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Abstract

A barn owl’s auditory system is remarkable because it can locate sounds with a

very high azimuthal precision. This requires that the auditory neurons resolve

interaural time differences of a magnitude smaller than the time constants of

the involved neurons. In a publication of 1996, Gerstner and others presented a

spiking neural network model which is capable of resolving these time differences.

The key process leading to such a precision is termed phase-locking. Phase-

locked neurons exhibit a very precise temporal spiking behavior, allowing even

small time differences to be distinguished in further processing steps. The aim

of this thesis is to show phase-locking on the Spikey chip. This requires several

modifications of the originally proposed neuron and synapse models and their

respective parameters, because neural networks to be emulated on this chip are

restricted to its inherent neuron and synapse models as well as limited parameter

ranges. Preliminary simulations with a hardware-inspired software model of the

network confirm that phase-locking works well with the modified models and

parameters. In the further course of this study, many of these parameters on

hardware are measured and adjusted as well as possible to the parameters of

the hardware-inspired software model. The adapted network is emulated on the

Spikey chip and its performance is analyzed. It is shown that phase-locking can be

achieved, which is an important step towards sound localization on neuromorphic

hardware.

Kurzfassung

Schleiereulen besitzen einen bemerkenswerten Ortungssinn. Sie können Geräusche

mit einer sehr hohen azimutalen Genauigkeit lokalisieren, wofür kleine Zeitdif-

ferenzen zwischen den Signalen von beiden Ohren anhand des Feuerverhaltens

der beteiligten Neuronen detektiert werden müssen. Diese Neuronen besitzen

Zeitkonstanten, die mindestens um eine Größenordnung größer sind als die Zeit-

differenzen, die aufgelöst werden sollen. In einer Veröffentlichung aus dem Jahr

1996 wurde von Gerstner und anderen ein neuronales Netzwerk vorgestellt, das

in der Lage ist, solch kleine Zeitdifferenzen aufzulösen. Grundlegende Voraus-

setzung hierfür ist das sogenannte Phase-Locking. Neuronen mit Phase-Locking

weisen ein sehr präzises zeitliches Feuerverhalten auf, das es ermöglicht, auch

sehr geringe Zeitdifferenzen in weiteren Verarbeitungsschritten zu unterschei-

den. Ziel dieser Arbeit ist es, Phase-Locking auf dem Spikey Chip zu erreichen.

Hierfür sind einige Veränderungen der ursprünglichen Neuron- und Synapsen-

modelle sowie der zugehörigen Parameter erforderlich, da die Neuronen- und

Synapsenmodelle auf der Hardware vorgegeben sind und die entsprechenden Pa-

rameter nur in eingeschränkten Bereichen verändert werden können. Zunächst

vorgenommene hardwarenahe Software-Simulationen des betrachteten Netzwerks

bestätigen, dass Phase-Locking mit veränderten Parametern auf der Hardware er-

reicht werden kann. Im weiteren Verlauf dieser Arbeit werden daher viele dieser

Parameter bestmöglich an die im hardwarenahen Software-Modell verwendeten

Parameter angepasst. Mit dem so angepassten Netzwerk wird Phase-Locking auf

dem Spikey Chip erreicht und untersucht. Damit kann ein wichtiger Schritt hin

zu Geräuschortung mit neuromorpher Hardware vorgenommen werden.
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1 Introduction

In a publication of 1996, Gerstner and others focused on the auditory system of the barn owl

(Gerstner et al., 1996). A barn owl can locate sounds, and thus prey, with an azimuthal pre-

cision of 1-2 degrees. This requires the detection of very small phase differences in the range

of a few microseconds between the signals from the left and the right ear. Such temporal pre-

cision is remarkable, because auditory neurons in the barn owl have been shown to have time

constants which are at least one order of magnitude slower (Gerstner et al., 1996). Also, the

signals from both ears may take different transmission lines to the nucleus laminaris, where

sound localization takes place. The intrinsic variation in the delays of these transmission

lines is very large compared to the time differences that need to be evaluated. Even if the

neurons in each transmission line would spike very precisely, any phase information would

still be lost on the way to the nucleus laminaris due to different delays. A combination of

very precise spike timing of the auditory neurons and a selection of transmission lines with

appropriate delays is therefore necessary to resolve such small phase differences. It is unlikely

that the barn owl already possesses such accurately tuned transmission lines when it is born

because its head grows considerably after birth (Maass and Bishop, 2001). Instead, there

must be a way of training the auditory neurons to spike very precisely and of selecting the

appropriate transmission lines that pass the input signals from both ears. The key process

responsible for this is called phase-locking. A neuron is termed to emit phase-locked spikes

when it fires preferably around a certain phase of a stimulating signal. In the case of the

barn owl, auditory neurons are stimulated by a single frequency which they receive from

the ear. In Gerstner et al. (1996), a network is introduced with which a neuron can be

trained to show phase-locked spiking by means of a Hebbian learning rule. This learning rule

selects synaptic delays from a broad Gaussian distribution of delays such that presynaptic

spikes arrive coherently. If this is the case, a postsynaptic neuron receives input simultane-

ously from all presynaptic neurons at a certain phase of the input signal. This causes the

postsynaptic neuron to emit spikes preferably around that phase. Consequently, it exhibits

phase-locking.

During a preceding research internship (Scherzer, 2012), the neural network described in

Gerstner et al. (1996) has been implemented with PyNN (PyNN, 2008) and simulated with

NEST (NEST, 2008). This thesis focuses on transferring the network onto the Spikey chip,

the aim being to train a postsynaptic neuron to show phase-locking as a first step towards

sound localization on neuromorphic hardware. This involves the task of adapting the network

to the hardware capabilities in several aspects. At the same time, the network’s parameters

are kept as close as possible to the original publication (Gerstner et al., 1996) to enable

successful learning and for better comparison. A large part of this thesis will therefore deal

with the measurement and optimization of those parameters which can not be set arbitrarily

on hardware. This includes software simulations of the network with the modified parameters

to ensure that phase-locking works with these parameters. With the network adapted to the

hardware limitations, the learning process, which leads to phase-locking in a neuron’s spiking

behavior, will then be run on the Spikey chip and analyzed.
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2 Network setup

The following sections will focus on the topology and properties of the neural network adapted

from Gerstner et al. (1996). Presynaptic neurons are assumed to already exhibit periodic,

phase-locked spikes. Their spike times are subject to different transmission delays as well

as noise and are hence not simultaneous. A Hebbian learning rule is applied to teach a

postsynaptic neuron to exhibit phase-locking by selecting synapses with appropriate delays.

The biological background and network setup for this learning process as well as a method

for quantifying the quality of learning are introduced.

2.1 Biological background

An incoming sound from one ear is processed in different regions of the brain, which is

pictured in figure 1. In the frequency sensitive cochlea the signal is separated into single

frequencies. This study focuses on a single frequency channel, the other frequencies being

processed analogously. The cochlea passes phase-locked spikes to the nucleus magnocellularis

(NM). Spikes in this frequency channel thus only occur around a certain phase of the input

signal. However, phase-locking after the cochlea is still imprecise (Maass and Bishop, 2001).

After some further processing, the spikes are passed to the nucleus laminaris (NL). Here,

the signals from both ears meet. Depending on the azimuthal position of the source of the

sound, the signals from the left and right ear arrive in the NL with a certain interaural time

difference (ITD). Neurons in the NL are ITD sensitive. Every neuron is positioned such that

it receives the signals from both ears coherently for a certain interaural time difference. If

the signals arrive at the same time, the neuron’s firing rate reaches its maximum (Gerstner

et al., 1996). Thus, laminar neurons fulfill the function of coincidence detectors. In further

processing steps, the location of the sound source can then be determined depending on

which neurons exhibit the highest firing rates. Figure 2 illustrates this schematically. The

sound reaches the right ear first and the left ear after the ITD. Both signals are transmitted

to the depicted population in the NL. The signal from the right ear has had the same time

to travel to the NL as the one from the left ear plus the ITD. Hence, the signals meet at a

neuron closer to the left ear, which is marked dark grey in figure 2. This neuron will have

the highest firing rate and its position in the NL corresponds to the given ITD. The closer

the sound source is to the right ear, the further left the neurons with the highest firing rate

will be and vice versa.

However, the ITD is actually a phase difference, because spikes from both ears arrive pe-

riodically. In order to locate a sound precisely, very small phase differences need to be

distinguished. This means that, firstly, the incoming spikes need to be locked very precisely

to their preferred phase and secondly, spikes from different neurons must arrive at the same

time. Otherwise, there would be too much noise to resolve small phase differences. The

neural network given in Gerstner et al. (1996) can provide such precision. It is located be-

tween the NM and the NL, with magnocellular presynaptic neurons stimulating a laminar

postsynaptic neuron. The following subsections will explain the properties of this network.
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Figure 1: Sound processing from the ear via the nucleus magnocellularis (NM) to the nucleus

laminaris (NL). Signals arrive in the NL with a certain interaural time difference

(ITD). For details, see text. Taken from Maass and Bishop (2001).

