schematic of the EsterProzy Fvaluation Suite

C++11 Having mostly programmed using the Java programming language the author
went through a steep learning curve during this bachelor thesis. Additionally the C++
standard was subject to significant change. The code started out obeying the C++03
Standard and ended up using the recent C++11 Standard (C++11). Not only by the author

INB: The high-level (i.e. user interface) is written in Python.

is this new standard seen as a great improvement to C++. It integrates —amongst others—
many of the ideas which had been originally introduced by the BOOST C++ Libraries
(BOOST). Amongst the innovations are std::chrono, std::unique_ptr, std::thread
and various improvements that are relevant for Template Meta-Programming (TMP).
For compilation the cutting-edge version of the GNU Compiler Collection (g++) was
used:?

g++—4.7 (Ubuntu/Linaro 4.7.1—7ubuntul) 4.7.1 20120814 (prerelease)
Copyright (C) 2012 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

At this point I personally want to thank the contributors of the website
http://en.cppreference.com which helps migrating to the new C++11 Standard
and which I heavily relied on during my work.

RCF For the transportation of spike data between the UserDummy and the EsterProxy
program the Remote Call Framework by Delta V Software (RCF) was chosen. This again
is primarily due to the fact that RCF is already in use in the code base. But there are other
reasons: RCF is open source and free (GPLv2) for open source usage.? As there are such
hard constraints in our special case it could be unavoidable to change parts of the remote
call library itself; though that will hopefully not be necessary. Having this possibility is
a considerable advantage. Nonetheless the RCF code base was accessed only for minor
bugfixes. Secondly, it is portable, efficient and scalable as the company’s website puts
it. One may also look at the RCF throughput evaluation presented in Discussion 3.1
on page 32. Problematic could be the fact that it seems to be primarily developed and
tested under Windows. Minor syntactic bugs had to be fixed to achieve a functional
build under Linux.

So far using RCF can be considered a good choice. Apart from the rather insufficient
documentation —compared to standard Java software packages— everything worked quite
well.

ShamemIPC For the data transfer from the EsterProxy to the ArqgDrain, the
ShamemIPC was developed and put into use. Why this was chosen has been outlined
in the introduction and thoroughly discussed in the HMF Transmitter report (Husmann,
2011).

Event Library/ TSR For the development of the TimeSpanRnd the Libev Event Library
(libev) was chosen (libev, 2012a). That was simply due to the fact that it offers exactly
what was needed and because this library is optimized for modern Unixes (like Linux
or FreeBSD). Nowadays, as with the C++11 standard a thread library is available, the

2Since September 20, 2012, the most recent stable version is g++ 4.7.2 (http://gcc.gnu.org/gec-4.7).
3RCF Licensing: http://www.deltavsoft.com/buy.html
4RCF Homepage: http://www.deltavsoft.com/index.html

http://en.cppreference.com
http://gcc.gnu.org/gcc-4.7
http://www.deltavsoft.com/buy.html
http://www.deltavsoft.com/index.html

2. Design and Code Presentation

use of std::this_thread::sleep_for resp. std::this_thread::sleep_until should
be considered though it might not be flexible enough when e.g., using multiple timers
and other event sources concurrently.

Code Location The code to this bachelor thesis is located in the caipc® repository. It
can be found under the url git@gitviz.kip.uni-heidelberg.de:caipc.git. Whenever
a file or directory location is named —and does not start with “/”— it can be found in this
repository. Sole exception is the RCF Serialization Evaluation (RCFSerEval) code which
was put directly under our 1ib-rcf repository as it fits there better. For the project to
build it must be —as all components of ester— checked out into the symap2ic repository
under its components directory. Appendix A.1 offers an overview of the caipc directory
tree.

Building /wscript The FEster code base uses the Waf build tool (waf) for building. As
the caipc code was integrated into the existing software framework, the build flow uses
the same build tool: waf. Waf is a very modular and modern Python based build
tool which integrates functionality for configuration, build and software deployment.
It absolutely overpowers the archaic make build utility. In comparison with the GNU
build system (autotools) the scripts tend to be more readable; at least they are writ-
ten in pure Python. A Waf build script (wscript) that is located in a source direc-
tory can be called with the command waf distclean configure build which will do
a complete and clean rebuild. For further information please refer to the waf website:
http://code.google.com/p/wat/

For the caipc source the wscript offers some configuration options. Excerpt from the
output of waf -help called in the caipc directory:

--set-caipc-deblvl=CAIPC_DEBLVL
O(release), 1(beta), 2(debug), 3(alpha), 4(debugO)
--test-ShamemIPC Build ShamemIPC test objects and programs

--with-tsr Build TimeSpanRnd objects
--test-TimeSpanRnd Build TimeSpanRnd test programs
--with-proxy Compile EsterProxy Evaluation Suite

--with-proxy-testbench
Enable compilation of UserDummies with testbench
includes

--test-rcf Compile RCF testclasses

For a complete release compilation of the EsterProzy Suite one should call

CXX=g++-4.7 waf distclean configure
--set-caipc-deblvl=0 --with-tsr --with-proxy-testbench build

If all required libraries and FEster sub-projects are available the compiled programs are
afterwards available in the build directory. Links to the necessary libraries are created

Scaipc that is a coquette concatenation of Kai (my name) and Inter-Process Communication (IPC).

10

git@gitviz.kip.uni-heidelberg.de:caipc.git
http://code.google.com/p/waf/

2.1. ShamemlIPC

in the 1ib folder. Otherwise the configure step will output information about missing
dependencies.
Using the above command the compiler is basically called with these flags:

-std=c++11 using the C++11 Standard
-Wall all warnings enabled ...

-Wno-deprecated-declarations apart from deprecated declarations warnings, because
the RCF code at its recent stage has a considerable amount of them

-03 highest optimization level

2.1. ShamemlIPC

The Shared Memory Inter-Process Communication Library (ShamemIPC) realizes a circu-
lar buffer in a shared-memory area (shamem) (shared by processes). It can be found in
the directory ShamemIPC.

The circular buffer can be accessed by a writer and a reader. They are also called heads
as they are moving around the shared memory similar to a hard disks read-and-write
head. The difference is that here we have two separate heads, one for writing and one for
reading, and also that not the medium (shamem) is moving but rather the heads. Think
of these heads to float at the same height over the medium — one must never get past
the other.

Each head has its own flags (position and status) which the other head may only
read from and the trick is that position and status changes are constrained in such a
way that the other head can handle an old value just like the real one (as long as the
updates are in order). And a head can generally only move forward if its next position
is smaller than the other head’s visible —possibly outdated— position. For now the code
works just fine without any memory barriers (on x86). It has been thoroughly tested.
More on the theory and how memory reordering can be handled was discussed in the
HMEF Transmitter report (Husmann, 2011).

Classes The ShamemIPC consists of four mayor classes which represent an initializer as
well as the two heads:

1. eipcInitialiser

2. ShamemHead and the two specializations:
a) ShamemWriterHead

b) ShamemReaderHead

11

O © 0D U WN

=

—_
—_

Tk W N =

T W N =

2. Design and Code Presentation

2.1.1. Usage

Templated At first one wants to create template wrapper classes as well as an object
to be held by the ShamemIPC. The interested reader can view an example of these in
EsterProxy/ipc_interface.d/. The following two listings show an example for the
initializer (ShamemInitialiser). For the heads (ShmReader and ShmWriter) it will look
analogous.

/* initializer.h *x/

#pragma once

#include <ShamemIPC/eipclInitialiser . hpp>

#include "../ipc_xferTypes.h" // holds the buffered class (arq shamem_ t)

extern template class
ester ::ipc::eipclnitialiser <EsterProxy ::arq shamem t>;

namespace EsterProxy { // we can put it into an arbitrary namespace

typedef ester::ipc::eipclnitialiser <EsterProxy ::arq shamem t>
Shmlnitialiser;

}

/* initializer.cpp */
#include "initialiser .h"
#include <ShamemIPC/eipcInitialiser .cpp>

template class ester::ipc::eipclnitialiser <EsterProxy ::arq shamem t>;

Initialization Now, before the ShamemIPC can be used a shamem has to be initialized
which is handled by the eipcInitialiser which we wrapped in the ShamemInitialiser
typedef.

Initialization creates an object in shared memory which (on most Linux flavours) can
be seen in the /dev/shm/ directory.

It will be called ShamemIpc_ with its ID as suffix. The initializer supports RAII®-style
initialization as well as lifetime-unbounded initialization. If the Resource-Aquisition-is-
Initialization (RAII) initializer is used the object will be destroyed and removed from
memory as soon as the destructor is called. But if the initialization and destruction are
to be done by independent programs we can also use the unbounded initialization, in
that the shared memory object must be explicitly removed by a correspondent call to
the remover.

std::string id("MySharedMemory"); // an identifier of the shared memory

size _t bufsize = 42;

ShmlInitialiser shminit (id, bufsize); // RAIl style initialization

// ShmlInitialiser::init(id, bufsize); // unbounded initialization

// ShmlInitialiser ::remove(id); // unbounded remover (can be called by any
program)

5Resource-Aquisition-is-Initialization

12

N O U W N

2.1. ShamemlIPC

The second step is to connect a writer and a reader to the ShamemIPC ob-
ject. For this we call the factory methods ShamemWriterHead<BufferT>::wconnect
and ShamemReaderHead<BufferT>: :rconnect respectively (wrapped in ShmWriter and
ShmReader). Then we start the returned objects.

// the writer thread/process
ShmWriter+ writer = ShmWriter :: wconnect (id); // shamem must be initialized
writer —>startWriter (); // synchronizes with reader—>startReader ()

// the other thread/process
ShmReaderx reader = ShmReader::rconnect (id);
reader—>startReader (); // synchronizes with writer—>startWriter ()

Run Phase During the run phase we have basically two methods to access the
ShamemIPC. One accesses the shamem per memcpy whereas the other returns a pointer.
The pointer access method has been added just shortly and should be further tested.
Apart from not relying on a copy it has the advantage of the reader being able to change
the underlying object. This will be useful when connected to the RDMA-NICs but more
on that can be found in the Outlook 4.1 on page 52.

memcpy The writer’s and reader’s copy access methods are based upon
ShamemHead: :accessShamem().

bool accessShamem (BufferT& object , const bool blocking=false,
const bool flush=false);

Depending on the type of the head this method does either copy from the shamem into
the object (reader) or vice versa. If blocking is false it will never enter any wait-loops
but instead —if need be— omit the copy and return false. The boolean flush applies only
to the writer. It moves the head to its next position thereby assuring that the reader can
access the written element. A consecutive write does flush the prior write implicitly. For
the reader a flush is more or less a no-op. It tries to move the head but will not enforce
it. In particular if the writer has stopped the reader cannot move ahead after it has read
the last element from the buffer as then its next position equals to the writers position
(where it stopped). The Shamem(Writer/Reader)Head classes offer interface methods to
do the access: tryread/write, blocking_read/write and tryFlushingWrite.

pointer The pointer access method actually consists of two single methods, one to
acquire the pointer and the other to indicate that it can be released; for now these two
methods have to be called in alternating order:

BufferT* getShamemPointer (bool blocking = false);
// returns nullptr if accessShamem (obj, blocking, false) would return
false
bool releaseShamemPointer (bool blocking = false);
// if (blocking) returns equivalent of checkContinue ()

One may switch between the memcpy and the pointer access methods at any time.

13

0 g O O W

2. Design and Code Presentation

2.2. TimeSpanRnd

The Time Span Randomizer (TimeSpanRnd) is a convenient interface to the Libev Event
Library (1ibev) which offers to disperse events among fine grained (randomized) time
spans. It can be found in the directory TimeSpanRnd.

Basically it consists of the class TimeSpanRandomizer’ and the interface
iTimeSpanEmitter®. The TimeSpanRandomizer class can be used to start a loop of
events. These events will be separated by time spans returned by an implementation
of the iTimeSpanEmitter interface. An instance of TimeSpanRandomizer can either
be polled for the next action or an event timer loop calling a callback method can be
started:

std :: unique ptr<iTimeSpanEmitter> tse(new Any TSE Implementation());
TimeSpanRandomizer tester (tse.get());

bool getActionAvailable(); // returns true if an action is available, and
in that case updates when the mext action should occurr.
double startTimer(Callback fptr tsrCallback, bool loop = false,
double evMinDist = 0.0002);

In the following the second usage method, startTimer (), will be discussed.

Dispatching At first the event timer library is said to be fast — there are promising
benchmarks on the libev website (libev, 2012b). But if the time spans are very short
and the performed action takes too long, the real time might advance ahead of the next
event. If that happens the events do still dispatch their linked action (the performAction
callback function pointer) but the event timer is bypassed and instead we enter a spe-
cialized “catch-up” loop.

double now = getSeconds () ; // get the time
while (nextAction < (now+evMinDist)) {
// we remain in sched yield loop if nextAction is near (evMinDist)
while (nextAction <= now) { // mext action already passed
updateAvailableAction () ; // updates mext action
if (!performAction(this)) return; // handles next action
} // leaving this loop only when we’re early

sched yield () ; // yield to OS and then
now = getSeconds () ; // update now and check if we’re
// close enough/early ..
b
// mow start the event timer.. (ev::timer)
w.set (nextAction — now, 0);
w.start ();

This loop will dispatch actions in the inner (faster) loop as long as we’re definitely
late. As soon as we have caught up we return to the outer sched_yield() loop which

"Defined in file TimeSpanRnd/cTimeSpanRandomizer . hpp.
8Defined in file TimeSpanRnd/iTimeSpanEmitter.hpp.

14

2.3. UserDummy

returns the control to the operating system. As long as we’re not more than evMinDist
early we dispatch events from here. Finally if there’s enough distance to the next event
we restart the event timer. The event timer callback will perform an action and then
possibly enter the above listed loop again.

It is the programmers responsibility to offer a callback that can be handled within the
average of a timespan as otherwise we will reach a point where the TimeSpanRnd will
dispatch only late events.

Usage There are three implementations of the iTimeSpanEmitter interface available:
static, Gaussian and burst. But writing a new time span emitter is easy. A contrived
example:

T W N~

#include "iTimeSpanEmitter.hpp"
class TSE Example : public iTimeSpanEmitter {
virtual double getNextTimeSpan ()
{ return 1.0; } // one event per second!

s

To use the timer loop feature a callback pointer to perform the triggered actions needs
to be passed along. It can look like this:

— O © 00 O Ui Wi+

—_

bool emitSpikeTask (TimeSpanRandomizer *tsr)
{ return true; } // endless loop
J/ [...], now in main:
TimeSpanRandomizer :: Callback fptr taskFunction = &emitSpikeTask;
TSE example tse;
TimeSpanRandomizer tester(&tse);
// ev::default loop loop;

tester .startTimer (taskFunction, true); // sets performAction = taskFunction
// having passed true as second parameter the loop is integrated into the
// startTimer () call. Otherwise we need to call loop.loop(); here.

