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Testing the Accuracy of Neuromorphic Device Con�gurations

This thesis originates from the core problem that as complexity in neuromorphic modeling

rises, the ability to spot �aws in the model implementation and con�guration, especially in

case of recurrent neuronal networks, diminishes strongly. This problem is approached by

providing methods that ensure the validity, functionality, and a maximum degree of accu-

racy of neuronal network model implementations. To this end, various high-level neuronal

network tests have been developed, which check the correct mapping of neuronal network

descriptions to hardware-speci�c con�gurations. These tests are integrated into a newly

developed framework, which has been speci�cally designed towards �exibility in incorporat-

ing complex and heterogeneous testing work�ows. Experimental proof of the versatility,

applicability, and bene�ts of the high-level neuronal network tests is presented. The tests

are used to check the functionality of two state-of-the-art hardware back-ends developed

within the community of the FACETS research collaboration.

Verfahren zum Testen der Akkuraten Kon�guration Neuromorpher Hardwaresysteme

Ausgangspunkt dieser Arbeit ist ein Kernproblem des neuromorphen Modellierens, näm-

lich dass die Fehleridenti�kation und -suche in der Implementation und Kon�guration eines

Modells, besonders im Falle von rekurrenten neuronalen Netzwerken, durch die vorhande-

ne Komplexität stark erschwert wird. Ein Lösungansatz für dieses Problem sind die hier

präsentierten Methoden, welche die Validität, Funktionalität und ein Höchstmaÿ an Ge-

nauigkeit einer neuronalen Netzwerkimplementation sicherstellen sollen. Zu diesem Zweck

sind diverse Tests auf Basis funktionaler Mikronetzwerke entwickelt worden, welche die

richtige Übersetzung von Beschreibungen neuronaler Architekturen zu der entsprechenden

hardware-spezi�schen Kon�guration überprüfen. Diese Tests werden in eine neu entwickel-

te Softwarestruktur integriert, welche besonders auf Flexibilität bei der Einbindung von

komplexen und heterogenen Testmodulen ausgelegt ist. Die Vielseitigkeit, Anwendbarkeit,

und Vorteile der Mikronetzwerke als Testeinheiten werden experimentell aufgezeigt. Ins-

besondere werden die Tests abschliessend auf zwei aktiv in der Forschung eingesetzten

Hardwareimplementationen demonstriert, welch im Rahmen der Forschungsgemeinschaft

FACETS entwickelt wurden.
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Introduction

The cerebral cortex is the outermost layer of the mammalian brain. In humans, it is only

a few millimeters thick, yet its emergence in mammals represents a signi�cant step in the

evolution of life on our planet, as it plays a fundamental role in learning, cognition, con-

sciousness, and intelligent behavior. Its further development in the human brain contributed

to the dominant role humans have taken on our planet, and gave rise to many of mankind's

greatest inventions and discoveries ranging from art and language to mathematics and sci-

ence, including neuroscience, which investigates this very neural tissue at its core. It is the

unprecedented size of the cortex in human brains which enables us to study ourselves and

the inner workings of our brain and separates us from the animal kingdom.

There is, however, a fundamental problem neuroscience faces, and that is the complexity

of the interconnected and vastly intricate cell structures found in the human brain. The

human brain is estimated to contain 10 to 100 billion neurons, which pass signals to each

other via as many as 100 - 1000 trillion synaptic connections [52]. Because our brain is

so complicated in structure we have to �nd a level of abstraction, which enables us to

experimentally and quantitatively model our brain (see e.g. [7, 44] for two reviews on

modeling strategies), and allows us to focus on what really is important.

This, however, is a not an easy thing to do because the fundamental understanding of

what mechanisms are essential for thought processes is still very narrow. Hence, many

approaches in neuroscience attempt to incorporate as many details as possible, and con-

sequently and necessarily drag along a lot of this complexity. But as complexity rises, the

ability to spot mistakes and �aws in the implementation of a model diminishes. This fact

represents the core problem, which has been addressed in the thesis at hand. It is essential

to develop methods ensuring the validity, functionality, and a maximum degree of accuracy

of any neuronal network model implementation.

In the Electronic Vision(s) group at the Kirchho�-Institute for Physics in Heidelberg1,

where this thesis has been written, di�erent approaches to modeling are studied with a

particular focus on hardware implementations [47, 48, 49, 50]. Hardware, while o�ering

numerous advantages such as scalability and speed, has, however, its own issues that

1http://www.kip.uni-heidelberg.de/vision/
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need to be taken into account. Due to the di�culties faced in the manufacturing process

of integrated circuits [12, Section 6.5.3], imperfections and artifacts cannot be avoided

completely. This creates an additional layer of potential problems besides those found in

the software stack used to con�gure and access the hardware [9, 8, 17]. Furthermore, due

to the wide spectrum in the dynamics of active recurrent neuronal networks, identifying

errors within these dynamics is hard.

With this in mind thorough testing of all components is a fundamental necessity, es-

pecially the more complex a neuronal network implementation becomes as it tries to get

closer to biological reality.

In the modeling approach of the Electronic Vision(s) group, many components are utilized

to form a complete implementation of a neuromorphic modeling platform, which is novel in

its speed, size, and con�gurability. Tests are necessary which check the correct functionality

of the individual components as well as that of the complete system. The presented

work provides a solution to and framework for testing the interplay of all modules and

demonstrates their successful application.

This thesis is structured as follows. Chapter 1 introduces the reader to the basics of

neuroscience, the used hardware and software, and contemporary testing methods. Chapter

2 discusses the development of a test framework and individual high-level neuronal network

tests, which have been developed for this thesis. Chapter 3 shows the application of the

high-level neuronal network tests to software simulators and hardware implementations

provided by the Electronic Vision(s) group. Chapter 4 �nishes by providing a summary,

conclusion and an outlook to further research. Additional information and references to

the source code can be found in the Appendix.
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1. Materials and Methods

1.1. Neuroscience Basics

This section introduces the reader to the basics of neuroscience with a focus on the bio-

logical background and neuron model dynamics.

1.1.1. Biological Neurons

Over the last decades, research in the �elds of biology and neuroscience has given scientists

great insight into the structure and functionality of the brain and its most fundamental

functional components. Already around the year 1900 Santiago Ramón y Cajal, a Spanish

histologist, psychologist, and Nobel laureate [43], observed that the brain is, at a low level,

made up of cells called neurons, which act as information processing units, with often

long, branching connections in between them [20]. There are also other types of cells in

the human brain besides spiking neurons, which also appear to play an essential role in its

functionality (see e.g. [15] for a classi�cation of cortical neuron types), however, as they

are not relevant for this thesis, they are not discussed here any further.

A neuron can be divided into three main components: dendrites, soma, and axon. The

soma, or cell body, which contains the cell nucleus, can be described as the central core

of the neuron, which integrates information and plays a signi�cant role in information

processing. This information reaches the soma via dendrites, which are connected to the

soma and extend away from it with often many branches. The complete set of dendrites

is often called a dendritic tree. While dendrites can best be described as a carrier for

information to the soma, axons can be described as a carrier for information away from the

soma (while also being able to carry feedback into it). The axon is a slender prolongation

of the soma, which can extend up to tens of thousands of times the diameter of the soma

in length. Most neurons have only one axon, but this axon usually undergoes extensive

branching, thus enabling communication with many target cells. A single neuron in the

mammalian cortex often connects to more than 104 neurons [4]. The bridge between the

axon of one neuron and the dendrites of another neuron is called a synapse. The presynaptic
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1. Materials and Methods

neuron is the cell whose axon is part of the synaptic link, which lies on a dendrite of the

postsynaptic neuron.1

The voltage di�erence between the interior and the exterior of the neuron is referred to

as the membrane potential. At rest, the potential lies at about -65 mV (see e.g. [31, 6,

55, 51]for models with corresponding parameter value assumptions), which is called the

resting potential. Information is delivered to the soma in the form of so-called postsynaptic

potentials (henceforth abbreviated as PSP), voltage changes, which travel along dendrites

towards the soma. If the change in voltage is positive, the synapse which provoked the

PSP is referred to as an excitatory synapse and the potential is referred to as an excitatory

postsynaptic potential, or EPSP. In case the change is negative, the synapse is said to

be inhibitory and the potential to be an inhibitory postsynaptic potential, or IPSP. It has

been observed that, in general, at all axonal branches of a single neuron, the same set of

neurotransmitters is released, making neurons either purely excitatory or purely inhibitory.

Multiple PSPs are subject to summation until they reach a certain threshold voltage at

the soma, which causes the generation of a so-called action potential or spike at the axon

hillock. It is generally assumed that, in the mammalian cortex, the exact shape of action

potentials carries less information than their number and timing [20, 45].

Spikes are much higher in magnitude than the sum of all the incoming PSPs. Action

potentials generated by a soma are in the order of about 100 mV and have a typical duration

of about 1 to 2 ms, while PSPs created by synapses have an amplitude of about 1 mV, with

a width of up to several tens of milliseconds. Since the �ring threshold typically lies 10 to

20 mV above the resting potential, it is necessary for multiple PSPs to arrive at the soma

at about the same time in order to reach the threshold value and trigger a single action

potential. Shortly after the action potential has been sent out by the soma, the membrane

potential falls below the resting potential, initiating the absolute refractory period. Within

the absolute refractory period of a neuron it is impossible for a neuron to generate another

spike. After the absolute refractory period, a period of relative refractoriness takes over,

in which it is possible but di�cult to generate a second spike [20].

As a spike travels along an axon, it will eventually hit the synaptic bridge between the

axon and dendrites of the target neuron.

