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Abstract

Nowadays, two innovative future trends regarding embedded hardware development

and hardware description can be found. The first trend concerns the hardware itself.

Modern FPGAs (Field Programmable Gate Arrays) provide the possibility that parts of

the hardware can be exchanged while the rest of the circuit is running untouched – which

is called dynamic partial reconfiguration (DPR).

The second trend concerns the way hardware is described. Currently, the most im-

portant hardware description languages (HDLs) are VHDL and Verilog. Although they

allow to describe hardware on a very high level, the developer still has to handle regis-

ters, clocks and clock domains. Using an HDL operating on the algorithmic level, this is

not necessary any longer. Here, designs can be described exactly as they are in software

languages like C, without the need to care about registers or clocks – which is called high

level synthesis (HLS).

Although both, DPR and HLS are very important future trends regarding hardware

design, they develop rather independently. Most of today’s software-to-hardware com-

pilers focus on conventional hardware and therefore have to remove dynamic aspects,

such as the instantiation of calculating modules at runtime. On the other hand, DPR

tools work on the lowest possible layer regarding FPGAs: the bitfile level. Currently,

the use of DPR leads to a struggle with architectural details of the FPGAs and the cor-

responding synthesis and implementation tools. A hardware developer who makes use

of DPR would focus most of the time on DPR and only a small part of the time on the

implementation of the actual functionality — which is obviously the opposite of what

hardware engineers want.

This thesis focuses on a combination of DPR and HLS, since this has the potential to

kill two birds with one stone. Firstly, DPR can change the programming paradigm in

future HDLs with regard to dynamic instantiations. Dynamic parts would not have to

be removed any longer, but could be realized on the target FPGA using DPR. Secondly,

a high level language support of DPR technologies could help to end its shadowy ex-

istence and to become a common used method. Hence, the aim of this study is to find

a solution how HDLs on algorithmic level and DPR can be combined, solely using lan-

guage constructs which are already well-known to software-developers. As a first step

regarding the development of this framework, the typical structure and behavior of re-

configurable hardware has been analyzed. Thereby it turned out that the best way to

describe such hardware is to make use of the object-oriented paradigm combined with

multi-threading. In consequence, an enriched subset of Java, forcing the programmer to

make use of multiple objects running in parallel, has been defined: POL (Parallel Object

Language).

The specification of POL comes with a set of requirements. The most challenging part

is the high degree of flexibility regarding object instantiation and inter-object communi-

cation. POL allows the user to instantiate and to destroy objects as well as to establish



and to dissolve their connection at any position in the code. Beyond that, POL allows an

overmapping of the FPGA, which is realized via DPR.

In order to enable the evaluation of the possibilities and limitations of POL, a devel-

opment framework has been implemented. This framework includes an emulator which

allows the execution of POL in software, a compiler which is responsible for the trans-

lation from POL to VHDL, a so called Communication Matrix which serves as fast and

flexible communication structure on the FPGA, and a scheduler that decides which hard-

ware module is loaded when. Two example applications have been implemented: Pong

and an audio filter.

The Pong example shows, that all parts of the framework are working correctly and

thus that it is really possible to describe DPR in an HDL on algorithmic level. Further-

more it proves that it is possible to overmap the FPGA via DPR.

The audio example is used to analyze the behavior of the framework regarding data

streams. It shows that overmapping can be used in environments with a data rate of

∼100 000 samples/s, while scenario-based scheduling algorithms can be used in stream-

ing applications with data rates of ∼100 000 000 samples/s. These maximum data rates

are solely possible due to the usage of object-orientation in POL and the corresponding

optimizations of the reconfiguration times.

A further important result is that the framework helps to significantly increase the pro-

ductivity of hardware developers who want to make use of DPR. Based on these promis-

ing results, first cooperations focusing the combination of DPR an HLS in a commercial

product could already be initiated.



Kurzbeschreibung

Der aktuelle Stand der Mikrochipentwicklung offenbart zwei wichtige Zukunftstrends.

Der erste betrifft die Mikrochips selbst. Moderne FPGAs (Field Programmable Gate Ar-

rays) erlauben den dynamischen Austausch von Teilen ihrer Schaltung, während der

Rest des Chips ungestört weiterläuft. Diese Technologie nennt sich dynamische partielle

Rekonfiguration (DPR).

Der zweite Trend betrifft die Art wie Hardware beschrieben wird. Zur Zeit sind VHDL

und Verilog die beiden wichtigsten Hardwarebeschreibungssprachen. Allerdings agieren

beide auf dem sogenannten Register-Transfer-Level, was die Verwendung von Registern,

Taktsignalen und Taktungszonen (Clock-Domains) nötig macht. In einer Sprache die

auf dem algorithmischen Level agiert ist dies nicht mehr notwendig. Hier gleichen die

Hardwarebeschreibungssprachen üblichen Programmiersprachen wie C oder Java. Eine

Beschreibung von Takten oder Taktzyklen entfällt. Die Generierung von Hardware aus

einer Sprache auf algorithmischer Ebene nennt sich High-Level-Synthese (HLS).

Obwohl DPR und HLS vielbeachtete Zukunftstrends darstellen, entwickeln sich beide

nahezu unabhängig voneinander. Die meisten der heutigen HLS-Tools konzentrieren

sich auf konventionelle statische Hardware und müssen daher dynamische Sprachele-

mente, wie das Instantiieren von Objekten zur Laufzeit, durch andere Verfahren ersetzen

oder sie sogar ganz verbieten. Auf der anderen Seite arbeiten die meisten heutigen DPR-

Tools auf der für FPGAs niedrigsten Ebene: dem Bit-Level. Dadurch müssen sich derzeit

Hardwareentwickler, die DPR einsetzen wollen, mit Details der FPGA-Architektur und

Details der entsprechenden Synthese-Tools auseinandersetzen und sind dadurch gezwun-

gen den Hauptteil der Entwicklungszeit in DPR statts in ihre eigentliche Arbeit zu inves-

tieren — was natürlich das Gegenteil dessen ist, was Hardwareentwickler wollen.

Diese Doktorarbeit hat sich zum Ziel gesetzt, DPR und HLS zu kombinieren, da dies

das Potential birgt, zwei Probleme auf einmal zu lösen. Zum einen kann DPR die Pro-

grammierparadigmen zukünftiger Hardwarebeschreibungssprachen bezüglich der dy-

namischen Instantiierung von Objekten wesentlich verändern: Dynamik müsste nicht

mehr ersetzt oder entfernt werden, sondern könnte mittels DPR direkt auf dem FPGA

umgesetzt werden. Zum anderen vereinfacht die Unterstützung von DPR in einer Hoch-

sprache die Verwendung dynamische Elemente und könnte dazu beisteuern, dass DPR

zu einer allgemein anerkannten und genutzten Technologie wird.

Dabei sollen ausschließlich Hochsprachenkonstrukte, welche bereits aus der Software-

entwicklung bekannt sind, zum Einsatz kommen. Zuerst wurden hierzu die typische

Struktur und die typischen Einsatzgebiete rekonfigurierbarer Hardware untersucht. Er-

gebnis dieser Untersuchung war, dass sich vor allem die Objekt-Orientierung in Kombi-

nation mit Multithreading eignet um Hardware auf algorithmischer Ebene zu beschrei-

ben. Aus diesem Grund wurde eine Sprache namens POL (Parallel Object Language)

entwickelt, welche ein leicht erweitertes Subset von Java darstellt und die Benutzung

von parallel laufenden Objekten forciert.

Die Spezifikation von POL stellt hohe Anforderungen an die zu generierende Hard-



ware. Der herausfordernste Part ist die große Flexibilität bezüglich der Instantiierung,

Zerstörung und Verbindung von Objekten. POL erlaubt selbiges an jeder beliebigen Stelle

des Codes. Darüber hinaus erlaubt POL ein sogenanntes Overmapping des FPGA, das

sich nur durch den Einsatz von DPR realisieren lässt.

Um die Fähigkeiten und Grenzen von POL testen zu können, wurde eine komplette

Entwicklungsumgebung implementiert. Diese enthält einen Emulator der es erlaubt POL

in Software auszuführen, einen Compiler der POL nach VHDL übersetzt, die sogenannte

Kommunikations-Matrix welche eine schnelle und flexible Kommunikationsstruktur auf

dem FPGA zur Verfügung stellt und einen Scheduler der entscheidet, welches dynami-

sche Modul zu welchem Zeitpunkt auf den FPGA geladen wird. Zwei Beispielanwen-

dungen wurden mit Hilfe der Entwicklungsumgebung entwickelt und übersetzt: Pong

und ein Audio-Filter.

Anhand des Pong-Beispiels kann gezeigt werden, dass alle zuvor genannten Teile der

Entwicklungsumgebung korrekt funktionieren, es also tatsächlich möglich ist, DPR in

einer Hochsprache zu beschreiben. Weiterhin zeigt es, dass ein Overmapping möglich

ist.

Das Audio-Beispiel zeigt, dass Overmapping in einer Umgebung mit einer Daten-

rate von maximal ∼100 000 Samples/s verwendet werden kann. Ein szenario-basiertes

Scheduling hingegen lässt sich sogar in Umgebungen mit einer Datenrate von maximal

∼100 000 000 Samples/s einsetzen. Diese Maximalwerte konnten nur aufgrund der Ver-

wendung von Objekt-Orientierung in POL und den dadurch ermöglichten Optimierun-

gen in der darunterliegenden Hardware erreicht werden.

Ein weiteres wichtiges Ergebnis der durchgeführten Tests ist, dass die Entwicklungs-

umgebung hilft, die Produktivität von Hardwareentwicklern die DPR einsetzen wollen,

signifikant zu erhöhen. Aufgrund dieser vielversprechenden Ergebnisse konnten bereits

erste Kooperationen, welche zum Ziel haben DPR und HLS in einem kommerziellen Pro-

dukt zu vereinigen, initiiert werden.
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1 Introduction and Motivation

1.1 Hardware Evolution

Nowadays, mankind is surrounded by a tremendous number of micro chips that make

our daily life easier and more convenient. Integrated circuits (ICs) serve as integral part

of advanced driver assistance systems increasing the car safety with technologies like

the air bag, the anti-lock braking system, or the traction control system. They enable

the development of smart but small mobile phones containing a camera, an organizer,

a radio, and even a video player. Even a simple device such as a toaster is equipped

with an IC. So, without exaggeration one can say that the lifestyle of a citizen of the 21st

century highly depends on the availability of these small ICs.

In 1941, it was Konrad Zuse who built the first working programmable binary com-

puting machine based on a large number of electromechanical relays. His Z3 was the

first Turing complete computing machine [1]. However, solely relay based computers

only had a short appearance in the history of computing since already in 1946 ENIAC

(Electronic Numerical Integrator And Computer) was constructed. It was built of 17 468

vacuum tubes, 7 200 crystal diodes, 1 500 relays, 70 000 resistors and 10 000 capacitors.

ENIAC heralded the period of vacuum tube based computers [2].

Already in 1947 the transistor was discovered at the Bell Laboratories; but it took 8

years until it became possible to use it for computer technology. In 1955 Bell Labs devel-

oped the TRansistorized Airborne DIgital Computer (TRADIC) the first computer, which

was based exclusively on transistors replacing the vacuum tubes [3]. Transistor technol-

ogy is the prerequisite to build small integrated circuits which are exclusively based on

electronic components.

The first IC (a flip-flop) was build in 1958 by Jack Kilby. It was based on germanium.

Only half a year later Robert Noyce built an IC that was made of silicon (like all ICs to-

day). The first integrated circuits contained only few transistors (from 2 to 100). Thus

they are called Small-Scale Integration (SSI) circuits. But the size of integrated transis-

tors decreased continuously and hence the packing density increased. In the late 1960s

integrated circuits could contain up to 1 000 transistors, called Medium-Scale Integration

(MSI). Further development led to Large-Scale Integration (LSI) in the mid 1970s, with

up to 100 000 transistors per chip. Based on this, it became possible to manufacture an

entire processor as a single integrated chip. At the beginning of the 1980s one IC could

already contain up to 1 000 000 transistors, which is called very-large-scale integration

(VLSI). This enabled the manufacturing of Random Access Memory (RAM) with a size

of 1 MB. In 1989 micro processor chips passed the million transistor mark. In 2005 ICs
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could contain more than one billion transistors. In 2007 more than 10 billion transistors

were integrated.

Figure 1.1: Dual Core Processor Floorplan

1.2 Productivity Gap

The increasing number of transistors per IC did not only come with advantages, but also

led to a completely new problem, the so called productivity gap. Each year the complex-

ity of embedded systems increases by about 60%, but the corresponding productivity1

only increases by about 20%. As a consequence, hardware developers all over the world

are searching for methods to describe hardware more efficiently. The aim is to decrease

the designing effort and thus to decrease the time-to-market. [4]

In 1960 the optimal arrangement (that means the placement of the transistors and their

interconnections) could be found very easily. Due to this, until 1960 it was common to

do the placement manually. In contrast, it is no longer possible to determine the optimal

placement for a chip containing millions of transistors by hand. Thus, computers are used

to calculate the optimal placement with a process called Electronic Design Automation

(EDA). However, searching for the optimal placement is a problem covered in graph the-

ory and has been proven to be NP-hard. Consequently, even a supercomputer is unable

to calculate the best transistor arrangement for complex ICs in an acceptable timeframe.

A resulting common method to reduce the complexity is the hierarchical floorplanning.

Instead of optimizing the complete chip, the IC is separated into a number of areas which

are placeholders for several functional blocks (e.g. a dual core processor IC could be di-

vided into shared level-2 cache, two register files, two instruction caches, two level-1

data caches and many ALUs (arithmetic logic units) — see figure 1.1). These functional

1Productivity is commonly understood as the ratio of produced outputs to consumed resources
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blocks are then optimized individually (or even separated further into sub-blocks) and

have well defined interfaces or buses to communicate with each other.

Another common design simplification method based on hierarchical floorplanning

is the reuse of logic blocks. For example, a new quad core based on the dual core in

figure 1.1 could make use of the same ALUs and register files as the dual core. They

would not have to be redesigned at all. Of course, such a reuse strategy decreases the

development time and the time-to-market significantly. Furthermore, all the verification

and testing of the reused components already has been done. This considerably increases

the reliability. Hence, today several vendors focus on the creation of so called IP-Cores2.

These are small standard logic blocks which usually are intensely tested and intended

to be used in various ICs. The usage of these standard blocks is a further method to

significantly increase the productivity.

1.3 Programmable Hardware

The idea of using standard blocks has reached its peak with programmable hardware.

There, standard logic cells are already placed but their interconnections are programmed

subsequently to determine the functionality of the chip. First versions of programmable

hardware were so called PLAs (Programmable Logic Arrays). PLAs consist of program-

mable AND gate planes, which link to a set of programmable OR gate planes, which in

turn produce the output (see figure 1.2). The first PLAs could only be programmed once.

Figure 1.2: Programmable Logic Arrays

2Intellectual Property Core
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PLAs were followed by so-called FPLAs (Field-Programmable Logic Arrays). FPLAs

can, in contrast to simple PLAs, be reconfigured again and again (after being manufac-

tured or “in the field”). Simple PLAs can be used to represent any logic function, but since

they do not contain storage elements, they cannot be used to represent sequential logic.

Therefore CPLDs (Complex Programmable Logic Devices) attracted attention. CPLDs

are based on disjunctive normal forms too but they additionally contain flip-flops. Thus,

CPLDs have the potential to be used to implement any conceivable functionality. How-

ever, CPLDs are relatively slow and do not use the underlying hardware in an efficient

way (many connection wires stay unused). In 1985, the first commercially viable FPGA

(Field Programmable Gate Array) was invented by Xilinx. The most important difference

to standard CPLDs is that FPGAs make use of SRAM (Static Random Access Memory)

based LUTs (lookup tables) instead of logic arrays. This enables a much more efficient us-

age of the available logic resources. Since SRAM is much faster than Flash memory, this

increases the speed of the device significantly. Nowadays, the border between FPGAs

and CPLDs became a gray area, since there are LUT based CPLDs [5] as well as Flash

based FPGAs [6]. However, a further decisive differentiating factor is that FPGAs usu-

ally make use of additional components such as integrated memory, multipliers or even

processors to enrich their capabilities.

1.4 Hardware Description Languages

The productivity gap led to completely new ways of describing hardware. At the begin-

ning of the semiconductor technology, integrated circuit design was done manually with

pen and paper. Later on, computer aided design emerged, but still the transistors and

wires had to be instantiated manually. This changed in the early 1980s, when the use of

Hardware Description Languages (HDL) became common. One of the first HDLs was

ABEL (Advanced Boolean Expression Language), using boolean equations and truth ta-

bles to describe the hardware. Also in the 1980s more sophisticated HDLs, describing the

hardware on register transfer level were developed. The two most important examples

are VHDL3 and Verilog. Both languages make it possible to describe hardware with con-

structs that are comparable to software programming constructs (such as the possibility

to use sequential processes, if-clauses, and loops). The use of these HDLs was largely mo-

tivated by the possibility to do quick changes and by a high potential of reuse. If HDLs

are used correctly, a change from a subcomponent using an 8 bit wide data bus to a sub-

component implementing the same functionality with a 16 bit wide data bus, can simply

be done with a change of one single parameter. In contrast, if hand wired subcomponents

were used, the whole design would have to be redrawn. HDL written designs are thus

much easier to adapt and therefore much more reusable than hand wired circuits. Fur-

thermore, the design of VHDL and Verilog easily allows simulations. This significantly

simplifies the design verification and thus the reliability.

3Very High Speed Integrated Circuit Hardware Description Language
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Figure 1.3: Gajski-Walker-Diagram [7]

1.5 Future Trends

The Gajski-Walker-Diagram (figure 1.3) illustrates the views and the layers on which

hardware circuits can be described. The lowest layer is the electrical / analog level. Here

the circuit’s behavior is not described with logical states (one or zero) but using ana-

log signal levels. The second layer is the logic level where digital components are used

to generate a logic function. VHDL and Verilog reside on layer 3, which is the register

transfer level (RTL). At this level, a circuit’s behavior is defined as a flow of data between

hardware registers, and the logical operations performed on this data. Although HDLs

already allow to describe hardware on a very high level, the developer still has to handle

clocks and clock domains. On the algorithmic level this is not necessary any longer. De-

signs can be described exactly as in software languages like C without the need to care

about clocks. The corresponding synthesis process is called high level synthesis (HLS).

Many hardware developer groups are looking forward to use HLS, since it has a great po-

tential to increase the programming productivity and therefore to close the productivity
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gap. Thus, there are a lot of research projects dealing with HLS — but the vital break-

through is still pending4. Nevertheless it seems clear that HLS is the future of hardware

development.

When looking at programmable hardware, a second future trend arises. Newer Xilinx

FPGAs (like the Virtex series) provide the possibility to be reconfigured partially and dy-

namically [8]. Partial reconfiguration means that parts of the hardware can be exchanged

while the rest of the circuit continues to run untouched. Dynamic reconfiguration means

that the reconfiguration process does not cause glitches on the reconfigured circuits, as

long as one does not change the configuration (identical overwrite). The combination of

both, called DPR (dynamic partial reconfiguration), opens a large field of new function-

alities with FPGAs.

Examples of applications which can be improved with DPR are video processing [9],

automotive[10] or packet filtering [11]. Other technologies like dynamically reconfi-

gurable processors [12], scrubbing [13] or dynamically loadable hardware modules [14]

are not even possible without DPR. The basic idea behind all these applications is to use

the reconfiguration not only for maintenance, but also to utilize it during normal opera-

tion. With DPR, the chip can customize itself to the current requirements. For example

a dynamically reconfigurable processor is able to adapt its instruction set to the software

running on it. This way hardware/software codesign becomes much more flexible and

thus much more powerful.

1.6 Goals of this study

Although both, DPR and HLS are very important future trends regarding hardware de-

sign, they develop rather independently. Today’s software-to-hardware compilers focus

on conventional hardware and therefore have to remove dynamic aspects, such as the in-

stantiation of calculating modules at runtime [15, 16]. On the other hand, DPR tools work

on the lowest possible layer regarding FPGAs: the bitfile level. Currently, the use of DPR

leads to a struggle with architectural details of the FPGAs and the corresponding syn-

thesis and implementation tools. A hardware developer who makes use of DPR would

focus most of the time on DPR and only a small part of the time on the implementation of

the actual functionality — which is obviously the opposite of what hardware engineers

want.

This study focuses on a possible combination of DPR and HLS, since this has the poten-

tial to kill two birds with one stone. Firstly, DPR can change the programming paradigm

in future HDLs with regard to dynamic instantiations. Dynamic parts would not have to

be removed any longer, but could be realized on the target FPGA using DPR. Secondly,

a high level language support of DPR technologies could help to end its shadowy exis-

tence and to become a common used method. Hence, the aims of this study are to find a

4Several approaches are presented in chapter 3
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solution how HDLs on algorithmic level and DPR can be combined — and to implement

a Framework5 which provides the necessary functionality. Resulting questions are:

1. Which high level language should be used to support DPR?

2. Which underlying hardware infrastructure is needed?

3. Can DPR be used to increase the capacity utilization of hardware created via HLS?

4. How does the combination of DPR and HLS influence the performance?

This thesis is organized as follows: Chapter 2 presents the basic principles of underly-

ing technologies. Chapter 3 takes a look at former developments — especially regarding

DPR and HLS. Chapter 4 refines the approach based on the current state of the art and

denotes the concrete aims of this thesis. Furthermore, it will answer question 1. Chap-

ter 5 analyzes the demands which come with the idea of merging DPR and HLS and will

answer question 2. Chapter 6 presents the resulting design of the Framework. Chapter 7

illustrates how the Framework was implemented. Finally, chapter 8 presents measure-

ments and analyses of the Framework and answers the questions 3 and 4. Chapter 9

concludes this study.

5In the following chapters, the term “the Framework” represents the tools and the chip design that have

been developed and implemented during this thesis. It is used as shortform of “Object-Oriented Frame-

work for Dynamic Partial Reconfiguration”.
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2 Basic Principles

This chapter describes the basic principles which underlie the requirements analysis as

well as the design and the implementation of the DPR1 Framework. The first six sec-

tions focus on Xilinx FPGAs, how DPR is realized and which tools support DPR. After

that, software development methodologies (namely object-oriented programming, mul-

tithreading and the Qt framework) are described. Finally, the translation from software

to hardware is illustrated.

2.1 Field Programmable Gate Arrays

Since the implementation of the Framework was done using Xilinx FPGAs as target ar-

chitecture, these chips and their layout shall be illuminated in more detail. Xilinx FPGAs

are based on look up tables (LUTs). Until Virtex-5 and Spartan-3 these LUTs had 4 in-

puts and 1 output. For Virtex-6 and Spartan-6 they have 6 inputs and one output. The

dependency between output and input is freely programmable. Figure 2.1 illustrates an

example implementation of such a LUT. In contrast to CPLDs, Xilinx FPGAs are based

on SRAM2. That means, every LUT is an array of SRAM cells. Each cell stores a value of

zero or one. The input signals are used as address signals to this small memory. This way

the configuration of the memory cells determines the logic function represented by the

LUT. Furthermore, the SRAM cell arrays can be used directly as small memory cells. Due

to this they do not only have the 4 or 6 address input wires, but also data input wires,

which enable memory access during normal operation. Additionally the SRAM arrays

can be configured to represent shift registers. The operation mode of an memory array

as LUT, RAM or as shift register can be determined via additional configuration bits.

Other very important basic modules of FPGAs are the flip-flops (FFs). These little

memory units enable the change from simple combinatorial circuits to sequential logic,

which contains inner states. This is the basic prerequisite to implement finite state ma-

chines (FSMs). FFs can be configured to be synchronous (clocked) or asynchronous (in

this case they are called Latches). In FPGAs, LUTs and FFs are packed together in so

called Slices. One Slice on a Virtex-4 consists of two LUTs, two FFs and several routes

between them. The routes are controlled by configurable multiplexers which also belong

to the Slice. Figure 2.2 shows the layout of a Virtex-4 Slice. The upper LUT can only be

connected to the upper FF and the lower LUT can only be connected to the lower FF. The

multiplexers can be configured in a way, that in a data flow LUT, FF, or both are used.

1Dynamic Partial Reconfiguration
2Static Random Access Memory
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Figure 2.1: Example LUT with 4 inputs: X <= (a and b) or (c and d)

Auxiliary wires like “cin” or “cout” are particular short wires between the Slices, which

for example enable the efficient implementation of the internal carry bits of a 16-bit adder

which utilizes more than one Slice.

The third important basic component of FPGAs is the programmable switch matrix

(PSM). The PSMs are used to connect several Slices and therefore represent the actual

routing. Every Slice’s inputs and outputs are directly connected to a PSM. In fact, four

Slices are packed together to a so called complex logic block (CLB) and connected to a

single PSM. [17] Figure 2.3 shows the corresponding layout.

The PSMs are connected to each other by hard wired local lines and long lines. The

configuration of the PSMs determines, which wires are connected to each other. In con-

clusion one can say that FPGAs mainly consist of PSMs and CLBs, while the CLBs con-

tain the actual logic cells, and the PSMs connect them to each other. However, almost

every FPGA contains some additional components to enrich its capabilities. For exam-

ple the implementation of bigger memory arrays using Slices is inefficient and resource-

wasting. Therefore most Xilinx FPGAs contain so called Block RAMs (or BRAMs), which

are hard wired memory arrays implemented as subcomponents on the FPGA. The inte-

grated BRAMs have a much higher packing density as it would be possible with pro-

grammable hardware (like Slices). In a way, subcomponents like BRAMs can be seen as

ICs inside an IC. Other hard wired subcomponents that can be found on FPGAs are:
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Figure 2.2: Slice of a Xilinx Virtex-4 FPGA

• Digital Signal Processor (DSP)

• Multiplier

• Ethernet MAC

• Multi-Gigabit Transceiver (MGT)

• PowerPC

• ...

Although these subcomponents are hardwired, they can be configured. For example a

BRAM can either act as a ROM, as a single port RAM, as a dual port RAM (even with

separated clocks), or as a FIFO (First In, First Out) memory.
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Figure 2.3: PSM and CLB of a Xilinx Virtex-4 FPGA

In conclusion, every component (LUTs, FFs, PSMs or even BRAMs) is controlled by

a number of configuration bits. The entirety of these configuration bits is the payload

of the so called bitstream. Therefore, it is the bitstream, which determines the current

functionality of the FPGA. Thus, to configure or reconfigure an FPGA a new bitstream

has to be transmitted to the FPGA’s configuration unit. The next section will take a closer

look at this process.
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2.2 Bitstream Composition

The bitstream send to the FPGA contains both, payload data (the actual configuration

bits) and meta data (32-bit commands optionally followed by n 32-bit data words) called

packets. Table 2.1 shows the most important packets:

Value Packet Name Explanation

0xFFFFFFFF Dummy-Word

0xAA995566 Sync word

0x20000000 NO-OP

0x30008001 WCMD Write 1 word to CMD register

0x30002001 WFAR Write 1 word to FAR register

0x3000A001 WCTL Write 1 word to CTL register

0x30004000 WFDRI Write some words to FDRI register — this way the

actual configuration data is written

0x30004000 RFDRO Read some words from FDRO register — this way the

actual configuration data is read back

Table 2.1: Bitstream commands [18]

Xilinx uses two kinds of packets. The first type (called Type 1 Packet) is used for reg-

ister reads and writes. It contains a packet type field, two read/write bits, the address

of the register that has to be read or written, and how many words shall be read from or

written to the register. For the configuration registers normally only 1 word is written.

In contrast, hundreds or even thousands of words are written to the FDRI (Frame Data

Register, Input). Due to this it can happen that the number of bits, which are used to

determine the number of following words, is not sufficient. In this case one can set this

part of the word to zero — and the Type 1 Packet has to be followed by a Type 2 Packet

to determine the number of following data words. Since a Type 2 Packet only consists of

its header and the number of following data words, its size is sufficient in every case.
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2.2.1 Configuration Registers (Excerpt)

Address Read/Write Name Description

00001 Read/Write FAR Frame Address Register

00010 Write FDRI Frame Data Register, Input

(write configuration data)

00011 Read FDRO Frame Data Register, Output register

(read configuration data)

00100 Read/Write CMD Command Register

Table 2.2: Command Register [18]

The Frame Address Register (FAR) determines which part of the FPGA shall be read

or written. It is very important for the partial reconfiguration and will be described in

section 2.5. The FDRO and FDRI registers are used to read and write the actual config-

uration data. The Command Register enables the excution of global commands (e.g. a

global reset) and the adjustment of global configurations. Please note, that the command

last loaded to the CMD register is additionally executed each time the FAR is written.

Table 2.3 lists an excerpt of the available commands.

Data Command Description

0000 NOP do nothing

0001 WCFG Write Configuration Data: used before writing con-

figuration data to the FDRI

0100 RCFG Read Configuration Data: used before reading con-

figuration data from the FDRO

0101 START Begin Startup Sequence: initiates the startup se-

quence

1000 AGHIGH Assert GHIGH_B Signal: places all interconnect in a

high-Z state

1010 GRESTORE Pulse the GRESTORE Signal: sets/resets (depending

on user configuration) IOB and CLB flip-flops

1101 DESYNC Reset DALIGN Signal: used at the end of configura-

tion to desynchronize the device

Table 2.3: CMD Register [18]
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2.2.2 Example Stream

To round out this section, a small example configuration stream is presented.

Value Description

0xFFFFFFFF Dummy word

0xAA995566 Sync word

0x30002001 Write 1 word to FAR Register:

0x00000000 Frame Address = 0

0x30008001 Write 1 word to CMD Register:

0x00000001 WCFG

0x30004000 Write n words to FDRI:

0x5003B568 Type 2 Packet — n = 243048

0x???????? Configuration payload word 0

0x???????? Configuration payload word 1

0x???????? Configuration payload word 2

... ...

0x???????? Configuration payload word 243047

0x30000001 Write 1 word to CRC Register:

0x???????? The CRC

0x30008001 Write 1 word to CMD Register:

0x0000000A GRESTORE

0x20000000 NO-OP

... about 100 NO-OPs

0x30008001 Write 1 word to CMD Register:

0x00000005 START

0x20000000 NO-OP

0x30008001 Write 1 word to CMD Register:

0x0000000D DESYNC

Table 2.4: Example Stream [18]

More detailed information about the bitstream can be found in [19], [18], [20], [21]

for the Virtex series and in [22], [23], [24] for the Spartan series. Please note that the

different chips of Xilinx have mostly similar bitstream commands but nevertheless differ

at some crucial points. The rest of this document will focus on Virtex-4 FPGAs, since the

Framework presented here has been implemented on this model.
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2.3 SelectMAP Interface

The bitstream is loaded into the FPGA through special configuration pins, which serve

as the interface for three different configuration modes:

• Serial configuration mode

• SelectMAP (parallel) configuration mode

• JTAG/Boundary-Scan configuration mode

In the following section the focus is on the SelectMAP configuration mode, since it has

a special meaning for DPR. Figure 2.4 illustrates the pinout of the SelectMAP interface,

while table 2.5 describes the pins.