If the event loop shall stop the callback linked to performAction must simply return
false. Therefore in the above example tester.startTimer(...) will block forever as
emitSpikeTask(...) mnever returns false. The callback emitSpikeTask(...) will be
called once every second.

2.3. UserDummy

The job of the UserDummy program (UserDummy)? is to configure the EsterProxy and to
initiate the interconnection of the EsterProxzy Suite. Therefore it should be started as
third program after the EsterProxy and the ArgDrain. Secondly it performs the task of
testing by calling test bench implementations. These test benches consist of code which
is included at a specific position in the UserDummy. The test bench to include can be
specified by the macro ESTERPROXY_TEST_BENCH="testBench.tb". If the test bench file

9The main function is located in the file EsterProxy/UserDummy . cpp.

15

=W N =

ST W N

2. Design and Code Presentation

is suffixed with .tb (testBench.tb) and placed into the directory EsterProxy/test_-

bench.d/ the waf build script will automatically generate a user-testBench program!?.

A UserDummy program takes as an optional command line parameter the address of
the EsterProxy it should connect to. The address must be specified in such a way that
RCF: : TcpEndpoint () will accept it. If that is not specified localhost is assumed.

Preparations Before the test bench can be started some preparations have to be done:
1. Connect to the proxy
2. Configure the connection
3. Check clock constraints
4. Establish ArqDrain connection

When the user program is started it at first tries to connect to its proxy. This will be
repeated until a connection could be made. Then the connection will be configured, that
is:

auto clientStub = client.getClientStub () ;

clientStub .getTransport () .setMaxMessageLength (PROXY MSG SIZE MAX) ;
clientStub .setRemoteCallTimeoutMs (PROXY TIMEOUT ms) ;

clientStub .setSerializationProtocol (RCF:: Sp_SfBinary); // == default

The values for the maximum message length (242MiB) and the remote time
out (3min) (PROXY_MSG_SIZE_MAX and PROXY_TIMEOUT_ms) are taken from the file
EsterProxy/common.h. The remote time out is set to an unrealistic high value — at
least for productive use —, that is because some tests (with rather worse) settings are in
need of that. We want each test to finish gracefully no matter how bad its outcome is.
The third setting explicitly specifies the archiver to be used, that is the RCF Serialization
Framework (RCF-SF) in binary manner.

Clock constraints Assuring a small distance of the real-time clocks between the
UserDummy and the EsterProxy is of crucial importance for latency measurements. In
the EsterProzy Suite we give spikes their spiketime upon creation (unless prepared
spike data is used). Latency is then calculated by the difference of the creation time and
the time a spike passes by the point of measure. With high deviation between the clocks
this value becomes fairly unusable. Therefore common.h specifies some constraints which
must be met:

// checking test environment:
// allowed clock divergence of EsterProzy and UserDummy
const double USER CLOCK INACCURACY MAX // mazimum clock INaccuracy

= 10e—4; // specified in seconds
const double USER CLOCK FAILED BAD MAX // maz ratio of failed clock tests
= 0.00; // 0.0 (hard) .. 1.0 (don’t care)

10Tf you configured with the flag - -with-proxy-testbench.

16

2.4. Test Benches

This test goes as follows:

1. take local time stamp (before = getSeconds() ;)

2. set remote time stamp (client.setTestTimeStamp (RCF: : Twoway) ;)

3. take local time stamp (after = getSeconds();)

4. fetch remote time stamp (between = client.getTestTimeStamp (RCF: :Twoway) ;)

This test is repeated multiple times. If between is not in the interval (before, after)
it is considered a “bad time”. Additionally the divergence (distance to x) is calculated:
disty = abs(((before + after)/2) — between).

* indicates the returned remote time (between)

| [* |] | // OK
| [| *] | // OK
badTimes | = [I] I badTimes // critical
| [|] | * // BAD
before X after // x = (before+after)/2

In the sketch above the | denote the bad time boundaries: if a measured between
lies outside these boundaries the clock inaccuracy is greater than the remote (two-way)
call time. This is highly critical. It indicates that the involved machines should do
a Network Time Protocol (NTP) update. The rectangle brackets denote the allowed
average inaccuracy boundaries. The clock inaccuracy is calculated as follows:!!

clockInAccuracy = mu(distgSet) + 2 x sd__high(distySet)

If the calculated inaccuracy is greater than USER_CLOCK_INACCURACY_MAX (0.1 ms) or
badT'imes/testCount is greater than USER_CLOCK_FAILED_BAD_MAX (0.0) the program is
aborted.

2.4. Test Benches

Test benches in this context are code pieces which are inserted into the UserDummy to per-
form various test tasks. The test benches differ in the spike creation, transfer methods and
measurements taken. And generally in the setup (enabled features) of the EsterProxy
side of the test.

Test benches rely on the class EsterProxyTest. This class offers three convenient
methods —which encapsulate basic calls to the EsterProxy— to structure test cases. Calls
to these methods are interlaced with direct calls to the EsterProxy. The following
presents a simplified but explicit test bench:

sd high is special standard deviation in which only the variance of values higher than the mean is
taken into account, for other values we assume a variance of 0, sdHigh <= sd.

17

2. Design and Code Presentation

1|/« vim: set filetype=cpp : */

2

3| // onerun.tbb

4 | // This test is performed prior to any other test bench, it is generally
included by the user dummy unless ESTERPROXY TRIAL is specified.

51// [2012—11—12 00:12:29] v2.0 New version for thesis include

6

71{ // we begin a test bench with opening a scope

8

9 |// The client object has been defined by by the UserDummy and offers the

access to the FEsterProzy remote calls.
10 | // Also awvailable here is clockInAccuracy.

12 | std::string testName("One_Run_To_Rule_Them_All"); // Yes, I like The Lord
of the Rings ;) — the book!
13 |size t spikesCount = 25 x HMF:: FPGAPulsePacket :: capacity () ;

Listing 2.1: onerun.tbb (intro)

15 | // Latency measurements slow down the transfer so we can enable or disable

them
16 | bool measureProxyReceiveLatency = true;
17 | bool measurePackagerSendLatency = true;
18 | bool measureArqReceiveLatency = true;
19
20 | // Timeout Settings (in seconds)
21 | double packagerTimeout = std::numeric_limits<double>::infinity (); // never
22 |double receiveTimeout = 3e—3;
23

24 | // Transfer settings

25 | bool enableDropping = false;

26 | bool onewayCalls = true;

27 | //size_t batchSize =16 %= 1024 = 1024; // bytes

Listing 2.2: onerun.tbb (settings)

18

29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

2.4. Test Benches

// Instantiate a basic test object (prepares the prozy)
EsterProxyTest test(client , testName, measureProxyReceiveLatency ,
spikesCount) ;

// Drop late data before anything else is done with it
if (enableDropping) client.enableReceiveDropping(receiveTimeout);

// Enable packaging of ARQ ready packets
client .enablePackaging (measurePackagerSendLatency , packagerTimeout);

// Enable transfer of constructed packets to the ARQ Drain

//+ this must be polled until ARQ Drain is ready

while (! client.enableArqXfer (measureArqReceiveLatency , enableDropping))
std :: this thread::sleep for(std::chrono:: milliseconds (150));

double now = 0;

fpga dummy event t tmp;

tmp.label = 42; // The Hitchhiker’s Guide to the Galazy is not bad either.
tmp.spiketime = 0;

// Spike creation specialization

double expectedDuration = 10;

double maxDuration = expectedDuration * 1.1; // 10% plus allowed
double avgSpikeDist = expectedDuration / test.spikes;

double nextSpikeTime = 0;

Listing 2.3: onerun.tbb (config)

// TEST BEGIN >
double pzOffset = test.beginTest(onewayCalls /x, batchSizex/);

// Now transfer the spikes as you wish
client .swallow (tmp) ;
for (int i = 1; i < test.spikes; i++) {

nextSpikeTime += avgSpikeDist;
do {

now = MicroCounter :: getSeconds (pzOffset);
} while (now < nextSpikeTime);

// calculate correspondant FPGA clock time
tmp.spiketime = now x CYCLES PER SECOND; //defined in common.h

client .swallow (tmp); // transfer the spike!

}
test .endTest () ;
// <——— TEST END

Listing 2.4: onerun.tbb (test)

19

2. Design and Code Presentation
75 | // Finally we can access the test duration results
76 | assert (test.durationClient <= test.durationProxy + clockInAccuracy);
77 | assert (test.durationProxy <= test.durationArq + clockInAccuracy);
78 | assert (test.durationArq <= maxDuration);
79
80 | // And lots of other result data, @see class TestResult.
81 | // Some of which is mot available under all circumstances!
82 | if (!enableDropping) {
83 assert (test.res.arqLastSpikeAvailable);
84 assert (test.res.arqLastSpike.spiketime tmp.spiketime);
85 assert (test.res.arqLastSpike.label = tmp.label);
86 |}
87
88 | std::cout << "_x_[UD]_Functionality_test_passed_(" << test.name << "):_" <<
test .durationArq << "_sec.\n" << std::endl;
89
90 |} // finally close the test bench scope

Listing 2.5: onerun.tbb (finish)

This test bench'? will be performed prior to any other test bench passed to the

UserDummy at compile time. What the above code does should be clear enough with
its comments. A few words to the class EsterProxyTest can be found at the end of this
section. All available remote calls are listed in the Appendix A.2.

One should note that a potential NDEBUG flag will be disabled for the UserDummy as
for test benches it is convenient to use assertions. Therefore assertions within the time
critical phase (between BEGIN and END TEST) should be omitted or commented out if
they are not explicitly wanted during final tests. Outside of this phase there is no need
to optimize for speed.

The implemented test benches can be found in the directory EsterProxy/test_bench.d.
The most important of them will be described in the Discussion 3 on page 31ff. For
others one has to keep to the code.

EsterProxy/test_bench.d

debug.th.. ..o was used for debugging
maxthp-serpck.tb........... find maximal transfer using compressed containers
maxthp.tb........ older test bench to find throughput maxima
maxthp-vector.tb.................ooo.t. find maximal transfer using a vectors
measure-full.set..... .ottt subset for measure.tb
Measure-sSgl.Set ... subset for measure.tb
measure.tb........ ...l various tests esp. for serialization evaluation
MEASULE-VEC. ST vttt ittt subset for measure.tb
minlat.thot find minimal possible latency
ONEeTUN. BBD. ot e the big listing above
trial . tbb ..o e used during development
BT D ettt use case evaluation

12The original can be found in EsterProxy/test_bench.d/onerun.tbb.

20

2.5. Test Results

2.4.1. EsterProxyTest

The class EsterProxyTest!® consists of three methods which we have all seen in the
listing 2.1. There is (a) the constructor EsterProxyTest, (b) beginTest, (c) endTest,
which surround a test case.

The constructor (a) forwards its input to client.prepareTest thereby instantiating
a test on the proxy. Following this call one enables various features for the test by calling
the enableSomething remote methods on the client instance. After the configuration a
test begins with a call to beginTest (b). This internally calls client.startupTest which
plans the start of the prepared test case on the proxy and returns its point zero (start
time). The parameters of beginTest (oneway,batchSize) setup the client side remote
call semantics — that is using oneway calls, and whether RCF batching should be enabled
(if batchSize > 0). Then it will block until point zero is reached on the client side hereby
assuring that the test will not commence in advance. Now a test is running and one has
to let the proxy swallow its spikes by calling any of the client.swallow(Something)
methods. Finally after all spikes have been transferred a call to endTest stops the test.
At first it stops the client side duration and then after setting the remote call semantics
back to normal (two-way, no batching) it calls three remote methods on the client
object: (1.) shutdownTest (2.) finalizeTest (3.) fetchTestResult which respectively
initiate the shutdown, wait for it to be completed and then fetch the test result object.
With the call to client.fetchTestResult the proxy is also set back to "ready" state
expecting a new test. The next section will list the available results.

2.5. Test Results

The measured durations can be directly accessed from the EsterProxyTest instance:

durationClient all swallows have been performed but data might still be on its way (from
UserDummy to EsterProxy)

durationProxy all data has been received by the EsterProxy (no outstanding one-way
calls left)

durationArq all data has now passed the ArqDrain - the test is finished!
Additional results are offered by the TestResult member EsterProxyTest.res:
proxyReceivelLatency latency of reception of spikes by the proxy (RCF latency)

packagerSendLatency latency of first spike in hardware packet when it is ready to leave
the EsterProxy

packagerPacketConstructionCount number of packets constructed by the packager

packagerPacketDropCount number of packets that have been dropped because of a full
ShamemIPC.

131t is defined in EsterProxy/esterProxyTest.h.

21

2. Design and Code Presentation

packagerShamemBlockCount total time the packager was blocked because the
ShamemIPC was full

packagerLast TransferredSpiketime spike time of last spike of last packet that was put
into the ShamemIPC

arqReceivelLatency latency of reception of packets (first spike) by the ArgDrain
arqReceivedPackets number of packets the ArqDrain received

arqReceivedEntries number of entries the ArgDrain received (an entry is either a spike
or an overflow)

arqReceivedSpikes number of spikes the ArgDrain received.

arqLastSpikeAvailable only if the packets have been read (measureArqReceiveLatency)
the ArqDrain knows of spikes

argLastSpike last spike received by the ArqDrain.

2.6. ARQ Drain

The ARQ_Drain program’s'# job is to simulate the data delivery to the RDMA-NIC.

The data is not actually passed to the RDMA-NIC but —after an eventual latency
measurement— simply thrown away. This is due to time constraints for this thesis as well
as due to the fact that the receiving side has not jet advanced far enough that such a
test would give us a lot of additional information. But to implement a real ARQ Drain
is considered not to be very problematic. The Outlook will present some information
about that, see section 4.2.

Nonetheless the ArgDrain receives its data formatted in a way that it should be easy
to move on. The received payload is wrapped in instances of arq_shamem_t!® queued in
a ShamemIPC buffer. The wrapper contains as first element the byte length of the wire
data and as a second element the ARQ header as well as the payload itself. The payload
is an FPGA Pulse Packet (fpga_pulse_packet_t)!6. which may contain arbitrary bytes
at the end if it is not full. Therefore only as much bytes as specified by the first element
must be transferred to the FPGA. A working ArqDrain has to fill in the ARQ header
as the EsterProxy does not know about the ARQ protocol apart from its header size.
With that done one has to pass to the RDMA-NIC only a pointer to the first and second
element. Figure 2.2 shows the struct arq_shamem_t.

'4The main function is located in the file EsterProxy/ArqDrain. cpp.
5The struct arq_shamem_t can be found in the file EsterProxy/ipc_xferTypes.h.
16fpga_pulse_packet_t specifications: UHEI and TUD (2011, cf. sections 1.3.5 and 1.3.5).