In a chemical synapse, which is the most common type of synapse in the mammal

brain [15], the presynaptic and postsynaptic neurons are separated by a gap about 20 nm

wide referred to as the synaptic cleft. When a spike reaches the synapse it triggers the

release of a chemical substance called a neurotransmitter into the synaptic cleft. The

1While most synapses are connections between axons and dendrites, there are also other types of connec-

tions, including axon-to-soma, axon-to-axon, and dendrite-to-dendrite [15].
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1.1. Neuroscience Basics

neurotransmitter binds to receptors residing in the postsynaptic end of the synaptic cleft.

There they cause the opening of di�erent types of ion channels, so that ions can di�use

through the cell membrane changing its potential.

An excitatory synapse will trigger a PSP with positive amplitude (depolarizing EPSP),

while an inhibitory synapse will trigger a negative amplitude PSP (hyperpolarizing IPSP).

These PSPs now travel along the dendrites of the postsynaptic cell heading towards the

soma of the target neuron. The quantity of neurotransmitters released into the synaptic

cleft and the e�ectiveness with which the postsynaptic end responds to those neurotrans-

mitters determines the strength or weight of a synaptic connection. The ability of the

synapse to change its weight is often referred to as synaptic plasticity and is believed to

play a crucial role in memory and learning [24, 36, 34, 35].

In an electrical synapse the presynaptic and postsynaptic cell membranes are connected

by channels that are capable of passing electrical current, causing voltage changes in the

presynaptic cell to induce voltage changes in the postsynaptic cell, essentially allowing direct

electrical coupling between two neurons. This makes electrical synapses faster and more

reliable than chemical synapses, even though the latter are more common [15].

1.1.2. Neuron Model Dynamics

In order to simulate the behavior characteristics of neurons, some of which have been out-

lined in Section 1.1.1, scientists have developed various mathematical models that simplify

the more complex behavior of real neurons. Two of these models are used primarily by the

back-ends tested during this thesis, which is why they require further explanation.

The Integrate-and-Fire Model

In a simple model, the so-called Integrate-and-Fire model, which was �rst researched in the

context of neuroscience in 1907 by Lapicque [1], a neuron is described as a capacitor. For

a capacitor it holds true that

Q = CV (1.1)

where Q is the charge of the capacitor, and V the voltage between its ends, which

represents the membrane potential of the neuron.

The �rst derivative with respect to time yields the current charging the capacitor

I(t) = C
dV

dt
(1.2)
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1. Materials and Methods

When an external current is applied, the voltage increases or decreases with time. If

the voltage reaches a certain (constant) threshold voltage VT , a spike is triggered. After

the spike is sent out, the voltage is reset to the resting potential. After that, the model

continues from the start. The frequency with which spikes can be generated thus increases

linearly with respect to the external current without any limitations.

This unlimited spike frequency is not realistic behavior, and the model can be made more

accurate by implementing the absolute refractory period tref (see Section 1.1.1) after a

spike has occurred. During this period no second spike can be triggered. This essentially

limits the �ring frequency of a neuron. The �ring frequency thus obtained as a function of

a constant input current is

f(I) =
I

CVT + trefI
(1.3)

Another problem with this simpli�ed model is that it has no time-dependent memory.

In case a current charges the capacitor but is not strong enough to trigger a spike, the

capacitor will retain that voltage increase forever until it �res. This means that if a certain

number of incoming spikes are required to arrive close in time in order to trigger an outgoing

spike in a real neuron, this model would allow them to arrive with practically unlimited

distance in time. This is clearly not in line with observed neuronal behavior.

This remaining shortcoming can be overcome by introducing a �leakage� in the form of

a resistor, which is in parallel with and constantly drains the capacitor [30]. With this

additional element, when spikes are too far apart in time, their voltage boost decreases

over time until the membrane potential reaches the rest potential.

Now the current can be split into two components, namely the resistive current IR going

through the resistor and the capacitive current IC charging the capacitor:

I = IC + IR (1.4)

Ohm's law gives the resistive current:

IR =
V

R
= gL · V (1.5)

with V being the voltage across the resistor, R being the resistance of the resistor, and

gL being the conductance of the resistor. This leads to

I = C · dV
dt

+ gL · V (1.6)

Now the membrane time constant τm is introduced with
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1.1. Neuroscience Basics

τm =
C

gL
(1.7)

and Equation 1.6 can be written as

τm ·
dV

dt
= −V +

I

gL
(1.8)

Immediately after the creation of a spike the membrane voltage drops to a new value

called the reset potential from where it rises again back to the rest potential. This is not

apparent from the equations presented and is indeed an arti�cial constraint introduced to

make the model more realistic.

Looking at Equation 1.6 shows however, that the capacitor is leaking towards a rest

voltage of 0. To formulate the equation in a more realistic manner one can embed the

so-called leak reversal potential, which is hereby denoted as VL and leads to Equation 1.10.

I = C · dV
dt

+ gL · (V − VL) (1.9)

This causes the leakage to drain the capacitor towards the rest potential, VL.

The external current I is made up of positive current created by ion channels of excitatory

synapses and negative current created by ion channels of inhibitory synapses. This is

re�ected by di�erential Equation 1.10, which allows calculating the temporal behavior of

the membrane potential.

∑
E

IE(V, t) +
∑
I

II(V, t) + gL · (V − VL) = −C · dV
dt

(1.10)

The two sums are over excitatory and inhibitory synapses, denoted by indices E and I,

respectively. Each type of ion channel has its own reversal potential as can be seen in

Equations 1.11 and 1.12.

IE(V, t) = pE(t) · wE(t) · gmaxE (t) · (V − VE) (1.11)

II(V, t) = pI(t) · wI(t) · gmaxI (t) · (V − VI) (1.12)

The maximum conductance of a synapse is denoted as gmaxS (t), the synaptic weight as

wS(t), and pS(t) can be interpreted as the percentage of open ion channels in the synapse.

VE and VI are the excitatory and inhibitory reversal potentials. One can also introduce time

constants τsynE and τsynI that characterize the decline of the conductance of excitatory

and inhibitory synapses, respectively.
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1. Materials and Methods

Because the Integrate-and-Fire model has such a high degree of simpli�cation com-

pared to the intricate biological reality, it o�ers only limited spike-timing prediction power.

Nevertheless, it is often used for modeling neurons that do not exhibit adaptive behavior.

The Adaptive-Exponential Integrate-and-Fire Model

The Adaptive-Exponential Integrate-and-Fire model [6], or short AdEx, adds several addi-

tional mechanisms to the Integrate-and-Fire model (see Section 1.1.2) and is described by

Equations 1.13 and 1.14:

C · dV
dt

= −gL · (V − VL) + gL∆T exp(
V − VT

∆T
)− w + I (1.13)

τw
dw

dt
= a(V − VL)− w (1.14)

V denotes the membrane potential, VL the leak reversal potential, VT the threshold

potential, I the input current, C the membrane capacitance, gL the leak conductance,

∆T the so-called slope factor describing the sharpness of spikes, a the adaptation coupling

parameter, w the adaption variable, and τw is the adaptation time constant.

Equation 1.13 describes the temporal evolution of the membrane potential, while Equa-

tion 1.14 describes the temporal evolution of the adaption current w.

The exponential function in Equation 1.13 models the voltage-dependent initiation of an

action potential. In the mathematical interpretation of the equations, the action poten-

tial diverges towards in�nity. Integration of Equations 1.13 and 1.14 is, however, usually

stopped at a high, �nite potential (usually above 0 mV) and at that time the spike is said

to occur. The decline of the action potential is not modeled by the equations. In this

model it is simpli�ed by a reset of the voltage to the rest potential at �ring time. At this

time the adaption value is also shifted by a certain amount, introducing a spike-triggered

adaptation.

The two-dimensional AdEx model is able to reproduce all common �ring patterns found

in biological neurons [37], and can be very accurately �tted to biological data [27].

1.2. Used Software and Hardware

The following subsections give an overview over the used software and hardware. In the

following the term back-end refers to the simulator, either in software or hardware form,

which implements given neuron and synapse models to simulate neuronal networks.

8



1.2. Used Software and Hardware

Figure 1.1.: A photograph of the Spikey chip.

1.2.1. The FACETS Stage 1 Hardware

This section intends to provide the reader with relevant details about the FACETS Stage 1

hardware, often referred to as Spikey. Spikey is a neuromorphic prototype chip developed

by the Electronic Vision(s) group and has been described in detail in various publications

[47, 48, 8, 29, 10] developed by the Electronic Vision(s) group. Figure 1.1 shows an actual

photograph of a Spikey chip taken with a microscope. The chip is realized in a 0.18 µm

CMOS2 technology.

A Spikey chip hosts 384 neurons which use a conductance-based leaky Integrate-and-Fire

model (see section 1.1.2). Each neuron is fed by up to 256 synapses and a total of 100000

synapses are supported. The Spikey chip implements spike-time-dependent plasticity and

is highly accelerated with respect to biological real time and provides an acceleration factor

of 104. That is, a neuronal network on a Spikey chip would process neuronal events up to

104 faster than its biological counterpart. This acceleration is part of the design and arises

from the very-large-scale integration (VLSI) of electronic circuits and their intrinsically

short time constants.
2Complementary Metal-Oxide-Semiconductor

9



1. Materials and Methods

As no two neurons are the same in the real mammal brain, so are transistors and electronic

parts di�erent as a direct result of �uctuations and imperfections in the manufacturing

process. This is demonstrated in Section 3.2, where high-level neuronal network tests are

run on Spikey chips.

