
Department of Physics and Astronomy

University of Heidelberg

Diploma thesis

in Physics

submitted by

Ioannis Kokkinos

born in Reutlingen

2012

Feasibility Study On Declarative Routing

For Neuromorphic Hardware

This diploma thesis has been carried out by Ioannis Kokkinos

at the

Kirchoff-Institure for Physics

under the supervision of

Prof. Dr. Karlheinz Meier

Machbarkeitsstudie zu deklarativem Routing
für neuromorphe Hardware

Eine passende Konfiguration für ein neuromorphes Hardware System zu finden,
die einem gegebenen neuronalen Netzwerk entspricht, ist eine komplexe Aufgabe.
Dies ist äquivalent zur Bestimmung von Graphenisomorphismen, was zu den
NP-harten Problemen zählt. Die Eignung zweier neuronaler Netzwerktopologien
für ein beschleunigtes, paralleles Konfigurationsverfahren wurde untersucht. Des
Weiteren wurde eine Machbarkeitsstudie zu einem deklarativen Routing Ansatz
durchgeführt. Zu diesem Zweck wurden boolesche Bedingungen hergeleitet, die
strukturelle Eigenschaften einer neuromorphen Hardware und neuronaler Netzw-
erke beschreiben. In Folge dessen kann jeder Erfüllbarkeitsproblemlöser verwendet
werden um Zuweisungen zu finden, die diese Bedingungen erfüllen. Abschließend
wurde ein Simulator für neuromorphe Hardware um ein Leaky Integrate-And-
Fire Neuronenmodell mit Adaption erweitert. Die Implementierung wurde durch
Vergleich mit einem etablierten Simulator für neuronale Netzwerke verifiziert.

Feasibility Study On Declarative Routing
For Neuromorphic Hardware

Finding a suitable configuration for neuromorphic hardware systems, closely re-
sembling a given neural network, is a complex task. It is equivalent to finding
graph isomorphisms, which is known to be an NP-hard problem. The suitability of
two neural network topologies for an accelerated parallel configuration procedure
has been analyzed. Furthermore, a feasibility study has been carried out covering
a declarative routing approach. Therefore, boolean clauses have been derived to
describe structural features of a neuromorphic hardware and neural networks. In
consequence, any satisfiability solver can be used to find an assignment satisfying
these clauses. Lastly, a neuromorphic hardware simulator has been extended by a
leaky integrate-and-fire neuron model with adaptation. The implementation has
been verified against an estabilished neural network simulator.

Contents

1 Introduction 6

2 AdEx Neuron Model Implementation 7
2.1 AdEx Model . 7
2.2 Dimensionless Model . 8
2.3 Slope Factor Problem . 8

2.3.1 LIF Neuron Model With Adaptation 8
2.3.2 Verification Of The Implementation With Reference Simulator 9

3 Partitioning Of Neural Networks 12
3.1 Layer 2/3 Attractor Memory Network 12

3.1.1 Structure . 13
3.1.2 Emergent functions and features 14

3.2 Small World Network . 14
3.3 Optimal Set Analysis . 15

3.3.1 Ideal Case . 15
3.3.2 Worst Case . 16
3.3.3 Analyzing Network Models . 17

3.4 Discussion and Outlook . 21

4 SAT Routing 22
4.1 Mapping Flow . 22
4.2 The Satisfiability Problem . 22
4.3 Topology Of The HICANN . 24
4.4 FPGA Routing . 26
4.5 SAT Routing Example . 29

4.5.1 Logic Expressions . 30
4.5.2 Substitution Of Non-Boolean Variables 31
4.5.3 Conversion Into Conjunctive Normal Form 32
4.5.4 Routing Solution . 36

4.6 HICANN Routing . 37
4.6.1 Definition And Assessment Of Variables For HICANN Routing 39
4.6.2 Assessment Of Constraints . 40

4.7 Pseudo Boolean SAT Routing . 41
4.7.1 Connecting Switch Matrices 42
4.7.2 Realizing Input To Output Assignment 43
4.7.3 Visual Verification . 43

4

4.7.4 Handling Of Unsatisfiable Problems 43
4.8 Discussion and Outlook . 43

4.8.1 Ratio Of The Numbers Of Clauses To Variables 44
4.8.2 Declarative Programming . 44

I Appendix 46

A Lists 48
A.1 List of Figures . 48
A.2 List of Tables . 49

B Bibliography 51

5

1 Introduction

Since the ancient times of the physicians Hippocrates and Galen the brain is said to
be the source of the human conciousness and intelligence [Katz and Katz, 1962]. The
invention of the microscope enabled studies of its elementary structures and marked
the beginning of modern neuroscience [Cajal, 1906]. In an attempt to understand
the mechanisms underlying the functioning of the brain, in vitro and in vivo mea-
surements are performed [Logothetis et al., 2007, During and Spencer, 1993]. The
huge quantity of neurons, about 1011 to 1012 in the human brain, and their con-
nections render it impossible to record all activity in the brain simultaneously on
a detailed level. The mathematical Hodgkin-Huxley model [Hodgkin and Huxley,
1952] has been developed to describe the behavior of biological neurons. Reduced
models like the Adaptive Exponential Integrate-And-Fire model [Brette and Ger-
stner, 2005] mimic this behavior, but require less computational effort. These are
applied in computational neuroscience to simulate neural networks. Still, the level
of detail and the scale of simulations in is mainly limited by computational power
and energy consumption. The IBM BlueGene supercomputer Dawn consumes about
1.4 MW to simulate a simplified model of the cat brain [Wang et al., 2010, Douglas,
2011]. The human brain uses approximately 20 W.

Neuromorphic hardware [Douglas et al., 1995] physically implements models of neu-
rons and synapses. The Hybrid Multiscale Facilty (HMF) developed within the
BrainScaleS project integrates 384 mixed signal High Input Count Analog Neural
Network (HICANN) chips [Schemmel et al., 2010] as wafer scale system. Each chip
implements up to 512 analog neurons. Multiple HICANNs can be interconnected to
form models of vast neural networks.

The executable system specification (ESS) is a software simulation of the HMF
hardware system. It allows for analyzing the impact of hardware imperfections and
development parameters on to neural networks in more detail. Within this thesis
(Section [chapter][2][]2) a numerical neuron model has been implemented. In Section
[chapter][3][]3 the partitioning of neural networks is analyzed. Partitioning enables
a hardware configuration procedure to operate in parallel. Most importantly, a
feasibility study on satisfiability routing on neuromorphic hardware has been carried
out in Section [chapter][4][]4.

6

2 AdEx Neuron Model Implementation

As part of the Executable System Specification (ESS) two neuron models are avail-
able for simulations. One model is based on the Adaptive Exponential Integrate-and-
Fire (AdEx) neuron model, in the original publication introduced as aEIF [Brette
and Gerstner, 2005, Touboul, 2008]. In the framework of this thesis, the second
model is derived from this model and implemented.

The AdEx model is presented in Section [section][1][2]2.1 and is implemented in the
form described in Section [section][2][2]2.2. A restriction arising with this implemen-
tation is explained in Section [section][3][2]2.3, which is solved by the implementation
of the model derived in Section [subsection][1][2,3]2.3.1. This model is verified by
comparison to a reference simulation in Section [subsection][2][2,3]2.3.2.

2.1 AdEx Model

The AdEx model combines a leaky integrate-and-fire (LIF) neuron with an expo-
nential spiking mechanism and adaptation. In contrast to detailed neuron models
such as the Hodgkin-Huxley model [Hodgkin and Huxley, 1952], the AdEx model is
strongly reduced. It still is accurate compared to more detailed models, especially
for neurons in high-conductance states [Brette and Gerstner, 2005]. The developing
of the membrane potential V of the neuron and its adaptation current w depends
on parameters, namely membrane capacitance C, leak conductance gL, leak reversal
potential EL, slope factor ∆T , spike threshold VT , reset potential VR, reset threshold
potential VS, injected current I, adaptation time constant τw, sub-threshold adap-
tation a and the spike triggered adaption constant b. When the membrane potential
V reaches the reset threshold VS, a spike is emitted, it is reset to V = VR and the
adaptation current is set to w = w + b. The dynamics of V and w between a reset
and the emission of the next spike are described by the following two differential
equations:

C
dV

dt
= −gL(V − EL)︸ ︷︷ ︸

Leakage

+gL∆T exp

(
V − VT

∆T

)
︸ ︷︷ ︸

Exponential

−w︸︷︷︸
Adaptation

+I︸︷︷︸
Injected Current

, (2.1a)

τw
dw

dt
= a(V − EL)− w. (2.1b)

The dynamics of a LIF neuron can be obtained by setting ∆T = w = a = b = 0.

7

2.2 Dimensionless Model

A dimensionless set of equations was chosen for the implementation of the AdEx
model to reduce the number of parameters from 9 down to 4. The parameters left
are Ī , τ̄w, ā, b̄. Their definitions are listed in Table [table][1][2]2.1. The corresponding
differential equations are reduced to

dV̄

dt̄
= −V̄ + exp(V̄)− w̄ + Ī , (2.2a)

τ̄w
dw̄

dt̄
= āV̄ − w̄. (2.2b)

The dimensionless AdEx model is equivalent to the form shown in ???? [Touboul,
2008]. The reduced form requires less calculations per integration cycle, increasing
the overall performance of the simulation. For the simulation, the parameters are
transformed into their dimensionless equivalents. With these dimensionless parame-
ters and ???? the simulation is computed by numerical integration. For evaluation,
the computed results are transformed back.

2.3 Slope Factor Problem

The slope factor ∆T is utilized as a scaling factor in the numerator of voltage and
current transformations into dimensionless quantities, as can be seen in Table [ta-
ble][1][2]2.1. Setting the slope factor ∆T = 0, in order to disable the exponential term
of the AdEx model, leads to several undefined parameter transformations. This can
be circumvented by choosing a value for ∆T ≈ 0. Since lim∆T→0 ∆T exp(1

∆T
) = ∞,

the exponential term is increased, so that spiking occurs instantly at V = VT . A
disadvantage of this workaround is, that the now unnecessary exponential term is
still evaluated by the numerical integrator. A better solution is to remove the ex-
ponential term completely, so its evaluation is skipped.

2.3.1 LIF Neuron Model With Adaptation

The model of the LIF neuron with adaption is very similar to the AdEx model. The
exponential term is removed and the slope factor ∆T becomes dispensable. The new
model is now described by the following differential equations:

C
dV

dt
= −gL(V − EL)− w + I, (2.3a)

τw
dw

dt
= a(V − EL)− w. (2.3b)

8

The transformations have to be readjusted to get the dimensionless equations of this
model as shown in Table [table][1][2]2.1.

