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Distortions of Neural Network Models Induced by Their Emulation on
Neuromorphic Hardware Devices

Neuromorphic hardware represents the integration of neuronal computation paradigms with
modern techniques of electronic hardware design. A general-purpose neuromorphic hardware
device that implements a number of adjustable neuron circuits with configurable intercon-
nections offers a powerful alternative to software simulation as substrate for neuroscientific
modeling. This thesis investigates the distortions that arise from inevitable limitations and
imperfections of a neuromorphic VLSI device and their influence on the behavior of neural
network models. As variations during the manufacturing process lead to a spread of synaptic
strengths on the neuromorphic device, a rate-based method is developed for measuring this
effect. These results are later used to investigate the influence of synapse strength spread,
incomplete realization of synaptic connections and absence of synaptic delays on models of
a synfire chain and a self-sustaining thalamocortical network. The possibility of compensa-
tion of these effects by changing model parameters is examined, establishing the limits and
feasibility of such methods.

Verzerrungen von Netzwerkmodellen aufgrund ihrer Emulation auf
neuromorphen Hardwaresystemen

Neuromorphe Hardware stellt die Integration von Konzepten neuronaler Informationsverar-
beitung mit modernen Techniken des Designs elektronischer Hardware dar. Eine universelle
neuromorphe Hardware mit einstellbaren Neuronen-Schaltkreisen und konfigurierbaren Ver-
bindungen bietet eine leistungsfähige Alternative zur Software-Simulation als Mittel neuro-
wissenschaftlicher Forschung. In dieser Arbeit werden Störungen untersucht, die durch un-
vermeidliche Einschränkungen und Unvollkommenheiten eines neuromorphen VLSI-Systems
entstehen, und deren Einfluss auf das Verhalten neuronaler Netzwerkmodelle analysiert. Da
Abweichungen während des Fertigungsprozesses zu einer Streuung von Synapsenstärken auf
dem neuromorphen System führen, wird eine Ratenbasierte Methode entwickelt, um diesen
Effekt zu messen. Die Resultate dieser Messung werden benutzt, um zu untersuchen, welchen
Auswirkungen eine Streuung von Synapsenstärken, eine unvollständige Realisierung synap-
tischer Verbindungen oder die Abwesenheit von synaptischen Verzögerungen auf das Ver-
halten eines Synfire-Chain-Modells und eines selbsterhaltenden thalamo-kortikalen Modells
haben. Möglichkeiten, diese Verhaltensänderungen durch Änderung von Modellparametern
zu kompensieren, werden analysiert sowie Machbarkeit und Grenzen eines solchen Vorgehens
festgehalten.
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Introduction

Physics can be described as the strive for the understanding of the fundamental laws of nature
that govern the universe and the incredible amount of phenomena that emerge from these
laws, ultimately creating the whole universe from clouds of gas to stars and galaxies, from a
single molecule to living organisms. All of this is, ultimately, the result of the building blocks
of the universe interacting with each other according to those fundamental laws. It was only
a question of time until the attention of scientists was drawn to a highly complex mechanism
that is present in a huge amount of different realizations and that shapes the existence on earth
in a fundamental way. This mechanism is the brain, an information processing mechanism
that contributed to survival such an enormous way that it has been shaped by evolution in a
great variety of shapes.
The understanding of the brain, which is itself a composition of interacting basic building

blocks, the neurons, which interact according to a set of given properties, should greatly
benefit from the expertise and analysis methods that are established in the field of physics
for similarly composite, but more basic systems.
Naturally, any investigation of something as involved as the brain can only be performed

in a large scale, interdisciplinary effort. The necessary steps to discover and understand
the functionality of single neurons, their interconnection and interaction and understand
the emergence of functionality for many different parts of the brain requires specialists to
perform a wide variety of research ranging from anatomy, physiology and behavioral studies
to mathematical models of computation paradigms.
An important tool to the understanding of the function of individual brain areas is the sim-

ulation of neural networks using computer hardware, modeling individual neuronal behavior
and their interconnection as precise as possible from available biological data, and using the
results to obtain insights to further the neuroscientific research. In cases where the emergent
behavior is of a very complex nature that escapes direct experimental access, this is one of the
few viable options. This approach is especially lucrative due to the readily available comput-
ing power in numerous data centers, that enables the simulation even of very large networks,
albeit the simulation of e.g. a full-size human brain with any degree of realism still remains
unfeasible.
Instead of waiting for Moore’s law to take care of missing computing power, attempts are

made to create fast, scalable and energy efficient alternatives to conventional simulation. One
attempt is called neuromorphic hardware: Instead of using a digital computer to run software
that solves differential equations that describe the behaviour of a set of electric circuits which
behave similarly to a network of neurons, one uses available methods of circuit design to build
the set of electric circuits. In short, one replaces the simulation of physical processes by an
emulation of physical processes by other physical processes. For example, as a very basic
neuron can be viewed as a capacitance in parallel with a number of resistors with eventually
varying conductance, and resistance can be built as an electric circuit.
By choosing appropriate values for the electrical circuit components, the emulation can be

performed faster than the operation of real neurons, making it possible to conduct experiments
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at a high speed. This speed increase does not depend on the number of implemented neurons,
which is a huge advantage to software simulation that slows down at least linearly with the
number of simulated neurons.
The disadvantage of this approach is the loss of flexibility that is inherent to the traditional

approach of digital computation. Thus, the most important idea is to build a configurable
device that still allows the emulation of neural behavior but additionally makes it possible
to configure a large number of different neuronal networks on the same device, thus creating
a universal modeling tool. This is the idea behind the FACETS and BrainScaleS hardware
systems.
The fact that the hardware system is still in its infancy and that entirely new concepts need

to be drawn from scratch, much work needs to be done before the concept can reach its full
potential. In the meantime, the limitations of the hardware system need to be investigated
and understood. These limitations arise from a fixed number of implemented hardware com-
ponents, from design decisions regarding adjustable parameter ranges and number of possible
interconnections between neuron circuits, to noise that is inherent to analog circuits and pro-
duction variability that affects analog circuits as well. It is extremely important to analyze
their effects and find ways around them, within the configuration space of the hardware. For
evident reasons, this analysis needs to include neuroscientifically relevant neural network mod-
els to establish which limitations are most important. Conversely it can be established which
model parameters are related to the functionality of the network, enabling future modeling
to make use of the strength of the hardware systems while evading its weak points.
The concern of the thesis is particularly the task of establishing the influence of the limi-

tations on neural network models. The concept is to use a given set of distortions that are
known to be introduced by hardware emulation, measure their extent and investigate their
influence on the neural models. The severity of distortions is seen by how well a model change
can restore the original behavior.

Thesis Outline
In Chapter 1, the FACETS/BrainScaleS hardware systems are described. Chapter 2 describes
the FACETS Demonstrator project and the included neural network models used as bench-
marks. Chapter 3 concerns a detailed description of the investigated hardware distortions
and the way they are modeled during the analysis. Chapter 4 details the measurement of
synaptic strength variability on the chip-based neuromorphic hardware system. Chapter 5
contains the investigation of the distortion influence on two of the Demonstrator benchmark
models and the results of distortion compensation by change of model parameters.
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1. The FACETS Hardware Environment

In this chapter, the hardware devices that are relevant for this thesis are described. The
chip-based neuromorphic device described in 1.1 is used in chapter 4 to investigate variations
of synaptic strengths. The analysis in chapter 5 is conducted with respect to the wafer-based
neuromorphic system that is described in 1.2.
Additionally to the cited sources, the information presented in the following sections is based

on personal communication with Daniel Brüderle and Bernhard Vogginger

1.1. Chip-Based Neuromorphic System

The chip-based neuromorphic hardware system is based on the mixed-signal Application-
Specific Integrated Circuit (ASIC) Spikey. The Spikey chip was developed in the Electronic
Vision(s) group and was available in its 4th development version during the course of this
thesis.

Figure 1.1.: Photograph of a Spikey chip. Image taken from Schemmel et al. [2007]

It implements 384 analog neuron circuits that emulate a conductance-based leaky integrate-
and-fire (LIF) point neuron [Gerstner and Kistler , 2002, chapter 4.1] with exponentially
decaying synaptic conductances. The behavior is given by the following equations:

3



1. The FACETS Hardware Environment

Figure 1.2.: Image taken from Schemmel et al. [2007]

Cm
dV

dt
= −gl(V − Vrest)−

∑

j

gj(t)(V − Erev,E)−
∑

k

gk(t)(V − Erev,I) (1.1)

V ← Vreset when V > Vthresh (1.2)

gj(t) = wj ·Θ(t− tj) · exp
(−(t− tj)

τsyn

)
(1.3)

with Θ being the heaviside step function.
V is the neuron’s membrane potential, Cm the membrane capacity, gl the membrane’s leak

conductance. The membrane potential returns exponentially to Vrest when synaptic input is
absent. Synaptic input is given in the two sum terms, the first for excitatory and for inhibitory
synapses. Each firing synapse connects the membrane to a voltage of Erev,E for excitatory
and Erev,I for inhibitory synapses via its time-dependent synaptic conductance gj (resp. gk).
When V reaches a threshold value Vthresh, it is set to the reset value Vreset and clamped there
for a refractory period τrefrac.
The synaptic conductance of the i-th stimulus is zero before the spike time ti, at which the

conductance jumps to a value wi (the synaptic weight) and decreases exponentially with the
time constant τsyn. In the case of Spikey, two synaptic time constants can be configured, one
for excitatory and one for inhibitory synapses.
Because of the small scale of the neuron circuits, the possible values for the membrane

time constant τm = Cm/gl are much smaller than usual biological values. Thus, all neuron
parameter ranges were chosen such that the emulation runs at a speedup of 104, i.e. an
experiment that would take ten seconds in real-time would be emulated in one millisecond
on the chip. This fact makes it necessary to distinguish between hardware time and biological
time, the former denoting the time that the hardware system needs to emulate a given setup
and the latter being the time that has been translated back with the speedup factor.
Synaptic input is realized via two components: The synapse circuits, located in the synapse

array, and the synapse drivers, that are located in between the two synapse arrays. (see
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1.2. Wafer-Based Neuromorphic System

Figure 1.1) A synapse driver can receive spikes from an on-chip neuron, allowing recurrent
connections, or from an outside source, allowing external stimulation. When a spike has to be
emitted by the given source, the synapse driver generates a voltage course with a linear rising
and falling edge (see Figure 1.2). The shape of this voltage course can be modified using
hardware parameters. It is then injected into the row of synapses that are associated with
the driver. The piecewise linear voltage is converted into an exponentially rising and falling
current, respectively. (For details, see Schemmel et al. [2007]) Each synapse that is connected
to the driver and a neuron, and is configured with a non-zero weight, sends the current course
to the neuron. There, a circuit interprets the current course as a conductance between the
membrane voltage and the corresponding (excitatory or inhibitory) reversal potential.
The mechanism of voltage course generation in the synapse driver implies that synaptic

conductances that originate in the same driver are not additive; each incoming spike induces
a new time course generation. In other words, the system behaves as a saturating synapse.
The behavior of the synapse circuits becomes important for the analysis presented in chapter

5.1.
In addition to the conductance dynamics mentioned above, synaptic plasticity mechanisms

are implemented on the chip: Spike Timing Dependent Plasticity (STDP) (Bi and Poo [1997])
and Short Term Plasticity (STP) (Markram et al. [1998], (Schemmel et al. [2007]). As these
mechanisms are not of relevance for the scope of the thesis, they will not be detailed further
at this pont.
For further information about the Spikey chip, see e.g. Grübl [2007].

1.2. Wafer-Based Neuromorphic System
The next-generation system within the FACETS and BrainScaleS projects is a wafer-scale
neuromorphic hardware system. While the chip-based neuromorphic system is scalable via
connection of several Spikey-based boards, the wafer-based system will allow an efficient
integration of neuromophic modules by leaving the production wafer intact and connecting
the modules in a post-processing step. (Schemmel et al. [2008], Schemmel et al. [2010], Jeltsch
[2010])

1.2.1. Neuron and Synapse Functionality
The basic module on a wafer is called High Input Count Analog Neural Network (HICANN ).
Each HICANN incorporates 512 neuron circuits with maximally 224 synapses connecting to
each neuron. Up to 64 neighboring circuits can be interconnected to increase the number
of afferent inputs. This imposes a hard upper limit on either the total number of available
neurons or the number of input synapses per neuron.
The HICANN module implements the Adaptive Exponential integrate-and-fire (AdEx) neu-

ron model (Brette and Gerstner [2005]). It is defined by the following equations:

Cm
dV

dt
= −gL(V − Vrest) + gL∆ exp

(
V − Vthresh

∆

)
− w − Isyn (1.4)

τw
dw

dt
= [a(V − Vrest)− w] (1.5)

Isyn =
∑

j

gj(t)(V − Erev,E) +
∑

k

gk(t)(V − Erev,I) (1.6)
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1. The FACETS Hardware Environment

when V = Vcutoff : (1.7)
V ← Vreset (1.8)
w ← w + b (1.9)

The essential differences to the LIF model (equations 1.1 to 1.3) are the addition of an
adaptation variable w, which allows for a wide variety of firing patterns that are observed in
nature (Touboul and Brette [2008]), and the introduction of an exponential term that affects
the membrane dynamics at voltages approximately equal to, and greater than the threshold
value Vthresh. Millner et al. [2010] shows that the firing patterns were successfully emulated
in hardware.
The variable ∆ determines how abruptly the exponential term becomes relevant in the

neuronal dynamics.
When V reaches Vcutoff, the membrane potential is reset and clamped to Vreset for a refrac-

tory period τrefrac. Simultaneously, the adaptation variable w is increased by an offset b. The
behavior of the synaptic conductance terms is identical to that of equation 1.3.
The manner in which the synaptic time course is generated in the HICANN module differs

from the one on the Spikey chip. Instead of generating a voltage time course in the synapse
driver and transferring it to the neuron circuit via the synapses, the variation of the synaptic
conductance is generated in each neuron circuit itself. The information about a spike that is
sent out by the synapse is a square current pulse that only encodes the efficacy of the synapse
Schemmel et al. [2008]. For technical reasons, this architecture is expected to be more robust
in terms of synapse strength variations than the one used on the Spikey chip.
Just like on the single-chip system, synaptic STP and STDP are also incorporated. For

further details on the implementation, the reader is referred to Schemmel et al. [2008] and
Schemmel et al. [2010]

Figure 1.3.: Rendering of wafer-based hardware system. Image provided by Dan Husmann de
Oliveira

1.2.2. Inter-, Intra-Wafer and External Communication
The communication between HICANNs that are located on the same wafer is realized via a
grid of so-called Layer 1 buses. Each HICANN module incorporates horizontal and vertical
buses (represented as green arrows in figure 1.4) which enable the communication between
neurons. When a neuron circuit emits a spike, it writes its address on a horizontal bus. At
each HICANN border, repeaters are implemented which allow the transmission of spike events
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1.2. Wafer-Based Neuromorphic System

Figure 1.4.: HICANN module. Arrow overlays show the location of horizontal and vertical Layer 1
buses. The location of the synapse and neuron circuits is shown. Image provided by
Electronic Vision(s) group.

to neighboring HICANNs. By appropriate switching between horizontal and vertical buses,
a connection can be established to a vertical bus on the target HICANN. The vertical bus is
switched to the target synapse driver that enables the forwarding of the spike information to
the target neuron via the synapse array. Spikes distributed via the Layer 1 communication
system reach their targets with a delay of less than 100 ns which corresponds to a synaptic
delay smaller than 1 ms at a speedup of 104.