1.2.2. The FACETS Stage 2 Hardware

This section introduces the reader to the FACETS Stage 2 hardware [49, 16, 50], the core

of which is a wafer containing nearly 400 neuromorphic chips. This wafer-scale system will

be present in the near future providing up to 200K neurons and 50 million synapses (see

Figure 1.2 for a rendered computer model of the system), but as of the time this thesis

has been written is only existent in the form of a Executable System Speci�cation [56].

The wafer will be made up of a number of reticles. Each reticle contains eight so-called

HICANN chips, which stands for High Input Count Analog Neuronal Network. Wafer-scale

connections are used to link HICANNs together. HICANNs provide the bred and butter of a

neuronal network, namely neurons and synapses, which implement the ADEX neuron model

(see Section 1.1.2) to model neuron dynamics and the same plasticity mechanisms as the

FACETS Stage 1 hardware, also working with a speedup factor of 104. Each HICANN is able

to host a maximum of 512 neurons and 128 thousand synapses, adjacent neuron circuits

can be interconnected such that a neuron can receive up to 16K synaptic inputs. Spike

transmission from neurons to synapses located on any HICANN on the wafer is performed by

the so-called Layer 1 network: a dense but highly con�gurable grid of horizontal an vertical

bus lanes connect all HICANNs with each other, spikes are transmitted via asynchronous

serial digital pulse packets representing the ID of the sending neuron. The synchronous

Layer 2 communication is responsible for routing pulses to neurons on the wafer (e.g. for

stimulation) and for routing recorded pulse events to the host computer or to neurons on

other wafers.

Digital network chips, or DNC for short, provide communication bandwidth for all HI-

CANNs of a reticle, which are connected to one common DNC using Layer 2 communication

channels. Additionally a bidirectional connection to a Field Programmable Gate Array, or

FPGA for short, is provided by the DNC.

The FPGA acts as the central interface for communication between the wafer and the

host and between individual wafers. Four DNCs are connected to a single FPGA. This

implies that one FPGA has to deal with the con�guration and routing data, and neuron

events of up to 16 thousand neurons.

This short introduction into the make-up of the Stage 2 hardware already reveals the
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1.2. Used Software and Hardware

Figure 1.2.: A rendered computer model of the FACETS Stage 2 wafer-scale hardware
system. Figure by D. Husmann.

great complexity that comes with such a comprehensive system. There are multiple sources

of error, such as an erroneous mapping of neuronal models onto the wafer or hardware fail-

ures. The great variety in con�guration scenarios and manifold ways of signal routing

impose an even greater challenge as the correct realization of a biological neuron archi-

tecture is paramount. In order to cope with these problems in an e�cient and elegant

manner, generic, high-level neuronal network tests have been developed during this thesis,

which are introduced in Section 2.2. These tests also serve the purpose of checking the

correct functionality of the Executable System Speci�cation of the Stage 2 hardware and

have already helped in �nding problems in the software operating the hardware (see Section

3.3).

11



1. Materials and Methods

1.2.3. Various Software Simulation Packages

The software simulators NEST 3 [14, 21, 18] and NEURON4 [25, 11] are used for this

thesis as a back-end for checking the validity of the high-level, neuronal network tests (see

Section 2.2 and 3.1). Compared to hardware back-ends, software is very �exible as it allows

the implementation of additional neuron models.

NEURON was originally developed by John W. Moore at Duke University and has since

been greatly improved and bene�ted from a large user base, e�cient implementation of

neuron model dynamics, and comprehensive documentation and maintenance. It allows to

simulate very sophisticated neuron and synapse models, which include the spatial struc-

ture of the cell, and implements the Integrate-and-Fire (see Section 1.1.2) and Adaptive-

Exponential Integrate-and-Fire (see Section 1.1.2) models.

NEST, which is short for Neural Simulation Technology, is a simulator similar to NEU-

RON and is capable of handling large heterogeneous neuronal networks. NEST advan-

tages become apparent when using models that focus on architecture of neuronal sys-

tems rather than on the detailed morphological and biophysical properties of individual

neurons. NEST, too, implements the Integrate-and-Fire (see Section 1.1.2) and Adaptive-

Exponential Integrate-and-Fire (see Section 1.1.2) models.

PCSIM [39, 40] and Brian [22] are further examples for commonly applied software

simulators, but they have not been used for this thesis.

1.2.4. The Simulator-Independent Modeling Language PyNN

This section introduces the reader to the simulator-independent modeling language PyNN

[13, 41], which is used for this thesis and throughout the Electronic Vision(s) group.

Furthermore, themapping process is described that is needed to transfer a neuronal network

de�ned with PyNN to the speci�c neuromorphic back-ends developed in that group.

Motivation

As apparent from Sections 1.2.1, 1.2.2, and 1.2.3, there is a variety of di�erent back-ends,

each with its own interface and con�guration process. If one wants to simulate the same

neuronal network on di�erent back-ends (e.g. for benchmarking or for the veri�cation that

a network's behavior is not only an artifact of a certain back-end, or because a newer back-

end provides more performance), its realization has to be reprogrammed and recon�gured

3http://www.nest-initiative.org
4http://www.neuron.yale.edu
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from scratch for every new back-end. This leads to an additional workload that decreases

the e�ciency of the development process.

It is hence desirable to have a common interface which remains stable even when the

implementation changes. Simulators and hardware may come up or lose ground, but the

general concept of what a neuron or synapse is remains the same if we stick to the same

model. So it makes sense to have an interface which describes agreed-upon terms, while

at the same time hiding unnecessary detail and implementation-speci�c characteristics.

For example, in the Electronic Vision(s) group software simulators like NEST or NEU-

RON (see Section 1.2.3) are used together with hardware platforms like the already men-

tioned Stage 1 and Stage 2 systems, with the wafer-scale version of the latter still in

development as of the time this thesis has been written. It would be cumbersome if the

very same network needed to be rewritten speci�cally for each of these platforms. Espe-

cially for the case of hardware, which su�ers from manufacturing imperfections and requires

a customized calibration, reference software simulations of the same neuronal experiments

are of great value. It quickly becomes apparent that there is great motivation for an

abstract network-describing language, which hides implementation details. This is where

PyNN provides a solution.

Python as a Glue Language

PyNN uses Python [42, 46, 33], a general-purpose, high-level programming language, the

design philosophy of which emphasizes code readability. It is an interactive, object-oriented,

and interpreted programming language and provides high-level data structures such as

tuples, lists, and associative arrays, dynamic binding and dynamic typing, modules, classes,

and exceptions. It has a relatively simple syntax, yet is a powerful language due to its

general purpose character and versatility. As many other scripting languages it is free of

cost, even when used for commercial purposes, and it is capable of running on practically

any modern computer. A Python program, when run, is compiled into platform independent

byte code by the interpreter, which is then interpreted.

The term glue language usually describes a computer programming language whose

purpose is to connect di�erent software components together. Python lends itself to be

used as a glue language, because it spans multiple platforms, it is easy to learn and to

maintain, and provides a high-level interface to the system as a whole. For this reason,

Python is a good candidate for a back-end-independent modeling language like PyNN.
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The Interface of PyNN

PyNN [13] acts as a simulator- and hardware-independent language for describing and

building neuronal network models. It is based on Python. Writing tests with PyNN allows

to test multiple simulators with only minor modi�cations to the code. PyNN takes care of

translating the neuron, synapse and network models into the required con�guration for a

given simulator, consistent handling of physical units, and consistent handling of random

number generation, and provides an object-oriented, high-level interface to easily enable

structured development of large-scale, complex models.

This allows for testing simulators as well as constructing neuronal networks without

worrying about the underlying implementation. As of the time this thesis has been written

the NEURON, NEST, PCSIM, and Brian software simulators and the FACETS hardware

systems are supported [9]. As PyNN hides implementation details, tests written in PyNN

are good for black-box-testing 1.3.1 underlying platforms. An additional characteristic of

PyNN is that its execution involves multiple layers: all the way from creating an abstract

model of the neuronal network to generating a con�guration representing that model in

the actual back-end. This may be seen as an advantage, because one can test multiple

levels with a single test. It may, however, also be seen as an disadvantage, because once

a �aw has been detected, it requires additional work to determine at which level the error

occurred.

The API5 can be roughly divided into two components: a low-level, procedural API,

allowing the creation of neurons and synapses at a low level with functions like create(),

connect(), set(), record(), record_v(), and a high-level, object-oriented API allowing

the creation of whole populations of neurons with classes like Population and Projection,

which have methods like set(), record(), setWeights().

The low-level API lends itself for small networks and provides more �exibility than the

high-level API. The high-level API is good for hiding details, allowing the developer to

concentrate on the overall structure of one's neuronal model.

PyNN also translates standard cell model names and parameter names into simulator-

or hardware-speci�c names, which is good for platform-independence. For example, stan-

dard model IF_curr_alpha is called iaf_neuron in NEST and StandardIF in NEURON,

while SpikeSourcePoisson is called a poisson_generator in NEST and a NetStim in

NEURON.

5Application Programming Interface
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Creating a PyNN script in Python can be as simple as
# Import PyNN.

import pyNN.nest as pynn

# Set up PyNN.

pynn.setup()

# Create stimulus.

stimulus = pynn.create(pynn.SpikeSourcePoisson, {'rate' : 100. ,

'duration' : 1000}, n=1)

# Create neuron.

neuron = pynn.create(pynn.IF_cond_exp, n=1)

# Connect stimulus to neuron.

pynn.connect(source=stimulus, target=neuron, weight=0.015,

synapse_type='excitatory')

# Record spikes produced by neuron to a file.

pynn.record(neuron, 'recorded-spikes.txt')

# Run simulation.

pynn.run(1000)

# Shut PyNN down.

pynn.end()

The �rst line of this example shows an import call, which imports the simulator- or

hardware-speci�c implementation of the PyNN API. That is usually the only place where

one has to deal with platform-speci�c commands.