Figure 2.4: Virtex-4 SelectMAP Configuration Interface [18]

Using the SelectMAP interface the configuration can be done in two ways: continuous

and non-continuous. Continuous data loading is used if the configuration controller is

able to ensure an uninterrupted stream of configuration data. After power-up, the con-

figuration controller sets the RDWR_B signal to zero and asserts the CS_B signal. This

causes the device to drive BUSY low. (RDWR_B must be driven low before CS_B is as-

serted, otherwise an ABORT occurs.) On the next rising CCLK edge, the device begins to

sample the SelectMAP data pins. Figure 2.5 illustrates how a typical continuous configu-

ration looks like.

Non-continuous data loading is used if the configuration controller is not able to ensure

an uninterrupted data stream. There are two ways to pause the configuration. Firstly,

one can deassert the CS_B signal (which is called “free-running CCLK method”, see fig-

ure 2.6). Secondly, one can pause the clock (which is called “controlled CCLK method”,

see figure 2.7).
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Pin Name Description

M[2:0] Determines configuration mode

CCLK Configuration clock source for all configuration modes except

JTAG

SelectMAP Data 32 bit wide configuration and readback data bus, clocked on ris-

ing edge of CCLK. For backward compatibility it can be used in a

byte-wide (8 bit) mode. In this case D0 is the most-significant bit

(MSB), D7 the least-significant bit (LSB). In 32-bit mode, D0 is the

LSB and D31 is the MSB.

BUSY Indicates that the device is not ready to send readback data. For

Virtex-4 devices, the BUSY signal is only needed for readback.

DONE Active-high signal indicating configuration is complete

INIT_B Before MODE pins are sampled, INIT_B is an input that can be

held low to delay configuration. After MODE pins are sampled,

INIT_B is an open drain active low output indicating whether a

CRC error occurred during configuration.

PROGRAM_B Active-low asynchronous full-chip reset

CS_B Active-low chip select to enable the SelectMAP data bus

RDWR_B Determines the direction of the SelectMAP data bus:

0 = inputs

1 = outputs

Table 2.5: SelectMAP Pins [18]

Figure 2.5: Continuous Configuration [18]
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Figure 2.6: Non-Continuous Configuration using a free-running clock [18]

Figure 2.7: Non-Continuous Configuration using a controlled clock [18]

2.3.1 Internal Configuration Access Port

The Virtex FPGAs contain an additional configuration interface, the Internal Configura-

tion Access Port (ICAP). This interface is realized as a subcomponent of the FPGA (like

a BRAM) and is designed to provide access to the configuration controller from inside

the FPGA. Thus, utilizing ICAP, the logic residing on the FPGA is able to alter itself. Of

course, this has a strong correlation to DPR. The ICAP’s protocol is almost similar to the

SelectMAP protocol except the following differences:

• ICAP has no configuration mode pins

• ICAP has no INIT_B pin

• ICAP has no PROGRAM_B pin

• SelectMAP uses bidirectional data signals, ICAP uses 32 unidirectional input wires

and additionally 32 unidirectional output wires instead

• SelectMAP uses bidirectional CCLK, ICAP uses CCLK solely as input signal
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On Virtex-4 and Virtex-5 chips the ICAP can be used in an 8 bit mode and in a 32 bit mode.

Both FPGA series contain two ICAP devices: TOP and BOTTOM. The two interfaces

share the same underlying logic. Therefore, they can never be active at the same time.

Which ICAP is active after startup and which bit mode is used, is determined by the

ICAP’s configuration (and hence by the initial bitstream).

2.3.2 Throughput

For Virtex-2 the official maximum frequency regarding CCLK is 33 MHz. Nevertheless,

the Virtex-2’s ICAP can be overclocked up to 100 MHz, but in this case the BUSY output

has to be monitored. If BUSY is active, the configuration has to be delayed until BUSY

is inactive again. Due to this a clock rate higher than 33 MHz does not allow continu-

ous configuration on Virtex-2. However, Virtex-4 and Virtex-5 can be configured with

100 MHz without the need for monitoring BUSY. For readback operation BUSY is still

important.

The theoretical maximum throughput of the ICAP can be calculated as the result of

the bit width divided through the maximum frequency. For Virtex-2 this is 100 MB/s.

The real value is lower, since at 100 MHz the configuration controller sometimes asserts

BUSY. In [25] a maximum throughput of approximately 90 MB/s has been measured. For

Virtex-4 and Virtex-5 the theoretical maximum throughput is 400 MB/s. In [26] this value

has been measured on a Virtex-4 and even exceeded on a Virtex-5. Here, a maximum of

1 200 MB/s has been achieved, using a CCLK of 300 MHz.

2.4 Dynamic Reconfiguration

Dynamic Reconfiguration enables the reconfiguration of an FPGA while it is running,

without causing any glitches on the circuits. This feature is used in combination with

partial reconfiguration (which is then called DPR and will be described later) and in radi-

ation environments, where the radiation tolerance of FPGAs needs to be increased. The

two most popular civil examples for this are space applications [27] and detector exper-

iments at particle accelerators (like ALICE at CERN in Geneva [28] or CBM at FAIR in

Darmstadt [29]). Radiation in the form of electrons, protons or even more massive parti-

cles can hit the SRAM cells of an FPGA (in flip-flops or LUTs) or a wire between them. In

all these cases it is possible that the inner state of the circuit or even the configuration of

the FPGA is corrupted. Thus, some FPGA vendors provide radiation hardened FPGAs

[30, 31]. The logic of these chips is hit much less frequently. However, corrupting hits still

can happen. To mitigate their effects, a technology called scrubbing is used [32]. Scrub-

bing means, the configuration of the chip is written continuously. Thus, errors in the

configuration, caused by particle hits, are corrected immediately. Obviously, scrubbing

depends on the dynamical reconfiguration feature. In combination with double mod-

ule redundancy (DMR) [33] or triple module redundancy (TMR) [34] this can lead to a

significant extension of the chip’s uptime [35].
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To be able to reconfigure an FPGA dynamically, the bitstream has to be adapted to

become a dynamic bitstream. The difference to a normal bitstream is small and is lim-

ited to the removal of some global startup and reset commands (the commands START,

AGHIGH and GRESTORE have to be removed). This skips the FPGA’s startup sequence

which of course would disturb the running logic. Furthermore the design must not con-

tain LUTs which are configured to operate in Shift Register Mode or as a RAM[36].

2.5 Partial Reconfiguration

Partial reconfiguration — in contrast to full reconfiguration — means that only parts of

the FPGA instead of the whole chip are reconfigured, while the rest of the chip stays un-

touched and can continue its calculation completely undisturbed. This enables the sub-

stitution of parts of the chip at run-time and therefore the placement of new (dynamic)

modules on demand. In principle, partial reconfiguration is enabled by the configura-

tion unit of the FPGA. Every Xilinx FPGA is divided into thin columns, called Minor

Frames. These frames are the smallest reconfigurable units. They are addressed via the

FAR register. Multiple Minor Frames are combined to a Major Frame3 which either de-

scribes the full functionality of a CLB + PSM column or addresses the content of a BRAM

column. (Furthermore, there are Major Frames used to describe the configuration of the

IO Buffers and the configuration of the global clock net, but usually these Frames stay

completely untouched by partial reconfiguration.) For Virtex and Virtex-2, every Minor-

Frame reaches from the bottom of the chip to its top. Thus, the Virtex and Virtex-2 series

could only be parted on the x-axis. For Virtex-4 and Virtex-5, a single FPGA’s column is

divided into a few (e.g. 4) Minor Frames (see figure 2.8).

(a) Virtex-II Pro 20 (b) Virtex-4 FX 20

Figure 2.8: Comparison of Virtex-II and Virtex-4 regarding their frame granularity

3The precise number of Minor Frames per Major Frame depends on the used FPGA — for Virtex-4 it is 64
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From the low-level point of view (circuit level), partial reconfiguration is already fully

supported. The problem is that more complex fields of application, like reconfigurable

processors or dynamically loadable hardware modules, influence the place and route

tools, since here the chip has to be separated into a static area (which is not reconfigured

during runtime at all) and one or more dynamic areas (which are reconfigured on de-

mand). The tools have to ensure that the static components are only placed in the static

area and the dynamic components are only placed in the dynamic areas. Furthermore,

the routing of the dynamic components is not allowed to cross the boundaries between

both. The solution for the placement problem is quite trivial. It can be done via so-

called placement constraints, which work very well. Unfortunately, the routing problem

is much more complex, since until May 2010 the original Xilinx routing tools did not sup-

port the idea of parting the routing resources. Therefore Xilinx provided so-called Partial

Reconfiguration Early Access (PREA) tools [37, 38], which supported partial routing. The

name of these tools is based on the fact, that Xilinx did not provide any official support

for partial reconfiguration, but provided an early access for hardware developers who

were keen on experimenting. The PREA tools were delivered in form of a patch, which

had to be installed on top of an exact version (including the correct service pack) of the

Xilinx tools. Table 2.6 lists the ISE4 versions, which were supported by the PREA patch.

The ISE Versions 10 and 11 were not supported at all, since Xilinx planed to implement

the PREA patch into the normal tool flow. For ISE 10 and ISE 11 this was not success-

ful. The first official support of DPR came with ISE 12 in May 2010. However, since the

implementation of the Framework was almost completed before May 2010, ISE 12 is not

considered in the following sections.

ISE 6.3i SP3

ISE 8.2i SP1

ISE 9.1i SP2

ISE 9.2i SP4

Table 2.6: Supported ISE Versions [37, 38]

4Integrated Software Environment

39



Basic Principles

2.5.1 Partitioning Options

A very important question regarding partial reconfiguration is: what should the dynamic

and the static area look like and where should they be placed? In the following the four

most popular layouts [39, 40] are described. All layouts are based on rectangles and

represent basic approaches. More complex structures, further improvements and hybrid

forms are conceivable (see chapter 3).

(a) Free 2D Partitioning (b) 2D Block

Partitioning

(c) Free Horizontal

Partitioning

(d) Horizontal Block

Partitioning

Figure 2.9: Partitioning options [39, 40]

Free 2D Partitioning

In this variant the dynamic components can be placed at any position of the chip. This

enables a very efficient usage of the FPGA’s resources. However, a longer reconfigura-

tion process, including the loading and the removal of dynamic components, leads to a

cumulative fragmentation of the chip. This potentially prevents the placement of a dy-

namic module, which actually (without fragmentation effects) would fit. An even more

serious problem is, that this variant does not specify, how the dynamic components shall

communicate with the static part or the outer world. Therefore the routing has to be done

dynamically, which is very time-consuming.

2D Block Partitioning

Using 2D Block Partitioning, every dynamic area is a rectangle with a fixed size. Each

has well defined fixed interfaces to the surrounding system. All dynamic components

are using the same standard interface. Therefore every module can be loaded into any

area. The disadvantage of this variant is the fixed size of the dynamic areas. If a dy-

namic component is smaller than the dynamic area, the rest of the area stays unused. If a

dynamic component is bigger than the dynamic areas, it cannot be placed at all.

This partitioning method is typical when working with Virtex-4 chips, which natively

support two-dimensional partitioning. Of course, the size of the blocks is geared to the

size of the Minor Frames. Nevertheless, it is possible to do a more fine-grained parti-

tioning based on dynamic partial reconfiguration. For this a method called read-modify-
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write is used: First, the complete Minor Frame is read. Second, only a part of the bit-

stream is changed. Third, the modified bitstream is written back to the FPGA. Due to the

dynamic reconfigurability, the unchanged parts are not disturbed by the reconfiguration

process at all and can therefore be part of the static area. This method has a special mean-

ing regarding Virtex-2 chips since here one Minor Frame spans over the complete height

of the FPGA.

Free Horizontal Partitioning

In this variant the dynamic area has the same height as the FPGA, but the width is vari-

able. Due to this, every dynamic component allocates exactly the amount of dynamic

area it needs. Compared to the Free 2D Partitioning the placement algorithms are much

simpler, but this layout also leads to a cumulative fragmentation.

Horizontal Block Partitioning

Using Horizontal Block Partitioning, every dynamic area has the same height as the

FPGA and a fixed width. Each has well defined fixed interfaces to the surrounding sys-

tem. The disadvantage of this variant is the potential waste of space regarding small

dynamic components. This partitioning method is typical when working with Virtex-2

chips.

2.5.2 Inter-Module Communication

One of the biggest problems regarding partial reconfiguration is the intermodule com-

munication. Components placed at run-time on the device may need to exchange data

with each other. The most flexible, but also most complex technique is to do run-time

routing. At this, the routing of the wires between dynamic and static components is cal-

culated on demand (as part of the partial reconfiguration process) and instantiated using

partial and dynamical reconfiguration. However, this has been proven to be very time-

consuming [41]. Furthermore, this method does not provide any standardization, which

makes it hard to add dynamic components to an existing system. Therefore, standard

interfaces, which are less flexible but lead to a much faster reconfiguration process seem

better suited[42].

Busmacros

Nearly all standard interfaces between dynamic and static areas make use of so called

busmacros [43]. A busmacro is a hard macro built on ordinary slices, usually containing

an 8-bit wide bus. It can be customized with Xilinx tools such as the FPGA Editor and

is also available from the busmacro library provided by Xilinx. Properties like direction,

synchronization, etc. have to be considered when creating or choosing a busmacro. Re-

garding the timing there are two versions of busmacros: synchronous and asynchronous.
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Figure 2.10: Virtex-4 asynchronous wide busmacro heading from left to right [43]

Synchronous busmacros have a better timing behavior, since they sample the data only at

the rising edge of a connected clock and thus they separate the timing of the dynamic part

from the timing of the static part. The disadvantage is the resulting additional pipeline

step. Using asynchronous busmacros, there is no additional pipeline step, but the timing

is much harder to meet [44]. Figure 2.10 illustrates an asynchronous Virtex-4 busmacro

heading from left to right. The left 4 Slices each provide two hard macro inputs. The right

4 Slices each provide two hard macro outputs. The flip-flops of the Slices are by-passed,

since it is an asynchronous busmacro. Synchronous busmacros make use of the flip-flops

of the output Slices and have therefore an additional clock input on each output Slice.

In the following, five types of inter-module communication are presented. These five

types only represent a basic set of possibilities. Improved structures and hybrid commu-

nication forms are described in chapter 3.

(a) Adjacent

Communication

(b) Centralized

Communication

(c) Communication via

Shared Memory

(d) Crossbar (e) Communication via

Configuration Unit

Figure 2.11: Intermodule Communication [42]
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Adjacent Communication

Adjacent communication is done between two dynamic areas, which are directly con-

nected to each other using busmacros (see figure 2.11(a)). This communication method

provides the fastest way for adjacent components to communicate with each other, but a

communication between areas over a longer distance (e.g. between C1 and C3) requires

the cooperation of the components in the middle (C2). Furthermore the placement of

the components is quite complex, since the proximity of the components influences their

communication options and therefore their functionality.

Centralized Communication

Using centralized communication, each dynamic area is connected to the static area via

busmacros. Communication between dynamic modules is established by the static area.

In the simplest case this is done via shared memory. However, much more complex

communication structures (like communication networks on chip (NoC)) are conceivable.

Communication via Shared Memory

Using a shared memory, all components have access to a memory which is part of the

static area and use this memory to exchange data with each other and with the outer

world. This method is very flexible, but comes with a performance problem, since not

all components can access the memory at the same time. Therefore an arbiter, serializing

the memory access, is needed. Obviously this reduces the throughput proportional to the

number of components.

Crossbar

Crossbar communication means, that interconnections between the dynamic areas are

not realized on the FPGA itself, but on the underlying board. Therefore every dynamic

area contains I/O pins connected to the external crossbar. This crossbar can be simple

wires, a CPLD or even an additional FPGA. The Erlangen Slot Machine (ESM) makes use

of this method [45].

Communication via Configuration Unit

A special communication form coming with DPR is the usage of the configuration unit to

establish a communication between the components. In this variant, the state of flip-flops

or the content of a BRAM of component C1 is read back and either stored in an external

memory or written into a dedicated flip-flop or BRAM of component C2. This method

does not need any additional wires or busmacros, but depends on a determined place-

ment of the corresponding flip-flops or BRAMs. It is the slowest form of communication

between dynamic components.
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2.6 Dynamic Partial Reconfiguration

The closer look on partial reconfiguration in section 2.5 showed that in many cases partial

reconfiguration is used in combination with dynamical reconfiguration. The reason is

that a pure partial reconfiguration requires an absolutely strict partitioning guided by

the layout of the Minor Frames — which is almost impossible. This is especially true

for Virtex and Virtex-2 FPGAs, where a Minor Frame has the same height as the whole

FPGA. However, there are also crucial reasons on Virtex-4, which prevent such a strict

partitioning (see figure 2.12). First of all, the I/O pins of an FPGA are spread all over

the chip. Therefore, declaring a part of the FPGA as a dynamic area either makes the

corresponding pins unusable for the static area, or requires a route from the static area to

these pins, which is contained in every dynamic module. Since the number of I/O pins

is very limited, usually the second solution is preferred. This is especially true, if partial

reconfiguration shall be used on an already manufactured board and the pin assignment

is already fix (e.g. on Xilinx Evaluation Boards). Secondly, using more than one dynamic

area can make it necessary to have routes from the static area to a dynamic area, which

cross another dynamic area. Thirdly, if the chip resources utilized by the dynamic areas

exceed a certain percentage it becomes impossible to route the static area without crossing

the dynamic areas.

In all three cases the dynamic areas contain routes, which are actually part of the static

design. These routes are called feed-through routes. Feed-through routing depends on

the ability to reconfigure dynamically, since the dynamic character of the reconfiguration

process keeps the functionality of the routes untouched as long as they are overwritten

identically. Without dynamic reconfigurability every reconfiguration process would at

least cause glitches on these routes.

Figure 2.12: In red: feed-through routes

The usage of feed-through routes has two important consequences: The DPR tools

have to ensure, that every dynamic component contains the needed static routes. Due to

this the components are not instantly relocatable, since every dynamic area comes with

its own static routes, which have to be added to the dynamic component, before it can be

loaded.
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Please note, that the routes of the dynamic components are absolutely not allowed to

use parts of the static resources or parts of other dynamic areas. This would lead to an

unmanageable number of static route fragments needed by several dynamic components,

which in the worst case could block each other.

2.6.1 Tools

iMPACT

iMPACT is the programming tool used to transfer the bitstream from a PC to the FPGA.

It supports all types of bitstreams: full bitstreams, dynamic bitstreams and partial bit-

streams. The reason is that iMPACT simply transfers the bitstream to the FPGA and does

not care about its content. Dynamic bitstreams just do not contain the reset and startup

commands, partial bitstreams just do not address all Minor Frames of the FPGA.

iMPACT also allows to read back the current configuration. However, iMPACT is de-

signed to be executed on a PC and therefore makes use of interfaces like the parallel

port or USB. These interfaces depend on a special Xilinx adapter chip which has a very

limited throughput and thus is not able to achieve the maximum throughput shown in

chapter 2.3.2.

PlanAhead and ISE

PlanAhead is a floorplanning tool, originally developed by Hier Design, which in 2004

has been acquired by Xilinx. Regarding DPR it is a very important tool, since it pro-

vides the functionality to create dynamic areas and to assign dynamic modules to them.

Furthermore it offers a simple way to generate all the needed bitstreams, which are the

full bitstream (containing the static area and the initial dynamic modules) and the par-

tial bitstreams representing the dynamic modules. PlanAhead creates placement and

routing constraints to assure a correct feed-through routing. As a consequence of this

feed-through routing, every module has to be synthesized once for every dynamic area

it shall be loaded to. Hence, a design containing two dynamic areas and three dynamic

modules (which shall be loadable to both areas) leads to six partial bitstreams.

During all these steps PlanAhead only acts as an orchestrator. The actual tools, creating

and merging the bitfiles are part of the Xilinx ISE enhanced by the PREA patch. There-

fore, everything could be done without PlanAhead, setting the routing and placement

constraints manually and calling the corresponding ISE tools directly. However, PlanA-

head makes all this much more intuitive and easier manageable, which finally leads to

higher productivity. Furthermore, PlanAhead does not only offer a GUI 5, but also a

CLI6 which enables the programmer to orchestrate the creation of the bitstreams via the

console or even automated via scripts.

5Graphical User Interface
6Command Line Interface

45



Basic Principles

Figure 2.13: DPR tool flow using PlanAhead

Figure 2.13 illustrates the PlanAhead tool flow. Everything begins with the source files.

They can be written in VHDL, Verilog, HandleC, SystemC or any other HDL7. First of all

a top file is needed, which solely describes the basic structure of the design. It contains the

static area as a black box subcomponent, all dynamic areas as black box subcomponents

and the busmacros connecting them to each other. A synthesize tool (e.g. XST8) is used

to translate this top file to a netlist (ngc-file). Secondly, the static design is described in its

own file (which can contain subcomponents in further files). It is also synthesized. Last

but not least the dynamic modules have to be described. Let’s assume that m modules

and a areas are used. As a consequence, the synthesize tool has to be started m · a times to

generate m dynamic ngc-files per area. These ngc-files serve as input files for PlanAhead.

The top.ngc is used to get the basic structure, static.ngc defines the static components and

the dynamic ngc-files are used to define the dynamic modules.

PlanAhead is used to do the floorplanning. At this step the size of the dynamic and

static areas is determined and the busmacros are being placed (see figure 2.14). Finally,

PlanAhead calls par9 to generate the ncd10 files. This has to be done once for the static

part and a times for each module (provided that each module shall be loadable to each

area). Thus, par is called a · m + 1 times. Next, the originated ncd files are being merged.

This enables feed-through routing. Finally the merged files are translated to bitfiles using

bitgen. The results are one full initial bitfile, containing the static area and the initial dy-

namic modules, and m partial bitfiles for each of the a dynamic areas. Beyond that PlanA-

head provides an “empty” bitfile for each dynamic area, which represents the dynamic

area without any dynamic module loaded to it. These “empty” bitfiles solely contain the

feed-through routes.

7Hardware Description Language
8Xilinx Synthesize Tool
9Xilinx place and route tool — part of the ISE and enhanced by PREA

10native circuit description — the placed and routed design mapped to the components in the FPGA
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Figure 2.14: Floorplanning via PlanAhead — example with 2 dynamic areas

Missing Language Support

It has been shown, that Xilinx tools are essential for DPR. Having said that, it is important

to underline that these tools represent the necessary basic equipment, but they do not

completely fulfill the needs of hardware developers. This is primarily caused by the lack

of language support for DPR. Of course all HDLs can be used to generate partial designs,

but in this case an external work flow (as shown above) is needed. What is missing is

an intrinsic language construct which can be used to denote the dynamic character of

submodules, like new is used to denote the dynamic instantiation of objects in C++.
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2.7 Object-Oriented Programming and Multithreading

2.7.1 Object-Oriented Programming

Since the 1960s object-oriented programming (OOP) changed the way software design is

done. Using OOP the central point of software development are interacting objects with

assigned attributes and methods. For example describing the motion of a car in procedu-

ral programming results in a program that changes some variables representing the posi-

tion of the car. In OOP the car is represented by a car object with assigned attributes for its

position and an assigned method move. Other objects can call move to move the car. The

difference between these two descriptions is fundamental, since in procedural program-

ming the handled variables are passive whereas in the OOP every object acts as an active

part of the program[46, 47]. Today’s object-oriented languages include features such as

data abstraction, encapsulation, modularity, polymorphism, and inheritance which help

programmers and programming teams to write well-arranged and re-usable code.

Data Abstraction

Data Abstraction means to reduce and factor out details so that one can focus on a few

concepts at a time. For example cars and bikes can be abstracted to vehicles, which at least

all have a position and a velocity. This way it is possible to summarize them under one

label and to handle common attributes and methods with one piece of code.

Encapsulation

Encapsulation means that the access to an object’s internal states is restricted. This can be

used to hide implementation details from other objects. This way the developer has the

possibility to change the internal implementation of an object without affecting the rest

of the program. Furthermore, an erroneous access to internal states can be prevented.

Modularity

Modules represent a separation of the program into logical parts and improve maintain-

ability by enforcing logical boundaries between modules. These boundaries are incorpo-

rated into the program through interfaces, which define the elements that are provided

and required by the module. This enables members of a programming team to develop

their modules independently.

Inheritance

Inheritance is a way to form new, more specialized classes using base classes that have al-

ready been defined. This helps to reuse existing code with little or no modification, since

the new sub-classes inherit attributes and behavior of the base classes. The functionality

of the new class can be changed by re-writing methods or creating new methods in the
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derived class and leaving the rest untouched. For example, cars and bikes could be repre-

sented by classes which inherit from a vehicle class and differ in their implementation of

move (e.g. regarding maximum speed).

Polymorphism

Polymorphism is the ability of an object of one type to appear as and be used like an object

of another type. This allows objects belonging to different types to respond to method

or property calls of the same name, each one according to an appropriate type-specific

behavior. The programmer (and the program) does not have to know the exact type of

the object. The exact behavior is determined at run time, which is called late binding. For

example, an object that handles vehicles, but does not know whether the vehicle is a car or

a bike, just calls move. Based on late binding the correct move-method is called, depending

on the real object type (car or bike).

Instantiation

In OOP the programmer does not directly describe the objects, but (abstract) classes,

which summarize the attributes and methods of objects with a specific type. These classes

have to be instantiated to become a real object. All objects of the same class have the same

set of attributes and the same methods, but the content of the attributes can differ. For

example Herbie is an instance of the class car whose color is white. Other cars also have a

color, but it does not have to be white. Normally a class can have an unlimited number

of instances. Sometimes this behavior is not wanted. Therefore design patterns such as

singletons exist which restrict the number of instantiations of a class.

2.7.2 Multithreading

Multithreading means that multiple threads are executed concurrently. Thereby “con-

currently” either means really simultaneously (like two hardware components) or quasi-

simultaneously (which means that a scheduler executes the threads alternately). The

usage of multithreading became standard in all current operating systems. Even small

embedded systems like in mobile phones make use of it, since multithreading allows the

operating system to provide various functionality to the user at the same time. Further-

more, threads waiting for external events or external data are not blocking the whole

system. The corresponding thread is just being postponed.

However, multithreading does not only come with advantages. It also brings syn-

chronization problems which in the worst case could block the whole system. These

synchronization problems can be solved with semaphores and mutexes provided by the

operating system.

In modern languages (like C++ or Java) OOP and multithreading come together. Thereby

it turned out, that OOP is a very good way to realize parallel programming. The concept

of encapsulation and modularization makes it possible to handle multithreading in a
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well-defined way. To enable multithreading in an OOP language, selected objects are de-

fined as independent instances, which are running in parallel to the rest of the program.

2.7.3 Qt

One of the major problems regarding multithreaded OOP is the inter object communica-

tion. If it is done the wrong way it can lead to erroneous results or even to a blocking

program. In 1992 a team of programmers started to develop Qt (pronounced as the En-

glish word “cute”) which is a cross-platform application development framework. It

offers the programmer an easy way to create a GUI and makes use of well-defined inter-

faces (called Signals and Slots). Signals send a message out of an object, while Slots are

the corresponding receivers. An object can make use of several Signals and Slots. The

connection between objects is established via the connection of a Signal to a Slot. Fig-

ure 2.15 illustrates the establishing and the removal of connections between Signals and

Slots.

(a) Starting Point (b) A1 = new Adder;

A2 = new Adder;

M1 = new Multiplier;

(c) connect (A1.s, M1.a);

connect (A2.s, M1.b);

(d) disconnect (A2.s, M1.b);

connect (A1.s, M1.b);

delete A2;

Figure 2.15: Qt: Signals, Slots and their usage

Qt became very popular, since it was used as the programming base of KDE11, which

1998 was going to become one of the leading desktop environments for Linux. Con-

11K Desktop Environment
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troversial debates on Qt’s licensing finally led to a dual licensing model. Today, Qt is

available under the QPL12 and under the GPL13. Due to this many open source projects

made use of Qt. Today Qt can be found in KDE, Google Earth, Opera, Skype, VLC media

player and many other applications. Furthermore it has been ported from C++ to other

languages such as Python, Ruby, Java, PHP, Haskell and Perl [48]. The announced goal

of the Qt developers is to have “Qt everywhere” [49].

12Q Public License
13GNU Public License
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2.8 Software to Hardware compiling

Operating on register transfer level, hardware developers have to handle clocks and clock

domains. On the algorithmic level this is not necessary any longer. Here, designs can be

described without the need to care about clocks. Hence, many hardware developing

groups are looking forward to be able to describe hardware on the algorithmic level or

even above, which is called ESL (Electronic System Level) Design. Since software lan-

guages such as C or Java already operate on this level, the idea of an automated transla-

tion from software to hardware came up. The basic concept of this approach is to take an

ordinary software program (e.g. a C program) and to translate it to an ordinary HDL such

as VHDL. This process is called HLS (High Level Synthesis). In principle, this transla-

tion can be done in a very self-evident simple way using a single FSM14 (see figure 2.16).

However, this naive approach leads to an absolutely sequential execution of the program

and therefore to some kind of FSM based emulation of the processor which is executing

the software. Since reprogrammable hardware is much slower than integrated proces-

sors, this finally leads to a much worse performance.

Figure 2.16: Naive software to hardware translation

14Finite State Machine
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What is really needed is a translation method, which does not naively translate soft-

ware to hardware, but uses the intrinsic parallelism of the hardware as much as possible.

This intrinsic parallelism is the actual excellence of hardware. Unfortunately, paralleliz-

ing a given piece of software is a very hard task residing in the gray area between syntax

and semantics. Thus, today many research groups are looking for the best way to auto-

mate this process. Some typical representatives are shown in chapter 3.3.