Figure 1.5.: Schematic showing the communication on a possible configuration of a wafer-based neu-
romorphic hardware system. Description is provided in text. Image provided by Chris-
tian Mayr.

The communication path between a HICANN module and an external component such
as a HICANN on a different wafer or a host computer, including configuration and spike
data, uses the Layer 2 communication. A schematic is shown in Figure 1.5. Eight HICANNs
are connected to a digital network chip (DNC) via the DNC Interface, a digital part of the
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1. The FACETS Hardware Environment

HICANN layout. Four DNCs are connected to an FPGA (Field Programmable Gate Array).
The FPGA can be connected to a host computer or another FPGA.
A feature of the Layer 2 communication allows the realization of adjustable delays: Each

neural event carries an id of its source neuron and its target Layer 1 bus as well as the
time at which it should be delivered. This mechanism is implemented to counter variable
transmission times due to varying communication load. The time stamp is used to inject
the spike message at the appropriate time into the Layer 1 bus. By adjusting this time
stamp appropriately in the DNC or FPGA, a transmission delay can be introduced that is
higher than the transmission latency. Synaptic delays above 5 ms (biological time) between 2
neurons can be implemented with this feature by routing neural events from a HICANN via
the Layer 2 network back to the wafer.
The availability of a communication path between two neurons is not necessarily given.

The process by which neurons from an abstract network definition are assigned a concrete
hardware neuron circuit (the mapping), and the algorithm that establishes the switching
configuration between buses (routing) influence whether a desired synaptic connection can
be established, because the number of available buses is limited. The most efficient mapping
algorithm employed at this time is the NForceCluster algorithm that assembles neurons by
similarity into groups that fit on a HICANN. These neurons are placed together on a HICANN
module. For more details see Wendt et al. [2007].

1.3. PyNN

PyNN is an Application Programming Interface (API) that serves as a back-end-agnostic
wrapper for a number of established simulators for spiking neural networks Davison et al.
[2008]. It provides a means to describe neural networks in an abstract manner using the
programming language python. Because it defines a standard for neuron types and units and
hides simulator-specific details in implementation or representation of results by exposing a
simple, but expressive API, neuroscientific experiments can be set up easily and executed on
any of the supported back-ends only by changing the name of the desired neural simulator.
This kind of abstraction is beneficial in several ways: The training effort of switching between
simulator back-ends vanishes, providing the advantages of easy cross-checks of simulation re-
sults and allowing to exploit the strengths of each simulator in its own domain. By adding
a new simulator to PyNN, the previously implemented network definitions and analysis pro-
grams become instantly available without a need of individual transfer of source code. The
list of already established back-ends for PyNN is shown in figure 1.6.
For these reasons, the integration of the FACETS/BrainScaleS neuromorphic project as

available PyNN back-ends is highly beneficial to both, the project itself and to the neu-
roscience community. The latter benefits, because the optimization focus of the hardware
system differs significantly from pure software simulators: An exact, binary reproducibility of
results is abandoned for a high simulation speedup that is independent of the network model
complexity, up to the maximal number of available neurons on the hardware system.
For developers of a hardware system, the easy cross-check with an established simulator

highly simplifies the tasks of assessing the performance, validating functionality of and, ulti-
mately, finding possible error causes in the hardware system.
Currently, a PyNN interface to the chip-based neuromorphic system is available and in use.

An advanced implementation that includes both hardware systems and generalizes features
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1.3. PyNN
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Figure 1.6.: Schematic of the modeling language PyNN with possible back-ends. Taken from Brüderle
et al. [2011]

common to all neuromorphic hardware systems such as the mapping algorithms, is being
actively developed.
For these reasons, all hardware and software experiments in the scope of this thesis were

conducted using PyNN. Even though the benchmark models that are described in chapter 5 are
only investigated in software because the wafer-based neuromorphic system was not complete
during the course of this thesis, the implemented models are expected to be executable with
minimal changes on any PyNN -compatible platform.
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2. The FACETS Demonstrator

The FACETS Demonstrator project is an effort to showcase the functionality of the FACETS
hardware systems and to provide a means to evaluate design decisions and anticipate possible
problems during development. Furthermore it encompasses the development of the software
infrastructure necessary for the operation of a neuromorphic hardware system, and the estab-
lishment of workflows concerning the setup and evaluation of analysis routines. Additionally,
methods are being evolved that can be employed to compensate for hardware-specific effects.
For this purpose, an executable system specification (ESS) has been created that allows to
simulate several important aspects of the wafer scale hardware system, including the impact
of mapping, routing and interneuron communication on the overall emulation performance.
For a more detailed treatment of the FACETS/BrainScaleS ESS consult e.g. Vogginger [2010].
An essential part of the Demonstrator are benchmark models that serve as a basis for the

aforementioned evaluation. For complex systems like the FACETS hardware devices, a large
number of trade-offs regarding e.g. communication bandwidth, emulation speed, homogeneous
behaviour of components and component number need to be made. The effects of such changes
on the overall quality as a neuromorphic modelling tool are often hard to predict.
The benchmark models constitute one approach to this problem. A set of high-level net-

work models with a well-defined behaviour is used to study the influence of expected hardware
distortions. Each model is adapted from a published study, which establishes its neuroscien-
tific and biological relevance. As such, it provides typical connection densities and patterns,
neuron firing times, neuron parameters etc.
In particular, the following benchmark models were provided by FACETS project partners.

2.1. Synfire Chain with Feed-Forward Inhibition
The synfire chain model was provided by L’Institut de Neurosciences Cognitives de la Méediter-
ranèe – INCM, Marseille, France in cooperation with Albert-Ludwigs-Universität Freiburg –
ALUF, Freiburg, Germany. The corresponding publication is Kremkow et al. [2010].
A synfire chain is a set of groups of neurons in which members of one group connect to

neurons in the group’s successor. It is a theoretical tool that has been employed to study signal
propagation, memory capacity and computational properties of neural networks. Kremkow
et al. [2010] investigates the effect of feed-forward inhibition on signal propagation along a
synfire chain. Each group contains excitatory and inhibitory neurons that are both stimulated
by the preceding group’s excitatory population; the inhibitory neurons only connect locally,
influencing the response of the group. The model is described in full detail in 5.1.2.
The importance of this model as part of the Demonstrator stems from its highly synchro-

nised firing pattern that may be affected by hardware bandwidth limitations while a relatively
simple interconnection scheme allows to test the mapping and routing algorithms. The de-
pendence of the model’s functionality on delays can provide insights about impact of limited
delays on the wafer based hardware system.
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2.2. Self-Sustaining Cortical Activity with Asynchronous Irregular Firing Patterns

2.2. Self-Sustaining Cortical Activity with Asynchronous Irregular
Firing Patterns

The network models were provided by the Integrative and Computational Neuroscience Unit
– UNIC of the Centre national de la recherche scientifique – CNRS, Gif-sur-Yvette, France.
The corresponding publication is Destexhe [2009].
The networks employ the adaptive exponential neuron model to simulate neuron firing

patterns that occur in the mammalian cortex and thalamus. With these, Destexhe [2009]
shows that self-sustained asynchronous and irregular activity can be facilitated by the presence
of rebound bursting neurons. The level of intrinsic adaptation is linked to the occurrence of
Up and Down states.
The benefit of these models for the Demonstrator is their reliance on the adaptive ex-

ponential neuron model that is implemented in the HICANN module. Also, their random
connectivity provides the opposite to the structure of the synfire chain model in terms of
mapping simplicity.
The models are described in full detail in 5.2.1.

2.3. Layer 2/3 Attractor Memory
The Layer 2/3 Attractor Memory model was provided by Kungliga Tekniska Högskolan -
KTH, Stockholm, Sweden. The corresponding publication is Lundqvist et al. [2006].

(a) (b)

Figure 2.1.: (a) Layer 2/3 Attractor Memory schematic. Numbers on arrows denote connection
densities. Further description in text. (b) Raster plot of a NEST simulation of a network
with 9 hypercolumns and 3 minicolumns per hypercolumn. The spike trains are sorted
by minicolumn number. Pictures provided by Mihai Petrovici.

The mammalian cortex is organised in 6 distinct layers that are distinguished by their
specific neuron types as well as both their intrinsic and mutual connectivity patterns.
The cortex is divided into hypercolumns, which run orthogonally to the surface and span all

six cortical layers. The definition of a hypercolumn is based on its constituent neurons hav-
ing nearly identical receptive fields ((Mountcastle [1979], Buxhoeveden and Casanova [2002],
Hubel and Wiesel [1977])), which, however, makes a clear distinction between neighboring
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2. The FACETS Demonstrator

hypercolumns somewhat difficult (Tsunoda et al. [2001]). According to an established hy-
pothesis, each hypercolumn consists of 50 - 100 minicolumns, each comprising around 80
neurons. (Buxhoeveden and Casanova [2002])
In Lundqvist et al. [2006] it is shown that a hypercolumnar/minicolumnar structure with

experiment-based neuron models and connectivity can act as an associative memory. The
observed attractor dynamics shows traits such as pattern completion and pattern rivalry.
The network architecture is shown in Figure 2.1 (a). It is comprised of a set of hyper-

columns (blue rectangle) each of which contains an equal number of minicolumns (yellow
rectangles) and a basket cell population (yellow ellipses). Each minicolumn has an assigned
group of regular spiking non pyramidal (RSNP) cells (yellow rhombus) which have an in-
hibitory projection onto their corresponding minicolumn. The minicolumns are grouped in
so-called orthogonal patterns, each pattern having one minicolumn in each hypercolumn, with
no minicolumns being shared among patterns.
Each minicolumn has excitatory connections to other minicolumns in the same pattern and

to the RSNP cells of all remaining patterns, except in its own hypercolumn. This causes an
activity increase in one minicolumn to excite its pattern while simultaneously inhibiting the
other pattens. Additionally, each minicolumn has local recurrent excitatory connections.
All minicolumns also have excitatory projections to the basket columns of their hypercol-

umn; the basket column equally has inhibitory projections to all minicolumns in its hyper-
column. This can be regarded as a soft winner-take-all (WTA) module, which ensures a
balancing of activity in each hypercolumn.
The network is stimulated by external input from layer 4 (yellow hexagon) and by diffuse

input from other cortical layers.
Figure 2.1 (b) shows a typical spiking pattern of the network. All minicolumns in a pattern

are active at the same time. This activity switches between patterns after several milliseconds.
This model is the most complex of the Demonstrator benchmark models. Its high-level func-

tionality relies on the interplay of many populations. On the other hand, its self-regulatory
setup may automatically compensate for hardware imperfections. While this analysis is not
part of this thesis, a description of the model has been included for the sake of completeness.
A detailed analysis can be found in Brüderle et al. [2011].
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3. Modeling Hardware-Induced Distortions

While offering crucial advantages over conventional software simulators, the FACETS wafer-
scale neuromorphic back-end does suffer from certain specific limitations. It is essential for
these to be understood prior to the actual use of the hardware for modeling purposes. On one
hand, a detailed study of hardware-induced distortions allows the development of appropriate
corrective measures, such as calibration routines or even the re-design of (individual parts of)
the hardware itself. On the other hand, a complete understanding also implies the study of
their effects on a sufficiently diverse range of benchmark neural network models and, where
possible, the design of suitable and preferably universal compensation methods.
Hardware-induced model distortions stem from the physically limited nature of the hard-

ware itself, from its design and from the manufacturing process, but also from the software
components of the operation workflow. In the following, a shortlist of the most relevant lim-
itations is given, with an enhanced focus on those effects which were subject of this thesis.
This serves as an introduction and a preparation for the following sections, which concern a
detailed study of synaptic weight jitter (Chapter 4) and the development of the abovemen-
tioned compensation techniques for the FACETS Demonstrator benchmark models (Chapter
5).

