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Toward Belief Propagation on Neuromorphic Hardware

The inference of probabilistic quantities from noisy sensory data is one of the most
important tasks performed by biological neural networks. The computations performed
in such networks can be investigated with belief propagation methods. In this thesis,
preparatory studies toward implementing this algorithm on neuromorphic hardware are
presented. Firstly, a theoretical treatment of statistical inference models is introduced.
Furthermore, software simulations aimed at validating this approach are presented. Fi-
nally, calibration methods necessary to prepare the utilized FACETS hardware system
for the emulation of these models are provided.

Implementierung von Belief Propagation auf Neuromorpher Hardware

Eine der wichtigsten Aufgaben biologischer neuronaler Netze ist die Abschätzung von
Groessen aus verrauschten sensorischen Daten. Die Informationsverarbeitung solcher
Netze kann durch Methoden der Belief Propagation untersucht werden. Die vorgestellte
Arbeit zeigt Vorstudien auf, die zur Implementierung jener Algorithmen auf neuromor-
pher Hardware dienen. Zunächst werden theoretische Betrachtungen statistischer In-
ferenzmodelle vorgestellt. Desweiteren werden Softwaresimulationen durchgeführt, um
diesen Ansatz zu validieren. Abschliessend werden die erforderlichen Kalibrationsmeth-
oden für das in dieser Arbeit verwendete FACETS Hardwaresystem beschrieben.
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1 Introduction

One of the most exciting scientific endeavours of our time is the study of the operational
principles of the brain. Not until very recently was it even possible to hope that the ar-
guably most intricate system known to humankind would be amenable to understanding
in a sufficiently detailed manner. A truly interdisciplinary field, neuroscience employs
a great variety of theoretical and experimental concepts that are usually found in the
domain of disciplines ranging from physics and mathematics to biology and electrical
engineering. This great confluence of ideas is driven by necessity, since the research
of neural information processing requires the examination of many different facets of
the underlying phenomena, as they happen on varying scales, starting from individual
neuron compartments up to the large networks comprising an organism’s nervous system.

Since the very first comprehensive biophysical model of neural signaling was presented
by Hodgkin and Huxley in 1952, there has been an extensive study of the properties of
the neural cell. The evidence amassed so far has led to a very detailed understanding
of the electro-chemical basis for signal generation and propagation in vivo that can be
verified in minute details by modern experimental techniques such as the patch-clamp
method, which is used for the investigation of single ion channels (a word of caution is in
order, however, since a major feature of neuron signaling, namely the back-propagation
of dendrite spikes, has been uncovered only recently). Although this confidence in how
individual neurons are functioning paves the way for theoretical studies of neural micro-
circuits, the comprehensive investigation of large networks of neurons is inaccessible by
the currently available research tools used in both theoretical and empirical neuroscience.
Under these circumstances, a different approach is necessary for the understanding of
neural information processing.

As the biochemical details of neuron operation are often irrelevant in the context of
larger networks, neural dynamics can be described by abstract mathematical neuron
models that emulate most of the features of their biological counterparts with sufficient
accuracy. This representation enables the development of mathematical theories concern-
ing the operational principles of artificial neural networks. A number of these theories
are statistical in nature and are often inspired by the information-theoretical discipline
of machine learning. Still, their mathematical analysis, as currently understood, often
reaches its limits when faced with large ensembles of complex non-linear units. Therefore
an approach which involves the computational modeling of networks of spiking neurons,
is often used as a powerful alternative.

Computer simulations are now firmly established as the third pillar of science, be-
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1 Introduction

sides theory and experiment, and often provide a cost-effective alternative to time-
consuming empirical studies. Moreover, they enable the testing of theoretical computa-
tional paradigms in silico, in particular the neural implementation of the belief propaga-
tion algorithm discussed in this thesis. In addition, large-scale simulations of biologically
inspired models are often used to investigate the behavior of large constituents of the
nervous system, such as patches of the human neo-cortex.

The performance of modern computing facilities often reaches its limits when used in
conjunction with parameter studies involving large networks of neurons. An important
side-effect of such simulations is the cost that is incurred by digital electronics in terms
of power consumption. Additionally, the run-time of even a single trial used to explore
a large parameter space is often considerably longer. Clearly, a very different approach
is needed if such experiments are to be performed within reasonable time span.

Instead of computing the equations that describe a neural network model mathemat-
ically, it is possible to build a device that actually behaves like a network of idealized
neurons. A analog VLSI implementation of such a device would allow it to operate much
faster than biological systems due to the different order of magnitude of the involved
neuron time constants which are realized as electronic components. If the individual
neuron and synapse circuits are designed to operate asynchronously, with no central
clock governing their dynamics, the time needed for the completion of an experiment
becomes largely independent of the number of artificial neurons that it contains. A
prototype system of this type has been developed by the Electronic Vision(s) group at
the University of Heidelberg in the framework of the FACETS [14] collaboration. It
represents a stepping stone toward much larger wafer-scale device, currently in develop-
ment, which is expected to be delivered within the BrainScaleS [4] project.

Thesis Outline

The work described in this thesis is concerned with implementing statistical inference
models in artificial neural networks that are emulated on neuromorphic hardware. The
theoretical cornerstone of the involved studies is belief propagation, which is an efficient
parallel algorithm for the marginalization of joint probability distributions. The ultimate
goal of testing statistical inference models on neuromorphic hardware is motivated by the
insight provided into the operation of the brain, since the inference of various quantities
from noisy sensory data is a major computational task performed by the nervous system.
The presented work draws upon several different research areas, including statistical the-
ory, software simulation of neural networks, and the operation of neuromorphic hardware.

Chapter 2 provides the theoretical background needed to understand the proposed
models (based on [37]) and the algorithm that underlies the belief propagation frame-
work in general. It discusses a novel model that is well-suited for implementation on the
available neuromorphic hardware and concludes with a discussion about how statistical
inference can be embedded in a network of spiking neurons.
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Chapter 3 describes the details of the neural implementation of the presented models,
as well as simulation results that serve to validate the ability of neural networks to
implement the belief propagation algorithm.

Chapter 4 is concerned with the operation of the neuromorphic hardware platform
FHW-1v4, developed by the Electronic Vision(s) group at the University of Heidelberg.
Prior to performing scientifically meaningful experiments on this device, a calibration of
the analog neuromorphic circuit is needed. The corresponding methods, that have been
developed and implemented by the author, as well as their results, are discussed in detail.

The final chapter provides a short summary of the previously presented results and
discusses remaining issues that need to be addressed in the future.
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2 Statistical Inference and Neural

Networks: A Theoretical Background

The ability to estimate physical variables such as velocities and relative distances is a
crucial element of the survival skill set utilized by many biological organisms to thrive
in a complex and uncertain environment. Since the assessment of these quantities from
noisy and unreliable data is thus fostered by natural selection, evolution has lead to the
development of statistical inference mechanisms that are performed by biological neural
network circuits in the larger context of animal nervous systems.

Unfortunately, there is no universally agreed upon view of how statistical inference
operates in vivo [37], despite the existence of a variety of advanced mathematical
methods dealing with uncertainty and probability. A promising avenue of research is
provided by the discipline of Bayesian inference, which has been used recently for solving
many scientific and engineering problems. In contrast to the frequentist approach to
probability, Bayesian inference starts with an assumption about the distribution of the
quantity of interest and then iteratively updates this distribution, based on the observed
data. Since a close analogy with learning in nervous systems is immediately obvious,
Bayesian inference forms an appealing theoretical framework for the description of prob-
abilistic events in biological systems. An open question in neuroscience is therefore the
characterization of possible algorithms performing this task in biological neural networks.

The general form of any candidate algorithm carrying out statistical inference in vivo
is constrained by the topological and physical properties of the underlying neural circuits.
A minimal set of rules for the evaluation of possible algorithms can be easily derived.
First of all, only local computation must be allowed for, since no biologically plausible
mechanisms for keeping track of global variables in a neural network exist. This leads
in a natural way to the parallelization of the algorithm, an inherent feature of biological
nervous systems. Second, the processing of information should be based on message
passing among neurons, thus respecting the main task of a neural cell: the generation
and propagation of action potentials. Finally, the algorithm should ideally operate on
graphs, since these are the most natural algebraic structures describing neural networks.

One powerful algorithm that satisfies the above criteria is the sum-product algorithm.
It is used extensively in fields as diverse as machine learning, signal processing, and
digital communication, and operates on a very general class of graphical models known
as factor graphs. Due to its generality, it can be used to derive a number of well-known
schemes such as the forward/backward algorithm, the Viterbi algorithm, the Kalman
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2.1 Bayesian Inference

filter, and even special cases of the Fast Fourier Transform [25].

The main focus of this thesis is the investigation of the plausibility of implementing
statistical inference by the sum-product algorithm on neuromorphic hardware. This
chapter aims at providing the necessary background information for the understanding
of the performed neural network simulations in software and the consecutive discussion
of the operation of the hardware device.

2.1 Bayesian Inference

The Bayesian interpretation of probability arises when considering uncertain events. In
contrast to the frequentist view, these events are not repeatable (this is not known a
priori). Still, some initial assumption about their distribution is needed, often provided
by prior experience or the form of the problem. Given a new set of data, the distribution
is updated to reflect the increase in knowledge.
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Bayesian update rule for Normal Random Variables
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Figure 2.1: Iterative update of a Gaussian distribution using Bayes’ rule. A sampling distribu-
tion with a known variance σ2 has an unknown mean µ. It generates N data points
X that are used to update the prior distribution N (µ;µ0, σ

2
0) which is constructed

by assuming the mean µ0. The posterior distribution p(µ|X) = N (µ|µN , σ2

N
) is

then updated with each sample and approaches the unknown mean µ.
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2 Statistical Inference and Neural Networks: A Theoretical Background

On more formal terms, a set of parameters θ describes a statistical model by the
prior distribution p(θ). The effect of the observed data y on the model is described by
the likelihood function p(y|θ). The posterior distribution p(θ|y) is proportional to the
product of the prior distribution and the likelihood: p(θ|y) ∝ p(y|θ)p(θ). This state of
affairs is expressed by the Bayes theorem, which describes the update of the “belief” p(θ)
given a new set of data:

p(θ|y) = p(y|θ)p(θ)
p(y)

(2.1)

The normalization factor p(y) can be calculated when both sides of the equation are
integrated with respect to θ:

p(y) =

∫

p(y|θ)p(θ)dθ (2.2)

It should be pointed out that in the frequentist view, the estimation provides a
particular value for θ, so that the uncertainty depends on the distribution of possible
data sets, while Bayesian inference deals with a single data set and the uncertainty in
the parameters is expressed through the distribution p(θ) [3].

A further important feature of the Bayesian approach is that it allows for making
predictions based on the the current uncertainty about the parameters θ. Starting with
the posterior distribution p(θ|y) and a quantity z that depends on θ through a sampling
distribution p(z|θ), the distribution of future values of z, based on the current knowledge
y can be derived as:

p(z|y) =
∫

p(z|θ)p(θ|y)dθ (2.3)

(Provided that y and z are conditionally independent on θ: p(y, z|θ) = p(y|θ)p(z|θ))

An immediate application of the Bayesian paradigm is the Kalman filter, which is
used to estimate the time series of true system states from noisy measurement data.
The algorithm uses a prediction-correction method based on equations 2.3 and 2.1. Its
starting assumption (leading to the prior distribution) is derived from the physical laws
that govern the dynamics of the system.

Real-world problems usually imply complex relations between probability distributions
that may pose significant difficulties for the calculation of the quantities of interest.
Graphical models allow for the straightforward application of Bayesian inference to such
problems by casting them in a representation that is both intuitive and general. Quite
often, seemingly unrelated algorithms have been discovered to be a particular instance of
a more general graphical concept [17]. An important class of such models are Bayesian
networks.
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2.1 Bayesian Inference

2.1.1 Bayesian Networks

A probabilistic graphical model represents the factorization of a joint probability dis-
tribution over a set of random variables into a product of distributions, each of which
depends on a subset of these variables. Each node (vertex ) is identified with a random
variable, while (graph) edges express the relations among them. Since a graph can be ei-
ther directed or undirected, there are two possible formulations of probabilistic graphical
models:

• Bayesian networks (directed graphs)

• Markov random fields (undirected graphs)

Directed graphs are used to represent causal relations between random variables, while
undirected graphs pose soft constraints between them [3]. Under specific conditions,
Bayesian networks can be converted to Markov random fields and vice versa, but there
exists a more general representation known as a factor graph that is especially well-suited
for expressing statistical inference problems and underlies a more general framework
that goes beyond probabilistic relations.

Any joint probability p(x, y) over two variables can be factorized into a conditional
probability p(x|y) and a marginal probability p(x) by the product rule:

p(x, y) = p(y|x)p(x) (2.4)

In a directed probabilistic graphical model, the edges point toward random variables
conditioned on other random variables. This rule, together with equation 2.4, forms the
basis for constructing any Bayesian network from a joint probability distribution. For
instance, the joint distribution p(x, y) forms the simplest possible directed graph:

Figure 2.2: Bayesian network representing p(y|x)p(x)

Conversely, the factorization of a given Bayesian network (see figures 2.3 and 2.4 for
larger graphs) can be found by examining each node and noticing which of the remaining
random variables point to it. The latter are known as parent nodes and are often denoted
with pa(x), where x is the examined variable. Since this relation describes the conditional
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2 Statistical Inference and Neural Networks: A Theoretical Background

probability p(x|pa(x)), the graphical model depicts the product:

p(x1, . . . , pN ) =
N∏

i=1

p(xi|pa(xi)) (2.5)

Starting with equation 2.4, any joint probability distribution can be factorized and
thus represented by a Bayesian network:

p(x1, . . . , xn) = p(xn|x1, . . . , xn−1) . . . p(x2|x1) p(x1) (2.6)

If all conditional dependencies are fulfilled, the resulting directed graph is fully con-
nected and acyclic.

Figure 2.3: Factorization and Bayesian network representation of the fully connected model
p(x1, x2, x3) = p3(x3|x1, x2)p2(x2|x1)p1(x1)

In most practical problems, however, the Bayesian network is usually sparse, so that
each conditional distribution does not depend on all variables provided by the factoriza-
tion rule as in figure 2.4

Such sparse graphs may provide important insights into the structure of the prob-
lem under investigation and their conditional independence properties lead to efficient
algorithms for calculating marginal distributions, as it will be discussed in the following.

2.1.2 Belief Propagation

The central question in statistical inference is finding the marginal distribution of some
random variable of interest, provided some initial assumption (“belief”) and data samples.
The most obvious approach to this problem is to sum over the the joint distribution
p(x1, . . . , xn) for all possible values of all the other random variables:

pk(Xk) =
∑

x1∈X1

· · ·
∑

xk−1∈Xk−1

∑

xk+1∈Xk+1

· · ·
∑

xn∈Xn

p(x1, xk−1, xk+1, xn) (2.7)

Note that this calculation scales exponentially with the number of variables and is
thus untenable for real-world networks with more than a few nodes. As an example, let
X be an i.i.d. multinomial with K states. It follows that the total cost of calculation
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2.1 Bayesian Inference

Figure 2.4: A sparse Bayesian network representing the factorization:
p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5)

is ∝ Kn−1. Is there a more efficient computational model that ideally scales linearly in
the number of variables? It turns out that the conditional independence properties of
the graphical model allow not only for many different efficient computational schemes,
but also for an important interpretation of the underlying algorithms.

The easiest approach to belief propagation is to consider Bayesian inference on a chain:

Figure 2.5: Bayesian inference on a chain

The factorization of its joint probability distribution can be read directly from the
graph (see equation 2.5) and is given by p(xn|xn−1)p(xn−1|xn−2) . . . p(x2|x1)p(x1) since
each node depends only on the preceding one. If we are interested in the marginal
probability p(xn), then we have to sum over all variables xn−1 . . . x1:

p(xn) =
∑

xn−1

· · ·
∑

x1

p(xn|xn−1)p(xn−1|x−2)p(x2|x1)p(x1) (2.8)

A simple reordering of the product of summation operations affords a new insight into
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2 Statistical Inference and Neural Networks: A Theoretical Background

the marginalization procedure:

p(xn) =
∑

xn−1

p(Xn|xn−1)
















∑

xn−2

p(xn−1|xn−2)










. . .










∑

x1

p(x2|x1)p(x1)
︸ ︷︷ ︸

µx1→x2(x2)



















︸ ︷︷ ︸

µxn−1→xn(xn)
















(2.9)

Each node follows a local update rule µxk−1→xk
(xk) =

∑

xk−1
p(xk|xk−1)µxk−2→xk−1

(xk−1)
which marginalizes the conditional probability at this node, multiplied by the marginal
calculated for the preceding one. If the local marginal distributions µ are viewed as
messages sent from one node to another, then the propagation of these probability
distributions along the chain with each summation can be interpreted as a message
passing algorithm. It is obvious that when these summations are performed sequentially,
the complexity of the algorithm increases only linearly with the number of variables,
since the computations at each node are the same.

The generalization of this scheme for more general types of Bayesian networks, as well
as the invention of robust local computation rules has been pioneered by Judea Pearl
[34], [35], whose work is widely known as belief propagation, since in his framework the
prior distributions are designated as belief in the corresponding quantity. The idea of
reordering summation and product factors to achieve efficient computational algorithms,
optimized for the structure of the graph has been exploited in a number of different
fields such as statistical physics, digital communication, machine learning, etc. A unified
representation of all these ideas has been achieved by transforming various types of
graphical models in a more general representation known as factor graphs. The latter are
undirected and consist of two types of nodes, which represent either random variables or
the relationships between them.

2.2 Factor Graphs

Not only probabilistic graphical models, but also many well-known methods such as
the Kalman filter, Tanner graphs or Fast Fourier transforms can be cast into factor
graphs on which the sum-product algorithm provides a unified procedure for performing
efficient marginalization tasks. This generality, as well as the distributed nature of the
algorithm underpin an elegant theoretical paradigm for viewing statistical inference in
neural networks.
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2.2 Factor Graphs

2.2.1 Bipartite Factor Graphs

Leaning on the definition from [26], let x1, x2, . . . , xn be a collection of variables so
that each variable xi takes on values in a domain Ai. Let g(x1, . . . , xn) be an R-valued
function of these variables, g : S 7→ R, where the domain S of g is designated as the
configuration space and each element s ∈ S represents a particular configuration of the
variables:

S = A1 ×A2 × · · · ×An (2.10)

Identifying R with the set of real numbers does not lead to significant loss of generality
[26] and since summation in this field is well-defined, for each variable xi of g there exists
a marginal function gi(xi). The value of the marginal function gi(a) for a particular value
xi = a with a ∈ Ai is calculated by summing g(x1, . . . , xn) of a configuration subspace
of S where xi = a. This operation can be expressed by:

gi(xi) :=
∑

{xk;k∈n}\xi

g(x1, . . . , xn) ≡
∑

∼{xi}

g(x1, . . . , xn) (2.11)

The function g(x1, . . . , xn) is often designated as the global function and may factorize
into a product of local functions, each of which is a function of a subset Xj ⊂ {x1, . . . , xn}
of the variables of g. If J is a discrete index set, this product can be written as:

g(x1, . . . , xn) =
∏

j∈J

fj(Xj) (2.12)

The representation of this factorization by a graph is achieved using the following
definition.

Definition: A factor graph is a bipartite graph (in which there may be no edges
connecting nodes of the same type). It has a variable node for each variable xi and a
factor node for each local function fj. An edge connecting variable node xi to factor
node fj exists if and only if xi is an argument of fj.

The visualization of such graphs is straightforward and the following standard example
will be used to illustrate the sum-product algorithm:

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5) (2.13)

2.2.2 The Sum-Product Algorithm

For cycle-free graphs, the sum-product algorithm provides a recipe to calculate exactly
all marginal functions gi(xi) associated with a global function g(x1, . . . , xn). In some
cases, it can be used iteratively without modification even for factor graphs with cycles,
where it delivers an approximation of the exact solution [39]. A formal derivation of the

11



2 Statistical Inference and Neural Networks: A Theoretical Background

Figure 2.6: Example bipartite factor graph

algorithm from first principles is beyond the scope of this thesis, but it can be found in
[3], [25], [26], and [39].

The sum-product algorithm relies strongly on the tree structure of a graph, as in
example 2.13. The variable xi for which the marginal function gi(xi) is computed is first
designated as the root node of the tree. Thereafter the calculation proceeds similarly
to the Bayesian inference on a chain presented previously (equation 2.9). Starting from
example 2.13, the marginal value g1(x1) can be computed according to:

g1(x1) = fA(x1)

[
∑

x2

fB(x2)

[
∑

x3

fC(x1, x2, x3)

[
∑

x4

fD(x3, x4)

][
∑

x5

fE(x3, x5)

]]]

(2.14)
The summation notation from 2.11 can be used to convert the expression to a more

convenient form:

g1(x1) = fA(x1)
︸ ︷︷ ︸

µfA→x1
(x1)

∑

∼{x1}











fC(x1, x2, x3) fB(x2)
︸ ︷︷ ︸

µfB→x2(x2)




∑

∼{x3}

fD(x3, x4)





︸ ︷︷ ︸

µfD→x3
(x3)




∑

∼{x3}

fE(x3, x5)





︸ ︷︷ ︸

µfE→x3
(x3)











︸ ︷︷ ︸

µfC→x1
(x1)

(2.15)
In analogy to equation 2.9, the nesting of summation operations that produce local

marginals can be viewed as passing of messages from one node to the next. In this case
all messages converge on node x1, for which the marginal function gi(xi) is the product
of these messages: gi(xi) = µfA→x1(x1)× µfC→x1(x1).