22

=W N =

0~ O UL WN -

2.6. ARQ Drain

first element

arq_shamem_t

1 wiredata

second element

len

header payload, fpga_dummy_event_t

real payload = len bytes

Figure 2.2.: The arq_shamem_t struct

Code In the EsterProzy Suite the ArgDrain’s first job is to initialize the ShamemIPC.
For this a command line parameter specifying the ShamemIPC buffer size can be given.

ShmInitialiser shminit (ARQ IPC_SHAMEM ID, shamemIpcCbSize);
ShmReader *reader = ShmReader:: rconnect (ARQ IPC_SHAMEM ID) ;
reader—>startReader () ;

// BLOCKS until user calls client.establishArqConnection ()

In line 1 the shamem is initialized with the identifier ARQ_IPC_SHAMEM_ID and a
size of shamemIpcCbSize. The identifier specifies the shamem and must be the same
for the EsterProxy. If no command line parameter was given the size defaults to
ARQ_IPC_SHAMEM_DEFAULT_SIZE (33). The ID as well as the default size are speci-
fied in the file EsterProxy/common.h. Line 4 blocks until the EsterProxy starts the
writer which is done as soon as the UserDummy connects to the EsterProxy and calls
client.establishArqConnection().

After this an RCF connection to the EsterProxy is established which is used to fetch test
settings and to submit results. For the actual work of the ArqDrain this RCF connection
is not necessary, it is used solely for the evaluation procedure.

Now the ArgDrain enters an active wait loop polling the EsterProxy until a test with
enabled ARQ transfer has been planned.

while (! client.checkArqWakeup()) { /*sleep a bitx/ }
// fetch test settings:
client .getArqConfig(testName, measureArq, spikesExpected);
do {
pointZero = client .getPointZero () ;
// we meed to get this fast, its crucial! (no sleep)
std :: this thread::yield ();
} while (pointZero <= 0); // with a point zero available the test has
been fully configured (and planned)

Finally the test has begun and the shamem is read until a stop packet with a length
of 0 is received.

23

N O U W N

2. Design and Code Presentation

while (true) {
if (reader—>tryread(data)) {
if (data.len = 0) break;
// if measurement is enabled:
// a) compare spiketime of first spike in packet with now (latency)
// b) loop through the data to update the last spiketime
} else { std::this thread::sleep for(ARQ EMPTY SHAMEM YIEID); }

When the test is done the results are returned to the proxy and we enter the
while (! client.checkArqWakeup()) loop again. Note that the above listings have
been shortened and do not reflect the actual code.

2.7. The EsterProxy program

The EsterProxy program (EsterProxy)!” is the core of the EsterProzy Suite and the
main issue of this thesis. It is the part which is closest to a real implementation and con-
tains the algorithms which are under evaluation. In opposite to the other two programs
it is not a simulation — it performs actual work. Therefore this section is also the most
important of this chapter and puts it all together. It does not look at the EsterProxy
as an isolated object but outlines the design of the whole EsterProzy Suite thereby con-
centrating on how the EsterProxy gets its job done. One may take a quick look back
to figure 2.1 on page 8 which showed a schematic overview of the EsterProzy Suite and
the physical location of its parts before moving on.

In the following the design is discussed alongside the path spike data takes from the
UserDummy to the NIC. For orientation figure 2.3 may help. The EsterProxy does not

EsterProxy

Configuration of EsterProxy

UserDummy

Test Driver

—D SpikesQueue

TestBench
spike generation

* PackagerThread

ARQ_Drain

NIC

fpga_pulse_packet_t

Figure 2.3.: Schematic of EsterProxy Logic

" The main function is located in the file EsterProxy/EsterProxy.cpp.

24

N O U W N

o]

11
12

2.7. The EsterProxy program

operate on its own, it is instead completely driven by the UserDummy. In the EsterProzy
Suite the UserDummy serves as the “Test Driver”.!® It performs the initial EsterProxy
setup as well as it configures the test cases and produces the test data. The sole con-
figuration that can be passed to the EsterProxy directly is a command line parameter
specifying the listening address where it expects the UserDummy to connect through. For
easy development it defaults to localhost.

Main function The code of the EsterProxy main function itself is therefore rather
small —it is only an RCF server wrapper— and can be summed up as follows:

RcfServant proxy; // create RCF servant object
RCF:: RcfInitDeinit rcfScopelnitializer; // setup RCF
RCF:: RcfServer server; // create an RCF server

// bind addresses/ network interfaces

server .addEndpoint (RCF:: TcpEndpoint (bind address, PROXY DEFAULT PORT));

if (bind_ address != "localhost") server.addEndpoint(RCF:: TcpEndpoint ("
localhost ", PROXY DEFAULT PORT));

server.getServerTransport () .setMaxMessageLength (PROXY MSG SIZE MAX);
server .bind<I EsterProxy>(proxy); // bind the servant object to the
I _EsterProzy RCF interface
server.start(); // start RCF server thread(s)
while(!proxy.shutdown) {doSomeOccasionalReport();sleepAbit();}

There is not much to add to the listing above.!? Line 7 assures that the RCF server
is always at least bound to localhost as the ArgDrain does connect from there. The
most important is line 10 where the servant object is bound to the I_EsterProxy RCF
interface. The RCF Servant object (RcfServant) is responsible for the UserDummy remote
calls. But before data arrives there it has to be serialized. So we continue with the
different spike data serialization methods.

2.7.1. Serialization

The Dummy Spike Data struct (fpga_dummy_event_t) serves as basic object for spike
transfer between the UserDummy and the EsterProxy. It is located in EsterProxy/rcf_-
xferTypes.h where all the EsterProzy Suite’s RCF-SF serializable classes are declared.

¥How test benches can be implemented was shown back at section 2.4.
19For details on the RCF methods one may check their documentation at http://www.deltavsoft.com/
doc/index.html.

25

http://www.deltavsoft.com/doc/index.html
http://www.deltavsoft.com/doc/index.html

[

O © 0D U WN

U W N =

2. Design and Code Presentation

struct fpga dummy event t {
// TYPES
typedef HMF:: FPGAPulsePacket :: spiketime t spiketime t;
typedef HMF:: FPGAPulsePacket :: label t label t;

// MEMBER VARIABLES
spiketime t spiketime; // global time in cycles
label t label;

// lifecycle: constructer, etc
}

Listing 2.6: Dummy Spike Data struct (fpga_dummy_event_t)

There are basically two methods to serialize: member-wise or byte-wise (listings 2.7
resp. 2.8). The first of which suffers from a considerable call overhead?® (esp. for small
elements), whereas the second is undoubtedly faster, but cannot be used under all cir-
cumstances. E.g., complex classes with pointers and variable sized objects cannot be
trivially serialized as a whole using the byte-wise method.

void serialize (SF:: Archive &ar) {
simple but very slow
ar
& spiketime
& label;

Listing 2.7: member-wise

if (ar.isWrite()) {
ar.getOstream ()—>writeRaw (reinterpret cast<charx>(this), sizeof/(
fpga dummy event t));
} else {
ar.getlstream ()—>read (reinterpret cast<charx>(this), sizeof/(
fpga dummy event t));

Listing 2.8: byte-wise

For the fpga_dummy_event_t the byte-wise serialization was chosen. But serializing
or transferring single spikes is still far from efficient. Even with enabled RCF batching it
does not improve. See chapter Discussion 3.3.1 on page 39 for the rationale.

As the size of a fpga_dummy_event_t is with 12bytes rather small the only
reasonable approach is to use a container format. As possible containers a
std: :vector<fpga_pulse_packet_t> as well as various self-made ones have been
evaluated.

The simplest available container format is the vector. But in its default implementation
this is still not very fast as the serializer must loop through the vector and serialize its
elements one by one; it does not understand that the vector’s elements can be byte-wise

20This has been investigated using the valgrind tool callgrind.

26

0~ O UL W

10
11
12
13
14
15

16
17
18
19

20
21

2.7. The EsterProxy program

serialized. To solve this this a RCF-SF vector specialization?! can be specified:

template<typename A>

inline void serializeVector (
SF:: Archive & ar,
std :: vector<EsterProxy ::fpga dummy event t, A> & det,
boost ::mpl:: false)

size t sz = 0;
size _t const minSerializedLength = sizeof(EsterProxy ::fpga dummy event t)

if (ar.isRead()) {
det . clear () ;
ar & sz;
if (ar.verifyAgainstArchiveSize (sz*xminSerializedLength))
det.resize (sz);
else throw std::runtime error("unexpected_size!");
ar.getlstream ()—>read (reinterpret cast<charx>(det.data()), szx
minSerializedLength);
} else if (ar.isWrite()) {
sz = det.size();
ar & sz;
ar.getOstream ()—>writeRaw (reinterpret cast<charx>(det.data()), szx
minSerializedLength);

Listing 2.9: Vector Specialization

But better still performed a self-made container using delta compression upon insertion
(i.e. the data is compressed already before it gets to the serializer). For details on
this container format one should look at the code.?? The performance of the different
containers is discussed in section 3.3.2 on page 41. The Outlook also has some information
on how this container could be made even more efficient, see 4.6 on page 55.

2.7.2. RCF Servant

The RcfServant handles all RCF calls which arrive at the EsterProxy. These conduct the
general setup of the EsterProxy and the preparation, configuration, finishing, evaluation
of test cases. A complete list of the RCF calls can be found in the Appendix A.2.

Last but not least there are the swallow calls which receive the spike data. There are
five swallow methods handling various data types. They all forward their data to an
inlined handleSpike resp. handleVector method.

handleVector This method receives the de-serialized spike data as a vector of
fpga_pulse_packet_t. After de-serialization —on the path down to the packager— the
vector’s data is never copied again. Instead of looping through the vector and measuring

2The code of this specialization is —due to include constraints— not placed with the other RCF-SF
serializable classes but in the file EsterProxy/rcf_interface-base.h.
22The class FpgaDummyEventSerializer can be found in the file EsterProxy/rcf_xferTypes.h.

27

S T W N

N

10
11
12

13
14
15
16
17
18

19
20

21
22
23

24
25

2. Design and Code Presentation

the latency for each spike we take the spike at position 1/3 of the vector as a probe for
the whole vector. So for the first third of the vector we get a better latency and for the
following two third we get a worse latency for the evaluation. This latency calculation
is considered “fair” as it returns a latency close to the expected average. Under normal
circumstances (about equally distributed spikes within the packet) the estimated latency
will never look better than the actual spike-wise latency. One is always interested in
latencies rather close to the worst-case latency as this it the pivotal question.

inline void RcfServant:: handleVector(std:: vector<fpga dummy event t> &
vector) {
/) [...] some #ifdeffed debug code, disabled during evaluation tests

t—>handledSpikes += vector.size(); // all received spikes are counted

// we take the event at position 1/3 of the wvector as latency equivalent
for the whole vector.

// this can be considered "fair enough”.

double spiketime dbl = vector[(vector.size() / 3)].spiketime /
CYCLES PER SECOND;

// drops the whole vector!
if (t—isSpikeDropping
&& (MicroCounter:: getSeconds(— t—>pointZero) > (spiketime dbl + t—>
spikeDropTime))
) A

t—>spikeDropCnt += vector.size();
return; // drop spike!

}

/+* FUTURE: With multiple packagers this gets tricky.. We must seperate the
vector for the wvarious packagers. We could do something like a shared
pointer to a vector and every packager loops through it or we must
return to single spike handling, looping through the wvector and moving
spike per spike into the correct packager.. x/

if (packager) packager—>insert (std::move(vector)); // wvectors are always
moved —> no copy!

if (t—latencyReceiveMeasureEnabled) {
t—>latencyReceiveMeasure.push back(MicroCounter:: getSeconds(— t—>
pointZero) — spiketime dbl); // receive — "creation"” of spike

Listing 2.10: RcfServant: :handleVector

The handleSpike method looks analogous. These two methods contain everything
which the RcfServant does during the run phase of a test. But there is also a lot of
configuration, etc. that has to be handled beforehand. How a test case is configured has
been described in section 2.4 and a complete list of all available RCF calls can be found
in the Appendix A.2. The following outlines the environment in which these RCF calls
are handled.

28

2.7. The EsterProxy program

Life cycle To control the life cycle of the EsterProxy program and the test cases the
RcfServant has been implemented as a state machine. Figure 2.4 shows the com-
ponents of the RcfServant and its state machine. Important to note is that the in-
stances of the testdata_t struct as well as the SpikePackager class are wrapped into
std: :unique_ptr objects which will be instantiated anew for each test case. This assures
that there are no side effects of one test to another. The ShmWriter pointer on the other
hand points throughout the program’s lifetime to the same object. It is reused during
tests; this is not necessary the best choice, see Outlook 4.7.

The State Machine

The EsterProxy program =~ _———1=» ServanttateEnum
Setup RCF
main method Bind with the RcfServant instance
Start the RCF server thread
Single RcfServant instance
ShmWriter* testdata_t t o
arqWriter \\

config

swallow

SpikePackager packager | queue TestCase nalize

fetch

Wait until shutdown is requested
main method Stop the RCF server thread
... and say goodby

Figure 2.4.: Schematic of EsterProxy Internals

2.7.3. SpikesQueue: DoubleSidedMutexedQueue

In listing 2.10 on line 20 the received spike data is inserted into the packager’s queue.
The initial queue (at this time only single spike handling was implemented) was a simple
std: :queue<fpga_pulse_packet_t>. This queue suffered severely from the synchroniza-
tion of the multi-threaded access (insertion by the RcfServant thread and removal by
the packager thread). For each spike inserted or removed it was necessary to acquire a
mutex.

To improve these circumstances the class DoubleSidedMutexedQueue”” was developed.
It is called such because it is a compound of two queues specialized for “mutexed” multi-
threaded access. The trick is that the initial queue is split into two queues, one for
insertion and one for removal. When the queue for removal is empty both queues are
exchanged.

23

23The class DoubleSidedMutexedQueue is located in the file EsterProxy/doubleSidedMutexedQueue.h.

29

2. Design and Code Presentation

A mutex must now be acquired only for insertion and when we need to switch both
queues. So the removal can most of the time work unsynchronized. For single spike
transfer a speed up of about 20 % was observed.?*

With the support for vectors this queue is now holding
std: :vector<fpga_pulse_packet_t> objects and insertion as well as removal are
less frequent. This means that the importance of this queue has been reduced. But with
the support for multiple FPGAs there might be the necessity to go back to single spike
handling in the swallow() methods. See Outlook 4.3 on page 53. This would make the
DoubleSidedMutexedQueue interesting again.

2.7.4. The Packager

The FPGA Spike Packager class (SpikePackager) defined in the file
EsterProxy/spikePackager.h finally takes care of preparing the hardware-formatted
delta-compressed fpga_pulse_packet_t packets. It also offers them to the ArqDrain.
The packager works in its own thread sedulously packing spike after spike. The packager
thread is separated into three parts/loops.