3.1. Causes of Distortions
The highly complex set of hardware and software components that make up the neuromorphic
hardware system contains many points at which limitations have to be accepted or where
physical constraints introduce unavoidable distortions. Design decisions limit many factors of
the hardware devices, the most important being the number of realized neuron and synapse
circuits, the available communication bandwidth between neurons and to external devices and
the available parameter ranges of many components. Physical constraints inevitably introduce
cross-talk and noise and impose delays on the communication between any two parts of the
system. Process variations during manufacturing introduce fixed pattern noise and result in
variations of behavior in components that were designed to be identical. As mentioned in
section 1.2.2, sophisticated algorithms have to be employed to perform the highly nontrivial
task of mapping a given neural network onto the hardware in a way that ensures the highest
possible fidelity to the original connectivity pattern. Due to the complex nature of the task,
the choice of the concrete algorithm may significantly influence the actually realizable synaptic
connections, in addition to any hard limit imposed by available communication resources.

3.2. Modeling Distortions
Since the waferscale device itself has not been available within the timeframe of this thesis,
most of the effects mentioned above and discussed later on have not been available for direct
measurement. However, realistic estimates have been used, which have either been measured
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3. Modeling Hardware-Induced Distortions

on the Spikey prototype (i.e. synaptic weight jitter, Chapter 4) or have been inferred from
the system design (e.g. delays). When neither was possible or feasible, the investigated range
was chosen large enough to ensure that it encompasses all realistic use cases (e.g. synaptic
loss).
The distortion estimates were implemented in software simulations, as detailed below. Sim-

ulating these effects rather than measuring them directly on the hardware actually offers a
significant advantage: while on the hardware all distortion mechanisms act simultaneously,
making it difficult to analyze their individual effects, in software they can be investigated
independently.

3.2.1. Synapse Loss
As mentioned earlier, the number of realizable synapses depends not only on hard constraints
of the hardware design but also on the interchangeable and configurable mapping algorithm.
Since the study presented in this thesis is intended to be independent of any actual mapping
implementation, the loss of synapses has been modeled as being independent of any properties
of each synapse, meaning that a synapse loss value of 10% is considered homogeneous and
will result in every synapse being realized with a probability of 90%.

3.2.2. Spacial Synaptic Weight Jitter
Inevitable irregularities during production lead to deviations in components that were de-
signed to be identical. For the individual synaptic circuits, as well as for the synapse drivers,
their efficacy (i.e. their impact on their target neuron) differs from the ideal value. While this
effect can be significantly reduced by calibration in case of the synapse drivers, individual
synapses have no parameters which can be externally tuned.
Additionally, the digitalization of synaptic weights during the translation from the original

model to a hardware representation changes their value by an amount that is determined by
the resolution of synaptic weights, the maximal weight of the synapse and the desired weight
in the model.
These deviations are implemented in software simulations by setting each synaptic weight

that originally would have had a value of µ to a value that is chosen from a Gaussian distri-
bution with mean µ and standard deviation µ · j. If the new value is smaller than zero, it is
set to zero. This is done because the PyNN interface does not allow negative weight values.

p(w′) = N (µ, (µ · j)2) (3.1)
wnew = max(w′, 0) (3.2)

The quantity j is referred to as spacial synaptic weight jitter or simply weight jitter.

3.2.3. Limited Availability of Delays
In this thesis, the focus lies on the investigation of pure on-wafer connection routing. Because
the on-wafer delays are negligible ( .1 ms biol. real time), this effect can be easily implemented
in software simulations by setting all delays to 0. Delays generated by the Layer 2 routing
require a more involved characterization, which has only recently been initiated (Unpublished
results from Capo Caccia Cognitive Neuromorphic Engineering Workshop).
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4. Investigation of Weight Jitter on the
Chip-Based Neuromorphic System

4.1. Introduction
The central aim of this chapter is the quantification of the weight jitter on the chip-based
neuromorphic system. For this purpose, several methods are considered and a value of jitter
is measured on the hardware. The goal is to provide an estimate of the expected weight jitter
that shall be used in chapters 5.2 and 5.2.2 and to investigate possible ways to quantify the
effect of production disparities on neuron behavior. While the synapse circuits differ greatly
between the chip-based and wafer-based neuromorphic systems, there are several reasons for
conducting the presented research. Because it is expected that synaptic strength variation
will be lower on the wafer-based system, as mentioned in section 1.2.1, the presented results
are taken as an upper bound for future hardware generations. Second, experience with an
actual neuromorphic hardware system was deemed absolutely necessary to gain expertise and
intuition for its behavior.
Johannes Bill [Bill, 2008, Ch. IV.3] investigated the variation of synaptic effects on the

membrane potential on the third version of the Spikey system. The method used the vari-
ability in the excitatory post-synaptic potential (EPSP) integral as a measure for synaptic
variability, establishing a lower bound for the inherent variation of 10.8%. The used method
enabled a reasonably fast measurement.
There are several reasons to consider a different approach. First of all, the method employed

by Bill [2008] uses Spikey III specifics to speed up the acquisition of data, which are not
valid for the current, fourth version and are certainly not generalizable to different hardware
implementations. Second, it requires the recording of the voltage potential, which implies the
use of an external oscilloscope. A purely spike based method is favorable because it allows
easier automation and scalability, as spike data uses less bandwidth than voltage traces.
Third, a spike based approach may be useful if the measurement can be taken in a regime of
operation that is close to that of a complex neuroscientific experiment.

4.2. Considered Methods
A measurement method for synaptic weight jitter on neuromorphic hardware is considered
feasible when it fulfills the following requirements:

speed As the methods are investigated with large-scale testing in mind, execution speed is
essential.

expressiveness The measured quantity can be easily translated to a value of the weight jitter
quantity defined in 3.2.2.

precision The measurement should be exact.
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4. Investigation of Weight Jitter on the Chip-Based Neuromorphic System

realistic setup Because different effects can dominate for different experiment setups, it is
necessary to conduct a measurement in a common use case. Especially load on the
neuron by synaptic background activity is to be considered carefully.

automation The application of any jitter measurement method to a neuromorphic device
with several million synapses needs to be fully automatable. The use of an external
device, e.g. an oscilloscope that has to be manually connected and reconnected before
measurements is not desired.

In the following, several different approaches are considered.

4.2.1. Comparison with software simulation
The most obvious way of establishing the hardware variations is to compare a hardware ex-
periment to a software simulation. A possible setup would be to stimulate a neuron with
a series of spikes sampled from a Poisson distribution and observe the dependence of the
neuron’s firing rate on the synaptic weight. The effective synaptic weight could be deduced
from the corresponding software simulation. This method has been found to be impractical
for several reasons. First of all, it relies on an optimal calibration of the hardware resting and
reversal potentials and synaptic and membrane time constants. Measuring those separately
would require additional effort and preventing an easy automation, because additional hard-
ware such as an oscilloscope would have to be connected to the setup. Second, deviations
of hardware behaviour from the mathematical neuron model would be completely neglected,
thereby introducing systematical errors that are hard to account for.

4.2.2. Inverted Spike Threshold and Resting Potential
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Figure 4.1.: Example of the dependence of the interspike interval of a periodically spiking neuron with
Uthresh < Urest on a constant excitatory conductance gleak, as described in section 4.2.2
and in equations 4.2 to 4.4. Used parameters: τrefrac = 0 ms, τ = 1 ms, Ureset = −70
mV, Urest = −50 mV, Uthresh = −57.36 mV, Erev,E = 0 mV.

A second method is inspired by the neuron time constant calibration that is described in
[Brüderle, 2009, Ch. 2.4.2]. In that case, the resting potential is set above the threshold,
which leads to periodic spiking. The resulting interspike interval is given by equation 4.2.
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4.2. Considered Methods

(For simplification, the original method chose Uthresh appropriately, so the logarithm evalu-
ated to 1.) The spike times can be used to deduce the membrane time constant with good
precision without recording the membrane potential. As these two properties are desired,
it was investigated whether the method could be adapted for a measurement of synaptic
strength variations.
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Figure 4.2.: (a) - (c) Examples of input-spike-triggered interspike intervals. 200 excitatory and 55
inhibitory background sources were connected to the randomly chosen neuron 44 of
192 available neurons on chip nr. 444. The background firing rate followed a Poisson
distribution with a mean rate of 0.1 Hz for each connection. Each excitatory stimulus
source was connected with a weight of .33 nS, each inhibitory source with a weight of 1
nS. The measured synapse fired with a constant rate of 10 Hz and was connected with
a weight of 5 nS. The neuron was configured with gleak = 200 nS, Ureset = −75 mV,
Urest = −60 mV, Uthresh = −70 mV. Each experiment ran for 48 seconds (biological
time), meaning that each point is the average of 480 interspike intervals. The abscissa
shows the time after the spike from the measured synapse, in milliseconds (biological
time). Each graph shows the mean (blue line) interspike interval and the standard
deviation (blue line), in milliseconds (biological time). (a) Synapse index 0, (b) synapse
index 16, (c) synapse index 18 (d) Maximal change induced in the mean interspike
interval by a synapse for the first 26 synapses.

Because synaptic input modifies the effective time constant and resting potential, as given
by equations and for the case of a time-independent synaptic input, the variation of the
interspike interval in the presence and absence of synaptic input from a single synapse will
provide the needed information about the synaptic strength. As seen in figure 4.1, this method
is most sensitive for small synaptic conductances. However, it has to be taken into account
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4. Investigation of Weight Jitter on the Chip-Based Neuromorphic System

that the total conductance follows the time course imposed by the synapse instead of being
constant. Thus, the emulation has to run long enough to average out these fluctuations.
Finally, this method, also suffers from the fact that a translation between interspike in-

terval and mean conductance, as shown in figure 4.1, is needed to get an actual result; this
translation is dependent on the actual voltages and time constants which have to be measured
independently or estimated, sacrificing precision.
The most important reason to consider a different method is that setting the spiking thresh-

old below resting potenital is an atypical experiment setup that is not expected to be employed
often, especially not in combination with synaptic input. For a more realistic configuration,
a neuron should be stimulated by many different synapses, using a balanced combination of
excitatory and inhibitory input.

τU̇ = −(U − Urest)−
gsyn
gleak

(U − Erev,E) (4.1)

Tisi = τ log
(
Ureset − Urest
Uthresh − Urest

)
+ τrefrac (4.2)

τ → τ

1 + gsyn
gleak

(4.3)

Urest →
Urest + gsyn

gleak
Erev,E

1 + gsyn
gleak

(4.4)

During deliberations about the advantages and disadvantages of the jitter method the
question arose whether it could be adapted as a spike based measurement of the conductance
time course. By stimulating a neuron using a single synapse with a constant rate, the neuron’s
firing rate is modified according to the synaptic conductance that applies at any given moment.
Given a chosen set of parameters that causes the neuron to spike with a high firing rate, the
synaptic time course is effectively sampled with the neuron’s spiking rate. Using appropriate
parameters, especially a high leakage conductance, a spiking rate of 500 Hz can be achieved,
while the synaptic conductance time course has a temporal extent of more than 10 ms. Figure
4.2 (a) - (c) shows three examples of the synaptic time course averaged over 480 trials with an
identical stimulus. Note how the synapse with index 16 (b) induces a strong decrease, while
the synapse with index 18 (c) has a much smaller impact. On the other hand, the difference
is mainly in the magnitude, not in the shape of the synaptic time course. The extent of this
variation can be seen in Figure 4.2 (d). A few synapses with a very strong effect and many
with a moderate or small effect are observed among the first 26 synapses. This picture gives
a qualitative overview of the strength variation. Unfortunately, a quantitative comparison
can not be made directly because a calibration curve as the one shown in Figure 4.1 depends
on the precise knowledge of the configured resting, threshold and reversal potentials and the
membrane time constant, which are not easily accessible.

4.2.3. Weight Dependence of Neuronal Firing Rates
The insights from the previous chapters are now combined to form a weight jitter measurment
method that conforms to the desired criteria that have been established in the introduction
of chapter 4.
First, the weight jitter is defined using the assumption that the only difference between

synapses is the maximal weight that they can convey. This is supported by the conductance
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4.2. Considered Methods

course estimation that is described in the previous section. It is further assumed that the
digital scaling of this weight by each synapse circuit is linear. With the previous methods,
a quantitative statement was made difficult by the need for additional measurements, e.g.
of the leakage conductance or resting and threshold potentials, and by the assumption that
hardware neuron behaviour is ideal. Both of these issues are remedied by a setup in which
the digital weight of a synapse is varied, changing the firing rate of the neuron it is connected
to. This change is compared to a reference response curve, as illustrated in Figure 4.3.
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Figure 4.3.: Schematical illustration of jitter measurment.
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Figure 4.4.: Illustration of jitter measurement setup that is described in section 4.2.3. (a) Setup for
the measurement of the reference curve, (b) Setup for the measurement of the strength
of a single synapse. See text for further details
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4. Investigation of Weight Jitter on the Chip-Based Neuromorphic System

The exact implementation is illustrated in Figure 4.4. Three populations are chosen from
the available synapses that connect to a neuron. For this experiment, an excitatory and an
inhibitory background population were chosen that provide a level of activity that may be
expected in a real experiment. These populations act as a load on the synapse drivers, raising
the neuron’s mean membrane potential. The number and configuration of synapses are given
in table 4.1 (a) and (b).
The third population is the set of synapses whose strength will be measured. The type

can either be excitatory or inhibitory. In each run, a Poisson spike train is sent over one
synapse in this population, while the synapse’s digital weight is set to different values. This
produces the response curve for the synapse. To obtain the reference response curve, all
synapses in the third population are connected to the neuron and each transports a Poisson
spike train. The total firing rate of the spike trains is equal to the firing rate of the single
synapse. To gain precision, more weight values are taken than in the single synapse case:
Although each synapse can only take 16 distinct values, for a large population the values
are rounded statistically to ensure the correct mean value. The resulting reference curve is
fitted by equation 4.5 for excitatory and 4.6 for inhibitory synapses. The fit is necessary to
determine the effective weight of each data point.
Each background synapse fires according to the Poisson statistics using a given synaptic

weight and mean rate. These parameters are chosen such that the impact of the measured
synapse from the third population is as large as possible. In case of the excitatory configura-
tion, the values were chosen such that the neuron’s firing rate is near zero with background
only and much higher with the measured synapse set to its maximal conductance value. (See
4.1 for exact values.)
The synapses from the three populations are not mapped directly to the hardware, but

shuffled randomly, in the same way for each run. This is done to avoid systematic errors due
to possible regular deviations on the chip.