The next call to pynn.setup() starts PyNN. It allows for the speci�cation of optional,

back-end-speci�c parameters, that are used by a given simulator but not by others.

Following the setup call are commands which construct the neuronal network.

After the construction of the neuronal network pynn.run() is called, with the �rst

parameter specifying the biological simulation time in milliseconds. The run-call blocks and

instructs the underlying platform to actually simulate the neuronal network. It returns once

this is complete.

Eventually PyNN is shut down by a call to pynn.end(), which stores recorded spike

times and membrane voltages in �les and cleans up memory.

As one can already see from this very short example, the only step needed to run the

neural network on a di�erent platform is to swap the import statement with the appropriate

one for the target platform.
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The Mapping Process

While neuronal networks built with the description language PyNN are theoretically unlim-

ited in size and complexity, hardware back-ends have only a limited con�guration space.

Hence descriptions of a network most often cannot be mapped correctly to the available

hardware. Loss of neurons or synapses can occur during this mapping process, which makes

optimizing the process desirable and often necessary.

There are three main steps executed during mapping (see Figure 1.3): mapping of

neurons (hereinafter simply called placement), mapping of synapses (hereinafter called

routing), and mapping of parameter values (the so-called parameter transformation).

Figure 1.3.: A schematic view of the mapping process.

An abstract data model that represents both the biological architecture of the to-be-

mapped neuronal network and the hardware con�guration has been developed for this

speci�c purpose: it is called GraphModel [58, 57]. The GraphModel is a hierarchical

hypergraph, which contains vertices and edges, that hold data objects and relationships

between data objects, respectively. The major advantage of this abstract and overarching

data model is its generic nature resulting in e�ciency in the development process of mapping

algorithms. Both intermediate and �nal results are stored using the GraphModel, including

the data needed for placement, routing, and parameter transformation.

Besides preprocessing and postprocessing, the �rst step taken by the mapping process is
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the placement of neurons. A correct and optimized placement is important as it determines

the overall performance and accuracy of the �nal hardware con�guration with respect to the

biological network. The mapping process attempts to utilize the available hardware space

in the best manner possible, while minimizing the routing distances between interconnected

neurons.

Connection routing is the proper translation of synaptic links into corresponding hardware

connections [19]. It is followed by the proper transformation of biological parameter ranges

to their hardware counterparts. Special care needs to be taken as the realizable value ranges

on hardware are limited by such factors as the bit sizes used for parameter storage.

For a more thorough summary of the mapping process see [17].

Problems in the mapping process can arise in many ways. There is often no trivial solution

that correctly maps the neuronal network description to an actual hardware con�guration,

sometimes leading to missing synaptic connections on the hardware system. Additionally,

the limitations in the number of neurons and parameter ranges may be exceeded. Parameter

values, while continuous in PyNN, are often discrete in hardware. Hardware failures are

also possible, as well as coding mistakes in the software stack. The potential for problems

is huge and it is therefore important to test the complex functionality of the mapping

process as a whole. A solution for this is provided by the high-level neuronal network tests

introduced in Section 2.2.

1.3. Testing

Testing models and algorithms, especially if they reside in software form and before recre-

ating them in hardware, is essential to making sure that the observed behavior matches its

speci�cations and expectations, so that they are �t for use.

1.3.1. Testing Methods

There are mainly three di�erent approaches to software testing. These three approaches

are used to describe the point of view that a test engineer takes when designing test cases.

With white-box testing the tester has access to the actual implementation and internal

structure of the code (see Figure 1.4). There are several types of white box testing to

be named. There is API testing, which is the testing of the application using public and

private, documented API calls and checking their behavior against their speci�cations.

Then there is code coverage, which involves creating tests to satisfy some criteria of code

coverage (e.g. all statements in the program to be executed at least once). Additionally,
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test engineers may utilize fault injection methods, which improves the coverage of a test by

introducing faults to test code paths. Mutation testing methods involve modifying source

code of programs in small ways and considering any tests that pass after code has been

mutated to be defective. Finally, there is static testing, the manual or automatic review of

source code without actually compiling and running it.

The second approach is black-box testing. Black-box testing, as opposed to white-box

testing, treats a component as a black box, that is, with a de�ned interface but without any

knowledge whatsoever about its implementation and internal structure (see Figure 1.5).

Figure 1.4.: White-box testing schema. The module to be tested is represented by the box,
while input and output patterns are generated and evaluated, respectively, by
the test. Detailed information about the inner workings of the module itself
can be involved in this process.

Figure 1.5.: Black-box testing schema. The module to be tested is represented by the box,
while input and output patterns are generated and evaluated, respectively, by
the test. No information about the module except of its input and output
interfaces are involved in this testing process.

Its advantage is that, given that the test developer and developer of the code to be tested

are two di�erent people or groups of people, the test writers do not subliminally make

assumptions about the implementation. A good example of this subliminally in�uence
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is that of a code developer, who implements an algorithm, of which he has a �awed

understanding, and then uses this �awed understanding to also develop test cases. This

example demonstrates that it is generally a good idea to assign black-box testing to di�erent

developers.

Another advantage of black-box testing is that the implementation can change arbitrarily;

as long as the interface stays the same, the tests remain valid and need not be modi�ed.

This decreases the maintenance costs of black-box tests and enhances their e�ciency.

Gray-box testing is a mixture between black-box testing and white-box testing and in-

volves performing tests with knowledge of internal implementation details like data struc-

tures and algorithms for purposes of designing the test cases, but testing at the interface

level like a black-box test. It is essentially in between black box and white box testing, hence

the name gray box testing. It combines both advantages and disadvantages of black- and

white-box testing.

The main testing method used for this thesis is black-box and gray-box testing. As

described in Section 2.2, neuronal network tests have been conceived, which do not rely

on any speci�c back-end and hence are, by design, black-box tests. They �know�, at least

in principle, nothing about the back-end or its implementation. However, some care has

been taken while choosing the neuron and stimuli parameters in order not to hit any upper

or lower limits inherent to the implementation tested. This step makes the black-box tests

become partly gray-box tests.

1.3.2. Testing Levels

Besides the aforementioned testing methods there are also di�erent testing levels.

Unit testing, also called component testing, refers to dividing code up into smaller com-

ponents, usually at the function level or, with object oriented programming languages, at

the class level, and testing each function or class separately [5, 23]. One class or function

might have multiple and diverse tests to catch border cases and a wide spectrum of possible

scenarios.

Integration testing is a testing method with which interfaces between components are

checked. Integration testing takes modules that have been unit-tested and groups them

together in larger aggregates and then tests those aggregates. Modules can be tested in

an iterative fashion (one is inserted after another into an aggregate), or alternatively all at

once. The iterative approach is usually better because it makes it much easier to localize

a problem as opposed to having one, big aggregate and no hint on where the potential

problem arose. Integration testing delivers the integrated system, which is, after all tests
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succeeded, ready for system testing.

System testing works to expose defects and issues in a complete system and tries to verify

that it meets its requirements. This means that system testing of software or hardware

is applied to a complete, integrated system. Its main goal is to evaluate the system's

compliance with its speci�ed requirements. No knowledge of the inner structures and

design implementation is required to perform system testing, which is why it falls within

the scope of black-box testing. System testing seeks to detect defects both between the

interfaces between aggregates and also within the system as a whole.

Additionally, regression testing has a focus on �nding mistakes in the source code or

behavior of the program after a major code change has been performed. This is to say, it

seeks to uncover software regressions or old bugs that have come back. Such regressions

occur whenever software functionality that was previously working correctly stops working as

intended. Typically, regressions occur as an unintended consequence of program changes,

when the newly developed part of the software collides with the previously existing code.

Common methods of regression testing include re-running previously performed tests and

checking whether previously �xed faults have reemerged. The depth of testing depends

on many circumstances including but not limited to the phase in the development process,

and the risk of already �xed bugs coming back to life again.

The testing done during this thesis is mainly in the form of integration and system

testing. As will be explained in Section 2.2, tests are designed that attempt to verify the

proper behavior of a given simulator back-end (hardware or software), which can both be

interpreted as integration and system testing depending on the completeness of the system

tested.
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The test framework built while writing this thesis consists of two main parts: a general

purpose test framework designed for universal incorporation and management of a variety

of tests, and a set of high-level, PyNN-based, back-end-independent network tests.

The test framework serves the purpose of having a uni�ed test management system,

which is capable of simplifying and consistently controlling the overall testing procedure.

The high-level network tests serve the purpose of actually investigating the functionality of

the underlying back-end, that is, the hardware or software simulator.

2.1. The Test Framework Inspector

All code modules written for the testing and quality assurance of software that operates the

FACETS hardware and its virtual versions are intended to be incorporated into one main

test framework (see Figure 2.1), aptly called Inspector1. Inspector serves as a central test

management system, which facilitates adding, removing, and running tests with a simple

command line call. The framework can be utilized for unit-, integration-, system-, and

regression-testing.

Figure 2.1.: A schematic view of the Inspector framework.

1This name has been chosen instead of simply referring to it as test framework or tests to distinguish it

from individual tests and to allow a clear distinction between the framework itself and the underlying

tests.
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2.1.1. Requirements for the Framework

The framework must ful�ll the following requirements:

� Robustness: the framework must behave correctly under unexpected circumstances,

which are often provoked by software tests. It must handle misbehaving or crashing

tests, permission errors, and similar situations in a graceful manner.