The first loop waits on the first spike to be inserted into a new packet. After the
spike is inserted the packet time-out (xferwalltime) is calculated. This time-out is the
wall time when the packet must at the latest be written into the ShamemIPC. It is the
spiketime of the packet plus the packetBufferTime which was specified by the packager’s
constructor.

The second loop packs more spikes into the packet until it is either full or reaches its
time-out. It is to much overhead to check if the packet has expired after every spike. So
this test is only done every 32 spikes and whenever the spikes queue is empty. If this
system is supposed to be kept up a clock thread could be helpful to move the time spend
on fetching the wall time out of the packaging thread (see Outlook 4.4.

The third loop now takes care for writing the newly build packet into the ShamemIPC.
This task can only be performed if the ArgDrain is not running behind (i.e. if the
ShamemIPC buffer is not full) If the write fails more spikes are put into the packet until it
is full. After each insertion the packager thread yields and retries the ShamemIPC write.
If the argXfer feature was enabled (see Appendix A.2) with packet dropping the packet
will be dropped after a specific time spend on retries which is defined in common.h. This
dropping feature (packet dropping) could not be very well tested as the ArqDrain is just
a simulator. However this dropping design is considered useful as it moves the dropping
to the EsterProxy in case of an overloaded network (in this case the ShamemIPC buffer
will be full). It must be paired with a reasonable-sized ShamemIPC buffer size dependent
on the packets the RDMA-NIC can handle concurrently and the average time it spends
per transfer.

Z4There is no record for this observation as it happened very early during this project.

30

3. Discussion and Results

This chapter presents all performed tests as well as their outcome. It begins with a
discussion of RCF in general and its possible speed on a local network. It shows how
RCF calls can be made most efficient, considering throughput. Secondly, the ShamemIPC
using a EsterProzy Suite-specific buffer type, but other than that being independent, is
examined.

Finally it concludes with the evaluation of the suite: serialization, maximal throughput,
minimal latency and a use case simulation.

Definitions For the following evaluations some definitions should be stated. All graphs
show the standard deviation (sd) multiplied by two (i.e. the 95% confidence interval).
Often the standard deviation has been given two colours, the smaller darker area then
represents one sd. Note that the standard deviation is very small in many of the tests
and in most of the graphs not easily visible. Frequently data “sizes” have been normalized
due to packet overhead or data compression, yielding an effective size that corresponds
to the payload (i.e. spikes or other user data).

All plots and tables that speak of spikes use normalized bytes for the presentation
of throughput values. For normalization spikes have been multiplied by 10 to return a
representative value in bytes. This is due to the fact that a packed Dummy Spike Data
struct (fpga_dummy_event_t) has a size of 10bytes. There had been some problems
with this which are described in the Outlook 4.8. Note that a spike packed into a
fpga_pulse_packet_t packet needs less bytes: about four to eight bytes. This is due
to the delta-compression. If we assume an average biological firing rate of 1 Hz and a
required spike precision of 1ms this yields logg(@ /1Hz) =~ 10bits to encode a spike
on average. The current specification provides 15bits for timestamp encoding (and a
precision similar to 1ms); longer time periods are handled using overflow entries that
hold 31 bits of silence.

A given throughput is generally calculated as follows: divide the total of transferred
data by the duration of a test. Depending on the viewpoint there can be multiple
measuring points considered as the end of a test.

For evaluation purposes a spike gets as spiketime a representation of its creation time.
The creation of a spike usually takes place just before it is transferred; or, in the case of
batched transfer, just before the spike is put into its container (i.e. the transfer object).
In other words, the creation time specifies the time at which the spike is available to the
UserDummy. Latency is then measured by comparing the spiketime to the wall time at
certain points. lL.e. it is the time consumed by the transmission to a specific point. The
available measuring points are specified later alongside the results/plots.

31

3. Discussion and Results

All tests have been performed on the HMF Cluster. This computer cluster forms
the HMF Conventional Part. It consists of sixteen fast nodes connected with 10 GbE
Ethernet. Important characteristics are:

Fast Network — 10 GbE network interface cards (Intel NetEffect NE020) connected to
one 10 GbE 24-port ToR network switch (Hewlett Packard ProCurve Switch 6600-
24XG); the 8 unused ports are planned to be used by multiple wafer-scale systems
(connecting to one 24-port 1 GbE to 2-port 10 GbE aggregating switch (Hewlett
Packard ProCurve Switch 2910AL-24G) for every wafer-scale system).

Control Network — 1 GbE, Intel on-board NICs with built-in KVM (Intel AMT)
CPU — Intel Core i7-2600, Sandy Bridge architecture @ 3.40 GHz
RAM - 16 GiB DDR3 memory, 2x dual channel equipped

HDD - 4 out of 16 nodes equipped with two OCZ Vertex 3 each: Fast RAID 0 storage
for spike recording at wire speed (supporting 1 GB/s)

OS — Debian Wheezy (GNU Linux distribution running Linux 3.2.0-1-amd64)

3.1. RCF in General

Before we talk about the EsterProzy Suite we must discuss the RCF potential in general.
RCF offers the use of three different serialization frameworks:

1. RCF Serialization Framework (RCF-SF) — built-in
2. RCF BOOST Serialization (RCF-BOOST)
3. RCF Google Protobuf Serialization (RCF-PROTO)

All three of them have been subject to testing. The primary goal of RCF-PROTO is clearly
not the fast transport of specialized data as in our case. To make data serializeable by
Google Protobuf Library (protobuf) one has to write a . proto file in a specific syntax and
then call the protobuf compiler on it (protoc myprotofile.proto). This will generate
a verbose class with getters and setters and other convenient stuff. What is interesting
about this code generator is that it can generate outputs not only for C++ but also for
Java and Python. However it was quickly seen that RCF-PROTO will not suffice to cover all
our needs as it concentrates more on convenient data handling as well as usability than
on speed and strong typing. Therefore no further advancement in direction RCF-PROTO
was made.

Figures 3.1a resp. 3.1b show the evaluation of RCF-SF and RCF-BOOST serialization.
Primarily they can be grouped into three transfer types: (a) RCF-call (no transfer, suffix
_Call) — measuring call overhead, (b) single-int (a single int per call, suffix _sgl_4b),
(c) vec-int (vector<int>, suffix _vec_x). The * in the vec-int transfers stands for the size

32

3.1. RCF in General

RCF Throughput: SF

(suz) 10yeOIPUT AdUR)RT 9FRIAY

—
|

=)

(]

Lo
T

103

3] — =}
o o o
— A A}
T T T

INT 987 Kemau()
————————
GHNT 90A dINOTYT

Y A - -

W AT 097 dUNSZTUNd
|III UNT99A dINFIUE

qINB3T 99A AemouQ

m_ENm.uw\w.%mb:O
dIN9SE 99A AemauQ
qINGE 99N INFIUT
AINSGT 99\ Aemom],
dIN9GG 99N Aemomy,
dIN8ZT 99A dUNSETUNd

I b/xfer

o5 [e e ms/xfer

Il b/sec

396 [xfer/sec

3

324 L
23 L

322

(qunoa‘sagdq) mdysnoayy,

(a) RCF-SF throughput

RCF Throughput: BOOST

(suz) 10gedIpUT AdU)eT 9SRIAY

10°

-

[l — =] |

o o (@])

— — — —
T T T T

|I” qUNT-99A"GINPOUYT
AINBZT 99A AemouQ
dIN9GE 99A KemouQ
AINGE 997 AemouQ
NG 99N dINFIUNT
qINSGT 99\ Kemom],
dIN9GE 99N Aemomy,
dIN8ZT 99A dUNSETUNd

D11 997 GINPIUd
AT 997 GINS3TUYd
DT 99\ AeMOM],

B 7 185 g1
B a7 185 dDieeund
B a7 155 ANTUN
B 7 185 Aemeuq

I b/xfer

395 [e e ms/xfer

Hl b/sec

326 [xfer/sec

L L
<)

N N A
ae) ™ an)

(qunoa‘sagdq) mdysnoay,

(b) RCF-BOOST throughput

semantics and transfer objects.

RCF throughput dependent on different call
The blue bars show the throughput in bytes per second and the red bars

Figure 3.1.:

The yellow bars denote the

count of performed RCF method calls (i.e. transfers) per second. The Average

the correspondent size of the transfer objects.

Latency Indicator shows the average duration of a single transfer. Note that

for RCF batching the actual number of transfers is unknown — here we count

the number of method calls. For the other semantics these are equivalent.

33

3. Discussion and Results

of the transferred object. For the RCF-call throughput calculation the transfer object
size was defined as 1 byte.

The prefix specifies the remote call semantics used for the transfer, which are (A) Two-
way (wait for the remote call to return), (B) One-way (just set off the call and do not wait
for it to return). (C) Batched (like one-way but also use batching of size *, prefix Btchx).
Combining the above with various transfer object sizes and batch sizes we obtain the “RCF
Throughput” figures. The total transferred data for the vec-int tests was 2 GiB. For the
single-int and RCF-call tests it was reduced by a factor of 1024 as these tests otherwise
became to lengthy. Please keep in mind that the RCF-call did not actually transfer any
data, it just did one remote call per “pseudo-byte”. On the receiving side the data was
not used but per received int resp. call (RCF-call) a counter was increased. I.e. the
vector-receiving methods looped through the vector counting all ints contained. Each
test was finalized by a two-way call which assures that all prior remote calls have been
handled before we then measure the duration of the test. All tests have been performed
9 times for standard deviation calculation. Listing 3.1 shows the remote call interface
used for the RCF Serialization Evaluation (RCFSerEval).!

RCF _METHOD RO(size t, reset) // once at the end of each test (returning and
resetting the counter)

RCF_METHOD VO(void, rcfcall) // (a)

RCF_METHOD Vi(void, swallow, const int &) // (b)

RCF_METHOD VI(void, swallow, const intvec &) // (c)

Listing 3.1: RCFSerEval remote call interface

Results The Oneway_Vec_1MiB tests performed best with both serialization frameworks.

e RCF-SF: Oneway_Vec_1MiB with 1.688 x 109 4 2.41 x 107 %! /__ 045
Latency indicator: 0.621 ™ /iansfer (2048 transfers)

e RCF-BOOST: Oneway_Vec_1MiB with 1.575 x 109 4 1.89 x 108 '€/ nas
Latency indicator: 0.676 ™ /iansfer (2048 transfers)

Also the latency indicator being less then a millisecond is considerably good. It is
the total test duration divided by the number of RCF calls? (transfers) that have been
made whereas the throughput are the total bytes divided by the test duration — so both
values depend on the same measure. We can also see that the RCF batching is not very
good. In fact it does never win against one-way vectors. The only tests where the
batching wins are RCF-call (always) and single-int (mostly). There is no justification to
use RCF batching for data transfer?. Two-way calls are —as expected— the slowest option.
Interesting though is the observation that as bigger the transfer objects get the lesser the

!The code of this evaluation is located in the rcf-1ib repository.

2For one-way calls this is the only way to rate the duration of a single call (on the caller side) as they
do not block.

3Note that on other computers batching performed even worse. But all final tests have been performed
on the CP cluster, therefore only these results are presented here.

34

3.2. ShamemIPC in General

negative effect of two-way calls compared to their one-way counterpart; this is expected
as for big objects the time spent on the actual transfer of the data outweighs the call
overhead. That said it might be useful to occasionally intersperse two-way calls because
this assures that all prior one-way calls have been handled; a two-way call does block
the client side until the call was handled by the server. This will not happen before all
prior (one-way) calls have been handled as well. Otherwise the caller cannot expect that
its call will be handled quickly as the one-way calls will stack if they come in faster then
the callee can handle them. Therefore the EsterProzy Suite’s minimal latency test used
two-way calls (see section 3.3.3).

This test has been performed on the CP Cluster with the caller and callee connecting
through localhost. The network protocol was used but the network controller was by-
passed. This was intentional as an unbiased RCF serialization overhead measurement was
sought.

3.2. ShamemIPC in General

The connection from the EsterProxy to the ArgDrain is realized using a ShamemIPC with
arq_shamem_t buffer entries holding FPGA Pulse Packets (fpga_pulse_packet_ts). The
ShamemIPC test program?* implemented for this evaluation therefore uses the same buffer
entries. Other than that it is independent from the EsterProzy Suite. As we are —in the
end— interested in spike throughput, figure 3.2 shows the throughput of the ShamemIPC
in normalized bytes; i.e. 12 bytes per spike (see this chapter’s introduction).

This evaluation distinguishes between two different methods of accessing the
ShamemIPC entries: (a) pointer, (b) memcpy. Their difference is outlined in De-
sign 2.1. For the final ArgDrain implementation it is expected that reading through
the payload is not needed. Its job will only be the preparation of the ARQ header and
to offer the packets to the RDMA-NIC. Any knowledge of the data therein which the
ArgDrain might need should have been extracted by the EsterProxy beforehand; and
saved alongside the payload in the ShamemIPC buffer. But for measuring the latency the
EsterProzy Suite’s version can optionally read through the payload, accessing every
single spike and thereby updating the last spiketime. As the fpga_pulse_packet_t
uses delta compression and does not contain a global offset time stamp this is necessary
if one wants to know the actual spiketime of any single spike.

Table 3.1.: ShamemIPC Throughput parameters

Entry Access Spike Access Buffer Size
pointer — direct whole packet only 4
X X to
memcpy — indirect reading every single spike 125000

4The code of the ShamemIPC evaluation can be found in EsterProxy/ShamemThroughput . cpp.

35

3. Discussion and Results

Therefore the second test parameter (Spike Access) specifies exactly that. In the figure
the two lines on the bottom are those which read (rd) through the packet, accessing every
single spike.

The third and final sweep parameter was the buffer size as it was expected to have an
effect on the outcome. The buffer size (number of arq_shamem_t entries) was increased
by a factor of 1.25 per test, ranging from 4 to 125k.

Results The results being straight lines for all four basic test parameters are unexpected
as they show no relation between the buffer size and the throughput. This allows for a
more flexible use of the ShamemIPC.

Table 3.2.: ShamemIPC top results

Test Case Buffer Size (entries) Throughput (norm. bytes)
pointer (rd) 4038 9.100 x 107 4 1.19 x 10106
memcpy (rd) 5048 8.619 x 10798 £ 1.11 x 10+
pointer 46 1.288 x 10199 4 2.49 x 10796
memcpy 24074 1.221 x 10799 £1.90 x 10106

The throughput of about 2 GiB normalized bytes is promising though it is not as
good as expected considering the HMF Transmitter evaluation (Husmann, 2011). The
HMF Transmitter evaluation promised about 8 GiB of real data throughput for one pair
of a writer and reader head. Probably this is due to the additional code overhead in
making the ShamemIPC a fully-fledged and stable release. But it could also originate in
the packaging of the spikes. This should be taken into consideration once again as there
seems to be some room for enhancement (see Outlook 4.9).