fexc(x) = log
(

exp
(
x−m
w

)
+ 1
)
· w · k (4.5)

finh(x) = exp
(−x
a

)
· k + x · s+ b (4.6)

The measurment results on a Spikey chip No. 444 (Version 4) are shown in Figure 4.5.
Figures 4.5 (a) and (b) show that the fit functions in the excitatory and inhibitory case reflect
the spiking behaviour in a satisfactory manner – the difference between fit and measured value
lies well within the measurment error. Figures (c) and (d) show that the variation of synaptic
strengths is indeed very strong; some synapses are stronger in the 1.5 nS setting than others
at 5 nS in the excitatory case.
For each data point, the effective weight was calculated by taking the inverse of equation

4.5 resp. 4.6. Effective weights larger than the maximal possible synaptic weight are ignored,
because in this region the functions are extrapolated. An average is taken, weighting each data
point by the inverse of its error squared. This value is the effective weight of the synapse. The
distribution of effective weights is shown in Figure 4.5 (e) and (f). The mean effective weight
was 0.91 for the inhibitory and 0.71 for the excitatory case, with the standard deviation being
0.38 and 0.47, respectively. In the excitatory case, many synapses had an effective weight
close to zero, because of the chosen background configuration. (A different configuration
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which covered both, the strongest and weakest synapses could not be found in reasonable
time.)
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Figure 4.5.: Weight jitter measurement using neural response as indicator. (a), (b) Inhibitory and
excitatory reference curves. Top: obtained data with fit. Bottom: difference of data
and fit divided by measurement error. (c), (d) Stimulation by background and a single
synapse, for 128 synapses. (c) Inhibitory setup. (d) Excitatory setup. (e), (f) Histogram
of effective weights for inhibitory and excitatory setup. See text for further details.
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Figure 4.6.: Weight jitter measurement using neural response as indicator. Stimulation by back-
ground and a single synapse, for 128 synapses. Analogous to Figure 4.5 with increased
experiment duration.

Several issues are noteworthy. First of all, a few outliers with an effective weight of 2 or more
occur. These are the same for the excitatory and inhibitory measurement. Second, the average
in both cases is smaller than 1. This means that a spike train that is distributed between
all synapses has a stronger effect than the average of all synapses relaying the spike train
individually. This is likely due to some very strong outliers in the relative weight distribution,
and a frequency dependence of the synaptic efficacy. The second point is reasonable to assume
because the conductance course that can be sent over one synapse is reset at the beginning
of each spike while conductances from two different synapses can be added.
This discrepancy is not crucial to the main result because the setup that employs all

synapses is mainly used to provide a good data set for the fitting routines. If a higher precision
is required in future, a different reference may be considered, for example the average of the
single-synapse runs. In the given case, the largest weight deviations stem from absolute
strength differences between synapses; these differences are much stronger than effects that
would arise from the aforementioned discrepancy. This is evident from Figure 4.5 (c) and (d).
The third issue is the non-linearity of single synapse circuits. Figure 4.6 has been generated

analogously to 4.5 (c) with an increased simulation time and fewer measured synapses. This
shows the influence of digital-to-analog converter (DAC) precision on the neural response.
Because the DACs are implemented in a very space-saving manner, they introduce impre-
cisions which can, for instance, be seen in Figure 4.6 for the top-most black and red data
set. In the first case there is a noticeable gap between the 7th and 8th data point (0.007 to
0.008 µS), in the second one the response magnitude jumps after every four increments. The
cause for this is that the most significant resp. the second most significant bit of the DAC is
stronger than expected.
It has to be noted that the given experiments were conducted on an uncalibrated Spikey 4

system. This means that the translation between software and hardware synaptic weights was
done without regard for deviations of synaptic efficacies. The reason was that no calibrated
Spikey 4 systems were available at the time of the writing of the thesis. This does not affect
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4. Investigation of Weight Jitter on the Chip-Based Neuromorphic System

the feasibility of the presented methods for the measurement of synaptic weight jitter. On
the contrary, they can be used to cross-check a different calibration routine.

exc. background inh. backround measured
mean rate (bio. Hz) 2 0.8 120
weight (µS) .004 .001 -
synapse number 100 28 128

(a)

exc. background inh. backround measured
mean rate (bio. Hz) 1.1 0.8 120
weight (µS) 0.002 0.002 -
synapse number 100 28 128

(b)

pyNN.setup parameters neuron parameters
calibOutputPins True e_rev_I -80.0
calibSynDrivers True tau_syn_E 30.0
calibTauMem False tau_syn_I 30.0
calibVthresh varying g_leak 20.0
loglevel 2 v_reset -75.0
mapping_offset 0 v_rest -75.0
rng_seeds [ 10298 ] v_thresh -65.0
timestep 0.1

(c)

Table 4.1.: Parameters for final measurment using the method described in section 4.2.3. (a), (b)
Mean rate and projection weight. The mean rate is given per synapse for background
populations i.e. the total firing rate is the product of mean rate and synapse number. Time
consumption was 60 minutes (real time) in (a) and 30 minutes in (b) (a) Excitatory setup,
(b) inhibitory setup, (c) global and neuron hardware configuration. Neuron parameters
are given in the units defined by PyNN.

4.3. Conclusions and Outlook

The need for an estimate of weight jitter on a neuromorphic hardware system led to the
investigation of several possible measurement methods. The principal idea is that a method
that compares the effects of synaptic jitter to a reference that stems from the hardware
itself is superior to a comparison between hardware and software simulations, because fewer
assumptions about the operation of the hardware and the precision of calibration need to be
made. Using such a method, the jitter value for an uncalibrated Spikey was estimated to be
40% with the main source being the synaptic drivers. The digital-to-analog converters in each
synapse circuit have a weaker, but measurable effect. The value of 40% is taken as the upper
bound for the software simulations in the following chapters. The HICANN module that will
be used on the wafer-based hardware system employs a different synapse architecture that is
expected to exhibit less variability. (See section 1.2.1)
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As the presented methods are purely based on spike trains rather than membrane potential
recordings, they can be considered as good candidates for calibration purposes, for the same
reasons as the ones mentioned in the beginning of the chapter. Comparing the final presented
measurement method to the given criteria, one finds that the execution speed was not very
high – at a duration of 30 to 60 minutes for 128 synapses, the method would extrapolate
to several weeks for a single Spikey chip. However, due to the fact that the method is
purely rate-based, which, in computational terms, amounts merely to counting spikes, all
the computations performed offline, after the experiment, should be easily implemented into
FPGA logic if a variation of the presented method is considered for use with the wafer-scale
system. This would reduce the computation time by several orders of magnitude.
The expressiveness, i.e. a clear relation to the weight jitter definition given in 3.2.2 was

perfect, as the exact value was measured. The precision was sufficient for the given case due
to a large deviation of effective synaptic weights, so measurement errors for single synapses
were much smaller than the overall distribution width. The setup was realistic in the sense
that background stimulation was applied. However, the total amount of stimulation can
not be chosen too strong, because otherwise the firing rate change induced by the measured
synapse can not be detected. Because the method is purely spike-based, it can be automated
more easily than a method relying on recording of membrane potentials.
If the method of comparison with a hardware-generated reference is adapted for calibration

purposes, further optimizations concerning the choice of the working point and the execution
speed have to be performed. The working point, i.e. the exact choice of background stimu-
lus and neuron parameters, was chosen by trial-and-error in the presented investigation. A
rigorous consideration may provide useful insights as to which configurations yield the best
results in terms of effective weight resolution and realism in relation to standard use cases.
Furthermore, the experiment duration will have to be minimized, for example by using only
a few synaptic weight values for the actual calibration and a complete sweep as a cross-check.
Parallelization of the method by simultaneous measurement of several neurons at once also

represents a possible optimization.
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In this chapter, two Demonstrator benchmark models are investigated with respect to their
behaviour in the presence of hardware distortions. The analysis of the synfire chain model
focuses for a large part on the necessity of synaptic delays and possible workarounds to replace
missing delays by parameter modifications. The analysis of the Self-Sustained Asynchronous
Irregular States-models shows the effects of hardware distortions on random networks of
neurons with complex behavior.

5.1. Synfire Chain with Feed-Forward Inhibition

In this chapter, the behavior of the synfire chain model in the presence of hardware distortions
is investigated. It is shown to what extent the original functionality can be regained by changes
of the model parameters. While most hardware-specific effects either have little influence or
are easily compensated, a possible absence of delays emerges as having the deepest impact
on the model functionality.

5.1.1. Motivation

One of the key questions of neural research is the nature of information processing within
neuronal circuits. An essential component to this question is the understanding of the neural
code, the way in which data is represented and processed by neuronal activity in a given
network. The key concepts that must be explained by a given neural code are, as defined by
Perkel and Bullock (Kumar et al. [2010]), stimulus representation, interpretation, transforma-
tion and transmission.
Stimulus representation is the relation between an external stimulus and neural activity.

Interpretation is the way in which a processing circuit can retrieve information from the
stimulus representation. Transformation encompasses the mechanism by which a network
performs a computation on the input and produces the result in the given code. Transmission
is the passing of information from one region of the brain to another. Efficient information
transport is an essential part of neural computation and has been analyzed by simulations
and theoretical investigations (Diesmann et al. [1999], Goedeke and Diesmann [2008]). One
possibility to implement a transport mechanism is a feed-forward network with a convergent-
divergent connectivity: neurons in each layer receive many synaptic inputs from the previous
layer and project to many neurons in the next layer.
Such a network was employed by Abeles [1991] under the name “synfire chain” as an ex-

planation of precise spike timing that was observed in awake animals.
In connection with the neural coding problem (Dayan and Abbott [2001]), e.g. whether in-

formation is encoded by precise spike timing or merely by a neuron’s firing rate, the conditions
under which a given code can be transported offer a valuable information. Kumar et al. [2010]
shows that asynchronous firing rates and synchronous pulse packets can be transported by a
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EXC
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EXC
(100)

INH
(25)

INH
(25)

delay = 20 ms

STIM
(100)

variable delay
(0 ms - 8 ms)

EXC
(100)

INH
(25)

delay = 20 ms

Figure 5.1.: Schematic of the synfire chain model. Detailed description in text.

synfire chain depending on the connection density between consecutive groups. For certain
values of these parameters, none, only one or both modes of propagation are possible.
The synfire chain benchmark model that is employed within the FACETS Demonstrator

addresses the question, to what extent feed-forward inhibition affects the filtering properties
of signal propagation in a synfire chain. In the case of feed-forward inhibition, an inhibitory
neuron projects onto an excitatory neuron; both are driven by a third excitatory neuron. The
abundance of this type of connectivity in the central nervous system, the observation that
inhibition and excitation are correlated in the cortex (Okun and Lampl [2008]) together with
the fact that inhibitory connections are usually local pose a strong motivation to investigate
the filtering properties of a synfire chain that incorporates a feed-forward inhibition scheme.
Beyond the scope of pure signal transportation, the synfire chain concept can be used to

model computation paradigms like logic gating (Vogels and Abbott [2005]) and compositiona-
lity, i.e. the hierarchical representation of parts (Abeles et al. [2004]).

5.1.2. Network model definition
The model defines a number of neuron groups that are arranged in a sequence, as can be seen
in Figure 5.1. Each group consists of a population of 100 excitatory and a second population of
25 inhibitory LIF-neurons. The inhibitory population projects to the excitatory population of
the same group while the excitatory population projects to both populations of the subsequent
group. Each neuron receives a fixed number of incoming synapses from both populations. The
connection count and synaptic weights are listed in table 5.1 (b). To simplify the evaluation,
the background noise for the model was chosen to induce a membrane fluctuation without
inducing background activity. This was done in analogy to the noise for the FFI circuit in
the original publication in Kremkow et al. [2010].

Concrete Implementation of Distortions

The modeling of distortions, as described in section 3.2, is applied to the synfire chain model.
The types of considered distortions are reiterated shortly:
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5. Analysis of Benchmark Models

Cm 0.29 nF
Erev,E 0 mV
Erev,I -75 mV
τm 10 ms
τrefrac 2 ms
τsyn,E 1.5 ms
τsyn,I 10 ms
Vreset -70 mV
Vrest -70 mV
Vthresh -57 mV
Vinit -70.0 mV

(a)

projection EXC → EXC EXC → INH INH → EXC
synaptic weight 1 nS 3.5 nS 2 nS
default delay 20 ms 20 ms 0 ms - 8 ms
incoming synapses 60 25 25
per neuron

(b)

Table 5.1.: (a) Neuron parameters used for excitatory and inhibitory neurons. (b) Connectivity
within the model.

synapse loss A synapse loss value of p means that each synaptic connection has a probability
p of not being realized.

weight jitter A weight jitter value of j means that each synaptic weight with original value
w is sampled from a Gaussian distribution with mean w and standard deviation j · w

synaptic delays The delays of the model can, in principle, be set for each type of projection
individually. Because of the feed-forward structure of the network, the signal propa-
gation properties are only affected by the delay difference between the two intergroup
projections, not by the absolute value. Thus, in most cases, variation of the local delay
between the populations of one group was sufficient.