All improved hardware to software compilers make use of the so called data flow anal-

ysis. At this, the compiler analyzes how the variables depend on each other and generates

a data flow graph. All nodes which are not connected to each other can be computed in

parallel. Furthermore pipelining can help to parallelize processes, which depend on each

other. The main problems are programming constructs like branches or loops, which po-

tentially invalidate a pipeline or even hinder the usage of pipelines. Unfortunately these

constructs cannot be forbidden since they are necessary to achieve Turing completeness.
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3 State of the Art

This chapter focuses on the current state of the art regarding DPR1 and HLS2. In the

first section, several important research activities regarding DPR are illuminated. The

second section focuses on reconfigurable processors, since this is one of the most impor-

tant utilizations of DPR. Furthermore, reconfigurable processing can often be found in

combination with HLS. The third section takes a look at the conversion from software to

hardware, and therefore at the synthesis from algorithmic level to register transfer level.

It presents fundamental principles and current research as well as popular languages

used for HLS. Finally, the fourth section focuses on frameworks which combine DPR and

HLS.

Although this state-of-the-art chapter has more than 30 pages, it can only serve as a

short survey of DPR and HLS. There are many more research groups, languages and

industrial projects dealing with DPR or HLS than can be presented here. Thus, every

sub-topic focuses on a few selected, characteristical examples.

3.1 Dynamic Partial Reconfiguration

On conferences and in journals one can find an almost countless number of publications

dealing with DPR. Unfortunately there is a growing trend to incoherent publications

which focus on a fancy side issue (like an optimized defragmentation algorithm for free

2D partitioning), but lack a working implementation or even an idea how their approach

could be used in practice (e.g. they focus on free 2D partitioning but have no idea how

to establish the inter-module communication). Thus, in the following section the focus

is on DPR projects that include a running implementation. For further investigations

the book “Dynamically Reconfigurable Systems — Architectures, Design Methods and

Applications” [50] can be recommended. It presents a good overview to current DPR

projects.

1Dynamic Partial Reconfiguration
2High Level Synthesis
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3.1.1 Erlangen Slot Machine

The Erlangen Slot Machine (ESM) has been developed at the Institute for Hardware-

Software-Co-Design (HSCD [51]) which is part of the technical faculty of the University

of Erlangen-Nuremberg. The ESM is a setup consisting of 2 FPGA boards [52]. The first

board (called Babyboard) contains the main FPGA which performs the actual calcula-

tions. For this, it is separated into slots, which can be reconfigured individually (based

on partial reconfiguration). The communication between the reconfigurable modules is

realized via the second board (called Motherboard). It contains a Crossbar FPGA (see

chapter 2.5.2) and peripheral devices. Thus, different I/O requirements (e.g. a PCI Moth-

erboard in a PC versus a standalone Motherboard in an embedded system) lead to dif-

ferent Motherboards but the Babyboard implementation always stays the same.

Figure 3.1: Photo[53] and architecture[54] of the ESM Babyboard

The Babyboard consists of a Xilinx Virtex-2 6000 (the main FPGA), several SRAMs, a

small CPLD, a Spartan-2E 100 FPGA, Flash memory and the interconnects to the Moth-

erboard [55]. The CPLD configures the Spartan-2E at startup. Thereafter the Spartan is

responsible for the (partial) reconfiguration of the main FPGA. The ESM makes use of a

mixed form of Horizontal Block Partitioning and Free Horizontal Partitioning: the main

FPGA is logically divided into columns of 2 CLBs called micro slots. These micro slots are

the smallest reconfigurable units. Each reconfigurable module consists of a given number

of micro slots and can be placed freely, using the micro slot grid as minimal granularity.

The Spartan is responsible for the adaptation of the bitfiles so that the reconfigurable

modules can indeed be placed freely — although the micro slots are slightly different

from each other [56]. However, the free placement leads to fragmentation effects. Due to

this, the HSCD also focused on defragmentation algorithms [57, 58]. Those algorithms

depend on the possibility to replace reconfigurable modules. The corresponding func-

tionality is also implemented in the Spartan-2E.
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Since the inter-module communication is realized via an external Crossbar FPGA, there

are no feed-through routes crossing the reconfigurable modules. Thus, the ESM imple-

ments a strict partial reconfiguration which does not depend on dynamical reconfigura-

bility [59]. Every micro slot is connected to a set of I/O pins which are connected to the

Crossbar FPGA. Furthermore every micro slot is connected to SRAM pins. The SRAMs

serve as additional local memory of the reconfigurable modules and can additionally be

used for shared memory communication between neighbor modules (e.g. for streaming

applications). Due to the number of pins needed to access one external SRAM, each re-

configurable module willing to use an SRAM must consist of at least 3 micro slots and

has to follow more restrictive placement rules [60, 42].

The Motherboard consists of the Crossbar FPGA and additional application-specific

controllers and interfaces. Currently, the Crossbar FPGA is a Spartan-2E 600. It realizes

the fully flexible and run-time adaptable inter-module communication, so that modules

which are running on the main FPGA and need access to each other or to external pe-

ripherals are not restricted by the physical location of the main FPGA’s peripheral pins

[61, 62].

The ESM was first published in 2005. Since then, it has been enhanced and improved.

One very important improvement came with the introduction of the Virtex-4, since this

FPGA series is reconfigurable two-dimensionally. The original design of the ESM was

strongly influenced by the architectural limitations of the Virtex-2 FPGAs and their solely

column-wise reconfiguration. This limitation was the primary motivation for the imple-

mentation of the Crossbar on a separate FPGA. The reconfiguration options coming with

the Virtex-4 enable a union of the Babyboard and the Motherboard. Instead of using a

main FPGA and a separate Crossbar FPGA, both designs could be united in one Virtex-4

FPGA — placed in different (separately reconfigurable) rows. Thus, the strict partitioning

would be kept, but the additional effort of managing the reconfiguration of two FPGAs

could be omitted. Furthermore, the micro slots could not only be separated on the x-axis,

but also on the y-axis. This lead to the usage of a strict 2D Partitioning. However, such a

two-dimensional partitioning leads to completely new requirements regarding the com-

munication interfaces between the reconfigurable modules. One solution to handle these

extended requirements is the usage of the ReCoBus, presented in the following part.

Nowadays, the HSCD Erlangen also focuses on the implementation of applications

running on the ESM and using its reconfiguration features. Examples are video streaming

[63], parallel sorting [64] and real-time image recognition [65].
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3.1.2 ReCoBus

One of the central limiting factors for the wide use of DPR is the problem of inter-module

communication. To solve this problem in a standardized but also flexible way, the HCSD

developed the ReCoBus. The phrase “ReCoBus” is used in two ways. Firstly, denotes a

hard macro containing all logic and routing of a backplane bus. Secondly, it describes the

technology of integrating modules that have been synthesized, placed and routed in ad-

vance to a reconfigurable backplane (as known from the ESM) [66]. The ReCoBus is built

to connect micro slots with a size of 2 CLB columns to each other or to the outer world.

As trade-off between flexibility and maximum throughput, a multi chain architecture has

been chosen. The number of chains is user-settable. A single chain contains 8 signals [67].

Figure 3.2: Simple ReCoBus example utilizing 4 chains [66]

Figure 3.2 illustrates a simple ReCoBus example with 8 slots, 4 chains and 2 reconfi-

gurable modules. As one can see, based on the 4 chains, only every 4th slot is connected

to a single chain. The other chains inside a slot are simple feed-through routes. Hence,

the number of chains determines on the one hand the granularity of the connections and

on the other hand the routing delay. A finer granularity leads to a higher delay and vice

versa. Furthermore, the size of a reconfigurable module (more precisely the number of

utilized slots) determines the number of chains which can be accessed by the module.

This correlation is intended, since higher bandwidth is usually correlated with higher

complexity and therefore with bigger modules. For example, a UART (Universal Asyn-

chronous Receiver Transmitter) is a quite small module and requires only 1 chain (8 bit),

while an Ethernet controller is much more complex, hence much bigger, and requires at

least 4 chains (32 bit). The corresponding chain-module interface occupies only two LUTs

in all (one for the select logic and one for the OR logic). If a module does not want to make

use of the provided connection, the OR logic can be exchanged by a simple feed-through

logic.
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Making usage of the ReCoBus comes with a changed synthesis flow and requires a late

insertion of the ReCoBus interconnections (implemented as hard macros). Furthermore,

the slot grained placement leads to the need for the same bitfile adaptations as necessary

at the ESM [68]. Thus, the HSCD provides an altered toolflow and a GUI called the

ReCoBus-Builder [69], designed to simplify the design of a reconfigurable system and

to encapsulate the implementation of the ReCoBus. A very detailed description of the

ReCoBus-Builder and its functionality can be found in the ReCoBus User Guide, available

at [66]. However, one of the most outstanding characteristics of the ReCoBus-Builder is its

toolflow, since it is not using the special DPR toolflow offered by Xilinx (see chapter 2.6.1).

In fact, the ReCoBus-Builder is designed to be used as a DPR floorplanning tool instead

of PlanAhead, since PlanAhead relies on simple bus macros and does not support the

ReCoBus at all. Furthermore, the HSCD found a workaround to allow strict area limited

routing, without depending on the PREA patch. This workaround is based on a method

called Blocking. In this method, all outgoing signals within a CLB or a Block RAM are

allocated and hence marked as not usable for the Xilinx routing tools. This allows the

definition of prohibited regions, which cannot be used by the router. If a dynamic area is

surrounded by such a prohibited region, the router is forced not to instantiate any routes

between the static and the dynamic area, although it is not a DPR aware router [70, 71].

In conclusion, the ReCoBus can be seen as a further development of the ESM. The

strict partitioning is lost (due to the feed-through chains which require dynamic recon-

figurability), but it can be used to avoid the need for an external Crossbar FPGA, even on

Virtex-2. Currently, the ReCoBus-Builder supports Virtex-2 and Spartan-3. Virtex-4 sup-

port is announced and will become a very interesting option since the ReCoBus could be

used to solve the communication problems coming with the 2D Partitioning of the ESM’s

Virtex-4 extension.

3.1.3 Two-Dimensional Partitioning including Online Routing

In chapter 2.5, the options regarding chip partitioning have been presented. The most

flexible, but also most complex approach is the Free 2D Partitioning. In this variant the

dynamic components can be placed at any position of the chip, which enables a very

efficient usage of the FPGA’s resources. However, a huge drawback is the lack of stan-

dardized communication interfaces between the dynamic modules and the static part of

the chip. Furthermore, fragmentation effects can occur.

The Institute for Information Processing Technology (Institut für Technik der Informa-

tionsverarbeitung - ITIV[72]) of the University of Karlsruhe has been focusing on two-

dimensional partitioning since 2006 [73, 74, 75]. They make use of a mix of Free 2D

Partitioning and 2D Block Partitioning. The chip is divided into a static area (which is

not reconfigured at all) and one or more dynamic blocks. Each dynamic block serves as

a placeholder for one or even more dynamic modules. In contrast to the conventional

Block Partitioning, the dynamic modules can be placed freely inside a dynamic block.

This enables a much more efficient usage of the chip resources inside a block but does not
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provide any standard communication interfaces between the dynamic modules and the

static part. To solve that problem, the ITIV developed an on-chip run-time router, which

is running on an embedded processor inside the FPGA and calculates the routes from the

dynamic component’s outputs to the static design’s inputs and vice versa [76, 77]. The

separation of the FPGA into several dynamic blocks can be seen as coarse-grained re-

configuration method. In contrast, the instantiation of dynamic routes affects only a few

slices and routing points. The ITIV calls this mixture of coarse-grained and fine-grained

reconfiguration methods “Multi-grained Reconfiguration” [78, 79].

A further problem regarding reconfiguration (especially fine-grained reconfiguration

as well as run-time routing) is that one cannot see with the naked eye what happens

inside the chip. For normal static designs, tools like the FPGA editor, which display the

design based on its source files, are used. These sources are used for bitfile generation and

therefore the FPGA editor’s view is identical to the design on the chip. Unfortunately, this

is only true until a reconfiguration occurs. From that moment on, the design on the FPGA

differs from the original sources and therefore from the FPGA editor’s view. Tools like

PlanAhead provide the possibility to generate all possible permutations of components

regarding coarse-grained reconfiguration in advance (and therefore the chance to take

a look at every possible combination), but this method cannot be used for fine-grained

reconfigurations, especially not for run-time routing. Thus, the ITIV developed a tool

which operates in the opposite direction: It reads back the configuration of the chip and

generates a netlist from the resulting bitfile. Finally, this netlist is viewable. Therefore,

this reversed tool flow enables hardware developers to take a look at the current design,

even after fine-grained reconfiguration [80].

A very impressive demonstration of the multi-grained two-dimensional reconfigura-

tion methods including dynamical routing and on-line visualization has been given at

the DATE3 conference in 2007 [41].

3.1.4 Busmacros

Using block partitioning (either 2D or horizontal) enables the utilization of standard com-

munication interfaces between the dynamic areas and the static area. These interfaces are

realized as hard macros. Until 2005, the standard method on the Virtex-2 was to use

TBUFs4 as a basis for these busmacros [81]. In 2004, the ITIV presented an alternative

busmacro implementation based on ordinary Slices [82]. Since TBUFs turned out to be

problematic and the Virtex-4 and all later FPGAs do not contain TBUFs any longer, this

new method attracted Xilinx’s notice. Thus, in 2006 the slice-based busmacros became

the standard Xilinx busmacro implementation [43, 83]. Furthermore, the ITIV developed

a method to simulate the behavior of a dynamic design based on "virtual multiplexors"

which for simulation act as mutliplexors and for synthesis are replaced by busmacros

3Design, Automation and Test in Europe
4Tristate-Buffer
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[84]. Finally, together with the LIS Munich they developed an XDL (Xilinx Design Lan-

guage) based tool to automatically generate and route customizable busmacros [85].

3.1.5 Autovision

In contrast to other DPR research teams, the Institute for Integrated Systems (Lehrstuhl

für integrierte Systeme - LIS[86]) of the Technical University of Munich first focused on

an application (video processing) and enriched this application with DPR later on. First

publications regarding MPEG-4 and MPEG-7 can be found in [87, 88, 89]. These works

primarily focus on the porting of video decoders from software to hardware in a very ef-

ficient way. Thereby an SoC architecture consisting of a standard embedded RISC core as

well as coprocessor modules for macroblock algorithms and motion estimation is used.

In 2004, the LIS presented a first approach to implement the whole system on a single

FPGA and to exchange the coprocessor modules on demand, based on DPR [90, 91]. Since

2005, the LIS has been publishing papers which focus on automotive [92], more precisely

on video-based driver assistance like lane departure warning. Here, DPR is used to offer

the necessary flexibility coming with the different driving conditions. For example, driv-

ing on a highway at daylight needs a completely different coprocessor algorithm than

driving in a tunnel with low luminance level [93, 94, 95]. At DATE 2008, the LIS showed

a very impressive demonstration of the object detection, using a video stream originally

coming from a moving vehicle’s camera (see figure 3.3) [96]. The resulting processed

video streams can be found at [97] and at [98].

Figure 3.3: Detection of the tunnel (upper left) and contrast enhancement (upper right)

Taillight tracking (lower left) — Edge detection and lane tracking (lower right) [99]
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3.1.6 JCAP

Talking about real-world applications always leads to talking about pricing. Due to this,

it is very helpful to be able to use DPR not only on Xilinx’s high-end Virtex series, but

also on the much cheaper Spartan series. Thus, the ITIV investigated the reconfiguration

possibilities regarding Spartan-3 [100]. One major drawback of Spartan-3 is the missing

ICAP. Hence, the ITIV developed the so called JCAP, which is an interlink between se-

lected FPGA pins and the FPGA’s JTAG5 interface, finally enabling the chip to reconfigure

itself [102, 103].

3.1.7 Reconfiguration Speed

The time a reconfiguration process consumes determines in which fields of applications

DPR can be used and in which it cannot. The less time is needed for the reconfigura-

tion itself, the more reconfigurations can be performed and the more flexible a design

can become. Thus, it is an aim of all DPR research groups to increase the reconfiguration

speed as much as possible. In 2008, the ITIV Karlsruhe and the LIS Munich presented an

IP core that enables fast on-chip DPR close to the theoretical maximum speed [25]. This

fast ICAP controller is based on DMA (direct memory access) on the PLB (processor lo-

cal bus) and bitfile compression[104], which significantly lowers the needed throughput.

Compared to other realizations, an increase in speed by a factor of 20 could be obtained

[105]. In [26] a throughput of 400 MB/s has been measured on a Virtex-4 and even ex-

ceeded on a Virtex-5. Here, a maximum of 1 200 MB/s has been achieved, using a clock

rate of 300 MHz.

5Joint Test Action Group [101]
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3.2 Reconfigurable Processors

The idea of reconfigurable processors (RPs) goes back to the early 1990s, where so called

ASIPs (application-specific instruction processors) became popular. These ASIPs are

equipped with an instruction set, tailored to benefit a specific application such as fast

Fourier transformations, sorting algorithms or video stream compression. Traditional

ASIPs are implemented using fixed logic and therefore not adaptable to new or changing

requirements. This changed with the upcoming utilization of FPGAs. An ASIP imple-

mented on an FPGA is reconfigurable and therefore adaptable to completely different

algorithms and their requirements. Even a change of the instruction set during operation

is conceivable [106]. In principle, RPs can be divided into 3 groups [107].

Group 1 — Monolithic

The first group of RPs makes use of exactly one reconfigurable area. This reconfigurable

area is a placeholder for one RFU (reconfigurable functional unit) at a time, which ei-

ther replaces the traditional fixed ALU (arithmetic logic unit) completely or serves as a

co-processor to a GPP (general purpose processor). The area has a fixed size which is

determined while designing the system. If it is too small, then not all potential RFUs fit

within. If it is too big, then this has a negative effect on the hardware utilization and the

reconfiguration time.

Group 2 — Modular

The second group of RPs makes use of multiple reconfigurable areas. Therefore multiple

RFUs can be loaded at the same time. This approach can help to decrease the delay

caused by a reconfiguration since it allows a predictive configuration of a RFU which is

needed quite soon. For a given logic capacity of the reconfigurable fabric, the question

arises whether to partition it into few rather big areas or into more rather small areas.

Group 3 — Overlapping

The third group uses multiple overlapping RFUs. This method is based on the observation

that particular RFUs implement a quite similar functionality. Refining the granularity by

splitting the RFUs into sub units, enables the usage of a sub unit by multiple RFUs. This

can help decrease the reconfiguration time and to utilize the given logic capacity more

efficiently, but it also leads to a much more complex communication structure.

In the following, five exemplary reconfigurable processor architectures are presented.
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3.2.1 CoMPARE

Figure 3.4: Block structure of CoMPARE [108]

CoMPARE (Common Minimal Processor Architecture) makes use of exactly one recon-

figurable area (Group 1 — Monolithic). It uses an FPGA to replace a conventional ALU

by a RFU (see figure 3.4). Its design process was mainly guided by the idea of simplic-

ity and scalability. Therefore only 16 simple instructions have been implemented on a

small RISC processor which consists of four basic units: the FDU (fetch and decode unit)

which accesses the instruction memory to fetch the next instruction, the register file, the

RPU which consists of a standard ALU and an application specific part, and the LSU

(load and store unit) which combines the results from the hard-wired logic and from the

reconfigurable logic and stores them into the register file. The whole system has been

implemented on a Xilinx Virtex FPGA and achieved a maximum clock rate of 11 MHz.

However, an average speedup of 2 compared to a solely static design could be achieved

[108].

3.2.2 Chimaera

Chimaera is a high-performance co-processor based on a RFU. In contrast to CoMPARE,

the RFU is not monolithic but is divided into sub units called RFUOPs (reconfigurable

functional unit operations). Therefore Chimaera is a representative of Group 2 (Modu-

lar). Figure 3.5 illustrates its architecture. The reconfigurable array (RA) is a placeholder

for the RFU respectively the RFUOPs. The execution control unit (ECU) decodes the in-

coming instruction stream and directs execution. It detects RFUOPs and controls their

execution on the RA. If necessary, it notifies the configuration control and caching unit

(CCCU) of currently unloaded configurations. The CCCU is responsible for loading and

caching configuration data. Although up to 9 RFUOPs can be loaded into the RA at a
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Figure 3.5: Overview over the Chimaera architecture [109]

time, only one RFUOP can produce output data at a time (the RFU has 9 inputs, but

only 1 output). Nevertheless, the RFUOPs can be executed in parallel and exchange data

among each other. Furthermore, based on the set of already prepared RFUOPs, delays

caused by on-demand reconfigurations can be reduced. This way, an average speedup

of 1.3 could be achieved. Thereby the speedup strongly depends on the executed appli-

cation. While the performance of some applications became worse, the measured peak

speedup was 2.4 [109].

3.2.3 MOLEN

The two main components of the MOLEN polymorphic processor are a general purpose

processor (GPP) called Core Processor and the Reconfigurable Co-Processor (RP) — see

figure 3.6. The ARBITER performs a partial decoding on the instructions in order to de-

termine where they should be executed. General instructions are handed to the GPP.

Application-specific instructions are redirected to the RP. Data transfers from and to the

main memory are handled by the Data Load/Store unit. The Data Memory MUX/DE-

MUX establishes a communication between the Load/Store unit and either the GPP or

the RP. The Exchange Registers are used for direct communication between RP and GPP.

The reconfigurable processor consists of the reconfigurable microcode unit (RMU) and

the custom computing unit (CCU). An operation, executed by the RP, is divided into

two phases: set and execute. The set phase is responsible for reconfiguring the CCU for

the operation. This is realized by the RMU. In the execute phase, the actual execution of

the operations is performed in the CCU. To reach a significant speedup, special set com-

mands are used. These set commands can be included in the source code with a sufficient

distance to the corresponding execute commands. This way, the reconfiguration process
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is concluded before the CCU is called for execution. For benchmarking, a MPEG-2 en-

coder and a MPEG-2 decoder have been implemented. The encoder speedup was about

2.9 while the speedup of the decoder was about 1.6 [110].

Figure 3.6: Overview over the MOLEN architecture [110]

3.2.4 RISPP

RISPP stands for Rotating Instruction Set Processing Platform. The term “Rotation” de-

notes the enhancement of traditional ASIPs by DPR. Thereby the RISPP implements the

sub unit concept (Group 3 — Overlapping). The sub units are called Atoms. A special

focus is put on the trade-off between area consumption and execution time. A given algo-

rithm can be accelerated using pipelining and parallelization. However, these methods

usually require additional resources. For example, the two commands “a = 19 · b” and

“c = 7 · d” could either be executed sequentially (using only one multiplier) or in paral-

lel (using two multipliers). The RISPP platform calculates an optimal trade-off based on

Amdahl’s law [111]. If a special instruction (SI) is called very rarely, its implementation

can be done in an area-saving way (using few or even only one Atom). In contrast, if a SI

is called quite frequently, its implementation should be as time-efficient as possible (us-

ing many Atoms). In [112] this concept has been demonstrated with the help of an H.264

video encoder whose major functional blocks are Motion Estimation (ME), Motion Com-

pensation (MC), Transform and Quantization (TQ), and Loop Filtering (LF). The size and

the execution time of these components differ significantly. While the MC implemen-

tation requires 199,812 Gate Equivalents (GE), it is only executed 17% of the time. In

contrast, the ME implementation only requires 27,438 GE, but it is executed 70% of the

time. To determine the best trade-off, the RISPP provides a theshold called Multiplication

factor (α) which determines the size of the reconfigurable area. If α = 1, the biggest func-

tional block exactly fits the reconfigurable area. If α < 1, the biggest functional block can
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be supported only partially. This means that it is devided into two (or even more) sub

modules which are loaded sequentially to the FPGA. Using this sub-partitioning or an

α > 1, the remaining space of the reconfigurable area can be used for prefetching Atoms

required fairly soon. Based on these technologies, a speedup of 26.6 could be achieved

compared to a General Purpose Processor. Futhermore, the speedup was 1.24 compared

to other Reconfigurable Processors specialized for an H.264 video encoder [113].

3.2.5 WARP

The WARP processor architecture focuses less on the design of the FPGA and more on an

automated run-time generation of RFUs. Unlike other approaches, no special compiler is

used. Instead, a WARP processor operates on a standard binary. It dynamically detects

the binary’s critical regions, reimplements those regions as RFUs, and replaces each crit-

ical software region by a call of the corresponding RFU. As shown in figure 3.7, a WARP

Figure 3.7: Overview over the WARP architecture [114]

processor consists of a General Purpose Processor (GPP), an on-chip profiler (responsi-

ble for the detection of the critical regions), an on-chip computer-aided design (CAD)

module and an FPGA. The CAD is the most outstanding part of the WARP architecture

since it realizes the translation from software binaries to hardware including synthesis,

placement and routing at run-time [115]. The efficient realization of this approach is

a very ambitious aim since even the automated generation of well designed hardware

from software at compile-time is a problem still not sufficiently solved (see chapter 3.3).

However, in [116] an average speedup of 6.3 compared to a simple GPP implementation

has been measured. Furthermore, in [114] an average power reduction of 74% has been

achieved, based on the WARP processor architecture.

67



State of the Art

3.3 From Software to Hardware

Nowadays, high performance computing (HPC) changes significantly. In former times

HPC programmers could rely on new processors to get performance improvements with-

out changing the existing code. This is no longer true since today’s processor generations

are characterized more by the number of their cores than by the speed of an individ-

ual core. Thus, formerly single-threaded code has to be transformed into multithreaded

code which is using the given number of processor cores as efficiently as possible. Fur-

thermore, today the costs of a computing center performing HPC are mainly determined

by its energy requirements. Therefore FPGA based co-processors attracted notice. The

FPGA’s intrinsic parallelism makes it possible to achieve high performance with a much

lower energy consumption compared to CPUs. Thereby, a very important aspect is the

reconfigurability of FPGAs which makes it possible to adapt the functionality of the co-

processor to the current needs (as shown in chapter 3.2).

A consequence of this new trend is that many research groups and IT companies are

porting formerly single-threaded software to concurrent hardware. Thereby a huge hin-

drance is the fact that programming FPGAs has to be done on register transfer level

(RTL), which requires skills and techniques outside the expertise of most HPC develop-

ers, who typically use languages such as C++ or Java. Therefore, several research groups

are looking forward to create a compiler which automatically translates ordinary C, C++

or Java code to VHDL or Verilog [117].

The topic of translating software to hardware can be seen in two different ways: top-

down and bottom-up. The top-down view follows the reasoning above, coming from a

top-level description of the algorithm (e.g. in C++) and trying to generate efficient hard-

ware with as few changes as possible to the original code. In contrast, the bottom-up

approach results from the point of view of hardware developers who want to improve

their productivity. Here, every language construct that is able to improve the perfor-

mance of the generated hardware is welcome, even if it turns a high level language like

C into something common software developers are not familiar with. Typical examples

for such additional language constructs are the par and the delay statement in Handel-C

[118], which are used to explicitly describe parallelism and clock cycle delays.

Although the two approaches are quite different, both have to face the same principal

problems. The biggest challenges are concurrency and timing [119]. In typical HDLs like

VHDL and Verilog, processes, which run in parallel and whose timing is precisely deter-

mined (depending on a given clock), are used. In typical software languages like C or

Java, such constructs have no real counterpart. Even though modern software languages

make use of parallelism (in the form of multithreading), they do not provide any con-

struct to define an exact chronological correlation between the threads. It is the scheduler

provided by the underlying operating system that decides which thread is executed at

which time. So, to translate software to hardware, the compiler has to analyze the soft-

ware code and to find sequential-written software constructs which can be executed in

parallel. For this, methods like data path analysis, pipelining, Loop Unrolling and Loop
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Shifting are used. Following the top-down approach, the compiler has to do this by it-

self without any help from the programmer. In contrast, bottom-up oriented languages

provide additional constructs which shall be used to help the compiler make the right

decisions.

Figure 3.8: Loop Unrolling Example [120]

3.3.1 Code Conversion

The most common method to enhance the performance of automatically generated hard-

ware is Loop Unrolling. At this, the body of the loop is duplicated multiple times to en-

able additional parallelizations between consecutive loop iterations. Figure 3.8 illustrates

this method. The original loop requires approximately 32 · 4 = 128 clock cycles (ignor-

ing the initialization part). In contrast, the loop unrolled once requires just 16 · 6 = 96

clock cycles. This is caused by the fact that the increment of the iterator i and the loading

of x[i+1] and z[i+1] belonging to the second command (q+=x[i+1]*z[i+1]) can be done in

parallel to the multiplication belonging to the first command (q+=x[i]*z[i]). Without Loop

Unrolling, the compiler would not be able to detect this chance of parallelization.

However, Loop Unrolling also comes with two drawbacks. First, the number of per-

formed iterations must be known at compile time. Otherwise Loop Unrolling is not pos-

sible. Secondly, a maximal unrolling does not always lead to the best performance since

Loop Unrolling increases the delay of the critical path (and thus may decrease the max-

imum possible clock rate). Furthermore, it increases the size of the data flow controller,

which can also lead to a lower clock rate. Thus, in [120] the authors present an algorithm

to determine the optimal unrolling factor without the need for an exhaustive synthesis.

Their estimated delays for several unroll factors differ from the actual delay by just about

7%. The estimation process needed less than 5 minutes — while the synthesis times ex-

ceeded 6 hours for some code examples.
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Figure 3.9: Loop Shifting Example [121]

In [121] a further optimization method regarding loops is presented: Loop Shifting

— which means moving a function from the beginning of the loop body to its end for

eliminating data dependencies. Figure 3.9 illustrates such a Loop Shifting based on the

MOLEN machine organization (see chapter 3.2.3). Function f1 is executed in hardware

by the CCU while function f2 is executed in software on the GPP. Without Loop Shift-

ing, the u instances of f1 can be executed in parallel, but due to the data dependencies

between f1[i] and f2[i], the execution of f2 cannot start before f1 has finished. Using Loop

Shifting, f1[i] is always executed one iteration before f2[i]. Hence, the GPP and the CCU

can calculate in parallel (namely f1[i+1] and f2[i]). To get experimental results, the DCT6

of the MPEG-2 algorithm has been implemented. Based on Loop Shifting, a speedup of

19.65 using an unrolling factor of 8 could be achieved, while without Loop Shifting even

an unrolling factor of 48 only led to a speedup of 17.71.

Loop Unrolling does not only come with advantages but also leads to a significantly

higher resource consumption. Therefore the synthesis tool often has to find a trade-off

between performance and area. At this, a good control value is the already presented

unrolling factor. Beyond that, for very big components (such as multipliers) it can make

sense to additionally insert Data Path Merging, which means that a particular component

is used in two (or even more) independent data paths at different points in time [123]

(see figure 3.10). To keep the independence, multiplexers are added. In [124] the authors

could produce circuits which are 85.33% smaller than those synthesized by integer linear

programming approaches which do not use Datapath Merging.