By applying the transformations of Table [table][1][2]2.1 on the LIF model the fol-
lowing dimensionless differential equations are obtained:

dV̄

dt̄
= −V̄ − w̄ + Ī , (2.4a)

τ̄w
dw̄

dt̄
= āV̄ − w̄. (2.4b)

2.3.2 Verification Of The Implementation With Reference
Simulator

In order to verify the implemented model, it is compared to an AdEx model sim-
ulated with the NEURON software [Hines and Carnevale, 1997]. The slope factor
parameter of the NEURON instance is set to ∆T = 0. The plot in Figure [fig-
ure][1][2]2.1 shows the expected equal developing of membrane potential of both
neuron models in an exemplary simulation. There still is a numerical difference
between the two voltage traces. For a time step t = 0.1µs the maximum relative
difference observed is < 0.02 for the simulation shown in Figure [figure][1][2]2.1. This
is a result of both implementations using discrete time steps, but different binning
and different integrator methods. The NEURON simulator uses the Euler method
[Butcher, 2003] by default, the model implemented here uses the fourth-order Runge-
Kutta method [Press et al., 2007]. The observed numerical discrepancy decreases
for smaller time steps. The same error is observed for the synaptic conductances,
but because they are of small order they do not affect spike timing or even spiking
frequency.

9

AdEx LIF With Adaptation

V̄ (t̄) = V (t)−VT
∆T

V̄ (t̄) = V (t)−VT
VT−VR

t̄ = gLt
C

w̄(t̄) = w(t)+a(EL−VT)
gL∆T

w̄(t̄) = w(t)+a(EL−VT)
gL(VT−VR)

Ī = I
gL∆T

+
(

1 + a
gL

)
EL−VT

∆T
Ī = I

gL(VT−VR)
+
(

1 + a
gL

)
EL−VT
VT−VR

τ̄w = gLτw
C

ā = a
gL

b̄ = b
gL∆T

b̄ = b
gL(VT−VR)

V̄R = VR−VT
∆T

V̄R = −1

V̄T = VT−VT
∆T

V̄T = 0

Table 2.1: Transformations to dimensionless parameters; The transformations of the
left column are defined for the AdEx model in Touboul [2008]. The trans-
formations in the right column are readjusted for the LIF model with
adaptation. The terms containing ∆T in the AdEx model are replaced by
terms scaled with (VT − VR) for the LIF model. This results in V̄R = −1
and V̄T = 0.

10

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Time [s]

60

58

56

54

52

50

Vo
lta

ge
 [m

V]

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

60

58

56

54

52

50

Vo
lta

ge
 [m

V]

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Spike Time [s]

0

1

Ne
ur

on
 C

ou
nt

Figure 2.1: Comparison of implemented model with NEURON, simulation of 180 ms;
The upper plot shows the voltage trace of the implemented neuron
swayed by Poisson distributed input spikes in the first 120 ms. The
middle plot shows the voltage trace of a simulation with NEURON for
the same parameters and identical stimulation. The lower plot shows the
output spikes of the simulated neuron. Neuron 0 shows the simulation of
the implemented model, neuron 1 shows the simulation with NEURON.
The neuron parameters are set to C = 0.2 nF, gL = 10 nS, EL = VR =
−60 mV, VT = −50 mV, τw = 5 ms.

11

3 Partitioning Of Neural Networks

In order to carry out any experiments on the HMF system, a configuration needs
to be found, resembling the user-provided neural network as closely as possible.
This network is presented as PyNN script [Davison et al., 2008], which contains a
list of neurons and their synaptic connections. The task of an automated mapping
tool is to allocate hardware components representing these neurons, which is called
placement. In the next step, the mapping tool has to realize the synaptic connections
between hardware neurons according to the input network, which is called routing.
For complex hierarchical topologies like the HMF hardware and limited resources,
mapping is a nontrivial problem [Liu et al., 2008, Safarpour et al., 2006, Melnik
et al., 2002].

Parallel mapping onto disjoint areas of the hardware requires partitioning the net-
work. Optimally, regions of the network with a high connection density are mapped
closely together on the hardware to keep required routing resources low. Parti-
tioning also allows to map loosely connected partitions almost independently from
other partitions. In this chapter exemplary networks are analyzed regarding their
suitability for such a parallel mapping approach.

In Section [section][1][3]3.1 and Section [section][2][3]3.2 two models are outlined
in their structures and properties. In Section [section][3][3]3.3 these networks are
analyzed for unweighted synaptic connections.

3.1 Layer 2/3 Attractor Memory Network

The associative attractor memory paradigm as a functional model for the neocortex
has its origins in Hebb’s theories of cell assemblies from over 50 years ago. Over
time, there has been mounting experimental data [Fuster et al., 1971, Compte et al.,
2000, Cossart et al., 2003] which shows clear correlations between persistent cortical
activity and working memory, lending strong support to this paradigm. A challeng-
ing task lies in formulating a microscopic model on the level of individual neurons
and synapses, with parameters constrained by experimental data, which is able to
address multiple observed phenomena, such as memory dynamics, population cod-
ing and oscillatory behavior at the same time. One such model has been proposed
by Lundqvist et al. [2006, 2010], which is of particular interest in the context of this
work, as it exhibits a rather high robustness towards hardware-specific distortions

12

[Brüderle et al., 2011] and has also been successfully implemented, in a reduced
form, on the neuromorphic Spikey chip [Brüderle et al., 2011, Pfeil et al., 2012].

3.1.1 Structure

The structure models a neocortical layer 2/3 circuit of columnar architecture. It
consists of several modules called hypercolumns. A hypercolumn itself is formed by
a number of minicolumns. Hypercolumns as well as minicolumns can be seen as
functional units or modules. A minicolumn consists of three different types of cells,
namely: basket cells, pyramidal cells and regular spiking non pyramidal (RSNP)
cells. The structure of the network is illustrated in Figure [figure][1][3]3.1.

For the case of orthogonal patterns, each pattern is represented by one minicolumn in
every hypercolumn. Pyramidal cells in minicolumns representing the same pattern
but located in different hypercolumns are linked by excitatory synapses.

3.1.2 Emergent functions and features

The reaction of a minicolumn on excitatory input, whether it is external or from
a minicolumn of the same pattern, is not only to excite other minicolumns of the
same pattern, but to inhibit neighbouring minicolumns in its hypercolumn. This
connectivity allows pattern recognition and pattern completion. The stimulation of
a subset of minicolumns can suffice to activate all columns belonging to the same
pattern. When becoming active, a minicolumn will switch into an UP state, where
the average membrane potential of the pyramidal population is significantly above
their resting potential and their firing rates are elevated.

When there is input for different patterns, the network at first behaves like a classical
soft winner-takes-all (WTA) network [Kaski and Kohonen, 1994]. In contrast to a
simple WTA network however, a single attractor cannot be permanently active. This
is prevented by two mechanisms taking effect over time. First is, inter-pyramidal
connections are subject to short term plasticity. Second, the excitability of pyrami-
dal cells decreases with the emission of spikes. The cells adapt, so that the overall
possibility for mutual excitation decreases over time. This results in the network
switching between all stimulated patterns over time.

3.2 Small World Network

Many biological, technical and social networks can be modeled by small world net-
works [Watts and Strogatz, 1998]. They are characterized by the average path length

13

Figure 3.1: Outline of the L2/3 model; Each element represents a population of cells.
Excitatory connections are marked by an arrow, inhibitory connections
are marked by circles. Note that for every kind of connection only a single
representative one is shown for demonstration purposes. The number
next to a connection indicates the probability of a connection for two
neurons of the linked populations.

14

Figure 3.2: Scheme of a regular ring network (left) and a small world network (right);
By rewiring the connections of a regular network with the probability p,
a small world network can be created. Only a few rewired connections
suffice to decrease the average path length l significantly, because they
function as shortcuts in the network.

l between the nodes of the networks. A network like the ring network shown in Fig-
ure [figure][2][3]3.2, with a regular short ranged connection pattern and therefore a
high average path length is called an ordered network [Watts and Strogatz, 1998].
On the other hand, networks with random connectivity are very likely to have a
small average path length. A transition between ordered and random networks is
created by starting with an ordered network and rewiring every connection with the
probability p. The resulting networks are small world networks like the one shown
in Figure [figure][2][3]3.2.

Networks of different randomness can be easily produced and analyzed by sweeping
the rewiring probability p from ordered p = 0 to random p = 1, thus enabling
observation of the transition between such ordered and random networks. This
property is exploited for the partitioning analysis shown in Figure [figure][4][3]3.4
on the right.

3.3 Optimal Set Analysis

In order to find partitions of densely intra-connected neurons in neural networks,
optimal set analysis can be applied [Hilgetag et al., 2000]. For optimal set anal-
ysis, a cost function is defined which decreases for partitions with a high number
of connections within partitions and low number of connections between neurons
of different partitions. The cost function is minimized by iterating with an evolu-
tionary algorithm. With that technique Hilgetag et al. [2000] showed that macaque
and cat cortices are organized in densely intra-connected partitions, suggesting that
structure and function are closely linked at this system level.

15

Instead of using an evolutionary algorithm optimal set analysis can be performed
with an edge cut minimizing graph partitioning tool like METIS [Karypis and Ku-
mar, 1998]. The edge cut is the wighted sum over connections with origin and target
in different partitions. Since the analysis presented deals with unweighted connec-
tions, the edge cut reduces to the number of these connections. METIS allows to
sweep over the number of partitions in which the network is split and balances the
partition sizes while minimizing edge cut.

3.3.1 Ideal Case

The most simple ideal case for partitioning a network, is a network consisting of
densely intra-connected partitions of neurons with no connections between neurons
of different partitions at all. This case may not be relevant for application and does
not need partitioning, because the partitions can be seen as separate and unrelated
networks. On the other hand, this is the best case for demonstrating partitioning
analysis with METIS. An exemplary network, consisting of five neuron populations
is analysed. There are random connections within each of the five populations, but
no connections between neurons of different populations. So it is expected that the
analysis shows a minimum of zero edge cut for a partition number of five, which can
be seen in Figure [figure][3][3]3.3. Also local minima can be detected for multiples
of five, so it should be kept in mind, that the lowest of local minima in the partition
analysis can hint to an optimal partition size as seen in Figure [figure][5][3]3.5.