These parameters were incorporated in the model by implementing a custom PyNN Connector
as a replacement for the built-in FixedNumberPreConnector. This new connector takes an ad-
ditional parameter, the synapse loss probability, and randomly establishes connections with
a probability of 1 − p. The advantage of this approach is that it makes use of the pyNN
abstraction to prevent unnecessary repetitions.

5.1.3. Definition of Functionality Characteristics

The quantities that are used to characterize distortion-induced changes need to be carefully
defined.
Initially, the occurrence and absence of activity propagation was considered and rejected as

a functionality characteristic, because it would neglect the effects on the filtering properties
of the network.
These properties can be described by measuring the response strength and temporal spread

of the synfire pulse in each group. In the following, the strength a denotes the mean number
of spikes per neuron in the excitatory population and the temporal spread σ denotes the
standard deviation of all excitatory spike times of a synfire pulse (See Figure 5.2 (a)). It is
common to represent the propagation of the pulse as a trajectory in the (σ, a) state space
(Kumar et al. [2010]).
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Figure 5.2.: (σ, a) state space of the synfire chain model. (a) Raster plot of the synfire chain activity.
The first group was stimulated by a Gaussian pulse packet with a temporal spread of
σ = 4 and one spike per neuron (a = 1). The response of the first two groups is
shown. The inhibitory population responds earlier due to the stronger synaptic weight
gEXC→INH. The rapid contraction of the pulse packet width is caused by strong local
inhibition that stops excitatory activity. The inhibition takes effect after a delay, which
amounts to 6 ms in this case. (b) Visualization of the filtering properties of the synfire
chain. The filled circles represent the (σ, a) parameters of the stimulus. Red circles
represent stimuli that lead to a detectable activity in the excitatory population of the
sixth synfire group; otherwise the circles are coloured in blue. The trajectory in state
space is encoded by grey lines; The start of each line is marked by a black line for better
visibility.

The initial point denotes the (σ, a) parameters of the stimulus pulse; each consecutive point,
shown as an arrow, denotes the activation of one synfire group. Important properties that
become apparent in this visualization are the location of fixed points (one near σ = 0, a = 1,
in which case the propagation continues indefinitely, and one at a = 0 i.e. the propagation
dies out) the location of the separatrix between those stimulus conditions that lead to a stable
propagation and those that evoke only a short or no response. Initial conditions that lead to a
stable propagation are shown as red circles; a stable propagation is assumed when activity is
detected in the excitatory population of the last (the sixth) group. In analogy to the original
publication, the separatrix is fitted by a function f(σ) = a+ b · σc using the rightmost points
that lead to a stable propagation. The range of σ and a was also adapted from Kremkow
et al. [2010].

5.1.4. Replacing Random Current by Synaptic Background

The model definition (5.1.2) employs a Gaussian background current to introduce trial-by-
trial variability. The current emulates the background spiking activity that is seen by neurons
in vivo (Destexhe et al. [2003]). The wafer-based hardware system is not equipped with a
sufficient number of background current sources to provide independent stimulation for a
large number of neurons. On the other hand, each HICANN module offers eight efficient
pseudo-random poisson spike source generators. Therefore, synfire chain model is modified
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to use a spiking background. This modification is taken as an opportunity to study the limits
that are imposed on such a replacement.
The following conditions must be satisfied by the background stimulus:

• The model definition requires that the background stimulus raises the mean membrane
potential without inducing background spiking. Equivalently, the mean potential must
lie several standard deviations below the spiking threshold.

• The hardware implementation limits the maximal firing rate that is sent from one
HICANN to 12.5 kHz at a speedup factor of 104. This includes the spikes from 56
neurons and eight poisson spike sources that are located on the HICANN module.

The second condition leads to the choice of a background rate of 2 kHz per neuron, leaving
10.5 kHz for interneuron communication. Figure 5.4 shows that the first condition is fulfilled
by a synaptic weight of 1 nS. As can be seen in 5.4 (b), these values produce a near-zero firing
rate while raising the mean membrane potential to −64 mV. In comparison, a stimulus with
a 10 kHz firing rate and a synaptic weight of 0.3 nS raises the mean potential to −60 mV,
the same value as for the originally injected background current.

Correlated Background

Because the number of neurons is larger than that of the background sources, a fully in-
dependent stimulation is not possible. Sources need to be shared between the neurons in
a way that minimizes the stimulus correlation. Furthermore, only the sources from a few
HICANNs should be used for each neuron to prevent an additional routing overhead. Given
a configuration with 64 neurons per HICANN and a feedforward network with 100 excitatory
and 25 inhibitory neurons per group, an efficient placement solution would map each group
onto three HICANNs (two for the excitatory and one for the inhibitory population of the
group), and use the L1 bus connections that are already configured to transport spikes from
one group to its sucessor to also transport the background stimulation. Given the current
placing limitation that neurons and sources on one HICANN must be either all excitatory or
inhibitory this leads to a suggested use of 16 background sources for 125 neurons.
To find a distribution scheme that minimizes the background correlation, a custom, semi-

heuristic algorithm is employed (“Avoiding correlations in neural activity on neuromorphic
hardware”, Mihai A. Petrovici et. al., to be published). Table 5.2 shows how many subsets
of sources have been found by the algorithm with the given restrictions. k is the size of each
subset and m is the maximal number of sources that can be shared by two subsets. The
cross-correlation of two membrane potentials is expected to be equal to the number of shared
background sources divided by the total number of sources. The underlying assumption for
this estimate is that the time course of the membrane potential is well approximated as a sum
of postsynaptic potentials. As can be seen in Figure 5.3a, the assumption is reasonable: The
peaks of the correlation coefficient at 0, 1/4 and 2/4 are the result of membrane potential
pairs that share zero, one or two of the four background stimuli, respectively. The final choice
for the distribution scheme is represented by N = 16, k = 4,m = 2 since it offers the best
ratio k−m

k of all possibilities with at least 125 found input pairs, and is therefore expected to
minimise background correlations.
A more important question is the influence of the background correlation on the signal

propagation in the synfire chain. Correlated background is expected to increase the synchrony
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5.1. Synfire Chain with Feed-Forward Inhibition

N k m found (best)
16 2 1 120
16 3 1 35
16 3 2 560
16 4 2 127 ←
16 4 3 1820
16 5 2 37
16 5 3 268
16 6 3 53
16 6 4 481
16 7 4 65
16 7 5 667
16 8 6 756

Table 5.2.: Input distribution found by the custom, semi-heuristic algorithm. The number of found
input configurations with k inputs, of which each pair shares at mostm inputs. Configura-
tions with sufficient (≥ 125) configurations are shown in bold. The selected configuration
is marked by an arrow (←)

of the group activity. Figure 5.3a shows that while identical background stimulus leads to
a completely synchronous activity, because each neuron receives exactly the same input,
strongly and moderately correlated background stimulus introduce a temporal spread that is
of the same order of magnitude as for completely uncorrelated case. Because the simulation
time step was 0.1 ms, which is close to the pulse width, a more quantitative statement can
not be made.

5.1.5. Weight Jitter
The influence of weight jitter on the model is minimal at values of less than 50%. (The in-
vestigation of the chip-based neuromorphic system provided an estimation of maximal weight
jitter of 40%, as described in ) Figure 5.5 (a) shows the response of the synfire chain to a
stimulus with a = 2, σ = 3 ms. The introduction of weight jitter of up to 30% does not signif-
icantly affect the width of the excitatory spike response. Even a very large weight deviation
of 80% of the original value does not introduce a large variability. The response in the state
space also does not show significant differences; the stable region stays essentially the same
at 30% and 80% weight jitter, while the region in which at least a response in the first group
is noted, only grows notably for a value of 80%.
Due to this minimal effect, no compensation for synaptic weight jitter is considered.

5.1.6. Synapse Loss
Effect of Synapse Loss

To quantify the effects of synapses being lost in the mapping process, the response of the
synfire chain to a stimulus with a = 4, σ = 2 ms was tested at different values of synapse loss.
(Figure 5.6) Up to a loss of 30%, the propagation can be sustained for at least six groups. At
40%, the activity can no longer be sustained. The width of the pulse packet increases with
synapse loss, because a reduced connection density leads to a weaker correlation between the
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Figure 5.3.: (a) Histogram of correlation coefficients using different distribution schemes. (b) Tem-
poral pulse width of the synfire pulse packet depending on the level of background
correlation.
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Figure 5.4.: Effect of Poisson background stimulation on a LIF neuron with parameters equal to
those in 5.1. (a) Firing rate of the neuron as a function of synaptic weight for different
mean firing rates of the stimulus. (b) Mean and standard deviation of the membrane
potential with disabled spike mechanism. The horizontal line denotes the original spiking
threshold.
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Figure 5.5.: Influence of weight jitter on the synfire chain state space. (a) Pulse packet width σ in a
synfire chain that was stimulated by a pulse with σ = 3 ms and a = 2, under different
values of synaptic weight jitter. (b) State space for 10%, 30% and 80% of weight jitter
(from left to right).

stimulus that is seen by the individual neurons; additionally, the total conductance injected
into a neuron is smaller which leads to a slower response and thus allows a stronger influence
of the stimulus and background variability on the exact spike time of each neuron.

Compensation Mechanism and Value Constraints

The most obvious idea to prevent the extinction of the propagation is to increase the con-
nection weight keeping the product of weight and mean number of remaining connections
constant:

wcompensated = woriginal ·
1

1− ploss
(5.1)

For a completely synchronous stimulus and a large population size this provides a perfect
compensation, because of the linearity of the conductance term. For smaller group sizes, the
variability of the connection count, given by the Poisson-distribution, gains influence. For
broad stimulation pulses, the connection density plays an important role: A feed-forward
network consisting of excitatory neurons enables the propagation of a firing-rate code Kumar
et al. [2010] for sparse and strong connectivity, and the propagation of synchrony for dense
and weak connectivity. First, the validity of this compensation rule has to be tested. For this
purpose, the initial experiment was repeated while scaling all connection weights by the same
factor and introducing synapse loss as described in 5.1.2.
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Figure 5.6.: Response of the synfire chain model to a stimulus with a = 4, σ = 2 for different values
of synapse loss. Stable propagation ceases at 40% lost synapses. (a) Mean number of
spikes in each excitatory population. (b) Pulse width in each excitatory population.
The pulse width is set to 0 in cases where no spikes occurred.

Figure 5.7 shows the characteristics of the activation in the first and last groups for the
excitatory populations together with the ideal compensation (green curve). The spiking
activity in the first (a) and last (b) group can be restored for synapse loss values of at least
70%. The fact that the ideal scaling rule seems to be too weak, i.e. the ideal curve in 5.7 (b)
approaches the lower bound of the area with exactly one spike per neuron. This is attributed
to the fact that each neuron receives only 60 excitatory synapses without synapse loss and
this number is small enough that the assumption of a large population size does not hold.
Nevertheless, the scaling rule is taken to be adequate for small and moderate synapse loss
values.
Finally, the compensation rule that has been defined above is tested in the default stimulus

region of a ∈ [1, 10] and σ ∈ [0 ms, 20 ms]. For this test, the focus is kept on two aspects:
First, the region in the a, σ state space in which excitatory activity can be detected in all
groups, which will be called stable region. Second, the region in which such activity can be
detected in at least the first group, which will be called response region. In the case of a
weak stimulation, increasing synapse loss causes both regions to shift towards larger values
of a (Figure 5.8 (c)). The stable region disappears at a critical value of synapse loss at which
its border passes the stable fixed point. In the case of strong stimulation (Figure 5.8 (c)),
synapse loss of 30% does not significantly affect the stable region, while the response region
protrudes to larger σ. The effect at small a is attributed to the decreasing excitatory stimulus
of the excitatory population of each group, while the second effect is a result of decreasing
filtering due to diminishing local inhibition.
The effect of the compensation is shown in Figure 5.8 (b) and (d). Notably, the stable

region can be qualitatively restored to the undisturbed case for weak and strong stimulation
even for 60% synapse loss. However, the response region is notably larger in this case. The
convergence towards the fixed point is also slower, as can be seen in the spread of the location
of the second synfire group in the state space in Figure 5.8 (d). The reason is the sparsity
and inhomogeneity of the connectivity at high synapse loss.
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Figure 5.7.: Response strength and width of the first ((a), (c)) and sixth ((b), (d)) synfire chain
group. The green line denotes the “ideal” compensation as defined in the text, the red
lines denote deviations from the “ideal” compensation by ±20%.

5.1.7. Synaptic Delays

A distinctive feature of the synfire chain model and one decisive factor for its inclusion in the
FACETS Demonstrator benchmark library is its dependence on synaptic delays. As the pos-
sibilities for realizing synaptic delays on the wafer-scale hardware are limited to connections
that include Layer 2 communication, it is essential to analyze whether the original model
behavior can be restored in the case of absent delays by changing other parameters.

Effect of Local Delay on Synfire Propagation Properties

Figure 5.9 shows the influence of the magnitude of local delay on the location of the stable
region. With minimal delay, no stimulus can evoke a stable propagation, because the excita-
tion is prevented by the early onset of local inhibition within a group. With increasing delay,
the stimulus width σ that can still evoke a stable propagation also increases. For the minimal
delay value, no stable propagation occurs (Figure 5.9 (a)).