6Discrete Cosine Transformation
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Figure 3.10: Datapath Merging example [122]

Further problems regarding the translation from C-like languages to hardware are re-

cursions (which usually require a stack) and pointer-arithmetic. A stack and free pointer-

arithmetic both rely on a memory implementation, which normally represents a bot-

tle neck. Therefore SystemC [125], Handel-C [118], HardwareC [126], SpecC [127] and

other nameable C-like languages do not support recursions and pointer-arithmetic at

all. Regarding the top-down approach, this is a problem since it makes C-code which uses

pointer-arithmetic or recursions unsynthesizable. Due to this, in [128] the authors present

a method for mapping recursive functions to reconfigurable hardware without the use of

a stack — instead the recursion is unrolled using DPR. The compiler C2Verilog [129]

supports pointers, recursion and even dynamic memory allocation, which makes it very

powerful. Unfortunately, all these constructs have a negative impact on the performance

of the generated hardware.

3.3.2 ROCCC

In [130] the authors present ROCCC (Riverside Optimizing Configurable Computing

Compiler), a compiler designed to generate VHDL from C source code. In principle it

follows the top-down approach but it does not support pointers which cannot be stati-

cally unaliased and recursion. The ROCCC compiler makes use of full Loop Unrolling,

loop-mining and loop fusion. Furthermore, function calls are either inlined or whenever

possible made into a lookup table. To translate C to VHDL, the data flow is analyzed

and parted into soft nodes and hard nodes of a control flow graph (CFG). Each soft node

contains commands that can be executed in parallel. To enable pipelining, branches are

synchronized via additional delay elements which are placed in so called hard nodes (see

figure 3.11). Afterwards, ROCCC generates one VHDL component for each node.
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Figure 3.11: ROCCC Example [130] (the pointers *x3 and *x4 are needed to support the usage of

two return values — they can be statically unaliased and thus are supported by ROCCC)

To evaluate ROCCC, Xilinx IP cores (coming with Xilinx ISE 5.1) have been compared

to the generated hardware. The results show that the speed of the generated hardware

is within 10% while the consumed area is larger by a factor of 2 to 3. For some examples

(e.g. an 8-bit unsigned divider or a 24-bit square root calculator), the generated hardware

is even faster than the corresponding Xilinx IP core.

3.3.3 CHiMPS

CHiMPS (Compiling High-Level Languages into Massively Pipelined Systems) is a com-

piler that inputs generic ANSI-C code and targets a hybrid CPU-FPGA architecture (com-

parable to MOLEN). For this, it automatically generates VHDL code which represents a

customized, parallel FPGA accelerator. It has been developed to provide HPC develop-

ers an easy and familiar way to accelerating their applications and is therefore one of

the strictest representatives of the top-down approach. Each ANSI-C instruction is first

translated into an assembly-like language called CTL (CHiMPS Target Language) which

consists of 42 instruction blocks. Most of these blocks are comparable to usual assembler

instructions. Additional instruction blocks have been introduced to handle dataflow-

specific commands like if/else, for-loops and break. Figure 3.12 illustrates the conversion

from C code to CTL and the translation from CTL to VHDL blocks. Please note the inser-

tion of a FIFO to synchronize the data paths and thus to enable pipelining.

A unique feature of CHiMPS is its memory structure. Instead of one monolithic cache

many small individual caches are created. Thereby CHiMPS does not waste resources

trying to keep these caches coherent, but only instantiates a local cache if the correspond-

ing memory area is used by just one single function. Thus, the data inside these local

caches is solely used by one hardware component and therefore does not need to be kept

coherent. CHiMPS creates a separate cache for any unique range of memory. To help

72



3.3 From Software to Hardware

Figure 3.12: CHiMPS Example [117]

the compiler recognize such unique ranges, the keyword restrict can be used. It has the

same meaning as in ANSI-C and is therefore no real amendment to the ANSI-C standard.

Nevertheless, it has a much greater influence on the performance regarding synthesis

than regarding a usual GPP compiler. In [117] CHiMPS has been used to implement five

benchmarks which are typical for HPC: Black-Scholes, Smith-Waterman, immul, sobol and

swm. The code of these benchmarks was modified in two ways. First, the keyword restrict

has been added, wherever possible. Second, the functions which should be executed on

the FPGA have been selected manually (using a #pragma statement). With only these

minor source code modifications a speedup from 2.8 to 36.9 has been achieved.

Although CHiMPS is a very strict representative of the top-down approach and in [117]

the authors attach great importance to the fact that the compiler inputs usual ANSI-C,

CHiMPS provides several #pragma statements to convey additional information to the

compiler:

Cache parameters can be used to specify configuration parameters regarding the caches

to optimize the resource consumption and the performance. Developers can specify

cache size, line length, associativity, number of banks and cache type (read-only, write-

only, read-write).

Separate memory spaces are used to direct CHiMPS to use embedded SRAM memories

(e.g. BRAMs) instead of external system memory.

Implementation style forces CHiMPS to use Datapath Merging. Furthermore it can be

used to specify sections of code which should be implemented as software on a small

embedded processor (e.g. Xilinx MicroBlaze).

Loop unrolling is used to engage and control Loop Unrolling.

Manual bit-width specification trims the size of the resulting bit-vectors.

Using these additional #pragma statements a speedup of 119.7 instead of 17.6 without the

pragmas has been achieved on Black-Scholes.
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3.3.4 Handel-C

Handel-C is one of the best-known representatives of the bottom-up approach. It uses

much of the syntax of conventional ANSI-C, but introduces a powerful set of commands

to manually control concurrency and timing. The Handel-C compiler does not search

for or introduce concurrency by itself — instead the wished parallelism has to be ex-

pressed explicitly by the programmer. Handel-C clearly has not been designed to enable

the translation of conventional ANSI-C to hardware, but to provide hardware develop-

ers a standardized and productive way to describe hardware. Thus, Handel-C is subject

to some strict restrictions: floating-point types are not supported at all, recursion is not

allowed, pointers which cannot be statically unaliased are not supported, functions can

only be called in expression statements, parameter lists of variable length are not allowed,

the main() function takes no arguments and has no return value, empty loops are not al-

lowed, there are no unions, and dynamic memory allocation (via malloc or free) is not

supported. However, the biggest difference to ANSI-C is the explicit expression of con-

currency, based on the keyword par. Figure 3.13 illustrates a simple Handel-C program.

void main(void) {

int 6 a; int 6 b;

int 7 s; int 12 p;

a = a + b;

b = 2 * b;

par {

s = a + b;

p = a * b;

}

}

Figure 3.13: Handel-C Example

Please note that integers are not limited to a specific width. If a variable is defined, its

size should be specified as well. In figure 3.13 a and b have a size of 6 bit, s has a size

of 7 bit, and p has a size of 12 bit. This way developers can keep the resource consump-

tion minimal. The command a=a+b is executed first. Afterwards the command b=2*b is

executed. Third, the commands s=a+b and p=a*b are executed in parallel. Sequential and

parallel blocks can be nested. A sequential block is tagged with seq.

Functions are not allowed to be called in parallel since they correspond to a shared

piece of hardware. Thus, Datapath Merging can be forced by using functions. To avoid

such a resource sharing, functions can be declared as inline.

For communication between branches of code executing in parallel, Handel-C provides

a special form of interface: channels. They are declared using the keyword chan. A

channel can be a simple register or even a fifo. Its depth is defined by the parameter

fifolength. Reading from a channel is done with the ?-operator. Writing to a channel can

be done with the !-operator (see figure 3.14).
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void main(void) {

unsigned 8 a;

unsigned 8 b;

chan ch with { fifolength =2 };

par {

seq {

a = a * 7;

ch ! a;

}

seq {

ch ? b;

b = b + 3;

}

}

}

Figure 3.14: Channels in Handel-C

The commands inside the two seq blocks are executed sequentially, but the two seq

blocks run in parallel to each other. First a=a*7 and ch?b are executed. ch?b blocks since

the channel ch is empty. Next, a is written to ch. After the channel has been filled, the

command ch?b can take the data out of the channel and continue. At last, b=b+3 is ex-

ecuted. Please note that if the channel is not empty and not full, it does not block and

therefore does provide the possibility to be written and read in parallel. Please further

note that this way channels can be used to synchronize independent branches (even if

they belong to independent clock domains).

Handel-C does not only express concurrency explicitly but also has a very straightfor-

ward way to express timing. Each assignment takes exactly 1 clock cycle. Everything

else takes place in the same clock cycle. Thus, the command x=((a+b)*(c+d)) is executed

in 1 clock cycle, while y=a+b; z=c+d; x=y*z takes 3 clock cycles. Although the Handel-C

Language Reference Manual states that this way “even the most complex expression can

be evaluated in a single clock cycle” [118], one should keep in mind that a too complex

expression will not get timing closure during synthesis and therefore will lead to invalid

hardware. Thus, it is the developer who has to decide which expressions lead to efficient

hardware and which expressions exceed the capabilities of the target architecture. The

compiler performs no timing optimizations at all. Beyond that, it is the developer who is

in charge of avoiding combinational loops. Empty loops and empty branches are not al-

lowed since the loop header and the branch control do not take any clock cycles (because

they are no assignments). Due to this, Handel-C provides the delay statement, which does

nothing else but take one clock cycle. It can be used to avoid empty loops or branches

(see figure 3.15).

75



State of the Art

while (x!=3)

{

if (y>z) {

a++;

} else {

delay; // Avoids a possible combinational loop

}

}

Figure 3.15: Timing control via delay in Handel-C

3.3.5 SystemC

Over the last years, SystemC became the leading approach to system-level modeling.

The fundamental motivation of SystemC is to provide a modeling framework in which

high level functional models and detailed register-transfer level implementations can be

described in one single language [125]. SystemC supports several models of computa-

tion like RTL modeling, behavioral modeling, timed functional modeling and untimed

functional modeling. The idea is to give developers the opportunity to start the system

design at a very high level, where even the separation between hardware and software

is not defined, and to refine the design until it becomes synthesizable. In the early stages

of a hardware design, this allows quick simulations and therefore quick decisions. Fur-

thermore it allows the re-use of components described on a very high level and there-

fore enhances the design space exploration productivity. SystemC does not focus on the

translation of conventional C-code to hardware but introduces special macros and objects

which shall be used to describe the target design. Hence, SystemC is a representative of

the bottom-up approach.

SystemC is an extension of C++ and uses macros and inheritance to provide the devel-

oper programming constructs to describe the design. To be able to use these constructs,

every file should start with #include “systemc”. All functionality takes place in SystemC

modules named sc_module (see figure 3.16). These modules are objects with a constructor

and several functions which contain the actual functionality. To comply with the SystemC

standard, the SC_CTOR macro has to be used when declaring or defining a constructor

of a module. The name of the module class being constructed has to be passed to the

macro as the argument. The most important task of the constructor is to specify the type

of the functions. SystemC knows 3 different types: SC_METHOD, SC_THREAD, and

SC_CTHREAD [131].
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# include "systemc"

SC_MODULE(M)

{

sc_in <bool > clk;

sc_in <unsigned > a;

sc_in <unsigned > b;

SC_CTOR(M)

{

SC_METHOD(a_method );

sensitive << a << b;

SC_THREAD(a_thread );

sensitive << a << clk.neg ();

SC_CTHREAD(a_cthread , clk.pos ());

}

void a_method ();

void a_thread ();

void a_cthread ();

}

Figure 3.16: Modules in SystemC

Functions of the type SC_METHOD are called method processes. They are comparable

to processes in VHDL and therefore require a sensitivity list which is represented by the

subsequent expression sensitive « SIG1 « SIG2 « ... « SIGn. A method process is called

every time a variable of the sensitivity list changes its content. It is always executed from

beginning to end.

Functions of the type SC_THREAD are called thread processes. Like method processes,

they require a subsequent sensitivity list. In contrast to method processes, they are called

immediately (independent from the sensitivity list) and they are called only once. Inside a

thread process, wait() can be used to make the process wait until a signal of the sensitivity

list changes. Developers can include an infinite loop containing wait() within such a

method to prevent the process from terminating.

Functions of the type SC_CTHREAD are called clocked thread processes. In principle,

they work exactly like thread processes, but they are only sensitive to a specific edge (ris-

ing or falling) of a single (clock) signal which is not specified in a subsequent sensitivity

list but is delivered as the second argument: SC_THREAD(methodname, SIG.pos()).

In the following the focus is on the different models of computation (MOC).
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RTL Modeling

SystemC’s register-transfer level MOC is in many ways comparable to conventional HDLs

like VHDL or Verilog. It only makes use of method processes which are a close match to

VHDL’s processes. All communication between processes occurs through signals. The

processes themselves either represent sequential logic (in which case they are only sen-

sitive to a clock edge) or combinatorial logic (in which case they are sensitive to all their

inputs). Figure 3.17 opposes the implementation of a simple FSM in SystemC to the same

implementation in VHDL.

Figure 3.17: Implementation of a FSM in SystemC’s RTL MOC and in VHDL
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Behavioral Modeling

Behavioral modeling is the level at which the primary concern is the order of input and

output signals. In contrast, on RTL the designer must decide which states shall be used,

how one state transitions to another, and which operations take place in which state. In

a behavioral model the design is seen as a program flow. External behavior is defined by

the sequencing of input and output events, not by clock cycles. Nevertheless, a clock can

be used to keep the design synchronous. This behavioral clock should not be taken too

literally, since it is more of a synchronizing strobe signal than the real clock used in the

final hardware design. In particular, it is not possible to determine the exact timing (in

clock cycles) of a design solely based on the behavioral description.

Figure 3.18 illustrates the implementation of Euclid’s Algorithm as Behavioral SystemC.

SC_MODULE(euclid_gcd)

{

sc_in_clk CLOCK;

sc_in <unsigned > A, B;

sc_out <unsigned > C;

sc_out <bool > READY;

SC_CTOR(euclid_gcd)

{

SC_CTHREAD(compute , CLOCK.pos ());

}

void compute () {

unsigned tmp_a = 0, tmp_b;

while (true){

C.write(tmp_a );

READY.write(true);

wait ();

tmp_a = A.read ();

tmp_b = B.read ();

READY.write(false );

wait ();

while (tmp_b != 0){

unsigned r = tmp_a;

tmp_a = tmp_b;

r = r % tmp_b;

tmp_b = r;

}

}

}

Figure 3.18: Behavioral description of Euclid’s Algorithm in SystemC [125]
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The body of compute() is written just as it would be in a conventional software pro-

gramming language. For hardware synthesis the model has to be refined. The 3 com-

mand blocks have to be assigned to states of a FSM. Furthermore the while-loop has to

be represented by several FSM states (since it cannot be fully unrolled). At last, the line

r=r%tmp_b; could be changed to while(r>=tmp_b) r=r-tmp_b; to save resources.

Functional Modeling

In the early stages of a design process, hardware developers are only interested in de-

scribing the functionality of a system’s components. Details like timing, communication

protocols or even the partitioning into hardware and software shall be encapsulated at

this point. The aim is to create an executable specification which allows to verify the

correctness of the system design as early as possible. Avoiding implementation details

(like clocks) increases the re-usability of the specification and speeds up its simulation.

Delays can be emulated using wait(time, unit). Figure 3.19 illustrates the timed functional

description of an adder with a generic type T. If the line wait (200, SC_NS) is omitted, the

timed functional description becomes an untimed functional description which does not

make any assumptions regarding execution time.

template <class T> SC_MODULE(Adder)

{

sc_fifo_in <T> A, B;

sc_fifo_out <T> C;

SC_CTOR(Adder)

{

SC_THREAD(compute );

}

void compute () {

while (true) {

T data = A.read() + B. read ();

wait (200, SC_NS );

C.write(data);

}

}

}

Figure 3.19: Timed functional description of an adder in SystemC [125]

Refinement and Synthesizability

SystemC provides different MOCs to give hardware developers a chance to choose the

implementation granularity they need. Normally, creating a design in SystemC starts

with an untimed functional model of the system’s components. Here, the focus lies on the

principle functionality of these components and not on their concrete implementation.

However, after verifying the system design on such a high level, implementation details
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attract more and more notice. Finally, a synthesizable description of the system is needed.

This process of transitioning from an abstract model to a more detailed specification is

called refinement.

Refinement is a very challenging task demanding a deep understanding of the tar-

geted architectures, the implemented algorithms and the requirements of the application.

Which Loop Unrolling factor shall be chosen? What is the ideal trade-off between per-

formance, resource consumption and energy consumption? How does this influence fur-

ther optimization methods such as Datapath Merging? The answers to these questions

are as different as the possible target architectures (e.g. a wrist watch or a supercom-

puter cluster). Due to this, the refinement process is a task still a not fully automated.

In [16] the Open SystemC Initiative defines an official synthesizable subset, which can

be synthesized fully automatically. On page 50, it is stated that “SC_THREAD is non-

synthesizable”. SC_CTHREADs are synthesizable with reservations. SC_METHODs are

synthesizable as long as they do not contain any wait statement. Furthermore, they must

not contain any loop which is not unrollable. These restrictions limit SystemC’s offi-

cial synthesizable subset to a MOC on register-transfer level. As shown before (see fig-

ure 3.17), this MOC is quite similar to a hardware description in VHDL or Verilog. Due

to this, a common final refinement step is to rewrite the components in VHDL or Verilog,

where they can be implemented as efficiently as possible.

However, several industrial compilers focus on the extension of SystemC’s synthe-

sizable subset. Examples are Celoxica who provide the Agility Compiler which inputs

behavioral SystemC models [132], and Mentor Graphics who developed Catapult-C, a

compiler that produces RTL implementations from abstract specifications written in C++

or SystemC [133].

3.3.6 Conclusions

The high aim of high level synthesis (HLS) is to take ordinary C, C++ or Java code as

input and to generate resource efficient hardware with high performance. In search of

the best approach to do so, it became clear that the change from RTL to the algorithmic

level is a more smooth transition than a sharp break. Handel-C provides hardware de-

velopers with a good way to improve their productivity. Nevertheless, due to the explicit

expression of timing (in particular the delay statement) it is very close to the RTL. Other

languages like Transmogrifer-C [134], Streams-C [135] or Dime-C [136] are much closer

to the algorithmic level but do not support recursion, pointer-arithmetic and other soft-

ware constructs which hinder the generation of efficient hardware. In contrast, C2Verilog

focuses on the full translatability of ANSI-C code and does therefore support pointers,

recursion, dynamic memory allocation and other unruly software constructs — which

finally leads to a very bad performance. The same conclusion applies to Liquid Metal

[137], which is a project to translate usual Java code (including all its features) to FPGA

designs. Today’s best compromise seems to be SystemC which unites several modules of

computation in one language.
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A very important but difficult to answer question is how far the refinement process is

automated and how good the resulting generated hardware is. Looking at the promotion

of several industrial products or at the achieved speed-up in several academic publica-

tions, one might consider the problem solved. Unfortunately, the outstanding results of

the presented compilers often depend on the parallelization-aware implementation of

the original software program [138]. For example, in the introduction of [117] the au-

thors state that CHiMPS is a compiler which requires neither abandoning conventional

programming abstractions nor changing the original code. Although this is fully true,

the presented speed-up could only be reached by “minor source code modifications”.

These minor modifications include the addition of the keyword restrict and the insertion

of pragmas to manually select the functions to be executed on the FPGA. While the first

change really can be called minor (and maybe could even be automated), the second one

requires an extensive design space exploration, which significantly stretches the meaning

of the word “minor”.

The conclusion is that many important break-throughs regarding HLS already took

place but the problem of translating software to hardware turned out to be much more

complex than initially expected. Nevertheless, today’s HLS tools, languages and frame-

works already help to significantly increase the productivity of hardware developers and

to improve the performance of HPC applications, using FPGA based accelerators. So,

HLS remains a future trend — which already has been proven to be very useful.
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3.4 Frameworks combining DPR and HLS

In the following three frameworks are presented which are close to the approach of this

PhD thesis since they address both DPR and HLS.

3.4.1 JHDL

JHDL (Just another Hardware Description Language) is an HDL that allows program-

mers to describe reconfigurable systems in a Java-like style. It has been developed at the

Brigham Young University and comes with a simulator (which executes the sources in a

JVM7) and a compiler which translates JHDL to EDIF8. According to [139] the goals of

the JHDL project are:

1. Usage of Java without any language extensions

2. Independence from the target architecture

3. Language support of DPR

4. Usage of the same source code for both simulation and compilation

JHDL uses the Java features encapsulation and inheritance to provide the developer pro-

gramming constructs to describe the design. Thus, the JHDL sources are executable with

any standard Java 1.1 distribution. Nevertheless one should not mix up JHDL and ordi-

nary Java, since in JHDL one has to use special classes which derive from the given class

Logic and which contain special methods to write synthesizable code. Due to this, JHDL

is a representative of the bottom-up approach presented in chapter 3.3. Figure 3.20 shows

a full-adder implementation taken from the JHDL online tutorial [140].

First of all, to be able to use JHDL classes, every file should start with import byucc.jhdl.base.*;

and import byucc.jhdl.Logic.*;. All classes describing hardware have to derive from the

class Logic. Input ports and output ports of the class have to be declared in the static

variable cell_interface. The line in (“a”, 1) describes an input port named “a” which is 1 bit

wide. Furthermore, the input and output ports have to be connected to Wires that were

passed to the constructor via connect. Now, one can use methods like or, and or xor to rep-

resent the logical function of the class. Of course, more complex structures like for-loops

can also be used.

7Java Virtual Machine
8Electronic Design Interchange Format — a vendor neutral format representing netlists and schematics (the

result of synthesis)
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import byucc.jhdl.base .*;

import byucc.jhdl.Logic .*;

public class FullAdder extends Logic {

public static CellInterface [] cell_interface = {

in ("a", 1), in ("b", 1), in ("cin", 1), out ("sum", 1), out ("cout", 1)

};

public FullAdder{Node parent , Wire a, Wire b, Wire cin , Wire sum , Wire cout} {

super(parent );

connect("a", a); connect("b", b); connect("cin", cin);

connect("sum", sum); connect("cout", cout);

or_o (and(a,b), and(a,cin), and(b,cin), cout);

xor_o (a,b,cin ,sum);

}

}

Figure 3.20: JHDL implementation of a full-adder [140]

DPR in JHDL

In [139] the authors clearly state that JHDL shall “support run-time and partial recon-

figuration”. To do so, the class PRSocket has been introduced, which makes it possible to

describe the runtime exchange of one class by another. The list of configurations is encap-

sulated in an object named ConfigGroup. Figure 3.21 illustrates the usage of ConfigGroup

to describe the alternate loading of 3 different classes.

class myConfigGroup extends ConfigGroup {

Node getNewCircuit (int id , PRSocket sock){

switch (id){

case 1:

return new Ciruit1 (...);

case 2:

return new Ciruit2 (...);

case 3:

return new Ciruit3 (...);

}

}

}

Figure 3.21: JHDL description of DPR [139]

Problems

There are several serious problems regarding JHDL. First of all it is not really under-

standable why quite awkward constructs like the static array of type CellInterface[] and

the corresponding connect calls have to be used. Encapsulation and inheritance should

make it possible to hide such linking details from the developer.
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Secondly, the extensive usage of constructs like or and xor guides the developer to

design on the logic level instead of designing on the register transfer level — which is a

step backwards. According to the current work of the Brigham Young University [141]

the implementation focus seems to lie more on the optimization of EDIF netlists than on

the creation of a high level synthesis language.

Finally and most importantly, there is no DPR support at all, regarding synthesis. The

JHDL compiler is open source and can therefore be downloaded and analyzed. A closer

look at the compiler sources reveals that the synthesis toolflow is not able to describe

runtime reconfiguration. The partitioning of the chip and the generation of a reconfig-

uration controller are not implemented at all. Furthermore, the compiler lacks a DPR

aware toolflow such as presented in figure 2.13. In conclusion, the claim that JHDL “has

been designed to directly support run-time reconfiguration, both partial and global” [139]

is not comprehensible. Of course, JHDL can be used to create EDIFs which serve as dy-

namic modules in a DPR system, but this is also true for components described in ordi-

nary VHDL or Verilog.

One has thus to conclude that JHDL comes with many good aims and ideas to combine

DPR and HLS but fails to present a compiler that keeps up with the high goals.

3.4.2 OSSS+R

OSSS+R is a SystemC based software library. It has been designed to support both simu-

lation and synthesis of runtime reconfigurable hardware. OSSS (Oldenburg System Syn-

thesis Subset) is a design flow for simulation and synthesis of a given SystemC subset

[142]. OSSS+R augments this design flow with the support for DPR (“+R” stands for

“plus runtime-reconfiguration”). It has been developed within the ANDRES9 project

[143].

Figure 3.22: OSSS+R polymorphic class hierarchy [144]

The essential idea of OSSS is to enhance the usage of object-oriented C++ features such

as classes, objects and inheritance more than it is typical for native SystemC. OSSS+R

extends this approach by adding polymorphism to describe partial reconfigurability (see

figure 3.22). The basic idea is to assign class A to a generic pointer — and later to assign

class B to the same pointer. The change from A to B denotes the change from partial

configuration a to partial configuration b, which is realized using DPR. Thereby class A

serves as the source of configuration a and class B serves as the source of configuration b.

9Analysis and Design of run-time Reconfigurable, heterogeneous Systems
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The corresponding reconfigurable area which is used by a and b is called Recon-Object.

Figure 3.23 illustrates the description of the Recon-Object decoder.

SC_MODULE(DUT)

{

...

osss:: osss_recon <PlayerBase <Memory >> decoder;

...

SC_CTOR(DUT): decoder("decoder_module")

{

decoder.clock_port(clock );

decoder.reset_port(reset );

SC_CTHREAD(core , clock );

reset_signal_is (reset , true);

osss_uses(decoder );

}

void core () {

while (true) {

decoder = MP3Player <Memory >();

osss_call(decoder)->decode(input_buffer , output_buffer );

decoder = OggVorbisPlayer <Memory >();

osss_call(decoder)->decode(input_buffer , output_buffer );

decoder = AACPlayer <Memory >();

osss_call(decoder)->decode(input_buffer , output_buffer );

}

}

};

Figure 3.23: OSSS+R description of runtime-reconfiguration [144]

The line osss::osss_recon<PlayerBase<Memory» decoder declares decoder to be a Recon-

Object. Since every Recon-Object needs a clock and a reset signal, the corresponding

ports of the module DUT are bound to decoder. The method core() is a SC_CTHREAD.

Every process that is accessing a Recon-Object must be registered to it via osss_uses. The

process core consecutively assigns an MP3Player, an OggVorbisPlayer and an AACPlayer

object to decoder. Every decoder=... denotes a dynamic partial reconfiguration.

In contrast to JHDL, OSSS+R comes with a completely working synthesis flow which

fully supports DPR. The OSSS+R models are synthesized to hardware using the synthe-

sis tool Fossy [145]. The partial reconfiguration has been realized based on Xilinx’ PREA

tools (see chapter 2.5). In [146] an evaluation of OSSS+R is presented, based on the cryp-

tographic algorithms Triple DES, Blowfish and AES. Using DPR, these benchmarks have

been loaded alternatively to a Virtex-4 LX25 residing on a Xilinx ML401 development

board. The reconfiguration controller has been designed manually, using the FPGA’s

ICAP with a maximum bandwidth of roughly 600 Mb/sec. The partial bitstreams had a

size of 159 kB to 203 kB. The dynamic partial reconfiguration took 199 to 254 microsec-

onds. The authors of [146] conclude that “the overall implementation cost is acceptable

given the potential save of FPGA area through the use of DPR”.
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However, this most up-to-date evaluation of OSSS+R comes with a huge drawback:

the hardware modules used for DPR are not synthesized using the OSSS+R toolflow, but

“have been injected manually as HDL IP blocks” [146]. Strictly speaking, this reduces the

results to an evaluation of the manually implemented reconfiguration controller — thus,

unfortunately they say nothing about the efficiency of the OSSS+R compiler.

3.4.3 MORPHEUS

MORPHEUS stands for Multi-purpOse dynamically Reconfigurable Platform for inten-

sive HEterogeneoUS processing. It has been developed by a consortium consisting of 18

partners throughout Europe [147]. MORPHEUS is an integrated design toolset address-

ing both HLS and DPR. Thereby, MORPHEUS focuses on three different target architec-

tures:

• XPP-III [148] — a coarse grain reconfigurable array used for algorithms with mostly

deterministic control and dataflow

• PiCoGA (Pipelined, Configurable Gate-Array) [149] — a medium-grained reconfi-

gurable array consisting of 4-bit ALUs

• FlexEOS [150] — a dynamically reconfigurable FPGA

All three processing units are combined on the MORPHEUS chip, which furthermore

contains an NoC to let the three units communicate with each other, and an ARM 926EJ-S

embedded RISC processor which handles control, synchronization, and reconfiguration.

Figure 3.24 illustrates the MORPHEUS architecture.

Figure 3.24: MORPHEUS architecture[147]

Originally, each of the three target architectures is described in its own language. For

example, programs for the PiCoGA are written in C or GriffyC, while the design for the

FPGA is described in VHDL or Verilog. Furthermore, each target architecture comes with

its own compiler. The aim of the MORPHEUS project is to hide these differences from
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the developer and to make it possible to describe the MORPHEUS chip with one single

language: C code that is enriched with pragmas which allow the developer to determine

on which architecture the functions shall be executed [151]. For the realization of the soft-

ware/hardware interaction, the MOLEN compiler is used (see chapter 3.2.3). Functions

(that shall be accelerated) are loaded to one of the reconfigurable target architectures on

demand. Figure 3.25 shows a C source code example.

# pragma MOLEN_FUNCTION 140

void the_acc_func (unsigned int *in , unsigned int *out){

return;

}

unsigned int test_picoga (){

the_acc_func(data_in , data_out );

data_reorg ();

data_compare ();

return 1;

}

Figure 3.25: MORPHEUS: C code with pragmas [152]

In [153] the MORPHEUS project has been evaluated. The MOPHEUS chip has suc-

cessfully been designed and manufactured. Furthermore, the compiler has been proven

to work correctly. For evaluation, a video streaming algorithm has been implemented.

MORPHEUS could reach 90 GOPS (Giga Operations Per Second) with an energy con-

sumption of 20 GOPS/W. For comparison: an ARM9 processor reaches 0.35 GOPS with

1 GOPS/W, the Phillips Xetal II reaches 107 GOPS with 170 GOPS/W.
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3.5 Summary

Already in the 1980s, partial reconfiguration was supported by Xilinx’s FPGAs [154].

However, it had the reputation of being a cumbersome technology and of lacking real

world applications. Therefore, industry always hesitated to use it in production systems.