3.3.2 Worst Case

A worst case example for this kind of analysis is a network with random connec-
tivity. In a random network, assuming it being significantly large, the edge cut
of equally sized partitions does not depend on the assignment of neurons to the
partitions. Instead, the edge cut nEdgeCut depends on the statistical mean of con-
nections per neuron nEdges

nNeurons
. For a higher number of partitions, the overall edge cut

will exponentially converge to the number of connections. The maximum edge cut
nEdgeCutmax = nEdges is reached for the number of partitions nPartitions = nNeurons. For
the edge cut per partition nEdgeCut

nPartitions
it therefor can be assumed that a minimization

of the edge cut nEdgeCut on random networks is described by the superposition of
two functions. An exponentially decrease is superposed by a linear reciprocal de-
crease converging to the mean of connections per neuron nEdges

nNeurons
with the number of

partitions nPartitions approaching the cell count nNeurons:

lim
nPartitions→nNeurons

nEdgeCut(nPartitions)

nPartitions
=
nEdgeCut(nNeurons)

nNeurons
=

nEdges

nNeurons

16

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30

E
dg

ec
ut
/P

ar
ti
ti
on

Partitions

Figure 3.3: Sweep with METIS partitioning tool for a network consisting of five
separated partitions; Cell count nNeurons = 4, 750, edge count nEdges =
563, 383, sweep computation wall clock time = 15 s

17

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

0 5 10 15 20 25 30

E
dg

ec
ut
/P

ar
ti
ti
on

s

Partitions

Figure 3.4: Sweep with Metis partitioning tool for a random network with the con-
nection probability p = 0.1 for one neuron to another. Cell count
nNeurons = 10, 000, edge count nEdges = 4, 999, 417, sweep computation
wall time = 9 m 15 s. The function plotted is a fit of f(x) = d−a exp(−bx+c)

x

with the values a = 19753804, b = 0.30741971, c = −1.6223542, d =
4727134.0.

This behavior is modeled by the function

f(x) =
d− a exp(−bx+ c)

x
,

and can be observed in Figure [figure][4][3]3.4. A fit of the function supports the
assumption with f(nNeurons) = 473 ≈ 500 =

nEdges
nNeurons

.

There is no particular number of partitions providing a significantly low edge cut
for a reasonable number of partitions, nPartitions ≤ 30. It can be concluded that if a
network is similar to this random network, searching for a minimum of edge cut is
not of advantage for the successive mapping procedure.

3.3.3 Analyzing Network Models

The structural properties of two types of networks are tested for their suitability
for partitioning for the purpose of parallel mapping. The first one is the layer 2/3

18

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80

E
dg

ec
ut
/P

ar
ti
ti
on

Partitions

Figure 3.5: Sweep with Metis partitioning tool for the KTH model network, as ex-
plained in Section [section][1][3]3.1; Gaps in the data are a result of
abnormal termination of Metis for that particular number of partitions.
Cell count nNeurons = 2, 376, edge count nEdges = 120, 510, sweep compu-
tation wall time = 31 s

attractor memory network model described in Section [section][1][3]3.1. The second
one are small world networks as seen in Section [section][2][3]3.2.

The analyzed implementation of the layer 2/3 network was generated with a Python
script connecting neurons with the probabilities specified in Figure [figure][1][3]3.1.
The network consists of 9 hypercolumns, each containing 8 minicolumns. A mini-
column consists of 30 pyramidal, 2 RSNP and 1 basket cell. This results in a total
count of 2,376 cells.

In the analysis, plotted in Figure [figure][5][3]3.5 local minima can be observed for
a partition count of 8 and its multiples. As in Section [subsection][1][3,3]3.3.1 the
optimal partition count is the lowest of the local minima, which in this case is 8.
The overall edge cut reaches the global minimum for this number of partitions and
is at 3, 950 · 8 = 31, 600.

The plot in Figure [figure][6][3]3.6 of the analysis of small world networks shows
that even for an inherently small rewiring probability p = 0.2 the edge cut per
partition develops qualitatively towards the random network analyzed in Figure
[figure][4][3]3.4. Approximately 10% of the overall connections are shared connec-

19

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70

E
dg

ec
ut
/P

ar
ti
ti
on

Partitions

0.0
0.2
0.4
0.6
0.8
1.0

Figure 3.6: Sweeps with METIS for the small world network model; Sweeps for
different rewiring probabilities p. Cell count nNeurons = 10, 000, edge
count nEdges = 20, 000, sweep computation wall clock time = 40 s for
the whole plot, including five adjustments for p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
which are not displayed.

20

tions for a number of partitions nPartitions ≤ 4. This ratio increases exponentially for
a higher number of partitions.

3.4 Discussion and Outlook

With a high number of partitions, the edge cut per partition reduces in the analyzed
networks. A draw back of a high number of partitions is the increasing total num-
ber of dependencies between partitions. In order to achieve feasible parallelization
without creating an obstructive overhead of communication between the parallel
processes, the number of partitions has to be chosen as a compromise the grade of
parallelization and the resulting dependencies.

It becomes apparent that random networks are pathological for the mapping process,
but also unsuited for the hardware, because no placement can be found such that
routing resources suffice for large networks.

For networks of a distinct structure, like the analyzed layer 2/3, it is shown that
preferable numbers of partitions can be found. In future, this can be utilized for a
parallelized mapping procedure.

21

4 SAT Routing

An approach to the mapping problem mentioned in Section [chapter][3][]3 is to trans-
form it into a satisfiability (SAT) problem [Wood and Rutenbar, 1997, Safarpour
et al., 2006]. The constraints caused by limited hardware resources are expressed
by a set of boolean variables and expressions. A generic SAT solver can be used to
map a neural network onto the hardware. A process flow embedding this approach is
presented in Section [section][1][4]4.1. After describing the SAT problem and solvers
in Section [section][2][4]4.2 and introducing the relevant hardware topology, the con-
cept is demonstrated for an exemplary routing problem in Section [section][5][4]4.5.

4.1 Mapping Flow

A SAT solver based mapping flow consisting of a placement and routing is described
in the following.

The task of the placement is to determine the exact location of a neuron on the
hardware to provide the assignment of the output of the neurons into the routing
net for the next mapping step.

The routing allocates lanes and realizes the required connectivity on a wafer scale
level. Depending on the number of required connections and the density of neuron
placement, this task can be of high complexity. The highly configurable system
allows many possible realizations of a connection between neurons. Utilization of a
SAT solver is especially suitable at this point, since it is their purpose to compute
assignments while considering a significant number of dependencies.

This thesis provides the rudimentary implementation of a SAT based HICANN
routing (Section [section][6][4]4.6). With the HICANN being the major building
block of the HMF system, this can also be considered a starting point for a future
wafer and multi wafer routing.

4.2 The Satisfiability Problem

The SAT problem is to determine whether there exists an assignment for the vari-
ables if a given boolean expression, so that the expression evaluates to true.

22

Every boolean expression can be transformed so that it consists of a collection of
clauses which are in conjunctive normal form (CNF). A clause in its conjunctive
normal form consists of literals linked by a logical or. A literal is the representation
of a variable or its negation1. A boolean expression in CNF can be formed by a
single clause in its CNF or multiple clauses in CNF linked by a logical and. So a
CNF clause can be written as∑

i

civi ≥ 1, with ci ∈ {−1, 1}, vi ∈ {0, 1},

where a sum represents a logical or.

The SAT problem is defined as [Garey and Johnson, 1979]:

Given a set V of boolean variables vi ∈ V and a function t : V → {true, false}. If
t(vi) = true then vi is said to be true. If t(vi) = false then vi is said to be false.
For every variable vi there are two literals vi and v̄i. The literal vi is true under
t only if the variable vi is true under t. The literal v̄i is true under t only if the
variable vi is false under t.
A clause over V is a set of literals over V . The clause is satisfied under t only if
at least one of the literals is true under t. A collection of clauses C over V is only
satisfiable if there exists an assignment for V so that every clause in C is satisfied
simultaneously.
Problem:
Given a set V of variables and a collection C of clauses over V , is there a satisfying
assignment for C?

SAT problems are distinguished by their grade k. The grade of a SAT problem is
determined by the maximum number k of different variables in one of its clauses.
Problems of the grade k = 2 are called 2SAT problems, belong to the class of NL
complete problems and can be solved in linear time [Aspvall et al., 1982]. SAT
problems of the grade k ≥ 3 belong to the class of NP complete problems along
with the Travelling Salesman [Garey and Johnson, 1979, ch. 2.1] or Multiprocessor
Scheduling [Garey and Johnson, 1979, ch. 2.1.3]. In fact, the first problem that was
shown to be NP complete is the 3SAT problem [Cook, 1971].

Today SAT solvers are used for industrial applications of the SAT problem, like
electronic design automation (EDA) [Moskewicz et al., 2001]. There are several
well developed open source SAT solvers available. A good overview of the recent
developments and capabilities of SAT solvers can be found within the benchmark-
ing results of the annual SAT competition [Competition, 2012]. Here solvers com-
pete by running benchmarks in multiple categories, such as real-world applications,
challenging hard combinatorial problems and parallel solving. The .cnf format has
been specified by Center For Discrete Mathematics And Theoretical Computer Sci-
ence (DIMACS)[DIMACS] and is used as the common input file standard. It is a

1The negation either is denoted by a ¬ preceding the literal or a bar over the literal.

23

text file stating one clause per line. Since the only junction within a clause can be a
logical or, it is simply not noted. What remains is a listing of numbers representing
the variables, which can be negated by a preceding minus sign “-”. The end of a
clause is always indicated by a 0. Variable names begin at 1 and are numbered
continuously.

For this thesis the following two SAT solvers have been used.

MiniSat
MiniSat 2.2.1 [Eén and Sörensson, 2012] is an open source, minimalistic SAT solver,
which won several awards in the SAT competitions. It is compatible to solve prob-
lems presented in the .cnf format. With MiniSat+ a SAT solver for problems for-
mulated with pseudo-boolean variables (Section [section][7][4]4.7) is available. With
MiniSat+ pseudo-boolean problems can either be solved directly or converted into
the .cnf format, which then can be passed on to MiniSat or any other CNF compat-
ible SAT solver.

Sat4j
Sat4j [Le Berre and Parrain, 2010] is an open source Java library for solving SAT
problems with a collection of stand-alone Java SAT solvers for a variety of applica-
tions. These applications include problems expressed in the DIMACS .cnf format
and also a pseudo-boolean SAT solver. Since 2008 the Eclipse Java IDE relies on
Sat4j to solve its software dependencies [Le Berre and Parrain, 2012]. The software
can be downloaded from www.sat4j.org.

4.3 Topology Of The HICANN

The layer 1 communication is the topology on which a HICANN routing tool oper-
ates. It consists of 64 horizontal lanes, leading through two crossbar switch matrices
and 254 vertical lanes connecting the synapse switch matrices with the crossbar
switch matrices [Schemmel et al., 2012]. Spike signals arrive in the repeater blocks
at the interface of the HICANN and can be routed along the lanes. Signals either run
through the HICANN to another repeater block or target a synaptic driver within
the HICANN. Signals to the synaptic drivers have to be lead through a connected
synapse switch matrix. As the name suggests, switch matrices are a grid of switches.
By activating a switch, the two lanes crossing at the switches location are connected.
This is illustrated in Figure [figure][1][4]4.1.