35



5. Analysis of Benchmark Models

0% synapse loss 30% synapse loss 60% synapse loss

(a) 0 5 10 15 20
pulse width (ms)

0

2

4

6

8

10

pu
ls

e 
st

re
ng

th

f(x) = 0.5971 + 0.09973 x ^ 2.078

0 5 10 15 20
pulse width (ms)

0

2

4

6

8

10

pu
ls

e 
st

re
ng

th

f(x) = 1.09 + 0.2325 x ^ 1.674

0 5 10 15 20
pulse width (ms)

0

2

4

6

8

10

pu
ls

e 
st

re
ng

th

(b) 0 5 10 15 20
pulse width (ms)

0

2

4

6

8

10

pu
ls

e 
st

re
ng

th

f(x) = 0.5971 + 0.09973 x ^ 2.078

0 5 10 15 20
pulse width (ms)

0

2

4

6

8

10

pu
ls

e 
st

re
ng

th

f(x) = 0.77 + 0.0742 x ^ 2.173

0 5 10 15 20
pulse width (ms)

0

2

4

6

8

10

pu
ls

e 
st

re
ng

th

f(x) = 0.5991 + 0.06398 x ^ 2.241

(c) 0 1 2 3 4 5
pulse width (ms)

0.0

0.5

1.0

1.5

2.0

pu
ls

e 
st

re
ng

th

0 1 2 3 4 5
pulse width (ms)

0.0

0.5

1.0

1.5

2.0

pu
ls

e 
st

re
ng

th

0 1 2 3 4 5
pulse width (ms)

0.0

0.5

1.0

1.5

2.0

pu
ls

e 
st

re
ng

th

(d) 0 1 2 3 4 5
pulse width (ms)

0.0

0.5

1.0

1.5

2.0

pu
ls

e 
st

re
ng

th

0 1 2 3 4 5
pulse width (ms)

0.0

0.5

1.0

1.5

2.0

pu
ls

e 
st

re
ng

th

0 1 2 3 4 5
pulse width (ms)

0.0

0.5

1.0

1.5

2.0

pu
ls

e 
st

re
ng

th

Figure 5.8.: State space behavior of the synfire chain model for different values of synapse loss. (a)
Synapse loss applied to original model. (b) Synapse loss compensated by weight scaling
(See section 5.1.6 for details) (c), (d) Zoomed versions of (a) and (b) depicting the
convergence behaviour of trajectories close to the two fixed points.

Strategy for the Reintroduction of Delays

There are two goals that are addressed in this section. The first is to show that changes
of synaptic and neuronal properties can cause a shift in the separatrix in the (σ, a) space
similarly to the effect of changing synaptic delays. The second aim is to quantify the amount
of delay that can be achieved by such compensation methods.
Before compensation methods can be investigated in detail, the large set of possibilities

has to be limited to allow a systematic investigation. The following considerations provide a
basis for the chosen compensation mechanisms:

• Small changes to the model are preferred. An arbitrarily complex change can evoke
arbitrarily complex behavior, while diminishing the generalizability of the experiment.
Major conceptual modifications such as the introduction of additional interneurons were
therefore discarded.
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Figure 5.9.: Effect of local delay of the projection between the inhibitory and excitatory population
of a synfire group on the filtering properties of the synfire chain. Values of the delay are
(a) 0.1 ms (b) 4 ms (c) 6 ms (d) 8 ms. This corresponds to the observations made in
[Kremkow et al., 2010, Figure 4]
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• The change to the model should act by delaying the effect of a spike on the membrane
potential. While this constraint may seem obvious, it is imposed to rule out arbitrary
changes that only work in a special case.

d

time

d

INH

EXC

conductance

spikes

conductance

spikes 

(a) (b) (c)

Figure 5.10.: Illustration of possibilities to compensate missing synaptic delays. (a) Original behavior
when synaptic delays are present. The conductance course and spike times of an
exemplary neuron from an inhibitory (top) and excitatory (bottom) neuron within the
same group. The onset of inhibitory conductance is delayed by a time d. (b) No
synaptic delay is present. The inhibitory conductance has an increased time constant
τsyn,I and a reduced weight in comparison to the original conductance course, that is
denoted by a dashed line. (c) The spike time of the inhibitory neuron is delayed by a
modification of the synaptic weight and time constant from the excitatory neurons of
the previous group to the inhibitory neuron.

There are two possibilities to reestablish the original functionality of delays:

• To slow down the effect of the local inhibition by replacing a delayed rise and fall of
inhibitory conductance by an immediate conductance change of a different duration and
magnitude. This method is sketched in Figure 5.10 (b).

• To delay the spike time of each inhibitory neuron, ideally keeping the conductance time
course seen by the excitatory population exactly the same as in the case of real delays.
This spike time delay is accomplished by similar means as in the first option, but now
applied to the synapses which make up the intergroup projections from the excitatory
to the inhibitory population. (Figure 5.10 (c))

Qualitative compensation by delaying the effect of the inhibition

The first compensation variant is implemented by increasing the inhibitory synaptic time
constant. To reduce the parameter space from two dimensions (the inhibitory synaptic time
constant τsyn,I and synaptic weight w) to one, the product τsyn,I · w was kept constant.
At first, the question arose, whether such a scaling alone can be enough to replace synaptic

delays, even to some degree. The first idea is to see whether a continuous transition is possible,
i.e. whether one can slowly decrease the delay while simultaneously increasing the synaptic
time constant without changing the synfire behavior. For that, the response of the excitatory
population of the first group was taken as a criterion. Figure 5.11 shows this response to a
stimulus with a = 2, σ = 10 ms. While the response strength increases with delay and the
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Figure 5.11.: Spiking behavior of the excitatory population of the first group in the chain as a
function of the synaptic inhibitory time constant and local delay. The product of the
synaptic time constant and the synapse weight was kept constant. The input stimulus
had the parameters a = 2, σ = 10 ms.
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Figure 5.12.: Location of the synfire chain separatrix. (a) Real synaptic delays from original model.
(b) Scaling of the inhibitory synaptic time constant. The synaptic weight was scaled
inversely proportional to the time constant.
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inhibitory time constant, the response width does not follow the same pattern. From this
alone it is clear that a precise restoration of the original behavior is not possible.
Nevertheless, the location and shape of the stable region can be modified by the given

method. Figure 5.12 shows the location of the separatrix in the case of real delays (a) and
modification of the inhibitory synaptic time constant (b). While a stable region can be
achieved and modified using this method, the shape that is caused by conduction delays
of 6 ms and more can not be reproduced. The reason is clear: for large delay values and,
accordingly, large synaptic time constants, the difference between the two conductance time
courses is largest. A sharp increase after a long delay is replaced by a slowly decreasing
conductance, for each spike of the inhibitory population.

Delaying the Spike Time of the Inhibitory Population

This section presents the investigation of the second delay compensation method, as sketched
in Figure 5.10 (c).
A first approach roots in the observation that the dynamics that is described by a differential

equation

τ ẋ(t) = F (x(t), t) (5.2)

can be modified to yield the delayed solution x′.

x′(t) := x(st) (5.3)

The changes affect only the time constant and the explicit time dependency of the right-hand
side.

sτ ẋ′(t) = F (x′(t), t
s

) (5.4)
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Figure 5.13.: Example for delay compensation by changing the time scale of neuron dynamics. Both
figures show a raster plot of the first five groups and exemplary voltage traces taken
from the first three groups. (a) Synfire chain without background stimulation and
original parameters. (b) Synfire chain with increased synaptic time constant for the
inhibitory population (blue, solid curves) and no delay between inhibitory and exci-
tatory population. The volage course of each excitatory neuron (red, dashed curves)
stays the same in both cases.
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Figure 5.14.: Location of the synfire chain separatrix. (a) Real synaptic delays from original model,
identical to Figure 5.12 (a). (b) shift of the separatrix by time scaling of the inhibitory
population’s membrane and synapse dynamics.

The neuron models employed by the FACETS hardware can be described by equation 5.2;
thus, the dynamics can be slowed, and therefore, in a sense, delayed for the synfire chain.
Here, the time span between stimulus onset and spike in the inhibitory population is stretched
so the spike occurs after 4 ms instead of the fraction of a millisecond in the unmodified model.
Obviously, this kind of modification is very sensitive to the presented stimulus. The amount

of delay introduced by this method is not the desired additive, but a multiplicative one.
Another obvious drawback is that subthreshold dynamics are equally delayed, thus changing
the return time to the resting state by an equal amount. A partial remedy to the second
problem is to only scale the synaptic time constant, as shown in Figure 5.13. This abandons
the exact computability of the achieved delay, which however is not a major concern in most
cases due to the previously mentioned stimulus dependence.

Evaluation of Compensation Methods

The scaling possibilities discussed above have been tested in the default stimulus region. For
this, the parameters τm, τsyn,E and Cm are scaled by a factor. (Note that this employs the time
scaling method, as presented in equation 5.4, only up to the first spike, because the duration of
the refractory period is not scaled.) In this case, the original current background is employed
to avoid an individual adaptation of background stimulus parameters for each scaling factor.
As can be seen in Figure 5.14, the separatrix can also be shifted by the presented method;
its shape differs naturally from the one caused by real delays. Further deviations are seen
in Figure 5.15 (a). The set of stimuli that evokes a response in the first, but not in the last
group is bigger when comparing it with 5.9. For a scaling factor of 15, the irregularity of the
separatrix is apparent, which is also expected because especially for large σ, fluctuations of
the spike distribution within the stimulus packet have a strong influence on the effectively
weakened and prolonged effect on the spiking behavior of the inhibitory population.
The quality of the given compensation method for missing delays can be understood better

by calculating the effective delay of the inhibitory population spike times. It is defined as the
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Figure 5.15.: Effect of time scaling of inhibitory neuron’s parameters. (a) State space for a scale
factor of 5, 10 and 15 (from left to right) (b) Effective delay for the same scaling
factors as in (a). See text for details.

difference between the mean first spike time in the modified and in the original synfire chain.
Only the first spike time is considered, even if a neuron spikes multiple times. T
The visualization of the delay in Figure 5.15 (b) shows the effective delay depending on the

location in the σ, a state space. The aforementioned dependence on the stimulus characteris-
tics is shown here. This dependence can be explained easily: for small σ, each neuron sees a
rapid conductance rise, and the moderate modifications of the constants do not significantly
delay the spike time. For larger σ, the total delay is a result of two effects: the slower rise
of an individual EPSP and the increase of the integration time window. The first causes the
membrane potential to reach threshold later than in the non-modified case. In contrast, the
second can cause an earlier spike when stimulus spikes are sparse. This can be observed in
the case of a scale factor of 5 (Figure 5.15 (b), left image): The effective delay increases and
then decreases with rising σ, especially for small values of a.
The second point that is visible in Figure 5.15 (b) is the fluctuation of the local delay

between neighboring points in the state space. This effect is caused by variations in the
concrete realization of the stimulus that is sampled from a Gaussian distribution.
Both inhomogeneities of the local delay, the dependence on σ, a and on the concrete stimulus

realization illustrate the limits of a reintroduction of precise synaptic delays.

Establishing the Limits of Effective Delay

The effective delay is now employed to make two quantitative statements about delay rein-
troduction. The first is the size of the maximally possible effective delay. The second is the
spread of effective delay, that relates the mean effective delay to its input-dependent variation.
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5.1. Synfire Chain with Feed-Forward Inhibition

To establish an upper bound on the possible effective delay, its dependence on three neuron
parameters is studied: the membrane time constant τm, the synaptic time constant τsyn,E and
the synaptic weight w. The task is to find the maximal value of delay that can be achieved
by tuning of these parameters.
The size of the maximal delay could be measured by a sweep over the three parameters.

However, the following observation allows for an easy way to reduce the dimensionality:
Decreasing each of the parameters leads to a weaker response of the membrane potential,
eventually preventing the occurrence of a spike for a certain value of the parameter. This is
clear for τsyn,E and w, and becomes apparent for τm if one considers the first differential equa-
tion of the leaky integrate-and-fire model in the following form for the case of one excitatory
synapse being active at t = 0:

U̇ = −U − Vrest
τm

− w

Cm
exp

( −t
τsyn,E

)
(U − Vrev,E) (5.5)

For very large τm, the first addend on the right hand side becomes insignificant. For very
small τm, it becomes dominant, causing the membrane potential to stay near Vrest. The
maximal effective delay occurs at the border between a single and no spike for each of the
three parameters. Thus, scanning this border is enough to find the maximal possible effective
delay for a given stimulus.
The regions for the three variables were chosen according to the limits given by the wafer

scale neuromorphic system at a speedup of 104, given as: τm ∈ [1 ms, 588 ms], τsyn,E ∈
[1.2 ms, 86 ms] and w ∈ [0.035 nS, 700 nS] (These values were chosen to be larger than the
practically possible hardware values, so any realizable combinations of hardware values lies
within these limits.)
Figure 5.16 shows the delay at the border, as defined above, for a temporally sharp (a) and

broad (b) stimulus. Both plots show a significant influence of the membrane time constant on
the effective delay; The largest effect is observed for a maximally increased membrane time
constant (in the given case, by a factor of 10). The reason is, that the source of the delay
is the retardation of the spike until most of the stimulus has been applied. This kind only
happens if all EPSPs are small but act for a prolonged period. Figure 5.16 (c) shows, how
this happens: in the original model, the first spike occurs at the beginning of the stimulus,
while in the modified case it occurs after most of the presynaptic neurons have fired. This also
explains the much greater effective delay in the case of a large σ, and limits the effective delay
to the same order of magnitude as the delay for moderate scaling values. This is consistent
with the magnitude of effective delay in the state space, as shown in Figure 5.15.
Having established a limit on the magnitude of the maximal possible delay, what remains

is to test its consistency. The measurement of effective delay in different points of state space
has shown, that it varies with the temporal width of the stimulus. To estimate the extent to
which this happens at different values of the three modified variables, a final measurement
is conducted. A set of points is chosen that covers the default input region: a ∈ {2, 10}
and σ ∈ {1 ms, 10 ms, 15 ms, 20 ms}. The effective delay is measured in each of those eight
points for different values of τm, τsyn,E and w. The mean and spread of the delay is measured,
the spread being defined as the difference between maximal and minimal delay. Figure 5.17
shows the result: Only a very small region around 0 ms delay has a spread of 0 ms; with
increasing effective delay the spread increases by at least the same amount, showing the
limited consistency of effective delays for a large number of model modifications.
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Figure 5.16.: Effective delay of a single inhibitory neuron with modified τsyn,E, τm and w at the
border between one and zero produced spikes. To minimize trial-by-trial variation, the
background stimulus was replaced by a raised membrane potential to −63 mV. The
stimulation parameters were (a) (σ, a) = (2 ms, 2) (b) (σ, a) = (8 ms, 4) (c) Sample
voltage traces for the stimulus given in (b). Stimulus spike times were drawn from
a Gaussian distribution with a mean of 100 ms and a standard deviation of 8 ms.
Unmodified (upper plot) and modified (lower plot) cases are shown. The modified
parameters are: τ ′syn,E = 10−1.55 · τsyn,E, τ ′m = 10 · τm and w′ = w. The red vertical line
marks the time of the first spike. The horizontal line denotes the spiking threshold.
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5.1. Synfire Chain with Feed-Forward Inhibition

5.1.8. Conclusion
In this chapter, the effects of expected hardware distortions on the behavior of the synfire chain
model (Kremkow et al. [2010]) have been investigated. The effects include correlations in the
background stimulus for the network, synaptic weight jitter, synapse loss and unavailability
of synaptic delays for Layer 1 communication.
The influence of background correlations has been shown to play a minimal role on the

pulse width for correlation values of at least 50%. A distribution of hardware Poisson source
generators on a HICANN to neurons in each synfire group can be found that causes a correla-
tion of at most 50%, implying that for a synfire chain model with the utilized parameters, size
and interconnection is not significantly affected by background correlations if the available
resources are used in an efficient manner.
The effect of weight jitter was likewise minimal, even at values as high as 40%, corresponding

to the measurements on an uncalibrated Spikey chip, which have been considered as a worst-
case scenario. (See chapter 4)
Synapse loss disrupted stable propagation for a loss probability between 30% and 40%.