The computation starts at the leaf nodes. Each leaf variable node sends a unit function
µxj→fk(xj) = 1 to its parent factor node. The leaf factor nodes, which depend only on

12



2.2 Factor Graphs

Figure 2.7: Visualization of message passing on a tree-structured graph according to the single-
i-algorithm.

one variable, send a description of the factor function to that parent variable.

Similarly, the computations performed by non-leaf nodes of a factor graph are of two
varieties, each specific for the type of node:

• A variable node xj simply forms the product of the s incoming messages
∏s

k=1 µfk→xj
(xj) and passes it to its parent factor node fk.

• A factor node fk receives q messages from a set of variable nodes X = {x1, . . . , xq}
and multiplies their product

∏q
i=1 µxi→fk(xi) with the function fk(xj ,X) that de-

scribes it. Then it calculates the sum
∑

∼{xj}
fk(xj ,X)

∏q
i=1 µxi→fk(xi) and passes

the result µfk→xj
(xj) to its parent variable node xj.

The described version of the sum-product algorithm may be referred to as the “single-
i-algorithm” [26], since it results in the calculation of a single marginal gi(xi). It might
be sufficient for the forward computation of belief updates on a time-series chain like a
hidden Markov model or a Kalman filter, but in other models it might be desirable to
have all marginals calculated simultaneously.

Using Pearl’s [35] metaphor, each node in a factor graph may be viewed as a processor
that waits for incoming messages and performs a well-defined operation on them before
sending them away to other nodes. Since in such a case there is no centralized supervision
(no global variables), the computations are entirely local and distributed. Unlike the
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simple tree presented above, the general version of the sum-product does not demand
parent-child relations between nodes. Messages are sent in both directions along an
edge, as soon as updates are available. For convenience, let the algorithm operate in
discrete time, so that each step can be isolated. The calculation presented below is then
known as flooding schedule.

Figure 2.8: Propagation of sum-product messages using the flooding schedule regime.

As in the single-i case, the leaf nodes initiate message passing. Each non-leaf node
waits for incoming messages until it has received a message on each but one edge. Desig-
nating the neighbouring node along this edge as a temporary parent, the node performs
its computations, depending on its type (see above) and then waits for a message to come
along this same edge. Once it has arrived, the node is free to perform its computation
and send the resulting marginals over each of the remaining edges. The algorithm
terminates when two messages have passed along each edge in opposing directions. At
the end of the calculation, all marginals gi(xi) are available at each variable node xi.

Formal Definition of the Sum-Product Rule:

Let µx→f(x) be the message from a variable node x to a factor node f . Let µf→x(x)
denote the message sent from node f to node x. Let n(v) denote the set of neighbors of
a given node v (regardless of its type) in a factor graph. The local computation rules,
together with the flooding schedule described previously constitute the sum-product
algorithm:

14



2.2 Factor Graphs

Sum-product update rule

A node v in a factor graph sends a message along an edge e that consist of a product
of the local factor function at v (which is the unit function if the node v is a variable
node) with all messages collected at v on edges other than e according to the following
rules:

Variable to local function

µx→f (x) =
∏

h⊂n(x)\{f}

µh→x(x) (2.16)

Local function to variable

µf→x(x) =
∑

∼{x}

f(X)
∏

y∈n(f)\{x}

µy→f (y) (2.17)

As an illustration of the algorithm, consider the standard example 2.13 used so far
and figure 2.9 that depicts each calculation step. The time sequence of the computations
is initiated by the leaf nodes.

Step 1 (initiation):

µfA→x1(x1) =
∑

∼{x1}

fA(x1) = fA(x1)

µfB→x2(x2) =
∑

∼{x2}

fB(x2) = fB(x2)

µx4→fD(x4) = 1

µx5→fE(x5) = 1

Step 2:

µx1→fC (x1) = µxA→x1(x1)

µx2→fC (x2) = µxB→x2(x2)

µfD→x3(x3) =
∑

∼{x3}

µx4→fD(x4)fD(x3, x4)

µfE→x3(x3) =
∑

∼{x3}

µx5→fE (x5)fE(x3, x5)

Step 3:
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µfC→x3(x3) =
∑

∼{x3}

µx1→fC (x1)µx2→fC (x2)fC(x1, x2, x3)

µx3→fC (x3) = µfD→x3(x3)µfE→x3(x3)

Step 4:

µfC→x1(x1) =
∑

∼{x1}

µx3→fC (x3)µx2→fC (x2)fC(x1, x2, x3)

µfC→x2(x2) =
∑

∼{x2}

µx3→fC (x3)µx1→fC (x1)fC(x1, x2, x3)

µx3→fD(x3) = µfC→x3(x3)µfE→x3(x3)

µx3→fE(x3) = µfC→x3(x3)µfD→x3(x3)

Step 5:

µx1→fA(x1) = µfC→x1(x1)

µx2→fB(x2) = µfC→x2(x2)

µfD→x4(x4) =
∑

∼{x4}

µx3→fD(x3)fD(x3, x4)

µfE→x5(x5) =
∑

∼{x5}

µx3→fE (x3)fE(x3, x5)

Termination:

g1(x1) = µfA→x1(x1)µfC→x1(x1)

g2(x1) = µfD→x2(x2)µfC→x2(x2)

g3(x1) = µfC→x3(x3)µfD→x3(x3)µfE→x3(x3)

g4(x1) = µfD→x4(x4)

g5(x1) = µfE→x5(x5)

After termination, the marginals gi(xi) are available for all variables xi.
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2.2 Factor Graphs

Figure 2.9: Message passing schedule visualization example

2.2.3 Forney Factor Graphs

The first step in implementing factor graph models in neural networks is to choose a
convenient representation that lends itself more naturally to this task. One such rep-
resentation is known as a normal graph [17], or, after the name of its discoverer, as a
Forney factor graph (an FFG, [27]). Just like conventional factor graphs, FFGs repre-
sent graphically the factorization of a function of many variables. In contrast to them,
however, the nodes represent local functions only, while the edges are interpreted as the
variables. Moreover, this arrangement allows for the existence of half-edges which are
connected to one factor node only. They are used to describe the observed variables in
these graphical models. The following definition, according to Loeliger [27], puts this
concept on a more formal footing:

• For every factor there exists a node in the graph

• There is a unique edge or half-edge for each variable

• The node representing some factor g is connected with the edge representing some
variable x if and only if g is a function of x

As it is immediately obvious from the definition, a variable in an FFG can only be
connected to 2 factors. This does not drastically limit the applicability of the graph,
however, since the introduction of a special node, describing an equality constraint,
can be used to “clone” any variable, thus eschewing a lack of generality (at the cost of
introduction of an additional node, see figure 2.11 a)).

Forney factor graphs possess a number of advantages over the conventional type, many
of them quite relevant to the task of describing statistical inference in neural networks:
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Figure 2.10: An example Forney factor graph. The shaded boxes depict sub-graphs that can
be used to build recursive constructs.

Forney Factor Graph Advantages

• The sum-product algorithm assumes it simplest form in its FFG representation, as
will be shown later.

• FFGs are well-suited for hierarchical modeling, so that recursive constructs (“Boxes
within boxes”, compare 2.10) are possible [27].

• They are directly compatible with general block diagrams [27], thus enabling a
straightforward conversion of the problem from one representation to the other.

Two very useful types of factor node are the equality constraint and the zero-sum con-
straint. Their brief description at this point is germane to some of the models discussed
later on. As mentioned previously, each edge in an FFG connects to at most two fac-
tors. In block diagrams, such “shortcomings” are dealt with by using branching points,
see fig 2.11 a), top. In an FFG, on the other hand, such constraints are expressed in a
natural manner as factor nodes. The corresponding functions are as follows:

• Equality constraint among 3 variables: δ(x1 − x3)δ(x2 − x3) ⇔ x1 = x2 = x2

• Zero-sum constraint: δ(x1 + x2 + x3) ⇔ x1 + x2 + x3 = 0

where δ(x−x0) represents either the Kronecker symbol if the variable is discrete or the
Dirac delta function otherwise. As a side remark, the zero-sum constraint may represent
a sum constraint if one of the variables has a negative sign: δ(x1+x2−x3) ⇔ x1+x2 = x3,
see figure 2.11, b), bottom.

The sum-product algorithm on a Forney factor graph operates much in the same way
as in the conventional case if the flooding schedule (section 2.2.2) update regime is used.
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Figure 2.11: Constraint nodes: a) Branching point (top) and the corresponding equality con-
straint δ(x1 −x3)δ(x2 − x3) (bottom) b) Block diagram summation (top) and the
corresponding factor δ(x1 + x2 − x3) (bottom)

The only difference is the update rule, which is now of a single type. The message from
a node g(x, y1, . . . , yn) to a variable x on an FFG is calculated by multiplying the factor
function g with the messages collected from all neighboring nodes along edges y1, . . . , yn
and subsequently summarized over those variables:

µg→x(x) =
∑

y1

· · ·
∑

yn

g(x, y1, . . . , yn)µy1→g(y1) . . . µyn→g(yn) (2.18)

Figure 2.12: Sum-product update rule at an FFG factor node.

For demonstration purposes, the factorization of the standard example 2.13 in the
previous section can be graphically represented as in figure 2.13:

2.3 Kalman Filter: A Classical Statistical Inference Model

An important application of statistical inference is a recursive minimum mean-square
error method known as the Kalman filter [23]. It allows for the sequential estimation of
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Figure 2.13: Normal graph realization of the function f(x1, ..., x5)

states of a noise-perturbed linear dynamical system (LDS) where the observations are also
corrupted by noise and each measurement is a linear transformation of the corresponding
system state. The algorithm rests on the fundamental assumption that all noise processes
affecting the system and the measurements are normally distributed. Depending on the
relation between time tk+1 at which the system state estimate is made and time tk of
the last known observation, the Kalman filter addresses 3 possible problems:

(i) State prediction for tk+1 > tk: Determines the most likely future state, based
on the observation sequence up to and including tk.

(ii) Smoothing for tj < tk: Reduces the noise in a signal of interest.

(iii) Filtering at tk: Determines the most likely current state from the knowledge of
the system dynamics and the observation sequence up to and including tk.

It should be mentioned that the algorithm is applicable to both discrete-time and
continuous-time problems, but due to the computational simplicity of the former and the
discrete nature of the presented model (section 2.4), this thesis concerns itself exclusively
with the discrete-time Kalman filter.

The utility of the method is reflected by its widespread use in a number of technical
and scientific areas such as electronic filters (FM receivers), orbit determination (Apollo
program), and satellite navigation (GPS). In a neuroscientific context, a particularly
interesting application of the Kalman filter is in visual object tracking by artificial neural
networks. Some recent advances in brain-machine interfaces [12] suggest that it can be
successfully used as the statistical inference model for the estimation of velocities by
neural networks.

2.3.1 Linear Dynamical Systems and Space State Representation

The inference of system states from noisy measurement data requires an exact or approx-
imate knowledge of the dynamics of the investigated system. If the set of generalized
coordinates {q1, . . . , ql, q̇l+1, . . . , q̇n} is represented by a state vector x ∈ Rn, then a linear
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dynamical system (LDS) can be described by the differential equation

dx(t)

dt
= Φ(t)x(t) (2.19)

where Φ is a linear transformation Φ : Rn 7→ Rn describing the dynamics of the
system. In the discrete-time domain the successive state updates are governed by the
difference equation xk+1 = Fkxk where Fk is generally defined for each time step.

The state-space representation of an LDS has had a crucial role in the development of
the Kalman filter [23]. Since the actual state x can not be determined directly or with
an infinite precision, the system is modeled by a set of coupled difference (differential)
equations of the observed and state variables z ∈ Rm and x ∈ Rn (the input or control
variables are not relevant for the following discussion). The state-space model consists
of a process model describing the evolution of the system and a measurement model for
the observation sequence. It also incorporates error sources such as the process noise w

and the measurement noise v. The corresponding update equations are

xk+1 = Fkxk +wk (2.20)

zk = Hkxk + vk (2.21)

If the state perturbation vector w is assumed to be normally distributed, then it can
be represented by a zero-mean white-noise process wk ∼ N (0,Qk) where its process
covariance Qk may generally depend on each time step. The measurement model for the
observable z is represented by a linear transformation Hk : Rn 7→ Rm of the system state
xk with an additional zero-mean noise vk ∼ N (0,Rk) where Rk is the (generally time-
dependent) measurement covariance. The covariance matrices are given by the following
equations when the processes v and w are uncorrelated:

E
[
wkw

T
j

]
= Qkδkj (2.22)

E
[
vkv

T
j

]
= Rkδkj (2.23)

E
[
vkw

T
j

]
= 0 ∀k, j ∈ N (2.24)

A block diagram of a state-space model presents visually the relations among its vari-
ables and can be used to construct a factor graph representation:

2.3.2 Discrete Kalman Filter

The Kalman filter is a prediction-correction method that recursively calculates an es-
timate x̂k for the system state xk from the previous estimate xk−1 and the current
observation zk. Since the previous estimate is based on the one preceding it, the algo-
rithm implicitly includes the whole observation sequence up to the current time point
without involving all measurements explicitly in each calculation[36]. The algorithm is
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Figure 2.14: Block diagram of a linear state space model

therefore tailor-made for real-time applications involving optimal estimation problems.

It is instructive to clearly delineate the prediction step which produces an a priori

estimate x̂
(−)
k based only on the known dynamics of the system and the consequent cor-

rection step (using observation zk) that results in the a posteriori estimate x̂
(+)
k for the

same state xk. Quantities calculated in these steps will be denoted by the corresponding
superscripts (−) and (+).

Prediction

The a priori estimate is calculated solely using the state transition matrix Fk:

x̂
(−)
k = Fkx̂

(+)
k−1 (2.25)

The associated estimation error of the prediction is given by the difference between
the state xk and the a priori estimate:

e(−) = xk − x̂
(−)
k (2.26)

It leads to the following definition of the a priori error covariance matrix of the estimate,

P
(−)
k , which describes the “quality” of the prediction:

P
(−)
k = E

[

e
(−)
k e

(−)T
k

]

= E
[

(xk − x̂(−))(xk − x̂(−))T
]

(2.27)

Correction

The a posteriori estimate x̂
(+)
k is a linear combination of the a priori estimate x̂

(−)
k and

the innovation (measurement residual) yk := zk−Hkx̂
(−)
k . The latter is weighted by the
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Kalman gain matrix Kk which determines how much to correct the a priori estimate,
depending on the “quality” of the observation:

x̂
(+)
k = x̂

(−)
k +Kkyk = x̂

(−)
k +Kk

(

zk −Hkx̂
(−)
k

)

(2.28)

The error covariance matrix for the a posterior estimation P
(+)
k is defined in the same

way as the a priori covariance matrix:

e(+) = xk − x̂
(+)
k (2.29)

P
(+)
k = E

[

e
(+)
k e

(+)T
k

]

= E
[

(xk − x̂(+))(xk − x̂(+))T
]

(2.30)

In order to complete the recursion step, P
(+)
k has to be expressed in terms of the a

priori covariance matrix P
(−)
k . Although the derivation is comparatively straightforward,

it goes beyond the scope of this thesis (see [5]). It suffices to mention that P
(+)
k resolves

to

P
(+)
k = (I−KkHk)P

(−)
k (I−KkHk)

T +KkRkKk (2.31)

for any (possibly suboptimal) Kk. The optimization procedure entails the minimiza-
tion of the estimation error variances along the diagonal of the matrix with respect to
the Kalman gain:

d(trP
(+)
k )

dKk
= 0 (2.32)

This leads to the optimal Kalman gain that minimizes the mean of the estimation
error:

Kk = P
(−)
k HT

k

(

HkP
(−)
k HT

k +Rk

)−1
= P

(−)
k HT

k S
−1
k (2.33)

where Sk := HkP
(−)
k HT

k + Rk is also known as the innovation covariance. For the
optimal gain Kk the a posteriori covariance matrix takes on a particularly simple form:

P
(+)
k = (I−KkHk)P

(−)
k (2.34)

The calculation of x̂
(+)
k and P

(+)
k completes the recursion step in the Kalman filter,

since they are used to compute the next a priori estimate and its covariance matrix.

Kalman Filter Example

As an illustration of the action of the Kalman filter, the following plot represents a track-
ing problem in the two-dimensional plane. A particle with coordinates xk = (xk, yk)

T

and a constant velocity ẋk experiences random acceleration ak at each tk. The observa-
tions zk are corrupted by noise vk ∼ N (0,R) while the process noise wk ∼ N (0,Q) is
derived from the acceleration distribution a.
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Figure 2.15: Kalman filter example. A point particle experiences a random acceleration at
each time step. Its real position is given by the blue trajectory with system states
determined by its (x,y) coordinates. The noisy measurements are represented by
the red markers, while the prediction of the Kalman filter is shown as a green
trace.

2.3.3 Bayesian Representation of the Kalman Filter

As with many other statistical inference methods, the Kalman filter can be cast into a
probabilistic graphical model in a natural way. The following graphical representation of
a state space system generalizes both the LDS and another important structure known
as the Hidden Markov Model (HMM). In contrast to the LDS, the state variables in an
HMM are discrete.

In the Bayesian framework the state variables xk are known as hidden or latent vari-
ables, whereas the measurements zk are the observable variables. The latent variables
form a Markov chain such that each xk is conditionally independent of all but the pre-
ceding variable xk−1. Under this assumption the transitional probabilities then take the
simple form:

p(xk|xk−1, . . . ,x1) = p(xk|xk−1) (2.35)

The observables zk are produced from the state variables by emission probabilities.
They are likewise conditionally independent from all states xk with k ≤ k − 1:

p(zk|xk,xk−1 . . . ,x1) = p(zk|xk) (2.36)
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Figure 2.16: Bayesian graphical model of a state space system

This results in a joint probability distribution

p(x1, . . . ,xk, z1, . . . , zk) = p(z1)

k∏

i=2

p(zi|zi−1)

k∏

j=1

p(xj |xj−1) (2.37)

It should be noted that this model automatically absorbs the process and measurement
noise into the transition and emission distributions accordingly and thus allows a simpler
representation of the problem.

2.3.4 Kalman Filter Factor Graph

The calculation of a particular distribution p(xk|zk) of probable states given a measure-
ment requires the marginalization of the joint probability 2.37. The prediction step of
the Kalman filter can then be expressed by the marginalization

p(xk|zk−1) =

∫

p(xk|xk−1)p(xk−1|zk−1)dxk−1 (2.38)

if the quantities up to tk−1 are already known. The prediction then follows by Bayes’s
theorem 2.1:

p(xk|zk) =
p(zk|xk)p(xk|xk−1)

p(zk|zk−1)
= αp(zk|xk)p(xk|xk−1) (2.39)

The calculation of the normalization factor α can be done at each node when the
sum-product algorithm is used for the computation of the marginalization.

The factor graph representation of the space state system can be used to calculate all
marginal probabilities simultaneously by the sum-product algorithm. A simple HMM
model that is well-suited for neural network implementation is presented in the next
section.

25



2 Statistical Inference and Neural Networks: A Theoretical Background

Figure 2.17: Factor graph representation of the Kalman filter

2.4 A Simplified Kalman Filter-Like Model for Inference on

a Chain

The Kalman filter is a statistical inference model that is particularly well-suited for
an implementation on neuromorphic hardware. Due to the reasons explained in [37],
messages that are produced by factor nodes that are not in direct contact with external
input sources tend to be less correlated with the theoretically expected messages, since
they represent the result of secondarily processed inputs (see also figure 3.19). Moreover,
the limited number of neurons and synaptic connections available on the device pose
certain limits on the complexity of the model. The nodes in a Kalman filter, on the other
hand, avoid these problems since they receive input directly from the observables and
can be represented by relatively simple factor functions when the variables used in the
graph are binary.

Figure 2.18: Schematic depiction of the simplified Kalman filter model

Figure 2.18 represents a schematic depiction of the model. A particle enters a detector
array with N sensors that are equidistantly located along its length L = Ns, where s is
the distance between them. Each sensor has a limited spatial resolution and can only
determine whether the passage of the particle was on the left or on the right side of the
line at y = 0 shown in the figure, leading to a state variable zn with 2 possible values
where p = 0 if the particle can be found in the region y ∈ [0,−1] and p = 1 if it is in
y ∈ [0, 1].
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Since any physical measurement has an associated uncertainty, it is given by a con-
ditional distribution p(zn|xn) where xn is the observable. The problem, then, is to
determine the transitional probabilities that are needed to construct a factor graph of
the model.

Figure 2.19: Transitional probability calculation sketch for the simplified Kalman filter

The calculations necessary to find these are only sketched schematically in this publi-
cation, since the model has not yet been utilized for statistical inference purposes yet.

A single particle that enters the detector array at the y0 coordinate shown in figure 2.19
can only exit it for the range spanned by the angle

ϕ(y0) ∈
[

− arctan

(
1 + xo
Ns

)

, arctan

(
1− xo
Ns

)]

(2.40)

which generally depends on the entry point y0. The infinitesimal probability for the
particle being in this range is given by

p(ϕ(x0)) =
dϕ

arctan
(
1+x0
Ns

)
+ arctan

(
1−x0
Ns

) (2.41)

with p(x0) = 1
2dx0. The transitional probability between two identical states (as

an example) P0→0 depends on the range of possible locations y0 ∈ [ymin, ymax] that
the particle may have entered the detector from, which can be determined from the
condition that it has to remain in −1 ≤ xn ≤ 0 (y0 ∈ [A,B]) and −1 ≤ xn+1 ≤ 0
(ϕ ∈ [C(y0),D(y0)]). The transitional probability is then given by

P0→0 =
1

Z

∫ B

A
dy0

∫ D(y0)

C(y0)
dϕp(y0)p(ϕ(y0)) (2.42)

with a normalization factor

Z =

∫ 1

−1
dy0

∫ arctan
(

1−y0
Ns

)

− arctan
(

1+y0
Ns

)

dϕp(y0)p(ϕ(y0)) (2.43)

The Forney factor graph representation of the model is depicted in figure 2.20.