Figure 2: Neurons in the nucleus laminaris which are ITD sensitive. The sounds from both

ears are transmitted to the NL and reach the dark grey neuron at the same time.

This neuron will have the highest firing rate of the depicted population. Taken

from Maass and Bishop (2001).

2.2 Presynaptic input

Presynaptic neurons model a population in the nucleus magnocellularis. It is assumed that

some signal processing has already taken place, and that the presynaptic neurons exhibit

phase-locked spiking behaviour. To understand how presynaptic spike times are chosen in

the network this thesis focuses on, we need to take a closer look at what happens to a single

frequency of the input signal when it is transmitted from the cochlea to the presynaptic

neurons. After cochlear filtering, an auditory signal with the frequency f is transmitted along

the auditory pathway sketched in figure 1 by means of phase-locked spikes. A magnocellular

neuron n in the observed frequency channel thus fires periodically around a preferred phase ϕn
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of the stimulating signal. This phase will also be referred to as the mean phase of this neuron.

However, phase-locking is imprecise at this stage. Spike times of the magnocellular neurons

may deviate to a certain extent from their preferred phases. The spike times of a neuron are

thus modeled to be Gaussian distributed around its respective ϕn with standard deviation

σϕ. The Gaussian distribution is limited to values within 1σϕ around ϕn. This jitter accounts

for the bandwidth of frequency tuning of the auditory neurons as well as internal sources of

noise (Gerstner et al., 1996). The mean firing rate of an auditory neuron is usually much

lower than the frequency of its stimulating signal. Therefore, every magnocellular neuron is

assigned a spiking probability pspike < 1. The value of pspike denotes the probability that a

neuron will fire during the current period of the input signal.

However, not all magnocellular neurons of the same frequency channel spike around the

same mean phase ϕn. The auditory signal takes different ways as it is transmitted from

the cochlea to the neurons in the NM. Consequently, it reaches every magnocellular neuron

with a different transmission delay, that is, at a different time. The preferred phase ϕn
around which the magnocellular neurons spike to transmit the signal further to the NL

thus depends on the transmission delays with which they have received the signal from the

cochlea. These transmission delays - and hence the preferred phases ϕn - are assumed to

be Gaussian distributed (Gerstner et al., 1996) with a mean µ and standard deviation σµ.

This distribution will be important throughout this thesis and will be referred to as the delay

distribution or the mean phase distribution. In the discussed network, presynaptic neurons

are set to be magnocellular neurons with the properties described above. Every presynaptic

neuron has a preferred phase ϕn drawn from a Gaussian distribution and fires periodically

around that phase with a maximum jitter of σϕ and a spiking probability pspike. Figure

3 shows the spike times of an exemplary presynaptic population, with neuron IDs sorted

according to their respective mean phase. During every period, a different combination of

neurons is active due to the spiking probability which is less than one. The mean phase

distribution adapted from Gerstner et al. (1996) is so broad that spikes from up to three

different spike volleys overlap. Thus, without tuning of the delays and an according selection

of the synapses, phase information could hardly be conveyed.
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Figure 3: Exemplary spikes of 64 presynaptic neurons. The neuron IDs are sorted according

to their respective preferred phase ϕn. These phases are Gaussian distributed

around µ with standard deviation σµ. Presynaptic spikes volleys occur periodically

with frequency f of the auditory signal. Due to the spiking probability pspike < 1,

different neurons are active during every period.

2.3 Learning process

The presynaptic population is connected to a postsynaptic neuron in the nucleus laminaris.

For the postsynaptic neuron, a conductance based leaky integrate-and-fire neuron model

is used (Gerstner and Kistler, 2002; Scherzer, 2012). The aim of the learning process is

to train the postsynaptic neuron to exhibit phase-locked spikes by selecting synapses with

appropriate mean phases ϕn. For this, a Hebbian learning rule is applied. With a time

difference s = tpost − tpre between the presynaptic (tpre) and postsynaptic (tpost) spike, an

additive STDP rule is used (Morrison et al., 2008). In Gerstner et al. (1996), it has the

form1

W (s) =

{
[A+ −A−] exp[(s∗ − s)/τ+] for s > s∗

A+ exp[−(s∗ − s)/τ+]−A− exp[(s∗ + s)/τ−] for s < s∗
(1)

with A+ and τ+ being the amplitude and time constant for causal correlation and A− and

τ− for anti-causal correlation. The learning window has its maximum at a time difference

s∗. Note that s∗ is larger than zero in Gerstner et al. (1996). This will be discussed in more

detail in section 5.

At the beginning, all pre-post connections have the same synaptic weight wstart. Presynaptic

input stimulates the postsynaptic neuron and increases the probability of a postsynaptic

spike. Let us assume that presynaptic spike volleys cause a postsynaptic spike at a time tspike.

1In Gerstner et al. (1996), s is defined as s = tpre−tpost. For consistency, the definition of s as s = tpost−tpre
is used here since hardware learning windows will be plotted with the same convention. Consequently,

the learning window and corresponding equation used here are mirrored around the y-axis compared to

Gerstner et al. (1996).
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This is illustrated schematically in figure 4. The postsynaptic spike is marked thick black in

this figure. Learning then strengthenes all synapses which were active shortly before tspike
(green area in figure 4) while synapses which were active shortly after tspike are weakened

(red area).

Since the spike times of the presynaptic neurons depend on their preferred phase ϕn, the

potentiated synapses must all have a similar preferred phase. This can be a phase ϕ∗ shortly

before tspike or a phase ϕ∗ ± nT (n ∈ N), since synapses whose preferred phases differ by a

multiple of the period T are active around the same time. Accordingly, spikes in the green

area in figure 4 belong to neurons with phases around ϕ∗ or ϕ∗ ± nT .

The potentiated synapses have a stronger influence on the postsynaptic neuron. This makes

the postsynaptic neuron again likely to fire shortly after these synapses were active. If that

is the case, learning will strengthen the already strong synapses most, because their phase

corresponds to the phase of the postsynaptic spike (see also Gerstner et al. (1996)). During

learning, this leads to synapses parted into a group with maximum synaptic weight and a

group with zero weight, the latter group being out of phase compared to the postsynaptic

spike times.

As explained above, the phases of potentiated synapses can differ by multiples of T . A his-

togram of the phases ϕn of the surviving synapses after the learning process will consequently

show sharp peaks at a respective distance of T . In Gerstner et al. (1996), synapses are con-

sidered to have survived if they have maximum weight. After learning, the postsynaptic

neuron only receives input at the phase corresponding that of the surviving synapses. It

then fires periodically shortly after that phase. Thus, learning has trained the postsynaptic

neuron to exhibit phase-locking.

2.4 Vector Strength

For measuring the quality of phase-locking in the postsynaptic spikes, the vector strength is

used (Gerstner et al., 1996; Goldberg and Brown, 1969). This metric gives information on

how close the postsynaptic spike times are to a common phase. The vector strength can

assume values between 0 and 1. A value of 0 would denote evenly distributed spikes with

no preferred phase. A value of 1 would mean perfect phase-locking, that is, all spike times

are the same modulo a certain period of time. In the case of phase-locking as presented in

this study, this is the period T of the stimulating signal with frequency f = 1/T . The vector

strength is defined as

v =
√
X2 + Y 2 (2)

with

X =
1

N

N∑
i=1

cos(2πfti) and Y =
1

N

N∑
i=1

sin(2πfti), (3)

where N is the total number of postsynaptic spikes and ti is the time of spike i.
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ϕ∗

ϕ∗ + T

ϕ∗ − T

tspike t

ϕnNM

NL

Figure 4: Schematic picture of the network topology and learning process. Left : Presynaptic

neurons are a population in the NM and connected to a postsynaptic neuron in

the NL. Right : Presynaptic spikes are plotted, sorted according to their respective

preferred phases ϕn. A postsynaptic spike (in the NL) at time tspike is marked

thick black. Synapses which were active shortly before the postsynaptic spike are

potentiated (green area), synapses which were active after the postsynaptic spike

are depressed (red area). If the postsynaptic neuron spiked at a certain phase ϕ∗,

potentiated synapses have a preferred phase shortly before ϕ∗ (middle spike volley)

or ϕ∗ ± nT with n ∈ N (upper and lower spikes of neighboring volleys).
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3 Hardware synapse model

Before the neural network of section 2 is transferred to the Spikey chip, software simulations

with a model of the chip’s synapses are run. The model implements some limitations which

the hardware synapses have (Pfeil et al., 2012). This is useful for checking whether the

network is applicable to Spikey and for predicting the hardware performance in this learning

task. The hardware synapses differ considerably from regular STDP synapses (Morrison

et al., 2008). The following lists the differences and restrictions of the hardware synapse

which are included in the model. In section 5.1, simulations runs are done with this model

to analyze the effect these limitations have on learning.