Compensation by increase of synaptic weights of the remaining synapses led to a reestab-
lishment of stable activity propagation. The increasing sparsity of interconnections led to a
change of transmission properties, as was expected considering the results from Kumar et al.
[2010] with respect to propagation properties of sparse and dense synfire chains.
Compensation of missing delays between the inhibitory and excitatory populations of a

synfire group was attempted using two methods.
First, delaying the effect of inhibition on the excitatory population by a modification of

inhibitory synaptic time constants and weights caused a shift of the stable region in the (σ, a)
state space, which was, however, not comparable in shape to the shift caused by real synaptic
delays.
Second, changing the spike time of the inhibitory population by a modification of its time

constant, membrane capacitance and the synaptic time constant from the preceding group to
the inhibitory population. Similarly to the first method, only an approximate reproduction
of the desired behavior was achieved.
The fact that the second method actually shifts a spike time was exploited to define an

effective delay that made it possible to investigate its behavior quantitatively. The limits on
the magnitude and consistency of possible delays using the second method were established.
The result confirmed that the dependence of effective delay on the stimulus shape is so strong
that none of the tested combinations of compensation parameters would produce the same
effective delay for a variety of presented inputs.
In conclusion, the behavior of the synfire chain network model was established for the

given distortions, and possible remedies investigated. The most important result would be
that qualitative mimicry of synaptic delays is possible regarding the effect of the separatrix
in the (σ, a) state space, given the delay is small (approximately 4 ms in biological time).
This complements the delays of at least 5 ms (biological time) available for the Layer 2
communication. (compare section 1.2.2)
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Figure 5.17.: Mean and spread of effective delay for several scaling parameters. The effective
delay was calculated using eight points in the state space using a ∈ {2, 10} and
σ ∈ {1 ms, 10 ms, 15 ms, 20 ms}. Each point represents a distinct combination of
τsyn,E, τm and w. The variables take on ten values in the regions of 0.1 − 10-fold of
the default value for τm, 0.016 − 1 of the default value for τsyn,E and 0.05 − 5 of the
default value for w. When stimulation in each point of the (σ, a) space led to a spike,
the point is denoted by a blue, otherwise by a red cross.
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5.2. Self-Sustained Asynchronous Irregular States

5.2. Self-Sustained Asynchronous Irregular States
In this part of the thesis, a set of randomly connected networks with complex neuron behavior
are investigated with respect to their reaction to applied distortions and compensation.

Motivation

Cortical neurons show irregular activity in awake mammals (Destexhe et al. [2003], Lee et al.
[2006]) that can be described as “asynchronous irregular” (AI) states (Destexhe [2009]). Such
states can be observed in large networks of current-based (Brunel [2000]) and conductance-
based (Vogels and Abbott [2005]) integrate-and-fire neurons. Neurons in thalamus and cortex
exhibit more complex firing patterns than the ones that can be reproduced by simple LIF
neurons. The work presented in Destexhe [2009] examines the occurrence of AI states in
networks of neurons that display such complex behavior. It is simulated by exploiting the
versatility of the AdEx model to mimic firing patterns that are observed in the mammalian
cortex.
The investigation of this benchmark model is worthwhile for several reasons. The use of the

adaptive exponential allows to use the capabilities of the HICANN module on the wafer scale
neuromorphic system. A completely random connectivity enables a test for the efficiency
of the mapping and routing algorithms. The limits of hardware variations that affect the
viability of a neuroscientifically relevant simulation are examined.

5.2.1. Network Model Definitions

Destexhe [2009] uses the Adaptive Exponential neuron model to replicate several types of
common cortical and thalamic neurons. Cortical layers consist of regular spiking (RS) cells
that show spike-frequency adaptation. The magnitude of the adaptation is varied using
different values for the adaptation variable increment b. Fast spiking cells are inhibitory
cells that are modeled without adaptation. The influence of rebound spiking neurons on
the network stability is also investigated. This is accomplished by introducing low threshold
spiking (LTS) cells that show spike frequency adaptation and rebound bursts. The RS and
LTS celltypes are pyramidal (PY) cells. Thalamic layers consist of thalamocortical (TC)
excitatory and thalamic reticular (RE) inhibitory neurons, both of which show rebound bursts
and moderate (TC) resp. strong (RE) adaptation. The complete neuron parameters are listed
in A.3.1.
The following network models are presented in Destexhe [2009] and were implemented using

PyNN.

Thalamic Network

Small circuits of thalamic neurons show self-sustained oscillations (Timofeev and Bazhenov
[2005]). A simple network consisting of 50% TC and 50% RE neurons is constructed at
different sizes, with connection probabilities of 2% TC → RE, 8% RE → TC and RE → RE.
There are no connections within the excitatory TC populations. The connection probabilities
are given for a network of 100 TC and RE cells each; for other sizes, they are rescaled to
keep the mean number of incoming connections constant. All excitatory synaptic weights in
all networks equal 6 nS, all inhibitory weights 67 nS.
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5. Analysis of Benchmark Models

The rebound properties of TC and RE cells ensure a sustained activity even at small
network sizes.

Single Layer Cortical Network

A network that consists of 20% inhibitory FS neurons and 80% excitatory neurons. The
excitatory neurons are mostly RS cells with a small (0% to 20% depending on the setup)
proportion of LTS cells. The connection probabilities are given for a total neuron count of
2000 and rescaled to preserve the mean number of incoming connections.
At a network size of 2000 neurons, even with 0% LTS cells, activity can be sustained

for several seconds. For smaller networks (of about 500 cells), LTS cells counteract a fast
termination of activity by rebound bursts.

Thalamocortical Network

A network that connects a thalamic and a single layer cortical network with their default
sizes. The excitatory neurons of each layer connect with a probability of 2% to all neurons
of the other layer, inhibitory connections are only local. These connection probabilities are
likewise rescaled to ensure a constant mean fan-in.
In this case, the thalamic layer ensures a persisting activity in the much larger cortical

layer. Depending on the amount of adaptation in the cortical RS neurons, an active state
with a continuously high firing rate (weak adaptation) or a repeating transitions between UP
and DOWN states.
Weak adaptation is realized by setting the value of b to 5 pA for RS cells, and strong

adaptation by setting b to 20 pA.

Two Layer Cortical Network

This is a network consisting of a small cortical layer with LTS cells that can sustain activity
and a large layer without LTS cells. In analogy to the thalamocortical network, the small
layer ensures sustaining activity in itself and in the larger layer. The larger layer is comprised
of 2000 neurons and the smaller of 500 neurons, with 400 Pyramidal cells of which 10% are
LTS. The connection probability of an excitatory neuron of one layer to any neuron of the
other layer is 1%.
The reason for the setup, in addition to the thalamocortical network, is the observation of

self-sustained activity and UP/DOWN states in cortical slices (Sanchez-Vives and McCormick
[2000]).

Initial Stimulus

All networks are only stimulated in the beginning of the experiment for 50 ms. Up to 20% of
the network’s population were stimulated a firing rate of 200 Hz to 600 Hz, after which self
sustained activity begins.

5.2.2. Functionality Measures
In Destexhe [2009], the main characteristics that are used to classify network activity states
are the correlation coefficient (CC), the coefficient of variation of interspike intervals (CVISI),
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5.2. Self-Sustained Asynchronous Irregular States

and the mean firing rate. The correlation coefficient measures the synchrony between different
neurons in the network. The coefficient of variation shows the irregularity of spike patterns.
These quantities are common to characterize activity states in simulations (Brunel [2000]),
(Kumar et al. [2008]) and in-vivo recordings (Shinomoto et al. [2005]).

Correlation Coefficient

The correlation coefficient is defined as the averaged cross-correlation of pairs of time-binned
spiketrains Si.

CC =
〈
Cov(Si, Sj)
σ(Si)σ(Sj)

〉
(5.6)

The mean is taken over at least 200 disjoint pairs of spiketrains, with a time bin of 20
ms. Cov denotes the covariance of the two spiketrains and σ the standard deviation. This
measure quantifies the amount of synchrony present in the network.

Coefficient of Variation of Interspike Intervals

The coefficient of variation is defined as the mean relative variation of interspike intervals:

CVISI =
〈
σISIi

ISIi

〉
(5.7)

ISIi and σISIi denote the mean and standard deviation of the interspike intervals in spiketrain
i. The average 〈〉 runs over all spiketrains i in the network. Thus, CVISI quantifies the amount
of irregularity in the spiking behavior. For example, a completely regular spiking pattern has
CVISI = 0, a Poisson spiketrain has CVISI = 1.

5.2.3. Local Variation
While these criteria are appropriate as a concise description of the activity state, more detail
is desired for the investigation within the scope of this thesis. As the main question is whether,
and to what extent the expected hardware imperfections will cause altered network activity,
it makes sense to consider further state measures.
Because of the often occurring bursting behavior, and the fact that CVISI is not enough

to distinguish irregular from periodic bursting behavior, a further measure of regularity was
introduced. Shinomoto et al. [2005] defines Lv, the coefficient of local variation as follows:

Lv = 1
n− 1

n−1∑

k=1

3(ISIk − ISIk+1)2

(ISIk + ISIk+1)2 (5.8)

Lv is normed such that, in analogy to CV, it takes a value of 0 for non-varying interspike
intervals and a value of 1 for a Poisson spike train. Contrary to CV, it depends on the local
heterogeneity of the spiking pattern.
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Characterization of Network States

The term “asynchronous irregular” is defined by Destexhe [2009] using the two measures
CC and CVISI. A low CC of < 0.1 means, the spiking behavior is “asynchronous”. When
CVISI > 1, the spiking behavior is considered “irregular”.

5.2.4. Influence of Distortions and Model scaling

The influence of distortions on the models is investigated to establish their intrinsic stability.
Because synaptic delays are not incorporated in the networks, only the influence of synaptic
weight jitter and synapse loss need to be considered.

Synaptic Weight Jitter

Because of the random connectivity of all four network models considered in this section,
weight jitter is not expected to have a strong influence on the performance of any network
model. The effects are shown in section A.1 in full. An example for the two-layer cortical
network is shown in Figure 5.18.
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Figure 5.18.: Effects of weight jitter loss on two-layer cortical network in the case of strong adapta-
tion.

The most prominent effect is the increase of the firing rate starting at mean value of jitter of
30% and 50%. The most likely explanation is that for large jitter values, the mean value of the
weight distribution increases, because the connection weights are sampled from a Gaussian
distribution with the original weight as mean and the product of original mean and jitter
value as standard deviation. Negative synaptic weights are then set to 0 (because PyNN does
not allow negative synaptic weights) which shifts the mean of the distribution for larger jitter
values.
The quantities CC, CV and Lv do not, overall, show strong change with varying weight

jitter, particularly not in the relevant region < 40 %. There are some outliers for the single
layer and two layer cortical networks, where CV increases and has a larger deviation. This is
a consequence of a network changing from one stable state to another – an example is shown
in Figure 5.19. Because Lv only considers local interspike interval changes, it is not strongly
affected.

Synapse Loss: Effects and Compensation

The most obvious effect of synapse loss is the disappearance of self-sustained activity. One
possible compensation for synapse loss is a change of all synaptic weights, keeping the prod-
uct of weight and number of remaining synapses constant. The results of synapse loss and
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5.2. Self-Sustained Asynchronous Irregular States

Figure 5.19.: Raster plot of a two-layer cortical experiment that switches between two states at
approximately 42 seconds. The experiment was conducted for a weight jitter value of
10%.

compensation are shown in section A.2 in full. An example for the two-layer cortical network
is shown in Figure 5.20.
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Figure 5.20.: Effects of synapse loss on two-layer cortical network in the case of strong adaptation.
(a) No compensation. (b) Compensation by weight scaling.