� User-friendliness: the framework must be easy to use. A user-unfriendly system

demotivates users and most will refrain from using it in the future.

� Uncomplicated maintenance: adding, removing, or modifying tests must be easy and

possible without heavy modi�cations.

� Universality: tests written in completely di�erent programming languages covering

completely di�erent aspects should be easily installable into the framework.

2.1.2. Choice of Language

When it comes to the programming language that is to be used for the framework, there are

two prime candidates: C++ [53] and Python (for the latter see Section 1.2.4). They are

good candidates because they are already widely used within the global programming com-

munity and represent the languages mainly used throughout the existing software modules

that operate the FACETS hardware. Both have their own advantages and disadvantages,

which makes them both valuable in di�erent programming scenarios. C++ is a hardware-

oriented programming language. Many consider it to be not as high-level as Python for

this very reason. Additionally, Python o�ers manifold built-in functionality and third-party

packages [2, 32, 33, 38, 28, 54], which is not part of the C++ standard library. Python is,

however, usually not as fast as C++, as it is in most cases interpreted byte-code.2

All these advantages and disadvantages must be taken into consideration together with

the requirements outlined before.

Considering the robustness requirement, one can argue that there are no great di�erences

between the two languages. Both o�er debugging facilities and as long as good coding

practices are followed, no language appears to be signi�cantly more robust. However, one

may also argue that Python is more high-level (e.g. it does not deal with pointers as C++

does) and this by itself may reduce the risk of common errors such as bu�er or integer

over�ows. Also, high-level languages tend to be more easily readable and understandable

2There are some projects like Psyco or Unladen Swallow from Google which provide just-in-time-

compilation for Python code, making it reportedly nearly as fast as compiled C or C++ code.
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when the source code is read by someone who has not worked on the code before. All this

can decrease the likelihood of mistakes being made by someone new to the project.

User-friendliness is a result of a good user interface and since this is provided by operating

system functions, it does not really depend on the programming language used, but on how

the programmer uses the operating system functions to construct a working user interface.

As for the requirement of uncomplicated maintenance, one may argue that Python has

an advantage, because it does not require recompilation of the script once something has

changed.

Taking all of this into consideration, Python has been chosen for the test framework

because of the aforementioned advantages and due to its heavy use within the Electronic

Vision(s) group. The latter factor enables other group members to easily understand and

maintain the framework.

2.1.3. The Interface between the Framework and Tests

The next step is to develop a speci�cation of the interface between the framework and

individual tests. This interface must ful�ll the requirements outlined before (see Section

2.1.1).

All tests must transfer information about their outcome to the main test framework.

There are many ways to achieve this: �les, pipes, network protocols, POSIX3 [26] signals,

and/or exit codes. Each method has advantages and downsides.

Files allow for arbitrary data to be exchanged, are extremely �exible, and in theory

unlimited in their size. However, problems can arise as they need to be created and parsed

correctly and are subject to race conditions in certain situations.

Pipes have similar advantages and disadvantages as �les, as do network protocols, which

need to be speci�ed exactly and thoroughly in order to guarantee a smooth interaction

between clients.

POSIX signals are asynchronous and simple, yet they can be di�cult to handle in pro-

gramming languages which are not low-level.

Exit-codes are, however, universal across all POSIX operating systems (which includes

Windows, Unix, and Unix-like operating systems like Linux), are relatively simple and can

be used as an indicator on whether a process �nished successfully or not. This is why exit

codes have been chosen as a way for the tests to communicate their results to the main

test framework.

3Portable Operating System Interface [for Unix]
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2.1.4. The Design of the Framework

The framework has been written in Python, and is using exit codes as a central means of

communicating test results. Individual tests are executed from within the framework and

each test returns with a proper exit code indicating the success or failure of the test. This

approach has been motivated in the previous sections (see Sections 2.1.1, 2.1.2, and 2.1.3)

and is considered suitable for this type of application.

The framework is embedded in a single, powerful, and platform-independent Python

script. Its platform-independence has been given great priority, because it may be necessary

to run the framework on di�erent platforms, which may not just be limited to Unix or Unix-

like systems. Having to redesign and/or rewrite the framework for every new platform it

should run on is not desirable as it would cause additional development costs.

In order to achieve platform independence one has to exercise caution regarding what

available features are being used. For example, even simple tasks as coloring output depends

on the operating system. On Linux, escape codes can be used, which most likely do not

work on Windows. Windows, though, o�ers several API calls to change the formatting of

the output, which are not available on Linux.

The decision has been made to allow Unix-speci�c features, but the script can work

perfectly without them and they can be disabled by the command line �ag �no-unix.

The Python script must be executable, that is, its corresponding operating system- and

�le-system-speci�c executable �ag(s) must be set appropriately. It can then be run from the

command line without having to directly invoke the Python interpreter, as the interpreter

is automatically called by the shell when it looks at the �rst line of the script, the so-

called she-bang line. It speci�es that the script is a Python script by pointing to a Python

interpreter in the �le system.

There also needs to be a con�gurable data structure, which can be manipulated by

developers in order to add and remove tests, so that the framework knows about them.

There are several ways to do that, including but not limited to using a con�guration �le or

using hard-coded variables from within the Python script.

While the approach of using a con�guration �le appears to be more clean, there are

disadvantages to this approach. One would need to write a parser for the con�guration

�le. This parser needs to check for correct syntax and build a data structure out of the

con�guration �le, which represents the data in an abstract format in memory. The parser

needs to be robust and handle unexpected circumstances gracefully. Even when using third

party libraries to simplify this development process, mistakes are still hard to avoid.

A better approach in this scenario is to directly embed the con�guration and available
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tests into the Python script itself in form of Python variables. This almost completely

eradicates the process of having to correctly parse a con�guration �le, since the parsing of

Python variables is done by the Python interpreter.

Within the framework script, a test variable in the global namespace holds all the available

tests. It is called tests:

tests = (

("hierarchy.sub-hierarchy.test-1", "command_1"),

("group.subgroup.test-4", "another_command parameter"),

("group.another-subgroup.test-6", "make"))

As one can see from the example above, the global test variable is a tuple of tuples of

two strings. The �rst string is a test identi�er, the second string contains the command

to be executed.

The test identi�er can basically be anything, except that it must not start with a hyphen

or it is confused for a command line option. Test identi�ers can be thought of as names,

giving each test a descriptive name that makes it unnecessary to remember and repeatedly

type in the underlying command, the same way a domain name makes it unnecessary to

remember the IP address4 it resolves to. Test identi�ers can themselves contain a hierarchy,

where the hierarchy is conveyed by a delimiter in form of a character. While this character

is a dot in the above example, any character can be chosen as the framework itself does

not have any notion of a hierarchy or a delimiter for that matter and treats them like any

other character. It merely serves as a visual aid to the developer.

The command to be executed, contained in the second string, is sent to the shell. These

commands should invoke executable �les. Shell/environment variables are expanded when

the command is evaluated according to shell rules, so these variables should be directly

usable in commands. The return value of the command will determine if the test succeeded.

If 0 is returned the test succeeded, otherwise it failed. Additionally, the test should output

relevant data to standard out/error that can later be examined in case a test failed.

2.2. High-Level Network Tests

Several neuronal network tests have been conceived, whose development and reasoning are

described in the following sections.

4Internet Protocol address
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2.2.1. Requirements

In order for tests to cover a whole array of back-ends, it is necessary to write them in a

description language which allows for easy substitution of back-ends without heavy mod-

i�cations to the testing code. For this reason, the use of PyNN has been motivated in

previous sections (see Section 1.2.4). It is therefore a sound decision to use PyNN as the

description language for this thesis. PyNN's low-level API is used exclusively throughout

the tests to avoid interference with the test cases by another level of abstraction.

Additionally, these high-level tests should cover scenarios, which low-level unit tests

cannot cover. This means that high-level tests should attempt to verify the correct imple-

mentation of the complex behavior of neuronal networks, which is the result of the dynamic

interplay of elementary components already covered by low-level tests.

The tests should also be as e�cient and encompass as much back-end con�gurations as

possible. The main goal is to cover the complete set of circuits involved in the synaptic

transmission path and back-end neurons. At the same time hardware �uctuations must

be taken into account, so di�erential behavior must be evaluated instead of only absolute

values.

2.2.2. Constructing a Versatile Test Architecture

Section 1.1.2 already introduced the reader to the idea of neuron models. Noteworthy is

the fact that each neuron and synapse has a set of parameters which ultimately determines

how the neuron or synapse responds to input. This set of parameters may be limited by the

underlying back-end, but biologically realistic value ranges are supported by all back-ends

tested for this thesis. As a prime example for such a parameter the threshold voltage can

be named. It speci�es the membrane potential necessary for the neuron to trigger an action

potential and send it along its axon (see Section 1.1.1 and 1.1.2).

Changing the parameters of a neuron changes also its likelihood of releasing an action

potential (with some exceptions and keeping in mind the refractory period described in

Section 1.1). Sticking to the threshold voltage as the example parameter, it can be observed

that increasing the threshold value causes less action potentials to be produced given the

same amount of input to the neuron. And it is not hard to see why: increasing the threshold

voltage also increases the voltage di�erence between the resting potential and the threshold

potential. And the greater the di�erence the more EPSPs need to arrive at the neuron

in a given amount of time in order for an outgoing action potential to occur. Here one

can already see that manipulating the parameter set, even that of a single neuron, should

manifest itself in a di�erent �ring rate.
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Of course, the threshold potential is not the only parameter which can be modi�ed. It

is also possible to vary the weight of the synapse which delivers PSPs to the neuron in

question. Changing the weight to a higher value than before also ought to increase the

�ring rate. A greater weight will lead to PSPs greater in amplitude reaching the neuron

and hence increases the probability of an outgoing action potential to be �red.