The synapse drivers serve as inputs for the neuron circuits in the ANNCORE (Figure
[figure][2][4]4.2). In order to route a signal to the target hardware neuron, the
corresponding synapse driver has to be connected. Of the 64 horizontal lanes there

24

www.sat4j.org

1
2

6
0

1
2

7
1

2
3

4
5

6
9

5
9

4
9

3
9

2
9

1
9

0
8

9
8

8
7

1
2

5
1

2
4

1
2

3
1

2
2

1
2

1
1

2
0

2
5

5
1

2
8

1
2

9

1
3

0

1
3

1

1
3

2

1
3

3

1
3

4
1

3
5

2
5

4
2

5
32

5
2 2

5
12

5
0 2

4
92

4
8

2
2

32
2

2 2
2

12
2

0 2
1

92
1

8 2
1

72
1

6
2

2
4

2
2

5
9

6
9

7

23451 0

233
41 0 6
3

6
2

3
5

1
0

3
2

5
4

7
6

9
5

9
4

9
7

9
6

9
9

9
8

1
0

1
1

0
0

1
0

3
1

0
2

1
2

1
1

2
0

1
2

3
1

2
2

1
2

5
1

2
4

1
2

7
1

2
6

1
2

9 1
2

8
1

3
1 1

3
0

1
3

3 1
3

2
1

3
5 1

3
4

2
2

3 2
2

2
2

2
5 2

2
4

2
2

7 2
2

6
2

2
9 2

2
8

2
3

1 2
3

0
2

4
9 2

4
8

2
5

1 2
5

0
2

5
3 2

5
2

2
5

5 2
5

4

0123

1
0

8
1

0
9

1
1

0
1
1
1

1
1
1

1
1

0
1

0
9

1
0

8

3210

+
4

+
3

2

+
3

2
+

3
2

+
3

2
+

3
2

+
3

2
+

3
2

syndr. top left syndr. bot. left

syndr. top right syndr. bot. right

le
ft
 H

IC
A

N
N

ri
g
h
t
H

IC
A

N
N

3
2

3
3

S
P

L
1

[0
]

S
P

L
1

[4
]

1 2 3

4 5 6

A

B

C
D

E

F

3
4

3
5

3
2

3
3

+
1

6

+
4

+
3

2

+
1

6

+
1

6
+

1
6

F
ig
ur
e
4.
1:

La
ye
r
1
to
po

gr
ap

hy
on

H
IC

A
N
N

by
co
ur
te
sy

of
D
r.

A
nd

re
as

G
rü
bl

[S
ch
em

m
el

et
al
.,
20

12
];
T
he

bl
oc
ks

m
ar
ke
d

1,
3,
4
an

d
6
ar
e
ca
lle
d
sy
na

pt
ic

sw
it
ch

m
at
ri
ce
s,

th
e
bl
oc
ks

m
ar
ke
d
2
an

d
5
ar
e
ca
lle
d
cr
os
sb
ar

sw
it
ch

m
at
ri
ce
s.

T
he

bl
ac
k
do

ts
in

th
e
sw

it
ch

m
at
ri
ce
s
re
pr
es
en
t
th
e
sw

it
ch
es
.
B
lo
ck
s
m
ar
ke
d
w
it
h
le
tt
er
s
ar
e
re
pe

at
er

bl
oc
ks

an
d

in
di
ca
te

th
e
in
te
rf
ac
e
of

th
e
H
IC

A
N
N
.

25

64 repeater with active retiming

64 inputs to synapse drivers

ouputs from 8 neuron-L1 interfaces

sparse crossbar between
horizontal and vertical L1 busses

32 repeater with active retiming

64 horizontal bus lanes

passive sparse switch matrix

to adjacent HICANN

unspecified part contains digital
standard cell logic and memories
for L2 handling and DNC interface

128 vertical L1 bus lanes

lower half of
ANNCORE

256x224 synapses
256 denmem circuits

upper half of
ANNCORE

256x224 synapses
256 denmem circuits

Figure 4.2: HICANN schematic with ANNCOREs by courtesy of Dr. Johannes
Schemmel [Schemmel et al., 2012].

are 8 fixed lanes serving as signal outputs for the neurons of the HICANN. The spike
signals of the up to 512 neurons are merged onto these 8 lanes, so these lanes are the
beginning of routes. Between two HICANNs the lane positions are shifted by two
as can be seen in Figure [figure][1][4]4.1 to facilitate a straight horizontal routing
and usage of all lanes, but this is not of significance for a routing limited to a single
HICANN environment.

Through this layer 1 communcation the HICANNs on the wafer are connectable. A
further connectivity can be enabled by the utilization of the layer 2 communication
for routes across a wafer, between two wafers or to the systems external interface.
Within this feasibility study a HICANN SAT routing for the layer 1 communication
is developed, disregarding the layer 2 communication The focus for this is on hard-
ware constraints caused by the limited number of lanes and their connectivity. I.e.
due to the sparse switch matrices it is not possible to connect all horizontal lanes to
an arbitrary vertical lane and vice versa.

4.4 FPGA Routing

A comparing look at the mapping for a field programmable gate array (FPGA) and
mapping of neural networks reveals that the process of mapping logic instructions
onto an FPGA bears similarities with configuring the HMF system. An FPGA

26

256

256

128

HICANN

1 2 3 4

5 6 7 8

HICANN

HICANN

HICANNHICANN

HICANNHICANN

HICANN

reticle

Figure 4.3: Wafer-scale connections of a reticle by courtesy of Dr. Johannes Schem-
mel [Schemmel et al., 2012]; The wafer is made of repetitions of the il-
lustrated reticle pattern. The density of connections between HICANNs
on different reticles are the same as for HICANNs on the same reticle.

27

HMF System FPGA
ANNCORE Logic Block

Crossbar Switch Matrix Routing Switch
Synapse Switch Matrix Connection Block

Table 4.1: HMF hardware components for layer 1 communication routing and their
comparing equivalents on an FPGA with island style architecture.

Figure 4.4: Island Style FPGA layout with logical blocks LB connection blocks CB
and routing switches RS. The logical blocks form islands in the sea of
lanes of the connection blocks and routing switches.

is an array of identical logical units. These units and their wiring are configured
in order to provide a specific functionality. The wiring for FPGAs with an island
style layout [Betz and Rose, 1999], illustrated in Figure [figure][4][4]4.4, is done
by toggling connection block and routing block switches. This is similar to the
mapping of neural networks onto the HMF system, where neurons have to be placed
and their connections have to be routed. In both cases a software mapping tool has
the task to optimally administer hardware resources. The logic blocks are linked by
connection blocks like ANNCOREs by synapse driver switches. Routing switches in
this layout lead signals similar to the crossbar switches of the HICANN. Therefore
strategies similar to the ones for solving the mapping problem for FPGAs might also
be applicable for the HMF system. The tools implementing the mapping process
for FPGAs are provided by hardware vendors and licenced as proprietary software
[Xilinx, 2012], rendering it impossible to find adaptable mapping solutions among
these tools.

28

Figure 4.5: Testing environment for SAT routing example; The incoming and outgo-
ing arrows at the numbered boxes represent inputs and outputs accord-
ingly. Other arrows indicate switchable connections between horizontal
and vertical lanes. There are one horizontal and two vertical bunches
of four lanes available. The outputs of the blocks lead to the horizontal
lanes, the inputs from the vertical lanes to the blocks. A solution of
the routing task dealt with in the presented example is shown in Figure
[figure][6][4]4.6.

It has been shown in Nam et al. [2002] that once routing problems on FPGAs are
formulated in CNF they can be solved as a SAT problem. The actual challenge
is finding formal descriptions for the defining hardware and software constraints.
Hardware constraints, like the ones described in Section [section][3][4]4.3, express
the topology of the routing environment, e.g. the number of lanes available and how
they are connectable. Software constraints express the connectivity of the neural
network to mapped, e.g. between which points connections have to be established.

4.5 SAT Routing Example

To explain the conceptual process of routing with SAT solvers, an exemplified rout-
ing task is performed. This is done by expressing the constraints in a CNF stored in
the .cnf format and applying a SAT solver. The employed routing test environment
is shown in Figure [figure][5][4]4.5.

29

The task is to establish two routes between specified points. For this example,
routing consists of assigning the routes to the available lane resources to satisfy the
routing goals. Here the goal is to install a first route from the outputs of block 1 to
the inputs of block 2 and a second one from the outputs of block 3 to the inputs of
block 2. Routes may follow the available lanes, but they must not use lanes already
used by other routes.

Nam et al. [2002] describes a strategy to prepare a routing problem for SAT solvers
similar to the following one:

1. Formulate the problem in formal logic expressions

2. Substitute non-boolean variables with boolean ones

3. Convert expressions into CNF

For the given example this strategy is applied in the next sections.

4.5.1 Logic Expressions

Formulating logic expressions is the first step of preparing a routing problem to be
solved with a SAT solver. For the given exemplary problem, this can be divided
into three subproblems. The first one is to introduce a set of non-boolean variables
for both routes. A variable represents the lane allocated for its route in one specific
section. The values of the variables range from 0 to 3, since there are four lanes per
section. For this setup there are four sections per route, namely the outputs, the
horizontal lanes, the vertical lanes and the inputs. To define the routes a set of four
variables each is required, resulting in eight variables

Route 1 = {OUT1,HL1,VLR1, IN1},
Route 2 = {OUT2,HL2,VLR2, IN2}.

The second subproblem is to express the required connectivity of the routes. This
is conveyed by setting variables of adjacent sections as connected. Here the ^
sign declares variables as connected. This does not explicitly imply that the values
assigned to the variables are equal. It merely states that the lanes of the specified
variables have to be connected. This has to kept in mind for the conversion of
the equations into CNF in Section [subsection][3][4,5]4.5.3. The connectivity of the
routes is expressed by

OUT1 ^ HL1 ^ VLR1 ^ IN1, (4.1)
OUT2 ^ HL2 ^ VLR2 ^ IN2. (4.2)

The last subproblem is to provide the necessary constraints to prevent routes from
occupying the same lanes. At the most, a route is represented by a single variable

30

per section. So the problem can be solved by declaring variables regarding the same
sections on the setup as unequal. The two routes in this example have three sections
in common, leading to the three expressions

HL1 6= HL2, (4.3)
VLR1 6= VLR2, (4.4)

IN1 6= IN2. (4.5)

These five lines of expressions can be interpreted as a set of constraints to be satisfied
by assigning values to the variables.