The activity stops being self-sustained at 50% to 70% synapse loss in all networks. Without
compensation, the mean firing rate in each network stays constant or increases up to the point
where no stable active state is present. Because both excitatory and inhibitory neurons with
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different parameters and complex spiking behavior are present in the network, and both are
affected by synapse loss, the result is not obvious to predict.
In the large two-layer networks, CC and its standard deviation generally increase with the

value of synapse loss, indicating an increase in both correlation and anti-correlation. This is to
be expected, because as the number of inputs of each neuron decrease, the correlation between
the remaining connections increases. In the case of inhibitory connections, the expected result
would be a stronger anti-correlation. For the smaller networks, no clear trend is evident. In
the case of the thalamic network, no CC was calculated because the number of neurons was
not large enough. For the single-layer cortical network, the trial-by-trial variation for each of
the four measures was higher than any recognizable trend.
In all but the single layer cortical network, a decrease of CV and Lv of different magnitude

was observed. Thus, not only do networks synchronize, but they also become more regular
in their firing pattern at large values of synapse loss. The exact values at which this happens
depend on the respective network model.
When standard compensation is attempted, in which the weight is scaled inversely to the

number of remaining synapses, the mean firing rate increases with increasing synapse loss
until self-sustained activity becomes completely suppressed and the network activity dies
out.The drop begins at 70% for the thalamic network and at more than 90% for the single
layer cortical network. In all but the single layer cortical network, which had a large trial-by-
trial variation, the standard deviation of CC reliably increases, and the mean Lv decreases.
This happens accordingly to expectations, because reducing the number of connections while
increasing their synaptic weight should increase the influence of one neuron on another, thus
increasing the correlation of their firing patterns. CV does not show a clear trend over all
networks.

Scaling of the Network Models

The usefulness of the network models presented in this chapter would be greatly increased
if the size of the models was variable, so an assembly of neuromorphic hardware devices of
arbitrary size can be tested. In section A.3, the behavior of the four measures is shown
for each network at different network sizes. All populations in each network were scaled
proportionally to the total size; all connection probabilities between populations were scaled
inversely, keeping the mean number of inputs for each neuron constant. As can be seen in
section A.3, all measures change only weakly at network sizes larger than 10000 neurons,
indicating that at this size, the inputs of each neuron are approximately independent. This
means that each of these networks constitutes a stable hardware benchmark at large sizes, to
an extent that benchmark results at different hardware sizes become comparable.

5.2.5. Conclusions and Outlook

The work of this part of the thesis concerned the implementation, or re-implementation of
four network models that show self-sustained asynchronous-irregular behavior together with
a set of analysis functions.
The behavior of the networks in the presence of synapse loss was examined, establishing

a negligible effect of synaptic weight jitter at values less than 40%, which is the worst-case
scenario considered in this context as a result from the measurements performed on an un-
calibrated Spikey chip (Chapter 4).
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5.2. Self-Sustained Asynchronous Irregular States

All networks maintain self-sustained activity up to at least 50% synapse loss. Extending
activity past the point of breakdown by scaling all synaptic weights inversely to the number
of remaining synapses succeeds, but only at the price of changing the behavior of the network
significantly, making this form of compensation rather unfeasible.
The introduction of Lv as additional metric has been beneficial, as it focuses on a different

aspect of regularity than Cv, e.g. by not being affected by switches between semi-stable
network states while still reflecting the amount of regularity during the simulation.
Simulations of a simple scaling rule of keeping a constant mean number of incoming connec-

tions per neuron showed a stable behavior for all 4 network models, making them candidates
for the effects of mapping large scale networks on the wafer-based hardware system. However,
if this is to be done, a more involved analysis of the respective network will be necessary.
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Conclusions and Outlook

The goal of this thesis was an investigation of the influence of hardware distortions on the
behavior of different neural network models.
The examined distortions included synaptic weight jitter, the variability of synaptic weights

caused by hardware production irregularities and digitalization of synaptic weights, synapse
loss, the result of non-realization of synaptic connections between two neurons when the re-
quired connectivity exceeds the available communication resources and the limited availability
of delays for Layer 1 communication.
Two different approaches were taken to obtain a more complete view of the given problem.
From the experimental side, variability of synaptic weights was measured on the chip-based

neuromorphic hardware system.
From the theoretical side, two of the Demonstrator benchmark models were analyzed with

regard to their behavior and its change in the presence of idealized distortions. In cases where
those distortions greatly affected network behavior, methods were considered to compensate
the effect and restore the original behavior by modifications of the model itself. These analyses
were conducted via software simulation of the respective models.
The measurement of synaptic weight variability on the chip-based system was conducted

due to the need for an expressive quantity for the strength of effective weight jitter. A set
of spike-based methods for this measurement was considered, and a best candidate chosen
that produces a quantity that can be used directly in the software simulation. Thus, this
investigation produced not only a numerical value as a basis for further analysis, but also a
method for its acquisition that has been demonstrated to work on a neuromorphic hardware
system. Due to the fact that the method is purely rate-based, it may provide a basis for an
efficient synapse calibration or a synapse calibration cross-check.
The first of the two analyzed models, namely the synfire chain with feedforward inhibi-

tion can be viewed as a representative of a broader class of modular models with purely
feedforward transmission and delay-based computation. With a suitable parameter set, the
functionality of the model has been shown to remain unaffected by synaptic weight jitter
within the relevant boundaries. Synapse loss becomes critical at high values, suppressing
signal propagation, but can be easily compensated by increasing the synaptic weights of the
remaining synapses. It is important to note that this is only possible due to modularity of
the network, which defines its functionality over entire groups rather than individual neurons.
The maybe most complex effects are caused by turning off synaptic delays. Compensation by
modifying neural and synaptic parameters, especially time constants, does show promising
results for reproducing small delays, but displays only limited feasibility in the high delay
regime, as these modifications strongly affect signal transmission properties. However this
method is perfectly complemented by a feature of the hardware which allows rerouting of
synaptic connections through the Layer 2 communication network, which is prohibitive for
small delays, but works reliably for large ones.
The second model, which is actually a set of four networks exhibiting self-sustained asyn-

chronous irregular activity, has its functionality defined by abstract measures, such as the
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5.2. Self-Sustained Asynchronous Irregular States

cross-correlation and the coefficient of variation of spike trains. This model showcases the
versatility of the hardware neuron implementation, since both the adaptation mechanism and
the soft threshold are essential for the functionality of the network. Since the original network
model features no delay mechanisms, the only relevant distortions remain the ones caused by
synaptic jitter and synapse loss. All four submodels have been shown to tolerate fairly high
amounts of both synaptic jitter and synapse loss, certainly more than is expected to occur
on the waferscale device, after which the activity stops being self-sustained. An attempt at
using the same synapse loss compensation technique of weight scaling that works well for a
synfire chain led to an even stronger behavioral change. Future work in this direction might
include changing the AdEx parameters of the different cell types.
Altogether, the presented model investigations show that the search for compensation mech-

anisms provides valuable insights, independent of its success, providing either a feasible strat-
egy to counteract distortions and its limits and drawbacks, or preventing unnecessary work.
The need for expressive performance metrics for each model has been found to be of great

importance. While these measures are often provided either by the source of the model itself
or the neuroscientific research community, they have to be carefully considered with regard
to the effects one may encounter during the use of a neuromorphic hardware system.
It has to be stressed that the precise numerical results of distortion effects on the Demon-

strator models depend strongly on the particular model parameters and constitute in no way
a final objective, as they can only provide an order of magnitude for these effects. They
are, instead, a tool to provide users of neuromorphic hardware with the necessary intuition
regarding effects that have to be expected for different types of networks and which hardware-
specific effects are expected to be significant. Likewise, the compensation methods presented
in this thesis should not only show the exact influence on the concrete model, but also give
future hardware users a possibility to better judge a course of action if they encounter hard-
ware distortions during their work with network models that are similar to the ones presented
in this thesis.
A very important point has to be raised here: along with other efforts aiming in the same

direction, the present work shows how the implemented hardware design and especially its
unique versatility concerning the permitted range of network architecture and parameters
allows the emulation of a vast panoply of network models, and where the limitations begein
having a measurable effect, a variety of compensation measures can usually be found. From
this point of view, the FACETS waferscale device does indeed fulfill the necessary features
required from a universal modeling back-end.
The continuation of the work presented in this thesis needs to compare the idealized model

distortions with more realistic scenarios. For example, comparisons with simulations using
the Executable System Specification can show to what extent the idealization of completely
random synapse loss made in this theses applies to different network architectures, because
the ESS model of the mapping and routing process corresponds exactly to the ones for the
hardware system and thus, the synapse loss distribution is realistic.
Concerning the future integration of modeling and hardware development, efforts need to

be made to prevent a parallel, independent work. With increasing complexity of benchmark
models, the strengths and weaknesses of the neuromorphic hardware systems need to be
considered continuously during development. Otherwise, the end results risk to be models so
complex that hardware-induced distortion compensation might become an impossible task.
Considering that the results of model modifications are not obvious even in simple cases,

as shown by the example of synaptic weight scaling for randomly connected networks in
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section 5.2.4, the optimization of a given benchmark model that was only developed in a
software environment is likely to prove difficult. It is imperative that the hardware (and,
until its completion, the ESS) is employed as more than just as a final stage for running well-
established models; it really needs to be used as the universal modeling tool it was designed
to be in the first place.
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A. Self-Sustained Asynchronous Irregular
States: Additional Figures

Diagrams of the network analysis presented in 5.2.
Multiple data points stem from simulations with the same parameters but different random

seeds for initial stimulus. Error bars in graphs for CC, CV and Lv denote the standard
deviation of each quantity over the sample in which it was calculated.
The graphs for the thalamic network do not contain CC as a metric because the network

was smaller than the minimum sample size for the cross-correlation average.

A.1. Weight Jitter
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Thalamocortical Network, weak adaptation (b = 5 pA)
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A.3. Network Scaling

A.3.1. Neuron Parameters
Neuron parameters for the networks described in section 5.2.1. The values are given in PyNN
format, i.e. the parameter names and unit values conform to PyNN (0.6) standard.

TC

{ ’ a ’ : 40 . 0 ,
’b ’ : 0 . 0 ,
’cm ’ : 0 . 2 ,
’ delta_T ’ : 2 . 5 ,
’ e_rev_E ’ : 0 . 0 ,
’ e_rev_I ’ : −80.0 ,
’tau_m ’ : 20 . 0 ,
’ tau_re f rac ’ : 2 . 5 ,
’ tau_syn_E ’ : 5 . 0 ,
’ tau_syn_I ’ : 10 . 0 ,
’ tau_w ’ : 600 .0 ,
’ v_in i t ’ : −60,
’ v_reset ’ : −60.0 ,
’ v_rest ’ : −60.0 ,
’ v_spike ’ : −50.0 ,
’ v_thresh ’ : −50.0}

RE (strong adaptation)

{ ’ a ’ : 1 . 0 ,
’b ’ : 0 . 02 ,
’cm ’ : 0 . 2 ,
’ delta_T ’ : 2 . 5 ,
’ e_rev_E ’ : 0 . 0 ,
’ e_rev_I ’ : −80.0 ,
’tau_m ’ : 20 . 0 ,
’ tau_refrac ’ : 2 . 5 ,
’ tau_syn_E ’ : 5 . 0 ,
’ tau_syn_I ’ : 10 . 0 ,
’ tau_w ’ : 600 .0 ,
’ v_init ’ : −60,
’ v_reset ’ : −60.0 ,
’ v_rest ’ : −60.0 ,
’ v_spike ’ : −50.0 ,
’ v_thresh ’ : −50.0}

For “weak adaptation”, a value of b = 0.005 was used.
RS (strong adaptation)

{ ’ a ’ : 1 . 0 ,
’b ’ : 0 . 02 ,
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’cm ’ : 0 . 2 ,
’ delta_T ’ : 2 . 5 ,
’ e_rev_E ’ : 0 . 0 ,
’ e_rev_I ’ : −80.0 ,
’tau_m ’ : 20 . 0 ,
’ tau_refrac ’ : 2 . 5 ,
’ tau_syn_E ’ : 5 . 0 ,
’ tau_syn_I ’ : 10 . 0 ,
’ tau_w ’ : 600 .0 ,
’ v_init ’ : −60,
’ v_reset ’ : −60.0 ,
’ v_rest ’ : −60.0 ,
’ v_spike ’ : −50.0 ,
’ v_thresh ’ : −50.0}

For “weak adaptation”, a value of b = 0.005 was used.
FS

{ ’ a ’ : 1 . 0 ,
’b ’ : 0 . 0 ,
’cm ’ : 0 . 2 ,
’ delta_T ’ : 2 . 5 ,
’ e_rev_E ’ : 0 . 0 ,
’ e_rev_I ’ : −80.0 ,
’tau_m ’ : 20 . 0 ,
’ tau_refrac ’ : 2 . 5 ,
’ tau_syn_E ’ : 5 . 0 ,
’ tau_syn_I ’ : 10 . 0 ,
’ tau_w ’ : 600 .0 ,
’ v_init ’ : −60,
’ v_reset ’ : −60.0 ,
’ v_rest ’ : −60.0 ,
’ v_spike ’ : −50.0 ,
’ v_thresh ’ : −50.0}

LTS

{ ’ a ’ : 20 . 0 ,
’b ’ : 0 . 0 ,
’cm ’ : 0 . 2 ,
’ delta_T ’ : 2 . 5 ,
’ e_rev_E ’ : 0 . 0 ,
’ e_rev_I ’ : −80.0 ,
’tau_m ’ : 20 . 0 ,
’ tau_refrac ’ : 2 . 5 ,
’ tau_syn_E ’ : 5 . 0 ,
’ tau_syn_I ’ : 10 . 0 ,
’ tau_w ’ : 600 .0 ,
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’ v_init ’ : −60,
’ v_reset ’ : −60.0 ,
’ v_rest ’ : −60.0 ,
’ v_spike ’ : −50.0 ,
’ v_thresh ’ : −50.0}
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