The rate of incoming PSPs per synapse is also a parameter which lends itself to be

shifted. In general it holds true that the higher the rate of incoming EPSPs the greater

the rate of outgoing action potentials. This, however, is not always the case. For example

if the neuron is already saturated by input and �res at its maximum rate, which is mostly

determined by its absolute refractory period, the rate of outgoing action potentials does

not change signi�cantly.

Not only the rate of incoming EPSPs per synapse but also the number of synapses feeding

the neuron can be changed. The higher the number of excitatory synapses, the higher the

rate of outgoing action potentials, and the higher the number of inhibitory synapses, the

lower the rate of outgoing action potentials, all factors being equal and keeping in mind the

already discussed (see Section 1.1.1 and 1.1.2) limitations brought forth by the absolute

refractory period.

All mentioned parameter changes should reveal themselves by an increased or decreased

action potential rate�independent of the back-end. This can be veri�ed by a relatively

simple neuronal network consisting of just a single neuron fed by one or more external

stimuli which are connected to the neuron with excitatory and/or inhibitory synapses and

generate PSPs randomly following a Poisson distribution. Figure 2.2 shows the schematic

setup.

Figure 2.2.: Several stimuli connected to a single neuron.
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For the tests to be more e�cient, the neuron parameter set is generated randomly and

is usually di�erent each time the test is run. This allows a whole range of parameters to

be swept, hence highly increasing the e�ciency of the tests.

To this point only synapses connecting stimuli to neurons are tested, but inter-neuronal

synapses are neglected. To avoid this the test setup can be easily extended to incorporate a

second neuron, which uses an inter-neuronal synapse to connect to the �rst neuron. Now,

both neurons can be checked for the expected change in action potential rates and both

inter-neuronal and stimuli-to-neuron synapses are utilized. Figure 2.3 shows the setup.

Figure 2.3.: Several stimuli connected to a neuron, which itself is connected to another
neuron.

The random number generators applied within some mapping algorithms (see Section

1.2.4), like that designed for the Stage 2 hardware, which map the biological neuron to a

hardware neuron, can be initialized with a new seed for every test. This will randomize the

mapping but will, however, not prevent the mapping algorithm from choosing the very same

location for a neuron or a location in close vicinity for every new run. This shortcoming

would result in the tests losing e�ciency, because the area tested on the real hardware is

highly limited.

This problem can be overcome by creating a su�ciently large number of unused neurons,

which serve the purpose of forcing the mapping algorithm to evenly distribute the complete

set of neurons over the whole available space. Such a technique, together with using a

new random-number-generator seed for every new test instance, should lead to a di�erent

location for all neurons every run. Rami�cations of parameter changes will thus be tested

against expected behavior in di�erent locations of the hardware and, together with the

intended randomness of parameter values, running such a test an in�nite number of times
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will test all available neuron places for correct behavior and the complete parameter ranges.

The unused neurons are, however, wasted and some of which may be much better utilized

by using them as additional pairs. This would allow for running multiple test pairs in parallel.

This leads to the �nal setup that is actually being used and sketched in schematic manner

in Figure 2.4.

Figure 2.4.: Several pairs stimulated by the same source

The general test runs as follows. The user or an automated system like the test frame-

work Inspector described in Section 2.1 starts the test specifying additional parameters such

as the simulation time, the desired α factor (see Section 2.2.3 for further explanation), the

back-end, number of excitatory and inhibitory stimuli and with what probability they should

be connected to the neuron pairs, the number of pairs and unused neurons, and which

parameter should be modi�ed (see Section 2.2.4). After starting the script, the random

number generator is seeded with the current time or a user-speci�ed seed for reproducibility

purposes. Following that a neuron and stimuli parameter set is chosen at random within

biologically sound limits. The set of pair and unused neurons is created at once, so is the

set of excitatory stimuli, followed by the set of inhibitory stimuli. The neurons used for the

pairs are chosen randomly and connected appropriately to both stimuli and the other neu-

ron of a given pair. The mapping algorithm should now have correctly mapped the PyNN

description of the neuronal network to the correct back-end con�guration. This is tested

by starting the simulation of the neuronal network and recording the action potential rates

of both neurons of each pair. After the simulation, the exact same steps are repeated with

the exact same random-number-generator seed, but now one neuron, stimuli, or synapse
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parameter is changed, so that the change should result in less action potential rates. This

is veri�ed in the second run. For a list of available parameter changes see Section 2.2.4.

Section 2.2.3 goes into more detail on how it can be determined whether a change in action

potential rates is statistically signi�cant.

2.2.3. Statistical Considerations

In order to see if changes of neuronal parameters have any e�ect, two runs need to be

done. The �rst run uses a given set of parameters, while the second run uses the same

set except for a single parameter which is slightly altered (for a list of available changes

see Section 2.2.4). The number of action potentials generated by neuron pairs is recorded

and evaluated. Each change in neuronal parameter is designed so that the second run is

expected to yield less action potentials. It is, however, not su�cient to simply compare the

rate of action potentials triggered and declare the test as successful if the rate decreased in

the second run. It must also be determined whether the change is statistically signi�cant.

In the following, the simulation time is always assumed to be the same. For a discrete

number of action potentials, denoted by ni, and the assumption that the �ring is a Poisson

process, the error of this expectation value estimator is given by

∆ni =
√
ni (2.1)

For the di�erence ndiff−i,j between two action potential counts ni and nj Gaussian error

propagation dictates

∆ndiff−i,j =
√

(∆ni)2 + (∆nj)2 (2.2)

which can be simpli�ed to

∆ndiff−i,j =
√
ni + nj (2.3)

Taking this into account, one can make assumptions about the likelihood that a given

di�erence in action potential activity between the �rst and second run is pure coincidence or

the result of the correct realization of a parameter change. Because the number of action

potentials is assumed to be large, the distribution can be approximated by a Gaussian. The

area under the Gaussian bell curve is given by the error function erf .

Thus, given a di�erence in action potential count ndiff−i,j and its error ∆ndiff−i,j , and

the introduction of a factor α which is de�ned by
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ndiff−i,j = α ·∆ndiff−i,j (2.4)

one can calculate the probability of this change being signi�cant by

p = erf(
α√
2

) (2.5)

Equation 2.5 is the basis for Table 2.2 which shows values for α factors between 1 and

6, inclusive.

α erf( α√
2
)

1 0.682689492137
2 0.954499736104
3 0.997300203937
4 0.999936657516
5 0.999999426697
6 0.999999998027

Table 2.2.: Error function values to 12 decimal places

Hence, a α factor of 3 means that the change in action potential count is with an

approximate probability of 99.73% signi�cant.

One can require a certain minimum α for the tests to be declared as successful. This

can actually be done on the command line.

2.2.4. The Test Cases: Varying Constituents and Connections

This section lists all available parameter variations. Additional parameter variations are

possible but not implemented as of the time this has been written. Each step in the mapping

of a description of a neuronal network architecture to an actual hardware con�guration can

be erroneous (see Section 1.2.4). The goal of the parameter variations presented in the

following sections is to check whether neurons and synapses are mapped at all, if the

corresponding mapping tables hold consistent index pairs, and if so, whether the individual

parameter values that belong to the units are mapped in a qualitatively correct way.

Increase in Threshold Potential

The threshold potential is a critical value of the membrane potential to which a neuron

must be depolarized to initiate an action potential (see Sections 1.1.1 and 1.1.2). All
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other things being equal, the higher the threshold potential the less outgoing spikes are

generated by the neuron as a result of the stimulation (keeping in mind the refractory

period as described in Section 1.1.1).

The test is run for a given con�guration, then the same test is run with a higher threshold

potential. Each time the outgoing spike activity is recorded and evaluated. If the number

of spikes decreases signi�cantly (by means of the α measure introduced in Section 2.2.3)

once a higher threshold potential is set, the test counts as being successful, otherwise it

failed.

Increase in Stimuli Rate

All other things being equal, the higher the stimuli frequency the more outgoing spikes

should be generated by the neuron as a result of the stimulation (again keeping in mind the

refractory period as described in Section 1.1.1). With this supported parameter variation,

the test is run for a given con�guration, then the same test is run with a lower stimulation

frequency. Each time the outgoing spike activity is recorded and evaluated. If the number

of outgoing spikes decreases signi�cantly when a lower stimuli rate is set, the test counts

as being successful, otherwise it failed.

Switching of Synapse Type from Excitatory to Inhibitory

The mapping of the correct type of synaptic link is also important (see Sections 1.1.1 and

1.1.2). The erroneous mapping of excitatory synapses in the description of the neuronal

network to inhibitory synapses on the back-end is covered with this test. If excitatory

synapses are used between stimuli and neuron, and between the neurons of each pair,

outgoing spikes should be produced. If the synapse type between two neurons of a neuron

pair is switched to inhibitory, spike activity is expected to cease. If this is the case, the test

succeeded, otherwise it failed.

Decrease in Synapse Weight

The weight of synapses must also be correctly mapped to the back-end. Here, too, mistakes

can happen in the form of hardware failures or incorrect con�gurations. This supported

parameter change attempts to cover this possibility. If the synaptic weight is decreased,

the spike activity of both neurons of a pair should decrease signi�cantly. If this is the case,

the test succeeded, otherwise it failed.
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Decrease in Number of Excitatory Synapses

Decreasing the number of excitatory synapses should result in less spikes being produced

by both neurons of a pair. This test attempts to verify this behavior. The purpose, again,

is to detect if synapses are mapped correctly. If they are, removing one of them should

lead to a di�erent spike frequency. If the synapse that is removed did not exist on the

hardware in the �rst place, for example due to an erroneous mapping procedure, no change

in outgoing spike activity should be recorded and the test fails.