4.5.2 Substitution Of Non-Boolean Variables

Translating the problem into a set of equations in CNF requires boolean variables.
Therefore, the variables have to be substituted by boolean ones. The values of the
variables determine which lanes are used. In this example they can range from 0
to 3, as already mentioned in Section [subsection][1][4,5]4.5.1. These values can
be expressed using two boolean variables. The eight introduced variables require
sixteen boolean ones, which are defined as

OUT1 = { 01 , 02 } = 2 · 01 + 02 ,

OUT2 = { 03 , 04 } = 2 · 03 + 04 ,

HL1 = { 05 , 06 } = 2 · 05 + 06 ,

HL2 = { 07 , 08 } = 2 · 07 + 08

VLR1 = { 09 , 10 } = 2 · 09 + 10 ,

VLR2 = { 11 , 12 } = 2 · 11 + 12 ,

IN1 = { 13 , 14 } = 2 · 13 + 14 ,

IN2 = { 15 , 16 } = 2 · 15 + 16 ,

with i ∈ {0, 1}, i ∈ {01, . . . , 16}.

The circled numbers represent boolean variables. This representation was chosen
because it corresponds to the conventions of the CNF notation [Nam et al., 2002].
With this substitution the hardware of this test environment is described by boolean
variables. This suffices to reformulate the problem with expressions in CNF in order
to compute a solution with a SAT solver.

Beyond this example, the choice of variables and boolean substitutions has to be
adapted for the specific problem. If possible, it is of advantage to directly use
natively boolean variables, like hardware switches which can only toggle between

31

an on and off state. Using such variables avoids the step of artificial substitution
presented in this section before and after applying a SAT solver.

4.5.3 Conversion Into Conjunctive Normal Form

With the variable substitution defined in the last section, the equations set up in
Section [subsection][1][4,5]4.5.1 can be written in CNF. The equations in ([equa-
tion][1][4]4.1) and ([equation][2][4]4.2) are the ones defining the routes, like

OUT1 ^ HL1 .

Using the boolean variables, the equation is interpreted as

2 · 01 + 02 = 2 · 05 + 06 .

This equation has to be to transformed into an expression in CNF evaluating to true
for values satisfying it. For this it suffices to ensure the equality of the variables 01
and 05 and the variables 02 and 06. This can be expressed by two clauses for each
pair of variables. Clauses are connected by a logical and,

(¬ 01 ∨ 05) ∧ (01 ∨ ¬ 05) ∧ (¬ 02 ∨ 06) ∧ (02 ∨ ¬ 06) . (4.6)

There is no general procedure to automatically interpret logical expression and gen-
erate CNF clauses. A first clause is generate manually and applied as a template
to generate clauses for analogous problems. The correctness of this expression is
checked by evaluating a truth table, this is shown in Table [table][2][4]4.2. The
remaining equations connecting the sections of the routes can be transformed anal-
ogously with the exception of HL1 ^ VLR1, HL2 ^ VLR2. These equations
represent the connections of the horizontal with the vertical lanes. For the substitu-
tion of the variables with boolean ones, the connectivity at the crossing of horizontal
and vertical lanes has to be taken into account. The lanes at the crossing are con-
nected with a sparseness of 2. That means every horizontal lane can be wired to a
vertical lane if their numbers are of the same parity. This is realized by two clauses
equalizing the least significant boolean variables. For example for HL1 and VLR1
this is

(¬ 06 ∨ 10) ∧ (06 ∨ ¬ 10) .

These clauses give an accurate description the connectivity. Adding the purposely
left out clauses in analogy to the example of OUT1 and HL1 would lead to an
extension of the SAT problem and constrain the possible assignments for a valid
solution further. This is unnecessary and obstructive for solving the problem, since
possible solutions are lost. So in general there have to be introduced as few clauses
as possible and as many as necessary to accurately describe the problem.

32

01 02 05 06 Evaluation
0 0 0 0 true
0 0 0 1 false
0 0 1 0 false
0 0 1 1 false
0 1 0 0 false
0 1 0 1 true
0 1 1 0 false
0 1 1 1 false
1 0 0 0 false
1 0 0 1 false
1 0 1 0 true
1 0 1 1 false
1 1 0 0 false
1 1 0 1 false
1 1 1 0 false
1 1 1 1 true

Table 4.2: Truth table evaluating the expression ([equation][6][4]4.6); The expression
only evaluates to true for four assignments. These stand for the four
possibilities of route 1 connecting the output of block 1 with any of the
four horizontal lanes of the test setup in Figure [figure][5][4]4.5.

33

The clauses expressing the required connectivity summed up:

(¬ 01 ∨ 05) ∧ (01 ∨ ¬ 05) ∧ (¬ 02 ∨ 06) ∧ (02 ∨ ¬ 06), (OUT1^ HL1)

(¬ 03 ∨ 07) ∧ (03 ∨ ¬ 07) ∧ (¬ 04 ∨ 08) ∧ (04 ∨ ¬ 08), (OUT2^ HL2)

(¬ 06 ∨ 10) ∧ (06 ∨ ¬ 10), (HL1^ VLR1)

(¬ 08 ∨ 12) ∧ (08 ∨ ¬ 12), (HL2^ VLR2)

(¬ 09 ∨ 13) ∧ (09 ∨ ¬ 13) ∧ (¬ 10 ∨ 14) ∧ (10 ∨ ¬ 14), (VLR1^ OUT1)

(¬ 11 ∨ 15) ∧ (11 ∨ ¬ 15) ∧ (¬ 12 ∨ 16) ∧ (12 ∨ ¬ 16). (VLR2^ OUT2)

The equations ([equation][3][4]4.3), ([equation][4][4]4.4) and ([equation][5][4]4.5) for
avoiding the intersection of routes can be transformed in a similar way. Variable
assignments of routes allocating the same lane in the same section must be prohibited
by the corresponding clauses. For equation ([equation][3][4]4.3), HL1 6= HL2, this is
done by applying the boolean substitution, resulting in

2 · 05 + 06 6= 2 · 07 + 08 .

The necessary CNF clauses to express this explicitly forbid every possible assignment
violating this equation. Since there are four lanes per section, there are four clauses.
Each clause excludes the possibility of double occupancy for one lane so that HL1 6=
HL2,

(¬ 05 ∨ ¬ 06 ∨ ¬ 07 ∨ ¬ 08)

∧(¬ 05 ∨ 06 ∨ ¬ 07 ∨ 08)

∧ (05 ∨ ¬ 06 ∨ 07 ∨ ¬ 08)

∧ (05 ∨ 06 ∨ 07 ∨ 08). (4.7)

The clauses for expressing the equations ([equation][4][4]4.4) and ([equation][5][4]4.5)
have the same structure as those in ([equation][7][4]4.7). They are formed analo-
gously to them. The logic expressed by these clauses is the negation of the one
presented in Table [table][2][4]4.2. This can be seen in Table [table][3][4]4.3.

By looking at the course of the lanes in Figure [figure][5][4]4.5 it becomes appar-
ent that the clauses regarding ([equation][5][4]4.5) can be left out. These clauses
prevent double allocation of the inputs of block 2. This case is already covered by
the clauses derived of equation ([equation][5][4]4.5), since one input is connected to
only one vertical lane. The clauses derived from ([equation][5][4]4.5) are redundant.
The remaining eight clauses can be seen in the lines 22-29 of the .cnf file in List-
ing [lstlisting][1][21474836470]1. They are appended to the clauses expressing the
connectivity. Adding these clauses turns the 2SAT problem into a 4SAT problem,
because the problem now contains clauses with up to four different variables.

34

05 06 07 08 Evaluation
0 0 0 0 false
0 0 0 1 true
0 0 1 0 true
0 0 1 1 true
0 1 0 0 true
0 1 0 1 false
0 1 1 0 true
0 1 1 1 true
1 0 0 0 true
1 0 0 1 true
1 0 1 0 false
1 0 1 1 true
1 1 0 0 true
1 1 0 1 true
1 1 1 0 true
1 1 1 1 false

Table 4.3: Truth table evaluating the expressions of ([equation][7][4]4.7); For each
assignment leading to double allocation of lanes one of the clauses in the
expression evaluates to false.

Limiting Values Of Variables To A Specified Range

In this example, a variable ranges over 4 values, since there are 4 lanes to choose
from in each section. This range fits exactly for converting the non-boolean variable
into two boolean ones, because the range of values for the two corresponding boolean
variables also is 4.

Limiting ranges of variables can be necessary to apply other hardware constraints.
For example if there are only a number of n synaptic inputs available, the SAT
solver must only be allowed to assign values ranging from 0 to n− 1 to a variable S
representing the target synaptic input of an arbitrary route.

This can be achieved by introducing boolean variables converting n into the binary
system. Assuming i is the minimal number of binary digits required to express n in
the binary system, S can be expressed by boolean variables sk with,

S =
i∑

k=0

2ksk , sk ∈ {0, 1}.

The maximum value that could possibly be assigned to the variable S without adding
constraining expressions is Smax = 2i − 1 ≥ n− 1, with sk = 1 ,∀ k.

35

Picking n = 5, results in i = 3, three boolean variables sk for S = s0+2·s1+4·s2 and
Smax = 7 > n − 1. The valid set of assignments for S would be M = {0, 1, 2, 3, 4},
so to ensure S ∈M , additional expressions have to be introduced, constraining the
possible values of S. By adding the expressions for S 6= 5, S 6= 6 and S 6= 7 to the
set of constraints, the range of S is limited to its valid set M . The corresponding
CNF clauses,

¬s0 ∨ s1 ∨ ¬s2, (4.8)
s0 ∨ ¬s1 ∨ ¬s2, (4.9)
¬s0 ∨ ¬s1 ∨ ¬s2, (4.10)

are evaluated in the truth Table [table][4][4]4.4.

Decimal s2 s1 s0 Evaluation
0 0 0 0 true
1 0 0 1 true
2 0 1 0 true
3 0 1 1 true
4 1 0 0 true
5 1 0 1 false
6 1 1 0 false
7 1 1 1 false

Table 4.4: Truth table evaluating the CNF expressions in ([equa-
tion][8][4]4.8),([equation][9][4]4.9) and ([equation][10][4]4.10). Only
values of the set M = {0, 1, 2, 3, 4} evaluate to true, confirming the
sufficiency of the constraints.

4.5.4 Routing Solution

In order to process the exemplary SAT problem with a SAT solver, a .cnf file is
created, containing the CNF clauses generated in the previous section. This file
is shown in Listing [lstlisting][1][21474836470]1. By applying MiniSat the solution
presented in Table [table][5][4]4.5 is produced.