Also note that the pointer access method was implemented just shortly after the
EsterProzy Suite had been declared “stable” and —being a draft implementation— it
is therefore not used in the EsterProzy Suite. More on that can be found in the Out-
look 4.1.

36

3.2. ShamemIPC in General

—_
—_
ot

=
—
o

1.05

1.00

0.95

Throughput (normalized bytes)

0.90

0.85

x10° ShamemIPC Throughput
T T T T T
| max: max: max: mgx:
thp: 8.619 % 10® | thp: 9.100 * 103 thp: 1.221/x[10° thp: [1.288 * 10?
Lsd: 1.11 % 10° sd: 1.19 % 108 sd: 1.90 x 10 sd: 2149 x 106
buf: 5048 buf: 4038 buf: 24074 buf: #6
|| = memcpy (rd) i
A— memcpy
| e—e pointer (rd) 000000000
&—4A pointer
1 T AI:" AAAAA IvaAv: A"I v‘ "Av‘flq
10 102 103 104 10°

ShamemIPC buffer size (entries)

Figure 3.2.: Throughput of ShamemIPC using different access methods and looking for
an applicable buffer size. The red lines display the pointer access method
and the blue lines refer to the memcpy access method. Also we distinguish
between reading through the received packet (bottom lines, rd) and accessing
only the packet as a whole (top lines).

37

3. Discussion and Results

3.3. EsterProxy Evaluation

This section discusses various tests that have been performed on the EsterProzy Suite.
1. Single spike transfer and batching;
2. Container formats: esp. vector and delta-compressed packet;
3. Maximal throughput using prepared spike data;
4. Minimal latency using two-way calls and single spikes;
5. Use case evaluation using the TimeSpanRnd;

Before these tests are described and visualized in the following subsections a quick
overview of the available measurements seems to be useful. See figure 3.3.

Throughput For each test on the EsterProzy Suite there are three potential measure-
ments concerning the throughput. They all base on the total duration of a test divided
by the total normalized (see page 31) byte count; They differ in when (resp. where in the
code) the duration is measured.

thpC measure the duration after the last swallow() method was called.

thpP measure the duration on the EsterProxy just after all swallow methods have been
handled.

thpA measure the duration as soon as the ArgDrain has received the len==0 packet (i.e.
the test has ended).

The thpC measurement (also called client throughput) can be understood as what
the UserDummy “feels” as throughput whereas the thpP value (proxy throughput) is the
simple unbiased RCF TCP/IP throughput. The thpA measurement (ARQ throughput)
finally specifies the throughput of the complete suite with all features (packager and
argXfer) enabled. If the packager feature is enabled the packager thread is started and
fpga_pulse_packet_t packets are prepared. If the argXfer feature is also enabled (it
depends on the packager feature) these packets are also transferred to the ARQ_Drain
program. As long as all three values have been measured we can assert that thpA <
thpP < thpC (of course within the bounds of measurement precision).

Latency There are also three different latency measurements but they are not exactly
analogous.

prx-recv latency measured when the EsterProxy receives a bunch of spikes (swallow())
pkg-send latency measured just after a packet has left the packager

arg-recv latency measured when a packet arrives at the ArqDrain

38

3.3. EsterProxy Evaluation

For single spike transfer the prx-recv value is measured for each spike. This introduced
to much overhead for multi-spike (container) transfer therefore it uses the latency of the
spike at position 1/3 of the packet as an estimation. The other two latencies are “packet-
wise” latencies, i.e. the latency of the first spike (highest value) in a packet specifies
that packets latency. The pkg-send latency is also measured if the arqXfer feature is
disabled. It then simply represents the packet latency when the packager has finished
packing the fpga_pulse_packet_t packet as there is no transfer. In general we can say
prx-recv < pkg-send < arg-recv.

swallow thpP
prx-recv
UserDummy o P
Serializafl

spike erialization packager EsterProxy

creation
write
pkg-send

ARQ Drain

Shaw

</

read
arg-recv

Figure 3.3.: A schematic of the measuring points and how the spikes pass through them.

3.3.1. Single Spike Transfer

This evaluation looks into the serialization and RCF throughput of single spikes. To get
unbiased results the packager and arqXfer features have been disabled. Figure 3.4 com-
pares byte-wise and member-wise serialization of the fpga_dummy_event_t as specified
in Design 2.7.1. Note that the byte-wise serialization substantially equals to a memcpy
method call, see listing 2.8. As second test parameter it evaluates the different remote
call semantics available.

The plot shows quite clearly that the RCF batching is ineffective. Throughput could
not be improved and the latency became worse with batching enabled. The only effect of
batching is that the time spent on a single call by the client (i.e. UserDummy) is lowered
which is why the thpC value increases. But the client side test duration is measured
before the final batch is flushed. We can also see that the byte-wise serialization (blue
boxes) performed better than the member-wise alternative (red boxes). Table 3.3 shows
the most interesting results of the byte-wise serialization: One-way transfer is the best
considering throughput whereas two-way performs best in latency. The best result for
batching is also shown. It is worse in latency and throughput compared to the simpler
one-way call. Latency is defined here as the distance between the creation of the spike
and its reception at the EsterProxy (see prx-recv in section 3.3).

39

3. Discussion and Results

Throughput (norm. bytes)

1.9 x10° Single Spike Transfer 5
I thpC-bw
[0 thpP-bw

1.0
S

0.8 3
=3
(5]
(<)
ol

0.6} g
£
)
2

0.4} 2
<
—

0.2

0.0 0

& & 8 g] e
5 Og ﬂ;‘;.;?f Fo §$ ng;é‘}’

Figure 3.4.: Comparison of byte-wise (bw) and member-wise (mw) serialization of single

40

spikes. The dark coloured smaller boxes are the important ones as they
specify the actual RCF throughput whereas the light ones measure the client
side throughput — which disregards the piling of unprocessed calls on the
remote side. The blue and red lines show the correspondent latency (distance
between UserDummy creation and EsterProxy reception).

3.3. EsterProxy Evaluation

Table 3.3.: Single Spike Transfer

CallSemantics Throughput (thpP, norm. bytes) Latency (prx-recv, sec.)
OneWay 2.557 x 1079 +5.38 x 10792 7.666 x 107°1 4-3.94 x 107!
Batched 512 KiB 2.531 x 107 +4.24 x 10792 1.136 x 10190 4 5.95 x 10701
TwoWay 3.986 x 10704 +4.21 x 107°1 1.680 x 107%* 4 3.61 x 10796

3.3.2. Container Serialization

The single spike transfer evaluation showed that it is not fast enough and that RCF
batching does not increase the throughput. So container formats had to be tested. All
implemented containers have been probed with three different sizes (11k, 33k, 99k).
Figure 3.5 visualises them all and table 3.4 presents the top five results. The FwV test
on the left is the default vector serialization (element-wise). Far better performs the Vec
test which uses a byte-wise serializing vector specialization (basically a memcpy, see list-
ing 22 on page 27). The best results provides the FpgaDummyEventSerializer container
(denoted as Pb test, at the right of the figure). The FpgaDummyEventSerializer em-

Table 3.4.: Container Formats

Container Size (spikes) Throughput (thpP, norm. bytes)
Precompressed Packet (Pb) 33,333 1.992 x 10198 £ 1.05 x 10796
Precompressed Packet (Pb) 99,999 1.972 x 10798 £9.53 x 10795
Precompressed Packet (Pb) 11,111 1.902 x 10798 £9.18 x 1019
Specialized Vector (Vec) 11,111 1.883 x 10198 4 7.37 x 10796
Specialized Vector (Vec) 33,333 1.819 x 10798 £2.66 x 1019

ploys delta-compression for inserted spikes and then byte-wise serializes the whole chunk
of data it holds. Interesting is how bad the Pcp test performs. It uses delta-compression
but serializes the compressed spikes member-wise.

Byte-wise serialization is a must!

Test Bench measure.tb

The two above measurements (single spike transfer and container serialization) had been
performed using the general measure.tb test bench. It generates spikes at the UserDummy
and —depending on sub-settings— puts them into containers up to a specific size or directly
calls the swallow method on single spikes (possibly batched). Tests are repeated with
all latency measurements enabled and disabled. The tests are also be repeated with and
without the packager and arqXfer features enabled.

The results used are those with the packager and arqXfer features disabled. For the

41

3. Discussion and Results

8 ntainer Form
gpx10% ICOI tal er Fo Iatsl s
I thpC
I thpP 10.16
2.0
g 0.14 -
= 012 3
S >
§ 1o 0.10 2
= Tk
E 0.08 &
210 B
) &
E 0.06 8
— <
ﬁ —
0.5 0.04
0.02
0.0 0.00

EwV99k
Vecllk
Vec33k
Vec99k
Pvcllk
Pve33k
Pvc99k
Pepllk
Pcp33k
Pcp99k
Pb 11k
Pb_33k
Pb_99k

< <
a8
> =
B
<] <]

Figure 3.5.: RCF Throughput of different container formats. The most interesting ones
are the vector (Vec) and the compressed packet (Pb). The red line plots the
latency of the RCF transfer and the boxes represent the measured throughput.
The blue line denotes the maximal throughput (thpP) measured.

42

3.3. EsterProxy Evaluation

throughput examination the results from the tests with disabled latency measurement
were used — they report better results as the latency measurement has a negative effect
on the throughput.

For more details one should look at the code which can be found alongside the other
test benches in the appropriate folder: EsterProxy/test_bench.d.

3.3.3. Minimal Latency

As an important characteristic the minimal/best possible latency was evaluated. For this
a special test case has been implemented® which transfers spikes (resp. smaller batches
of spikes) thereby not caring for throughput at all. Figure 3.6 shows the results of this
evaluation.

Minimal latency between the UserDummy and the EsterProxy was assured using two-way
calls. Figure 3.4 already allows to hypothesize that two-way calls promise better latencies.
This is due to the fact that a two-way call assures that it is handled completely before
it returns. Therefore a subsequent call will be executed immediately instead of being
stacked on top of the RCF dispatching queue. Secondly the packager is started with a
packet timeout equal to the minimal positive value a double can hold. This leads to
the immediate transfer of packets containing exactly one spike. This assures a minimal
latency between the EsterProxy and the ArqDrain.

Table 3.5.: Minimal latency

Serializer Size (spikes) Latency (arq-recv, sec.) ThpA (norm. bytes)
Compressed 1 3.713x107%4+4.4x 107> 3.754 x 1074 £ 9.3 x 10!
Vector 10 3.809 x 1074 4+4.4 x 107° 3.805 x 107® £ 3.3 x 103
Single 1 3.826x107%4+42x107° 3.922 x 1074 £8.0 x 10!
Vector 1 3913x107%4+42x107° 3.845 x 1074 £ 7.0 x 10!
Vector 100 3.936 x 1074 £4.0 x 107° 3.515 x 1016 + 4.6 x 1013
Compressed 10 4618 x 1074454 x107° 3.725 x 107° £4.2 x 103
Compressed 100 5.976 x 1074 £5.7 x 107° 3.549 x 1076 +8.8 x 103

Latencies for packets of 1k and 10k spikes have been tested as well, but with laten-
cies above 365 ms they are out of the interesting range and have been removed from the
plot. Such higher packet sizes break the one-spike-per-packet optimization (see sentence
Secondly... above). Table 3.5 shows the seven best measured latencies. The best five of
these all lie within one sd of each other, i.e. they can be considered approximately equal.
Interesting is that apart from the best result (which is probably due to deviation) the vec-
tor generally performs better, considering latency, than the delta-compressed container
whereas the compressed packets offered a better throughput.

®See file EsterProxy/test_bench.d/minlat.tb.

43

3. Discussion and Results

Latency (sec.)

g X107 Minimal latency 35
HEl single-arq B vector-arq [packet-arq /‘
7l B single-pkg I vector-pkg [packet-pkg
BN single-prx [l vector-prx [packet-prx 13.0 a
2.5 =
£
(=
12.0 5
=
=
1152
=]
=
110 ¥
(=]
=
=
10.5
0 0.0

(€]
(10)
(100)

Xfer Size (spikes)

Figure 3.6.: This figure shows an evaluation of the minimal possible start-to-end latency.

44

The boxes denote the measured latency stack, i.e. they show all measured
latencies. One can see how the latency increases from measuring point to
measuring point. The sd is only drawn for the most important, the arq-recv,
latency. For comparison the red and yellow line show the correspondent total
throughput (thpA).

3.3. EsterProxy Evaluation

3.3.4. Maximal Throughput

Another important characteristic is the maximal throughput. As this is highly dependent
on the size of the transferred objects a special test bench® to sweep a reasonable range
of object sizes (aka XferSize) was implemented.

About 1GiB (norm.) of data was transferred for each test of a specific XferSize.
The XferSize parameter range was swept from one to about 40k (i.e. 143 MiB, norm.)
full fpga_pulse_packet_t packets. After each test the XferSize was increased by a
factor of 1.15. Each test was repeated 13 times with disabled latency measurement,
concentrating on throughput; and one additional time to retrieve the latency indicator
(arq-recv measuring point).

To archive a maximal throughput, the data that was transferred during these tests,
was constructed before the tests started. In other tests the spikes are created during the
test —shortly before they are transferred— and are initialized with a spiketime resembling
the wall-clock time of their creation. Here, such a creation time point was not available
due to the early preparation of the data. The spikes’ spiketimes were simply increased
by one for every new spike. Therefore, the latency measurement results of this test
should be merely seen as an indicator. Though a higher resulting latency measure surely
indicates just that, the actual value of a latency measured can not be accepted as a
realistic representation — they simply do not resemble the time spent on transfer.

The packagers packet buffer timeout was specified as infinity (a special double value).
This orders the packager to always construct full packets. But with the actual design of
the packager (Design 2.7.4) a packet’s timeout is still checked occasionally (though the
infinite timeout will never force the transfer of an incomplete packet).

The aim of these tests was to find the “XferSize”, i.e. the size of a single transfer ob-
ject, which serves best a high throughput. Figures 3.7a resp. 3.7b show how the two
best available container formats (section 3.3.2) performed on the fast network interface
(10 GbE, fst) with a ShamemIPC buffer size of 33. As the ShamemIPC evaluation (sec-
tion 3.2) showed no dependency between the buffer size and the throughput the 33 —as
a rather small value— was chosen.

A second run using a ShamemIPC buffer size of 1k was performed on all available net-
work connections, i.e. additionally to the fast network interface the performance using a
standard network interface (1 GbE, slw) and a localhost connection was tested. The cor-
responding figure 3.8 shows all results combined. The selected best results are presented
in the table 3.6. One can see that the fst a33 spk and the fst a33 vec are fighting
until an XferSize of about 2 x 10% spikes. Then the compressed packet lifts off (red with
triangles) whereas the vector begins to weaken. From the range of 2 x 107 to 1 x 105 the
container (spk) performs best.

6See file EsterProxy/test_bench.d/maxthp-{vector,serpck}.tb.