2.2.5. Integration of Tests into the Test Framework

The above tests are incorporated into the main test framework. This allows for e�cient

execution of single tests or the whole set of tests either explicitly or implicitly when changing

relevant code. The tests are included in the inspector.py script �le.

The test identi�ers contain the back-end the tests will run on, e.g. stage1 for the

FACETS Stage 1 hardware, stage2ess for the Executable System Speci�cation of the

FACETS Stage 2 hardware.

The tests have been successfully applied for this thesis. The functionality has been

veri�ed via software simulators, as is shown in Section 3.1.
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The purpose of this chapter is to show that the developed high-level tests (see Section

2.2) can indeed run on multiple simulator back-ends and are useful for �nding mapping,

con�guration or back-end problems.

3.1. Testing NEST and NEURON

The software back-ends NEST and NEURON (see Section 1.2.3) have already been well-

tested by the neuroscience community. This makes them an able tool to verify the validity

of the developed high-level neuronal network tests.

First, a demonstrator sweep is performed to qualitatively verify the behavior of the tests.

Table 3.2 shows the used parameters.

Parameter Value

Variation Threshold Potential
Simulation time 700 ms

Pairs 4
Unused neurons 10

Maximum number of excitatory stimuli 100
Maximum number of inhibitory stimuli 10

Stimuli connection probability 0.3

Table 3.2.: Parameters chosen for a demonstrator run

While these parameters seem to be random at �rst glance, they are motivated by the

fact that they turned out to be good for showing the qualitative behavior of the neuronal

network in a way that is even visible to the naked eye when studying the corresponding spike

output in a raster plot. Figure 3.1 shows such plots resulting from running this scenario

with NEST.

The �gure shows the output spike times of the second cell over the full duration of the

experiment. The same parameter set is used in both runs, except for an increase in the

threshold potential from -55.62 mV to -50.41 mV in the second run. This is expected

35



3. Application of Tests

Figure 3.1.: E�ect of changing the threshold potential on NEST from the �rst to the
second run. The abscissa shows the simulation time and the ordinate the
neuron number. Each even neuron number is the neuron that is directly fed
by the stimuli and each odd neuron number is the one that is only connected
to the stimuli-excited neuron. Neuron 0 and neuron 1 make up a pair, so do
neuron 2 and neuron 3, and so on.
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to reduce the resulting output spike frequency, which is indeed clearly visible in the shown

plots. It is also con�rmed by an alpha factor of above 2 for every neuron (see Section

2.2.3), which is a remarkably high signi�cance for such a short simulation time.

Now that the general, qualitative e�ect of the tests has been demonstrated, a more

biologically realistic scenario is chosen. Table 3.4 and 3.6 show the used parameters.

Parameter Value

Variation Threshold Potential,
Stimuli Rate, Synaptic
Weight, Synapse Type

Simulation time 10000 ms
Pairs 10

Unused neurons 10
Maximum number of excitatory stimuli 800
Maximum number of inhibitory stimuli 200

Stimuli connection probability 0.3

Table 3.4.: Parameters chosen for variations of the threshhold potential, stimuli �ring rate,
synaptic weight, and synapse type.

Parameter Value

Variation Number of Excitatory
Stimuli

Simulation time 100000 ms
Pairs 10

Unused neurons 10
Maximum number of excitatory stimuli 8
Maximum number of inhibitory stimuli 2

Stimuli connection probability 1.0

Table 3.6.: Parameters chosen for variation of the number of excitatory stimuli.

The number of stimuli is reasonable as it provides a good compromise between biological

realism and performance considerations; only when the number of excitatory stimuli is

varied, a much lower stimuli number is chosen in order for the tests to succeed in less time.

The number of stimuli together with the usual value range of neuron parameters leads to

an approximate rate of produced spikes. In order to measure a signi�cant di�erence at

this rate, a simulation time of 10000 ms (100000 ms for the stimuli number variation) is

usually a good setting. Then the various neuronal and synaptic parameter variations are
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performed on both NEST and NEURON as outlined in Section 2.2.4.

The average number of action potentials produced by the second neuron of a pair and

the resultant average α factor are shown in Table 3.8. As can be seen from the table,

all α factors are well above 12 meaning that the chance of any of these changes being

pure coincidence instead of being rami�cations of the parameter variations is well below

3.55 · 10−33. The tests have hence demonstrated their validity.

Variation Average spike count in
�rst run

Average spike count in
second run

Average
Alpha

Threshold Potential 6150 4818 12.71
Stimuli Rate 6642 4731 17.92

Synaptic Weight 4879 3759 12.05
Synapse Type 6608 0 81.29
Number of Exc.

Stimuli
11033 9287 12.25

Table 3.8.: E�ects of parameter variations on the second neuron of a pair in NEST.

The same test con�gurations have also been run on the NEURON simulator (see Section

1.2.3) with qualitatively identical results, but for clarity and readability purposes only data

generated with NEST is shown here.
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3.2. Testing the FACETS Stage 1 Hardware

The Spikey chip introduced in Section 1.2.1 has also been tested and the results are shown

in this section.

First, a demonstrator run has been performed to again check the qualitative behavior.

Table 3.10 shows the used parameters.

Parameter Value

Variation Threshold Potential,
Stimuli Rate, Synaptic
Weight, Synapse Type,
Number of Exc. Stimuli

Simulation time 500 ms
Pairs 4

Unused neurons 10
Maximum number of excitatory stimuli 90
Maximum number of inhibitory stimuli 10

Stimuli connection probability 0.3

Table 3.10.: Parameters chosen for the Stage 1 demonstrator run.

These values are motivated by the fact that they are good for producing easily analyzable

plots on the Spikey chip, as can be seen in Figure 3.2.

It plots the output spike trains generated during the two runs. Again, the same parameter

set is used in both runs, except for an increase in the threshold potential from -63.98 mV

to -58.68 mV in the second run. This is expected to decrease the resulting output spike

frequency, which is indeed clearly visible in the plots. It is also con�rmed by the di�erence

in spike activity yielding an α factor of above 4 for every neuron (see Section 2.2.3).

After demonstrating the qualitative e�ect of the tests on the Stage 1 hardware, two

Spikey chips are tested more thoroughly. Spikey version 4 o�ers 192 available neurons,

leading to 96 available pairs. Since every hardware neuron has a chance to be representing

the second cell in such a pair, it possibly has to be fed back into the chip and thereby occupy

a synapse driver. Thus, 64 synapse drivers remain to be used for the external stimuli.

Using this many pairs of neurons �ring at relevant output rates will, however, make the

tests fail. This is due to the fact that the number of produced spikes can be too large for

the chip-to-FPGA communication protocol to handle [8, Section 4.3.7]. Hence, a lower

number of pairs must be used and the test must be run multiple times to cover the whole

chip. All available parameter variations are tested on both chips.
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Figure 3.2.: E�ect of changing the threshold potential on Stage 1 from the �rst to the
second run. The abscissa shows the simulation time and the ordinate the
neuron number. Each even neuron number is the neuron that is directly fed
by the stimuli and each odd neuron number is the one that is only connected
to the stimuli-excited neuron. Neuron 0 and neuron 1 make up a pair, so do
neuron 2 and neuron 3, and so on.
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Successful Fault Identi�cation

First the chip with the individual identi�cation number 415 is tested. Table 3.12 shows an

example of produced spikes by the second neuron when varying the threshold potential in

the second run. It is shown that the number of spikes decreases in the second run as is

intended. All tests succeed on this chip.

Neuron Index Total spike count in
�rst run

Total spike count in
second run

Alpha

0 1953 1387 9.79
1 1125 310 21.51
2 2460 1735 11.19
3 365 13 18.10
4 2514 1722 12.17
5 289 8 16.31

Table 3.12.: Total spikes produced by some neurons on the Spikey chip 415.

The same test run is performed on the chip with the identi�cation number 456. Some

neurons on this chip, however, do not produce any spikes at all, as shown in Table 3.14.

Repeatedly running the same test reveals that the neurons that do not spike are always the

same.

Neuron Index Total spike count in
�rst run

Total spike count in
second run

Alpha

0 371 289 3.19
1 107 62 3.46
2 0 0 -
3 0 0 -
4 346 271 3.02
5 161 111 3.03

Table 3.14.: Total spikes produced by some neurons on the Spikey chip 456.

The run of the high-level neuronal network tests have shown two, probably unavoidable

problems with the Spikey chip. First, the number of spikes the chip is able to record does

not allow a complete utilization of the chip if neurons produce too many spikes. This limit is

imposed by the hardware and cannot be avoided in general without a system redesign. The

second problem is the apparent degradation and failure of neurons, which is an inevitable

41



3. Application of Tests

consequence of the usage of electronic circuits. In this situation, the presented tests can

serve as a tool to identify the faulty circuits and exclude them in following mapping runs.

3.3. Testing with the FACETS Stage 2 Executable System

Speci�cation

As a positive side e�ect of dealing with the Executable System Speci�cation of the FACETS

Stage 2 project (see Section 1.2.2), the overall structure of the Executable System Speci-

�cation source code has been improved in collaboration with Bernhard Vogginger as part of

this thesis. These numerous changes include but are not limited to: increasing readability

to facilitate �nding problems, adjusting visibility of class members to better re�ect good

coding practices and to conform with the object-oriented programming philosophy of encap-

sulation, optimizing code, erasing unnecessary or redundant statements, and commenting

the resultant code.