3.1 Synaptic weight resolution

On Spikey, synaptic weights can be set with 4-bit resolution. This limits the weight range that

can be used to 16 discrete values. In the hardware synapse model, the maximum hardware

weight wmax can be set arbitrarily and the weight range [0, wmax] is then discretized into 16

values. However, on Spikey, the maximum hardware weight is limited and networks need to

be adapted to the available weight range.

3.2 Weight update

A weight update controller controls the STDP mechanism and is responsible for reading out

synaptic weights. This weight update controller needs 15 ms to process one synapse row on

the chip. Since the used network will have 64 synapses with one synapse per row, the total

time for one cycle updating all synaptic weights is tproc = 960 ms, because the weight update

contoller processes the synapses sequentially. Thus, the processing time will be almost two

orders of magnitude larger than the used STDP time constant. This causes the synaptic

weights to be updated with a low frequency and in rather large steps.

Weight updates are determided by the voltages on two capacitors. One is responsible for

collecting causal spike pairs, the other for anti-causal spike pairs. The sign of the time

difference s between a presynaptic and a postsynaptic spike determines whether the causal

or anti-causal capacitor is charged. Its absolute value determines the amount of charge,

weighted according to an exponential function where a smaller absolute value of s causes a

higher charge. This models the time-dependent aspect of STDP where the weight update

for either causality is most pronounced for small absolute values of s (Morrison et al., 2008).

The learning window will be explained in more detail in the following subsection.

If the difference between the charge of the causal and anti-causal capacitor is larger than a

certain threshold, the synapse is marked for a weight update (Schemmel et al., 2006), which

will take place in the next weight update cycle. In that way, a weight update is triggered

only by the difference between the two capacitors but not by the total amount of causal and

acausal events saved on each capacitor. In the hardware synapse model, the threshold for

weight updates can be configured.
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3.3 Learning Window

In Gerstner et al. (1996), an STDP learning window of the form in equation 1 with a superpo-

sition of exponential terms and different time constants τ+ and τ− for causal and anti-causal

events is used. The hardware only allows a learning window of the form (see also Schemmel

et al. (2006))

W (s) =

{
ASTDP exp[−s/τSTDP ] for s ≥ 0

−ASTDP exp[s/τSTDP ] for s < 0
(4)

Therefore, only one time constant τSTDP can be set. This is taken into account for simulations

with the hardware synapse model to make the simulations more comparable to the hardware

results. The STDP time constants for causal and anti-causal events are therefore set to the

same value.

Different STDP mechanisms are realized on hardware by using look-up tables for both the

causal and anti-causal events. These determine the weight dependent part of STDP (as

opposed to the time-dependent part). For an additive weight update mechanism as it is used

here, the look-up table is set such that a weight is updated by a constant amount - to the

next higher discrete weight for causal weight update, to the next lower discrete weight for

anti-causal weight update. Weight update thus follows the equation

wnew = wold(1 +W (s)), (5)

which was adapted from Schemmel et al. (2006). A comparison of the learning window on the

hardware with the one in the original publication can be seen in figure 5. Most noticeably,

the learning window in Gerstner et al. (1996) allows a potentiation of synapses which were

active very shortly after the postsynaptic spike. The yellow area in figure 5 marks those

negative time differences s for which the respective synapses will still be potentiated. This

is not possible on hardware and will be a cause for discussion in section 5.3.2.
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Figure 5: Comparison of the learning window in Gerstner et al. (1996) (blue) and the learning

window used for simulations with the hardware synapse model according to equa-

tion 4 (red). The original learning window also allows potentiation of synapses

which were active shortly after the postsynaptic spikes (yellow).
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4 Measurement and adaptation of hardware parameters

The quality of phase-locking in the postsynaptic spiking behavior depends heavily on the

neuron, synapse and STDP parameters. These parameters can not be set arbitrarily on the

hardware. Consequently, many of the original model parameters in Gerstner et al. (1996)

can not be used and have to be adapted to the hardware model and parameter ranges. At

the same time, it is necessary to keep the hardware parameters as close as possible to those

of the original publication (Gerstner et al., 1996) to allow the comparison of the network

performance. This section will focus on different parameters and methods to determine and

set all network parameters to an appropriate value.

4.1 Presynaptic stimulus

In Gerstner et al. (1996), a network with 600 presynaptic neurons is used. However, the

maximum available number of neurons on the Spikey chip is 192. Since the processing time

for one weight update cycle increases linearly with the number of presynaptic neurons (see

3.2), an even smaller network is chosen in favor of a faster weight update. With fewer

synapses than in the original network, the postsynaptic neuron receives less input with the

consequence of less phase information and learning will take longer. To compensate for this,

the spiking probability pspike of the presynaptic neurons is increased.

4.2 Membrane time constant

The hardware membrane time constant τm is controlled by a configurable hardware current

Ileak. A neuron’s leakage conductance gleak is proportional to Ileak. With

τm =
Cm
gleak

(6)

where Cm is the membrane capacity, τm is proportional to 1/gleak and therefore also to

1/Ileak. The membrane capacity Cm can not be varied on the hardware.

To achieve a certain value of τm, a method is necessary to determine the transformation

between τm and Ileak. Applying a synaptic stimulus to the neuron and determining its

membrane time constant from the excitatory postsynaptic potential on the membrane would

be too imprecise, because synaptic conductances are unknown (Brüderle, 2009). Instead, a

method developed by Brüderle (2009) has been used to determine τm. The resting potential

Vrest of the neuron is set above its firing threshold Vthresh. Consequently, the membrane

potential will develop towards Vrest and is pulled to the reset potential Vreset when it reaches

Vthresh. The membrane potential then starts developing towards Vrest again, following an

exponential development. Thus, the neuron fires regularly and its spiking frequency f only

depends on τm and its refractory period τrefrac, but not on the synaptic conductance because

there is no synaptic stimulus.

If Vthresh is chosen such that

Vthresh = Vrest −
1

e
(Vrest − Vreset), (7)
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the time interval 1/f between two spikes equals τm + τrefrac. It follows that τm is

τm =
1

f
− τrefrac. (8)

Thus, τm can be determined by simply measuring the spiking frequency of a neuron, with

Vthresh chosen according to equation 7. However, this method requires knowledge of the

respective values of VrestHW , VresetHW , VthreshHW
and τrefrac on the hardware since they may

differ from the set ones. They can also be different for every neuron.

In Brüderle (2009), a calibration has been developed using the described method for deter-

mining τm. It allows to calibrate the membrane time constants of all used neurons to one

target value. However, the individual dependency of a neuron’s τm on Ileak has not been

examined. This is done here based on the work in Brüderle (2009) and requires the following

steps.

Initially, the values Vrest and Vreset are set. As a first step, the real values of these voltages,

VrestHW and VresetHW need to be measured. For Vrest, this is done by setting Vthresh above

Vrest to avoid spiking. The measured membrane potential then equals VrestHW .

To determine VresetHW , the neuron is forced to spike as mentioned above, by setting Vthresh
to a value Vreset < Vthresh < Vrest. The minimum of the resulting membrane potential trace

is VresetHW , its maximum is VthreshHW
. The measurement of these values is averaged over

several runs.

Analogous to equation 7, the value which VthreshHW
should have is calculated to be

VthreshHW
= VrestHW −

1

e
(VrestHW − VresetHW ) (9)

A binary search (Brüderle, 2009) is then started for the value Vthresh that has to be set in

order to achieve the target VthreshHW
that follows from equation 9. When this value has been

found, τm can be determined as mentioned above, by measuring the spiking frequency of the

analyzed neuron. There has not been enough time to integrate a reliable method to measure

the refractory period τrefrac. At present, τrefrac has to be determined by reading out the

oscilloscope manually.

These steps are then repeated for different values of Ileak, recording τm every time. With this

data, the minimum and maximum possible membrane time constant of every neuron, which

is limited by the valid Ileak range, is determined. Furthermore, the recorded dependency of

τm on Ileak can be used to set τm to a certain target value, which will be done in section

5.2.1.