Nevertheless, academic research groups focused on dynamic partial reconfiguration and

the development of better tools and/or the improvement of the performance of DPR. Se-

tups like the Erlangen Slot Machine prove that it is possible to utilize such a profoundly

dynamic element in combination with a well standardized system architecture. Tech-

nologies like bitstream compression and overclocking led to a significant decrease of the

reconfiguration times. Finally, cooperations with the automotive industry proved that

DPR is indeed able to improve real world applications.

Due to this, today the reputation of partial reconfiguration is undergoing a radical

change. This is underlined by the official support of DPR by Xilinx’s ISE 12 (no ad-

ditional patch is necessary any longer) [155], the support of DPR on Xilinx’s low-cost

Spartan-6 series [24] and the announcement of Altera to support DPR[156] (while in the

last years Altera was one of the most prominent doubters regarding DPR). Furthermore

Xilinx announced the production of an “Extensible Processing Platform” which pairs an

ARM processor with programmable elements (FPGAs) [157]. If and how partial recon-

figuration will be used in this setup is not clear today, but the design presented by Xilinx

is very similar to the MOLEN polymorphic processor and it would be astonishing if DPR

would not be utilized at all. In conclusion, nowadays dynamic partial reconfiguration is

changing from a purely academic topic to a standard solution used in industry.

Having said that, it is important to underline that there is still much work to be done.

Especially the combination of DPR and HLS is still in its infancy. This is caused by two

facts:

First, HLS itself is still an unsolved problem. Although many milestones have been

reached, the final break-through is still pending. The reason is that HLS is located in

the gray area between syntax and semantics: it highly depends on the surrounding con-

ditions which implementation is the best. However, the high acceptance of high level

languages such as SystemC and the continuously improving performance of HLS tools

like Catapult-C suggest that HLS is the programming paradigm of the future. Thus, try-

ing to combine DPR and HLS seems to be worth the trouble.

Second, all language extensions which focus on the combination of DPR and HLS treat

runtime-reconfiguration as a foreign element which has to be introduced using quite un-

usual constructs. In JHDL, it is a class deriving from ConfigGroup which has to make use

of the class PRSocket and a fixed switch construct. In OSSS+R, it is the class osss_recon and

the method osss_uses which have to be used to denote DPR. All these approaches lack an

internal language support of DPR which only makes use of well known language con-

structs. In other words: DPR is introduced subsequently instead of being a natural part

of the language.
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In chapter 3 several approaches regarding DPR1, HLS2, and the combination of both have

been presented. It has been shown that in the recent years, many notable research groups

focused on DPR. As a consequence, partial reconfiguration turned from a fancy academic

topic to a serious technology ready to be used by industry. This also applies to HLS. For

example, SystemC evolved from a small open-source initiative to the standard language

used for hardware design on system level and for the corresponding refinement process.

However, the combination of both is only at the beginning yet. A few projects (like JHDL

and OSSS+R) already focused on it but all of them introduced DPR subsequently into an

existing language, using quite unusual constructs.

The aim of this thesis is to describe DPR, solely using language constructs which are

already well-known to software-developers. In other words: DPR shall be described,

following the top-down approach presented in chapter 3.3. The resulting questions are:

• Which software language constructs already exist that can be used to express dy-

namic partial reconfiguration?

• Which language should be used by the Framework?

4.1 Object-Oriented Hardware Description

Before the above-mentioned questions shall be answered, the focus is on a second aspect

regarding HLS, which has a strong influence on the choice of the language: program-

ming paradigms. The choice of a paradigm determines the concepts and abstractions

used to represent the elements of a program. The three most important programming

paradigms are: functional (e.g. Haskell, Scala, Makefile), procedural (e.g. COBOL, C),

and object-oriented (e.g. C++, Java). As a first step regarding the development of the

Framework, the typical structure and behavior of reconfigurable hardware has been an-

alyzed. Thereby it turned out that the best way to describe such hardware is to make use

of the object-oriented paradigm combined with multi-threading. In the following part

this conclusion shall be clarified.

1Dynamic Partial Reconfiguration
2High Level Synthesis
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Conventional HDLs

Conventional hardware description languages like VHDL or Verilog already describe

hardware in a way which is close to the object-oriented paradigm. Although data abstrac-

tion, inheritance, and polymorphism cannot be found in these HDLs, the basic principles

encapsulation, modularity and instantiation are fully supported. Due to this, VHDL com-

ponents can be compared to classes. The corresponding in- and out-ports are comparable

to set- and get-methods in object-oriented languages. Signals defined for a component are

encapsulated and only visible inside this entity. Well-designed VHDL code is not real-

ized using one single entity but via a structural separation into multiple subcomponents

— in short: using modularization. Finally, components have to be instantiated (once or

even multiple times) to be able to be used.

The Target Architecture

The main elements of FPGAs are look-up tables (LUTs), multiplexers and flip-flops (see

chapter 2.1). These elements can be seen as small objects with a simple state (if any)

and provide the surrounding system with simple methods. During synthesis these small

objects are aggregated to bigger objects, like adders or multipliers, which have a more

complex state and provide more complex methods. These objects in turn are aggregated

to even bigger objects, representing the system components (such as an I2C controller or

a bus). Finally, one can see the whole FPGA as one big object, providing its functionality

to the outer world. The distinctive feature of FPGAs (in contrast to common software) is

that every object (even the smallest) is running concurrently. In software projects based

on C++ or Java, such a design method would be quite unusual since here the processing

units are just a few (or even only one) processor cores executing the program. Thus, such

a high parallelism would not really be realizable by these processing units and therefore

would only come with disadvantages like a higher synchronization effort. Nevertheless,

the multi-threading constructs already existing in object-oriented languages can be used

to describe a system where all objects are running concurrently, without overstretching

the language specification. In other words: the description of multiparallel hardware lies

within the boundaries and abilities of today’s object-oriented languages — for hardware

description they only have to be used the right (highly concurrent) way.

To demonstrate the similarity between FPGAs and object-oriented programming, fig-

ure 4.1 presents a multi-threaded object-oriented representation of LUTs and flip-flops.

First of all, an object called ParObj is created. It is deriving from Thread and calls the

method calc() continuously. calc() contains the actual functionality. To represent the char-

acteristics of hardware (continuous execution), the calc() method runs in a loop. It must

therefore not be mistaken for the run() method in Java threads that ends after one exe-

cution. All objects representing a piece of hardware derive from ParObj. The object LUT

contains an internal array (SRAM) storing 16 different values. The value of the output

o depends on the applied address a. The object FF represents a flip-flop, which is trig-
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Figure 4.1: UML representation of an FPGA’s basic elements

gered by a rising edge on the variable Clock (for edge-detection, the auxiliary variable oc

is used). If a rising edge is detected, Q gets the value of D.

After defining these basic elements, LUT and FF can be aggregated to logic functions

like AND and XOR, which finally can be used to build a more complex object such as

a halfadder (see figure 4.2) or a finite state machine. This object-oriented way of object

description and aggregation exactly matches the way LUTs and flip-flops are intercon-

nected inside an FPGA by common synthesis tools.

Figure 4.2: UML representation of a Halfadder
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Software’s Paradigm Shift

Nowadays, hardware developers have to face both hardware and software development

since modern FPGAs are big enough to contain embedded processors or even whole pro-

cessor systems (which is called SoC — System on Chip). The software running on these

embedded processors is underlying particular constraints coming with the surrounding

architecture. It has to be as simple as possible, as small as possible, as fast as possible

and as close as possible to the underlying hardware. Scalability, modularity, abstraction,

compatibility and convenience often are no criteria at all. Due to this, in many cases

embedded processors still are programmed in simple C or even in Assembly Code.

In contrast, in the last 20 years software development regarding desktop computers

as well as high-performance computing has been undergoing a radical paradigm shift.

Famous applications like Open-Office or Eclipse are not the work of one single zeal-

ous programmer but are developed and improved by hundreds of programmers over

years. These programmers are spread all over the world and do not necessarily know

each other. Such huge projects are demanding and require well-defined programming

methods and paradigms, such as encapsulation and modularization, which help the pro-

gramming team to keep the code well-organized, readable, changeable and manageable.

All these demands led to the common usage of object-orientation (using languages like

C++ or Java). Furthermore, programmers are no longer allowed to write single-threaded,

sequential code and to rely on new processors to get exponential performance improve-

ments. The reason is that today’s processor generations are more characterized by the

number of their cores as by the speed of an individual core. Thus, formerly single-

threaded code was or is transformed into multi-threaded code which utilizes the avail-

able processor cores as efficiently as possible. The upcoming change from multi-core to

many-core architectures even intensifies this trend.

This situation results in two completely different perspectives. In hardware develop-

ment, software is usually running on an embedded system and operating on a very low

level. Due to this, software is often seen as something solely sequential — which is un-

derlined by statements like “C code (and software designed for microprocessors in general)

is a sequential, instruction based language. One instruction is executed after another in a se-

quence” [158] or “C and C++ are optimized for expressing sequential algorithms and contain no

language-level support for concurrency, in part because there is no agreed-upon model for parallel

programming” [119]. Although the conclusion that C has originally been designed as a

sequential language is true, these statements do not take heed of the above-mentioned

paradigm shift coming with multi-threading. This leads to the curious situation that

many HLS languages are trying to subsequently introduce the concept of concurrency

into software (e.g. using par statements in Handle-C), although these concepts already

have been introduced by the software developers themselves and today are a natural part

of modern programming languages.

Since the aim of this thesis is to describe hardware without using language constructs

software-developers are not familiar with, the resulting questions are:
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• Which constructs are used by today’s software developers to express concurrency?

• Which methods are used to manage communication between concurrently running

threads?

The first question can easily be answered: object-orientation in combination with multi-

threading. Without any doubt, this is today’s standard approach which can be found in

nearly every modern software project.

The answer to the second question is not that obvious since there are various ap-

proaches to realize inter-thread communication. Nevertheless, one particular framework

became very popular: Qt. The actual aim of Qt is to provide a cross-platform develop-

ment framework that offers the programmer an easy way to create a GUI. Such graphical

interfaces are a typical example for programs using concurrently running objects. Every

graphical window is represented by an object which is running in parallel to the other

objects. Thus, the Qt developers had to find an efficient as well as convenient way to let

these objects communicate with each other. To reach this goal, Qt makes use of Signals

and Slots. Signals send a message out of an object, while Slots are the corresponding re-

ceivers. In contrast to simple set and get methods, Signals and Slots act as buffers, which

are able to store a sent information until it is retrieved. Furthermore, every object solely

accesses its own Signals and Slots (in contrast, in the conventional way, it would have had

to call the set and get methods of another object). This makes the synchronization much

easier. Due to the efficiency and elegance of Qt, many software projects make use of it

(e.g. KDE, Google Earth, Opera, Skype, VLC media player). Furthermore, Qt is available

for C++, Java, Python, Ruby, PHP, Haskell and Perl.

Dynamic

The original question was which already existing software language constructs can be

used to express dynamic partial reconfiguration. Using an object-oriented representation

of hardware, every hardware component is represented by an object. From this point

of view, the subsequential loading of a hardware component using DPR is comparable

to the dynamic instantiation of an object. So the question regarding object-oriented pro-

gramming is:

• Which object-oriented constructs exist to dynamically create or destroy objects?

The answer to this question is quite obvious since the dynamic creation and destruction

of objects is a natural part of object-oriented languages. The creation is realized via the

keyword new. Regarding the destruction of objects, the two most popular language rep-

resentatives (C++ and Java) differ a little, but both fully support it. C++ denotes the

destruction of an object explicitly, using a destructor and the keyword delete. In Java

the removal of unused (that means unreferenced) objects is realized automatically by the

garbage collector. Deleting an object is therefore realized via setting the corresponding
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object reference to null. Figure 4.3 illustrates the elegant straightforwardness of the cre-

ation and destruction of objects in today’s object-oriented languages using the example

of Java.

public class MainClass {

public void static main(String [] args) {

...

MyClass dynObject = new MyClass (); // dynamically create an instance of MyClass

...

dynObject = null; // dynamically destroy this instance

}

}

Figure 4.3: Creation and destruction of an object in Java

A very important aspect regarding the dynamic instantiation of (concurrently running)

objects is the corresponding inter-object communication. The underlying communication

structure has to be very flexible, so that not only the objects themselves can be created and

destroyed dynamically but also the communication channels between the objects can be

changed at runtime. The already mentioned Qt framework provides a very elegant way

to establish and to dissolve communication channels between several objects dynami-

cally. For this, the methods connect and disconnect are used (for more details about Qt’s

communication concept, see chapter 2.7.3).

At this point, it is important to underline that object-oriented languages are uniquely

qualified to support concurrency and dynamic in such a well-defined way. Of course it

is possible to use C or other procedural languages in combination with multi-threading.

However, without a well-defined encapsulation, inheritance and modularization as is

usual in object-oriented languages, such a high parallelism coming with programmable

hardware would quickly become confusing and unmanageable. For example, the com-

munication between several threads could not be realized via well-defined connect and

get methods but would have to be realized via shared (global) variables.

Functional languages are a very good candidate to describe concurrency but they do

not provide an elegant possibility to denote the dynamic instantiation of modules coming

with the usage of DPR [159].
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4.2 Parallel Object Language

In the last section it became clear that object-oriented programming in combination with

multi-threading is a very good method to describe dynamic hardware. The reasons are:

• Conventional HDLs already describe hardware in a way which is close to the object-

oriented paradigm

• The basic elements of FPGAs can be represented quite well using objects

• The description of multiparallel hardware lies within the specification of object-

oriented languages

• Today’s software is highly concurrent — and uses multithreaded object-oriented

programming languages like C++ or Java

• Frameworks like Qt provide a very elegant solution for communication and syn-

chronization problems

• The dynamic instantiation of objects is a natural part of object-oriented languages

— and can be used to express DPR

The two most popular representatives of object-oriented programming languages are

C++ and Java. Thus, the decision had to be made, which one of them should be used

to describe hardware. Since C++ relies on the usage of pointers which cause many prob-

lems regarding synthesis (see chapter 3.3), the decision was made to use Java. However,

it is important to underline that the design and implementation of the Framework de-

pends more on the chosen paradigm (object-orientation) than on the concrete language.

The gained insights are easily transferable from Java to C++.

Having listed all the advantages and elegant possibilities coming with object-orientation,

it is important to say that Java (and C++ as well) do not forbid the programmer to create

ugly code ignoring all the advantages coming with object-orientation. For example, in

Java it is possible to put all functionality into public methods of one single class that also

contains the main method — and therefore to fall back to the procedural programming

paradigm. Since Java is only a good choice for describing hardware as long as all the

features listed above are utilized, the decision was made to support only a well-defined

subset of Java, forcing the programmer to make use of multiple objects running in paral-

lel. Thus this synthesizable subset of Java was named POL (Parallel Object Language).
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4.2.1 Basic Concept

The basis of POL is a class called ParObj (see figure 4.1). Every class that shall be synthe-

sizable has to derive from it. Figure 4.4 shows the implementation of ParObj.

public abstract class ParObj extends Thread {

private boolean isRunning = true;

public ParObj () {

this.start ();

}

public abstract void calc ();

public void run() {

while(isRunning) {

calc ();

}

}

public void finish () {isRunning=false ;}

}

Figure 4.4: Implementation of ParObj

Since ParObj derives from Thread it is executed as an independent thread. The construc-

tor of ParObj calls the method start(), which starts the thread (and therefore starts run()).

The method run() just calls the method calc() again and again. The actual functionality

has to be placed inside calc() by the class deriving from ParObj. This way, the concurrent

and ongoing character of hardware components is represented.

Figure 4.5 illustrates an extensive example of two Adders, a Multiplier, and an Inverter

implemented in POL. The communication between several objects is realized via Signals

and Slots. The method get() receives a message from a Slot. The method emit() sends a

message to a Signal (line 03). If object A shall send messages to object B, Signals from

object A have to be connected with Slots from object B. This is realized via the method

connect() (line 41). Established connections can be dissolved using the method discon-

nect() (line 47). The creation of a new object is realized via a simple new (line 39). The

destruction of an object differs a little from the Java standard since the destruction de-

lay coming with the usage of a garbage collector is a very unwanted effect regarding

hardware. Thus, POL provides the method finish(), which is used to end the execution

of a thread (line 50). Both new and finish are highly correlated to DPR since POL allows

their usage at every position in the code. This is the biggest difference between POL and

existing HLS languages.

The class Dispatcher derives from DispObj (line 16) which is very similar to ParObj. The

difference is that the object deriving from DispObj is a singleton and is automatically

instantiated by the Framework at start-up. Therefore it is comparable to the main method

in Java or C++.

As one can see in figure 4.5, the calc routine is allowed to contain usual Java.
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Figure 4.5: POL implementation utilizing DPR
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4.2.2 Toolflow

To be able to use POL to develop and to describe FPGA designs, the corresponding

toolflow has to provide a high-level simulation as well as a synthesis flow. Since POL

is defined to be a subset of Java, the usage of the JVM3 to emulate the behavior of the

POL code suggests itself. The corresponding high-level emulator can make use of in-

heritance and encapsulation to provide the needed classes and methods (e.g. ParObj,

Signal, Slot, connect, and disconnect). An important requirement regarding this emulator

is that its behavior has to be identical to the behavior of the generated hardware. Thus,

in the following chapters the focus is first on the realization of the FPGA design before

the refinement of the emulator is discussed.

The synthesis flow starts with POL and translates it directly to VHDL (without using

the intermediate step of Java Bytecode). From this point on, standard synthesis tools can

be used to generate the needed bitfiles. Since this thesis focuses on the implementation of

DPR and the synthesis of new, every ParObj is realized as a separate VHDL file which can

be used to create a partial bitfile (e.g. using Xilinx’s partial reconfiguration tools — see

chapter 2.6.1). Chapter 5 will focus on the requirements coming with this specification of

POL and the toolflow. Finally, chapter 6 will refine this approach to a detailed toolflow.

Figure 4.6: First sketch of the toolflow

3Java Virtual Machine
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In chapter 3 the current state of the art regarding DPR, HLS and the combination of

both was analyzed. Chapter 4 concluded this analysis and showed that a very good

way to describe dynamic hardware on the algorithmic level is to use an object-oriented

multi-threaded language such as C++ or Java. A subset of Java, forcing the developer to

make use of multi-threading, encapsulation, and well-defined inter-object communica-

tion channels (namely Signals and Slots) was introduced: POL (Parallel Object Language).

This chapter focuses on the design space exploration of the corresponding hardware.

• How can POL be translated to valid VHDL code?

• Which kind of infrastructure is needed to support inter-object communication?

• Is it necessary to introduce additional restrictions to POL, to be able to synthesize

it?

To answer these questions, requirements coming with the specification of POL, typical

applications implemented on FPGAs, and the constraints coming with the usage of DPR

are analyzed. The resulting design of the Framework is described in chapter 6.

5.1 Parallel Object Language

POL has been designed to describe concurrent hardware, using objects. All synthesizable

objects derived from ParObj and make use of Signals and Slots for inter-object communi-

cation. The distinctive feature of POL is that all objects are allowed to be instantiated at

any position in the code. If class B is instantiated in the calc() function of class A, the cor-

responding synthesis process has to make use of DPR to be able to instantiate hardware

object B dynamically. Thus, the FPGA design has to support the dynamic instantiation

and destruction of instances. Hereby POL defines no limitations in the number of classes

or instances.

If a class is instantiated at start-up and never destroyed, it can be seen as a static class

(which exists all the time and therefore does not depend on DPR). However, using DPR it

is possible to overmap the FPGA (details on overmapping are shown later). In this case it

makes sense to implement these classes as (reconfigurable) dynamic classes even though

they could be realized as purely (conventional) static classes. The question of whether

a potentially static class should be implemented as a static or as a dynamic class is part

of the design space exploration process and therefore hard to answer automatically (see
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chapter 3.3). Therefore it makes sense to introduce a third synthesizable object type to

POL (namely StatObj) which enables the denotation of static classes explicitly.

The code inside calc() is standard Java and provides no additional constructs to explic-

itly express concurrency or timing. Therefore the synthesis of POL depends on a Java-to-

VHDL compiler which is able to automatically translate the ordinary Java inside calc() to

VHDL. This leads to a multi-grained description of concurrency. The fine-grained con-

currency inside calc() (mostly depending on data flows — leading to the usage of Loop

Unrolling, Pipelining and other well-known parallelization methods) is determined auto-

matically, while the coarse-grained concurrency (between several instances) is expressed

explicitly.

Since POL makes use of connect and disconnect to denote the dynamic instantiation

and destruction of communication channels between several objects, the corresponding

hardware design has to provide a very flexible communication infrastructure which po-

tentially connects all hardware instances to each other. Furthermore, POL classes are not

embedded in a surrounding static infrastructure class (like in JHDL or OSSS+R) which

allows usage of the same VHDL signals for all alternately loaded hardware classes. In-

stead of this every POL class has the flexibility of defining a highly customized interface.

In other words: each class is free to decide how many Signals and Slots it uses. There-

fore an additional abstraction layer between the Signals/Slots and the VHDL inputs and

outputs of a VHDL component (e.g. an NoC1) is needed.

Since HLS is a very complex topic, there will always be cases in which the automat-

ically generated VHDL code does not fulfill requirements. Thus, POL has to provide a

possibility of implementing hand-written VHDL subcomponents. This approach is com-

parable to the possibility of embedding hand-written assembly code in C++.

1Network on Chip
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5.2 FPGA Applications

Since DPR is solely usable on FPGAs, it is important to analyze the typical application

areas of FPGAs and to deduce the consequences regarding POL and the Framework.

Nowadays, four different types of architectures are used to perform calculations: CPUs

(Central Processing Units), GPUs (Graphics Processing Units), FPGAs (Field Program-

mable Gate Arrays), and ASICs (Application Specific Integrated Circuits). Each of these

processing architectures has its own advantages and drawbacks — hence, each has its

own niche where it is the dominating solution.

CPUs are the most flexible solution, since the actual functionality is fully determined

by the software running on it. Thus, a change in functionality is a simple change of

some bits in a RAM. Their major drawback is that they are comparatively slow regarding

streaming applications. GPUs are also fully controlled by software, but they are much

more specialized than CPUs. Originally they were designed to quickly calculate image

transformations. Today they are used to improve vector and matrix calculations when-

ever possible. ASICs can in some ways be seen as the opposite of CPUs. They are highly

specialized, usually do not use any software, and provide a maximum possible through-

put with minimum power consumption — but the functionality of a manufactured ASIC

cannot be changed at all. FPGAs are the compromise between flexibility and through-

put. Since all components of an FPGA run concurrently, its were developed to support

the prototyping of hardware developers: after all bugs have been removed, the design

is implemented in an ASIC. Today, FPGAs are used in a much wider spectrum. This is

primarily due to the fact that the reconfigurability of FPGAs provides the possibility to

change and to extend their functionality even after delivery. In the following two typical

examples of the usage of FPGAs are shown: video streaming and data-acquisition (DAQ)

in high energy physics.

Figure 5.1: Essential calculation steps of a JPEG decoder [160]
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5.2.1 Video Streaming

Video streaming is a typical example application which can be highly accelerated, if

FPGAs instead of CPUs are utilized. The reason is the internal structure of video com-

pression and decompression algorithms. They consist of several independent calculation

steps which have to be executed consecutively for each datum of the video stream — but

all data of the stream has to take the same calculation steps. Thus, video streaming can

be massively accelerated using pipelining.

Figure 5.1 illustrates the essential steps of a JPEG decoder. With the exception of the

header readout all components can be arranged in a pipeline chain and therefore be ex-

ecuted concurrently. Thus, even a CPU which is able to perform each calculation step as

fast as an FPGA, would be 8 times slower than the FPGA. However, video decoding is not

only very demanding regarding performance, but also regarding flexibility. Nowadays,

there is a huge number of different video codecs and sub-codecs, each coming with its

own calculation chain. Furthermore, every year new video codecs come into the market.

Therefore it makes sense to utilize FPGAs instead of ASICs for video decoding.

Figure 5.2: Graphical User Interface of VisualApplets [161]

A real-world application example of the realization of video streaming on FPGAs is

the company Silicon Software (SiSo) [161], which distributes microEnable (an FPGA board

particularly designed to support live video streaming) and VisualApplets (the correspond-

ing software). Using SiSo’s framework, it is possible to implement a video decoder and

several filter functions (such as a FIR filter or a Sobel filter) just by drawing the corre-

sponding data flow (see figure 5.2). A change in the data flow causes a new synthesis

and implementation process, which ultimately leads to a new bitfile that is loaded onto

the FPGA. Thus, the impact of a filter change on the video signal can be observed almost

immediately. In a nutshell, one can say that SiSo’s portfolio is based on the combination

of high performance (using pipelining) with high flexibility (using reconfiguration).
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5.2.2 Data Acquisition in High Energy Physics

Over the past century, scientists have built up a deep understanding of the subatomic

constituents of matter in the universe and the fundamental forces binding them. More

recently, they have developed compelling theories of how those building blocks came

into being. Nevertheless, there are still significant gaps in the knowledge of the nature

and evolution of matter on both a cosmic and a microscopic scale — and there are many

questions to explore. To answer these questions, high-energy particle accelerators such

as the LHC2 in Geneva or FAIR3 in Darmstadt are constructed. These accelerators pro-

vide high-energy, precisely-tailored beams of many kinds of particles at unprecedented

quality and intensities. These charged particle beams are accelerated and employed to

create new, often highly exotic particles. The particle accelerators are connected to a set

of experiments such as the CBM (Complex Barionic Matter) experiment. Each experi-

ment consists of a set of detectors that are used to determine which particle was located

at which position at which time. Figure 5.3 illustrates the design of the CBM experiment.

Figure 5.3: General DAQ setup [14]

A detector usually is a combination of many identical subdetectors, with each subde-

tector producing data on a dedicated channel. The proper design and development of the

readout chain is crucial for the experiment. The data of the subdetectors is transferred as

electrical amplitudes to the so called front end electronic (FEE) and represents the parti-

cle interactions in the detector. The FEE converts these analog electrical pulses to digital

signals [162].

2Large Hadron Collider
3Facility for Antiproton and Ion Research
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After the conversion from analog to digital signals, the FEE transmits the digitalized

data to the data acquisition (DAQ). The DAQ is arranged in several layers, of which the

first layer (often called Read Out Controller — ROC) receives and combines the data of

several FEE boards. The next layer combines the data of several ROCs and so on. Since

higher layers have access to the data of detectors which are localized at quite different

places, the filter complexity increases with each layer number. While the FEE can only

interpret the data from one detector channel, the first layer of DAQ can already use infor-

mation from several channels to perform a first event selection, i.e. identifying particles

and filtering out unnecessary data. The higher the layer, the more detector channels can

be used and the less data from each channel needs to be processed. This allows to per-

form more complex algorithms (like ring finding, track finding and even vertex finding)

in order to distinguish between interesting and uninteresting events. Since modern high-

energy physics experiments aim for the detection of rather exotic particles which occur

in events with a very low probability, very high event rates are needed. This results in

a lot of uninteresting events that are already understood and can be filtered out. Hence

very high compression rates can be achieved. Usually, the highest layer of DAQ is a com-

puter cluster, which performs the most complex algorithms in software and stores the

measured data and the calculated results in huge storage systems [163, 164]. The crucial

question regarding all the data filtering in the DAQ chain is: which data is needed and

which can be filtered out and irrevocably be thrown away?

Figure 5.4: Simulation of a particle shower including the Higgs boson — all particles but the

Higgs boson should be filtered out [165]

The answer to this question can change for two reasons: first of all, it is possible that

important data is filtered out, due to a wrong decision in the past or due to a design error.

Secondly, new measurements and the discovery of new particles can lead to completely

new challenges and physical aims. In both cases a change in the filter logic is highly

necessary. At this point FPGAs attracted notice, since their functionality can be changed

(based on reconfiguration) although their throughput and performance is comparable to

ASICs (based on concurrency and pipelining). Hence, big farms of FPGAs are used for

DAQ in all modern high-energy physics experiments.
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5.2.3 Resulting Requirements

Both video streaming and data-acquisition make use of FPGAs, since FPGAs provide

a elegant combination of flexibility (based on reconfigurability) and high performance

(based on concurrency and pipelining). This also applies to nearly all other applications

implemented on FPGAs (like networking, automotive, and high performance comput-

ing). Since CPUs and GPUs do not support data-flow pipelining, and the functionality

of ASICs is unchangeable, flexible pipelined algorithms clearly are the application niche

of FPGAs. Thus, POL and the corresponding Framework have to be designed to support

flexibility and pipelining.

It is pretty obvious that the usage of DPR is in line with the support of flexibility. In

fact it even increases the flexibility of a given FPGA, since using DPR the chip can adopt

its functionality during runtime. The more challenging part is the pipelining which highly

influences the way the classes communicate with each other. In chapter 5.1 it has been

shown that the usage of connect and disconnect leads to the need for a very flexible com-

munication structure. The simplest way to achieve such flexible communication is to

make use of a central memory which is accessed by all objects. However, this solution

leads to a very strange situation: all objects can calculate concurrently but still have to

wait for each other to be able to store the calculated data. In applications which highly

depend on pipelining this destroys the whole parallelism — and therefore makes the uti-

lization of an FPGA useless. Thus, the usage of a central RAM is not possible. The same

conclusion applies to a simple bus which interconnects the objects with each other. Such

a bus would sequentialize the inter-object communication and therefore prevent pipelin-

ing.

In conclusion, the Framework has to provide a communication structure which enables

the objects to publish their results simultaneously. Moreover the Framework has to sup-

port pipelining as a natural feature. The utilization of a central memory or a simple bus

for inter-object communication is off-limits.
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5.3 Scheduling

Depending on the application, the reconfiguration can be a very rare up to a very fre-

quent event. In the following, three basic types of scheduling scenarios are illustrated

using the already presented example of DAQ algorithms [14].

Figure 5.5: Reconfigurable DAQ system running 4 hardware modules

5.3.1 Update Scheduling

The most obvious replacement strategy is Update Scheduling. Figure 5.5 illustrates a sys-

tem containing four reconfigurable modules placed in four PRRs (partial reconfigurable

regions). Three modules are track finders and one is responsible for data compression. If

it turns out that the data compression can be enhanced using a newer version, the chip

can be updated using DPR. In this case, only the reconfigurable module for data compres-

sion would be exchanged (see figure 5.6). The rest of the FPGA can continue to calculate

uninterrupted. The updating reconfiguration process is quite seldom (once per week or

even less).

Due to the infrequency of the reconfiguration process, Update Scheduling often does

not really depend on a partial reconfiguration. For most systems a global downtime once

per week is acceptable.