27
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Figure 2.20: Forney factor graph representation of the simplified Kalman filter

2.5 Belief Propagation in Artificial Neural Networks

If a particular statistical inference model is to be embedded in an artificial neural net-
work, the central problem consists in the arrangement of the probabilistic computations
necessary for the execution of the sum-product algorithm. Since Bayesian inference
provides a good foundation for neuroscientific computing [16], there have been stud-
ies aiming at explaining how it is performed by biological neurons [29]. Such studies
are concerned mostly with single neuron computation and even with the biophysical
foundations of Bayesian inference in vivo [15], but their results are not general enough
or depend on rough approximations and are therefore unsuitable for the task at hand[37].

An alternative approach is to devise a network architecture that implements the infer-
ence algorithm and thus show the feasibility of the postulated probabilistic computations
by construction. This method has been used successfully by Steimer et al. [37] to demon-
strate belief propagation in a spiking neural network. Key to the experimental setup are
the encoding of the messages and the implementation of the factor nodes.

2.5.1 Network Architecture

The first step toward the realization of the sum-product algorithm in an artificial neural
network is to choose a suitable factor graph representation and consequently to identify
all of its nodes and edges with elements of the network.

The Forney factor graph (section 2.2.3) may be considered the most natural class of
graphical models that can be implemented as an ANN, since there is a direct mapping
of factor nodes to populations of neurons and another one from factor graph variables
to the projections between these populations in the network. Observable variables that
usually deliver sensory input to biological neural networks can be identified with the
half-edges of an FFG and can therefore be implemented by inhomogeneous Poisson spike
train generators in their artificial counterparts.

In order to perform belief propagation, each population has to represent a particular
mathematical factor function and to marginalize its product with incoming messages over
a set of variables. This requires a computational model that approximates the theoretical
calculations with sufficient accuracy. Such a model is the liquid state machine (LSM) [31].
Under particular conditions (section 2.5.4) it represents a filter with a fading memory
that can perform a broad class of analog calculations on incoming streams of data.
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2.5 Belief Propagation in Artificial Neural Networks

The ANN realization of an LSM comprises a pool of recurrently connected neurons and
a set of readout populations of neurons that are (linearly) connected to it but not among
each other. When input spike trains representing messages from other factor nodes excite
time-varying high-dimensional states in the liquid pool, the resulting dynamics can be
viewed as a non-linear transformation of the inputs. Each readout captures a particular
calculation result from the liquid as a linear combination of states via its connection
with the recurrent network. Weight adjustment of the corresponding synapses forces the
readout to extract a different informational content from the liquid and thus leads to
the possibility of training it to perform a classification task on the liquid states. This
method can be used to implement the mathematical function at each FFG node and the
associated message update rule by training a readout assigned along an edge (a variable)
connecting the LSM to another factor node.

As already described (see figure 2.9), the flooding schedule allows for the simultaneous
calculation of all marginal probability distributions on a factor graph representing a
complex factorized joint probability density function. It requires that information flows
in both directions along each edge (but unidirectionally on half-edges) where each message
is the marginalized product of the factor function with the messages coming along all
other edges at the factor node. Since readout populations are tasked with emitting these
messages, it follows that in an ANN implementation of an FFG there have to be at least
two readouts along an edge connecting two factors. This completes the blueprint for a
neural network implementation of a Forney factor graph. Figure 2.21 depicts the step-
wise transformation of a bipartite factor graph representing a Kalman filter to a neural
network model of the same statistical inference method.

2.5.2 Neural Encoding of Messages

After establishing the overall graphical structure of the ANN implementation of an FFG,
it is time to consider the encoding of the probability messages in the network. There
are are no constraints on the type of variables or factor functions used in an FFG. In
a statistical context, the probability distributions of these variables may therefore be
discrete or continuous, or they can even represent deterministic variables.

In practice, binary random variables afford the easiest approach to the encoding prob-
lem, since the time-series of the corresponding random process encodes the probability
with which such a variable takes the value 1 at each time point. Due to normalization,
the probability of it taking value 0 is then automatically derived from the encoded
message. All models described in this thesis are based on Bernoulli random variables
due to the simplicity of the encoding problem. Theoretically it is possible to assign K
readouts, each for a particular realization of a K-valued discrete random variable, but
such an approach suffers from obvious computational scaling problems and can not be
trivially generalized for continuous distributions.

Choosing binary probability messages leads to a simple encoding scheme that is based
on the population activity rate of the readout neurons. As it is described in the next
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Figure 2.21: From a bipartite factor graph to a neural network model: a) Kalman filter factor
graph b) Kalman filter factor graph that can be easily converted to an FFG c)
FFG representation of the Kalman filter d) Neural network representation of the
FFG Kalman filter
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2.5 Belief Propagation in Artificial Neural Networks

section, the discrete message update rule of the sum-product algorithm can be cast
into a continuous-time differential equation whose solution results in a function of time
representing the message emitted along some edge of the network. Such a solution
describes the time-varying rate of an inhomogeneous Poisson process that underlies the
firing of the readout neurons.

The calculation of the instantaneous firing rate is a non-trivial neuroscientific problem
that is described for instance in Nawort et al [28]. A common way to determine it
includes the convolution of a spike train represented by Dirac delta functions with a
suitably chosen kernel, thus resulting in a continuous rate function of time:

r(t) =
∑

tk

∫ T

0
δ(t′ − tk)K(t− t′)dt′ =

∑

tk

(t− tk), tk < T (2.44)

The shape of K(t) can be chosen in terms of computational efficiency, depending on
the application of interest (For instance a triangle-shaped kernel may be as good as
a Gaussian one [28]). The work in this thesis uses a Gaussian filter for determining
instantaneous firing rates.

2.5.3 Sum-Product Calculation

So far the sum-product message update rule on an FFG at a factor node has been
described only in the discrete-time domain, see equation 2.18. In a neural network,
on the other hand, the dynamics are continuous in time and there is no global clock
signal to steer the computation of messages. If the differential version of the flooding
schedule is regarded as the extreme case of an infinitesimal update dm in time step dt,
however, it is possible to construct a differential equation that represents the algorithm
in continuous time. Moreover, it belongs to the class of time-invariant filters with fading
memory [37], and it can therefore be approximated by an LSM [31].

If message µi→j(xj) is to be passed from node i to node j over the edge xj in an FFG,
the differential equation that enables its calculation takes on the following form:

τ µ̇i→j(t) + µi→j(t) =
1

Z(t)

∑

X∈{0,1}m

fi(xj = 1,X)
∏

k∈N/j

pk→j(xk, t−D) (2.45)

pk→i(xk, t) =

{

µk→i(t), if xk = 1

1− µk→i(t), otherwise
(2.46)

The quantities that take part in the equation are defined as follows:

• N (i)/j - Set of all neighbors of node i except for node j

• n - Cardinality of N (i)/j
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• X = (xk)k∈N (i)/j - Vector of binary variables xk each linking node k to node i

• fi - Factor function associated with node i

• D - A fixed synaptic delay

• τ - A time constant that determines the computational dynamics of the system

• Z(t) - A normalization term ensuring 0 ≤ µi→j(t) ≤ 1

This equation can be used to calculate the time series of a message along a full edge
(half edges are the observables) from the incoming messages on all other edges at a
factor node. If the input messages are generated and then fed into a factor node, then
the knowledge of the calculated message can be use to train the LSM to approximate the
same computation as in 2.45. How this is possible is subject of the next section.

2.5.4 Liquid State Machine Paradigm

As it has been discussed in section 2.5.1, the central question of approximating the sum-
product update rule by a population of neurons can be addressed by training an ANN
representing a liquid state machine. According to the underlying mathematical theory of
an LSM, it can perform universal computations with fading memory on analog functions
in continuous time [31]. Central to that theory is the notion of a high-dimensional liquid
medium that is disturbed by the action of input sequences (e.g. complex spatio-temporal
sensory data). The perturbed state of such a liquid is defined at any point in time and
generally reflects the dynamics of the medium. Since it is transient, it stands in stark
contrast to a Turing machine where the states and their transition functions are sta-
ble, well-defined, and task-specific. The state of an LSM, on the other hand, can be
mathematically described as a time-parametrized point trajectory in a high-dimensional
Euclidean space.

As the dynamics of the liquid is affected by past and present inputs, it has to produce
sufficiently different states when faced with disparate data input streams. This ability is
an intrinsic characteristic of the system and can be formalized by the separation property
which describes the divergence of two state trajectories caused by different input streams.

While the liquid can generally be regarded as performing a complex nonlinear transfor-
mation on its inputs, the question of how this can be used to calculate a specific output
function y(t) from the inputs u(.) remains open. To this end, an additional component
of the LSM framework has to be introduced, namely the readout. It maps a liquid state
xM (t) to the target function y(t) and thus acts as a memoryless filter. An interesting
feature of the LSM model is that a given liquid can have a number of readouts that pro-
duce different functions yi(t) from the same input u(.) in real time. The characterization
of the ability of an readout to produce the desired output function is done using the
approximation property of the LSM. In general the separation property depends on the
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complexity of the liquid medium and its relaxation time constants, while the approxima-
tion property is defined mostly by the readout mechanism used to produce the output
function [31].

Figure 2.22: Liquid State Machine

A more rigorous definition of these ideas can be achieved by starting with a vector of
input functions u(t) ∈ Un that is transformed into an k-dimensional liquid state xk(t)
by the action of the liquid filter Lk

xk(t) = (Lku)(t) (2.47)

where Lk is map (an operator) Un 7→ (RR)k from the n-dimensional vector space
of real-valued functions in U ⊂ RR to a k-dimensional vector space of all real-valued
functions (RR)k and represents the dynamics of the system.

Furthermore, a memoryless readout map fk : (RR)k 7→ R transforms the state xk(t)
to an output function y(t) and has to be chosen in a application-specific manner.

As already mentioned in section 2.5.1, the definition of the readout filter fk in an
ANN representation of an LSM can be identified with a collection of synaptic weights
{w1, . . . , wN} for the projection connecting the recurrent liquid pool population with a
readout population of neurons that are not connected among themselves. The determi-
nation of these weights can be achieved by training the readout as a classifier for liquid
states.

2.5.5 Readout Training

The approximation of a factor function f(t) with a neural network-based LSM can be
achieved by a supervised learning procedure. This method relies on the ability of the
network to generalize its behavior for unknown input functions when it is trained to
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respond correctly to a set of of input training messages {u1(t), . . . ,uN (t)}.

Since the time-varying values of an input function u(t) are mapped to the instan-
taneous firing rate r(t) of a population of neurons (section 2.5.2), the spike trains
corresponding to such a message can be generated by a collection of inhomogenous
Poisson processes, one for each neuron, whose rates during each step dt correspond to
the value of u(t) in that infinitesimal interval. Similarly, the instantaneous population
rate o(t) of the readout corresponds to the target function f(t).

In a current-based synapse, each input spike δ(t − tk) at time tk injects a current
∫
δ(t′−tk)K(t−t′)dt′ into the post-synaptic neuron. Typically, the kernel K(t) represents

an exponential decay

PSC(t) = w exp

(

− t−D

τsyn

)

(2.48)

where w is the synaptic weight, D the synaptic delay, and τsyn the synaptic time
constant. The total current I ′(t) injected into a readout neuron by all pre-synaptic liquid
neurons (assuming an all-to-all connection between liquid and readout) in response to
a training input u(t) can therefore be calculated simply as the weighted sum of current
courses Li(t), each gained by the convolution of an individual spike train Si(t) with the
kernel K(t):

I ′(t) =
N∑

i=1

wiLi(t) =
N∑

i=1

wi

∫ T

0
Si(t

′)K(t− t′)dt′, t ∈ [0, T ] (2.49)

If the time-series of the target function f(t) has been computed for u(t), then the
corresponding population rate o(t) of the readout would be produced by some current
I(t) that can not be calculated directly due to the spiking dynamics of the readout
neurons. It is possible, however, to experimentally determine a monotonic function R(I)
by measuring the instantaneous firing rates of the readout for different values of an
injected total mean current (with noise). The inverse function can be used to calculate
the current I(t) that is used as a target for training the readout.

A linear readout generally represents a linear combination of states f(t) = wx(t)
that obviously translates to I(t) = wL(t) for the current-based synapse model discussed
above. The synaptic weights w can be computed by linear regression to minimize the
mean squared error (I(t)−wL(t))2 [30] for a theoretically calculated target current I(t).
The least-squares problem can be formally solved by the following equation:

w = (LLT )−1LT I (2.50)

The performance of the readout can be evaluated by examining the cross-correlation
between the target message m(t) (encoded as a rate) and the measured instantaneous
output rate o(t) for novel input messages.
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The ability of the LSM to approximate a factor function f(t) depends on a number
of parameters that govern its separation and approximation properties. In general they
have to be optimized for each such function and therefore are factor-specific. As a guiding
principle, a “default” set of parameters can be derived from biological data, since a liquid
pool may represent the computations occuring in a cortical mini-column [30].

2.5.6 Factor Graphs

The possibility for training a liquid state machine implemented by an artificial neural
network that has to approximate a particular factor function is the fundamental prereq-
uisite for embedding the sum-product algorithm in an ANN. Since belief propagation is
only the means by which the marginalization of a complex probability distribution is per-
formed, a suitable model for statistical inference is required in order to demonstrate the
computational abilities of such networks. A publication by Steimer et al. [37] establishes
the feasibility of the presented approach, based on two simple models that use binary
random variables.

Binary Channel

The first can be regarded as a proof-of-concept for the theoretical considerations dis-
cussed so far and represents a channel for the transmission of 4-bit binary data. As with
any physical medium, such a channel does not propagate the information with absolute
reliability and bits may flop with a certain probability on their way to the receiver. The
latter is interested in estimating the probability for such an event occuring, based on a
priori assumptions and the received data.

Explaining Away Phenomenon

A more advanced model[24] that has a biological significance describes a visual illusion
that involves the perception of the surface curvature and luminance of two attached
objects. It is known as an explaining away phenomenon and has been used as a standard
example in other publications.

The details of the software implementation of these models is subject to the next
chapter.
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Networks

The ultimate aim of achieving belief propagation on a neuromorphic device can only
be realized if a number of prerequisite steps are fulfilled. The most important advance
toward this goal consists in validating the approach described in section 2.5 by means
of a software simulation of an artificial neural network performing statistical inference.
The results obtained in this fashion do not only establish the method, but also provide
important guidance for the adaptation of the investigated network models to the unique
characteristics of neromorphic devices. This chapter is dedicated to the details of the
implementation and simulation of three statistical inference models briefly described in
section 2.5.6. In that, it follows closely the pioneering work of Steimer et al. [37] which
demonstrates belief propagation in networks of spiking neurons.

3.1 Simulation Methods

The simulation of large artificial neural networks (on the order of thousands of neurons
and more) generally relies on a trade-off between the computational efficiency of the
chosen neuron model and the range of the neuroscientific phenomena that it can em-
ulate. Consequently, leaky integrate-and-fire (LIF) neuron models [33], [18] of varying
complexity are particularly popular with modelers due to their simplicity and biological
plausibility. In such models the cellular membrane is represented by a capacitance Cm

and a leakage conductance gl that combines the action of various types of ionic chan-
nels, thus allowing for the existence of a leakage current across the membrane when its
potential Vm differs from its resting potential El. The membrane potential dynamics of
the most basic LIF neuron are given by the following equation:

Cm
dVm

dt
= −gl(Vm − El) + I(t) (3.1)

where the total current I(t) is injected by all synapses connected to the neuron and
therefore depends on the temporal distribution of incoming spike trains. Since this is a
point neuron model, it leaves out the issue of passive (and possibly active) propagation of
the signal across dendrites to the membrane region of the soma where the spike generation
actually takes place.

Furthermore, there are two types of synaptic model : current based and conductance
based. The former has already been presented in section 2.5.5 (see equation 2.49) and
describes the generation a predefined current time course in response to an incoming
spike (a delta function in time, δ(t − to)). The latter is closer to biological reality and
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emulates the conductance change at the postsynaptic membrane triggered by the release
of neurotransmitters by the presynaptic terminal. This conductance course is typically
described by an exponential decay or an alpha function and the corresponding current
depends on the difference between the membrane potential Vm and a reversal potential
Esyn that is synapse-specific and can be used to differentiate between excitatory and
inhibitory synapses. The uncertainty associated with the quantal release of transmitter-
filled vesicles is sometimes represented by a multiplicative probability factor.

The LIF model is completed by the specification of a threshold potential Vthresh that is
necessary for the generation of action potentials (spikes in the LIF model) in the vicinity
of the axonal hillock. When Vm(t) reaches that threshold, it immediately drops to a
reset potential Vreset and then reaches back to the resting potential El in the absence
of input stimuli. In addition, there is an absolute refractory period τr immediately after
the generation of an action potential, during which the membrane potential remains
clamped to Vreset.

In contrast to more fundamental biophysical studies involving the modeling of ion
channels or individual neurons with multiple compartments, the simulation of large
artificial neural networks usually involves stereotypical calculations of the type described
above, so that the problem consists mainly in managing signal propagation across the
system. In order to avoid the repetitious task of setting up the same type of differential
equations over and over again for each particular network configuration, researchers have
developed several software packages that automate the process to the point where end
users only have to specify the connectivity of the network and the parametrization of
its neuron and synapse models. Such spiking neural network simulators then execute
the low-level calculations underlying the simulation and usually provide access to its
results in the form of spike, voltage, and conductance trace recordings. In contrast to
neuromorphic devices that are usually more rigid in terms of emulable neuron models
and network structures, there are but few constraints on the type of neural networks that
can be investigated via software simulators in silico, therefore the latter are well-suited
for preliminary studies of network models that are to be ported to the hardware.

Two such artificial neural network simulators that have been used extensively in
preparatory studies and for the results obtained for this chapter are NEURON [9]
and NEST [19]. The NEURON project focuses more on the biophysical details of the
simulations and provides more complex neuron models (including multi-compartment
neurons), while NEST is geared more toward computational efficiency and enables the
simulation of large neural networks on HPC clusters.

One drawback of using such software simulators or neuromorphic hardware is that
the corresponding programming interfaces are simulator-specific and usually involve the
utilization of a custom programming language. Such lack of standardization may often
stymie attempts to compare results across simulators such as NEURON, NEST, and
Spikey v4. A major effort toward resolving this problem has produced the PyNN [1]
modeling interface that not only handles all software and (FACETS) hardware backends
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in a unified way, but also provides many high-level data structures and algorithms
that simplify the definition of complex neural networks. It is based on the Python [38]
programming language and has been used for the implementation of all neural network
models presented in this chapter.

Many of the calculations involved in the preparation and analysis of data derived from
the presented statistical inference models, such as spike train convolution and various sig-
nal generation functions, are based on routines defined in the NeuroTools [6] package. Its
goal is to provide well-established neuroscientific methods for dealing with experimental
results and to simplify some aspects of simulation development.

3.2 Factor Training

The performance of the sum-product algorithm, when implemented by a network of spik-
ing neurons, relies on the proper training of individual factors to perform the continuous-
time update rule as defined in equation 2.45. According to the method described in
section 2.5.2, each factor node fi receives time-varying messages {µk→i(t), k ∈ N (i)/j}
which represent the instantaneous probabilities of the associated edges xk to take on
the value 1 when the random variables are Bernoulli-distributed (see figure 3.1). In an
artificial neural network this probability is represented by the (linearly scaled) population
firing rate R(t) of readouts and spike sources that project into a liquid pool of neurons
(section 2.5.1). A readout Ri→j that belongs to the LSM representing fi and projects
to another factor node fj along edge xj has to produce a population rate R(t) that
corresponds to the correct message µi→j(t) in response to its inputs µk→i(t). Since the
readout can not be trained for all possible combinations of values µN , µ ∈ [0, 1] ⊂ R of
its N inputs at each instant dt, it is necessary to use supervised learning that is based
on randomly generated training messages and let the readout generalize the update rule
for novel input.

The training method presented in section 2.5.5 uses multivariate linear regression, but
in order to arrive at the correct readout post-synaptic current I(t) used in the procedure,
several experimental steps have to be completed. These are outlined in figure 3.1 and
their detailed description is subject of the following sections. Each factor is trained
separately, since its input while learning is necessarily different from that in an actual
statistical inference simulation (partly or wholly supplied by other factors in that case).

Firstly, a set of training messages must be generated. Since they have to be normalized
and need to cover a wide range of values, an adequate procedure to this end is provided
by a random walk process with reflecting bounds. Thereafter, using equation 2.45, the
time series of the target output message µi→j(t) (for the corresponding factor function fi)
can be computed numerically from the data. Furthermore it needs to be linearly scaled
to a target readout rate Ri→j(t) that describes the population firing rate of the read-
out. Finally, the target current I(t) can be obtained from Ri→j(t) from an empirically
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Generate training OU messages

Calculate target message

Convert to readout rate

Convert readout rate to the post-synaptic current

Find pre-synaptic readout weights for the target current

Figure 3.1: An overview of the training procedure for individual readouts

derived relation between the total mean current injected into a readout and its firing rate.