4.3 Synaptic time constant

Another parameter that needs to be adapted is the synaptic time constant. The shape of

an excitatory postsynaptic potential (EPSP) is determined by the membrane time constant

τm and the synaptic time constant τs. The area below an EPSP determines the strength

of a synapse and consequently its influence on the postsynaptic neuron. In this case, the

time constants need to be chosen such that the EPSP area is not too large. Otherwise, the
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EPSPs evoked by spikes of two subsequent presynaptic spike volleys would overlap. If they

overlap too much, efficient learning may be impeded. On the other hand, if the synapses

are too weak, no or very few postsynaptic spikes will be triggered. This may also result in

worse learning and longer burn-in times because less phase information is conveyed to the

postsynaptic neuron.

Like the membrane time constant, the synaptic time constant can not be set directly on the

hardware. Instead, the shape of an EPSP is controlled by several currents. A current Irise
controls the rising ramp of an EPSP while currents Iout and Ifall control its amplitude and

decay time constant. In section 5.2.2, the influence of different values for Iout and Ifall on

the EPSP width and area is examined. Since Irise can have a lot of influence on the voltage

ramp amplitude and on the time in which threshold crossing is detected (Brüderle, 2009),

this parameter is left at its default value of 1.0 µA. The resulting EPSP width and area for

different parameters is estimated with a simple setup. A presynaptic stimulus is connected

to a postsynaptic neuron. The synaptic weight is chosen such that no postsynaptic spikes are

triggered. The behavior of the membrane potential when a presynaptic spike arrives gives

information on the EPSP. A comparison of the membrane trace for different values of Ileak
and Ifall and for different synapses can be found in section 5.2.2.

4.4 Learning Window

The plasticity of a synapse is determined by its learning window. In the original publication

(Gerstner et al., 1996), an asymmetric learning window with different STDP time constants

τ+ and τ− for causal and acausal events was used. As mentioned in section 3.3, this is not

possible on the hardware. Only one time constant τSTDP can be configured within a certain

value range. There are different voltages controlling the shape of the learning window and

consequently τSTDP . A voltage Vm controls the temporal stretching of the STDP curve.

The capacitors collecting causal and acausal spike events are controlled by voltages Vclrc
(causal) and Vclra (anti-causal). The weight update threshold is determined by two voltages

Vcthigh and Vctlow, the threshold being proportional to the difference between Vcthigh and

Vctlow.

The STDP curve can be recorded for every hardware synapse. For this, a presynaptic neuron

is connected to a postsynaptic one and pre-post spike pairs are generated with a fixed time

difference s. Since postsynaptic spikes can not be set explicitely, they are triggered by another

presynaptic trigger population (Pfeil et al., 2012). The time interval between subsequent pre-

post pairs is chosen very large to make sure only one capacitor is charged, i.e. no causality is

detected between the last spike of one pair and the first spike of the next pair. For different

values of s, the number of pre-post spike pairs N that is necessary to trigger weight update

is measured. The STDP curve can then be plotted as 1/N versus the time difference s. In

section 5.2.3, STDP curves are recorded for every synapse allocated for the used network.

Also, the influence of the different voltages on the learning window is examined and an

appropriate learning window for further hardware emulations is chosen.
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4.5 Weight recording

On hardware, recording synaptic weights during learning is not implemented. They can

only be read out before and after a simulation. Since the weight development of different

synapses with respect to their preferred phases is interesting for the learning process, the

following method has been used to estimate it. A learning process with the duration trun is

split into several runs with increasing durations from 0 to trun and the synaptic weights after

learning are recorded for every trun. The same mean phase distribution is used for every

emulation, but the presynaptic spike times still differ slightly because the jitter σϕ around

the mean phase ϕ of a neuron is generated anew every time. Since the learning behavior of

the postsynaptic neuron with regard to its preferred phase and firing rate differs from run

to run, several emulations are done for every trun and the recorded weights are averaged.

Finally, the mean weight is plotted for every synapse versus the respective learning time.

This method is not as accurate as direct weight recording during the learning process, but

gives a good idea of how synaptic weights develop with regard to the corresponding mean

phases and will be used in section 5.3.2.
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5 Results

5.1 Software Simulations

The hardware synapse model described in section 3 is used for the network to test the quality

of phase-locking with all restrictions this synapse offers. The parameters used for simulations

with this model and the parameters used in the original publication Gerstner et al. (1996)

are listed in table 1. Compared to Gerstner et al. (1996), the learning process runs on a time

scale stretched by a time factor x. This is done to make sure all time constants are within

their respective hardware value range. Since hardware emulations will be run on the same

time scale, this makes simulations in this section more comparable to the hardware results

in section 5.3. The choice of the used factor x = 20 is motivated in section 5.2.1. All times

mentioned here and in the following sections are given in biological real-time for a better

comparison to the results in Gerstner et al. (1996).

Time factor x 20 1

Number of synapses N 64 600

Input frequency f [Hz] 100 2000

Simulation duration trun[s] 200 3000

Presynaptic population

Mean delay µ[ms] 50.0 2.5

Standard deviation of delays σµ[ms] 6.0 0.3

Jitter around preferred phase σϕ[ms] 0.8 0.04

Spiking probability Pspike 0.5 0.14

Postsynaptic neuron

Membrane time constant τm[ms] 2.0 0.1

Resting potential Vrest[mV] 2 -65.0 -

Reset potential Vreset[mV] 2 -80.0 -

Threshold potential Vthresh[mV] 2 -45.0 -

Refractory period τrefrac[mV] 2 0.0 -

Synapse properties

Synaptic time constant τs[ms] 2.0 0.1

STDP time constant τSTDP [ms] 10.0 0.5

Initial weights wstart[µS] 3 0.15 1

Maximum allowed weight wmax[µS] 3 0.24 3

Processing time for one synapse row [ms] 15 -

Synapses per line 1 -

Table 1: Parameters for simulations with the hardware synapse model compared to the orig-

inal parameters. Parameters used in this thesis are listed in the left column, the

reference parameters from Gerstner et al. (1996) in the right column.

2The parameters Vrest, Vreset, Vthresh and τrefrac were not given in the original publication (Gerstner et al.,

1996).
3For synaptic weights, no units were given in the original publication.
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The number of synapses N has been lowered for faster weight updates. To compensate for

the decreased input, the spiking probability of the presynaptic neurons has been increased

(see section 4.1). In Gerstner et al. (1996), approximately 80 of the 600 synapses are active

during each period of the input signal, implying Pspike ≈ 0.14, whereas here it has been

chosen to be Pspike = 0.5, resulting in about 32 active synapses per period. Due to the

changed presynaptic input, the initial weights wstart also had to be adapted to provide a

sufficient stimulus for the postsynaptic neuron (Scherzer, 2012). Figures 6 and 7 show the

results of an exemplary learning process with the parameters given in table 1.

Figure 6(a) shows the delay distribution of the 64 synapses before learning. As explained in

section 2.2, this distribution equals the distribution of the preferred spiking phases ϕn of the

presynaptic neurons. The delays of the 30 synapses which have survived after 200 s of learning

are shown in figure 6(b). A synapse is considered to have survived if its weight exceeds the

initial weight wstart. As expected (see section 2.3), learning selected those synapses whose

delays differ by multiples of the period T of the input signal. The delay histogram thus

shows sharp peaks at a respective distance of T = 10 ms, meaning that survived synapses

have preferred phases differing by multiples of T . Figure 6(c) shows a histogram of the

postsynaptic spikes modulo T . All spikes throughout the whole runtime have been taken

into account for this plot. A sharp peak in the figure clearly shows the phase-locked spiking

behavior of the postsynaptic neuron. The vector strength corresponding to this plot is

v = 0.83, the mean firing rate of the postsynaptic neuron is 62 Hz.

In figure 6(d), the weight distribution of all synapses after learning is illustrated. The x-axis

covers the possible weight range on hardware. The green line marks the mean initial weight

wstart, whereas the red line marks the mean weight calculated from the weight distribution

after learning. As discussed in section 2.3, learning has led to a bimodal weight distribution

with a group of synapses with zero weight and a group with the maximum weight wmax.

The weight development of the 64 synapses during learning is shown in figure 7. It can be

seen that weights are updated stepwise and in fairly large time intervals. The plot confirms

that synapses which are already strong are potentiated even further because they have more

influence on the postsynaptic neuron’s spiking behavior and are thus in phase with its spikes

(section 2.3). Weak synapses with a mean phase differing too far from the phase of the

postsynaptic spikes are in turn further weakened.

For comparison, the accumulated results of 20 independent runs are depicted in figure 8.