Figure 5.6: Reconfigurable DAQ system after Update Scheduling
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5.3.2 Scenario-Based Scheduling

A more complex replacement strategy is Scenario-Based Scheduling. If the scenario of

the experiment changes, the resulting data rates can change as well. Using Scenario-

Based Scheduling, one is now able to react to the new conditions and to alter the DAQ

system. For example, two of the three track finders could be replaced each by a vertex

finder, as illustrated in figure 5.7. This way the FPGA would still operate at full capacity

although the data rate has decreased. Thus, the FPGA calculates as much as possible and

no resources are wasted performing active waits. If the conditions change again (back to

maximum data rates), the system can react to it and replace the two vertex finders with

two track finders again.

In contrast to Update Scheduling, in most cases Scenario Based Scheduling depends

on partial reconfiguration. This is caused by the continuously increasing number of LUTs

and FFS per FPGA, which causes the implementation of complete (processor) systems

on one single FPGA. Part of these systems are the computing units as well as the com-

munication units. In many cases the communication units have to be synchronized with

the surrounding system. The loss of this synchrony can cause very unwanted effects.

Real-world examples are the timestamp synchronization of the nXYTER4 ROC (the re-

synchronization depends on a global reset [167] of the detector) and the PCI Express

interface of the ABB5 (a full resynchronization of the board causes a deactivation of the

PC’s corresponding PCIe Slot — the reactivation of the PCIe Slot requires a full reboot

of the PC [168]). Using partial reconfiguration, the process of Scenario-Based Scheduling

only affects the modules that shall be exchanged and leaves other sensitive modules (like

synchronized communication units) untouched.

Figure 5.7: Reconfigurable DAQ system after Scenario-Based Scheduling

4Read-out ASIC for high resolution time and amplitude measurements — see [166]
5Active Buffer Board — the interface board between CBM DAQ and the corresponding computer cluster
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5.3.3 Runtime Scheduling

Running an operating system like Linux on a PC leads to the seemingly simultaneous ex-

ecution of hundreds of threads, although the underlying processor cores are not able to

run more than a few (e.g. 2) threads at once. This is accomplished via Runtime Schedul-

ing, which means the threads are executed alternately over time. Using DPR, it becomes

possible to take advantage of this method with hardware. For example, a DAQ algorithm

which needs 5 calculation modules can be executed on an FPGA containing only 4 PRRs.

For this, the reconfigurable modules are loaded alternately into the PRRs (see figure 5.8).

Using Runtime Scheduling this way, the reconfiguration process would be performed

permanently. This is the most challenging but also the most powerful approach, since

this way it is possible to overmap the FPGA. Furthermore, a scheduler which is able to

perform Runtime Scheduling is automatically able to carry out Update Scheduling and

Scenario-Based Scheduling as well. Especially Scenario-based Scheduling can be auto-

mated as far as possible, if the scheduler is able to swap in or swap out reconfigurable

modules autonomously, based on the incoming data.

Figure 5.8: Reconfigurable DAQ system using Runtime Scheduling

The concept of overmapping the FPGA using Runtime Scheduling does not only come

with advantages, but also has drawbacks and limitations. First of all it has to be empha-

sized that the principle of overmapping cannot be overdrawn. Every reconfiguration pro-

cess takes time (at least several microseconds). During this reconfiguration process the

corresponding PRR cannot be used at all. Furthermore, modules which are swapped out,

obviously are not able to calculate anything. Thus, the exaggerated usage of overmap-

ping leads to a significant reduction of the throughput of the design. Furthermore, all

incoming data destined for temporary absent modules has to be buffered. Thus, an ex-

cessive usage of overmapping leads to the need for unrealistically huge buffers.
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Nevertheless, if overmapping is used correctly it can lead to better resource utilization

without reducing the throughput. In principle, overmapping is comparable to Datapath

Merging presented in chapter 3.3.1. The big difference is that the multiplexed PRRs are

able to completely change their functionality.

In chapter 3.2.4 the RISPP platform has been presented. RISPP attaches great impor-

tance to the trade-off between area consumption and execution time. If an instruction is

rarely called, it can be implemented an area saving way. In contrast, if an instruction is

called quite frequently, its implementation should be as time efficient as possible. This

principle can be applied to the scheduling strategies: if a module is required very of-

ten, it should stay configured at all times and only be changed via Update Scheduling or

Scenario Based Scheduling. If two or more modules are required rather seldom (e.g. in

specific situations), they can be loaded alternately to the FPGA. In [112] this concept has

been demonstrated using the example of an H.264 video encoder whose major functional

blocks are Motion Estimation (ME), Motion Compensation (MC), Transform and Quanti-

zation (TQ), and Loop Filtering (LF). The size and the execution time of these components

differ significantly (ME: 70%, MC: 17%, TQ: 8%, LF: 5%). Using the RISPP platform these

components could be implemented achieving an area saving close to 50% compared to a

static implementation of all functional blocks. Nevertheless a speedup of 26.6 could be

achieved compared to a General Purpose Processor.

5.3.4 Resulting Requirements

The hardware scheduling algorithms described above result in additional demands on

the Framework. Using Runtime Scheduling, data heading for temporary absent modules

has to be buffered. This has to be done in a way that preserves the parallelism of the sys-

tem. The scheduler that controls the scheduling process has to be responsive to changing

conditions. It has to recognize autonomously which module has to be loaded, based on

the incoming data and the data produced by the modules. In other words: the scheduler

is responsible for the correct realization of a possible overmapping process. The reconfig-

uration overhead has to be kept as low as possible. Otherwise the system wastes most of

the time, performing reconfigurations — or, in a worst case scenario, might not even be

able to process the incoming data. The interconnections have to be very flexible, since it

is possible, that e.g. Track Finder T1 was at first loaded into PRR 1, but later is loaded into

PRR 2 (due to scheduling operations). The underlying NoC (Network on Chip) has to be

able to handle this correctly. Nevertheless the throughput should stay as high as possible.

Although Runtime Scheduling is very challenging, the decision was made not to limit

the number of instances in POL to the number of dynamic areas and thus to allow

overmapping. Therefore it is the task of the POL programmer to use this technology

wisely and not to overstretch it. If overmapping is used correctly, it can lead to better

FPGA utilization without reducing the overall throughput (as the RISPP group showed).
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5.4 Dynamic Partial Reconfiguration

In the following, the insights into DPR which were presented in detail in chapter 2 and

in chapter 3 are summarized — and the resulting guidelines for the Framework are de-

duced.

5.4.1 Partitioning Options

In principle there are four different partitioning strategies: free 2D partitioning, 2D block

partitioning, free horizontal partitioning and horizontal partitioning6. The two free par-

titioning options come with the need for online-routing, since they do not provide a

well-defined steady interface. Although the ITIV Karlsruhe has proven that such online-

routing is possible7, it dramatically decreases the reconfiguration speed. This is in oppo-

sition to the requirement that the reconfiguration overhead should be as low as possible.

Therefore the two free partitioning options cannot be used in the Framework.

A purely horizontal partitioning is very demanding regarding the pins of the FPGA

(used for DDR-RAM, Ethernet, etc.), since the location of the pins highly depends on

the available number of banks and the corresponding I/O standards and less on the in-

ternal partitioning of the FPGA. Thus, using purely horizontal partitioning depends on

the usage of a DPR aware substructure (e.g. a specialized board) such as the Erlangen

Slot Machine8 — or requires a very extensive feed-through routing depending on a huge

number of feed-through routes and the corresponding routing and placement constraints

[40]. In addition to this, the Virtex-4, Virtex-5, Virtex-6, and Spartan-6 FPGAs provide a

very convenient and easy access to 2D partitioning. Thus, the decision was made to make

use of 2D block partitioning, which significantly increases the flexibility of the floorplan-

ning process.

5.4.2 Inter-Module Communication

The connection between the static part and the dynamic parts of a design can be real-

ized either in a static way (e.g. using Busmacros) or in a dynamic way (using online-

routing). As said before, online-routing significantly decreases the reconfiguration speed

and therefore is not an option. Regarding a static communication, two solutions can be

found: the Busmacros provided by Xilinx, and the ReCoBus provided by the HSCD Er-

langen9. Unfortunately the ReCoBus-Builder only supports Virtex-2 and Spartan-3, while

Busmacros are available for all FPGA series (since they can be created manually using the

Busmacro tools developed by ITIV Karlsruhe and LIS Munich10). Thus, the decision was

made to utilize Busmacros. The remaining question is: which type of inter-module com-

munication should be used?

6see chapter 2.5.1
7see chapter 3.1.3
8see chapter 3.1.1
9see chapter 3.1.2

10see chapter 3.1.4
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In chapter 2.5.2 five types of communication have been presented: adjacent communi-

cation, centralized communication, communication via shared memory, communication

via crossbar, and communication via configuration unit. As shown before, typical FPGA

applications highly depend on pipelining. Therefore, communication via shared memory

and communication via configuration unit cannot be utilized. The usage of a crossbar de-

pends on a specialized infrastructure (and a customized board) such as the Erlangen Slot

Machine8. Since the Framework should not depend on a particular board design, this

communication type also cannot be used. Adjacent communication provides the fastest

way for adjacent components to communicate with each other — but wider communica-

tion requires the cooperation of the components in between. This makes the placement

of the components very complex, since the proximity of the components influences their

communication options and therefore their functionality. POL does not provide any con-

structs to determine which instance should be placed in which area. Thus, using adjacent

communication would either lead to

1. significant overhead in each reconfigurable module (caused by communication units

which are able to establish a wider communication)

2. a very complex scheduling strategy

3. additional POL constructs to denote the wished instance position

Option 1 increases the size of the reconfigurable modules considerably and thus signifi-

cantly increases the reconfiguration times. Option 2 makes the job of the scheduler much

harder and has a potential of conflict with other scheduling demands, which could lead

to additional reconfigurations (which would not be necessary without adjacent commu-

nication). Both options would considerably decrease the throughput of the Framework

and thus should not be implemented. The third option introduces low-level constructs to

POL, which are only understandable and meaningful to a developer who has a deep un-

derstanding of the underlying Framework. This massively conflicts with the initial aim

to describe DPR, solely using high-level language constructs that are already well-known

in software-development. Due to this, the decision was made not to make use of adjacent

communication at all.

The last communication type is centralized communication. Here, every dynamic

module is connected to the static area. The interconnections between the modules are

realized inside the static area. This can be done in a very simple way (e.g. using a simple

bus or a shared memory) or in a very powerful and flexible way (e.g. using an NoC). The

decision was made to use centralized communication and to implement a highly concur-

rent communication structure as part of the static area to connect the dynamic modules

with each other.
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5.4.3 Tools

Today, there are three ways of generating partial bitfiles:

1. manually, using the method of full write and partial readback [40]

2. using the Xilinx partial reconfiguration tools, utilizing PlanAhead for floorplan-

ning11

3. using the ReCoBus-Builder, utilizing the blocking workaround 9

At the time this thesis was started, only the second option provided both, an elegant

floorplanning tool and support of all Xilinx FPGA series. Thus, the decision was made to

utilize the Xilinx PREA tools.

5.4.4 Reconfiguration Unit

Finally, it has to be decided, which system component shall be responsible for the control

and the execution of the reconfiguration. There are three options:

1. the scheduler is realized in software on a PC, which makes use of the FPGA’s exter-

nal reconfiguration interface (e.g. JTAG) to perform the reconfigurations

2. the scheduler is realized on an extra chip (CPLD or FPGA), which makes use of the

FPGA’s external reconfiguration interface

(an example can be found in chapter 3.1.1)

3. scheduler and reconfigurable areas take place in the same FPGA — the scheduler

utilizes the ICAP12

Although option 1 is the most convenient, powerful and flexible solution it is also the

slowest one. The very high reconfiguration throughputs (of 400 MB/s or even 1200

MB/s) are in no way achievable using this reconfiguration method. Option 2 relies on a

customized underlying board (such as the Erlangen Slot Machine8), which would limit

the usage of POL to very specific hardware. Due to this the decision was made to place

the scheduler and the reconfigurable areas in one single FPGA, since this option provides

the best combination of reconfiguration speed and flexibility.

11see chapter 2.6.1
12Internal Configuration Access Port — see chapter 2.3.1
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5.5 Summary

The specification of POL from chapter 4 comes with a set of requirements. The most

challenging part is the high degree of flexibility regarding object instantiation and inter-

object communication. POL allows the user to instantiate and to destroy objects as well

as to establish and to dissolve their connection at any position in the code. Beyond that,

POL allows an overmapping of the FPGA, which leads to the need for data buffering and

to the usage of Runtime Scheduling. Nevertheless, the targeted field of application has a

very high concurrency and throughput demand. Due to this, the Framework has to fulfill

the following requirements:

• The modules have to be able to publish their results concurrently. Furthermore,

pipelining has to be supported. Therefore, the utilization of a simple bus is not

allowed.

• Dynamic modules can be interrupted during execution, swapped out and swapped

in again later. The context of the affected modules has to be saved.

• Each module can be loaded into each dynamic area. The corresponding communi-

cation channels have to support this.

• Runtime Scheduling depends on a very fast reconfiguration process. Thus, the

scheduler has to be placed on the FPGA and has to make use of the ICAP.

To enable a better utilization of the target FPGA’s resources, POL has to be enhanced in

order to support static objects (StatObj) as well as dynamic objects (ParObj). Finally, a type

of high-level simulation is needed, which allows the developer to execute his or her POL

code in software and thus to do a quick verification of the code. The resulting concrete

design of the Framework, which is geared towards fulfilling all these requirements is

described in the following chapter 6.
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This chapter presents the design of the Framework. It illustrates which components and

tools are needed for a toolset starting with POL and providing both hardware and soft-

ware execution of the given code. First of all, the focus is on the general toolflow. After

this, each component is described in detail.

6.1 The Toolflow

Figure 6.1 illustrates the toolflow of the Framework. From the users point of view, the

process starts with the creation of the POL files.

After creating the POL sources, the Framework provides two ways of execution. The

left part of the toolflow leads to an execution of a Java program on a general CPU. This

enables a developer to verify the correctness of the program at an early stage and on a

high level. For this, the POL sources are precompiled to usual Java files and combined

with with the Java files of the Emulator. The Emulator contains a Java emulation of the

surrounding network, input and output components (like a serial interface) and other

system components as well as a emulation of ParObj, Signals, Slots, connect(), disconnect(),

emit(), get() and other POL specific classes and methods.

The right part of the toolflow results in several bitfiles. These bitfiles are loaded onto an

FPGA and represent the final hardware. For this, the POL-Compiler compiles the POL

sources to VHDL. The focus of this compilation is on the dynamic object management

and on the dynamic inter-object communication. There are many research groups which

did or still do focus on the optimal translation of sequential algorithm descriptions to

efficient hardware (see chapter 3.3). Therefore, the decision was made to keep this part

simple. The idea is to prove the elegance and power of POL regarding dynamic hard-

ware instantiation and communication, and at a later point in time (e.g. as a follow-up

thesis) to combine this approach with an efficient C-to-VHDL or Java-to-VHDL compiler

(handling sequential and purely static code). Thus, the POL-Compiler simply translates

calc() to one single FSM (Finite State Machine). Each calculation is represented by one

state of this FSM. Some optimizations are done (e.g. state merging based on data depen-

dency analysis), but the focus clearly concentrates on the dynamic instantiation, swap-in,

swap-out and the dynamic inter-object communication.

The static part of the design is represented by a so called System Template which con-

tains the processor subsystem needed by the Scheduler as well as the Communication

Matrix which is the communication structure that realizes the inter-module communica-

tion and the communication with the outside world. The Merger combines the generated
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Figure 6.1: The general toolflow of the Framework

VHDL files and the System Template and starts multiple XST (Xilinx Synthesis Tool) syn-

thesis runs, until all required netlist files (NGC files) are created. These files represent the

functionality of the surrounding system and the reconfigurable modules. They are used

as input for Xilinx PlanAhead which performs the floorplanning and generates the (par-

tial) bitfiles. The Scheduler running in software on an embedded processor is controlling

the Communication Matrix. It determines which reconfigurable module is loaded into

which reconfigurable area at which time. Since the Scheduler also runs on the target

FPGA, the reconfiguration has to be done via the ICAP1. Therefore, the generated design

is a self-reconfiguring system.

The five central elements of the Framework are Communication Matrix, Scheduler,

POL-Compiler, Merger, and Emulator. In the following sections, these elements are de-

scribed in detail.

1see chapter 2
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6.2 Communication Matrix

As shown in chapter 5, the benefit of dynamic hardware highly depends on a commu-

nication structure which is able to interconnect the dynamic modules in a flexible and

concurrent way. In the Framework, this interconnection is realized by the Communica-

tion Matrix.

6.2.1 Data Format

Figure 6.2: Interface between dynamic modules and Communication Matrix

Due to the requirements for the flexibility of the connections, it is not possible to trans-

late POL Signals and Slots directly to VHDL input and output signals. On the one hand,

each class can implement as many Slots and Signals as needed. On the other hand, each

class shall be loadable to each dynamic area — therefore the interface between dynamic

area and Communication Matrix has to be standardized. To resolve this contradiction,

the Communication Matrix implements an additional abstraction layer. Each data item

which is transported from one module to another contains the actual data and a destina-

tion address. This destination address contains the class ID, the instance ID and the Slot

ID of the destination. For this, the POL-Compiler has to assign each class and each Slot

with an ID (these IDs are fix at runtime). Furthermore, the Scheduler has to assign each

instance with an instance ID (which is determined dynamically as soon as new is called

— and therefore is part of the instance’s context). The Communication Matrix uses the

destination address to deliver the data item to the correct instance of the correct class.

For this, the Scheduler has to tell the Communication Matrix, which instance is loaded to

which dynamic area. Inside the dynamic area, the destination Slot ID is used to deliver

the data item to the correct Slot (see figure 6.2). Using this kind of interface protocol,

the VHDL interface between dynamic area and Communication Matrix is standardized

while the number of Signals and Slots is as flexible as possible.
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To establish and to dissolve connections (via connect or disconnect) a special data item

type is used: Connection Messages. These messages are structured like normal data

items, but the payload contains connection information (which Signal shall be connected

to or disconnected from which Slot). Connection Messages make use of a special Slot ID,

the so called connection Slot. More information about Connection Messages are shown

in section 6.4.

6.2.2 Class Buffer

The use of Runtime Scheduling leads to the usage of swapping, which means that active

instances are paused, removed from the FPGA and reloaded onto the FPGA at a later

time to continue operation. Thus, it is possible that incoming data or produced data is

addressed to an instance which is temporarily swapped out. Due to this, the Communi-

cation Matrix has to provide buffers which store the data until the corresponding instance

is reloaded onto the FPGA.

The simplest approach would be to generate one buffer per instance. Unfortunately

this is not possible, since the buffers are part of the static design and have to be instan-

tiated at compile-time, while the number of instances is determined at run-time and un-

known at compile-time. To solve this problem, the Communication Matrix instantiates

one buffer per class (called Class Buffers). Multiple instances of one class share a single

Class Buffer. This approach allows to handle the data streams of several classes in paral-

lel, but avoids the instantiation of too many buffers. Since the number of classes is known

at compile-time, the Communication Matrix only has to instantiate as many Class Buffers

as classes that are used [169].

Figure 6.3: Design of a Class Buffer

As shown in figure 6.3 a Class Buffer consists of a FIFO and an active multiplexer.

The FIFO is storing the data items. The active multiplexer is connected to the output

of each Task Area. If a data item is heading for the class the Class Buffer belongs to,

the active multiplexer takes this data item and sends a “data acknowledge” signal to the

corresponding Task Area.
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6.2.3 Task Areas

To enable the dynamic instantiation of modules, so called Task Areas are used. They con-

sist of three parts (see figure 6.4). Part I is the inner module which the POL-Compiler has

generated from the POL sources. Part I I is an interface component which analyzes the

incoming messages and transfers the data to the correct port. Part I and I I form the dy-

namic area which is configured at runtime. Nevertheless, Part I I actually belongs to the

Communication Matrix and is represented by fixed VHDL code, while the inner module

differs from object to object. Each inner module has n inputs (while n is the maximum

possible number of Slots) and one single output. Its interface is therefore comparable to

that of Chimaera (see chapter 3.2.2). For simpler scheduling, all dynamic areas have the

same size. Thus, each dynamic module can be loaded to each dynamic area.

Figure 6.4: Design of a Task Area

Part I I I of the Task Area also belongs to the Communication Matrix and is part of the

static design. It is dedicated to one particular dynamic area and contains an active multi-

plexer and a FIFO. The multiplexer is connected to each Class Buffer. When a data item is

heading for the class that is currently loaded to the dynamic area, the active multiplexer

takes this data item and sends a “data acknowledge” signal to the corresponding Class

Buffer. Next, it transfers the data item to the interface component (Part I I).

The FIFO stores data coming from the dynamic area. This way processed data can be

stored, even if the Class Buffers are busy (e.g. because another instance of the same class

is producing data concurrently). It is important that the FIFO is part of the static design,

since this enables the reconfiguration of the dynamic area while data items are still stored

in the FIFO and have not been delivered to the Class Buffers yet.
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Context Memory

Since the Framework supports Runtime Scheduling, active instances can be paused, re-

moved from the FPGA and continued at a later time. To enable this, the context of the

corresponding instance has to be saved. It consists of intermediate data, connection in-

formation (which Slot is connected to which Signal) and general instance data (such as

the instance ID). There are three possibilities, how this context could be saved. First, it

could simply be stored in the flip-flops and read back via the reconfiguration unit. This

way, the whole dynamic area would have to be read back for swap out. Second, it could

be stored in extra-buffers in the Communication Matrix. This is very fast, but would sig-

nificantly increase the size of the static area. Third, it could be stored in a BRAM inside

the dynamic area, which is read back by the reconfiguration unit. This is slower than the

second method, but provides the best trade-off between area and speed. Thus, the deci-

sion was made to use the third method in the Framework. Following this decision, each

inner module contains a BRAM called Context Memory which is used to store the context

of the object. More details about the Context Memory and its usage will be shown in the

sections illuminating the Scheduler and the POL-Compiler.

Instance Buffer

POL provides two versions of the method get to receive a data item from a Slot. The first

one is blocking (get()), the second one is not (get(default value)). The blocking get() is very

useful to describe strict data dependencies (e.g. an Adder waiting for the two Slots a and

b to contain data, before it can calculate a + b). However, using more than one blocking

get() method the wrong way can easily cause deadlocks. For example, an Adder could

first wait blocking for data on Slot a, but the incoming data stream first contains data

for Slot b and afterwards for Slot a. In many cases,this dependency on the order inside

the data stream is undesired. Therefore Part I I contains an Instance Buffer which can be

configured to provide an independent FIFO for each Slot. This way the dependency on

the order is resolved. However, sometimes such a dependency is intended. In this case

POL provides a statement to request a shared FIFO for two or more Slots. The Instance

Buffer is realized using one or more BRAMs, whose content is saved via the configuration

unit in case of a swap out (since the Instance Buffer belongs to Part I I, it is part of the

dynamic area).

Static Task Areas

If all instances of a class are only instantiated in the constructor of the Dispatcher and

never destroyed at runtime, this class can be implemented as a StatObj, which means

that the instances are never swapped out — and therefore can be implemented as part

of the static design. These instances are placed in so called Static Task Areas. Static Task

Areas have the same internal structure as Dynamic Task Areas, except that Part I and

Part I I are not placed in a dynamic area. This can be used to reach a better utilization of

122



6.2 Communication Matrix

the FPGA’s resources - for example, if very small but permanently required modules are

realized as StatObj instead of permanently using only a small part of a dynamic area.

System InOut

Figure 6.5: System InOut

Since the Communication Matrix makes use of a special addressing scheme, an inter-

face between the outside world (only transmitting the actual payload) and the Commu-

nication Matrix is needed. This interface is called System InOut and is implemented as a

smaller version of a Static Task Area. The Communication Matrix treats it as a normal

object and therefore it has a class ID, an instance ID and requires the instantiation of one

additional Class Buffer.

The active multiplexer of System InOut is used in two ways. First, it takes all data items

which are sent to System InOut from the corresponding Class Buffer, removes the address-

ing information (class ID etc.) and transmits only the payload to the correct output port

(depending on the received Slot ID). Second, it is used to receive Connection Messages

that tell the Connection Manager, which input port should be connected to which desti-

nation (class ID, instance ID, Slot ID). This way, the Connection Manager is able to tag

incoming data with the correct addressing information. The input part and the output

part of System InOut share one single class ID. This is possible, since the input part does

only make use of the Slot ID that belongs to Connection Messages, while the output port

makes use of all Slots but the connection Slot.

6.2.4 The Big Picture

Figure 6.6 shows an example of a complete Communication Matrix, containing two task

areas (one static, one dynamic), three Class Buffers and a connection to the outside world

(System InOut). Furthermore the required interconnections are illustrated. Due to the

three Class Buffers this version of the Communication Matrix supports up to two POL

classes (and one System InOut).
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Figure 6.6: The Big Picture
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6.3 Scheduler

The Scheduler is the part of the Framework that is responsible for the object management.

That means, it conducts the creation of instances (via new), the destruction of instances

(via finish()), and the swap-out process as well as the swap-in process needed for Runtime

Scheduling. The Scheduler is a software program running on an embedded processor

which belongs to the static part of the FPGA. It makes use of the ICAP to access the

FPGA’s reconfiguration unit.

Figure 6.7: The Communication Matrix including the Scheduler’s control flow (in blue) and

memory usage

6.3.1 Dynamic Control Bus

POL allows the user of the Framework to create new instances at runtime (using new at

any position in the code). Therefore running objects have to be able to signal the Sched-

uler, that they want to create such a new instance. Furthermore, the Scheduler has to

notify a running object that it is going to be swapped out — so that the affected object can

store its context in the Context Memory. Due to these requirements it is necessary that the

running objects and the Scheduler are able to communicate with each other. For this pur-

pose, the Framework provides an additional bus called DCB (Dynamic Control Bus). The

DCB is a small and simple bus connected to all Task Areas and the Scheduler. It is only

used to coordinate the creation, destruction and swapping of objects. Beyond that the

Framework connects the filling level counters of each Class Buffer FIFO to the Scheduler.

This way, the Scheduler always can consider the filling level of all Class Buffers. Finally,

the Scheduler has write access to every Task Area multiplexer, so that it can notify each
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active multiplexer which class and instance is loaded to the corresponding dynamic area.

Figure 6.7 illustrates the resulting design of the FPGA.

6.3.2 Instance Management

To support the dynamic instantiation and destruction of objects, the Scheduler keeps a

list of all classes and the associated active instances2. At this point it is important to point

out that the creation of a new instance at first only leads to a new entry in this instance

list. The actual configuration of the corresponding bitfile into a dynamic area is realized

as a swap-in process which is explained in detail in the next section.

Every class is related to a partial bitfile which is stored in an attached DDR-RAM (see

figure 6.7). Please keep in mind, that several instances of the same class share one single

bitfile. This bitfile describes the functionality of the object and contains all major frames

of the dynamic area except those describing the Context Memory and the Instance Buffer.

These two components are placed in BRAMs and are handled separately as context of the

instance. Each instance has its own context which is not shared at all. If the instance is

swapped out, the context is stored in the DDR-RAM in a designated memory area.

2An instance is called active, when it has been created and not been destroyed, yet
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Dynamic Creation

If a running instance (e.g. A1 — see figure 6.8) wants to create a new object, it uses the

DCB to send the corresponding request and the class ID (e.g. B) of the object that shall

be created to the Scheduler. As response, the Scheduler checks for a free instance ID and

adds a new entry to the instance list (containing the new instance ID and a flag marking

this instance as new). Next, the Scheduler uses the DCB to send A1 the ID of the new

instance (e.g. 3). A1 uses this ID to create an object handler (in the example: B3) which

can be used to establish and dissolve connections to the new instance (via connect and

disconnect).

So, all instances of dynamic classes (derived from ParObj) are created by other in-

stances. This approach requires an initial instance, which is automatically created at

start-up by the Scheduler (comparable to the main() method used in Java). For this, POL

provides the class DispObj which is a Singleton and is automatically instantiated by the

Scheduler at start-up. Usually DispObj is used to create all objects that are needed right

from the start, and to establish the communication between them.

Figure 6.8: Dynamic creation of instance B3 by instance A1
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Dynamic Destruction

The dynamic destruction of objects is a little more complex than the dynamic creation.

This is caused by the fact that the destruction of an object shall happen only after pro-

cessing all buffered data addressed to the object. Let’s assume that instance A1 has sent

some data to B3, and now wants to destroy B3 (because it is not needed any longer). Of

course, this shall only happen after B3 has processed the data which has been send to it.

Therefore A1 does not use the DCB directly to destroy B3, but sends a special message

to B3 to request its destruction. This message is delivered by the Communication Matrix

like all other data items and therefore reaches B3 after all data items. Once B3 receives

the Destruction Message it stops calculating and uses the DCB to send the Scheduler the

request for self-destruction. The Scheduler removes the instance from the instance list

and marks the corresponding dynamic area as unused. The context of B3 is no longer

needed. Thus, a read-back of the context is not necessary at all.

Figure 6.9: Dynamic destruction of instance B3 by instance A1
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6.3.3 Runtime Scheduling

The creation of a new instance and its configuration into a dynamic area are two different

events. This is caused by the support of Runtime Scheduling which allows to overmap

the FPGA, and in case of overmapping requires an alternating configuration of active

instances. In other words: instances can be swapped out although they are still active.

For this, the context has to be saved in the DDR-RAM during swap-out and to be restored

during swap-in.

Swap-In

If the scheduler decides to swap in an instance, it first has to find an unused Task Area.

If no free Task Area is available, one of the active instances has to be swapped out first.

After that, the new instance can be configured to the FPGA. This happens in four steps:

1. Configure the CLB frames of the dynamic area (representing the functionality of

the instance)

2. Configure the BRAM frames of the dynamic area (representing the Context of the

instance)

3. Configure the active multiplexer

4. Start the Instance

The first step can be skipped, if the correct functionality is already loaded to the dynamic

area. This happens, if the scheduler replaces an instance by another instance of the same

class. Since both belong to the same class, both have the same functionality — only their

context is different.

The second step needs some extra effort, if the instance is new (which means it has

never been configured to the FPGA before). In this case, the Scheduler creates an initial

context which is completely empty except the instance ID stored in the first word of the

Context Memory. This way, the Scheduler assigns an ID to a new instance.

The third step tells the active multiplexer, which instance of which class is loaded to

the dynamic area. This step is necessary to ensure that the active multiplexer takes the

data items from the correct Class Buffer. Finally the instance is started. For this, no extra

effort is needed — the Scheduler just activates the Busmacros and releases the Task Area

reset.