36

Variable Value Variable Value
01 0 09 0

02 0 10 0

03 0 11 0

04 1 12 1

05 0 13 0

06 0 14 0

07 0 15 0

08 1 16 1

Table 4.5: The solution of the exemplary routing problem described in the previous
section and by the .cnf file in Listing [lstlisting][1][21474836470]1. The
assignment is obtained with MiniSat. The assigned values satisfy the
CNF clauses of the input file.

The assigned values can be interpreted by reversing the boolean substitution defined
in Section [subsection][2][4,5]4.5.2. It becomes apparent that one route is located
on the lanes numbered with 0, the other route on the lanes numbered with 1. The
routes are visualized in Figure [figure][6][4]4.6.

4.6 HICANN Routing

The concept explicated in Section [section][5][4]4.5 is now extended to the layer
1 communication environment, which leads towards a routing tool on HICANN
scale as preliminary implementation of a wafer scale routing as proposed in Section
[section][1][4]4.1.

Examples for translating logical constraints into CNF clauses have been shown in
Section [subsection][3][4,5]4.5.3. In order to be able tp utilize SAT solvers in an
automated mapping flow, the process of generating clauses has to be automated.
This can be accomplished by deriving more generalized rules. These rules cover
all types of constraints, hardware constraints as well as software constraints. The
hardware constraints are the ones needed for the description of the HICANN rout-
ing environment specified in Section [section][3][4]4.3. The software constraints are
the ones describing the connectivity of the neural network as mentioned in Section
[section][4][4]4.4.

A prerequisite of formulating the constraints in CNF is the definition of variables
and the assessment of logical constraints as seen in Section [section][5][4]4.5.

37

Figure 4.6: Visualization of the testing environment for routing. The task was to find
a route connecting block 1 with block 2 and another route connecting
block 3 with block 2. The marked routes are the ones computed by
Minisat 2.2.1 from the input file in Listing [lstlisting][1][21474836470]1.
The routes provide the requested connectivity and do not intersect, so
this exemplary routing problem is solved.

38

Structure Number of Variables
Crossbar Switch Matrix 128
Synapse Switch Matrix 1, 792
Switches HICANN 7, 424
Switches Wafer (≈ 400× HICANN) 2, 969, 600

Table 4.6: Count of necessary variables for hardware structures of different scale.

4.6.1 Definition And Assessment Of Variables For HICANN
Routing

For the routing on the layer 1 communication lanes it is possible to choose a native
type of variables. Since the routing is configured by setting the switches is the
crossbar matrices and synapse switch matrices, the switches can be interpreted as
boolean variables. Routing on a native level has the advantage of reducing the
complexity of preparation and post-processing. Instead, the output of the solver
can directly be used as hardware configuration for the switch matrices.

Since the pattern of switch matrices is repeating on a HICANN basis, the variables
have to be assessed on this level. In one HICANN unit there are two crossbar switch
matrices and four synapse switch matrices. As can be seen in Figure [figure][1][4]4.1,
the matrices of one type are identical except for horizontal and vertical mirroring.
This symmetry can be exploited, only two templates in the form of a matrix with
corresponding entries are required to describe the structure of the layer 1 commu-
nication topology. One template for the crossbar switch matrices and one for the
synapse switch matrices are duplicated and symmetrically transformed to cover the
whole hardware space.

Switch Matrix Variables

In order to determine the required number of variables for the topology shown in
Figure [figure][1][4]4.1, the number of switches are counted in Table [table][6][4]4.6.
The number of variables approximated for one wafer is of the same magnitude as
the number of variables of the more complex benchmarks the SAT solvers face in
the SAT competition [Competition, 2012]. The variables are represented by entries
in matrices of the dimension 128 × 64 for crossbar switch variables and 128 × 112
in the case of synapse switch variables. The format of the matrices is explained in
Section [subsection][2][4,6]4.6.2.

39

4.6.2 Assessment Of Constraints

Since the hardware constraints only depend on the hardware used, they can already
be generated at compile time, so that they can be recalled during operation for
experiments without further computational efforts.

The software constraints describing the network naturally depend on the user input
network, which is to be mapped. These constraints have to be generated dynamically
during operation.

Sparseness Constraints

The routing limitations given by the sparseness of the switch matrices, are repre-
sented in the implemented template matrices mentioned in Section [subsection][1][4,6]4.6.1.
The dimensions of a template matrix are chosen to fit an all-to-all connectivity, i.e.
every entry represents the connection of the lane of its row with the lane of its col-
umn. The connectivity on the HICANN does not allow all-to-all connections, but
is sparse. Switches not present on the hardware are marked by the entry −1 in the
switch matrix template. Switches which are present on the hardware are marked
by an integer entry in the template matrix with the number of the switch. This
number also represents the variable name used for this switch. An exemplary 4× 4
switch matrix template with 8 variables is written as,

−1 1 −1 2
−1 3 −1 4
5 −1 6 −1
7 −1 8 −1

When generating constraints to connect lanes, the two switch matrix templates are
used to implicitly ensure that lanes are only connected if their regarding switch
exists.

The template matrices are only used to generate the hardware constraints and are
not related to any kind of hardware user input. Since these constraints change only
with the type of hardware used, the template matrices become redundant once the
constraints are generated.

Hardware Constraints

As a guideline it is recommended only to activate one switch for the sender and one
switch for the signal receiver between two repeaters on a single lane. A consequence
of this are clauses representing hardware constraints, prohibiting more than one

40

signal per lane. This affects synapse switches as well as crossbar switches, because
within a switch matrix only one switch per row and per lane can be active.

Formulating hardware constraints means to explicitly prevent illegal configuration
states as shown in Section [subsection][3][4,5]4.5.3. If there is a number i of boolean
variables, there are 2i possible states. Assuming these variables represent switches
in the same matrix row or column, there are only i+ 1 legal configuration states (i
different states with a single switch turned on and one with all switches turned off).
The remaining configuration states are illegal and each of them has to be declared
explicitly in its own CNF clause.

By formulating these constraints it appears that the number of CNF expressions for
crossbar switch matrices is manageable, being lower than 1, 000 clauses per matrix.
Unfortunately this can not be said about the number of CNF expression used to
describe the hardware constraints of a synapse switch matrix. In a synapse switch
matrix there are up to 14 switches in one row. As a result, 214−15 = 16, 369 clauses
are generated for a single row. In this case, over 7, 000, 000 CNF clauses are needed
for one matrix, of which four are part of a single HICANN. This can be avoided by
using pseudo boolean clauses as described in the following section.

4.7 Pseudo Boolean SAT Routing

For some applications, problems formulated with pseudo-boolean clauses are shorter
than plain boolean clauses in CNF. Pseudo boolean clauses are a generalized form
of boolean clauses [Eén and Sörensson, 2006] and can be expressed as

n∑
i=0

cisi ≥ cn+1, with ci ∈ Z, si ∈ {0, 1}.

For ci = 1 the clause reduces to a plain boolean CNF clause. The extension of
CNF clauses with linear factors does not alter the formulated SAT problem in its
principle, since SAT problems with pseudo boolean clauses can be translated into
an equal problem formulated with CNF clauses [Eén and Sörensson, 2006].

Since 2005 there is a additional SAT competition for SAT problems formulated with
pseudo boolean clauses [Manquinho et al., 2006]. The input format for the solvers
features an extended syntax, called .opb format. The SAT solvers presented in
Section [section][2][4]4.2 support this format. In addition to the relational operator
≥, the operators = and ≤ are valid in this format. A minimization function, which
can be provided within this format along with the pseudo boolean clauses, keeps the
number of active switches at a minimum, preventing unwanted routes.

The application of pseudo boolean clauses solves the problem stated the end of the
previous section. The CNF clauses for the hardware constraints of a single row in
an arbitrary switch matrix reduce to a single pseudo boolean clause.

41

An example for a pseudo-boolean clause confining the switches represented by the
variables to a single active switch is

1 s1 + 1 s2 + 1 s3 ≤ 1.

Only one of the variables can be set to true/1 to achieve a valid evaluation.

4.7.1 Connecting Switch Matrices

In order to connect the interfaces of switch matrices to form a HICANN structure as
shown in Section [section][3][4]4.3, there are functions implemented generating the
correspondent hardware constraints. The function for connecting a crossbar switch
matrix with a synapse switch matrix produces clauses similar to,

1s1 + 1s2 − 1s3 − 1s4 − · · · − 1s13 − 1s14 − 1s15 − 1s16 = 0.

The variables s1 and s2 belong to a crossbar switch matrix, the variables from s3 to
s4 belong to a connected synapse switch matrix. The switches corresponding to the
variables belong to the same column on the hardware, i.e. they share a vertical lane
on the HICANN environment, shown in Figure [figure][1][4]4.1.

Connecting constraints are generated for switch matrices not separated by an re-
peater. Repeaters are represented by dedicated variables. These variables are used
as input switches by a routing procedure of higher level. So for two repeaters on
the same lane s1, sn and the row of switches between them s2 to sn−1, the following
constraint is sufficient

n∑
i=1

si ≤ 2.

If one of the input switches is activated by adding a software constraint s1 = 1
or sn = 1, another switch is activated. This either leads the established route
onto another switch matrix on the same HICANN or through the HICANN if the
other input switch is explicitly actived by an additional software constraint. If a
route is lead onto the next synapse switch matrix and targets into the neighbouring
ANNCORE, a connection is automatically established. Here the addressed synapse
driver can either be specified by adding the corresponding software constraint or
the synapse driver is chosen by the SAT solver. It is to be noted, that the manual
specification is not intended to be a feature of an applicable routing tool, but present
in the current implementation.

To fully describe the hardware constraints of the layer 1 communication connectivity
on a HICANN environment a single clause for every lane is required. This results
in 2× 112 + 64 = 288 rows and 256 columns, a total of 544 clauses per HICANN.

42

4.7.2 Realizing Input To Output Assignment

To implement networks software constraints are used. They are added to the loaded
hardware constraints during runtime. To connect a specified input to a specified
output, a method is implemented adding the required pseudo boolean expressions.
Since the hardware constraints already cover the possible connectivity on the HI-
CANN, the software constraints required as user input are limited to simple pairs
of input and output statements for the activation of repeaters and synapse drivers.
The software constraints preventing intersections are derived from these statements.
The constraints derived until this point are not sufficient to provide an automated
input to output assignment. This assignment is a complex problem, since multiplex-
ing of synapse driver has to be considered if the required synapse drivers exceed the
number of the physical implementations. This is not part of this feasibility study.

4.7.3 Visual Verification

Currently the routing tool writes the computed assignment into a file and there is
no visualization implemented to graphically display the output configuration for the
switch matrices. Recently a visualization for the HICANN configuration has been
implemented for display in a web browser by Dr. Björn Kindler. The output of the
developed routing tool could be linked to this visualization, but this feature is not
realized during this work due to temporal limitations.