45

3. Discussion and Results

«108 EsterProxy MaxThp: Vector (a33,fst)

Throughput (norm. bytes)
Latency Indicator (sec.)

71 L L L L L
103 10* 10° 100 107 0
XferSize (spikes)
(a) vector
Ly X100 EsterProxy MaxThp: Compressed (a33,fst) 1o

< thpC
thpP

— thpA | A/.\//,J\\\\/\ \ 110
| S

1.2¢

—
o

$ S
S ‘ 3
g b g
5038 = +
S 2
3 =’ 2
206 ~o I
& 2
=] {4 @
2 0.4l =
'Q .
= =

0.2 12

W ot
0.0 0

10° 10 10° 109 107
XferSize (spikes)

(b) compressed packet

Figure 3.7.: These figures show the maximal throughput of the complete EsterProzy

46

Suite using the fast network controller and a ShamemIPC buffer size of 33
entries. They differ in the RCF serialization method used (specialized vector
and compressed packet). The blue-coloured line denotes the suite’s total
throughput; its maximum is indicated by the blue cross. The magenta-
coloured line indicates an approximation of the latency. For information on
the other lines refer to section 3.3.

3.3. EsterProxy Evaluation

1.0

0.8}

0.6

0.4

Throughput (norm. bytes)

0.2

»—x fst_alk spk
fst_alk vec
fst_a33_spk
fst_a33_vec
loc_alk spk
- - loc.alk vec
----- slw_alk spk
----- slw_alk vec

gL

Figure 3.8.:

00 101 10° 106 107
XferSize (spikes)

Comparison of the best transfer methods, vector and compressed packet
(spk), considering throughput, under various test environments, i.e. network
devices: localhost (loc), 10 GbE (fst) and 1 GbE (slw). The best throughput
reached at an XferSize of 3 x 10° spikes corresponds to 88.2 4+ 0.8 MEv/s .
Please note that 10 GbE saturates at 0.625normalized gigabytes/s (wire-
speed) for the uncompressed data (in blue).

47

3. Discussion and Results

Table 3.6.: Maximal Throughput (thpA) of the EsterProzy Suite

Label XferSize (spikes) Throughput (thpA, norm. bytes) ThpA (spikes)
fst_a33_spk 3.00 x 10° 8.821 x 108 £ 7.78 x 106 8.82 x 107
loc_alk spk 6.43 x 10* 8.657 x 108 £9.81 x 106 8.66 x 107
fst _alk spk 2.61 x 10° 8.613 x 108 £ 1.43 x 107 8.61 x 107
loc_alk_vec 1.05 x 10* 8.378 x 108 £1.19 x 107 8.38 x 107
fst_a33 vec 4.23 x 104 5.298 x 108 £6.73 x 107 5.30 x 107
fst _alk vec 2.77 x 10* 5.261 x 108 £9.53 x 107 5.26 x 107
slw_alk spk 4.86 x 10* 2.917 x 108 £+ 1.23 x 10* 2.92 x 107
slw_alk vec 1.49 x 10° 7.300 x 107 £ 1.67 x 103 7.30 x 106

3.3.5. TSR-Simulated Environment

Figure 3.9 shows a test of the EsterProzy Suite in a TimeSpanRnd-simulated environment,
looking for a mixture of high throughput and low latency. The code to this test can be
found in the file EsterProxy/test_bench.d/tsr.tb.

The TSR-test tries to transfer a fixed amount of spikes per second, 20 MEv /s. These
spikes are dispersed in bunches of 25 spikes (innermostBurst, line 13) using the
TimeSpanRnd callback described in listing 3.2.

The timespan emitters (TSE) used in this test are configured such that they will
generate on average 800k events per second, i.e. 25 x 800,000 Ev/s = 20 MEv/s. The
total number of spikes (initialization value of spikesRemaining, line 25) is chosen such
that the test duration will be about 30 seconds.

48

wW N

0o ~J O U

11
12
13

14
15
16
17

18

19

20
21
22
23
24
25

26

3.3. EsterProxy Evaluation

// single spike handler
inline bool emitSpike(TimeSpanRandomizer * tsr) {
double realnow = tsr—>getLastAction(); // NB.: if the TSR lags real
realtime will be later already, for now this is mot handled.

// calculate a spiketime representing "now"
tmp.spiketime = ((realnow+pzOffset) x CYCLES PER SECOND) ;

if (first) { // first spike in the actual transfer object

xferWallTime = realnow + batchTimeout; // transfer timeout
first = false;
}
int fin = (innermostBurst > spikesRemaining ? 0 : spikesRemaining —

innermostBurst) ;
for (; spikesRemaining > fin; spikesRemaining——)
dser.insert (tmp) ;

// it the first spike in the transfer object is to old or the mazimal
reasonable object size is reached

if ((realnow > xferWallTime) || (dser.getInsertCount () > batchMaxSize)
|| (!spikesRemaining)) {
//std ::cout << "Packet sending: " << dser.getlnsertCount () << std::endl

client .swallow (dser); batchTransfers++; // transfer!
dser.clear (); // clear the object to reuse its memory thereafter
first = true;

}

return (spikesRemaining); // returns true as long as there are more
spikes to dispatch

Listing 3.2: TimeSpanRnd Callback

Tested was the behaviour of 3 different constraints on the latency, f, m, s, shown in
table 3.7. These constraints have been combined with three different TSE implementa-
tions, namely TSE-Static, -Gaussian, and -Burst. Each pair was then executed two times,
with enabled dropping and without dropping. The batchTimeout specifies the maximum
latency of the first spike in a transfer object thats under construction on the UserDummy.
If this timout is reached or the batch size reaches its maximum (batchMaxSize, 65535
spikes), a transfer is initiated, see line 18ff. TSE-Static disperses its events equally dis-
tributed (static distance) and TSE-Gaussian uses, as expected, a Gaussian distribution.
Figure 3.10 shows a schematic of the TSE-Burst output.

We can see clearly that the settings with higher constraints produce a lower latency.
Throughput is —per definition— not effected. With the static and Gaussian distribution
this worked quite well and no dropping was necessary. However, the burst distribution
shows another picture. Here without dropping the m and f test failed. Spikes could not
be transferred in due time and the packager algorithm failed. When the packager lags
it happens that the successive spikes received are already to late — and the packager

49

3. Discussion and Results

Table 3.7.: TSR-test constraints

Short Name batchTimeout packagerTimeout

f fast 0.7ms 5.0ms
m medium 1.0ms 7.0ms
S slow 2.0ms infinity

begins transferring single spikes to the ArqDrain. This, of course, makes the situation
even worse.” Without dropping there is no way out of this vicious circle. But with
dropping enabled we can see that the constraints can be met again. And less than 1.5%
of the spikes needed to be dropped. With dropping enabled, if the first spike of a packet

is already late, it is dropped immediately, thus breaking out of mentioned vicious circle.

"These tests could not even achieve the defined throughput, as spikes piled up in the EsterProxy’s
spike-queue.

50

3.3. EsterProxy Evaluation

x1073 TSR-Simulation

7H Hl no-drp-arq I drp-arq
I no-drp-pkg [EEE drp-pkg
I no-drp-prx [drp-prx

2.0

of 3
1.5 o
3 3
S o
IS a
§ <

4,
< 10 8
p—
Q ()
g3 E
< wn
3 2
L Q
2 10.5
o=
[
n

l,

0 0.0
5 & § 5 Q3
&

Figure 3.9.: Usability test with a TSR-simulated environment. In this test the
EsterProzy Suite is configured such that it tries to satisfy specific latency
constraints. These are denoted by the horizontal black lines. The upper one
is for the m test and the lower one for the f test. The third test s does not
use any latency constraints. The 3 groups of bars consist each of 3 x 2 bars,
representing the reached latencies of the tests f, m, s with disabled (blue)
and enabled (red) dropping. The latency shows the start-to-end latency
(arg-recv). The yellow bar denotes the percentage of dropped spikes.

TSE-Burst 'Distributionl

o I
o un o

o
»

T T I T i] T I i i

o
<

inter-spike interval [AU]

0 5 10 15 20
run time [AU]

3sd-line

tse-pause sd-line i
md-line

U i tse-point +
mv-line 2sd-line

Figure 3.10.: This figure presents a possible output of the Burst TimeSpanEmitter im-
plementation. The bigger the green boxes the longer the pause between to
events.

o1

4. Conclusion - Outlook

The final results,
maximal throughput — 88.2 £ 0.8 MEv/s (spikes, cf. table 3.6 and figure 3.8)
minimal latency — 371 + 44 us (start-to-end latency, cf. table 3.5)

show that the planned throughput —saturating 10 GbE— was reached for uncompressed
data. Throughput results for compressed data easily surpass the raw wire-speed by up
to 40%.

The following sections list various outlooks, considerations and conclusions that have
been derived from the evaluation (chapter Discussion 3) and are concerning the software
part.

4.1. ShamemIPC Pointer-Access Method

Just shortly the ShamemIPC has been extended by a pointer access method. But it should
be considered a draft only.

Apart from not relying on a copy it has the advantage of the reader being able to
change the underlying object. This will be useful when connected to the RDMA-NICs.
The ArgDrain can such change the ARQ ShamemIPC buffer entry (arq_shamem_t) before
it passes a pointer to it to the RDMA-NIC. With the memcpy method a copy of the
arq_shamem_t object needs to be made, changed and passed to the RDMA-NIC. This
additional copy can be spared using reader-side pointer access. The arq_shamem_t con-
tains uninitialized memory for the ARQ header and it is the ArgDrain’s responsibility
to assign its contents.

As the RDMA-NIC is able to handle more than one ARQ packet at a time it should be
possible to pass multiple arq_shamem_t objects/pointers to the NIC. Using the memcpy
access method this is not a problem, but with the pointer access and the actual ShamemIPC
design offering no read-ahead — we simply can’t.

So a read-ahead method should be added to the ShamemIPC read head. Fortunately
with the ShamemIPC design being as it is, this is a simple task. The reader only needs to
delay the update of its read head’s position in the shared memory and to introduce a new
local variable holding the actual position. Thus the writer can’t see how far the reader
has advanced and will not overwrite the elements which are still used by the reader resp.
the NIC.

The pointer access method could return a C++11 std: :shared_ptr and hold internally
another — actually a FIFO queue of all shared pointers that are still accessible from the

52

4.2. Real ARQ Drain

outside. The tail of this queue points at the actual position of the read head. Whenever a
shared pointer at the tail becomes unique (i.e. no other references left) it can be released.
Note that releasing in this context means only that the read head can move on; the
shared pointer’s deleter must be specialized as the shared memory it points to must not
actually be released. The tail of the queue can, for example, be checked whenever the
read head is accessed.

Alternatively this queue could also be incorporated into the specialized deleter method.
It must then hold std: :weak_ptr objects. As soon as the last shared pointer to a specific
position goes out of scope its deleter is called. The deleter must then check the queue
and remove all weak pointers at the queue’s tail which have been released. It must also
update the read head position in the shared memory accordingly.

The second variant looks cuter. But it also is more complicated as it needs synchro-
nization of the queue. Also it would forbid any update of the read head’s position other
than through the deleter method. Finally note that the same design is applicable for the
write head as well.

It is planned to add this access method during the next weeks.!

4.2. Real ARQ Drain

To change the ArgDrain into a program that really transfers its data to the RDMA-NIC
(i.e. to the NP’s FPGA), one should at first implement the ShamemIPC pointer access
method described in section 4.1.

The ArgDrain must access the arq_shamem_t objects from the shared memory and fill
in the ARQ header. The header now encodes, inter alia, the packet size (i.e. a length
field). Afterwards it must set a readiness field, indicating to the NIC that the data is
ready for transfer.

The ShamemIPC shared buffer is packed such that the (address) distance from arq_-
shamem_t to arq_shamem_t is exactly equal; this is also valid for all elements therein.
So the address of the first buffer entry and its size, as well as the inner offsets of the
readiness, length and Ethernet payload fields should be sufficient for the RDMA-NIC to
do its job. The total buffer size must be known to the NIC as well, of course.

With the pointer access method (Outlook 4.1) implemented, the ArgDrain now waits
until the NIC is done with a transfer. Finally, it must release the shared pointer to the
correspondent buffer entry, indicating to the read head that it can move on (releasing its
position to the write head).

4.3. Multiple Packagers — Multiple FPGAs

The EsterProxy is designed such that multiple FPGAs could be addressed by using
multiple packagers. One packager per FPGA is necessary, as we cannot merge spikes for
different FPGAs into one fpga_pulse_packet_t. However, multiple packagers can use

LAs T am personally quite interested in this I will contribute it in my free time ahead.

93

4. Conclusion - Outlook

the same ShamemIPC instance. The packager’s 1inkArqShamem() method allows to pass
a pointer to a mutex along with the ShamemIPC pointer. If this mutex pointer is not a
null-pointer it is used to synchronize the access to the ShamemIPC.

Apart from the speed this design works flawlessly using the single-spike handler? on the
receiving EsterProxy. Dependent on the label it can decide into which packager’s queue
the spike should be inserted. For this a routing map must be specified (label-to-packager).

Problem with this design is that the RCF swallow() method then needs to loop through
the received vector and copy it element-wise. This is contradictory to the design decision
to spend as few time as possible in the RCF servant thread. Also it is contradictory to
the effort put into the no-copy (std: :move) design.

This problem should be considered when implementing a final RCF serializable container
format, see Outlook 4.6.

4.4. Latency-Dependent Packaging

At the moment the packager packs spikes into the fpga_pulse_packet_t packet until it
is full or its first spike reaches a timeout. Repeating this timeout check after every single
spike turned out to introduce too much overhead (because fetching the wall time is too
costly). So the packet timeout is checked only every 32 spikes. This, however, is not a
final solution. I can see two possible solutions that should be considered:

1. Check the timeout only when the spikes-queue is empty. If after packaging the
packet is too old — just drop it.

2. Implement an additional thread which takes care of getting the wall time and offers
that data cheaply to the packager.

When using the second possibility it should be practical to let the clock thread calculate
a clock cycle value that can directly be compared to a spike’s spiketime.

4.5. C++11-ify

In the introduction to chapter Design (see page 8) it was mentioned that the code of the
caipc project uses mixed standards. The complete code should eventually undergo a re-
vision with only the harmonization in mind; thereby std: :shared_ptr and other C++11
features should be introduced where they are applicable. Also the wall time was read us-
ing gettimeofday(&tim, O /*NULL#*/); and passed around as a double value. The use
of the std: :chrono library (e.g., std: :chrono: :duration and std: :chrono: :steady_-
clock) should be considered.

2See the vector-spike handler, which is analogous, at section 2.7.2.

o4

4.6. Container Format

4.6. Container Format

The best developed container for spike transfer between the UserDummy and the
EsterProxy was the Dummy Event Serializer class (FpgaDummyEventSerializer).?