Swap-Out

If the number of active instances exceeds the number of available Task Areas, the Sched-

uler has to load the instances alternately. For this, it is important to be able to swap out

active instances, which means to save the current state of an instance. Instances do not

only store intermediate data in the Context Memory but also use flip-flops, shift-registers,
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multipliers and other FPGA components. Before the swap-out can be performed, the in-

stance has to store its intermediate data in the Context Memory, because for swap-in only

Instance Buffer and Context Memory are read. To reduce the amount of intermediate

data that has to be stored, the instances only can be suspended at particular breakpoints.

The most important breakpoint is located at the beginning of the method calc(). Here,

no variables which are local to calc() have to be saved. The amount of intermediate data

is minimal (more information will be shown in section 6.4). Additional breakpoints are

introduced at each blocking get().

It is pretty obvious that such usage of breakpoints requires an interaction between

Scheduler and instance. For this, the DCB is used. First, the Scheduler sends a suspend

command to the instance. As a result, the instance uses the next available breakpoint to

suspend its execution and to store all intermediate data in the Context Memory. Next, it

sends a suspend-acknowledge command to the Scheduler. Now, the Scheduler saves the

Context of the instance, deactivates the Task Area (deactivate the Busmacros, activate the

Task Area reset), and finally marks the Task Area as unused.

Adaptive Scheduling and Short Reconfiguration

As shown before, the Communication Matrix instantiates one buffer per class — the Class

Buffers. This leads to multiple instances of one class sharing a single Class Buffer. The

Scheduler has no influence on the order of the data items inside a Class Buffer. Therefore,

it is the data coming out of Class Buffer A that determines which instance of class A

is needed next. The data coming out of Class Buffer B determines which instance of

class B is needed next and so forth. The Scheduler can decide freely which class should

be swapped in next, but the concrete instance of this class is defined by the data coming

out of the Class Buffer. For this, the scheduler is not only able to read the filling level of

the Class Buffer but also to read the target address of the data item coming out of of Class

Buffer’s FIFO.

The filling level of the Class Buffers mainly influences the decision, which class should

be configured to a Task Area next. In principle the Scheduler starts with a simple round-

robin scheduling, but adapts the priority of the classes according to the filling levels of

the Class Buffers. The higher the filling level is, the higher the priority of the class and

the longer its execution time becomes. Due to the ongoing adaption, the scheduling

algorithm is called Adaptive Scheduling.

The dependency on the topmost data items in the Class Buffers is a hard limitation of

the Scheduler’s freedom of choice. However, at this point the usage of object-orientation

(especially of classes and instances) helps to avoid a performance problem. Although a

data item may force a reconfiguration (e.g. because it is heading for instance B2 which

is currently swapped out), the corresponding reconfiguration process can be done very

quickly. This is caused by the fact that the change from one instance of a class to another

instance of the same class only requires a change of the context. Since this only affects

some BRAMs, it requires much less time than a full reconfiguration. Therefore it is called
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Figure 6.10: Scheduling example with 3 Class Buffers and 2 Task Areas (System InOut is not

shown): Task Area 1 currently contains instance A1 of class A, while Task Area 2 currently con-

tains instance B1 of class B. Based on the data coming out of the Class Buffers the Scheduler can

perform:

- a Short Reconfiguration on Task Area 1 to load instance A2

- a Short Reconfiguration on Task Area 2 to load instance B2

- a Long Reconfiguration on Task Area 1 to load C1 or B2

- a Long Reconfiguration on Task Area 2 to load C1 or A2

Short Reconfiguration. In contrast, the change from an instance of class A to an instance

of class B requires a full reconfiguration and is therefore called Long Reconfiguration.

A Short Reconfiguration is approximately 10 times faster than a Long Reconfiguration.

The concrete factor depends on the ratio of the size of the dynamic area to the size of the

Context Memory.

If a data item is heading for an instance that does not exist, it cannot be processed at

all. This erratic behavior can be caused by a connection to an instance that does not exist

(any longer). Since such a defective data item would block the whole Class Buffer, the

Scheduler removes it from the Class Buffer and reports an error. However, such errors

always indicate a misuse of connect, disconnect or finish().
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6.3.4 Processor Subsystem

The Scheduler is running on an embedded processor and makes use of an external DDR-

RAM, since the FPGA’s internal BRAMs do not provide enough memory to store all the

needed partial bitfiles and contexts. In order to implement this feature it is necessary

to generate a processor subsystem which is part of the static design and provides a mi-

croprocessor, a DDR-RAM controller, a serial interface, an ICAP controller and a bus

system which is interconnecting these components. To support the easy creation of such

a processor subsystem, Xilinx provides the EDK (Embedded Development Kit). Here, a

processor subsystem can be created on system level (even by drag and drop) by using

pre-created IP Cores (see figure 6.11). Furthermore the EDK contains the SDK (Software

Development Kit), which simplifies the process of writing software for the embedded

processor. The Scheduler has been developed in the SDK.

Figure 6.11: Screenshot of the EDK
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6.4 POL

POL is used to describe the dynamic part of the target design. It was originally designed

to be a subset of Java. During the development of the Framework it turned out, that

such a strict approach leads to some serious problems. Reasons for this are, for example,

the missing support of operator overloading in Java and the requirement for embedding

subcomponents written in VHDL. Thus, the decision was made to slightly change the

approach, so that POL is defined as a subset of Java with some minor extensions. Table 6.1

gives a quick overview of the features of POL.

Data types void, int, Boolean, one-dimensional arrays, object references

Operators i++, ++i, -i, a[i], ?:, &&, || ,

<<, >>, <<=, >>=, <, <=, >, >=, ==

+, -, *, /, &, |, ^, =, ~, unary !,

!=, +=, -=, &=, |=, ^=, *=, /=

Variables local and private member variables, register and heap based,

Slots and Signals

Statements if-branching, while-, do while-, and for- loop with break and con-

tinue, return, new and finish for classes and arrays, component

Functions member functions and function calls, recursion

Table 6.1: Features of POL [170]

In order to be able to produce efficient hardware, some features of Java have been re-

moved: POL does not support full inheritance, garbage collection and exceptions. Nev-

ertheless, on the statement or expression level POL is similar to Java. [170]

6.4.1 Classes and Interfaces

Every hardware module that is connected to the Communication Matrix is represented by

a POL class. The Framework supports two models of classes: dynamic classes which can

be instantiated, scheduled, and deleted — and static classes which are singletons. Their

base class determines the different models: a class that derives from ParObj is dynamic,

while a class that derives from StatObj is static. Additionally there has to be exactly one

class that is derived from DispObj. This class is equal to those derived from ParObj except

that it is automatically instantiated by the Scheduler at start-up.

Each POL class always contains a calc() method which contains the actual functionality.

calc() contains usual Java code (as shown in table 6.1) and is translated to VHDL by the

POL-Compiler. To represent the characteristics of hardware (continuous execution), the

calc() method runs in a loop (in other words: it is automatically called again after it has

finished). It is of type void and has no arguments. It can call other methods, but cannot

be called by other methods. The creation of a POL instance (via new) automatically leads

to the start of calc().
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Classes which share a common set of Slots and Signals can make use of a common

interface via the keyword implements. Interfaces contain no member variables or method

signatures, since methods and variables inside classes are always private.

interface Arithmetic {

Slot: int in1 , in2;

Signal: int out;

}

class Adder extends ParObj implements Arithmetic {

private: int res = 0;

void calc() {

res = in1.get() + in2.get ();

out.emit(res);

}

}

Figure 6.12: POL example using classes and interfaces

In the following, the syntax of POL is described by a regular expression variant of

EBNF (Extended Backus Nauer-Form [171]). For better reading, production rules are

printed in italics and terminal strings are underlined. Table 6.2 illustrates the general

syntax of a POL program.
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program = include* (class | interface)+

include = include ” filename ”

filename = printable_character \ ”

class = class identifier extends identifier ( implements identifier )?

{ (class | member_decl | method | constructor)* }

interface = interface identifier { member_decl }

member_decl = modifier: ( con_token

| final_token? type var_decl (, var_decl)* )

modifier = private | Slot | Signal

local_decl = final_token? type var_decl (, var_decl)* )

var_decl = identifier ( = assignm_expr )?

method = type identifier

( parameters? ) block

parameters = parameter (, parameter)*

parameter = final_token? type identifier

constructor = identifier ( ) block

con_token = con

final_token = final

Table 6.2: The syntax of a POL program [170] — program is the start rule, statements and expres-

sions are defined in the following sections

Dynamic Creation and Destruction

When the generated system on the FPGA starts up, the first objects which exist physically

on the chip are the static classes (including System InOut). The first class that is instan-

tiated dynamically is the one derived from DispObj. Other objects, which are derived

from ParObj, are instantiated at runtime via new. If the POL code is executed in software

(in the Emulator) the creation of a new instance leads to the immediate execution of its

calc() method. If the POL code is executed in hardware (in other words: if it has been

translated to partial bitfiles) the creation of a new instance at first leads to a new entry in

the Scheduler’s instance list. At a later point in time the Scheduler can decide to swap in

this instance.

To destruct an object the keyword finish followed by a reference to the object is used.

The new statement works synchronously since it has to return the reference of the new

instance. The finish statement is handled asynchronously since it just generates a finish

message (see section 6.3.2) and returns immediately.
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class main extends DispObj {

Slot: int in1;

private:

int key;

Adder A;

void calc() {

key = in1.get (0);

if (key ==1) A = new Adder ();

if (key ==2) finish A;

}

}

Figure 6.13: Dynamic instantiation and destruction

Arrays

From an abstract point of view, arrays are just objects and could be handled like ParObj.

However, since a partial reconfiguration is very time consuming and the bandwidth be-

tween several hardware objects is limited, it makes sense, to distinguish between hard-

ware objects which represent functionality (like the Adder in figure 6.13) and objects

which are only storing data (like arrays). Due to this, the Framework handles arrays dif-

ferent than hardware objects. Arrays are stored in the heap of an instance, which means

they are stored in the instance’s context memory (which is a BRAM). The only similari-

ties between arrays and hardware objects are the keywords for creation and deletion: an

array is instantiated via new and destroyed via finish. POL only supports arrays with a

fixed size. An array can contain primitive data types or references to POL objects. They

provide the method length() which returns the size of the array. Since the Scheduler on

the FPGA does not provide a garbage collector, the developer has to ensure that every

array instance is deleted when it is no longer used. However, if an instance is destroyed

(via finish) the corresponding arrays are destroyed as well (since the heap is part of the

context which is deleted after destroying an instance). Slots and Signals are allowed to be

of type integer array. In this case, the Communication Matrix sends the data entries of

the array one after the other. Arrays which have been received from other objects cause

an implicit new. They have to be deleted explicitly.

6.4.2 Communication

The basic idea of POL is to force the programmer to use multiple objects running in

parallel and well-defined communication channels which can be translated to hardware

without using a shared memory. Due to this the strongest restrictions of POL affect the

inter-module communication and the access control: POL does not offer public and pro-

tected access at all. The only way to communicate with a hardware object is though its

Signals and Slots (which can be seen as public). All other variables and methods are pri-

vate. POL knows 3 access modifiers:Signal, Slot and private. They are followed by a colon

and applied to all following members until another access modifier occurs or the class
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class main extends DispObj {

Slot: int index , value , go;

Signal: int[] out;

private:

int[] array = new int [15];

main() {

filter fi = new filter ();

this.out.connect(fi.in);

}

void calc() {

while(this.out.connect.con_count ()==0);

array[index.get ()] = value.get ();

if (go.get (0)==1) out.emit(out);

}

}

class filter extends ParObj {

Slot: int[] in;

Signal: int[] out;

private: int[] data;

void calc() {

data = in.get ();

// ... FILTER ...

out.emit(data);

finish data;

}

}

Figure 6.14: Arrays in POL

declaration ends. POL supports only 4 data types: integer (int), Boolean (Boolean), arrays

and object-handlers. These 4 types can be used for private variables as well as for Signals

and Slots.

Sending and Receiving Data

To transfer data between hardware objects, each object makes use of its own Signals and

Slots. For this, each Signal provides the method emit(), which sends a data item to it. The

syntax is: Signal.emit(data). At this, data has to be of the same type as the Signal. Receiving

data is a little more complex, since it can be done in two ways: blocking and non-blocking.

A blocking get() stops the execution of calc() until the corresponding Slot contains at least

one data item that can be received and returned. A non-blocking get(default_value) returns

the next data item of the corresponding Slot. If the Slot does not contain any data, it

returns the default_value. In addition to blocking and non-blocking get methods, POL

provides the method valid() which returns a Boolean indicating if the corresponding Slot

does contain data or not.
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Connections

Each object only accesses its own Signals and Slots to send and to receive data. However,

at some point the Signals and Slots have to be connected to each other, so that the data

written to Signal x of instance A reaches Slot y of instance B. For this, the method connect()

is used. It is a method that belongs to each Signal. The syntax is: A.x.connect(B.y). The

connect() method can be used by each object as long as it has the necessary object handler

for A and for B. The connected Signal and Slot have to be of the same type. As usual in

Java every object can refer to itself using the keyword this. POL allows multiple Slots to

be connected to one single Signal. So, if two Slots are connected to one Signal, a data item

that is written to this Signal is send two times (with two different target addresses).

Connections can be removed from a Signal using the method disconnect() which also

belongs to each Signal. Its syntax is equal to that of connect(). If a Signal is not connected

to any Slot at all, data that is written to this Signal is discarded. To avoid data loss caused

by a delayed establishment of a connection, each Signal provides the method con_count(),

which returns the number of Slots that are connected to it.

Syntax Argument Type Return Value Type

Slot.get() - message type

Slot.get(default) message type message type

Slot.valid() - Boolean

Signal.emit(data) message type void

Signal.connect(input) input to connect to void

Signal.disconnect(input) input to disconnect from void

Signal.con_count() - int

Table 6.3: Methods of Signals and Slots[170]

The information that a Signal shall be connected to a Slot (via connect()) has to reach

the instance this Signal belongs to. Theoretically, the DCB could be used for this but

this would lead to an asynchronous relation between the actual data and the Connec-

tion Messages. Due to this, the decision was made to realize the connection commands

as standard messages which are delivered by the Communication Matrix. To distinguish

between data messages and Connection Messages, the Connection Messages use a special

Slot ID. The corresponding Slot is called connection Slot and belongs to each hardware

class. The Destruction Messages shown in figure 6.9 are a special kind of these Connec-

tion Messages.
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In section 6.2.3 the Instance Buffer has been shown. This buffer is used to parallelize

several Slots. Theoretically it can be used to generate a fully parallelized input where each

Slot has its own message queue but this behavior is not always desired. Let’s assume a

filter consisting of two sub-filters A and B, which both are realized as separate hardware

classes. A sends processed data to B via Slot 1 and control messages via Slot 2. During

processing the conditions change and A now wants B to change its functionality. For this,

A uses control messages. These control messages on Slot 2 must not be able to overtake

the data messages on Slot 1, since this would unintentionally change the way older data

is processed. So, Slot 1 and Slot 2 shall be synchronized. In other words: they shall share

one single message queue inside the Instance Buffer.

To be able to express such a need for synchronization, POL distinguishes between Slots

which are declared in one single line of code and Slots which are declared in individual

lines of code. Slots that share one line of code also share one message queue.

To be able to synchronize a set of Slots with the connection Slot, POL provides the key-

word con which stands for the connection Slot. Figure 6.15 illustrates the implementation

of Filter_B. The Slots sample, control1, and the connection Slot (represented by con) are

synchronized to each other and therefore share one single message queue of the Instance

Buffer. Slot control2 is not synchronized to the other Slots and has its own message queue.

Thus, data items send to control2 are able to overtake data that is send to sample, while

data items send to control1 are not.

class Filter_B extends ParObj {

Slot: int sample; int control1; con;

Slot: int control2;

...

}

Figure 6.15: Parallel and Synchronized Slots in POL

System InOut / world

The description of the static design and the interconnections to the outside world will be

described in the next section (which focuses on the JSB). However, the POL classes have

to be able to communicate with this outside world. For this, a special class named world

provides inputs and outputs, which can be used to connect the program with the sur-

rounding system. world refers to System InOut which is provided by the Communication

Matrix (see chapter 6.2.3). Figure 6.16 illustrates the usage of world.
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class Adder extends DispObj {

Slot: int in1;

Slot: int in2;

Signal: int out;

Adder () {

this.out.connect(world.out1);

world.in1.connect(this.in1);

world.in2.connect(this.in2);

}

void calc() {

out.emit(in1.get() + in2.get ());

}

}

Figure 6.16: Class world and how it is used to communicate with the outside world

6.4.3 Embedded VHDL components

To support the reuse of existing VHDL components and the manually optimized imple-

mentation of subroutines, POL supports the usage of VHDL components. Figure 6.17

shows an example of how to use a custom VHDL entity that calculates the greatest com-

mon divisor of a and b. The result is stored in the variable result. The VHDL entity

has two input ports: in1 and in2. Furthermore, it has one output port: out1. The first

argument of the statement is the name of the VHDL component. Second, the mapping

between VHDL input signals and POL expressions is defined. The last mapping denotes

which VHDL output signal is connected to which POL variable. To be able to use VHDL

components, a POL program has to begin with the include directive.

include "gcd_vhdl.vhd";

class gcd extends ParObj {

Slot: int i1;

Slot: int i2;

Signal: int o1;

private: int a, b, result;

void calc() {

a = i1.get ();

b = i2.get ();

component(gcd_vhdl : in1 => a, in2 => b : out => result );

o1.emit(result );

}

}

Figure 6.17: Using VHDL subcomponents
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6.4.4 Statements

On statement level, POL is very similar to Java. Differences are POL’s additional com-

ponent statement, no support for the switch statement, and no support for exceptions.

Table 6.4 illustrates the syntax of POL statements.

statement = local_decl ;

| stmnt_expr ;

| while_stmnt

| do_stmnt

| for_stmnt

| if_stmnt

| return_stmnt ;

| component ;

| block

| empty_stmnt

while_stmnt = while ( assignm_expr ) statement

do_stmnt = do statement while ( assignm_expr )

for_stmnt = for ( for_init ; assignm_expr ; expr_list )

statement

for_init = expr_list

| local_decl

expr_list = assignm_expr (, assignm_expr)*

if_stmnt = if ( assignm_expr ) statement (else statement)?

return_stmnt = return (assignm_expr)?

component = component ( identifier : portmap_in : portmap_out )

portmap_in = port_in (, port_in)*

portmap_out = port_out (, port_out)*

port_in = identifier => assignm_expr

port_out = identifier => identifier

block = { statement* }

empty_stmnt = ;

Table 6.4: The syntax of POL statements [170] — for declaration of expressions see next section
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6.4.5 Expressions

Table 6.5 lists all available expressions in the order of the precedence of their operators.

stmnt_expr = assignment

| pre_incr_expr

| post_incr_expr

| method_invoc

| new_inst

| finish

assignment = array_access assign_op assignm_expr

| identifier assign_op assignm_expr

assignm_expr = assignment

| cond_expr

cond_expr = cond_or_expr (? assignm_expr : cond_expr )?

cond_or_expr = cond_and_expr ( || cond_or_expr )?

cond_and_expr = incl_or_expr (&& cond_and_expr )?

incl_or_expr = excl_or_expr ( | incl_or_expr )?

excl_or_expr = and_expr ( ^ excl_or_expr )?

and_expr = equ_expr ( & and_expr )?

equ_expr = rel_expr ( ( == | != ) rel_expr)?

rel_expr = add_expr ( rel_op add_expr)?

shift_expr = add_expr ( ( « | » ) add_expr )*

add_expr = mult_expr ( ( + | - ) mut_expr)*

mult_expr = unary_expr ( ( * | / ) unary_expr)*

unary_expr = preincr_expr

| ( + | - ) unary_expr

| unarynpm_expr

preincr_expr = incr_op unary_expr

unarynpm_expr = ( ! | ∼ ) unary_expr

| postfix_expr

postincr_expr = (primary | expr_name) +incr_op

postfix_expr = postincr_expr

= primary

= expr_name

primary = new_array

| primary_nna

new_array = new ( prim_type | ref_type [ assignm_expr ]

primary_nna = literal

| this_lit

| ( assignm_expr )

| method_invoc

142



6.4 POL

| array_access

| new_inst

| finish

array_access = identifier [ assignm_expr ]

new_inst = new identifier ( ( ) )?

finish = finish assignm_expr

method_invoc = identifier ( . identifier )* ( arguments? )

arguments = assignm_expr (, assignm_expr)*

type = array_type | prim_type | ref_type

prim_type = void | int | boolean

ref_type = identifier

array_type = ( prim_type | ref_type ) [ ]

incr_op = ++ | --

assign_op = = | *= | /= | += | -=

rel_op = < | <= | > | >=

expr_name = identifier ( . identifier )?

identifier = letter ( letter | digit | _)*

\ (new | finish | do | while | for | class | interface | if | else | return

| component | break | continue | extends | include | true

| false | null | con | this | final |int | boolean | break

| continue | extends | include | true | false | null | con

| this | final)

this_lit = this

literal = int_lit | bool_lit | null_lit

int_lit = -? digit+

bool_lit = true | false

null_lit = null

digit = [ 0 - 9 ]

letter = [a - z ] | [ A - Z ]

Table 6.5: The syntax of POL expressions [170]
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6.4.6 From Parallel Object Language to VHDL

The POL-Compiler is responsible for the translation from POL to VHDL. Its capabili-

ties determine which features are supported by POL. As mentioned before, this com-

piler directly translates the POL code to VHDL without using an intermediate step like

converting POL to Java bytecode. The concept is to directly transfer the software con-

currency (described in Java via threads) to hardware concurrency (described in VHDL

via processes). Therefore, each hardware object (namely ParObj, DispObj, and StatObj) is

translated directly to a separate VHDL entity. Moreover, classes derived from ParObj or

DispObj are used to generate VHDL entities which serve as basis for partial bitfiles — in

other words: for dynamic instantiable hardware. All hardware objects are interconnected

by the Communication Matrix which serves as additional layer between automatically

generated hardware modules and the FPGA resources.

The POL-Compiler translates calc() to one single FSM (Finite State Machine). Each

calculation is represented by one state of this FSM. Some optimizations are done (e.g.

state merging based on data dependency analysis), but the focus concentrates on the

dynamic instantiation, swap-in, swap-out and the dynamic inter-object communication.

Figure 6.18: Basic Structure of the Generated VHDL Code

Figure 6.18 illustrates the basic structure of the generated VHDL entities, each repre-

senting one hardware class. The sequential statements inside the constructor and inside

calc() are translated to states of the Main FSM. Additional methods called by calc() also

are translated to states of the Main FSM. Furthermore, the Main FSM contains states re-

sponsible for swap-in and swap-out. For swap-out the context is stored in the context

memory, for swap-in it is restored from the context memory. The context also contains

the current state. This way, the Main FSM can continue to calculate exactly at the point

where it has been interrupted.
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The Connection FSM is responsible for incoming Connection Messages. It is running

in parallel to the Main FSM. Nevertheless the Main FSM and the Connection FSM are

synchronized. The Memory Allocator is a handwritten VHDL subcomponent that is re-

sponsible for memory allocation in the Context Memory. It manages used and free space

in the stack as well as in the heap. The creation and the destruction of an array is realized

via the Memory Allocator. If additional VHDL components have been included (using

include and component), these customized VHDL components are also part of the mod-

ule. A special interface between each VHDL subcomponent and the Memory Allocator

allows the subcomponents to store intermediate data in the context memory. This is the

only way to safely store intermediate data. Other data, stored in flip-flops etc., is lost

during swap-out and swap-in. Please note that the VHDL submodules are not running

continuously but are only active when they are called by the Main FSM. More details

about the concrete implementation of the POL-Compiler and the generated hardware

can be found in chapter 7.
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6.5 Merger

In principle, the different parts of the Framework (processor subdesign, POL-Compiler,

Communication Matrix and Scheduler) act as independent as possible. However, at some

point they need to come together to exchange crucial design parameters. The POL com-

piler needs to transport information to the Communication Matrix as well as to the Sched-

uler:

1. Number of classes

2. Mapping between partial bitfile and class ID

3. Type of the classes (ParObj, StatObj or DispObj)

For this, the POL-Compiler creates a configuration file (“task.cfg”) containing the rele-

vant attributes of the hardware classes. Figure 6.19 shows an example configuration with

two dynamic classes and one dispatcher task.

task: filter

id: 1

type: dynamic

task: gcd

id: 2

type: dynamic

task: main

id: 3

type: dispatcher

Figure 6.19: Syntax of “task.cfg”

At this point the Merger comes into play. It reads the “task.cfg” and changes files

that are used by the Communication Matrix and by the Scheduler. For the Scheduler

it creates a file called “pol.h” which contains the number of classes and the class id of

the class deriving from DispObj. The parameterization of the Communication Matrix is

more complex, since it requires the change of several VHDL-Files. For this, predefined

VHDL template files (“filename.vhdt”) are used. These template files contain so called

magic comments (syntax: --POL:command) which are replaced by the Merger with the

correct number and type (dynamic or static) of component declarations and component

instantiations (such as Class Buffers or Task Areas). Furthermore, a parameter file (“ma-

trix_components.vhd”) is created, which contains the number of classes and the size of

the used vectors (such as class ID or instance ID). More details about the Merger and

the generated files as well as the corresponding implementation runs can be found in

chapter 7.

146



6.6 Emulator

6.6 Emulator

Since POL is an enriched synthesizable subset of Java, it can be seen as both HDL and

software language. Thus, the easiest way to verify the correctness of POL source code is

to execute it in software. The Emulator realizes this functionality. POL mainly consists

of Java, extended by new communication mechanisms such as Slot, Signal, connect, and

disconnect. After the translation from POL to VHDL, all communication is buffered by

FIFOs (by the Communication Matrix), which make shure that a running object can read

input data and write output data even if sender or receiver are currently swapped out.

The aim of the Emulator is to resemble this functionality of the Communication Matrix,

so that the execution in software and the execution in hardware are identical regarding

messages and their delivery. Figure 6.20 shows the different layers of hardware and

software execution. The Communication Matrix serves as an additional layer between

the generated modules and the actual FPGA hardware. It enables the hardware objects

to make use of the message protocol. The Emulator provides the same abstraction layer

in software. The exact timing of the underlying layers (JVM and CPU) is completely

different from the timing of the FPGA but on message layer both ways of execution are

identical. Due to this, verification of POL code in software is sufficient to qualify its

functionality.

Figure 6.20: Comparison of the software and the hardware layers[172]
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6.6.1 The Precompiler

In its first version, POL has been defined to be a strict subset of Java. However, at some

points this limitation was too restrictive. Thus, the decision was made to introduce some

minor extensions which make POL more powerful and convenient but keep it similar

to Java. The extensions are realized via the Precompiler, which translates POL to usual

Java, before it can be executed in software. Table 6.6 illustrates the extensions and how

they are replaced by the Precompiler. The two most important extensions are operator

overloading (needed to support 16-bit integers and not supported by Java) and the access

modifiers Slot and Signal.

Extension POL Java

Operator Overloading int a = 40; IntWrapper a

(for n-bit integers) = new IntWrapper(40);

a++; post_inc(a);

Access Modifiers Slot: Slot<Integer> a

int a; = new Slot<Integer>(this);

Boolean b; Slot<Boolean> b

Signal: = new Slot<Boolean>(this);

Filter f; Signal f = new Signal(this);

Table 6.6: The Precompiler’s Translation Table from POL to Java (Excerpt)

6.6.2 Emulation vs. Simulation

In the following the difference between simulation and emulation shall be clarified.[172]

Simulation: A computer simulation tries to model a real-life or a theoretical situation so

that it can be studied to gain insides into the simulated system. A simulation usually

represents certain key characteristics or behaviors of a selected system. The aim of simu-

lation is to take a closer look at the internal behavior of the simulated system.

Emulation: An emulator recreates the functionality of a system so that it behaves like the

emulated system. The aim of emulation is the exact reproduction of the external behavior

of the emulated system.

Since the aim of the software execution of POL is to recreate the functionality of the

Communication Matrix on message layer, the corresponding process is more an emula-

tion than a simulation. The Emulator does not provide a step by step execution as known

from some simulators. Nevertheless, the generated Java code can be debugged as usual

Java code. For this purpose it is possible to introduce non-synthesizable Java constructs

(like exceptions or console messages) for development and debugging. Of course, these

elements have to be removed, before the POL-Compiler is used to generate VHDL code.

This method is comparable to the different MOCs3 in SystemC or to the usage of non-

synthesizable constructs like wait for 40ns; in VHDL.

3Model Of Computation — see chapter 3.3.5
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6.6.3 Emulation of the Static Part of the Design

For the emulation of POL code a complete system has to be defined. This means that be-

sides the POL code itself, devices for input and output are required. Thus, the Emulator

contains classes that are used to represent the surrounding system (e.g. FileInput, File-

Output, UART or PushButtons). They are instantiated in a file called JSB.java which also

instantiates a class representing the Scheduler and the POL class deriving from DispObj.

The layout of JSB.java is inspired by the Java System Builder (JSB) [173].

Figure 6.21 shows an example of how the Emulator is used to connect the dispatcher

object to a file reader input and a file writer output. Some simulation components like

push-buttons or a file reader/writer are already included in the Emulator, other cus-

tomized devices can be added easily (using usual Java).

Figure 6.21: Interaction between JSB and Emulator[172]

More details about the Emulator including an example implementation and the corre-

sponding screen shots are shown in the following chapter 7.
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In chapter 4 the basic approach has been shown. It has been illustrated that object-

orientation in combination with multi-threading is a very good way to describe dynamic

hardware. As a consequence, the language POL which is very close to Java has been

designed. Chapter 5 described the resulting requirements coming with the specification

of POL. In chapter 6 the resulting design of the Framework which contains an Emulator,

a POL-to-VHDL compiler as well as the necessary infrastructure on the FPGA has been

presented.

This chapter concludes the description of the Framework. It focuses on the concrete

implementation of the Framework and describes the way the design has been realized.

Implementation Environment

Figure 7.1: ML405

The implementation of the POL-Compiler, the Communication Matrix and the Sched-

uler was performed on a PC equipped with a 2.5 GHz single-core Intel processor and 4 GB

memory, which was running 32-bit Kubuntu Linux. For bitfile generation, the Xilinx tools

ISE 9.1i SP2, enhanced by the PREA1 patch, and PlanAhead 10.1i were used. The proces-

sor subdesign as well as the Scheduler were developed using the Xilinx EDK 9.1i SP2.