When the synapse model used in the simulation is current-based, the convolution of
the spike train output from the liquid pool with the current time course kernel, which
is parametrized by a default weight w and a synaptic time constant τsyn, leads to the
matrix L(t) described in section 2.5.5. The weights w that would produce the target
current I(t) are then obtained by the application of equation 2.50.

3.2.1 Generation of Training Messages

Since the supervised learning method relies on generalization from training samples,
particular care must be taken in considering how these messages are generated. Ideally,
the time series of a training message should be a superposition of all possible frequencies
in a way that they are distributed uniformly, which are properties of the zero-mean
Gaussian white noise process w(t). It can also be defined as the derivative of the time-
continuous Wiener process

dW (t)

dt
= σw(t) (3.2)

that is used to describe Brownian motion and thus a plausible candidate for the gen-
eration of random inputs for training by the simple rule

wn+1 = wn + σ
√
hz, z ∼ N (0, 1) (3.3)

where h is the integration step. Unfortunately, since the individual realizations of the
Gaussian distribution are independent, the autocorrelation of a white noise process is
< w(t)w(t′) >= δ(t− t′) so that its intensity changes sharply in time. Clearly, this is an
implausible assumption, since candidate random processes with this property would not
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lead to the desired population firing rate due to the dynamics of the integrate-and-fire
neuron.

In fact, most white noise processes encountered in reality are filtered by measure-
ment devices and the physical processes that generate them produce a “white” band
in a limited range of the frequency spectrum [13]. In an artificial neural network the
membranes of the neurons have a low-pass filtering effect on the currents entering these
cells (see equation 3.1), consequently cutting off higher frequencies. This means that
an Ornstein-Uhlenbeck (OU) process with reflecting bounds is especially well-suited for
the generation of training messages since it can be regarded as a low-pass filtered white
noise. In addition it can be synchronized with the relaxation times of the system by the
adjustment of its time constant.

The OU process represents the solution of the Langevin equation [13]

dU =

(

−U

τ
+ µ

)

dt+ σdW (3.4)

that consists of a deterministic and a stochastic element. The parameter τ ≥ 0 is
the time constant of the process, σ ≥ 0 its diffusion coefficient, while µ is the drift
coefficient and also a (long-term) mean < U(t) >. The stochastic part is represented by
the continuous-time random walk W , which is a Wiener process.

The solution of equation 3.4 for discrete times tn = nh leads to an iterative form that
can be used directly to generate the necessary data:

Utn = Utn−1e
−h

τ + µ(1− e−
h
τ ) + Zn (3.5)

The stochastic part Zn = σe−
tn
τ

∫ tn
tn−1

e−
s
τ dWs is a sequence of i.i.d normal random

variables [13] with an expectation E(Zn) = 0. The successive values of an OU process
are correlated exponentially with a variance Var(Zn) = σ2

z that is given by:

σz =
σ2τ

2
(1− e−2h

τ ) (3.6)

The correlation time τ = 100 ms used for message generation has been chosen such
that it is on the order of the membrane time constant and so that the probability values
in the successive steps do not change too abruptly. The standard deviation has been set
at σ = 0.05. The full algorithm listing is available in the appendix.

3.2.2 Target Message Calculation

All supervised learning procedures require a data set representing the desired outcome
that must be reached by adjusting the parameters of the model. In the case of training
individual readouts Ri→j at some factor fi, the multivariate linear regression is based
on the availability of a target current I(t) that evokes a population firing rate Ri→j(t)
which in turn is the linearly scaled time series of the message µi→j(t) passed along the
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3.2 Factor Training

edge xj . Therefore, once the training input is available, this message can be calculated
numerically using equation 2.45 where fi and pk→i(xk, t) are substituted for this partic-
ular factor, as it is shown below.

A minor practical difficulty that arises in the context of the integration of equation 2.45
for fi is that the standard odeint routine provided by Scipy [22] (the scientific computing
library used for most of the calculations in this thesis) implements a variable-step inte-
gration procedure that is ill-suited for working with equidistantly sampled data such as
the input messages µk→i(t) that have been generated by the Ornstein-Uhlenbeck process.
This necessitated the implementation of a custom integration routine, one that would
use directly arrays of data.
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Figure 3.2: A test for examining the accuracy of the RK2 implementation. A mass point with
a randomly generated initial velocity is attracted by an inverse-square force to the
origin. The integration of the corresponding system of first-order differential equa-
tions is performed by 3 different integration routines, resulting in the trajectories
shown in the figure.

The forward Euler method is the simplest solution to the problem and has been used
by Steimer et al. [37]. Unfortunately, it is often numerically unstable and inaccurate,
therefore a different fixed-step method, the 2nd order Runge-Kutta (RK2) integrator
has been used in this thesis. It has the advantage of being less computationally complex
in contrast to the more advanced Scipy algorithm, while retaining better numerical
stability in comparison to the forward Euler method (the midpoint values are easily
obtained by linear interpolation, see appendix). Figure 3.2 shows a comparison of all
three methods and can be regarded as a validation for this particular implementation of
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3 Belief Propagation in Artificial Neural Networks

the RK2 algorithm.

For the purpose of training individual factors as well for comparing the performance
of statistical inference carried out by the investigated models, it is necessary to derive
specific versions of the sum-product update rule for each factor fi. This is done by the
substitution of the factor function fi in the general form described by equation 2.45. An
example derivation should further clarify the method.

Consider for instance a factor fi(x1, x2, x3) that describes the joint probability density
function of three binary variables x1, x2, and x3:

x1 = 0

x3 = 0 x3 = 1

x2 = 0 0.8 0.2
x2 = 1 0.2 0.9

x1 = 1

x3 = 0 x3 = 1

x2 = 0 0.2 0.8
x2 = 1 0.8 0.1

Table 3.1: Definition of f(x1, x2, x3)

If the message µi→1(t) along x1 describes the probability that x1 = 1, then the sum-
product update rule from equation 2.45 (D is left out for simplicity) for m incoming
messages is given by

M(t, 1) :=
∑

X∈{0,1}m

fi(xj = 1,X)
∏

k∈N/j

pk→j(xk, t) (3.7)

and in this case is reduced to

M(t, 1) =
∑

X∈{0,1}2

fi(x1 = 1, x2, x3)p2→i(x2, t)p3→i(x3, t) (3.8)

where pk→i(xk = 1, t) = µk→i(t) and pk→i(xk = 0, t) = 1 − µk→i(t). The final
expression is the sum over all realizations of X and can be arrived at very efficiently in
a tabular format:

The resulting message M(t, 1) is then the sum of all expression in the last column:

M(t, 1) = 0.2(1 − µ2→i(t))(1 − µ3→i(t)) +

0.8(1 − µ2→i(t))µ3→i(t) +

0.8µ2→i(t)(1 − µ3→i(t)) +

0.1µ2→i(t)µ3→i(t) (3.9)
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3.2 Factor Training

M(t, 1)

0, 0 fi(x1 = 1, 0, 0)p2→i(0, t)p3→i(0, t) 0.2(1 − µ2→i(t))(1− µ3→i(t))
0, 1 fi(x1 = 1, 0, 1)p2→i(0, t)p3→i(1, t) 0.8(1 − µ2→i(t))µ3→i(t)
1, 0 fi(x1 = 1, 1, 0)p2→i(1, t)p3→i(0, t) 0.8µ2→i(t)(1− µ3→i(t))
1, 1 fi(x1 = 1, 1, 1)p2→i(1, t)p3→i(1, t) 0.1µ2→i(t)µ3→i(t)

Table 3.2: Calculation of M(t, 1)

In order to obtain the normalizing factor Z(t) = 1
M(t,0)+M(t,1) , the complementary

values M(t, 0) have to be calculated too, but this time for x1 = 0:

M(t, 0)

0, 0 fi(x1 = 0, 0, 0)p2→i(0, t)p3→i(0, t) 0.8(1 − µ2→i(t))(1− µ3→i(t))
0, 1 fi(x1 = 0, 0, 1)p2→i(0, t)p3→i(1, t) 0.2(1 − µ2→i(t))µ3→i(t)
1, 0 fi(x1 = 0, 1, 0)p2→i(1, t)p3→i(0, t) 0.2µ2→i(t)(1− µ3→i(t))
1, 1 fi(x1 = 0, 1, 1)p2→i(1, t)p3→i(1, t) 0.9µ2→i(t)µ3→i(t)

Table 3.3: Calculation of M(t, 0)

M(t, 0) = 0.8(1 − µ2→i(t))(1 − µ3→i(t)) +

0.2(1 − µ2→i(t))µ3→i(t) +

0.2µ2→i(t)(1 − µ3→i(t)) +

0.9µ2→i(t)µ3→i(t) (3.10)

Finally, the probability µi→1(t) is obtained by integrating the differential equation

τ µ̇i→1(t) + µi→1(t) =
M(t, 1)

M(t, 0) +M(t, 1)
(3.11)

where µ2→i(t) and µ3→i(t) are either OU-generated training messages or some other
time series used to test the approximation performance of the LSM representing the
factor.

Due to the non-ideal nature of statistical inference when implemented by an artificial
neural network, as well as other distortive effects that are introduced on neuroscientific
grounds, it is necessary to build a theoretical model of the network for comparison pur-
poses. Such a model takes the form of a linear system of differential equations where each
equation describes the sum-product update rule of an individual factor as given in equa-
tion 3.11 and where the connections to some factor fi are represented by incorporating
the instantaneous values of the output messages of its peers into the messages M(t, 1)
and M(t, 0).
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3 Belief Propagation in Artificial Neural Networks

3.2.3 Population Rate Encoding

The relation between the calculated normalized probability message µi→j(t) and the
actual instantaneous firing rate R(t) of the readout population depends on the utilized
encoding scheme. The simplest possibility is a linear transformation between these quan-
tities, a method used by Steimer et al [37]. In order to reproduce the results from that
work, the same scaling factor of R(t) = 90 Hz ×µ(t) has been used for the simulations
presented in this chapter.

Conversely, the instantaneous population firing rate has also to be determined from
experimental data in order to evaluate the performance of each trained readout. This
leads to two important questions concerning the experimental setup:

• Which are the optimal parameters for population firing rate measurements?

• What is the optimal readout population size?

As already outlined in section 2.5.2, the rate can be measured by applying a smoothing
filter to the spike trains produced by a population of neurons. Assuming that the Gaus-
sian kernel used for the convolution is appropriately normalized in the computations, the
single parameter governing the resulting instantaneous firing rate is its width (defined
as 2× its standard deviation σ).

Plots a) and b) in Figure 3.3 depict qualitatively the agreement between theoretically
calculated firing rates and the ones measured from the population spike output. Both
black curves are created from pre-generated probability time-series that have been
linearly scaled to rates R(t) in the range [0, 90] Hz used in all simulations. Each spike
train is produced by an individual inhomogeneous Poisson processes whose underlying
rate is given by R(t). Overlain on each black curve is the corresponding experimentally
determined instantaneous population firing rate (red curves) with a filter width of 24ms.
Plot a) represents a training message generated by an OU process, while b) shows the
output of a simple factor describing a conditional probability p(y|x) with the message
from a) as its input. The performance measure is given by the correlation between the
generating rate and the one determined experimentally.

A quantitative study of the rate measurement method is presented in plot c) where
a sweep over a wide range of filter widths results in a maximum correlation when its
standard deviation is about 14-15 ms. In order to avoid excessive smoothing of the data,
the slightly lower value of 12 ms has been chosen for all further experiments presented
in this chapter.

One reason for using a population of neurons instead of single synaptic connections
for the purpose of encoding of probability messages is founded on the fact that the
instantaneous firing rates of individual neurons do not correlate well with their target
rates, as shown in the last plot of figure 3.3. The relatively high number of neurons used
for the readout populations in Steimer et al. [37] (343) is justified when considering that
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3.2 Factor Training

Figure 3.3: Measurement of the impact of different filter widths on the correlation performance
measure, as well as its dependence on the readout population size used for the
purpose.
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3 Belief Propagation in Artificial Neural Networks

the correlation stabilizes at about that population size. In addition, liquid pools of more
than a thousand neurons require significant stimulation, which can be provided by larger
readouts.

In addition, this relation can also be used for population size optimization which
is especially important in the context of the bandwidth constraints of neuromorphic
hardware, hence readouts with 50 to 100 neurons may present a reasonable performance
trade-off considering that the correlation in that range is still well above 0.9.

3.2.4 Empirical Current-Rate (IR) Relation

The last step prior to the calculation of readout weights by linear regression is to de-
termine an empirical relation between the total mean current entering a population of
neurons and the resulting firing rate R(t). The inverse function can then be used to
determine the target current I(t) which is a linear combination of the currents entering
individual readout neurons.
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Figure 3.4: Measurement of the relation between the total injected current I and the resulting
induced firing rate R. The data from 10 trials, each using 32 steps for 250 ms
provided a total of 320 data points. The red line shows a polynomial fit on the
data.

Characterization of the Readout Population

The readout populations form the crucial part of all neural network models described
in this thesis and share the same architecture and parametrization except for their indi-
vidually generated random thresholds. An instance of such a standard readout has also
been used to determine the I(R) relation and therefore merits a brief description.

46



3.2 Factor Training

Each readout population consists of 343 mutually unconnected LIF neurons with a
resting potential of 0 mV and a membrane time constant τm = 30 ms. The reset potential
is set at 10 mV and the absolute refractory time to τr = 2 ms. Due to linear regression
used in the readout training, the synaptic time constants of τsyn = 6 ms are the same
for both the excitatory and the inhibitory inputs, since a designated “excitatory” neuron
in the liquid pool may be assigned a negative weight by the procedure and thus has to
project an inhibitory connection to a readout cell. All thresholds of the readout neurons
are drawn from a uniform distribution in the range of [15, 20] mV. This is necessary to
avoid synchronous spiking of the whole population when innervated by the same input
and also may play an important role in reducing the dependency of the readout response
on past values of the total main current I(t) [37].

The other characteristic that differentiates individual instances of the readout popula-
tion is the zero-mean white noise current injected into every cell. An individual readout
neuron thus receives a separate Gaussian white noise process whose realization at each
time step is parametrized by a standard deviation σ = 0.14 nA. This is about 10% of the
expected maximum stimulus (synaptic current at 90 Hz).

A constant background current of 0.5 nA (technically realized as the mean of the noise
current) is necessary to avoid distortions in the low range of the firing rate (below 20 Hz)
and also partially de-correlates the readout response. Without a background current, the
matrix product LTL (see section 2.5.5) that needs to be inverted is often singular, due
to empty rows when there is no input current.

Measurement of the I(R) Curve

The measurement of the I(R) relation is done by injecting a step current into a readout
population with randomly generated thresholds (an instance of the standard readout).
Each step has a duration of 250 ms and is drawn from a uniform distribution with a
range of [0, 1] nA. As it is shown on figure 3.5, this current evokes Poissonian firing rates
between 0 and 100 Hz.

The relation between current and population firing rate is determined by the time
average < R(t) > over each step for that particular magnitude of the current. The width
of the smoothing Gaussian filter used in the process is 24 ms.

For the evaluation of the IR curve, a polynomial function of degree 9 has been fitted
on the data from 10 trials where each experiment consists of 32 discrete current steps.
The resulting relation is presented in Figure 3.4.

3.2.5 Training Performance

Once that the target current I(t) has been determined, the spike output of a liquid pool
stimulated by the same messages, as those used in the theoretical computation, is needed
to complete the calculation of the synaptic weights for connections between liquid and
readout. The necessary simulation is done within the general software framework de-
scribed in section 3.3 by instantiating a liquid using a set of random number generator
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Figure 3.5: IR Curve measurement. Shown in a) is the current injected into each readout. The
raster plot in b) depicts the firing activity induced by the current, while the red
line shows the population activity firing rate calculated from the data.

seeds describing the stochastic aspects of its architecture and by connecting to it exter-
nal spike sources that correspond to all of its static inputs (half-edges on an FFG) and
readouts from other LSMs. The inputs are loaded with population spike trains gener-
ated by the training OU rates using an inhomogeneous Poisson process, as described in
section 3.2.3. A decisive role in the performance of the training method is played by the
architecture of the liquid pools.

Liquid Pool Architecture

The liquid state machine is a computational paradigm that does not pose strict re-
quirements on the architecture of its physical implementation. It follows that similar
structural units of a larger system that can be identified with liquid pools may be in-
volved in completely unrelated calculations. This is indeed the case for the microcircuit
anatomy of the human neocortex which provided much of the information necessary to
build a liquid medium based on an artificial neural network [31], especially its connectiv-
ity patterns and the spatial relations among individual cells. Moreover, the recurrently
connected neurons that belong to a cortical mini-column exhibit the separation property
required by the LSM model, while their complex dynamics is still subject of much
research.
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3.2 Factor Training

The simulations used in this thesis use liquid pools whose neurons are arranged on
a three-dimensional cuboid lattice (see figure 3.6). 20% of these neurons are chosen
randomly to project inhibitory connections to the rest of the pool and also recurrently to
themselves. They belong to the inhibitory population. The remaining 80%, on the other
hand, project excitatory connections to the inhibitory population and also recurrently,
thereby forming the excitatory population.

The connectivity of the liquid also follows the (biologically inspired) small-world topol-
ogy, so that neurons are exponentially less likely to be connected to more distant ones
than to their neighbors. The stochastic rule used in generating these connections is given

by the probability p = C · exp
(
−||(a−b)||2

λ2

)

that any two neurons with coordinates a and

b will be connected. The amplitude C = 1 was kept the same for all simulations, while
the density parameter λ was empirically adjusted for each factor pool, since it exerts a
heavy influence on the training performance and is therefore dominantly governing the
separation property of the liquid.

Technically, the pool is constructed by forming four types of projections between both
populations of neurons as shown in figure 3.6 a). The following parameters are used in
Steimer et al. [37] and are based on [30]. The weights for the connections belonging
to each projection are drawn from a gamma distribution with mean µw and coefficient
of variation CVw and are presented in table 3.4. The synaptic delays are normally
distributed with mean µD and coefficient of variation CVD.

Connection Type µw [nA] CVw µD [ms] CVD τsyn [ms]

Exc → Exc 30 0.7 1.5 0.1 3
Exc → Inh 60 0.7 0.8 0.1 3
Inh → Exc -19 0.7 0.8 0.1 6
Inh → Inh -19 0.7 0.8 0.1 6

Table 3.4: Liquid pool connection parameters

The gamma distribution is given by

p(x; k, θ) =
1

Γ(k)θk
xk−1e−

x
θ for x ≥ 0 and k, θ > 0 (3.12)

Its shape parameter k and scale parameter θ are related to its mean µ and variance σ2

trough the relations µ = kθ and σ2 = kθ2. The main utility of the gamma distribution is
founded on the fact that it is positive-valued and also that it can take various asymmetric
or symmetric shapes, depending on the parameter k.

The LIF models of all liquid neurons are parametrized according to [30] and are pre-
sented in table 3.5. Parameters which are drawn from a uniform distribution are indici-
ated by the corresponding range of values.
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Inh

Exc

(a) Connectivity in the liquid
pool. Excitatory neurons
project excitatory synapses
to the inhibitory pool and
also recurrently, while in-
hibitory neurons project in-
hibitory connections to the
excitatory populations and
also recurrently.
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(b) Spatial arrangement of the liquid pool. The red
dots represent inhibitory neurons that are se-
lected at random. They comprise 20% of the
total number of neurons in the column.

Figure 3.6: Liquid pool architecture

In addition, each cell receives a constant background current that is drawn from a
uniform distribution in the range [13.5, 14.5] nA. No background noise is applied to the
liquid neurons.

Factor Node Architecture

For training purposes, an isolated factor node must be constructed in terms of a liquid
pool of neurons, a set of readouts, and static spike inputs representing incoming prob-
ability messages. The arrangement of these neural populations are based on the FFG
encompassing the factor node and its immediate neighbors.

Since observed variables are represented by half-edges, their network manifestation
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Population Type Vrest [mV] Vreset [mV] Vthresh [mV] τm [ms] τrefrac [ms]

Exc 0 [13.8, 14.5] 15 30 3
Inh 0 [13.8, 14.5] 15 30 2

Table 3.5: Liquid pool connection parameters

is a population of spiking neurons that emits pre-generated spike trains with a pop-
ulation rate corresponding to the value of the corresponding variable (like I, P2 on
figure 3.7 a)). Each full edge, on the other hand, designates a bidirectional transfer
of information and consequently a readout projecting to the liquid pool as well as an
outgoing one. There is an important difference in the neural implementation between
neighboring factor nodes that are leaves on the FFG and those that are not. The
former are represented by a static input mirroring the values of the associated factor
function and an outgoing readout projecting into its liquid pool. The latter project their
readouts into the liquid and receive the same number of matching outgoing readouts.
An example that includes all of the connection types outlined above is given in figure 3.7.

It is important to recall that in the flooding schedule regime the calculations of the
output function along each edge are done simultaneously. Therefore, given an edge xj
along which one such output is to be transmitted, the theoretical calculations include only
the incoming messages along xk, k ∈ N (i)/j while in reality the liquid also receives input
from the matched readout along xj . Obviously, this has an influence on the computations
performed by the LSM and in order to avoid mixing of information, each input (static or
readout) projects into a different region of the liquid pool [37], as shown in figure 3.7 b).

Each readout/input forms two separate projections to sub-populations of the exci-
tatory and inhibitory liquid neurons that are confined to its assigned region of the
column. These projections are parametrized differently, as presented in table 3.6 (The
readout/input neurons are all excitatory). The weights and delays use the same types
of probability distributions as those used in the liquid pool interconnections.