It tries to minimise memory usage by delta-compressing spikes upon insertion and
saving only that packed version of the data. However, as the FIFO queue holding
spikes for the SpikePackager (SpikesQueue) and the SpikePackager expect vectors
of fpga_pulse_packet_ts the container is completely decompressed and changed into
such a vector upon deserialization. During the decompressing loop each spike must be
touched, loaded into CPU memory and finally copied into a new vector. Now each spike
uses its full 12 bytes.

As the packager must loop through the data again, performing similar calculations,
the above loop could be spared if the data is put compressed into the SpikesQueue and
decompressed just upon removal from the queue.

So, what should be done is to

1. implement a FIFO spikes-queue container which compresses its contents upon in-
sertion and decompresses upon removal

2. serialization and deserialization must be handled byte-wise and should not access
the spikes individually

3. the SpikePackager must be revised to work with such a container

The container can unfortunately not be simply build upon a std::queue of delta-
compressed data as the queue offers no access to its internal data. It could be im-
plemented as a vector of pointers to fixed size arrays of delta-compressed data. Upon
insertion a spike is compressed and put into the array at the back of the vector. If the ar-
ray is full a new one is added to the vector. The serializing process can now loop through
the vector and byte-wise serialize the arrays. The deserialization could optionally put all
data into a single array as it already knows the expected size.

4.7. ShamemIPC Initialization

The ShamemIPC initialization is done by the ARQ_Drain program. The buffer size is setup
once when the ArgDrain is started. This means that multiple test cases can not differ
in the ShamemIPC buffer size during one run of the EsterProzy Suite. This makes buffer
size sweeps needlessly complicated.

It should be a simple revision to change the ArgDrain such that it initializes a new
shared memory per test case. The ID and buffer size of this ShamemIPC should be specified
by the EsterProxy.

3Note that the Fpga in its class name is a misnomer as this packet is never transported to the FPGA
itself.

95

4. Conclusion - Outlook

If the ShamemIPC is not initialized during the EsterProxy setup, but during test cases,
it would also allow us to start tests without the ArgDrain running. This, e.g., would be
convenient for RCF serialization tests as these do not necessarily need the ArqDrain.

The Discussion 3.2 showed that the buffer size has no effect on the ShamemIPC through-
put but if the ArgDrain is really connected to a NIC this will look different. Especially
when the packager is used with packet dropping enabled (see Design 2.7.4).

4.8. Sizeof Pitfall / Packed Attribute

For the calculation of normalized bytes the sizeof operator was used:

normBytes = sizeof(fpga dummy event t) % spikesCount;

During development phase sizeof (fpga_dummy_event_t) returned 12 bytes which was
considered a fair value for the evaluation. Unfortunately on the CP cluster a fpga_-
dummy_event_t uses 16 bytes. When this was observed all tests had been performed.
The size of a packed fpga_dummy_event_t (i.e. the actual bytes used) should be a better
factor. It is 10 bytes.

Fortunately this could be fixed as it is a simple static factor. All such normalized data
has been revised by multiplying it by 10/16 to get, e.g., a throughput normalized on
10 bytes per spike (i.e. transferred fpga_dummy_event_t). The data files have not been
touched, but the values presented in tables and plots.

The use of the packed attribute for the fpga_dummy_event_t should be tested. It is
expected that this will enhance the throughput of the byte-wise (memcpy) serialization
of the RCF throughput between the UserDummy and the EsterProxy.

struct fpga dummy event t {

ANy

} _ attribute_ ((packed));

It has been added to the code and it compiles and runs (i.e. no problems with the RCF
internals). There is a simple #if 1 flag in EsterProxy/rcf_xferTypes.h which can be
used to enable/disable this feature.

4.9. ShamemIPC Throughput

The results of the ShamemIPC evaluation (Discussion 3.2) are not as good as the HMF
Transmitter evaluation promised. This is probably due to the additional code introduced
to make a fully-fledged library for a templated shared-memory circular buffer out of the
singular programs. But it could also originate in the buffer entry used for the evaluation.
An evaluation using raw and simple data (e.g., without compression) should be executed
to retrieve actual unbiased raw data throughput. Then the esp. the accessShamem()
method should be revised.

56

4.10. Operating System Support

4.10. Operating System Support

The measurements were performed on the CP Cluster running Debian Wheezy’s default
Linux kernel, i.e. without any added real-time functionality. However, latency results in
the range of the operating system’s scheduler latency? indicate that real-time extensions,
e.g. Linux’ CONFIG_PREEMPT_RT(Real-Time Linuz, 2012) or Xenomai(Xenomai, 2012),
could further decrease the average latency and latency jitter.

4.11. Network Protocol

All test were performed using the TCP/IP protocol. If, for CL-Experiments, spike loss
is acceptable and programmatic dropping is used the User Datagram Protocol (UDP)
protocol could as well be used. For parameter-sweep experiments, though, the TCP /TP
protocol should be preferred. Losing data during config phase of a parameter-sweep trial
is suboptimal.

4¢f. Linux latencytop, http://www.latencytop.org

o7

http://www.latencytop.org

o8

Appendices

ST W N

A. Caipc/ Code Package

A.1. Repository

The code to this thesis can be found in the caipc repository. It is accessible through
gitviz.kip.uni-heidelberg.de:caipc. To compile the EsterProzy Suite and its ac-
cessory parts it has to be checked out into the symap2ic components directory. Various
other parts/repositories have to be checked out alongside caipc, too.

git clone git@gitviz.kip.uni—heidelberg.de:symap2ic. git

cd symap2ic/components

git clone git@gitviz.kip.uni—heidelberg.de:caipc.git

git clone git@gitviz.kip.uni—heidelberg.de:{halbe 6 hicann—system ,etc.}. git
cd caipc

CXX=g++—4.7 waf configure

The waf configure command will announce other missing libraries.

A.1.1. Caipc Directory Environment

The following directory tree outlines the caipc environment.

SYIMAP21C . oottt build support

components

| caipc
ESterProXy.....oovviiiiiiiiiiiiiinnannn.. EsterProzy Evaluation Suite
L GOMEEIES vt see below
TimeSpanRnd ... Time Span Randomizer
ShamemIPC......... Shared Memory Inter-Process Communication Library
TeStAPP . oot smaller test applications
Utilities....coovveennnnnnnnnnn. various utilities like the MeanCalculator
dat o e results are placed here
I 1« PP build libraries are linked here
build......ooovviiiiiiiinn.. this is where the compiled files will be put
WSCTIPE o vvett ittt build script of the caipc repository

I - o= PP software backend

| hicann-system.............. hardware near backend: fpga_pulse_packet_t

| lib-boost-patches

| lib-rcf o RCF library with our minor adjustments
VAL o e RCF Serialization Evaluation

| pyhmf

L ztl

99

gitviz.kip.uni-heidelberg.de:caipc

A. Caipc/ Code Package

A.1.2. EsterProxy Directory

ESterProxXy ...ovviiiiiiiii EsterProxzy Evaluation Suite
UserDummy . cpp
EsterProxy.cpp
ArqgDrain.cpp
ShamemThroughput . cpp
common.h
doubleSidedMutexedQueue.h
esterProxyTest.h
ipc_interface.d
ipc_xferTypes.h
rcf_interface-base.h
rcf_interface.h
rcf_Servant.{h,cpp}
rcf_support.h
rcf_xferTypes.h
spikePackager.{h,cpp}
test_bench.d

t onerun.tbb
*.tb

wscript

A.2. RCF Calls

The following gives an overview of the EsterProxy’s RCF interface. The interface is

defined in the files EsterProxy/{rcf_interface.h,rcf_interface-base.h}. The im-

plementation can be found in the servant class: EsterProxy/rcf_Servant.{h,cpp}.
An RCF interface method description looks basically like this:

RCF_METHOD <retS><paramCnt>(returnType, methodName, paramTypes [,..])

// retS: R returns something, V returns void

// returnType: woid if retS is V, otherwise a serializable type

// methodName: name of implementing method

// An example :

RCF_METHOD V3(void, prepareTest, const std::string &, const bool &, const
int &)

// And the declaration :

void prepareTest(const std::string & testName, const bool & enableMeasure,
const int & spikes);

establishArqgConnection connect with the ShamemIPC resp. the ArgDrain
setTestTimeStamp set time stamp on the EsterProxy

getTestTimeStamp get last set time stamp

60

A.2. RCF Calls

enableReceiveDropping enable dropping of late spikes before they are even enqueued
specify the seconds (as a double) of allowed “packet latency”

enablePackaging enable the packaging feature
specify if the packaging latency should be measured and the maximum first-spike
latency before a packet must be send

enableArgXfer enable arqXfer feature
specify if the ArgDrain should measure latency and if ArgDrain dropping should
be enabled (drops packets if the ShamemIPC blocks the transfer of a ready packet).

prepareTest prepare a new test on the proxy, enters config state.

startupTest plans a test (it will be started shortly thereafter)
specify a test name and the expected spikes
returns the EsterProxy-side point zero at which the UserDummy is allowed to start
transferring data

shutdownTest measure the EsterProxy duration (=> thpP)
then indicate to the packager that the test is over

finalizeTest returns false until the ArgqDrain has submitted it’s results to the EsterProxy
fetchTestResult returns a test result object (see Design 2.5)

swallow swallow dummy event data and pass it on to handleSpike resp. handleVector.
e fpga dummy event t (transfers a single dummy event)
e std:vector<fpga dummy event t> (good speed)
e FpgaDummyEventSerializer (best speed)
e FpgaDummyEventVectorl (deprecated)
e FpgaDummyEventVector2 (deprecated)

ArgDrain interface this part of the interface should be used by the ArgDrain only:

checkArqWakeup checks for a flag indicating that the ArqDrain should wake up
this flag is set by a UserDummy call to enableArgXfer ()
returns true if the flag is set.

getArqConfig after been woken up the arq requests its configuration data
get the testname, if latency should be measured and how many spikes are
expected

submitArgResults submits all possibly interesting test results to the EsterProxy
(see Design 2.5)

Basic interface This part of the interface is available to both, the UserDummy and the
ArgDrain

61

A. Caipc/ Code Package

echo passes very simple commands to the EsterProxy as strings
returns a string as an answer, an example: "ping" --> "pong"

getServerTime returns the EsterProxy’s wall time as a double (gettimeofday).

getPointZero returns either 0 or the point zero of a planned/started test.

A.3. Evaluation Data

All plots have been build using the Python Matplotlib. The data files as well as the

plot decriptions can be found in the bachelorthesis-khusmann repository. As the other

repositories it is available under the url gitviz.kip.uni-heidelberg.de:bachelorthesis-khusmann
I do not list all data files content’s here — for these one should look into the repository.

The following just shows the data ant the plot files available.

dat/

maxthp-fst-alk-{spk,vec}.dat
maxthp-fst-a33-{spk,vec}.dat
maxthp-loc-alk-{spk,vec}.dat
maxthp-slw-alk-{spk,vec}.dat
measure-full-lat.dat
measure-full-thp.dat
measure-sgl_mw-{lat,thp}.dat
measure-vec_ew-{lat,thp}.dat
minlat.dat
rcf/

testBOOST-1.dat

testBOOST-*.dat

testBOOST-9.dat

testSF-1.dat

testSF-*.dat

testSF-9.dat
shamemthp-memcpy.dat
shamemthp-memcpy-reader.dat
shamemthp-pointer.dat
shamemthp-pointer-reader.dat
tsr.dat
wireshark_ACK_latency.csv
wireshark_ACK_latency.py
wireshark_all.csv
wireshark_all_in_range.csv

62

gitviz.kip.uni-heidelberg.de:bachelorthesis-khusmann

A.3. Evaluation Data

plot/
matrix2latex -> ../../tools/matrix2latex
maxthp-all.py
maxthp-detail.py
methods.py
minlat.py
rcfThroughput.py
sglxfer.py
shmthp.py
tsr.py
vecxfer.py
wscript_build

63

B. HMF Host-FPGA Communication

B.1. Current State

Figure B.1 depicts a RAM test in terms of network communication between host com-
puter and FPGA on the HMF wafer-scale system. Packets are shown in different colours
to mark packets to the FPGA in orange and packets from the FPGA in white. The
strictly alternating colours and the small packet sizes ~Ethernet supports 1500 bytes!—
are an indication of the very simple transport layer protocol.

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
EN e BExc® Q¢ vav [eccom@@s® -

Filter: l(ip.addr eq 1592.168.1.10 and ip.addr eq 192‘161‘ ~ ‘ Expression... Clear

No. ~ Time Source Destination Protocel Length Info
SI6 U.U000Z7 [92. 168, 1.10 I92. 168, 1. 21 uoP 250 SOUFCE port: [/U2 USSTINATION port: L/uZ
517 0.000260 192.168.1.21 192.168.1.10 uor B0 Source port: 1702 Destination port: 1702
518 0.000059 192.168.1.10 Nzl Wi L =00 uoP 150 Source port: 1702 Destination port: 1702
520 0.000018 192.168.1.10 Nzl Wi L =00 uoP 74 Source port: 1702 Destination port: 1702
S21 0.000061 192.168.1.21 192.168.1.10 ubP 60 Source port: 1702 Destination port: 1702
522 0.000026 192.168.1.10 192.168.1.21 uoP 266 Source port: 1702 Destination port: 1702
523 0.000274 192.168.1.21 192.168.1.10 uoP 60 Source port: 1702 Destination port: 1702
524 0.000021 192.168.1.10 192.168.1.21 uoP 15@ Source port: 1702 Destination port: 1702
525 0.000144 192.168.1.21 192.168.1.10 uoP 60 Source port: 1702 Destination port: 1702
526 0.000016 192.168.1.10 192.168.1.21 uoP 5@ Source port: 1702 Destination port: 1702
527 0.000048 192.168.1.21 192.168.1.10 uor B0 Source port: 1702 Destination port: 1702
528 0.000021 192.168.1.10 Nzl Wi L =00 uoP 150 Source port: 1702 Destination port: 1702
529 0.000144 192.168.1.21 192.168.1.10 uor B0 Source port: 1702 Destination port: 1702
530 0.000017 192.168.1.10 Nzl Wi L =00 uoP 74 Source port: 1702 Destination port: 1702
531 0.000061 192.168.1.21 192.168.1.10 uor B0 Source port: 1702 Destination port: 1702
532 0.000027 192.168.1.10 192.168.1.21 UubP 250 Source port: 1702 Destination port: 1702
533 0.000259 192.168.1.21 192.168.1.10 uoP 60 Source port: 1702 Destination port: 1702
534 0.000164 192.168.1.10 192.168.1.21 uoP 15@ Source port: 1702 Destination port: 1702
535 0.000146 192.168.1.21 192.168.1.10 uoP 60 Source port: 1702 Destination port: 1702
536 0.000020 192.168.1.10 192.168.1.21 uoP 74 Source port: 1702 Destination port: 1702

Frame 518: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)

Ethernet II, Src: a3:97:a2:55:53:be (a3:87:a2:55:53:be), Dst: 00:1b:21:d4:7c:d7 (00:1b:21:d4:7c:d7)
Internet Protocol Version 4, Src: 182.168.1.21 (192.168.1.21), Dst: 152.168.1.10 (192.168.1.10)
User Datagram Protocol, Src Port: 1702 (1702), Dst Port: 1702 (1702)

Data (4 bytes)

v v v v W

0000 00 1b 21 d4 7c d7 a3 97 a2 55 53 be 08 00 45 00 P
0010 0o 20 00 fd 40 00 40 11 bB B0 cO a8 01 15 cO a8
0020 01 Ga 06 a6 06 a6 00 Oc 62 e7 Oc 33 00 00 00 OO
0030 00 G0 0O 00 00 OO0 GO 0@ OO @ 0O 0O ...l ..