The simulation parameters are taken from table 1, but the mean phase distribution and

hence the presynaptic spike times are generated anew for every run. Figure 8(a) shows the

accumulated delays, i.e., the mean phase distribution, before learning. The Gaussian shape

is now more pronounced than for a single run. Figure 8(b) shows the delays of all surviving

synapses, again with peaks at a respective distance of T = 10 ms. A mean number of 35

synapses have survived learning. A histogram of the postsynaptic spike times modulo T in

figure 8(c) shows a very broad peak compared to a single measurement (figure 6(c)). This is

due to the fact that the mean phase distribution of the presynaptic neurons is different for

every run. Consequently, the preferred spiking phase of the postsynaptic neuron may vary

for different runs. The peak in figure 6(c) is accordingly broader than the corresponding

result of a single run. However, the mean vector strength of the 20 runs used for this plot is

v̄ = 0.87, confirming good phase-locking in the single runs. Note that v̄ was not calculated

from the accumulated spikes in figure 8(c). It is the mean of the resultant values of v after
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(a) Delay distribution before learning (b) Delays after learning

(c) Postsynaptic spike times modulo T (d) Synaptic weights after learning

Figure 6: Exemplary result of a 200 s learning process. Figure (a) shows the delay distribu-

tion of the 64 synapses before learning, figure (b) the delays of the 30 surviving

synapses. The postsynaptic spikes times are plotted modulo T in figure (c). All

spikes throughout the learning process have been taken into account. The mean

firing rate of the postsynaptic neuron is 62 Hz, the vector strength is v = 0.83.

Figure (d) shows the weight distribution after learning. The green line marks the

initial weights wstart, the red line marks the mean weight after learning.

19



Figure 7: Weight development of the 64 synapses in the network during 200 s of learning. Af-

ter learning, the synapses are mostly divided into two groups with zero or maximum

weight, respectively.

every single run. The accumulated weight distribution after learning is depicted in figure

8(d). Again, there is a distinctly bimodal weight distribution with only very few synapses

not having minimum or maximum weight. The mean weight after learning is comparable to

a single run.

These results lead to the conclusion that, if the model parameters are adapted to the hardware

capabilities, phase-locking works very well. Even though the hardware synapse offers many

restrictions, the resulting delay and weight distribution meet the expectations and precise

temporal spiking behavior of the postsynaptic neuron can be achieved. This suggests that

the network is applicable to Spikey if all parameters are set such that they are as close as

possible to the ones used here. The following sections will therefore focus on the measurement

and appropriate setting of these parameters.
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(a) Delays before learning (b) Delays after learning

(c) Postsynaptic spike times modulo T (d) Synaptic weights after learning

Figure 8: Accumulated results of 20 independent simulation runs. Figure (a) shows the

Gaussian distribution of all delays before learning, figure (b) the surviving synapses

after 200 s of learning. The accumulated postsynaptic spike times modulo T are

shown in figure (c) whereas the weight distribution after learning is illustrated in

figure 8(d). The green line marks wstart, the red line the mean weight of all runs

after learning.
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5.2 Hardware parameter modification

5.2.1 Membrane time constant

As a first step towards transferring the network onto Spikey, the membrane time constant

τm of the postsynaptic neuron needs to be adjusted. The dependency of τm on the current

Ileak is recorded as described in section 4.2. The parameters Vrest and Vreset are set to the

values listed in table 1, and Ileak is varied from 0.01 µA to the maximum value 2.5 µA. The

refractory period τrefrac is assumed to be 0 ms since it was set to the minimum possible

value and measurements with the oscilloscope show no distinct refractory period for the set

parameters.

Measurements of the individual VrestHW and VresetHW are averaged over 3 runs for each Ileak
value, VthreshHW

is averaged over 5 runs. Since the determination Vrest, Vreset and Vthresh
requires recording the membrane trace with the oscilloscope, more runs would cost too much

time and have not been done here. The membrane time constant is read out once with the

measured parameters. In figure 9, the measured τm for 50 different values of 1/Ileak is plotted

for 10 neurons on Spikey chip 445. Since τm should be proportional to 1/Ileak according to

equation 6, a linear dependency would be expected. However, the slope of the recorded

curves decreases with 1/Ileak. This might be attributed to the fact that the measured Vrest
and Vreset are different for every neuron, but the specific choice of Vthresh in equation 9 makes

the measurement of the membrane time constant independent from the individual Vrest and

Vthresh. Thus, the recorded neurons all show a similar, non-linear dependency on the inverse

of Ileak.

Additionally, the resting potential Vrest has been found to show a distinct dependency on

Ileak. Figure 10 shows the resting potential of the same 10 neurons versus the inverse of Ileak.

With increasing 1/Ileak, the recorded Vrest decreases. Similar curves, which are not shown

here, have been measured for all other neurons. The reset potential Vreset, apart from some

fluctuations, remains the same, independently of Ileak.

The exemplary curves in figure 9 suggest that the value range for τm is quite limited on

Spikey. Again, this varies for different neurons, the neurons with the topmost curves allowing

τm values from approximately 3 to 11 ms, whereas others only allow values from 3 to about

6 ms. This heterogenity of the network neurons makes a common dependency of τm on Ileak
hard to find. Instead, the recorded data (see figure 9) for the individual neurons provides the

possibility to determine the minimum and maximum membrane time constant of a neuron

and to estimate Ileak for a target τm or vice versa.

For better comparison of hardware emulations of the network with the results in Gerstner

et al. (1996), parameters as close as possible to the original network parameters need to

be chosen. Since the original membrane time constant is τm = 0.1 ms, the neuron with the

smallest possible membrane time constant is the most suitable one. On Spikey 445, this is the

neuron with ID 198, which is marked this black in figure 9. The selection of this postsynaptic

neuron also determines the time factor x by which all time constants are stretched compared

to Gerstner et al. (1996). With a minimum possible τm of about 2 ms and the original value

being 0.1 ms, this constitutes x = 20 for all further parameter adaptations.
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Figure 9: Dependency of τm on 1/Ileak for neuron 192 to 201. Ideally, there should be a

linear dependency. The thick black curve marks the results for neuron 198, which

is chosen as a postsynaptic neuron for later hardware emulations. Every other color

marks the recorded data for a certain neuron.

Figure 10: Resting potential Vrest versus 1/Ileak for neuron 192 to 201. Again, the thick black

curve marks the measured values for neuron 198.
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5.2.2 EPSP modification

In the following, the chosen neuron 198 is stimulated by regular presynaptic input via one

synapse. The parameters Vrest, Vreset and Vthresh are set as in table 1. Then, the currents

controlling the EPSP shape are set to different values, which are listed in table 2. Figure

11 shows which influence Iout and Ifall have on the membrane potential of the postsynaptic

neuron. This data is not suitable for quantitative estimations, however, because the strength

of the synapses varies on the chip and very different EPSPs may be evoked by different

synapses. Furthermore, the data has not been recorded during in the postsynaptic neuron’s

high conductance state where it may integrate differently. Qualitatively, the influence of

Ifall on the decay time constant is clearly visible in figure 11. The smaller Ifall is chosen,

the steeper the slope of the curve after its maximum is. However, Ifall also influences the

amplitude of an EPSP as can be seen by comparing the blue and the green curve, for instance.

A comparison of the green and the black curve shows that a higher Iout also results in a higher

amplitude of the EPSP.

Figure 11: EPSPs for different values of Iout and Ifall, which are listed in table 2.

Color Iout [µA] Ifall [µA]

black 2.5 0.5

red 2.5 2.5

green 0.5 0.5

blue 0.5 2.5

Table 2: Parameters used for the curves in figure 11.

For the learning process, an EPSP with a reasonably small area is needed, because the

postsynaptic neuron receives input with high rate. With the time stretching factor x = 20

determined in section 5.2.1, a small EPSP with half maximum width of about 5 ms and a

synaptic time constant τs = 2 ms would be required, given the original parameters in Gerstner
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et al. (1996). Since these values could not be determined precisely, Iout = Ifall = 2.5 µA was

chosen for the hardware emulations. In figure 11, the EPSP for these values still has a

reasonably small τs (as opposed to the blue one) while its area is not too large.

For the chosen parameters, EPSPs for 100 synapses of the used neuron are recorded with

the same setup. Figure 12 shows the results of three runs for every synapse. The black

curve marks the mean of all synapses, the red area its error. As expected, there is a high

variation of the EPSP size and shape for different synapses. This will be taken into account

for discussions about the quality of the hardware results in section 6.

Figure 12: EPSPs for 100 synapses of neuron 198 (grey curves) and their mean (black curve)

with error (red area). The values for every synapse have been averaged over 3

runs.
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5.2.3 STDP curves

A learning window close to the model (Gerstner et al., 1996) needs to be selected for the

learning process. Since the membrane time constant for the chosen neuron is τm ≈ 2 ms,

the STDP time constant should be around τSTDP ≈ 10 ms to keep the relations between the

time constants as proposed in Gerstner et al. (1996). Learning windows are recorded with

different STDP parameters to find suitable values. The results are shown in figure 13 with

the corresponding parameter sets listed in table 3. The values in this table are chosen such

that the value range within which a reasonably symmetric STDP window can be achieved

is covered for every parameter. The thick black curve, hence also called the reference curve,

marks the learning window which will be chosen for the learning process for reasons explained

below. The other curves are the result of variations of certain parameters compared to the

reference parameter set.