Projection Type µw [nA] CVw µD [ms] CVD τsyn [ms]

Exc → Exc 4.5 0.7 1.5 0.1 3
Exc → Inh 9 0.7 0.8 0.1 3

Table 3.6: Readout and input connection parameters

Each readout neuron in an LSM factor node is connected to all neurons in the liquid.
The synaptic time constant for both excitatory and inhibitory synapses is τsyn = 6 ms
and the synaptic delays are fixed at 1.5 ms for all connections. Since their weights are
determined by linear regression, excitatory liquid neurons may inhibit readout neurons
and inhibitory neurons may excite them. All readout neurons use the same set of weights.
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(a) FFG diagram and an example factor node
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(b) Liquid pool with inputs projecting to the same part

Figure 3.7: Factor architecture

Training Method Validation

The training method can be validated by first applying it to an individual factor node,
followed by a comparison between the theoretically calculated time-series of the function
and the actual LSM output when the system is stimulated by newly generated random
probability messages.

Figure 3.8 presents the training performance of an equality constraint factor δ(z −
x1)δ(z−x2) (see section 2.2.3) that achieves a correlation with the theoretically calculated
message higher than 0.92 for a novel input generated by the same OU process. It is defined
by a time constant τ = 100 ms and a variation of σ = 0.05 Hz. Readout projections are
substituted with static inputs using exactly the same connections to the liquid.

3.3 Simulation Framework

A general software framework that allows for the definition and training of arbitrary
FFG-based belief propagation models has been developed in conjunction with the factor
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Figure 3.8: Training performance of the readout that connects the equality constraint factor
in the explaining away model (see section 3.4.2) with factor P2. The correlation
between the readout output and the theoretically calculated message is 0.93.

graphs investigated in this thesis. It implements a simple command-line interface that
enables the automatic execution of all training steps described above and includes some
useful data plotting utilities that are indispensable when analysing simulation outcomes.
All of the software libraries mentioned in section 3.1 such as Scipy, PyNN, and Neuro-
Tools are used by the framework to perform the many preparatory and simulation tasks
necessary in building a successful neural statistical inference model. Figure 3.9 depicts
the typical workflow for inference model simulations.

Central to the ability to define such models easily is the ParameterSet class provided
by NeuroTools. Objects of this type are used to store the great number of parameters
necessary to define a complex PyNN-based neural network such as the binary channel
described below in a consistent and hierarchical manner. The framework uses a text-
based serialization routine to store the parametrization of particular instances of network
objects in an accessible human-readable format.

A particular inference model is defined in a global read-only parameter file that
describes the graph hierarchically, starting from its comprising factors, down to the
readouts and inputs associated with them. The overall connectivity of the graph (edges
in the FFG translated to neural populations) is also stored in the parameter file, as well
as the parameters necessary to describe the excitatory and inhibitory populations and
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Define read-only

network parameters

Generate graph instances

Train individual factors

Run whole-graph simulations

with custom inputs

Figure 3.9: Workflow in the simulation framework

projections.

The first step toward the simulation of belief propagation using the framework is to
instantiate the inference model, based on its defining parameters. They are used to
generate all neuron populations (liquid pools, readouts) and the projections among them
with the PyNN interface to a simulator (the simulations in this thesis have been per-
formed with NEST as the back-end simulator). All parameters describing this particular
instance of the graphical model (such as random number generator seeds for connections
and other stochastically generated objects) are saved in a tree-like directory structure
reflecting the organization of the FFG. This allows the deterministic instantiation of
exactly the same network when it is used to perform inference with particular values of
its observed variables.

The training step involves the usual step of generating training messages using the
Ornstein-Uhlenbeck process, computation of theoretical values and the calculation of
synaptic weights for the readouts. The stimulation of isolated factors with training input
is done by instantiating the corresponding liquid pool using data from the pre-generated
graph and by substituting readouts from other factors with static inputs that, however,
use exactly the same connections as those readouts and project to the same part of the
liquid. The calculated weights are finally written to connectivity files in the graphical
model directory that are used to instantiate the factors.

The trained graphical model can perform statistical inference using arbitrary custom
inputs, for instance to evaluate its performance.
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3.4 Models

3.4 Models

After the required training steps have been applied to all factors belonging to the corre-
sponding neural FFG model, these artificial neural networks approximate the computa-
tions involved in the belief propagation algorithm. Two such models are considered next
and their performance is evaluated by comparing their output to the expected response
given the same input messages.

3.4.1 Noisy Binary Channel

Since the implementation of the sum-product algorithm in spiking neural networks is
an emerging field and has so far been demonstrated mainly in the pioneering work of
Steimer et al. [37], it is beneficial to start with a theoretical model that is widely used in
the belief propagation literature as a proof-of-concept for the methods used in this work.
Such a model, which is both simple and realistic, is the noisy binary channel, described in
Löliger 2004 [27]. It represents an imperfect parallel digital transmission channel that is
n-bit wide and where each line has an unreliability that is modeled by a small probability
of flipping the bit while in transmission, so that the receiving side detects its opposite
value. This is a problem of great practical importance in digital electronics where it is
necessary to estimate the probability with which the received signal is the originally sent
one, based on the data from the whole transmission.

Many error-correcting schemes have been developed over time and the sum-product
algorithm provides an efficient framework for delivering optimal estimates. Graphs are
a convenient representation of error-correcting codes because they allow for the straight-
forward derivation of many such algorithms.

There are two main types of error-correcting code: block codes and convolutional
codes. The former require a fixed-size communication channel and have had a funda-
mental importance in the development of information theory. The first linear block code
was described by Hamming and is probably the most famous error-correcting algorithm.

Linear Error-Correcting Block Codes

When a block code is used to transfer data over an unreliable channel, the stream is
broken down into messages of length k which are then encoded into blocks (codewords)
of length n by the block code C. These blocks are sent out either serially or in parallel
and the receiver uses an error-correcting scheme to recover the original message from
the codeword, even if individual bits have been corrupted during transmission.

Formally, an error correcting block code C of length n over some alphabet A is defined
as an injective mapping C : Ak 7→ An. It is linear if the alphabet A is a field F and the
code C is a subspace of the corresponding vector space Fn [27]. For a binary code this
field is F2 (the field of the binary numbers). The linear block mapping any linear code
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can then be represented by its encoding action over the messages:

C = {uG : u ∈ Fk} (3.13)

and the correcting operation:

C = {x ∈ Fn : HxT = 0} (3.14)

where H and G are matrices over F. The k × n matrix G is the generator matrix
for the code C and maps a message u ∈ Fk of information symbols with length k to a
codeword (block) x = Gu. The matrix H is called the parity check matrix for C and is
essential in recovering the original message.

The Hamming code is a well-known linear block code. The parity check matrix for
such a code of length n = 7, dimension k = 4, and a minimum Hamming distance d = 3
is given by:

H =





1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1



 (3.15)

A membership indicator function IC : Fn 7→ {0, 1} that determines whether a code-
word belongs to the code C is defined by

IC(x) =

{

1, if x ∈ C

0, else
(3.16)

The exact form of the membership indicator can be easily derived from equations 3.13
and 3.15:

IC(x1, . . . , xn) = δ1(x1 ⊕ x2 ⊕ x3 ⊕ x5) · (3.17)

δ2(x2 ⊕ x3 ⊕ x4 ⊕ x6) ·
δ3(x3 ⊕ x4 ⊕ x5 ⊕ x7)

where δ(w) = {1 if w = 0; 0 otherwise } is the (discrete) Kronecker delta function and
⊕ denotes addition modulo 2 over the field F2 (XOR binary logical bit operator).

Since the membership function effectively determines if a codeword belongs to C,
a factor graph of such a code represents the factorization of the associated indicator
function IC .

Figure 3.10 shows the factor graph of function IC . Any linear binary block code can
be represented by a function of the same type, which is based on the parity check matrix
[27].
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Figure 3.10: Code factor graph representation: a) Bipartite factor graph, b) Forney factor
graph

Memoryless Channel Model

Any physical information transfer medium is non-ideal in the sense that signals propa-
gating in it are typically corrupted by noise. If binary data is transmitted in a parallel
fashion through an n-bit wide channel (see figure 3.11), there is always a crossover prob-
ability ε that the value of any bit is reversed on the receiving end. In simple devices
(such as wires) this probability does not depend on the previous values of the data and
they are correspondingly designated as memoryless.

Figure 3.11: Memoryless Channel

The formal representation of such memoryless channels comprises a family p(y|x) of
probability distributions over a block y = (y1, . . . , yn) of channel output symbols given
any block x = (x1, . . . , xn) of channel input symbols. The conditional probabilities
pl(yl|xl) represent the error likelihood in each channel line and if the individual lines
are not correlated with each other, the joint probability function describing the channel
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consists of their product:

p(y|x) =
n∏

k=1

p(yk|xk) (3.18)

Since the receiver is interested in assessing the probability that the received data is
the one originally sent, it is possible to construct a joint code/channel factor graph as
shown in figure 3.12 by feeding in the received codeword to the membership function.

Channel Model 

Code

Figure 3.12: Joint Code/Channel FFG

This corresponds to the joint likelihood function p(y|x)IC(x). If the codewords are
equally likely to be transmitted, for any fixed received block y, the a posteriori joint
probability of the coded symbols x1, . . . , xn is:

p(x|y) = p(y|x)p(x)
p(y)

∝ p(y|x)IC(x) (3.19)

A Four-Bit Noisy Binary Channel Model

The concrete noise binary channel chosen to as the first statistical inference model is
4-bit wide and has been described in Löliger et al. [27]. Its code is relatively simple, and
can be given directly as a set of bit tuples:

C = {(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0)} (3.20)

The crossover probabilities are equal for each line and are defined as follows:

p(yl|xl) =
{

0.8, if yl = xl

0.2, if yl 6= xl
(3.21)

The FFG of the joint binary channel represents the factorization of the a posteriori
probability p(x1, x2, x3, x4, z|y1, y2, y3, y4) where z is an auxiliary variable. The graphical
model consists of three distinct types of factors, as shown in figure 3.13:

By definition, a variable in an FFG links only two factors and since the last bits x3 and
x4 of the code are always equal, a succinct version of the parity check function takes the
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Figure 3.13: Binary Channel FFG

form f⊕(x1, x2, z) = δ(x1 ⊕ x2 ⊕ z) which necessitating the introduction of an auxiliary
variable of the equality constraint function f=(x1, x2, z). The a posteriori probability
thus factorizes as in the following way:

p(x1, x2, x3, x4, z|y1, y2, y3, y4) ∝ f⊕(x1, x2, z)f=(x3, x4, z)
4∏

i=1

pl(yl|xl) (3.22)

Belief propagation using the flooding schedule regime delivers the marginal a posteriori
probability function p(xi|y1, y2, y3, y4) for each bit in the channel simultaneously and can
be read from the population rate of the readouts projecting to the pi factors in the neural
network. The architecture of the latter is presented in the next section.

Training Results

The network corresponding to the FFG shown in figure 3.13 has been constructed ac-
cording to the rules presented in section 3.2.5. Its architecture is depicted in figure 3.14
and was implemented in the software framework discussed in section 3.3.

All readouts and external input sources in the graph consist of 343 neurons and are
connected with the corresponding liquid pools according to the description given in sec-
tion 3.2.5. Each factor was trained individually with OU messages that were 45 s long.
The sizes of the liquid pools are based on the supplementary data given in [37] and are
summarized in table 3.7 (the small size of liquids 1-4 reflects their simple factor function,
as they describe the conditional probability p(yl|xl)).

It has been found empirically that an optimal connection density parameter for the
liquids is λ = 4.5. For most of the factors, the stimulation of their liquids with novel input
generated by the same OU process as the one used for training, resulted in correlation
coefficients between the readout probability messages and the theoretically calculated
ones in excess of 0.9.

Unfortunately, it was not possible to produce correlation higher than 0.7 for the
addition-modulo-2 (XOR) factor that is involved with the parity check. Higher val-
ues of λ did not lead to the expected improvement of its performance, as neither did
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3 Belief Propagation in Artificial Neural Networks

Figure 3.14: Neural network architecture of the binary channel model

Liquid Name Column Structure [width × length × height] Total Number

L1,2,3,4 5 × 5 × 12 300
L= 5 × 5 × 40 1000
L⊕ 5 × 5 × 78 1950

Table 3.7: Number of neurons used for liquid pools in the explaining away model

a significant increase in the number of neurons of its liquid pool (2500). It is possible
that longer training times might have exerted a positive influence on the training perfor-
mance, but due to the algorithmic complexity of the matrix multiplication involved in
the training procedure (equation 2.50), they were not feasible on the available hardware.
This leads to the conclusion that an additional parameter search study is necessary to
correct this problem.

Figure 3.15 shows that after the training procedure, the XOR factor produces a mes-
sages that shows little correlation with the theoretically expected output.

Since it is not possible to perform meaningful statistical inference experiments with
an untrained factor, the binary channel model has to be scrutinized further, in order to
achieve its target performance.

3.4.2 Explaining Away Model

A psycho-physical inference problem in the area of human visual perception, first de-
scribed in [24], lends itself well to a Bayesian interpretation in the form of a probabilistic
graphical model. Since it has a biological significance, it is highly relevant to the effort
of implementing statistical inference in networks of spiking neurons, and, as it will be
presented in this section, has been successfully tested in a software simulation. From
now on it will be referred to as the “Explaining Away” model, the reasons for which shall
be immediately obvious from its description.

The Explaining Away Model is concerned with two alternative hypotheses about the
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Figure 3.15: Training performance evaluation of XOR factor in the binary channel graph. The
correlation with the expected output is 0.38.

properties of adjacent three-dimensional objects in a specially arranged visual scene. For
a particular set of observables, one of these hypothesis prevails, thus explaining away the
other one. When two cylinders with an identical photo-metrical luminance profile are
attached to each other, they appear the same to the observer. When they are replaced by
two cubes with the same luminance profile, however, the objects are perceived differently,
as it is shown in figure 3.16 a).

The first hypothesis postulates that the material reflectance (random variable R = 0,
see figure 3.16 b)) of both objects is equal and dominates when they have round contours
(observable C in the same figure). This is explained by the fact that cylindrical shapes
make it more likely that the source of illumination is located in the left part of the scene
[37].

If, on the other hand, the contours are straight, then the second hypothesis prevails,
since it assumes uniform illumination and a higher reflectance of the right object (R = 1),
as it is the cases for the cubes.

The Bayesian network shown in figure 3.16 b) includes the conditional probabilities
P1(S|R,O) and P2(C|O) that are defined in tables 3.8, 3.9:

It corresponds to a joint probability distribution P (S,R,O,C) that factorizes according
to:

P (S,R,O,C) = P1(S|R,O)P2(C|O)P3(R)P4(O) (3.23)
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3 Belief Propagation in Artificial Neural Networks

(a) Knill & Kersten’s lightness illu-
sion, picture taken from [37].

(b) Bayesian network representation of the explaining away problem

Figure 3.16: Visual demonstration of the explaining away problem and the corresponding
Bayesian network. The binary variable R, denoting material reflectance, deter-
mines which of both hypotheses prevails. It is either R = 0 when the reflectance
is homogeneous, or R = 1 when the right object reflects more light. The observed

luminance profile S can be as shown in b) (S = 1) or not (S = 0). The type of
the objects is given by O, which takes on value O = 0 when they are cylinders, or
O = 1 when they are cubes. Finally, the other observable, C, determines whether
the objects are curved (C = 1) or straight (C = 0). The definition of the con-
ditional probabilities P1(S|R,O) and P2(C|O), as well as the factorization of the
joint probability distribution, are given in the main text.

The probability for the reflectance, which determines the confidence in the second
hypothesis (R = 1), is given by the marginal probability P (R|S,C), which can be
obtained using the sum-product algorithm. This requires the construction of the factor
graph shown in figure 3.17 a). As it is evident from equation 3.23, the variable O is an
argument to more than two functions, which necessitates the introduction of an equal-
ity constraint factor δ(O−O′)δ(O−O′′) that is linked to P1(S|R,O), P2(C|O), and P4(O).

The details of the neural implementation of the graphical model are presented in
figure 3.17 b). It has been developed using the software framework described above
(section 3.3) and the results from the performed experiments are going to be discussed
next.

Simulation Results

All factors shown in figure 3.17 b) have been trained separately for 45 s simulation
time with stochastically generated input messages, produced by an Ornstein-Uhlenbeck
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S = 0

O = 0 O = 1

R = 0 0.8 0.2
R = 1 0.2 0.9

S = 1

O = 0 O = 1

R = 0 0.2 0.8
R = 1 0.8 0.1

Table 3.8: Definition of the explaining away factor P1(S|R,O)

O = 0 O = 1

C = 0 0.8 0.2
C = 1 0.2 0.8

Table 3.9: Definition of the explaining away factor P2(C|O)

process, as described in section 3.2.5. It should be noted, that, since P3 and P4 do not
perform any calculations, being leaf nodes on an FFG, they are replaced by externally
generated output corresponding to the values of the variables R and O. All readouts and
inputs consist of 343 neurons and the number of neurons comprising each liquid pool are
given in table (3.10):

Liquid Name Column Structure [width × length × height] Total Number

L1 5 × 5 × 78 1950
L2 5 × 5 × 42 1050
L= 5 × 5 × 42 1050

Table 3.10: Number of neurons used for liquid pools in the explaining away model

In the course of the training simulations it has been found that the optimal connection
density parameter leading to the best training performance is λ = 4.5 for P2 and P=,
and λ = 7.0 for P1.

After training, the performance of the statistical inference model has been evaluated
from the results of an experimental series comprising 600 experimental trials involving
the same instance of the neural network implementation. Each simulation was run
for 1 s biological time with 4 randomly generated inputs, corresponding to the input
messages µP3→P1(t), µP4→P=(t), µS→P1(t), and µC→P2(t). These messages were constant
in time, with a value drawn from a uniform distribution. In addition to the probability
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(a) Forney Factor Graph implemen-
tation of the explaining away
problem

(b) Neural network implementation
of the FFG representing the ex-
plaining away problem

Figure 3.17: Factor graph models corresponding to the explaining away problem

time-series recorded from each readout, a theoretical calculation based on the same input
has been performed for each trial for evaluation purposes.

The performance analysis is based on the difference between the calculated steady-state
solutions for the readout probability messages, µcorrect, and those obtained experimentally
from the simulation. Since the inputs are constant in time, the network reaches a steady-
state in about 200 ms simulation time. Therefore the average value µspiking = 〈µspiking(t)〉
over the remaining 800 ms was subtracted from µcorrect to obtain the error histograms
shown in figure 3.19:

As a control for each experiment, a randomly generated probability µrandom (from
a uniform distribution) was subtracted from each µcorrect, leading to the distributions
shown as a background in each histogram. For each trial, the Kullback-Leibler diver-
gence between the experimentally determined error µcorrect−µspiking and a random binary
distribution has been calculated, whereby the results have been averaged to produce the
expected values shown besides each histogram. The same calculation has also been ap-
plied to the errors µcorrect − µrandom. While messages µ2→= and µ=→1 show a relatively
stable performance when compared to randomly generated values, many of the other
readouts produce error distributions that appear rather close to their random counter-
parts. The correlation coefficients that have been obtained from a single-trial experiment
using Ornstein-Uhlenbeck generated input are presented in table 3.11 and show a similar
pattern.

Clearly, the simplest factor node, P2, which is also directly supplied with external
input, emits a highly correlated message, since this corresponds exactly to the setup
that is used for training. More complex nodes, on the other hand, generally exhibit
weaker performance, since they have to process secondary messages and are therefore
located deeper in the network. In fact, this result is one of the main motivations for the
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Figure 3.18: Theoretically calculated messages (black) and color-coded traces corresponding
to the experimentally determined readout probability messages. The figure rep-
resents the results from a single trial of the experimental series described in the
main text.

Message µ1→3 µ1→= µ=→1 µ=→2 µ=→4 µ2→=

CC 0.22 0.21 0.93 0.90 0.65 0.90

Table 3.11: Correlation between readout messages and theoretically calculated values for a
single 2000 ms trial where the input messages were generated by an Ornstein-
Uhlenbeck process.

development of the simplified Kalman filter model, which is constructed in such a way,
that each node receives external input.
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(a) Messages passed along the edges of
the explaining away FFG
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(b) Normalized performance histograms (30 bins) for indi-
vidual messages. The evaluation method is described in
the main text. Their color codes are identical to those
used in a). The black areas represent the difference
µcorrect − µrandom.

Figure 3.19: Performance analysis of the explaining away model
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The work described in this chapter is aimed at implementing belief propagation models
on neuromorphic hardware. The neuromorphic device used for this purpose has been
developed within the FACETS1 [14] research project and represents a prototype device
(FACETS stage1) for a larger wafer-scale system that is expected to be operational within
the time frame of the BrainScaleS[4] initiative. A mixed-signal ASIC2 chip called “Spikey”
forms the core of the system. Its analog circuits comprise a highly configurable artificial
neural network (ANN) of leaky integrate-and-fire neurons, while its digital electronics are
responsible for spike event routing, parameter setting, and communication with external
devices.

Figure 4.1: The Spikey chip. Wires radiating out of the device connect its pin terminals to the
“Recha” board (described below).