O File: "trp/wireshark_ethl 20121214144825 cRSqzK" 286 KB 00:00:1 P... Profile: Default

Figure B.1.: A screenshot of Wireshark (Orebaugh et al., 2006) displaying the network
dump of a simple RAM test on the HMF wafer-scale system: Data packets
originating from the host computer (IPv4 address: 192.168.1.10, high-
lighted in orange) get answered by the FPGA 192.168.1.21, white).

Lup to 16KiB if Jumbo frames are supported

64

B.2. Current Work and Future Improvements

Figure B.2 plots raw data throughput versus wall-clock time. The average throughput
of 1.1 MB/s is several orders of magnitude lower than the specified maximum throughput.
This is due to the fact that all communication in the HMF wafer-scale system is currently
based on Standard Test Access Port and Boundary-Scan Architecture (JTAG). Simply
put, JTAG commands are encapsulated into Ethernet/UDP frames, transported to the
FPGA and executed on the FPGA. If execution fails, a timeout on the host computer
triggers a retransfer of the command, thus providing some kind of transport layer protocol
(ISO/IEC 7498-1:1994). However, the JTAG standard is designed for easy test access
but not high-throughput or low-latency applications.

1000

11.060s 11.080s 11.100s 11.120s 11.140s 11.160s 11.180s 11.200s 11.220s 11.240s 11.260s

Figure B.2.: I/O graph of data transfers between host computer and a single HICANN/
chip on the HMF Wafer-scale system: The displayed section is part of a
longer-running RAM test. At the time of writing, the current system still
uses the JTAG (IEEE, 2001) test access interface for all communication.
The test was selected due to the homogeneous access pattern (write, read,
write, ...) and the neglectable on-chip latency (register access). Average
throughput: 1.1 MB/s for homogeneous access pattern (i.e. from 11.080s —
11.2605s); average access latency: 186.6 us & 9.3 us.

B.2. Current Work and Future Improvements

At the time of writing, it is expected that the communication channel between FPGA
and HICANN will migrate to non-JTAG-based access at the end of 2012. This will mark
a first step to higher performance as then the host computer may batch several commands
into single Ethernet frames, thus reducing computational and protocol overhead. The
second step will follow in the first half of 2013 (planned) when the communication channel
between host computer and FPGA will migrate to ARQ.

B.3. ARQ

State of the art transport layer protocols —e.g., the Transmission Control Protocol (TCP)
(Braden, 1989)— employ the Automatic Repeat reQuest (ARQ) (Fairhurst, 2002) error-

control method to automatically re-transmit dropped data.
The implementation developed in the Vision(s) Group features variable-length packets

and a sliding window algorithm?. FPGA and software implementation is described in
(Philipp, 2008; Schilling, 2010).

65

C. Acronyms

ADC
AdEx
ARQ
COTS
FIFO
FPGA
IPC
JTAG

KVM
NIC
NTP
PCB
RAII
RDMA
RPC
TCP
TMP
ToR
UDP
VLSI
WSI

66

C.1. Technical Terms

Analog-to-Digital Converter

Adaptive Exponential Integrate-and-Fire
Automatic Repeat reQuest

Commercial Off-The-Shelf

First In — First Out

Field Programmable Gate Array
Inter-Process Communication

Standard Test Access Port and Boundary-Scan
Architecture

Keyboard, Video and Mouse
Network Interface Controller
Network Time Protocol
Printed Circuit Board
Resource- Aquisition-is-Initialization
Remote Direct Memory Access
Remote Procedure Call
Transmission Control Protocol
Template Meta-Programming
Top-of-Rack

User Datagram Protocol
Very-Large-Scale Integration

Wafer-Scale Integration

C++
C++03
C++11
g++

KiB

MiB
GiB

mv

sd
shamem

RDMA-NIC

EsterProzy Suite

TimeSpanRnd
TSE

ShamemIPC
RCFSerEval
EsterProxy
UserDummy
ArgDrain
RcfServant
fpga_dummy_event_t
SpikesQueue
SpikePackager

arq_shamem_t

C.2. Thesis Projects

C++ Programming Language
C++03 Standard

C++11 Standard

GNU Compiler Collection

kibibyte: in this document a KiB is defined as 2! = 1024
bytes

mebibyte: in this document a MiB is defined as 2'° KiB
gibibyte: in this document a KiB is defined as 2'° MiB
mean value

standard deviation

shared-memory area

RDMA-capable NIC

C.2. Thesis Projects

EsterProzy Fuvaluation Suite: consisting of the programs
EsterProxy, UserDummy, ArqDrain

Time Span Randomizer

Time Span Emitter

Shared Memory Inter-Process Communication Library
RCF Serialization Evaluation

EsterProxy program: The Core

UserDummy program: The Driver

ARQ_Drain program: The Endpoint

RCF Servant object

Dummy Spike Data struct

FIFO queue holding spikes for the SpikePackager
FPGA Spike Packager class

ARQ ShamemIPC buffer entry

FpgaDummyEventSerializer Dummy Event Serializer class

67

BOOST

BOOST: : Interprocess

BOOST Serialization

protobuf

RCF

RCF-SF
RCF-BOOST
RCF-PROTO

waf

wscript

libev

Kirchhoff-Institute
Vision(s) Group
HMF

NP

CP

HICANN
mainPCB

CL-Experiment

fpga_pulse_packet_t

68

C.3. External Libraries

BOOST C++ Libraries: A collection of C++ libraries for
general use, website: http://www.boost.org

BOOST Interprocess Library

BOOST Serialization Library

Google Protobuf Library: Another serialization libray,
website: http://code.google.com/p/protobuf

Remote Call Framework by Delta V Software: RCF is an
IPC/RPC framework tailored for C++ applications,
website: http://www.deltavsoft.com

RCF Serialization Framework
RCF BOOST Serialization
RCF Google Protobuf Serialization

Waf build tool: A flexible as well as powerfull tool for
building and compiling code in general, website:
http://code.google.com/p/waf

Walf build script

Libev Event Library: A library for dispatching timed
events, website:
http://software.schmorp.de/pkg/libev.html

C.4. Superordinate Project

Kirchhoff-Institut fiir Physik

Electronic Vision(s) Group

Hybrid Multiscale Facility

HMF Neuromorphic Part

HMF Conventional Part

High Input Count Analog Neural Network
Main PCB

Closed Loop Experiment

FPGA Pulse Packet

http://www.boost.org
http://code.google.com/p/protobuf
http://www.deltavsoft.com
http://code.google.com/p/waf
http://software.schmorp.de/pkg/libev.html

D. List of Figures

1.1. Schematic of the wafer-scale system 3
2.1. Schematic of the EsterProzy Fvaluation Swite 8
2.2. The arq_shamem_t struct 23
2.3. Schematic of EsterProxy Logic 24
2.4. Schematic of EsterProxy Internals 29
3.1. RCF Throughput 33
3.2. Throughput of ShamemIPC 37
3.3. Measure Pointso 39
3.4. Single Spike Serialization 0oL 40
3.5. Container Serialization 42
3.6. Minimal Latency of the EsterProzy Suite 44
3.7. Maximal Throughput of the EsterProzy Suite — details 46
3.8. Maximal Throughput of the EsterProzy Suite — overview 47
3.9. TSR-Simulation 51
3.10. TSE-Burst 51
B.1. RAM test on the HMF wafer scale system 64
B.2. I/O host computer to single HICANN 65

69

E. Bibliography

IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std 1149.1-
2001, pp. i —200, doi:10.1109/IEEESTD.2001.92950, 2001.

Braden, R. T., RFC 1122: Requirements for Internet hosts — communication layers,
1989.

BrainScaleS, Research, http://brainscales.kip.uni-heidelberg.de/public/index.
html, 2012.

Brette, R., and W. Gerstner, Adaptive exponential integrate-and-fire model as an ef-
fective description of neuronal activity, J. Neurophysiol., 94, 3637 — 3642, doi:NA,
2005.

Brette, R., et al., Simulation of networks of spiking neurons: A review of tools and
strategies, Journal of Computational Neuroscience, 23(3), 349-398, 2007.

Briiderle, D., et al., A comprehensive workflow for general-purpose neural modeling with
highly configurable neuromorphic hardware systems, Biological Cybernetics, 104, 263—
296, 2011.

Davison, A. P., Automated capture of experiment context for easier reproducibility in
computational research, Computing in Science and Engineering, 14, 48-56, 2012.

Delbriick, T., and S. C. Liu, A silicon early visual system as a model animal., Vision
Res, 44 (17), 2083-2089, 2004.

Ehrlich, M., K. Wendt, L. Ziihl, R. Schiifftny, D. Briiderle, E. Miiller, and B. Voggin-
ger, A software framework for mapping neural networks to a wafer-scale neuromorphic
hardware system, in Proceedings of the Artificial Neural Networks and Intelligent In-
formation Processing Conference (ANNIIP) 2010, pp. 43-52, 2010.

Fairhurst, G., RFC 3366: Advice to link designers on link Automatic Repeat reQuest
(ARQ), 2002.

Husmann, K., Internship — HMF transmitter, Internship rep., Kirchhoff-Institut
fir Physik, Ruprecht-Karls-Universitat Heidelberg, 2011, [Online|. Available:
http://www.kip.uni-heidelberg.de/cms/fileadmin/groups/vision/Downloads/
Internship_Reports/report_khusmann.pdf.

ISO/IEC 7498-1:1994, Information Technology — Open Systems Interconnection — Ba-
sic Reference Model: The Basic Model, ISO/IEC 7498-1:199/, ISO, Geneva, Switzer-
land, 1994.

71

http://brainscales.kip.uni-heidelberg.de/public/index.html
http://brainscales.kip.uni-heidelberg.de/public/index.html
http://www.kip.uni-heidelberg.de/cms/fileadmin/groups/vision/Downloads/Internship_Reports/report_khusmann.pdf
http://www.kip.uni-heidelberg.de/cms/fileadmin/groups/vision/Downloads/Internship_Reports/report_khusmann.pdf

libev, Website, http://libev.schmorp.de/, 2012a.
libev, Website — benchmarks, http://libev.schmorp.de/bench.html, 2012b.
Mead, C. A., Analog VLSI and Neural Systems, Addison Wesley, Reading, MA, 1989.

Mead, C. A., and M. A. Mahowald, A silicon model of early visual processing, Neural
Networks, 1(1), 91-97, 1988.

Millner, S., A. Griibl, K. Meier, J. Schemmel, and M.-O. Schwartz, A VLSI implemen-
tation of the adaptive exponential integrate-and-fire neuron model, in Advances in
Neural Information Processing Systems 23, edited by J. Lafferty et al., pp. 16421650,
2010.

Orebaugh, A., G. Ramirez, J. Burke, and L. Pesce, Wireshark ¢ Ethereal Network Pro-
tocol Analyzer Toolkit (Jay Beale’s Open Source Security), Syngress Publishing, 2006.

Philipp, S., Generic arq protocol in vhdl, Internal FACETS documentation., 2008.

Real-Time Linux, Website, https://rt.wiki.kernel.org/index.php/Main_Page,
2012.

Schemmel, J., D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, A wafer-scale
neuromorphic hardware system for large-scale neural modeling, in Proceedings of the
2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1947-1950,
2010.

Schilling, M., A highly efficient transport layer for the connection of neuromorphic hard-
ware systems, Diploma thesis, University of Heidelberg, HD-KIP-10-09, http://wuw.
kip.uni-heidelberg.de/Veroeffentlichungen/details.php?7id=1999, 2010.

UHEI, and TUD, Implement the FPGA firmware for routing of the layer 2 network,
BrainScaleS Deliverable D3-3.1, 2011.

Wendt, K., M. Ehrlich, and R. Schiiffny, GMPath - a path language for navigation,
information query and modification of data graphs, in Proceedings of the Artificial
Neural Networks and Intelligent Information Processing Conference (ANNIIP) 2010,
pp- 3142, 2010.

Xenomai, Website, http://www.xenomai.org/, 2012.

72

http://libev.schmorp.de/
http://libev.schmorp.de/bench.html
https://rt.wiki.kernel.org/index.php/Main_Page
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1999
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1999
http://www.xenomai.org/

Statement of Originality (Erkldrung):

I certify that this thesis, and the research to which it refers, are the product of my own
work. Any ideas or quotations from the work of other people, published or otherwise, are
fully acknowledged in accordance with the standard referencing practices of the discipline.

Ich versichere, dafs ich diese Arbeit selbstdndig verfaft und keine anderen als die ange-
gebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, December 17, 2012

(signature)

	Introduction
	Motivation: CarverMead, BrainScaleS
	Hybrid Multiscale Facility
	HMF Neuromorphic Part
	HMF Conventional Part
	The Closed Loop Experiment

	Assignment
	EsterProxy Suite

	Design and Code Presentation
	ShamemIPC
	Usage

	TimeSpanRnd
	UserDummy
	Test Benches
	EsterProxyTest

	Test Results
	ARQ Drain
	The EsterProxy program
	Serialization
	RCF Servant
	SpikesQueue: DoubleSidedMutexedQueue
	The Packager

	Discussion and Results
	RCF in General
	ShamemIPC in General
	EsterProxy Evaluation
	Single Spike Transfer
	Container Serialization
	Minimal Latency
	Maximal Throughput
	TSR-Simulated Environment

	Conclusion - Outlook
	ShamemIPC Pointer-Access Method
	Real ARQ Drain
	Multiple Packagers – Multiple FPGAs
	Latency-Dependent Packaging
	C++11-ify
	Container Format
	ShamemIPC Initialization
	Sizeof Pitfall / Packed Attribute
	ShamemIPC Throughput
	Operating System Support
	Network Protocol

	Appendices
	Caipc/ Code Package
	Repository
	Caipc Directory Environment
	EsterProxy Directory

	RCF Calls
	Evaluation Data

	HMF Host-FPGA Communication
	Current State
	Current Work and Future Improvements
	ARQ

	Acronyms
	Technical Terms
	Thesis Projects
	External Libraries
	Superordinate Project

	List of Figures
	Bibliography