The parameter Vm is responsible for the temporal stretching of the STDP window. The red

curve in figure 13 has been recorded with Vm = 0 V whereas Vm = 0.3 V is applied for all

other curves. Consequently, the red curve is much smaller in temporal matters than the

other curves.

The voltages Vclrc and Vclra control the capacitors which collect the causal and acausal spike

events. Due to circuit design, Vclra always needs to be chosen a bit higher than Vclrc for a

symmetric learning window, if Vm is chosen larger than 0 V. Increased values for Vclrc and

Vclra compared to the reference parameters (see green curve in 13) result in more charge on the

respective capacitors. For small time differences s between the presynaptic and postsynaptic

spike, this results in a broad plateau region of the STDP curve in which a single pre-post

spike pair is sufficient to trigger a weight update (1/N = 1). This plateau region accordingly

is less pronounced for decreased values of Vclrc and Vclra. The yellow curve has been recorded

with smaller values for Vclrc and Vclra and the plateau region has vanished, but the slope of

the curve has hardly changed. This learning window triggers weight updates only for fairly

small values of s, while many pre-post spike pairs are needed to trigger weight updates for

larger time differences.

The weight update threshold (see section 3.2) can be set with the voltages Vcthigh and Vctlow.

A small difference Vcthigh − Vctlow means a low threshold. In figure 13, the blue curve marks

a lower threshold than the one set for the reference curve. This results curves comparable to

the ones for higher Vclrc and Vclra values, because only one pre-post spike pair is needed to

trigger weight updates.

If Vcthigh−Vctlow is chosen larger compared to the reference curve, more pre-post spike pairs

are needed to trigger weight updates and the plateau region shrinks again (grey curve).

However, the slope of the curve largely remains the same. A change of the slope could not be

achieved without a loss of symmetry of the STDP curve. This arises some problems regarding

τSTDP . Since the slope of the curve can not be varied greatly, τSTDP does not seem adaptable

to the model. However, the plateau region appearing for larger Vclrc/a values or for a smaller

Vcthigh − Vctlow makes it difficult to determine how to actually measure τSTDP .

Since time was limited for a detailed investigation of the plateau region, the STDP curve for

hardware emulations is chosen for the following criteria: The value τSTDP = 10 ms which

corresponds to τm ≈ 2 ms can not be set. As far as it can be estimated from the plots, τSTDP
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Figure 13: STDP curves of a single synapse with variation of the STDP parameters Vclrc,

Vclra, Vcthigh, Vctlow and Vm. The thick black curve points out the parameters

used for the learning process. A list of the set values for every curve can be found

in table 3.

Color Vm [V] Vclra [V] Vclrc [V] Vcthigh [V] Vctlow [V]

thick black (reference curve) 0.3 1.23 1.20 1.00 0.80

blue 0.3 1.23 1.20 0.90 0.82

grey 0.3 1.23 1.20 1.20 0.70

green 0.3 1.30 1.27 1.00 0.80

yellow 0.3 1.03 1.00 1.00 0.80

red 0.0 0.96 0.90 1.00 0.80

Table 3: STDP parameters used for the curves in figure 13.

is too small. A certain plateau region is therefore accepted for the used learning window to

enable weight updates for larger absolute values of s, too. On the other hand, the plateau

region must not be too broad because all time differences s between 0 and the end of the

plateau would then experience the same weight update. Thus, learning would also select

synapses whose delays differ too much from the preferred phase of the postsynaptic neuron,

resulting in wider peaks in the delay histogram after learning and less phase selection. STDP

curves for different synapses may also vary due to fixed-pattern noise. Therefore the values

for Vclrc, Vclra, Vcthigh and Vctlow are chosen such that they provide a trade-off between a

large enough τSTDP and a plateau region which is not too broad. The thick black curve in

figure 13 and its parameters listed in table 3 are used for the network.

With this set of parameters, STDP curves of 100 of the synapses of neuron 198 are recorded.

Figure 14 shows grey curves for the different synapses. As expected, the STDP curves vary.

Some curves are very asymmetrical or differ a lot from the mean curve. These synapses

are blacklisted, meaning that they are not used for the network. With a total of only 64
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Figure 14: STDP curves of 100 synapses (grey) and their mean value with error (black).

Synapses which are blacklisted in the learning process because their learning win-

dows differ too much from the mean curve are marked red.

synapses, they might have a distorting influence on the learning behaviour. As weight update

is processed row-wise, blacklisted synapses are processed too, even if they do not have any

influence in the network, resulting in a higher weight update frequency. This must be taken

into account when choosing how many synapses to blacklist. In figure 14, blacklisted synapses

are marked red. Note that the causal/anti-causal branch of a curve can be marked red even

though it is close to the mean because its respective anti-causal/causal branch is too far off.

A total of 20 synapses out of the recorded 100 is blacklisted, which is 20 %. The black curve

in figure 14 shows the mean learning window of the synapses which were not blacklisted.

Out of these synapses, 64 are used for hardware emulations of the given network. Between

these 64 used synapses, there are 18 blacklisted ones. This increases the processing time for

weight update to

t∗proc = (64 + 18) · 15 ms = 1230 ms (10)

or a weight update frequency of fproc = 1/t∗proc = 0.81 Hz, which is very slow compared to

the input frequency of 100 Hz. The results of hardware emulations of the used network are

given in the following sections.
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5.3 Phase-locking on hardware

After the adaptation of the membrane time constant, the EPSP width and the learning

window to the model proposed by Gerstner et al. (1996), the network is run on Spikey. The

network topology and runtime are the same as in simulations with the hardware synapse

model in section 5.1. The experimental results and an analysis of phase-locking on hardware

are given in the following sections.

5.3.1 Learning results

As in section 5.1, a network with 64 presynaptic neurons all connected to a postsynaptic

neuron is used. The parameters remain the same as in table 1, with the exception of the

synapse properties which have been adapted in the preceding sections. The initial synaptic

weight wstart is set to the hardware value 2 of 16. Higher initial weights have been found to

result in too high mean firing rates of the postsynaptic neuron with the consequence of very

poor learning.

The results of a single exemplary run can be seen in figures 15 and 16. The plots are analogous

to figure 6, with the delays of the synapses before learning in 15(a), the delays of the surviving

synapses in figure 15(b) and the postsynaptic spikes modulo T and the weight distribution

after learning in figures 15(c) and 15(d), respectively. The runtime in biological real-time has

been 200 s as in the software simulations in section 5.1. 29 synapses have survived learning.

Again, synapses are considered to have survived if their weight after learning exceeds wstart.

As in the software simulations, the delay distribution of the surviving synapses shows sharp

peaks. Synapses whose delays differ by multiples of T = 10 ms have been selected by the

learning rule. The phases of the postsynaptic spikes, which are depicted in figure 15(c) show

a pronounced peak. The postsynaptic neuron has been trained to exhibit phase-locking

with a mean firing rate of 89 Hz and a vector strength of v = 0.91. Unlike the software

simulations, however, the weight distribution after learning, which is shown in figure 15(d),

is not distinctly bimodal. A certain splitting up of the synaptic weights has taken place, but

not all synapses have a weight that is either minimal or maximal. The development of this

weight distribution will be discussed in more detail in section 5.3.2.

Figure 16 gives an impression of how the learning process evolves. It shows the development of

the postsynaptic neuron’s mean firing rate during the learning process. At first, due to the low

initial weight wstart of all synapses, there are very few postsynaptic spikes. Those synapses

which were active before the postsynaptic spikes are then strengthened and consequently

have a larger impact on the postsynaptic neuron, increasing its firing rate further. This

results in a faster and faster increase of the mean firing rate in the first 20 s (figure 16(a)).

Due to the influence of the strongest synapses, a preferred spiking phase of the postsynaptic

neuron has already manifested itself. This leads to depression of the synapses which fire

shortly after the phase of the postsynaptic spikes. Thus, the total presynaptic input is not

increased as rapidly anymore and the mean firing rate slowly develops towards a constant

value of 89 Hz after about 150 s (figure 16(b)). This burn-in time is in good accordance with

the results in section 5.1. In the software simulations, most of the synaptic weights have

developed towards their final values by that time, too (see figure 7).
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(a) Delays before learning (b) Delays of the surviving synapses after learning

(c) Postsynaptic spike times modulo T (d) Synaptic weights after learning

Figure 15: Exemplary result of a 200 s hardware emulation of the network from Gerstner

et al. (1996). Figure (a) shows the delay distribution of the 64 synapses before

learning, figure (b) the delays of the 29 synapses which survive learning. The

postsynaptic spike times modulo T are depicted in figure (c). The mean firing

rate is 89 Hz, the vector strength is v = 0.91. Figure (d) shows the synaptic weight

distribution after learning.