Spikey v4 is the latest generation of this device at the time of this writing. It repre-
sents a significant improvement over its predecessors due to the elimination of a number
of defects that interfere with the intended mode of operation, outlined in its design
specification[7, 2]. The chip is produced by a standard 180 nm CMOS3 process and
occupies a square silicon die with an area of 25 mm2. A single FACETS stage1 version
4 (FHW-1v4)4 system runs with a speedup factor of about 104 compared to real time
and provides a network of up to 384 neurons with a maximum number of 2x256x192
synapses, 98304 in total. However, due to a technical problem, only half of these are

1Fast Analog Computing with Emergent Transient States
2Application-Specific Integrated Circuit
3Complementary Metal Oxide Semiconductor
4Stage 2 is the wafer-scale device, while version 4 refers to the generation of the chip
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available in the currently available version[21]. The synapses of Spikey v4 implement
STP5 and STDP6, but these capabilities are not needed for this thesis and are not going
to be considered further.

In addition to the chip, there are many hardware and software components comprising
the system that will be described in the following sections and which are necessary for
the seamless operation of the device for modeling purposes.

Neural Network Emulation on Neuromorphic Hardware

Experiments on neuromorphic hardware are fundamentally different from computer
simulations, because the artificial network in question undergoes physical changes while
it is in operation and is thus more akin to its biological counterparts than to the idealized
mathematical models used in software simulators (like those described in section 3.1).
While a naive use of the chip is certainly possible due to the availability of a PyNN
front-end, there are a number of implications following from the nature of the neuromor-
phic device that must be explored if it is to be used in any meaningful way.

First of all, there are various limitations imposed by the design specifications of
the hardware. Such are the fixed maximum number of neurons and synapses and the
resulting topological constraints on the utilized network architectures. In addition,
the values of most model parameters are confined to relatively narrow ranges which,
however, have been specifically selected by the hardware designers for their biological
significance and should therefore be compatible with most modeling scenarios. Synaptic
weights, for instance, allow only 16 different settings, since they are represented by 4-bit
numbers, but due to the stochastic mapping described in section 4.2.5 and the freedom
to define their range through synapse driver calibration (section 4.2.4), they can be used
to emulate a well-defined statistical behaviour of larger networks.

A further implication of the physical nature of the device is that a completely de-
terministic reproduction of simulation results is not possible due to the presence of
various types of noise, an intrinsic feature of all analog electronic circuits. The analog
components of the chip are also particularly sensitive to parasitic effects such as capac-
itance or conductance fluctuations under the influence of neighboring circuits that are
often impossible to predict in the design phase. Thus they can only be discovered after
production, while operating the device.

One of the most important factors determining the non-ideal behavior of the neuro-
morphic hardware is the photolithographic manufacturing process. Spikey v4 is a VLSI 7

device comprised of thousands of elementary building blocks such as by transistors, ca-
pacitors, resitors, diodes, etc. The CMOS production at this scale (180 nm) inevitably
introduces imperfections to individual components that are reflected in deviations with a

5Short Term Plasticity
6Spike-Time Dependent Plasticity
7Verly Large Scale Integration
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certain magnitude (summarized in [7]) of their characteristics from the intended target
values. Higher-level circuits consisting of these elements compound the errors, ultimately
leading to systematic variations in the parameters of neurons and synapses, in stark con-
trast to software neural networks. It should be noted that even though such variations can
be partly compensated for by the calibration methods presented below, the circuits that
convert the digital representation of the target parameter values in the analog domain
are also affected by variations, as are the storage cells holding those values during sim-
ulations. Since absolute precision is impossible, a certain amount of stochastic variation
of any model parameter will always persist across populations of neurons and synaptic
drivers.

While severe process defects may lead to the loss of functionality of the digital cir-
cuitry, a great strength of the analog design is that it is resilient against such occurrences.
Individual neurons or synapses on an affected chip can be ignored while the rest of the
network can still be used for simulation purposes. This significantly increases the yield
ratio of the production process.

Finally, the readout channels that allow membrane potentials of individual neurons
to be monitored and recorded using an oscilloscope are also subject to systematic
offsets due to impedance mismatches and amplifier process variations that must be
accounted for. In contrast, the acquisition of spike events is generally much more
precise (with a temporal resolution of about 0.3 ns on the hardware time scale[7]),
because it is handled by the digital part of the chip. In the course of development of
the calibration routines, it has been discovered by the author that spike times are not
completely synchronized with membrane trace recordings. The difference typically has a
magnitude of ∆t ≈ 1 ms (in simulated biological time) and varies from neuron to neuron.

Given all of the above constraints and the knowledge of process variations in the
FACETS stage1 hardware, there are two possible ways of enabling scientifically mean-
ingful experiments on the system: a) Devise (or modify existing) models that are robust
against the noises and parameter distributions present in the system, and b) Develop
calibration routines that attempt to minimize these variations within acceptable bounds.

While there exist some neural network models that are highly resilient against large
variations in their parameters, often motivated by empirical evidence that biological
neurons operate in a very noisy environment, it should be kept in mind that the leaky
integrate and fire model on which the FHW-1v4 system is based is a very idealized
representation of the properties of biological systems which possess many self-regulation
mechanisms for their parameters. Moreover, even such models may not function properly
when faced with parameter deviations out of a certain range. The subject of this chapter,
therefore, is the development of realiable methods for compensating process variations
using the facilities provided by Spikey v4.
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Compensation of Process Variations

One of the advantages of the FACETS stage1 architecture is the ability to adjust nearly all
modeling parameters and also to implement almost arbitrary network topologies, thus
bringing it close to a universal simulation platform for conductance-based LIF neural
networks. This configurability is the cornerstone of all calibration procedures, since they
are based on the application of certain offsets when setting target parameter values. This
approach depends mostly on the granularity with which the corresponding parameters
can be set for populations of neurons or blocks of synaptic drivers and leads to four
classes of parameters according to this criterion:

• Non-adjustable parameters. They are derived from the physical characteristics of
the object. A good example are the capacitors representing the neuron membrane.
The parameter Cm for an individual neuron is directly proportional to its area,
which is obviously affected by manufacturing imprecision.

• Globally-adjustable parameters. There are only a few, such as the rising time
constant for the synaptic conductance course and the offset of the voltage ramp
that is translated to a conductance course at the synaptic drivers (described in
more detail later).

• Shared parameters. The neurons on Spikey are divided into two populations. In
each population the odd or even-indexed neurons share their voltage parameters
such as their threshold potentials and resting potentials. Therefore there are 4 in-
dependent sets of neurons that can have different neuron voltage parameter values.
These constraints are mostly based on design decisions for the layout of the chip,
based on the optimal utilization of the die area.

• Individually adjustable parameters can be different for all neurons or synaptic
drivers and include the membrane leakage conductance and the parameters gov-
erning the shape of the synaptic conductance courses.

If any calibration routines are to be developed by the user of the FACETS stage1
neuromorphic hardware, a working knowledge of its architecture and operation principles
is required. The next sections provide a more detailed description of the FHW-1v4 system
and outlines the software workflow for configuration and simulation on the chip.

4.1 FACETS stage1 Neuromorphic Platform

The ability to use FHW-1v4 for neuroscientific studies is made possible by the support-
ing infrastructure of the Spikey v4 VLSI device. It consists of a number of additional
hardware and software components that effectively shield the user from the low-level
implementation details of the neuromorphic hardware. Figure 4.2 provides an overview
of the system.
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Figure 4.2: An overview of the FHW-1v4 system (taken from [7])

In a Multi-Chip environment, the backplane is a carrier PCB8 which provides 16 slots
for individual FHW-1v4 devices. These can be operated individually, or as a unit (multi-
chip mode). The backplane is connected to a Linux host PC (simulation server) that
contains all of the software needed for the communication with the system via a Gigabit
Ethernet interface. PyNN simulations are run locally on the server, to which end users
can connect via a standard TCP/IP network. The same network is also used to control
an advanced oscilloscope that is used as an acquisition device for membrane potential
data. The oscilloscope is connected directly to the ibtest pin of one of the chips, since
only one neuron can be monitored at a time. Spike event data, on the other hand, are
relayed digitally by the backplane. All Spikey chips are bonded to Recha boards and
are protected by clear plexiglas covers. These in turn are mounted on the larger Nathan
PCBs which can be added to the available slots on the backplane.

The individual components of FHW-1v4 are annotated on the photograph shown in
figure 4.3. Backplanes used in production are placed in special-purpose cases that rest
in 19-inch racks, so that the system is kept in a relatively protected environment, due to
the temperature sensitivity of the analog electronics [2].

4.1.1 FHW-1v4 Supporting Hardware

As is the case with other VLSI devices (such as computer processors), an isolated Spikey
chip can not operate by itself and is supplied with the necessary currents and voltage
signals by its supporting hardware. Some of these reach back as far as the backplane on

8Printed Circuit Board
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Figure 4.3: Experimental setup showing the FHW-1v4 system

which the whole system is mounted. The relation among these components is considered
next.

Backplane

A major task of the backplane is to serve as a gateway between the FHW-1v4 hardware
and the simulation environment on the PC host connected to it. In addition, it provides
power and physical support to the devices, as well as the clock signal controlling them.
The necessary logic is programmed in an FPGA9 module on the board, representing a
flexible solution when additional functionality, such as multi-chip operation, is needed.

Nathan Board

The most important components of the Nathan board are an FPGA and a DDR-SRAM
module, since they are necessary for its function as a controller of the ANN on the
Spikey chip. It also carries the Recha board which is mounted in a custom socket,
designed specifically for an ANN ASIC[21]. The FPGA contains the modules spikey-sei
and spikey-control enabling the real-time access to the chip using the SlowControl (SC)
protocol [21]. One rather important feature of the FPGA on the Nathan board is the
playback memory that is used to send event packets with a controlled delay between
them. This enables the stimulation of the ANN with input spike trains with well-defined
interspike intervals. The input data are externally generated and stored in the RAM
module for the duration of the simulation. In addition, the Nathan board contains
digital-to-analog converters (DAC) that generate some of the control voltages for the
chip as well as the readout circuit of the analog-to-digital-converter (ADC) on the Recha
board, and a temperature control mechanism [21].

9Field-Programmable Gate Array
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Recha Board

The Recha board carries the Spikey ASIC (figure 4.3) and supplies many of the low-level
control signals for the chip. Some of these are also global parameters such as the reference
current Irefdac (controlled by the Nathan) and the voltages Vrest, Vstart [21] controlling the
voltage ramp generated by the synaptic drivers (described below). All 9 analog voltage
output pins of Spikey are connected to terminals on the top of the Recha board, so that
they can be attached to an oscilloscope if a lemo jack is soldered at the corresponding
place on the PCB. This is often not necessary for all 9 outputs, because each of them
can be selected by a multiplexer on the Recha board whose output is available at such a
jack. In addition, its output can be directed to a four-channel 10-bit ADC on the Recha
board so that the values of the analog output pins (parameter voltages, voltage traces,
etc) can be transmitted digitally back to the controlling software on the PC (the rapidly
evolving membrane traces are read by oscilloscope, however).

4.1.2 The Spikey Chip

As it can be seen in figure 4.4, synaptic circuits occupy most of the die area on a Spikey
ASIC, since they represent the connection matrix for the ANN. It consists of two equal
network blocks that are located symmetrically about the vertical axis of the chip. The
innermost strip on each network block is comprised of 256 horizontally oriented synaptic
drivers that are instrumental in controlling the conductance courses impinging on the
neurons and ultimately the resulting post-synaptic potentials (PSPs). The bottom row
of each block is taken up by 192 artificial neurons whose both ingoing and outgoing
connections with other neurons are routed through the corresponding synapse array.

Figure 4.4: Spikey micro photograph

73



4 Calibration of Neuromorphic Hardware

Except for the wires necessary for the connectivity matrix, the area of each synapse
array is also occupied by 256 x 192 synapse nodes representing physical synapses, each
containing a 4-bit static weight memory. A vertical column of such nodes controls the
total synaptic conductance at each neuron. The exact mechanism is highly relevant to
the calibration of the synapse drivers and is described in more detail below.

At this point it should be mentioned that the close proximity of the wires carrying
controlling signals for conductance courses and those feeding back spike events inevitably
leads to the occurrence of parasitic effects when neighboring neurons are actively stimu-
lated.

Individual circuits in the ANN are controlled by either currents or voltages. Many of
these controlling signals correspond to (directly or indirectly) model parameters used in
neuroscientific experiments and therefore have to be stored on-chip in the analog domain
during the configuration stage of a simulation. This has lead to the development of a
custom current memory cell that functions as a voltage controlled current source/sink[20].
Since that voltage is stored in a capacitor within the cell and continuously diminishes due
to leakage currents, it requires constant refreshing that is accomplished by the digital-
to-analog converter shown on figure 4.4. There are 2967 such parameters, all connected
to the output of the DAC.

Each analog voltage parameter is likewise generated by a circuit containing a current
memory cell (voltage generator) that converts the current to a voltage via a 10 kΩ
poly-silicon resistor. In this way one DAC can refresh all parameters regardless of their
type, thus saving costly die area. Two voltage generator blocks consisting of 24 cells
each are found on the interface between the digital and the analog part, as indicated on
figure 4.4.

All values used by the DAC are stored in a static parameter RAM module located in
the digital part of the chip that is controlled externally by the Nathan FPGA. The allowed
analog parameter currents range within 0 and 2.5 µA while the parameter voltages can be
set between 0 V and 1.8 V[21]. The resolution of the 10-bit DAC divides those intervals
in 1024 discrete adjustable values with an increment of 1

1024× upper bound.

Neuron Model and its Physical Implementation

The artificial neurons in FHW-1v4 emulate a leaky integrate-and-fire neuron model with
conductance-based synapses. It is defined by equation

−Cm
dVm(t)

dt
= gl(Vm(t)− El) +

∑

j

pj(t)gj(t)(Vm(t)− Ee) +
∑

k

pk(t)gk(t)(Vm(t)− Ei)

(4.1)
with the additional condition

Vm(t) =

{

Vreset(t), if Vm > Vthresh

Vm(t), otherwise
(4.2)
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since action potentials are not modeled explicitly. A summary of the role of each
quantity figuring in equation 4.1 follows:

• Vm(t) - Time-evolving neuron membrane potential

• Cm - Membrane capacitance

• gl - Fixed membrane leakage conductance

• El - Membrane leakage reversal potential

• pj,k(t) - Conductance courses for the excitatory and inhibitory synapses

• gj,k(t) - Multiplicative factor describing the evolution of synaptic weights in time,
due to synaptic plasticity

• Ee, Ei - Excitatory and inhibitory synaptic reversal potentials

Their physical implementation in the hardware is schematically depicted in figure 4.5
and is discussed in the next two sections.

Figure 4.5: Physical implementation of neurons and synapses
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A neuron in Spikey is a capacitance Cm, the value of which depends on its surface
area. The size of the area is chosen in conjunction with the 104 hardware speedup to
produce the correct low-pass filtering properties of the neural membrane. The inevitable
systematic variations caused by the production process require some mechanism enabling
the user to set the value of the membrane time constant τm = Cm/gl, a neuron parameter
of crucial importance. This task can be accomplished by changing the membrane leakage
conductance gl which is controlled by the individually adjustable current parameter
ileak_cond (the relation between ileak_cond and gl is not linear and has to be deter-
mined empirically for each neuron).

In the absence of external stimuli, the membrane potential Vm tends to reach the
resting potential Vrest (≡ membrane leakage reversal potential El). Its value is controlled
by a voltage generator, but Vrest represents a shared parameter for all neurons of the
same parity in a neuron block. The same applies to the threshold potential Vthresh, the
reset potential Vreset, and the inhibitory reversal potential Ei. The excitatory reversal
potential Ee is fixed at 0 mV in the biological voltage domain. The calibration of the
voltage generators (section 4.2.1) ensures a linear relationship between the biologically
relevant parameter and the actual potential at the neuron. Of course, systematic vari-
ations also affect these voltages at the individual neuron (e.g. variation in the 10 kΩ
resistances), but the shared nature of the parameters prevents any possibility for their
relative adjustment. Still, the method described in section 4.2.2 mitigates the effect of
these variations.

Another important component of the hardware neuron is the threshold comparator
Vth(figure 4.5), which provides the signal for lowering the membrane potential Vm to the
reset level Vreset when it exceeds the threshold potential Vthresh. As it is necessarily of
limited precision, a membrane trace of a regularly spiking neuron (figure 4.6) shows that
variations also take place in the time domain.

Physical Synapses

In a biological setting, the arrival of an action potential at the synaptic terminal of the
presynaptic neuron triggers the release of neurotransmitter molecules in the synaptic cleft
by exocytosis. The fusion of each synaptic vesicle with the cellular membrane is a complex
process that occurs with a certain probability depending on time. Neurotransmitter
molecules that reach the surface of the postsynaptic neuron bind to ligand-gated ion
channels whose opening changes the conductivity of the corresponding membrane area,
thus leading to the generation of a PSP. This whole process can be described in more
abstract terms by a conductance course ps(t) that is unique for each synapse. It is most
often modeled as an exponential decay or an alpha function[33]. In equation 4.1 the
conductance course is scaled by an additional factor

gs(t) = ωs(t)g
max
s (t) (4.3)

that describes changes in the synaptic strength due to the plasticity mechanisms (STP,
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Figure 4.6: Measurement of the threshold and reset potentials. The target values in BVD are
Vthresh = −55 mV and Vreset = −80 mV. Based on the recorded membrane trace
and the spike train produced by the neuron, it is possible to find regions around
each spike event, whose maximum and minimum values are the threshold and reset
levels, respectively.

STDP) implemented by the chip. Since these are of no consequence for the following
work, it should be assumed that gs = ωs = const for all synapses from now on.

The generation of post-synaptic potentials on Spikey is a three-step process that is
controlled by several analog voltage and current parameters. FHW-1v4 does not provide
any direct means of measuring the synaptic conductances, therefore parameters govern-
ing the corresponding conductance courses have to be inferred from membrane trace
potentials and spike event data. An in-depth understanding of the process is required
for the calibration of the time constants and heights of these conductance courses.

Figure 4.7 depicts a schematic view of the right network block on the chip. Its 192
neurons are situated on the bottom row of the synapse array while the 256 synaptic
drivers occupy its left edge. At each row there are 192 synapse nodes that control two
separate excitatory and inhibitory lines leading to the corresponding neuron. The great
number (256 x 192) of these synapse nodes means that they occupy much of the die
area and necessitates the relegation of some of the synapse functionality to the synaptic
drivers.

Conductance Course

The generation of the conductance course starts by the arrival of a digital pulse at a
synaptic driver. This spike event may come from a neuron in the network block, a
neuron from the other network block, or from the playback memory on the Nathan

77



4 Calibration of Neuromorphic Hardware

Figure 4.7: A schematic depiction of the synapse array. The inset depicts the generation of the
conductance courses.

where external spike input is stored and fed into the chip. In response, the synaptic
driver generates a voltage ramp that is parametrized by one voltage and three currents,
as shown on figure 4.8 and in table 4.1:

Parameter Name Configurability Value Range

Vstart v_start global [0, 1.8] V
Iamp drviout individual [0, 2.5] µA
Irise drvirise individual [0, 2.5] µA
Ifall drvifall individual [0, 2.5] µA

Table 4.1: Readout and input connection parameters

This pre-synaptic voltage signal[20] propagates horizontally across a synapse row and
is transformed by the synaptic nodes into the double-exponential post-synaptic current
shown in figure 4.9. Since the positive slope of the voltage ramp is converted to an
exponential, the resulting PSPs for longer rising times trise would distort the PSP shape
significantly. Hence, the Vstart parameter that controls the onset of the current can
be used to produce more realistic (faster rising) conductance courses. The exponential
decay is generated by a current sink consisting of 15 n-type metal oxide transistors[20].
They are controlled by a 4-bit static weight memory located within the synapse in a way
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Figure 4.8: Voltage ramp generated by the synaptic driver

that the number of activated transistors depends on the weight of the connection.

Figure 4.9: Conductance course

As it can be seen in figure 4.7, the synaptic nodes are connected to the neurons via
two separate wires for the excitatory and the inhibitory PSPs. It must be mentioned
that a control line connected to the synapse driver sets the complete row to add its
current to either wire, thus reserving it for only one type of post-synaptic signal[20].

All currents generated by synapse nodes belonging to the same column are summed up
in the corresponding excitatory or inhibitory line and arrive at an operational transcon-
ductance amplifier which belongs to the neuron circuit and which changes the conduc-
tance between its membrane potential Vm and the corresponding synaptic reversal po-
tential Ex/Ei. When the onset of the controlling current is set high (using Vstart), the
resulting conductance course is very close to the standard exponential decay kernel used
in neuroscientific simulations. The falling voltage time period tfall, controlled by the
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drvifall current, consequently determines the synaptic time constant τsyn.

4.1.3 Software Stack

An important advantage of the FACETS stage1 platform is that the development of
neural network models running on FHW-1v4 relies on the same tools (PyNN, SciPy, etc.)
that are used to construct software simulations. Since the resulting code is compatible
with a number of different platforms (see figure 4.10), this opens up the possibility to
compare the performance of the hardware with expected results delivered by other means.
Such a seamless operation of the FHW-1v4 hardware is only possible due to the multilayer
architecture of its software stack, where each layer is concerned with a particular level of
detail in controlling the configuration and execution of the simulation on the chip. The
calibration of Spikey utilizes these components, therefore it is necessary to briefly discuss
the architecture of the software stack.

FHW-1v4 Neuroscientific Modeling Software

The top-level programming interface that is utilized for neuroscientific modeling in con-
junction with Spikey v4 is the PyNN modeling layer which has already been introduced
in section 3.1. It represents the top level of the software stack and communicates with a
custom-designed stage1 backend called pynnhw that relays the abstract data structures
and algorithms used in an artificial neural network model to lower-level components of
the controlling software which execute the proper configuration and simulation com-
mands on the hardware. Figure 4.10 shows the interrelations among many of the PyNN
components and, more specifically, the pynnhw interface to the chip.