4.7.4 Handling Of Unsatisfiable Problems

As it is the nature of booleans, a SAT problem either is satisfiable or it is not
satisfiable. A major draw back for the practical application of a SAT based routing
tool is, that once a SAT solver fails to find a satisfying assignment for a problem,
not even an approximated solution is available.

This problem is solved by using the MAXSAT mode of a solver. If there is no solution
available satisfying all clauses, the SAT solver tries to find an assignment for the
variables satisfying as many clauses of the problem as possible. By specifying weights
for the clauses important connections can be preferred. Of course the weights have
to be applied by the user and the MAXSAT mode comes with high computational
effort compared to standard SAT solving.

4.8 Discussion and Outlook

It has been shown that SAT solvers can be utilized to approach the routing problem
on neuromorphic hardware. The current implementation is present in the form of a

43

feasibility study and is limited to the HICANN environment, but can be extended
to a wafer scale routing tool.

4.8.1 Ratio Of The Numbers Of Clauses To Variables

For the 2 and 3SAT problem it has been noted in Clote and Kranakis [2002, p. 208],
that for a ratio r = m

n
a transition of probability from satisfying to unsatisfying

of a random instance can be observed. The ratio is defined by the quotient of the
number of clauses m and the number of variables n. It is shown that the point of
transition for the 2SAT problem is exactly at r = 1 [Clote and Kranakis, 2002]. The
point of transition for the 3SAT is approximated numerically and is stated to be
at r ≈ 4.2. At this point, the probability of a random instance of variables to be
a satisfying solution to the problem described by the clauses is fifty percent. For
a ratio below this point a random instance is more likely to be satisfying solution.
For the performance of a SAT solver it is of interest to avoid a balanced ratio. Since
the routing problem is not of the grade k = 2 or k = 3 the rate of transition is
unknown, but can be assumed to be above the rate for the 2SAT problem. With
the currently implemented constraints with m < 600 and n > 7000 the ratio of the
implemented routing in this thesis is at r < 0.08. This is far from a balanced ratio
and of benefit for the application of a SAT solver since it is more likely to find a
satisfying assignment instantly.

4.8.2 Declarative Programming

In order to solve the routing problem as a SAT problem, constraints have to be
generated and a satisfying assignment has to be found. By the utilization of SAT
solvers as a back end of the routing, only the task of generating constraints is left
to the routing tool. The application of algorithms is restricted to the SAT router.
The programming approach used for the routing tool is said to be a declarative
programming approach. The routing tool rather controls what will be computed,
while the applied SAT solver controls the how. I.e. the processing of the accumulated
clauses is left to the SAT solver.

The advantage of the declarative approach is its easy extendability. Additional hard-
ware constraints as well as software constraints can be added to the list of existing
constraints without requiring changes in the algorithmic approach or affecting the
functionality of the routing tool. This can be useful for system testing, disabling
uncalibrated hardware components or hardware development.

The advantage of utilizing SAT solvers as back end also lies in avoiding software er-
rors in the algorithmic component of the mapping tool. The SAT solvers presented
in Section [section][2][4]4.2 have been developed for several years, have proven to be
stable and are maintained and developed further on.

44

To sum up, the current implementation of the HICANN level SAT routing provides
template matrices representing the structure of crossbar switch matrices and synapse
switch matrices. These are used to produce an image of the HICANN layer 1
routing environment by which the possibilities of connectivity are defined. The
tool generates hardware constraints, expressing these possibilities as pseudo boolean
clauses. A user is able to require routes with defined inputs and specified outputs
and the tool realizes the routes without intersections if the resources are sufficient.

In order to provide a fully applicable routing tool on the basis of this feasibility study,
an automated output assignment as explained in Section [subsection][2][4,7]4.7.2 has
to be implemented. Another essential requirement is the handling of unsatisfiable
problems as described in the previous section.

In future, the routing tool implemented within the framework of this feasibility
study can be extended to a wafer scale routing tool. In order to achieve this,
multiple HICANN switch matrix templates have to be combined to form a wafer
scale image of the layer 1 communication. For a wafer scale routing, the template
matrices have to be updated to integrate the layer 2 communication. A parallel
step is to integrate the routing tool into the mapping tool framework by means of a
proper C++ interface. Such a tool can provide a solution to the routing problem on
the HMF system and is adaptable to neuromorphic hardware to be developed.

45

Part I

Appendix

46

1 p cnf 16 28
2 −1 5 0
3 1 −5 0
4 −2 6 0
5 2 −6 0
6 −3 7 0
7 3 −7 0
8 −4 8 0
9 4 −8 0

10 −6 10 0
11 6 −10 0
12 −8 12 0
13 8 −12 0
14 −9 13 0
15 9 −13 0
16 −10 14 0
17 10 −14 0
18 −11 15 0
19 11 −15 0
20 −12 16 0
21 12 −16 0
22 6 5 8 7 0
23 −6 5 −8 7 0
24 6 −5 8 −7 0
25 −6 −5 −8 −7 0
26 9 10 11 12 0
27 −9 10 −11 12 0
28 9 −10 11 −12 0
29 −9 −10 −11 −12 0

Listing 1: A .cnf file describing the problem of and in a for SAT solvers compatible
format. The first line is the problem line stating the sort of problem that
is to be solved, in this case CNF, the number of variables n = 16 and
clauses m = 28.

47

A Lists

A.1 List of Figures

2.1 Model comparison with stimulation 11

3.1 Outline of the L2/3 model; Each element represents a population
of cells. Excitatory connections are marked by an arrow, inhibitory
connections are marked by circles. Note that for every kind of con-
nection only a single representative one is shown for demonstration
purposes. The number next to a connection indicates the probability
of a connection for two neurons of the linked populations. 13

3.2 Scheme of a regular ring network (left) and a small world network
(right); By rewiring the connections of a regular network with the
probability p, a small world network can be created. Only a few
rewired connections suffice to decrease the average path length l sig-
nificantly, because they function as shortcuts in the network. 15

3.3 Sweep with METIS partitioning tool for a network consisting of five
separated partitions; Cell count nNeurons = 4, 750, edge count nEdges =
563, 383, sweep computation wall clock time = 15 s 16

3.4 Sweep with Metis partitioning tool for a random network with the
connection probability p = 0.1 for one neuron to another. Cell count
nNeurons = 10, 000, edge count nEdges = 4, 999, 417, sweep computa-
tion wall time = 9 m 15 s. The function plotted is a fit of f(x) =
d−a exp(−bx+c)

x
with the values a = 19753804, b = 0.30741971, c =

−1.6223542, d = 4727134.0. 18
3.5 Sweep with Metis partitioning tool for the KTH model network, as

explained in Section [section][1][3]3.1; Gaps in the data are a result
of abnormal termination of Metis for that particular number of par-
titions. Cell count nNeurons = 2, 376, edge count nEdges = 120, 510,
sweep computation wall time = 31 s 19

3.6 Sweeps with METIS for the small world network model; Sweeps for
different rewiring probabilities p. Cell count nNeurons = 10, 000, edge
count nEdges = 20, 000, sweep computation wall clock time = 40 s for
the whole plot, including five adjustments for p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
which are not displayed. 20

48

4.1 Layer 1 topography on HICANN by courtesy of Dr. Andreas Grübl
[Schemmel et al., 2012]; The blocks marked 1,3,4 and 6 are called
synaptic switch matrices, the blocks marked 2 and 5 are called cross-
bar switch matrices. The black dots in the switch matrices represent
the switches. Blocks marked with letters are repeater blocks and
indicate the interface of the HICANN. 25

4.2 HICANN schematic . 26
4.3 Reticle . 27
4.4 Island Style FPGA layout with logical blocks LB connection blocks

CB and routing switches RS. The logical blocks form islands in the
sea of lanes of the connection blocks and routing switches. 28

4.5 Testing environment for SAT routing example; The incoming and
outgoing arrows at the numbered boxes represent inputs and outputs
accordingly. Other arrows indicate switchable connections between
horizontal and vertical lanes. There are one horizontal and two verti-
cal bunches of four lanes available. The outputs of the blocks lead to
the horizontal lanes, the inputs from the vertical lanes to the blocks.
A solution of the routing task dealt with in the presented example is
shown in Figure [figure][6][4]4.6. 29

4.6 Visualization of the testing environment for routing. The task was
to find a route connecting block 1 with block 2 and another route
connecting block 3 with block 2. The marked routes are the ones
computed by Minisat 2.2.1 from the input file in Listing [lstlist-
ing][1][21474836470]1. The routes provide the requested connectivity
and do not intersect, so this exemplary routing problem is solved. . . 38

A.2 List of Tables

2.1 Transformations to dimensionless parameters 10

4.1 HMF hardware components for layer 1 communication routing and
their comparing equivalents on an FPGA with island style architecture. 28

4.2 Truth table evaluating the expression ([equation][6][4]4.6); The ex-
pression only evaluates to true for four assignments. These stand
for the four possibilities of route 1 connecting the output of block
1 with any of the four horizontal lanes of the test setup in Figure
[figure][5][4]4.5. 33

4.3 Truth table evaluating the expressions of ([equation][7][4]4.7); For
each assignment leading to double allocation of lanes one of the
clauses in the expression evaluates to false. 35

4.4 Truth table evaluating the CNF expressions in ([equation][8][4]4.8),([equation][9][4]4.9)
and ([equation][10][4]4.10). Only values of the set M = {0, 1, 2, 3, 4}
evaluate to true, confirming the sufficiency of the constraints. 36

49

4.5 The solution of the exemplary routing problem described in the previ-
ous section and by the .cnf file in Listing [lstlisting][1][21474836470]1.
The assignment is obtained with MiniSat. The assigned values satisfy
the CNF clauses of the input file. 37

4.6 Variable count . 39

50

B Bibliography

B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear-time algorithm for testing the
truth of certain quantified boolean formulas. Information Processing Letters, 14
(4):195, 1982.

Vaughn Betz and Jonathan Rose. Fpga routing architecture: segmentation and
buffering to optimize speed and density. In Proceedings of the 1999 ACM/SIGDA
seventh international symposium on Field programmable gate arrays, FPGA ’99,
pages 59–68, New York, NY, USA, 1999. ACM. ISBN 1-58113-088-0. doi: 10.
1145/296399.296428. URL http://doi.acm.org/10.1145/296399.296428.

Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity. Journal of Neurophys-
iology, 94(5):3637–3642, 2005. doi: 10.1152/jn.00686.2005. URL http://jn.
physiology.org/content/94/5/3637.abstract.