(a) First 20 s (b) Total run time

Figure 16: Development of the postsynaptic neuron’s mean firing rate during 200 s of learning.
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For better statistics, the accumulated results of 20 independent runs are shown in figure 17.

For every run, a new distribution of the preferred phases ϕn and new presynaptic spike times

have been generated. Figure 17(a) shows the Gaussian delay distribution of all synapses

before learning. After 200 s of learning, a mean number of 29 synapses have survived. Their

accumulated delays after learning are plotted in figure 17(b). Peaks spaced at intervals of

T = 10 ms occur here, too. The spike times of the postsynaptic neuron modulo T are plotted

in figure 17(c). As in the accumulated software simulations (see figure 8), the resultant

peak is broader than the one of a single measurement due to different spiking phases of the

postsynaptic neuron in each run. The mean vector strength is v̄ = 0.87 and thus equals

the mean vector strength for the software simulations in section 5.1. Again, v̄ has been

calculated from the measured vector strength after every single run. The mean firing rate for

all runs is 95 Hz. This value differs significantly from the mean firing rate of 62 Hz measured

in software simulations. The reason for this is the limited maximum hardware weight wmax.

As mentioned above, a low value of 2 is chosen for the initial weight wstart in order to avoid

too high firing rates. However, during learning, some synapses are strengthened, leading to

a higher mean weight than wstart after learning. The green and red lines in figures 15(d)

and 17(d), marking the mean weight before and after learning, show this. Consequently,

the postsynaptic neuron receives a higher total presynaptic input for this weight distribution

than at the beginning and hence exhibits a higher firing rate. This is different to the software

simulations in section 5.1, where the mean weight develops towards lower weights than wstart
during learning. To achieve a weaker total presynaptic input and accordingly lower firing

rates on hardware, a calibration towards lower weights would be necessary. This will be

discussed in more detail in section 6.

5.3.2 Weight development

The weight development on hardware during learning is shown in figure 18. Each curve marks

the weight of one synapse after a certain learning time trun, each with a different mean phase

ϕn. The curves have been recorded as described in section 4.5, with the same ϕn distribution,

but with different spike jitters σϕ. Synaptic weights have been recorded for 50 different trun
values with 5 trials for each value. Every synapse is color-coded according to its preferred

phase ϕn. The phases are marked in a blueish shade if they differ less than 1
4T from the

mean phase of the postsynaptic spikes, otherwise they are marked in a reddish shade. The

horizontal black line marks the initial weight wstart. Figure 18 already shows the dependence

of synaptic weights after learning on the respective preferred phase very well, although the

curves have a very noisy character. This is due to the fact that presynaptic spike times were

generated anew for every run and would presumably be less pronounced if weight recording

during a single simulation were implemented. However, this is technically difficult and the

method used here is sufficient to show the weight dependence on the respective preferred

phase.

Figures 15(d) and 17(d) show the resultant weight distribution after 200 s of learning, for

a single run and 20 accumulated runs, respectively. In both plots, the synapses are not

distinctly parted into groups which either have the maximum or minimum synaptic weight

as is the case in Gerstner et al. (1996) or the simulations in section 5.1 (see figures 6(d)

and 8(d)). The weight of the synapses which survive learning is higher than wstart, but the
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(a) Delays before learning. (b) Delays of the ynapses which survive learning.

(c) Postsynaptic spike times modulo T (d) Synaptic weights after learning

Figure 17: Accumulated results of a 200 s learning process, analogous to figure 15. Every

run has a different distribution of the preferred phases ϕn and hence different

presynaptic spike times. A mean number of 29 synapses have survived. The

mean firing rate for all runs is 95 Hz, the mean vector strength is 0.87. As in the

single run in figure 15, the mean weight increases during learning. The weights

before learning are marked by the green line in figure (d), the mean weight after

learning is marked red.
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(a) Weight Development of two exemplary synapses (b) Weight Development of 64 synapses

Figure 18: Weight Development for different runtimes. Figure (a) shows the weight devel-

opment of one depressed and one potentiated synapse (orange and blue curves,

respectively). The synaptic weight of the potentiated synapse shows more fluc-

tuations for different runtimes than the weight of the depressed synapse. Figure

(b) shows the same measurements for all 64 synapses. Synapses are color-coded

according to their mean phase ϕn. For this, the mean spiking phase of the post-

synaptic neuron was normalized to be zero. The color of every curve indicates

the difference of a synapse’s preferred phase from the phase of the postsynaptic

neuron. For instance, synapses whose ϕn differ from zero by ±T/2 are marked

red. Synapses whose ϕn differs less than 1
4T are marked in a blue or green shade.

The synaptic delay from the presynaptic neurons to the postsynaptic neuron was

not taken into account for color-coding. This delay is not to be confused with the

Gaussian distribution of the transmission delays, i.e., the mean phase distribu-

tion. The same color-coding as in figure (b) is used in figure (a). Figure (b) shows

clearly that synapses with ϕn close to the mean phase of the postsynaptic spikes

are potentiated while synapses which are out of phase of the postsynaptic spikes

are depressed. The black line in both figures marks the initial weights wstart.
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synapses are not saturated at wmax. This is the case for most simulation runs and can not be

improved by a longer learning time. Figure 18 illustrates this since the weight distribution

does not change significantly for larger run times. For this reason, only runtimes up to 100 s

have been plotted in figure 18 to provide a better overview.

This weight distribution is presumably a result of the limited learning window and the too

high maximum hardware weight and can be understood as follows. If the learning window

is chosen smaller - in this case with the parameter set corresponding to the yellow curve in

figure 13 - learning is more selective. Using this learning window has been found to result

in more surviving synapses, but also a bimodal weight distribution as shown in figure 19(a)

with two prominent groups of synapses - one with zero weight and one with the maximum

weight. This corresponds to the model (Gerstner et al., 1996), but it also means a stronger

total presynaptic stimulus than for the weight distributions in figures 15(d) and 17(d). The

red line in 19(a), denoting the mean weight after learning, illustrates this. It is positioned

at a hardware weight larger than 8, whereas the mean weight after learning in section 5.3.1

has been around 3. Consequently, the postsynaptic neuron receives a much higher total

presynaptic stimulus and has a very high mean firing rate of about 250 Hz. At such a rate,

the postsynaptic neuron not only fires once during every period of the input signal, which has

a frequency of 100 Hz, but several times in quick successive bursts. This bursting behavior

leads to a deviation of the postsynaptic neuron’s spike times from its preferred phase. The

spike times modulo T pictured in figure 19(b) then exhibit a broader or double peak structure,

resulting in a lower vector strength, in this case v = 0.70.

This suggests that the learning window selected in section 5.2.3 has been chosen well, be-

cause it provides a compromise between good learning towards a high vector strength and

a reasonable weight distribution. To achieve a weight distribution more similar to the soft-

ware simulations and a high vector strength, smaller hardware weights resulting in a lower

mean firing rate would be necessary. A narrower learning window could then be used to

provide a distinct splitting of the synapses into synapses with wmax and synapses with zero

weight.

Furthermore, a different maximum of the learning window could improve the weight distribu-

tion after learning. According to Gerstner et al. (1996), the time difference s∗ for which the

learning window assumes its maximum value is even more important for successful learning

than the actual shape of the learning window. In order to achieve a maximal increase of

synaptic weights for those synapses which are already strongest, the maximum of the learn-

ing window function W (s) should be at the location at s∗ ≈ τs/2 (Gerstner et al., 1996), τs
being the synaptic time constant. This is the case in the original publication (see equation

1). It is possible to apply an offset to the hardware learning window in order to shift its

maximum to a certain s∗. However, since the STDP curves of different synapses vary greatly

on the chip (see figure 14), their maxima are likely to be very different, too. For this reason,

s∗ has not been shifted in this work.

5.3.3 ITD dependency

The preceding sections have shown that phase-locking works well on hardware. As a further

step towards sound localization and in order to test the reliability of phase-locking, the
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(a) Weights with low Vclra/c (b) Phase of postsynaptic spikes with low Vclra/c

Figure 19: Synaptic weights and postsynaptic spikes for a modified learning window with

STDP parameters corresponding to the yellow curve in figure 13, after 200 s of

learning. The bimodal weight distribution in figure (a) can be achieved with this

learning window. This weight distribution leads to a much higher mean weight

after learning (red line) compared to wstart (green line) with a correspondingly

higher total presynaptic stimulus. Postsynaptic spikes plotted modulo T in figure

(b) hence show a broad peak due to the high mean firing rate of 250 Hz. The

vector strength is v = 0.70.

behavior of the trained postsynaptic neuron for stimulation with different interaural time

differences is examined. As a neuron in the nucleus laminaris, the postsynaptic neuron is a

coincidence detector (see section 2). It is driven optimally for the interaural time difference

it was stimulated with during learning (Gerstner et al., 1996; Maass and Bishop, 2001).