Figure 4.10: The hierarchical architecture of PyNN and its back-ends.

It is necessary to point out that PyNN does not automatically take into consideration
all hardware constraints of the FHW-1v4 system and its user must be aware of possible
problems when the neural network model is improperly defined. For instance, it is im-
possible to set different values of an electric potential parameter (El, Ei, Vtresh, Vreset) for
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different neurons with the same index parity belonging to a network block, because they
use the same voltage generator. Such an attempt would, however, fail silently, so that
the last value attempted to be set overrides the previous one for the whole population.
Moreover, there are possible topological constraints when using the full capabilities of
the ANN (especially in a multi-chip setup with external input), thus precluding the
naive use of the chip, however easy it is to perform simulations on it.

PyHAL and Hardware Configuration

A neural network simulation in PyNN is a stereotypical process, typically consisting of a
configuration, simulation, and a data acquisition phase. Once the corresponding Python
script is executed on the Linux simulation server (host PC to FHW-1v4), its pynnhw
back-end uses the low-level routines of the PyHAL layer to configure the ANN on the
chip by sending commands to the Nathan. It is a wrapper around a C++ component
that contains a model of Spikey’s ANN, a configuration, and a communication module
(see figure 4.11). Most notably, data arrays comprising the calibration data and some
associated functions are also present in the PyHAL layer.

PyHAL does not, however, communicate with the hardware directly, but through the
mediation of the Darkwing server(dwserver) daemon which runs on the host PC and
relays the commands using the SC protocol. The need for the dwserver arises out of an
earlier version of the FHW-1v4 system that used a SCSI cable and a PCI card as the
communication channel between simulation server and backplane[21]. Moreover, since
one instance of dwserver manages a backplane, several users with different allotted chips
on that backplane may use the FHW-1v4 system simultaneously.

Figure 4.11: Software stack necessary for the operation of the FHW-1v4 system (from [2]).

Spike output data generated by an ANN simulation is gathered digitally over the same
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channel. Membrane potential traces, on the other hand, are not mentioned by the design
specification of the chip and have to be recorded in a more circuitous way. The network
can be configured to multiplex the membrane potential of a neuron to the ibtest pin men-
tioned in section 4.1.1. If the corresponding lemo jack at the Recha board is connected to
an oscilloscope, the latter can be used for data acquisition. Sophisticated oscilloscopes,
such as the ones used in the FHW-1v4 platform are network-enabled devices. Conse-
quently, pynnhw contains a dedicated module that fetches neuron membrane potential
recordings over TCP/IP. It should be emphasized that this acquisition mechanism is
completely independent of the FHW-1v4 supporting hardware, except for the PC host.

4.2 Calibration Routines

The parameters describing a neural network model refer to biologically relevant quanti-
ties whose values are usually inspired by empirical neuroscientific measurements. They
obviously have to be translated to the adjustable voltages and currents on the chip that
control the corresponding properties of its physical ANN network. Since the FHW-1v4
neuromorphic hardware operates on a time scale far different from biochemical processes
in vivo and is by construction very dissimilar in terms of on-chip parameters to bio-
logical neurons, it is to be expected that the ranges of those values on the chip would
also fall in a different order of magnitude. Moreover, not all of the modeling parameters
may have their analogous counterparts on the chip and even if they do, they could be
described by a quantity of a different type (e.g. synaptic time constants are controlled
by a voltage, membrane leakage conductance by a current). In addition, while some of
these pairs of parameters are linearly related (neuron potentials El, Vreset, Ei, Vthresh), the
interdependence of others reflects the architecture of the underlying electronic circuits.

On one hand this state of affairs means that the mapping of biological parameters on
the hardware is a non-trivial task, but on the other it allows for the free interpretation of
hardware quantities in the biological domain. Table 4.2 gives an overview of the available
configuration parameters:

The following sections employ a special notation to distinguish clearly between the
biological and the hardware quantities by utilizing the descriptors [BVD] for the biolog-
ical voltage domain, [BTD] for biological time domain, [HVD] for the hardware voltage
domain, and [HTD] for the hardware time domain.

The mapping of model parameters to the hardware domain is described extensively
in[7] and is performed by the PyHAL layer. After the configuration of the ANN their
digital representation is held in the parameter SRAM on the chip which is then used to
constantly refresh the analog voltage generators and current memory cells that ultimately
control the physical properties of the network. Due to the imperfections in the creation
of elementary electronic components, which is introduced by the manufacturing process,
the deviations from their expected electrical characteristics leads to variations in the
analog values of the controlling voltages and currents, even when the correct mapping
routine is used. The next section outlines how such effects can be compensated for.
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Neuron Parameter Symbol Configurability Value Range

Membrane Capacitance Cm Fixed 0.2 nF
Resting Potential Vrest Shared [0, 1.8] V
Threshold Potential Vthresh Shared [0, 2.5] V
Reset Potential Vreset Shared [0, 1.8] V
Inhibitory reversal potential Ei Shared [0, 1.8] V
Leakage Conductance gl Individual [0, 2.5] µA

Synaptic Parameter

Starting Voltage Vstart Global [0, 1.8] V
Rise Time trise Global [0, 2.5] µA
Voltage Ramp Maximum Vmax Individual [0, 2.5] µA
Fall Time tfall Individual [0, 2.5] µA

Table 4.2: Neuron parameters

Calibration Process

When a particular value of a biological parameter is used in a model, the corresponding
analog control signal on the chip changes the characteristics of a neuron or a synapse
in the ANN. In some cases this physical quantity can not be measured directly, but has
to be determined from the available recorded data for the simulation. This necessitates
the development of methods for the measurement of the variables presented in table 4.2
from neuron membrane potential data and spike output. While some of these can be
inferred with sufficient accuracy, the values of others, more specifically the synaptic
parameters, have to be estimated from secondary effects, such as the shape of the
PSPs. Since the magnitude of the control and process variables are both in the BVD
and BTD, it should be possible to find a transfer function that can be used to tune
the expected value of the parameter by offsetting it with the application of an offset
voltage or a bias current. This is indeed the method behind most calibration routines
presented in this chapter, but the determination of the transfer function proves all but
trivial for the synaptic conductance course, an issue addressed in section 4.2.4. All
bias current and voltage values generated by the calibration are stored in data arrays
in the PyHAL module, which enables the complete separation of the calibration work
from the FHW-1v4 software stack, thus enabling the user of the platform to develop
task-specific calibration methods when needed. An overview of the ones used in this
thesis are portrayed in figure 4.12 and are partly based on the procedures presented in[7].

Most basic of all is the calibration of the voltage generators on the chip, some of which
are used for other tasks besides governing neuron potential parameters in the ANN. Due
to process variations, the target values that the DAC writes to the memory cells are not
precisely reproduced as analog voltages. Since the relation is linear, however, a simple
measurement of the linear range for each cell is sufficient to find the slope and offset
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needed for the calibration.

Once the actual voltages are known to be those intended by the parameter mapping
process, it is necessary to calibrate the dynamic range of each neuron individually
(described in section 4.2.2). This is crucial for all further measurements that rely on the
utilization of membrane potential traces in the biological domain, since it determines
the translation HVD → BVD by minimizing possible error sources.

The membrane time constant τm determines the low-pass filtering properties of the
neural membrane. This is a physical quantity that can not be set directly, in contrast to
software simulations. Because of systematic variations in the fixed membrane capacity
Cm , the only calibration facility is provided by the membrane leakage conductance gl.
It is controlled by a current and has a non-linear transfer function. The importance of
τm is reflected in the fact that gl is individually adjustable for each neuron.

Synaptic conductance courses are governed by the voltage ramps described in sec-
tion 4.1.2. Such ramps, as well as the conductances, are not directly measurable in
Spikey. Their time constants and magnitudes have to be determined from the PSPs
which are low-pass filtered conductances (hence the priority of the τm calibration). In
addition, the network has to be in a high conductance state, the necessity for which is
given in section 4.2.4 and the transfer functions governing the mapping of the parameters
are non-linear.

Due to their different physical dynamic range, the impact of a conductance course with
the same characteristics on different neurons would produce different PSPs, a problem
that is not found in either software simulations or biological cells. The only possibility
to compensate for this effect is to provide a multiplicative constant for each column in
a synaptic array that scales the aforementioned impact in accordance with the dynamic
range of neuron.

These calibration steps are now going to be considered more closely.

4.2.1 Voltage Generators

The 10 kΩ poly-silicon resistors used to convert memory cell currents to voltages (sec-
tion 4.1.2) have mismatch rates of up to 30%, thus requiring the calibration of all 46
voltage generators. Spikey v4 can be programmed to connect any of these vouts to its
ibtest analog readout pin, which in turn can be read from the 10-bit ADC on the Recha
board (section 4.1.1), allowing for the digital transmission of the data back to the cal-
ibration program (This stands in contrast to membrane potential data which must be
read by oscilloscope from the ibtest pin. Due to reasons clarified in the next section, the
data delivered by the ADC can not be used to calibrate out the systematic variations in
the neuron voltage potentials).

An equidistant sampling over the whole range of the 10-bit DAC for two voltage param-
eters is shown in figure 4.13. An automatic plateau detection algorithm by E.Müller[32]
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Figure 4.12: Calibration process overview

determines the linear range of the transfer function and finds the slope and offset param-
eters needed for the proper programming of the voltage generator. Unlike the rest of the
calibration routines, it is implemented in C++ and is built into the HAL layer.

4.2.2 Dynamic Range

The mapping of the neuron voltage parameters (El, Vthresh, Vreset, Ei, and Ex) to the
HVD defines the dynamic range of the physical neuron. It is determined by several
factors, including the full range of the voltage generators ([0, 1.8] V), a design-inherent
upper limit of 1.2 V, and the choice of lower and upper neuron potentials spanning the
dynamic range ([Vreset or Ei, Ex]). The method used by the FHW-1v4 software stack for
parameter translation is described in[7].
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Figure 4.13: Voltage generator calibration (from [32])

When the biologically plausible resting and threshold potentials of El =: Vrest = −65
mV and Vthresh = −55 mV respectively, are set for a population of 192 neurons that occu-
pies the whole right network block of the ANN, the corresponding values at the voltage
generators, measured by the ADC readout channel are 0.86 HVD and 1.1 HVD. These
are accurate readings of the voltage generators and can be used to find systematic vari-
ations in the readout of the membrane traces by oscilloscope, since both parameters can
be easily determined from the membrane potentials. Taking into account the impedance
at the oscilloscope input which effectively halves the measured voltage (leading to 0.43 V
and 0.55 V respectively), it should be expected that any systematic readout error ∆V at
a chosen neuron has the same magnitude for its threshold and resting potentials. Their
distances from the target values, portrayed in figure 4.14 a) which displays the result
of such a measurement, however, behave contrary to this prediction, and show weak
correlation.

Obviously, the voltage at a parameter memory cell is not directly connected to the
capacitance Cm, but is instead inputted by a rather different process which is susceptible
to manufacturing mismatches. Indeed, the value of each voltage parameter is written
to the neuron membrane by a separate operational amplifier, as shown in figure 4.15,
thus leading to a write error ∆Write which is assumed to be normally distributed
(J.Schemmel, personal communication).

Similarly, there is an operational amplifier dedicated to the reading membrane traces,
thus introducing an uncertainty ∆Read for their values.
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Figure 4.14: Measurement of threshold and resting potentials of all neurons on an uncalibrated
device.

A further source of error is contributed by the mechanism used for reading membrane
traces by oscilloscope. Four analog readout lines per network block (see figure 4.16)
are utilized to monitor the membrane potential of neurons with index i%4 + j where
j ∈ [0, 3] is the number of the line. The signal is then either multiplexed to the test pin
or is available directly over one of the 8 analog outputs at the Recha board if a lemo jack
is soldered to the corresponding terminal (pynnhw controls only the multiplexer, so that
the other analog terminals are not used with the default configuration of the FHW-1v4
system). The membrane potential signal undergoes a final transformation due to the
aforementioned input impedance of the oscilloscope channel.

Summarily, the membrane potentials of a quarter of all neurons per network block are
measured with the same systematic error ∆Line.
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Neuron

Figure 4.15: An operational amplifier is used to write the voltages for each potential parameter

When all of the above error sources are added, it follows that each voltage parameter
of a neuron can be determined from the membrane potential trace with an uncertainty
of

∆V = ∆Write + ∆Read +∆Line (4.4)

thus leading to the conclusion that this intrinsic systematic variation can not be
corrected for by the usual method of using bias values.

The significant offset (see figure 4.14) of the membrane potential caused by ∆V is
ultimately translated to the corresponding large deviations in BVD. While some neuro-
scientific models are resilient against such large variations of their parameters, the utility
of FHW-1v4 as a universal simulation platform is clearly diminished by this problem.
It is possible, however, at the expense of absolute precision, to redefine the dynamic
range of the neurons in a way that homogenizes the neuron parameter voltages in the
biological domain.

This option is afforded by the freedom of choosing a custom HVD → BVD translation
rule individually for each neuron and by the fact that the threshold potential, unlike like
the resting one, can be determined without the ∆Write error.

First, the dynamic range of a neuron is chosen as the region between its resting po-
tential (lower bound) and its typical threshold value (−55 mV BVD) since FHW-1v4
does not model the supra-threshold dynamics (action potentials) of spiking neurons. In
a regularly spiking neuron (whose resting potential is set above the threshold potential
for measuring purposes, see figure 4.6), the maximum of the membrane potential in a
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Figure 4.16: Analog readout lines for the Spikey chip.

region about the spiking time reflects the correct value of its threshold (assuming that
the comparator error is small). Since the readout error ∆Read + ∆Line is the same
for both the resting potential and the threshold potential, the only uncertainty remains
∆Write(Vrest). When the HVD reading of a −55 mV target threshold is translated back
to BVD, its value can be defined as the −55 mV level. The same applies to Vrest, where
the error ∆Write(Vrest) can not be avoided and represents an accuracy trade-off. Using
these two points for the definition of a linear mapping HVD → BVD for each neuron,
the situation is now significantly improved, as it is evident from the calibrated measure-
ment shown in figure 4.17. Moreover, the linear range covers an extensive region between
[−80,−55] mV, despite the error in the resting potential.

4.2.3 Membrane Time Constant

An important precondition for the operation of the FHW-1v4 neuromorphic hardware is
the calibration of the membrane time constants τm = Cm/gl of the ANN neurons on the
chip. This is not only necessary when the simulated neuroscientific models are sensitive
to the systematic variations introduced by the manufacturing process, but is also required
for the calibration of the synapse drivers due to the low-pass filter action of the neural
membrane on synaptic input (conductance courses). The averaging of a PSP produced
by a particular driver across different neurons is indeed doubtful when the distribution
of τm in the uncalibrated state of the chip is considered (figure 4.18):
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Figure 4.17: Demonstration of the calibrated dynamic ranges on FHW-1v4

	50 0 50 100 150 200 250
Neuron ID

0

2

4

6

8

10

12

M
em

br
an

e 
TI

m
e 

Co
ns

ta
nt

 [m
s]

 [B
TD

] Uncalibrated Membrane Time Constants
Target 
m=5 ms

Figure 4.18: Uncalibrated membrane time constants. Neurons where the measurement failed
have the corresponding values set to 0.
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As mentioned before, the membrane capacitance is a fixed parameter and the only
possibility for controlling the membrane time constant, therefore, is provided by the in-
dividually adjustable leakage term. Ideally, it is possible to calculate the conductance
gl = Cm/τm for a particular value of the time constant when the capacitance is as-
sumed to be 0.2 nF. Setting it via the PyNN interface, however, inevitably leads to the
variations shown in figure 4.18 since both the capacitance Cm and the conductance gl
contribute to the deviation from the target value. Assuming a Gaussian distribution for
both quantities, the compound error is given by:

∆τm =

√

1

g2l
∆C2

m +
C2
m

g2l
∆g2l (4.5)

The membrane time constant is not a simulation parameter, as in the neuron models
used in computational neuroscience, but a physical quantity that has to be measured
from the available data. Its calibration depends on a reliable method for determining
its value based on the availability of the membrane potential trace and the spike train
output produced by a neuron.

Membrane Time Constant Measurement

The measurement of the membrane time constant τm is partly based on a method sug-
gested in[7] and is depicted in figure 4.19:

It follows from the solution of the first-order differential equation that models a leaky
integrate-and-fire neuron with missing synaptic input:

−Cm
dVm(t)

dt
= gm(Vm(t)− El) → dVm(t)

dt
= − gm

Cm
(Vm(t)− El) = − 1

τm
(Vm(t)− El)

(4.6)
As it describes the charging of a capacitor Cm with Rm = 1/gl, the membrane potential

always reaches the resting potential (leakage reversal potential) El asymptotically for an
initial condition Vm(0) different from El:

Vm(t) = El + (V0 + El)e
−t/τm (4.7)

If the threshold potential is chosen to be less than the resting potential, the neuron will
fire regularly, since Vm(t) can not reach El before crossing the threshold, thus producing
equidistantly spaced spikes. The reset potential Vreset can then be chosen as the initial
condition V0 = Vm(0) in equation 4.7. Now it is possible to find a particular thresh-
old potential, V (τm), so that the time elapsed during the charging of the membrane
corresponds to the membrane time constant:

V (τm) = Vthresh = El + (Vreset + (V0 − El)e
−1 (4.8)

τm = − T

log
(
Vthresh−El
Vreset−El

) = − ISI− τref

log
(
Vthresh−El
Vreset−El

) (4.9)
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Figure 4.19: A schematic depiction of the measurement of the membrane time constant.

It is warranted to assume (see figure 4.14) that the variations in all parameters follow
a normal distribution. The total error in the calculation of the membrane time constant
can therefore be calculated by using Gaussian error propagation. The result of that
calculation is given by the following expression:

L := log
(
Vthresh−El
Vreset−El

)

(4.10)

T := Vthresh −El

R := Vreset − El

∆τ2m = 1
L2∆T 2 + T 2R4

T 2L4∆V 2
thresh +

T 2

R2L4∆V 2
reset +

T 2R2

L4 ∆E2
l

In summary, the following steps are necessary to measure the membrane time constant
on the FACETS stage1 hardware:

1. Calculate the threshold potential Vthresh = Vm(τm) from equation 4.8.

2. Measure the actual values of Vthresh, Vreset, and El for the chosen target values.

3. Measure the interspike intervals for these settings

4. Calculate τm from equation 4.9
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The presented routine was used in producing figure 4.18 which shows the distribution
of all 192 time constants for neurons in the right network block with a target value of
τm = 5 ms BTD.

Membrane Time Constant Calibration

The measurement routine can be used to find the correct settings of gl that would produce
the desired target value of τm on individual neuron basis. A sweep over all 1024 possible
values of the controlling current is possible and has been used, in conjunction with linear
interpolation for measurement purposes, but applying this method for all 192 neurons is
rather impractical, due a number of reasons:

• A great number of measurements (192x1024)

• A non-linear relation between the controlling current and τm that confines the
available range of values to a small region of this one-dimensional parameter space

A more efficient means for the calibration of τm for a particular value is the binary
search algorithm [10] (see appendix for more details). It bisects recursively the available
parameter range and quickly converges toward the required value. It has been imple-
mented in the calibration framework and it takes less than 10 measurements, on average,
to arrive at the correct setting for the current ileak_cond. Figure 4.20 shows the cal-
ibrated time constants of all 192 neurons belonging to the right network block of the chip:
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Figure 4.20: Calibrated membrane time constants

It should be emphasized that the suggested method of calibration works only for one
particular target value of the membrane time constant. Thus, the system has to be
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re-calibrated when a different τm is necessary for modeling purposes. A more general
solution is to perform the parameter sweeps discussed above for all neurons and use
the data for arbitrary values of τm. Due to the short time necessary for binary-search
recalibration, however (∼ 20 min), and because of the practical problems involving the
handling of failure-tolerance issues and possible hardware defects, the trade-off provided
by the binary search method seems a good alternative to the “brute-force” sweeping
approach.

4.2.4 Synapse Drivers

As it was shown in section 4.1.2, the generation of post-synaptic potentials on the FHW-
1v4 system is a multi-step process involving a number of intermediary electronic circuits.
Particularly important is the post-synaptic signal path that the controlling current for
the transconductance amplifier has to traverse between the synaptic node and the target
neuron. The presence of parasitic capacitances along this line attenuates the current[7],
resulting in smaller PSPs with a larger exponential decay constant τfall. These differ
for drivers targeting the same post-synaptic neuron, since the signal propagates along
a wire of varying height, depending on the vertical placement of the driver. It follows
that when the corresponding synapse column is used in a basis activity regime, i.e. a
number of drivers targeting the same neuron generate conductance courses sharing the
same line , the parasitic capacitances are pre-charged, thus leading to PSPs of a different
shape. Figure 4.21 illustrates the discrepancy for an excitatory PSP generated by the
same driver in both circumstances:

Spikey does not allow for the superposition of conductance courses by the same driver
in time and consequently the basis activity regime has to be generated by a group of
other drivers, thus increasing the total conductance of the line. The total sum of their
PSPs will be referred from now on as a background noise, whose sole purpose is to remove
the dampening effect and to increase the conductance of the synapse column (a useful
way to increase the synaptic conductance artificially, described in[2], is no more available
in Spikey v4, since the corresponding controlling parameter is fixed due to technical
problems with the previous version of the chip). The only possibility for inferring the
shape of the PSP produced by the driver of interest in the basis activity regime remains
the STA method described below.