After these changes have been made, the high-level neuronal network tests (see Section

2.2) have been run on the Stage 2 virtual hardware. A demonstrator plot is shown in Figure

3.3. Table 3.16 shows the used parameters.

Parameter Value

Variation Stimulus Rate
Simulation time 2000 ms

Pairs 4
Unused neurons 80

Maximum number of excitatory stimuli 20
Maximum number of inhibitory stimuli 8

Stimuli connection probability 0.5

Table 3.16.: Parameters chosen for the Stage 2 Executable System Speci�cation demon-
strator run.

Here it can be seen that the tests also work on the Stage 2 virtual hardware.

After a demonstrator run, the tests have been put to use and helped in �nding problems

in the software stack that con�gures the virtual hardware and will also con�gure the real

hardware in the future.

The tests revealed that the Stage 2 system, too, is limited in the number of recordable

spikes. If too many pairs are created and there are only few unused neurons, the pair

neurons are not distributed widely across the wafer and too many neurons send on the
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Figure 3.3.: E�ect of changing the stimuli rate on the Stage 2 virtual hardware from the
�rst to second run. The abscissa shows the simulation time and the ordinate
the neuron number. Each even neuron number is the neuron that is directly fed
by the stimuli and each odd neuron number is the one that is only connected
to the stimuli-excited neuron. Neuron 0 and neuron 1 make up a pair, so do
neuron 2 and neuron 3, and so on.
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same Layer 2 connection. This leads to congestion of the Layer 2 connection and results

in a loss of recorded spikes.

Successful Debugging

During the time this thesis has been written two additional problems have been found in

collaboration with Bernhard Vogginger within the software stack operating the Executable

System Speci�cation. The software stack includes but is not limited to the PyNN API

implementation, the mapping process, and the Executable System Speci�cation itself (see

Sections 1.2.4 and 1.2.2).

The �rst problem arose from a defective implementation of the parameter transformation

(see Section 1.2.4) if a neuron has no outgoing connections to other neurons. This may

happen, for example, when using the high-level PyNN API (see Section 1.2.4) to create two

neuron populations and connect them with a certain probability below 1. Then, neurons

may not have any outgoing connections.

In a HICANN (see Section 1.2.2) a synapse driver is designated to utilize all synapses

it feeds in either exclusively inhibitory or exclusively excitatory fashion. Up to 64 neurons

may send to a given driver. The parameter transformation determines whether a synapse

driver has to be con�gured to be excitatory or inhibitory by checking the synapse type of

the �rst outgoing synapse of the �rst neuron that is assigned to this driver.

The problem emerged in the defective implementation when the �rst neuron happened

to have no outgoing connections at all. In this case the synapse driver was not con�gured

at all, leading to a loss of all other synapses also using this driver. This problem had been

demonstrated by the high-level neuronal network tests, when unused neurons had been

created additionally to neuron pairs. The unused neurons can be con�gured to be not

connected with each other and hence have no outgoing synaptic connections. This led to

certain synapse drivers not being set up correctly and the tests failed.

This problem has been �xed by iterating through all neurons that use a given driver until

one is found which has at least one outgoing connection. Fixing this problem prevents

synapses from getting lost, which may be hard to track in more complex neuronal network

architectures leading to unexpected results.

The second identi�ed, in this case still un�xed problem surfaces during the routing of

on-wafer connections (see Section 1.2.4) in case there are neurons with no incoming con-

nections. This can happen under similar conditions as the �rst problem, especially when two

neuron populations are connected with a probability below 1. If no incoming connections

are present, the synapse con�guration in the HICANN is distorted.
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As an example one may consider two neurons placed adjacent to each other in the

HICANN. The �rst neuron is not stimulated, but the second one is. The routing algorithm

ignores synapse columns for neurons with no incoming connections and instead erroneously

places the synapse column of the second neuron for the �rst neuron. This means that the

second neuron will not get the input it should get.

This problem, too, has been found by the execution of the high-level neuronal network

tests.
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The presented thesis originates from the core problem that as complexity rises, the ability

to spot mistakes and �aws in the implementation of models, especially those of recurrent

neuronal networks, diminishes. It approaches this problem by providing methods that en-

sure the validity, functionality, and a maximum degree of accuracy of neuronal network

model implementations. Proof of the versatility, applicability, and bene�ts of the high-level

neuronal network tests is presented.

The tests presented (see Section 2.2) and applied (see Chapter 3) showed that the

paradigm of mistakes manifesting themselves as behavior that is contrary to well-de�ned

expectations is usually a sound one. It has been shown that applying even minimalistic (in

terms of the number of involved components) tests can facilitate the identi�cation of prob-

lems in code modules and imperfections in hardware. It can be argued that the minimalistic

approach should even be strongly preferred to more complex ones, because if a test is too

complicated one might not know if unexpected behavior is the result of a failure in the

simulator back-end or a �awed assumption or implementation in the tests themselves. The

paradigm of minimalistic but thorough tests is therefore a bene�t and advantage in pin-

pointing potential problems with the back-end and the operating software: It avoids having

to struggle with unnecessary complexity imposed by overly intricate neuronal architectures.

The use of PyNN has been motivated (see Section 1.2.4) and has helped in interfacing

di�erent back-ends. Neuron pairs are found to be the most basic unit that allows to

cover the testing of neuronal parameters as well as stimuli-to-neuron and neuron-to-neuron

synaptic connections in an e�cient manner.

The spectrum of scenarios currently covered by the presented tests is, of course, limited.

This arises from two factors: First, the limited time available for this thesis constrained

the set of code and test scripts that could be generated. Second, the tests developed are

most e�ective when being run as often as possible. This is a direct consequence of the

randomness introduced in order to cover a whole array of mapping scenarios. If each test

used the exact same parameter set, the resultant hardware con�guration would always be

the same and the testing would lose a great deal of e�ciency.

The approach taken can be applied to forthcoming hardware and software simulators,
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as it is generic in nature and not dependent on the back-end itself. It takes relatively low

development time while at the same time yielding high test e�ciency.

The work at hand constitutes the �rst step towards a complete quality assurance system

for the FACETS neuromorphic modeling software framework and is believed to support,

motivate, and initiate contribution of further tests, especially unit tests [3], more high-level

tests, and possibly even benchmark models that evaluate functionality at a very high level.

Some of these already exist [17] and may conceivably be integrated as modules into the

test framework.

All tests presented should be run regularly, especially after source code changes of the

mapping tool or virtual hardware. Results of these tests should be documented. The

logging functionality of the test framework Inspector (see Section 2.1) can be used for

this. Improvements such as �xing of coding mistakes and other problems should become

apparent from the logged results and may provide further motivation to develop additional

tests.

A long-term objective is to o�er a broad range of tests to the neuroscience community

to help make neuromorphic modeling back-ends more robust and error-free. This will aid in

the constant development of neuromorphic modeling platforms and thereby help in creating

a functional tool that will gain further insight into the inner workings of our brain.
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A. Resources and Supplements

A.1. Source Code of the Test Framework

The source code of the test framework Inspector can be found in a git repository:

git@gitviz.kip.uni-heidelberg.de:symap2ic.git

The corresponding script is located at:

symap2ic/tests/inspector.py

A.2. Source Code of the High-Level Neuronal Tests

The source code of the high-level neuronal network tests can be found in a git repository:

git@gitviz.kip.uni-heidelberg.de:symap2ic.git

The corresponding scripts are located at:

symap2ic/components/pynnhw/test/high_level_network_tests

For the management and tracking of software bugs Indefero is used and accessible at:

https://gitviz.kip.uni-heidelberg.de/index.php/p/symap2ic/

The bug reports �led of the problems found with the high-level neuronal network tests

can be found among others in:

https://gitviz.kip.uni-heidelberg.de/index.php/p/symap2ic/issues/

A.3. Using the Test Framework

The inspector framework is contained in a �le called inspector.py. A short help function

is built-in and available using the command line parameter --help.

Simply running all tests available can be done with calling Inspector without any argu-

ments. This can take a while depending on the number of available tests.
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If one wants to limit the test set that is executed, one can specify one or more masks.

Masks are strings that must be present anywhere in a test identi�er for a test command

to be executed. For example the test masks system-sim, pynn, and build run all tests

which have the strings system-sim, pynn, or build in them.

In order to just list but not execute tests, a dry run option is available and is accessible

by the -d option.

The default behavior is that all tests are run, even if single tests fail. If one wants the

test �ow to be stopped if a test failed, the -s option is available.

If one wants to suppress test output and only wishes to see a summary, the quiet mode

enabled with -q is available.

A log �le can be speci�ed by using the -l=logfile.txt option, where logfile.txt can

be substituted by the desired �le name for the log �le. If the �le already exists, it will be

overwritten. The log �le still contains the complete output, even in quiet mode.

By default, the terminal output is colored. If one wishes to disable this, the --no-colors

option must be used. It is to be noted that log �les are never colored, because some text

editors and viewers cannot handle escape codes correctly or simply do not support them

because they are Unix-speci�c.

If the framework is not running on a Unix system, the --no-unix option should be used.

This disables Unix-speci�c functionality like interpreting negative return values as signal

codes or using escape codes to color terminal output.

Tests are directly added, removed, or modi�ed in the inspector.py executable. The

global tests variable contains tuples. Each tuple contains two strings. The �rst is the test

identi�er, the second the test command. See Section 2.1.4 for further information.
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