For other ITDs, the mean firing rate and the vector strength of the postsynaptic spikes are

expected to be lower. Both the mean firing rate and the vector strength should have a

minimum value for an ITD which differs by T/2 from the ITD the neuron was stimulated

with during learning. In this study, the ITD is 0, since the neuron was trained to phase-

locked spiking behavior for simultaneously arriving presynaptic spikes. The dependency of

the postsynaptic neuron’s spiking behavior on the ITD is measured similarly to the method

used in Gerstner et al. (1996). The postsynaptic neuron has been trained to ITD = 0

and synapses with similar delays modulo the period T have survived learning as in the

previous subsections. STDP is now disabled and synaptic weights hence remain the same

as after the learning process. For measuring the ITD dependency, the surviving synapses

are then randomly separated into two equally large groups. Each group is considered to

be transmitting the auditory signal from one ear. A phase offset ∆ϕ is applied to the

preferred phase ϕn of every synapse in the second group. This network setup is emulated

for trun = 200 s and the mean firing rate and vector strength of the postsynaptic spikes are

recorded. This is repeated for different values 0 ≤ ∆ϕ ≤ T , resulting in the curves shown in

figure 20. The data plotted here was recorded using the weight and mean phase distribution

of the single exemplary run depicted in figure 15, but with newly generated presynaptic

spike times. The red curve in figure 20 shows the mean firing rate, the blue curve the vector

strength for the respective ITD. Each data point is the mean of three runs. The recorded

ITD dependency reproduces the corresponding figures 3 a and b in Gerstner et al. (1996)
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very well. A high vector strength of more than 0.9 can be achieved for values ITD = 0 or

ITD = T , for which the mean phase distribution modulo T is the same. The vector strength

reaches its minimum of about v = 0.5 for an ITD of T/2. This value is comparable to the

vector strength without STDP which is discussed in the next subsection. For ITD = T/2,

the postsynaptic neurons receives a maximally incoherent presynaptic stimulus and hence

exhibits very poor phase-locking. As the ITD is increased towards T , phase-locking improves

rapidly until it reaches the maximum value again at ITD = T . The ITD dependency of the

mean firing rate is similar. As expected, the postsynaptic neuron exhibits the highest firing

rate for coherently arriving signals from the respective ears. This enables the determination

of the ITD and hence the localization of the sound source in further processing steps as

mentioned in subsection 2.1. The minimum firing rate is shifted slightly towards larger ITD

values in the recorded data. This could be a point for further investigation. Nevertheless,

the data plotted in figure 20 shows that the learning process has led to a reliable coincidence

detection by the postsynaptic neuron. Thus, the network is indeed capable of resolving small

phase differences.

Figure 20: Dependency of the mean firing rate (red) and the vector strength (blue) of the

postsynaptic spikes on the interaural time difference.

5.3.4 Measurements without learning

Control experiments are done to determine what happens for the same network and presy-

naptic input without learning. The postsynaptic spikes are hence recorded for the same time

without STDP enabled. The weight wstart of the 64 synapses is increased to 3.5 in order to

have enough presynaptic input for a postsynaptic firing rate of around 100 Hz. This is done

for better comparison to previous hardware emulations where the firing rate has been around

100 Hz as well (see figures 15 and 17). Figure 21 shows the postsynaptic spike times for 20

independent runs, again plotted modulo T . As in section 5.3.1, the mean phase distribu-

tion and presynpatic spike times have been generated anew for every run. The mean vector

strength of these measurements is v̄ = 0.47. Figure 21 shows no distinguishable preferred
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phase in the postsynaptic neuron’s spikes as opposed to the accumulated results in figure

17(c). This confirms the statement in 2.2 that no phase information can be conveyed without

an appropriate selection of synapses.

Figure 21: Postsynaptic spikes modulo the period T without learning. The mean vector

strength is v̄ = 0.47.
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6 Conclusion and outlook

Although many of the network parameters could not be set to the values according to Gerst-

ner et al. (1996), good phase-locking can be achieved on neuromorphic hardware. With the

presented adaptations, the postsynaptic neuron can be trained to emit phase-locked spikes

with a mean vector strength of v̄ = 0.87. In Gerstner et al. (1996), a vector strength of 0.94

was reported for an input frequency of 2000 Hz, which is the frequency that corresponds to

the temporally stretched setup used here. The resultant phase-locking on Spikey is hence

nearly as good as in the original publication, even with all the hardware limitations. The

essential basis for this is that the given network is well-suited for the hardware. Most im-

portantly, it is very noise tolerant. Since possible sources of noise are already taken into

account with the presynaptic jitter σϕ and the broad delay distribution, additional noise

due to the trial-to-trial variability of the hardware or thermal noise does not affect the net-

work seriously. Learning may take longer due to slower and less precise weight updates,

but a high temporal precision in the postsynaptic neuron’s spiking behavior can be achieved

nevertheless as shown in sections 5.3.1 and 5.3.3. Phase-locking works reliably enough on

hardware to show an ITD dependency similar to the results in Gerstner et al. (1996). The

postsynaptic neuron exhibits maximum vector strength and firing rate for the ITD it was

stimulated with during learning. For an ITD differing by T/2 from the stimulation ITD, it

the neuron exhibits minimum vector strength and firing rate. It could thus be trained to be

a temporally precise coincidence detector.

Software simulations with a model of the hardware synapses have been found to provide

a good prediction for the hardware performance. Both software simulations and hardware

emulations yield a mean vector strength of v̄ = 0.87. The burn-in time, by which most

synaptic weights have developed towards their value after learning, is around 150 s for both

models. Also, similar delay distributions of the surviving synapses have been recorded. The

weight distribution after learning differs significantly, however. On hardware, the synaptic

weight distribution after learning does not show the characteristic bimodal distribution of

synapses with either minimum or maximum weight as shown in Gerstner et al. (1996) and

the software simulations. This is due to the fact that the maximum hardware weight is

limited, whereas the maximum weight in the software model can be set arbitrarily. For the

same reason, the mean firing rate of 89 Hz is larger on hardware than the measured 62 Hz

for the software simulation.

The weight distribution after learning could be improved by calibrating the hardware synapse

drivers to lower synaptic weights. With a weaker total presynaptic stimulus, a smaller learn-

ing window similar to the one used in 5.3.2 could then be used to obtain a distinctly bimodal

weight distribution after learning. A further advantage of the synapse driver calibration

would be to have equally strong synapses. Since synaptic strength has been found to vary

greatly on the chip (figure 12), learning might be dominated by a few very strong synapses.

This might have a distorting effect on learning if these strong synapses are out of phase with

compared to the postsynaptic spikes. A calibration of the synapse drivers towards the same

synaptic weight could prevent this.

Parameter adaptations for which time was limited in this thesis provide further possibilities

for improvement. A detailed investigation of the plateau region in the learning windows in
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section 5.2.3 is necessary to determine the shape of the learning window and τSTDP accu-

rately. If a more homogenous distribution of the learning windows of the involved synapses

could be achieved, less synapses would need to be blacklisted, resulting in a higher weight

update frequency. Also, a measurement of the EPSPs in high conductance state of the neu-

ron and by means of spike-triggered averaging, as it is presented in Brüderle (2009), could be

done. This would allow a more accurate determination of the EPSP width and area than the

simple setup used in section 5.2.2. Building upon the method described in section 5.2.1, the

existing standard calibration of the membrane time constant developed in Brüderle (2009)

could be extended to include the Ileak dependency of τm. As a further improvement of the

calibration, an automatic measurement of the refractory period could be included instead of

the current manual measurement. Where no direct setting of the parameters is possible, the

104 speed-up of Spikey could then be utilized for parameter sweeps in order to determine

optimum settings.

Given the already good phase-locking on hardware, a setup including further processing steps

towards sound localization could be built (see also section 2.1). For this, a population of

postsynaptic neurons would be needed, which have all been trained to exhibit their maximum

firing rate for a different ITD. The information which neurons have the highest firing rate

could then be processed in order to calculate the ITD and corresponding azimuthal location

of the sound. A setup like this could be used, for instance, for a roboter which can detect the

location of ultrasonic sounds. In summary, if some further steps are taken, the given setup

may provide interesting biological applications which work reliably on the neuromorphic

Spikey chip.
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