If a large enough number of high-frequency inputs are connected to the target neuron
via low synaptic weights, its membrane enters a high conductance state which reflects
some changes of the neural properties that are useful for calibration purposes.

High Conductance State

Since FHW-1v4 uses conductance-based synapses, the total conductance at the mem-
brane is a sum of the following terms

gtot(t) = gl + gexc(t) + ginh(t) (4.11)
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Figure 4.21: Post-synaptic potential generated by the same driver on a neuron when it is damp-
ened and in the basis activity regime (measured by STA described below). The
time offset is due to the measurement.

where gexc(t) denotes the sum of all conductance courses coming from the excitatory
line and ginh(t) - those arriving from the inhibitory one. Under the conditions mentioned
above the total synaptic conductance may exceed the leakage conductance gl, leading
to an activated state of increased network activity known as the high-conductance state
(HCS). Experimental studies of neocortical neurons in-vivo[11] show that the typical
ratio of the average synaptic conductance to the leakage conductance is 〈gexc〉/gl = 0.73
for excitatory synapses and 〈ginh〉/gl = 3.67 for inhibitory ones.

For conductance courses with an exponentially decaying kernel, the average total con-
ductance can be estimated by the following formula[8]

〈gtot(t)〉 =
∑

s∈{exc,inh}

νswsτs + gl (4.12)

where the rate νs, the weights ws, and the synaptic time constants τs are fixed for all
excitatory and for all inhibitory inputs.
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Since the membrane time constant τm is directly proportional to the total conductance
due to its fixed capacitance Cm, it attains smaller values during intensive stimulation of
the neuron:

τm(t) =
Cm

gl + gexc(t) + ginh(t)
(4.13)

This accounts for the improved resolution of the neuron when it responds to tem-
porally close excitatory PSPs (also known as coincidence detection property) that has
important neuroscientific implications.

At this time it is useful to introduce the concept of the effective reversal potential Veff(t)
whose time-average can be determined experimentally from the mean of the membrane
potential trace of the neuron under stimulation[8] and is used in the fitting procedure
described in section 4.2.4:

Veff(t) =
1

〈gtot(t)〉



gl +
∑

s∈{exc,inh}

gs(t)



 (4.14)

The effects of the high-conductance state on neural behavior can be summarized in
the following points[7]:

• Low input resistance

• Increase in the temporal resolution of quasi-concurrent input stimuli

• Large membrane potential fluctuations due to the intensive input

• Stochastic firing pattern due to proximity of the average effective potential 〈Veff (t)〉
to the threshold potential Vthresh

• Dominant inhibitory conductances

The relevance of the high-conductance state to the calibration of the FHW-1v4 system
is three-fold:

1. The neurons used for synaptic driver calibration must operate in a basis activity
regime which can be achieved by using HCS.

2. Neurons in HCS exhibit a stable mean of the effective potential Veff which can be
used to find the working point for HCS and also to measure the parameters of a
PSP.

3. The shape of the conductance course is influenced by the total conductance 〈gtot(t)〉
and Vm(t) follows the synaptic reversal potential more closely when the neuron is
in HCS due to the small 〈τm(t)〉.
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The practical difficulty associated with using high-conductance state in Spikey is its
characterization (achieving HCS ≡ finding the working point, see[7]) and the extraction
of the PSPs from the fluctuating membrane potential.

Measurement Methodology

FHW-1v4 does not provide any facilities for the direct recording of synaptic conductances.
Even then, they would be distorted by attenuation if the chip is not used in a basis
activity regime. It is necessary, therefore, to devise an indirect method for determining
the height and the synaptic time constants (τrise and τfall) for a conductance course
from the corresponding PSP shape in a high-conductance state. This implies finding the
solution of two problems:

a) How to extract the PSP generated by a single driver from the background noise

b) How to measure the conductance course parameters from the PSP

The following sections assume that the neuron is in HCS and that the measurement
objective is a single-driver PSP. It is important to note that all measurement involving
post-synaptic potentials are performed when the spiking mechanism is disabled, to avoid
distortions in the neural dynamics. This is done both in software and in hardware by
setting the threshold potential to unusually high level that can not be reached even by
large fluctuations of the membrane potentials.

Spike-Triggered Averaging

The variation in a neuron’s membrane potential σ2 = V ar [Vm(t)] in HCS is typically
larger than the magnitude of the post-synaptic potentials and attains white noise charac-
teristics for a large number of active synapses, high input frequencies, and low synaptic
weights. The membrane trace data contained in non-overlapping time intervals therefore
represent different realizations of the same random process. According to the central limit
theorem, the mean sample variance of these sub-traces behaves as σ2

mean = σ2/N → 0,
for N → ∞, so that the background noise essentially disappears for a high enough sample
number N . If each membrane trace slice contains a PSP that is positioned with exactly
the same time offset relative to its start, the lowering of the background noise gradu-
ally reveals its shape, which represents the low-pass filtered mean conductance course
produced by the synaptic driver of interest (figure 4.22). This method is known as Spike-
Triggered Averaging(STA) and is used extensively in experimental neuroscience [7].

Crucial for STA is the availability of both spike event data and the membrane poten-
tial trace of the neuron that is used to perform the averaging. Custom algorithms are
needed for the correct determination of the sample intervals around the time at which
a conductance course arrives at a neuron from the corresponding spike train which is
typically Poisson distributed. An additional hurdle is the fact that the membrane trace
recordings and the spike times are not perfectly synchronized (see section 4.3.1), leading
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(a) The averaging of many membrane
traces on the oscilloscope reduces the
background noise. The blue trace rep-
resents a single trial, while the green
one is the average over 10 experiments.
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(b) A post-synaptic potential extracted from the trace shown
on the left. A total number of 10000 samples were used for
the purpose.

Figure 4.22: The extraction of a PSP from the background noise.

to inaccurate averaging of the PSP.

The simple version of STA developed by the author tries to circumvent these problems
by sending a regularly spaced spike train from the investigated driver, so that the mem-
brane potential can be divided up in regular slices that are averaged very efficiently using
the facilities provided by the utilized Numpy[22] programming library. In this way any
systematic offsets between the spiking time and the PSP trace can be accounted for by
adjusting the slice points on the membrane trace and no spike events are needed for the
procedure. In fact, the averaging itself is much faster than the other operations involved
in setting up the experiment, so that the actual bottleneck becomes the simulation on
the chip and the membrane trace acquisition by oscilloscope rather than the processing
of the data.

Determining the Parameters of the Conductance Course

The shape of the conductance course described in section 4.1.2 differs significantly from
the standard kernels (exponential decay or alpha function) typically used in software
simulations modeling conductance-based synapses by the rising exponential flank and
the onset controlled by the Vstart parameter. It is to be expected that the resulting PSP
may behave differently and would not be amenable to the same fitting methods that
are used in the standard case. Therefore, a model of the low-pass filtering action of the
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membrane on this conductance course that describes the PSP would provide important
insight into the behavior of the hardware.

The starting point is a simplified form of equation 4.1 that accounts for only one input
by a synapse driver

−Cm
dVm(t)

dt
= gl(Vm(t)− El) + g(t)(Vm(t)−Esyn) (4.15)

where g(t) is the conductance course shown in figure 4.9 and Esyn stands for the excita-
tory (Ex) or the inhibitory (Ei) reversal potential, depending on the synapse type. This
equation is not solvable analytically for the function g(t) and has to be simplified. The
approximation (suggested by M. A. Petrovici) is founded on the fact that the magnitude
of the PSPs in the high-conductance state is typically much smaller than the difference
between the membrane potential and the reversal potential and can therefore be taken
as the constant R:

Vm(t)−Esyn ≈ const =: R (4.16)

−Cm
dVm(t)

dt
= gl(Vm(t)− El) + g(t) · R (4.17)

The approximation decouples the conductance from the membrane potential and allows
equation 4.17 to be solved piece-wise for each of the following regions of the conductance
g(t)

g(t) =







0, for 0 ≤ t < t0

m · t, for t0 ≤ t < ts

e
− t

τµ + gs − 1, for ts ≤ t < tg

gmax · e−
t
τλ , for t ≥ tg

(4.18)

that is delineated by the time points 0, t0, ts, tg and parametrized by the slope m,
the time constants τµ and τλ, as well as the maximum conductance gmax and the onset
conductance gs that are shown in figure 4.23 a):

As it is evident from the comparison with the numerical solution for the same conduc-
tance course g(t) (figure 4.23 d)), the approximation is valid even for much wider range
than the typical PSP heights of ≈ 1− 2 mV in HCS.

While the solution has been shown for a single PSP for didactic purposes, the solution
which results in for the high-conductance state, according to the theory presented in [8]
has the same form and can therefore be adapted for the measurement of PSPs extracted
by the STA method in the basis activity regime required for such measurements.
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Figure 4.23: Conductance Course

Synapse Driver Calibration

An accurate measurement of the post-synaptic potentials can only be made in a basis
activity regime that requires significant background stimulation. In the uncalibrated
state the synapse drivers generate conductance courses with varying parameters due to
process variation. When a particular subset of all drivers is chosen, however, they tend
to produce a stable average membrane potential 〈Vm(t)〉 that can be used to measure
the impact of the total synaptic background activity on the neuron.

Since the distribution of the synaptic parameters is unknown in advance, it is use-
ful to employ a software simulator for the purpose of finding a working point [7]
〈Vm(t)〉wp = Vrest + 2/3 · (Vthresh − Vrest) that defines the required basis activity regime
and which can be reached on the hardware by the adjustment of the current Iamp that
controls the height of the voltage ramp discussed previously, thus leading to a change in
the height of the conductance course impinging on the neuron.

A biologically meaningful activity regime can be achieved when about 20% of the input
is chosen to be inhibitory, and when high enough activity rates are used together with
low synaptic weights. The search for the working point in software uses 208 excitatory
inputs and 48 inhibitory inputs that stimulate one neuron. It consists of two steps:

• First, all inhibitory weights are set to zero, so that only excitatory input is available.
Starting from 0, the weights of the excitatory synapses are eventually increased until
the threshold level Vthresh is reached.

• In the second step the excitatory weights are kept, while the inhibitory ones are
slowly increased, so that the average membrane potential reaches the target of
〈Vm(t)〉wp.

The described procedure delivers target weight values for both the excitatory and the
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Figure 4.24: The fitting procedure is applied to an STA-extracted PSP from Spikey. Note that
in contrast to software simulations, the rise of the PSP is not instantaneous.

inhibitory synapses that can not be applied directly in hardware when the synapse drivers
are uncalibrated. They are still set, but the working point is found by a different method.

Since an overall increase of Iamp for all excitatory or inhibitory drivers does not neces-
sarily produces the same result as it would do in a software simulation with comparable
weights ( due to process variations leading to distributed values of Iamp ), the method for
finding the working point in hardware is applied using the previously mentioned binary
search algorithm:

• The weights of all inhibitory inputs is set to zero and the values of Iamp that lead
to an average membrane potential equal to the threshold Vthresh are found within a
certain tolerance by the bisection of the one dimensional parameter space of Iamp.

• Keeping the excitatory controlling currents, the values of Iamp for the inhibitory
synapses that produce the desired average potential 〈Vm(t)〉wp are found within a
certain tolerance using the same method.

Once that the working point has been established both in software and hardware, it is
possible to compare the characteristics of individually extracted post-synaptic potentials
using the STA method.

A PSP extracted from a software simulation provides a target height and a synaptic
time constant that can be reached by the repeated adjustment of the controlling currents
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Iamp and Iτfall . This is again accomplished with the binary search algorithm, which
converges sufficiently quickly toward the target values.

While the described method has been used for the calibration of individual synapse
drivers, an automated calibration routine is subject to a further investigation, since for
the number of samples, typically utilized for the STA method (10000) the characteristics
of individual synapse drivers still show significant variability. A further increase in the
number of samples significantly slows down the calibration process, therefore it might be
necessary to implement an additional optimization of the fitting algorithm.

4.2.5 Per-Neuron Weight Factors

As it was shown previously, individual neurons have a widely ranging dynamic range,
compared to each other, which can not be calibrated away because even homogenized
PSPs would have a different impact on their dynamics. The only possibility for dealing
with this problem is to find a weight factor that scales each conductance course im-
pinging on the neuron in a way that it its comparable to other neurons with a different
dynamic range. A method for achieving this goal has been implemented by the author in
the calibration software framework developed for this thesis and was shown to function
properly when a particular set of drivers are used for the procedure.

It is based on the fact that the weights defined in the model are mapped stochastically
(as shown in [7]) to the available 4-bit values on the hardware, so that large numbers of in-
puts can achieve a mean effect with a higher resolution than individually utilized synapse
drivers. It uses the binary search algorithm to find a particular multiplicative factor so
that the average membrane potential 〈Vm(t)〉 of the neuron can reach a predefined value
corresponding to the correct dynamics.

4.3 Encountered Hardware Imperfections

Due to the prototype nature of the FHW-1v4 system, there are inevitable hardware
problems that are not known in advance and can be encountered by the users of the
chip. Several such imperfections have been discovered by the author in the course of this
thesis.

4.3.1 Synchronization of Voltage Trace and Spike Times

One of the first problems that are evident when using the hardware is that there is a
fixed time interval between events shown on the membrane trace of each neuron and
the corresponding spike events which are delivered digitally to the host PC. Figure 4.25
shows such a measurement for a single neuron. The difference is specific for each neuron
is typically on the order of several milliseconds [BTD]. Since this is a systematic variation,
it is possible to calibrate it by offseting the spiking times so that they coincide with the
maxima used to measure threshold potentials when the neuron fires (see figure 4.25).

102



4.3 Encountered Hardware Imperfections

0 50 100 150 200
Time [ms] [BTD]

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Vo
lta

ge
 [V

] [
HV

D
]

Spike Events on Membrane Trace Time Scale
Spike Event

Figure 4.25: Membrane trace and spike times are not perfectly synchronized.

4.3.2 Fixed Synaptic Delays

Even when the spikes and traces were apparently synchronized, fixed synaptic delays
that can not be calibrated away were encountered. Since the best way to detect such
effects is to rely on measurements using only the membrane potential, the following
setup was utilize to demonstrate unequivocally the presence of delays.

A single external spike is sent to a neuron over a synaptic connection that is strong
enough to induce firing. The neuron is connected to itself via an inhibitory synapse.
When its membrane potential drops to the reset potential after it spikes, it should be-
come even more negatively polarized due to the inhibition. As it can be seen on fig-
ure 4.26, however, this does not happen immediately, but there is a delay of about 1.5
ms. Such delays were found to be neuron-specific and generally of the same order as the
measurement presented here.

4.3.3 Distribution of Refractory Times

The refractory times of the neurons can not be adjusted in network models in the current
version of the stage1 system. Instead, a particular parameter has to be adjusted manually.
Still, there is the question of how such refractory times are distributed in time when a
single neuron is used in an experiment.

Since the membrane trace of regularly spiking neuron (with a threshold potential lower
than its resting potential) is clamped to its reset value Vreset during the refractory period,
it is possible to measure this interval by fitting a function that describes the charging of
a capacitor, θ(t− t0)C(1− exp(− t−t0

τm
) to the membrane trace between two spike events.

The distribution of such a measurement for the default values on the hardware system
is shown in figure 4.28

103



4 Calibration of Neuromorphic Hardware

Figure 4.26: Measurement of a fixed synaptic delay at one neuron. The top trace shows that
the spiking time (dashed line) is synchronous with the voltage trace.
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Figure 4.27: Distribution of refractory times at 3 randomly chosen neurons.
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Figure 4.28: Distribution of the refractory times for the whole chip
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5 Discussion and Outlook

The implementation of belief propagation on neuromorphic hardware is an endeavour
that involves a multi-stage effort, entailing the investigation of various theoretical, ex-
perimental, and engineering problems. The groundwork toward achieving this goal has
been laid in this thesis, which describes essential preparatory steps, including statistical
inference models, software simulation results, and calibration methods.

The first step toward implementing statistical inference in neural networks concerned
the development of a software framework that can be used to perform simulation exper-
iments for any chosen model. It provides the theoretical calculations that are necessary
to compare the performance of the neural network, as well as an implementation of
the training procedure that is applied to individual factors. Simulations with current-
based synapses were deemed necessary, in order to reproduce the results provided in [37],
since the method has not been applied to conductance-based models so far. Almost all
parameters in the corresponding simulations followed closely the ones presented in the
pioneering work of [37], but the training performance differed significantly, depending on
the complexity of the implemented factor function. While simple factors like binary con-
ditional probabilities p(x|y) and equality constraint factors δ(x−y)δ(x−z) achieved very
high correlations with the theoretically expected output in the course of their training
(> 0.93), some seemingly uncomplicated functions like binary addition ⊕ (XOR) could
not be trained above chance level. This has led to the inability to test the performance
of the binary channel model in a fully implemented form, due to the distorted dynamics
of the parity check node. The reasons for the subpar training results of particular factor
functions remain unclear and need to be further investigated.

It is clearly possible to improve upon the training method for individual factors,
which is currently based on the linear regression methodology described in section 2.5.5.
Better results might also be achieved if the projections from readouts and external
input sources to the liquids are arranged in a different manner, as it is currently
done (they project to disjoint regions of the liquid to avoid mixing of information,
according to [37]). A systematic parameter search study may result in a better training
performance by optimizing the size of the liquids in relation to their connection density λ.

The model corresponding to the explaining away problem, on the other hand, was
constructed successfully from individual factors that showed a very high input correla-
tion with randomly generated novel input and was used in a long experimental series of
individual trials lasting for 1 s where each simulation used a different set of randomly
generated inputs. As it is shown in figure 3.19, factors that were directly connected with
the input sources and represent simpler functions generally perform better than the rest,
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but there is still a significant distortion of the expected network dynamics.

Because of inevitable error propagation, the quality of inference in the inherently noisy
implementation of liquid factor graphs evolves inversely with network depth (i.e. maxi-
mum distance of any node in the graph to the closest leaf node). A type of network that
avoids this problem is a chain, since messages are updated at every step from external
sources. An example is provided by the proposed simplified Kalman filter (section 2.4)
that was developed specifically for an application on neuromorphic hardware, since its
chain-like structure also entails a sparse connectivity matrix, thus taking the pressure off
bandwidth constraints between individual neuromorphic chips.

If statistical inference performed by this model can be successfully demonstrated, the
next step towards achieving belief propagation in hardware is the introduction of a new
training method for conductance-based synapses. While a superficial similarity between
the synapse-injected currents and the conductance courses does exist, the non-linear
dynamics that the latter induce may invalidate the linear regression method used for the
current-based case.

A single-chip FHW-1v4 does not provide enough neurons and synaptic connections to
be able to emulate statistical inference models without further modification. Therefore,
the next step in implementing them in hardware should involve the utilization of the
multi-chip system, which has only recently been in operation, since the FPGA code
required for multi-Spikey operation was not fully developed during the time of the work
presented in this thesis. It may still contain unknown technical problems, because it has
not been used for modeling purposes so far. A long-term perspective would, of course,
involve using the waferscale device, as it is vastly superior to the multi-Spikey chip both
in terms of available neurons and regarding the available connectivity.

The calibration of a single FHW-1v4 chip was presented in chapter 4. It described a
method for ameliorating the large process variation in the dynamic range of the neurons,
as well as a calibration routine for homogenizing their membrane time constants. A
new measurement method that is capable of determining the characteristics of the post-
synaptic potentials and their underlying conductance courses was used to calibrate the
synapse drivers on the chip. For most synaptic drivers, the fit can provide a reliable
results, however, there exist some drivers which show highly atypical PSP shapes for
which the method obviously can not work. For exceptionally weak drivers, long STA
runs need to be performed to achieve an acceptable signal-to-noise ratio.

It is possible, however, to make the involved data fitting procedure more robust against
such problems by the introduction of additional failure-tolerance checks in its implemen-
tation. Since it is a purely membrane trace-based method, the measured quantities are
entirely in the biological domain (BVD, BTD), so it can be used to test the performance
of spike-based methods for measuring the synaptic time constant. Which one of the two
methods turns out to be the most efficient is a high-priority question that needs to be
addressed in further studies.

The PSP characterization routine has also been used successfully in measuring the pa-
rameters of post-synaptic potentials on the HICANN chip, which is part of the wafer-scale
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hardware the Electronic Vision(s) group is currently developing (personal communication
M. A. Petrovici).

In the course of operating the FHW-1v4 system, several imperfections were encoun-
tered. Firstly, it was found out that the membrane potential traces are not perfectly
synchronized with the spiking times delivered by the digital electronics. This has led to
the discovery of fixed synaptic delays on the order of 2-3 ms in biological time which
are probably due to signal processing at either the synapse drivers or the synapse nodes.
In addition, the refractory times of individual neurons (a parameter which can not yet
be controlled directly via the PyNN interface) are distributed randomly in time, with a
neuron-specific distribution shape and variance (mostly on the order of 1 ms).

In summary, while significant progress was made toward achieving belief propagation
on neuromorphic hardware (development of the necessary software, calibration meth-
ods), more work is required if this goal is to be realized. First of all, the simplified
Kalman filter model has to be tested for current-based synapses. The development of a
conductance-based training method is required to test the compatibility of method with
the leak integrate-and-fire neuron model used in the hardware. Parameter optimization,
especially for the size of the involved neural populations is the next step in achieving
full compatibility with the FHW-1v4 system.

On the hardware side, the completion of the synapse driver calibration process for
individual FHW-1v4 devices is a necessary prerequisite for having a fully operational
multi-chip system that can be used for emulating neuroscientific models. The methods
described here are already being used for the calibration of the next-generation hardware,
the HICANN chip on the BrainScaleS waferscale device.
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