D. Brüderle, M.A. Petrovici, B. Vogginger, M. Ehrlich, T. Pfeil, S. Millner, A. Grübl,
K. Wendt, E. Müller, M.O. Schwartz, et al. A comprehensive workflow for general-
purpose neural modeling with highly configurable neuromorphic hardware sys-
tems. Biological cybernetics, 104(4):263–296, 2011.

JC Butcher. Numerical methods for ordinary differential equations. 2003.

Santiago Ramón. Cajal. Studien uber die Hirnrinde des Menschen. Number Bd.
5 in Studien uber die Hirnrinde des Menschen. Johann Ambrosius Barth, 1906.
URL http://books.google.de/books?id=eMmtxDaSFv8C.

P. Clote and E. Kranakis. Boolean Functions and Computation Models. Texts
in Theoretical Computer Science. Springer, 2002. ISBN 9783540594369. URL
http://books.google.de/books?id=3qdnOofDTIIC.

SAT Competition, December 2012. URL http://www.satcompetition.org/.

A. Compte, N. Brunel, P.S. Goldman-Rakic, and X.J. Wang. Synaptic mechanisms
and network dynamics underlying spatial working memory in a cortical network
model. Cerebral Cortex, 10(9):910–923, 2000.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM. doi: 10.1145/800157.805047. URL
http://doi.acm.org/10.1145/800157.805047.

51

http://doi.acm.org/10.1145/296399.296428
http://jn.physiology.org/content/94/5/3637.abstract
http://jn.physiology.org/content/94/5/3637.abstract
http://books.google.de/books?id=eMmtxDaSFv8C
http://books.google.de/books?id=3qdnOofDTIIC
http://www.satcompetition.org/
http://doi.acm.org/10.1145/800157.805047

R. Cossart, D. Aronov, and R. Yuste. Attractor dynamics of network up states in
the neocortex. Nature, 423(6937):283–288, 2003.

A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Per-
rinet, and P. Yger. PyNN: a common interface for neuronal network simulators.
Front. Neuroinform., 2(11), 2008.

DIMACS. Dimacs satisfiability suggested format.

R. Douglas, M. Mahowald, and C. Mead. Neuromorphic analogue vlsi. Annual
review of neuroscience, 18:255–281, 1995.

Rodney Douglas. Lecture on constructive cortical computation, the european future
technologies conference and exhibition, May 2011. URL http://videotorium.
hu/en/recordings/details/2956,Constructive_cortical_computation.

MJ During and DD Spencer. Extracellular hippocampal glutamate and spontaneous
seizure in the conscious human brain. The lancet, 341(8861):1607–1610, 1993.

N. Eén and N. Sörensson. Translating pseudo-boolean constraints into sat. Journal
on Satisfiability, Boolean Modeling and Computation, 2(3-4):1–25, 2006.

Niklas Eén and Niklas Sörensson. Minisat satrouter. http://www.minisat.se,
September 2012.

J.M. Fuster, G.E. Alexander, et al. Neuron activity related to short-term memory.
Science, 173(997):652–654, 1971.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-completeness (A Series of books in the mathematical sciences).
W.H.Freeman & Co Ltd, 1979. ISBN 0716710447.

CC Hilgetag, GAPC Burns, MA O’Neill, JW Scannell, and MP Young. Anatomical
connectivity de R©nes the organization of clusters of cortical areas in the macaque
monkey and the cat. Phil Trans R Soc Lond B 355 (2000), pages 91–110, 2000.

M.L. Hines and N.T. Carnevale. The neuron simulation environment. Neural com-
putation, 9(6):1179–1209, 1997.

A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and
its application to conduction and excitation in nerve. The Journal of physiology,
117(4):500, 1952.

G. Karypis and V. Kumar. The metis serial graph partitioning tool, 1998.

Samuel Kaski and Teuvo Kohonen. Winner-take-all networks for physiological mod-
els of competitive learning. Neural Networks, 7(6–7):973 – 984, 1994. ISSN 0893-
6080. doi: 10.1016/S0893-6080(05)80154-6. URL http://www.sciencedirect.
com/science/article/pii/S0893608005801546. <ce:title>Models of Neurody-
namics and Behavior</ce:title>.

52

http://videotorium.hu/en/recordings/details/2956,Constructive_cortical_computation
http://videotorium.hu/en/recordings/details/2956,Constructive_cortical_computation
http://www.minisat.se
http://www.sciencedirect.com/science/article/pii/S0893608005801546
http://www.sciencedirect.com/science/article/pii/S0893608005801546

A.M. Katz and P.B. Katz. Disease of the heart in the works of hippocrates. British
heart journal, 24(3):257–264, 1962.

D. Le Berre and A. Parrain. The sat4j library, release 2.2 system description. Journal
on Satisfiability, Boolean Modeling and Computation, 7:59–64, 2010.

D. Le Berre and A. Parrain. Sat4j website. http://www.sat4j.org, October 2012.

Weichen Liu, Mingxuan Yuan, Xiuqiang He, Zonghua Gu, and Xue Liu. Efficient
sat-based mapping and scheduling of homogeneous synchronous dataflow graphs
for throughput optimization. In Real-Time Systems Symposium, 2008, pages 492
–504, 30 2008-dec. 3 2008. doi: 10.1109/RTSS.2008.49.

N.K. Logothetis, C. Kayser, and A. Oeltermann. In vivo measurement of cortical
impedance spectrum in monkeys: implications for signal propagation. Neuron, 55
(5):809–823, 2007.

M. Lundqvist, M. Rehn, M. Djurfeldt, and A. Lansner. Attractor dynamics in a
modular network of neocortex. Network:Computation in Neural Systems, 17:3:
253–276, 2006.

Mikael Lundqvist, Albert Compte, and Anders Lansner. Bistable, irregular firing
and population oscillations in a modular attractor memory network. PLoS Comput
Biol, 6(6), 06 2010.

V.M. Manquinho, O. Roussel, et al. The first evaluation of pseudo-boolean solvers
(pb’05). Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):
103–143, 2006.

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In Data Engineering,
2002. Proceedings. 18th International Conference on, pages 117 –128, 2002. doi:
10.1109/ICDE.2002.994702.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: engineering an efficient sat solver. In Proceedings of the 38th
annual Design Automation Conference, DAC ’01, pages 530–535, New York, NY,
USA, 2001. ACM. ISBN 1-58113-297-2. doi: 10.1145/378239.379017. URL http:
//doi.acm.org/10.1145/378239.379017.

Gi-Joon Nam, K.A. Sakallah, and R.A. Rutenbar. A new fpga detailed routing
approach via search-based boolean satisfiability. Computer-Aided Design of In-
tegrated Circuits and Systems, IEEE Transactions on, 21(6):674 –684, jun 2002.
ISSN 0278-0070. doi: 10.1109/TCAD.2002.1004311.

T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M. Petrovici, M. Schmuker,
D. Brüderle, J. Schemmel, and K. Meier. Six networks on a universal neuromor-
phic computing substrate. arXiv preprint arXiv:1210.7083, 2012.

53

http://www.sat4j.org
http://doi.acm.org/10.1145/378239.379017
http://doi.acm.org/10.1145/378239.379017

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes
3rd edition: The art of scientific computing. Cambridge University Press, 2007.

Sean Safarpour, Andreas Veneris, Gregg Baeckler, and Richard Yuan. Efficient sat-
based boolean matching for fpga technology mapping. In Proceedings of the 43rd
annual Design Automation Conference, DAC ’06, pages 466–471, New York, NY,
USA, 2006. ACM. ISBN 1-59593-381-6. doi: 10.1145/1146909.1147034. URL
http://doi.acm.org/10.1145/1146909.1147034.

J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner. A wafer-
scale neuromorphic hardware system for large-scale neural modeling. In Proceed-
ings of the 2010 IEEE International Symposium on Circuits and Systems (IS-
CAS), pages 1947–1950, 2010.

Johannes Schemmel, Andreas Grübl, and Sebastian Millner. Specification of the
HICANN microchip. FACETS project internal documentation, 2012.

Romain Touboul, Jonathanand Brette. Dynamics and bifurcations of the adap-
tive exponential integrate-and-fire model. Biological Cybernetics, 99(4):319–334,
Nov 2008. doi: 10.1007/s00422-008-0267-4. URL http://dx.doi.org/10.1007/
s00422-008-0267-4.

Yu Wang, Yong He, Yi Shan, Tianji Wu, Di Wu, and Huazhong Yang. Hardware
computing for brain network analysis. In Quality Electronic Design (ASQED),
2010 2nd Asia Symposium on, pages 219 –222, aug. 2010. doi: 10.1109/ASQED.
2010.5548242.

Duncan J Watts and Steven H Strogatz. Collective dynamics of "small-world"
networks. Nature, 393:440 – 442, 1998.

R. Glenn Wood and Rob A. Rutenbar. Fpga routing and routability estimation
via boolean satisfiability. In Proceedings of the 1997 ACM fifth international
symposium on Field-programmable gate arrays, FPGA ’97, pages 119–125, New
York, NY, USA, 1997. ACM. ISBN 0-89791-801-0. doi: 10.1145/258305.258322.

Inc. Xilinx. Spartan 6 product overview. http://www.xilinx.com/products/
silicon-devices/fpga/spartan-6/index.htm, June 2012.

54

http://doi.acm.org/10.1145/1146909.1147034
http://dx.doi.org/10.1007/s00422-008-0267-4
http://dx.doi.org/10.1007/s00422-008-0267-4
http://www.xilinx.com/products/silicon-devices/fpga/spartan-6/index.htm
http://www.xilinx.com/products/silicon-devices/fpga/spartan-6/index.htm

Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den (Datum) .

55

	Introduction
	AdEx Neuron Model Implementation
	AdEx Model
	Dimensionless Model
	Slope Factor Problem
	LIF Neuron Model With Adaptation
	Verification Of The Implementation With Reference Simulator

	Partitioning Of Neural Networks
	Layer 2/3 Attractor Memory Network
	Structure
	Emergent functions and features

	Small World Network
	Optimal Set Analysis
	Ideal Case
	Worst Case
	Analyzing Network Models

	Discussion and Outlook

	SAT Routing
	Mapping Flow
	The Satisfiability Problem
	Topology Of The HICANN
	FPGA Routing
	SAT Routing Example
	Logic Expressions
	Substitution Of Non-Boolean Variables
	Conversion Into Conjunctive Normal Form
	Routing Solution

	HICANN Routing
	Definition And Assessment Of Variables For HICANN Routing
	Assessment Of Constraints

	Pseudo Boolean SAT Routing
	Connecting Switch Matrices
	Realizing Input To Output Assignment
	Visual Verification
	Handling Of Unsatisfiable Problems

	Discussion and Outlook
	Ratio Of The Numbers Of Clauses To Variables
	Declarative Programming

	Appendix
	Lists
	List of Figures
	List of Tables

	Bibliography