1Partial Reconfiguration Early Access
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For simulation, Modelsim 6.5 was used. The Emulator was developed on an Intel-PC

running 32-bit Windows Vista, using Eclipse Europa (version 3.3.0) and JDK2 version 6.0.

For testing of the generated bitfiles, the Xilinx Evaluation Board ML405 containing

a Virtex-4 FX20 (package FF672, speed-grade 10) was used (see figure 7.1). The Board

inter alia contains a 100 MHz oscillator, an RS-232 serial port, an AC973 chip which pro-

vides audio inputs and outputs, a VGA chip with a monitor interface, push buttons and

LEDs [174]. The FPGA contains 8 544 Slices, 68 BRAMs, one PPC4 and two ICAPs.

Implementation Example

To increase the transparency of this chapter, an example implementation is used as a

leitmotif. It consists of 3 classes: Adder, Multiplier and Dispatcher. The Adder takes its

input data from two Slots, adds the received values and emits them to its Signal. The

Multiplier also takes its input data from two Slots, multiplies the received values and

emits them to its Signal. The Dispatcher creates two instances of Adder and one instance

of Multiplier. It connects them as shown in figure 7.2. The left part of figure 7.3 shows the

complete POL source code used for the adder-multiplier example.

Figure 7.2: Dataflow of the adder-multiplier example

2Java Development Kit
3Audio Codec ’97
4PowerPC
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Figure 7.3: Comparison of POL and the corresponding generated Java code

7.1 Emulator

After creating the POL sources, a user of the Framework can execute the console com-

mand pol to parse and to compile the POL sources. Since parsing is needed for both the

Precompiler and the POL-Compiler, these two components have been implemented in

one tool. Thus, invoking pol creates both the VHDL code5 and the Java code. The right

part of figure 7.3 shows the Java code that has been generated by the Precompiler. As one

can see, the POL specific access modifiers have been replaced by classes called Signal and

Slot. The different types of Slots were implemented using Java Generics. Furthermore,

the Precompiler introduces a class called IntWrapper. This class is used to support 16-bit

Integers, which is necessary, since the current implementation of the Framework uses a

data format with a payload size of 16 bit. To be able to handle overflows correctly, op-

erations such as an addition or multiplication have to be realized via a special method

called uint16b. Please note that in the current Emulator implementation the emulation of

VHDL subcomponents is not yet implemented.

5The parsing process as well as the compile process will be illuminated in detail in section 7.2
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7.1.1 Emulator Packages

Package application

The package application contains the Java files that can and/or must be edited by the user

of the Framework. JSB.java contains the representation of the surrounding system and

thus the static main method. Constants.java contains a list of constants which determine

the output and debug level of the Emulator. Finally, toEmulate.java contains the Java code

generated by the Precompiler, while the name toEmulate.java can be interchanged freely.

Figure 7.4 shows an example representation that connects the adder-multiplier example

with a UART6 interface.

01 package application;

02 import pol.*;

03 import components .*;

04

05 public class JSB {

06 public static void main(String [] args) {

07 Dispatcher disp1 = new Dispatcher ();

08

09 Control control = new Control ();

10 control.getControlDevice(Constants.usedOutputs );

11

12 UART uart = new UART ();

13 uart.getInputDevice(POL.In[0]. myFifo , 0);

14 uart.getInputDevice(POL.In[1]. myFifo , 1);

15 uart.getInputDevice(POL.In[2]. myFifo , 2);

16 uart.getInputDevice(POL.In[3]. myFifo , 3);

17 uart.getOutputDevice (POL.Out [0]. myFifo , 0);

18

19 disp1.go();

20 }

21 }

Figure 7.4: Example implementation of JSB.java

Line 07 starts the initialization of the Dispatcher, while Dispatcher is the name of the POL

class derived from DispObj. The name Dispatcher depends on the given POL code. Lines

09 and 10 create and start the Control thread which is used to emulate the Scheduler. Line

13 to 16 connect the inputs In[0] to In[3] of the POL world with the UART component

created in line 12, while line 17 connects the output Out[0] with this UART component

(the class POL is a static class which is used to provide the connections between the POL

world and the surrounding system). Finally, line 19 starts the emulation.

6Universal Asynchronous Receiver Transmitter
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Package components

The package components contains all classes that are used by the Emulator to represent

the surrounding system. Examples are UART or PushButtons. Furthermore this package

holds all classes that are needed to emulate the behavior of the Scheduler. The class

UART shown in figure 7.4 is a typical example for a class that belongs to the package

components. It provides the methods getInputDevice and getOutputDevice which provide

an emulation of the surrounding system and have to be directly connected to the inputs

and outputs which have been described in POL using the class world. The class UART

creates a GUI (Graphical User Interface) for each input and for each output. Figure 7.5

shows a screenshot of the graphical output resulting from the Java code presented in

figure 7.4.

Figure 7.5: Screenshot of the emulation GUI provided by the Emulator class UART

Package pol

The Emulator makes use of inheritance and encapsulation to emulate the POL specific

objects (such as Slot, Signal, ParObj, ...) and methods (such as connect, disconnect, get, ...).

The corresponding classes are integrated in the package pol. Table 7.1 gives an overview

of these classes and shows how they are used to emulate the functionality of the Com-

munication Matrix.
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Class Description

ParObj ParObj derives from Thread and is the heart of the Emulator. Attributes,

functions and mechanisms typical for parallel running hardware mod-

ules are defined here. Thus, not only the POL objects, but also all ob-

jects representing a hardware module of the Communication Matrix

(e.g. the Class Buffers) derive from ParObj. Due to this the emulation

of POL code leads to the execution of dozens of threads.

FIFO A FIFO is a linked list of type Message. It is used to represent the FIFOs

of the Communication Matrix (e.g. the Task Area FIFO). Although Java

provides the possibility to generate potentially infinite lists, each FIFO

is limited to the correct size which complies with the Communication

Matrix’ FIFO size. FIFO derives from ParObject.

Slot A Slot is the only input channel of the POL objects. It provides the meth-

ods get(), get(default) and valid(). To support the emulation of synchro-

nized Slots, Slots can share one single FIFO. Slot derives from ParObj.

Signal A Signal is the only output channel of the POL objects. It provides the

methods emit, connect and disconnect. It derives from ParObj.

Message Objects of type Message represent the messages which are delivered

by the Communication Matrix. They are purely passive data-objects,

which therefore do not derive from ParObj and are no thread at all. A

Message contains the class ID, the instance ID and the Slot ID of the

destination as well as the actual payload.

POL POL is a static class that provides the connections between the Java

code generated from the POL sources and the classes representing

the surrounding static system. Since DispObj derives from POL, the

class deriving from DispObj can access the global inputs and outputs

via In[x] and Out[y], while in the class JSB.java they are accessed via

POL.In[x] and POL.Out[y].

DispObj DispObj represents the initial POL object which is automatically instan-

tiated at system start-up. It derives from POL and is a singleton. Disp-

Obj instantiates ClassFIFO and provides the connections to the outside

world.

ClassFIFO As shown before, the Communication Matrix instantiates one buffer

per class (the Class Buffer). The Emulator represents all Class Buffers

with one single object called ClassFIFO. It is a singleton, which is auto-

matically instantiated at system start-up by the dispatcher object. The

parallelism of several Class Buffers is realized internally.

Table 7.1: The additional classes coming with the Emulator
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Figure 7.6 illustrates the internal connection of the Emulator classes using the adder-

multiplier example. It shows the FIFO objects used, as well as all used Signals and Slots.

Please note that the inputs, outputs and the ClassFIFO are implicitly instantiating Signals

and Slots which cannot be found in the original POL code. These additional objects are

used to represent the functionality of the Communication Matrix. A user of the Frame-

work does not have to care about them at all.

Figure 7.6: Connection diagram showing all instantiated Emulator classes [172]
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7.1.2 Emulation of the Scheduler

In order to provide an exact emulation of the Communication Matrix, the Emulator has

to recreate the behavior of the Scheduler. To that end, the class Control is used. It is

a singleton and provides the scheduling algorithm, which determines whether an POL

object is virtually loaded to a task area and thus allowed to work. To be able to trace the

scheduling decisions and the state of the POL objects as well as the state of the Signals,

Slots and their corresponding FIFOs, the Control object provides a GUI which displays the

actual state of the system and allows the user to freeze single objects or the whole system.

Figure 7.7: Screenshot of the Control GUI

Figure 7.7 shows a screenshot of the Control GUI displaying 5 threads: the Dispatcher,

the two Adder instances, the Multiplier and the ClassFIFO (called ClassMux). This out-

put represents the current state of the emulated system and is updated whenever an in-

stance is created or destroyed. Monitoring of the threads is realized via the Java method

Thread.enumerate which fills a given Thread array with all threads that have been started

by the current Java program. Control uses this list of threads and filters out all threads

that do not represent a POL instance.

The numbers in the first column of the Control GUI represent the filling levels of the

Slots of a thread, the numbers in the third column represent the filling levels of the Signals

of a thread. Please note that each Slot and each Signal shown in figure 7.6 as well as the

connection Slots are displayed.

The button “pause it” allows the user to freeze a single thread. The button “resume”

continues a frozen thread. Finally, the button “use Scheduler” allows the user to acti-

vate the scheduler emulation, which automatically stops and restarts the threads as the

Scheduler would do on the FPGA.
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7.2 From Parallel Object Language to VHDL

The POL compiler translates the POL code to VHDL without using an intermediate step

such as a conversion from POL to Java bytecode. The idea is to directly transfer the

software concurrency (using threads) to hardware concurrency (using processes). The

compiler is written in C++. The process of compilation is implemented in three steps.

First, the syntactic structure of the POL code is analyzed by a parser, which results in

a parsing tree. Secondly, the tree is recursively traversed and scanned for declared and

instantiated variables, methods and other language elements. The outcome is the Main

FSM and the so called Compiler Context which represents the needed declarations and

definitions. Finally, the Main FSM and the Compiler Context are used generate the VHDL

entities. [170]

7.2.1 The Parser

Instead of writing a proprietary parser, the decision was made to use the Spirit[175]

parser framework which is part of the open-source Boost Libraries[176]. Spirit makes

use of a set of predefined primitives, and overloads C++ built-in operators (+, *, >>) to

provide a C++ representation of the grammar that is very close to EBNF7. Only some op-

erator positions are different from those of the EBNF operators. For example, the unary

operators + and * are prefix operators in Spirit while they are postfix operators in EBNF.

Table 7.2 shows the operators in Spirit compared to their EBNF notation. Table 7.3 shows

the parser primitives provided by Spirit. Figure 7.8 shows a C++ snippet using these

operators and primitives to define the parser rule describing the syntax of a while loop.

Spirit operator EBNF Description

a = b a = b Production

a >> b a b Matches a followed by b

a | b a | b a or b

*a a* a zero or more times

+a a+ a one or more times

a % b a {b a}* a one or more times, separated by b

Table 7.2: C++ operators overloaded by Spirit compared to EBNF [170]

7Extended Backus Nauer Form - see chapter 6.4.4
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Primitive Description

char_p(’x’) a single character x

alpha_p an alphabetical character

digit_p a single digit

uint_p an unsigned integer

print_p any printable character

eol_p a line break

end_p end of input

str_p(”string”) string

white_p space, tabular or line break

comment_p(”//”) a comment starting with ’//’ and ending with a line break

comment_p(”/*”, ”*/”) a comment starting with ’/*’ and ending with ’*/’

Table 7.3: Parser primitives provided by Spirit [170]

while_stmnt = str_p("while") >> *white_p >> ch_p(’(’) >> *white_p

>> expression >> *white_p >> ch_p(’)’) >> *white_p >> statement;

Figure 7.8: Parser rule definition in Spirit [170]

POL does not depend semantically on spaces between keywords, identifiers, literals

and operators. Denoting these possible spaces explicitly makes the definitions long and

hard to read. Therefore, Spirit provides the possibility to define a so called skipper which

consumes superfluous spaces before the actual parser is called. Figure 7.9 illustrates the

syntax definition of a while loop using a skipper.

while_stmnt = str_p("while") >> ch_p(’(’) >> expression >> ch_p(’)’) >> statement;

Figure 7.9: Parser rule definition in Spirit using a skipper [170]

Beyond primitives and overloaded operators, Spirit provides the usage of so called

directives, which can be used to control the behavior of the parser. An important directive

is lexeme_d which makes it possible to disable the skipper for a defined part of the tree.

Another useful directive is leaf_node_d which is used to restrain the number of generated

leaf notes inside the parse tree. By default, each primitive (even a digit or a character)

creates a leaf node. However, the POL compiler does not need such a fine granularity.

Therefore, leaf_node_d is used to achieve a coarser granularity. Table 7.4 lists all available

directives. Figure 7.10 shows an example parse rule using lexeme_d and leaf_node_d to

declare a POL identifier as white-space free leaf node.
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Directive Description

leaf_node_d Creates a single leaf node for all enclosed rules

discard_node_d Discards the node and its children

lexeme_d Disables the skip parser

as_lower_d Transforms the input to lower case before parsing

Table 7.4: Spirit’s parser directives [170]

identifier = lexeme_d[leaf_node_d[alpha_p >> *( alpha_p | digit_p | ch_p(’_’)]];

Figure 7.10: Example parser rule using parser directives [170]

The whole POL syntax is described in one single struct containing all Spirit parser rules

as illustrated previously. This struct, the skipper, and an iterator referencing the POL

source code are handed over to the Spirit function pt_parse which uses the given rules to

parse the source code and return the parse tree. The parse tree is used by the Precompiler

to generate Java code for the Emulator as well as by the POL compiler to generate VHDL

for synthesis.

Error Reporting

Errors must be reported in a way that allows the user of the Framework to find the error

source and to correct it. The parser uses assertions to ensure the correctness of the given

code. If an assertion fails, the parser throws an exception that is caught and the corre-

sponding error is reported to the user. Figure 7.11 illustrates the assertion used to report

a missing bracket. Figure 7.12 shows the respective compiler output.

assertion <const char*> exp_bracket_open(" ’(’ expected ");

Figure 7.11: Assertion used to report a missing bracket [170]

# pol example.pol

example.pol :12:11: error: ’(’ expected

example.pol :1:1: error: parsing failed

Figure 7.12: Error output caused by a missing bracket
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7.2.2 The Compiler

Basic Structure of the Generated VHDL Code

In section 6.4.6, the basic structure of the generated VHDL code has been described. It

has been shown that each POL class (be it ParObj, DispObj or StatObj) is translated to a

separate VHDL entity in a separate VHDL file. The name of the entity corresponds to

the name of the POL class and appending “_csym”. The file name is the entity name

plus “.vhd”. Each VHDL entity consists of a Main FSM, a Connection FSM, a Memory

Allocator, the Context Memory and optional VHDL subcomponents. The Main FSM is

the only element that is generated from the given POL code. All other elements have

been implemented in VHDL.

The Main FSM is, as the name implies, a finite state machine which consists of states

that represent the functionality of the POL code. Furthermore it contains states that are

used for initialization, swap-in and swap-out. In the following, a set of states which

belong together and represent a self-contained piece of functionality (e.g. swap-out) is

called a State Sequence. Figure 7.13 illustrates the basic structure of the Main FSM.

Figure 7.13: Basic structure of the Main FSM

The Context Memory is divided into two halves: the stack and the heap. The heap

begins at address 0x00 and grows in positive direction. It is used to store general instance

data (instance number, re-entry point, memory allocation map, stack pointer) and pri-

vate variables during suspension as well as arrays. The stack begins at address 0xff and

grows in negative direction. It is used to store local variables, function parameters, return

values, return states and stack base pointers.

Basic Expressions

The POL-Compiler creates two data structures: the Main FSM which contains the gener-

ated State Sequences, and the Compiler Context which contains the needed VHDL vari-

ables, signals and enumerations. Table 7.5 describes the correlation between basic POL

expressions and VHDL State Sequences.
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POL Realization in VHDL

Variables All variables are translated to VHDL registers. Thus, reading the value

of a variable does not consume a state. In contrast, writing a value to a

variable is realized as a write to the corresponding VHDL register (on

the rising edge of the clock) and therefore consumes one state. During

swap-in the values of these registers are read from the Context Mem-

ory. During swap-out these values are written to the Context Memory.

Thus, the size of the State Sequences used for swap-out and for swap-

in depends on the number of private POL variables. The value of this

represents the instance number. It is read from the Context Memory

(address 0x00) during init (see figure 7.13).

Array access POL arrays are not represented by VHDL arrays. Instead, their ele-

ments are solely stored on the heap. A write to an element of an array

requires one state (BRAM address and data value can be send concur-

rently). A read from an array requires two states: one for sending the

BRAM address to the Context Memory and one for processing the read

value.

Get A get() call needs special treatment since its blocks until new data ar-

rives on the input it waits for. To be able to suspend an instance, al-

though it is waiting for data, the State Sequence used to realize the

blocking get() also has to check for a swap-out request. This requires

5 states. The non-blocking variant get(default) returns always immedi-

ately and is therefore represented by one single state.

New

instance

A DCB request containing the class ID of the new instance is send to the

Scheduler. The Main FSM waits until the Scheduler responds the new

instance ID which is stored in a VHDL signal representing the object

handler. This requires one state.

Finish

instance

A special kind of Connection Message is send to the instance that shall

be destroyed. This requires one state.

New array Memory is requested from the Memory Allocator. The expression’s

value is a reference (BRAM address) to the array. This requires 2 states.

Finish array The corresponding memory is deallocated by the Memory Allocator.

This requires 1 state.

Method

invocations

A State Sequence handles the stack management. It’s size depends on

the size of the context that has to be stored on the stack.

Table 7.5: POL vs. VHDL
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Operators

Table 7.6 lists all available POL operators and how they are translated to VHDL. The

translation of some operators is very simple, since they have a one-to-one counterpart

in VHDL. In contrast, other operators require a complete State Sequence. In order to

keep the generated VHDL code understandable and easy to read, some operators were

implemented via VHDL functions.

Description POL Symbol Implementation in VHDL

Simple assignment = State Sequence

Compound assignment *=, /=, %=, +=, -= disassembled to arithmetical operators

and simple assignments

Ternary condition ? : VHDL function and State Sequence

Conditional logic ||, && State Sequence

Binary bitwise logic |, &, ^ or, and, xor

Equality operators ==, != VHDL functions based on =, /=

Relational operators <, <=, >, >= VHDL functions based on <, <=, >, >=

Shift operators «, >> VHDL functions based on sll and srl

Binary arithmetic *, /, +, - *, /, +, -

Unary arithmetic +, - VHDL functions based on binary minus

Prefix operators ++a, --a disassembled to arithmetical operators

and simple assignment

Postfix operators a++, a-- disassembled to arithmetical operators

and simple assignment

Bitwise complement ˜ not

Logical complement ! not

Brackets ( ) ( )

Table 7.6: Translation of POL operators to VHDL [170]

In VHDL the equality operators as well as the relational operators return a Boolean.

However, in order to store the returned values in VHDL registers, std_logics are needed.

To solve this problem, VHDL functions are instantiated that compare the two values and

return a std_logic. Additionally a VHDL function is instantiated that allows the usage of

an unary minus operator.

The ternary condition as well as the conditional logic require a State Sequence, since

the execution of the second operand depends on the result of the first operand. This

behavior has not been parallelized due to possible side effects of the second operand.
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Data Types

POL supports unsigned integers, Booleans and object handlers. Furthermore it supports

one-dimensional arrays of these three data types. Table 7.7 illustrates the actual encoding

of these data types. The encoding of port is only used for Signals, Slots and the correspond-

ing methods. In the current version, the Communication Matrix makes use of messages

with a 32 bit size. Of those, 16 bits are used for addressing and 16 bits are used as payload.

The class ID and the slot ID utilize 4 bits. The instance ID utilizes 6 bits. These sizes are

parameters of the Framework and can be modified. Please note that such a modification

influences all parts of the Framework: the Emulator, the Compiler, the Communication

Matrix and the Scheduler.

POL type VHDL type Encoding

integer std_logic_vector(15 downto 0) big endian

Boolean std_logic ‘0’: false, ‘1’: true

array reference std_logic_vector(15 downto 0) bit 15-08: heap address

bit 07-00: array size

object reference std_logic_vector(15 downto 0) bit 15-12: class ID

bit 11-06: instance ID

bit 05-00: unused

port std_logic_vector(15 downto 0) bit 15-12: class ID

bit 11-06: instance ID

bit 05-00: input ID

Table 7.7: Translation of POL data types to VHDL
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Statements

Figure 7.14 illustrates the State Sequences that are used to realize if-branches and loops.

In contrast to Java, unreachable code (caused by unsatisfiable conditions) only leads to a

warning, not to an error.

Figure 7.14: State Sequences for if-branches and loops

7.2.3 Connection Management

The communication between several instances is realized via Signals and Slots. From

the compiler’s point of view the Slots are passive registers, which provide a validity flag

and can be read via a blocking or a non-blocking get (which resets the validity flag).

The message delivery from the Task Area FIFO to the correct Slot is performed by the

Communication Matrix and does not affect the compiler at all. Please note, that in the

current implementation of the Communication Matrix the Instance Buffer has not been

implemented, yet. In many cases, this makes it necessary to avoid using the blocking

get() method.

In contrast to Slots, Signals are much more complex elements. This is mainly due to the

fact that one Signal can be connected to multiple Slots. Thus, a Signal is represented by

a State Sequence, which looks for established connections and generates a message for

each Slot connected to the Signal. For this, each Signal is assigned to 16 BRAM addresses

which are part of the heap and are used to store the addresses of the connected Slots.
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Connection Messages

The methods connect and disconnect create Connection Messages. These messages are

always addressed to port 15 and consist of two data words. Table 7.8 illustrates the

structure of the Connection Messages. In contrast to normal Slots the Connection Slot

Word nr. Encoding of the payload

1. bit 15-05: zeroed

bit 04: disconnect flag

bit 03-00: the ID of the affected Signal

2. bit 15-12: the class ID of the Slot

bit 11-06: the instance ID of the Slot

bit 05-02: the input ID of the Slot

Table 7.8: Encoding of the Connection Messages

(Slot ID 15) requires special treatment. In fact, the handling of Connection Messages

is realized by an additional state machine (see figure 6.18). This state machine is syn-

chronized to the Main FSM. It is only allowed to handle Connection Messages, after the

constructor or calc() have finished and before the first get or emit have been executed. As

long as the Connection FSM is processing a request, emit and get calls must wait until it

has finished.

If the disconnect flag is set, the Connection FSM tries to terminate a connection. Oth-

erwise it establishes a connection. The ID of the affected Signal informs the Connection

FSM, to/from which Signal a receiver shall be added/removed. The class ID, instance ID

and Slot ID transmitted in the second word inform the Connection FSM which Slot shall

be added/removed to/from the list of receivers. If a Slot shall be removed from the list of

receivers but is not stored in this list, the disconnection fails without reporting an error.

Serialization

Before data elements can be transmitted via emit, they have to be transformed to (a se-

quence of) 16-bit words. This is trivial for integers and object references, since they are

already implemented as 16-bit vectors. Booleans are converted to a 16-bit vector consist-

ing of 15 leading zeros and one bit containing the actual value.

Arrays are more complex, since their size exceeds the size of a single data message.

Thus, they must be serialized. The first data packet contains the size of the array. Sub-

sequently, every element of the array is transmitted in the order they are stored on the

heap. The receiver of the array executes an implicit new, which allocates the necessary

space on the heap. Finally, the array is filled with the received values.

In a way, the Connection Messages can be seen as a special kind of serialized messages.

All serialized messages make use of the aligned bit which is part of the message’s address

and tells the Communication Matrix to handle this series of messages as an uninterrupt-
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ible block. This prevents the interruption of a message series by other messages which

are heading for the same class.

7.2.4 The Memory Allocator

The memory allocator is a handwritten VHDL component that is used to manage the

allocation of memory in the heap. For this, the heap is separated into 128 sub units

which are represented by a 128-bit vector (called the allocation map). A ’1’ inside this

vector represents a used sub unit. A ’0’ represents a free sub unit. Figure 7.15 shows the

interface of the memory allocator.

Figure 7.15: Interface of the memory allocator

To allocate a block of memory, size is set to the size of the block and delete is set low.

strobe_in must be set high for one clock cycle. As a result, the allocator searches for a

pattern of size zeros in its allocation map. If it was successful, it returns the correspond-

ing BRAM address (using addr_out), sets e_nomem low and strobe_out high for one clock

cycle. Moreover, it sets the corresponding bits in the allocation map to ’1’. If it was not

successful, it sets e_nomem high and strobe_out high for one clock cycle.

To deallocate a block of memory, addr_in is set to the address of the block, size is set to

the size of the block and delete is set high. strobe_in must be set high for one clock cycle.

As a result, the allocator sets the corresponding bits of the allocation map to ’0’. Finally,

it sets strobe_out high for one clock cycle.

If the instance is swapped in or started the first time, the allocation map has to be

initialized with the correct values. For this, status_in is set to the desired value of the

allocation map and we is set high.

If the instance is swapped out, the allocation map has to be stored in the Context Mem-

ory. For this, the value of status_out can be used. It represents the current allocation map.
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7.2.5 Dynamic Hardware

As shown in section 6.3, the actual configuration of an instance corresponds to a swap-

ping process which includes the interaction between the Scheduler and the instance. Fur-

thermore, the instance needs to know if it has been started the first time, in which case it

has to execute the constructor. In order to be able to determine in which state the instance

has been interrupted, so called interruption points are used. These interruption points

are defined as enumerated interruptible states. Each interruption number corresponds to

one single interruptible state of the Main FSM. The interruption number is stored in the

Context Memory at address 0x1.

Creation

If the interruption number is zero, the instance is executed the first time. Thus, it initial-

izes the stack pointers and the memory allocator. Next, it executes the State Sequences

representing the member initializers and the constructor. After this, it executes the State

Sequences representing the calc method.

Swap-Out

If an instance shall be swapped out, it is informed by the Scheduler via the DCB. As

soon as the Main FSM reaches an interruptible state, the instance stores the interruption

number and calls the swap-out handler (which is a special State Sequence of the Main

FSM). The swap-out handler saves all VHDL registers that represent a POL variable in

the Context Memory. Furthermore, it stores the heap allocation map and the interruption

number. Next, it informs the Scheduler via the DCB that it is ready to be deactivated.

Finally, the Main FSM transitions to its final state. This state can only be left via a reset.

Swap-In

If the interruption number is not zero, the instance continues to execute after a swap-out.

Thus, the swap-in handler (which is a special State Sequence of the Main FSM) is called.

It reads back the heap allocation map as well as the values of the VHDL registers that

represent a POL variable. Subsequently, it executes the State Sequences representing the

calc method.

Termination

An instance can terminate itself or other instances. In any case, the call of finish at first

leads to the generation of a special Connection Message, called Destruction Message.

This Destruction Message only consists of one single data word: 0x7FFF. The usage of

Destruction Messages has been introduced to synchronize the destruction of an instance

with data that is heading for this instance and is still stored in the buffers (see chap-

ter 6.3.2).
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The actual termination of an instance is realized by its Connection FSM which receives

the Destruction Message. It forces the Main FSM to transition to its final state as soon as

it reaches an interruptible state. No data is stored (the swap-out handler is skipped) and

the instance informs the Scheduler via the DCB that it can be deleted.

7.2.6 VHDL Subcomponents

VHDL subcomponents implemented in POL are directly used as VHDL components.

Syntax and behavior of the subcomponents are not touched by the compiler at all. Only

the available input signals and output signals are analyzed. Table 7.9 shows the input

and output signals that must be provided by each VHDL subcomponent. Additionally,

every user-defined output and input signal leads to the need for an corresponding VHDL

output or input signal with a size of 16 bit. The signal strobe_in is used by the Main FSM

to call the subcomponent. The signal strobe_out indicates that the subcomponent has

completed its calculation and that the user defined output signals are valid.

Direction Port name Port width Description

in clk 1 the global clock signal

in rst 1 the task reset signal

in strobe_in 1 starts the calculation of the VHDL entity

out strobe_out 1 indicates the end of the calculation

Table 7.9: Minimal interface of a VHDL subcomponent [170]

Optionally, the VHDL subcomponent can implement a BRAM interface. In this case,

the POL complier establishes a connection between the VHDL subcomponent and the

heap. Required space can be allocated as integer array in POL. Table 7.10 shows the

BRAM interface of the VHDL subcomponents.

Direction Port name Port width Description

in bram_dout 16 data out

out bram_addr 8 address

out bram_din 16 data in

out bram_we 1 write enable

Table 7.10: Additional interface ports for BRAM access [170]
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7.2.7 Code Optimization

To decrease execution time and to save FPGA resources, the compiler performs some

optimizations based on the merging of states. Two succeeding states can be merged to

one state, if the first state is the only direct predecessor of the second state and the second

state does not read/write from/to resources the first state writes to. Furthermore, get()

calls on different input queues are bundled if they are part of the same expression. The

optimizations take place, after the main state machine has been created. Please note that

the consecutive access to elements of an array cannot be optimized, since arrays are solely

stored in the Context Memory.

7.2.8 Generated VHDL

After a POL class has been parsed and the corresponding Compiler Context has been cre-

ated, the VHDL file is generated. Registers that represent VHDL variables are named as

the POL identifier plus “_sym”. If a variable name is used twice (in different scopes), the

name of the VHDL signal also contains the line and the column number of the variable’s

definition. The state names in the Main FSM consist of two parts. The first part is an iden-

tifier representing the basic functionality of the state. The second part is the line number

of the POL expression and, if needed, the column number. As a result, a comparison

between the generated VHDL code and the POL source code is very easy. This was im-

portant for development and debugging of the POL compiler. Figure 7.16 illustrates the

layout of the generated VHDL file. Some code examples are shown to demonstrate how

POL expressions are translated to VHDL. Beyond the VHDL files, the compiler creates

the configuration file task.cfg, which lists the classes and the corresponding class types

and class IDs (see chapter 6.5).
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Figure 7.16: Layout of the generated VHDL files
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7.3 Communication Matrix

The Communication Matrix interconnects the dynamic parts and the static parts of the

design in a very flexible and highly concurrent way. It serves as an additional layer

between the generated modules and the actual FPGA hardware. In the following section,

the implementation of the Communication Matrix is described.

7.3.1 Data Format

In order to keep the VHDL code clear and easy to read, the Communication Matrix makes

use of nested VHDL arrays and records to define the interfaces of Class Buffers, Task

Areas and other elements. These records are declared in matrix_components.vhd. It deter-

mines the structure and the size of the connecting signals.

The most important record is object_word, since it defines the structure of the messages

sent by the Signals, stored in the buffers and received by the Slots. The structure of the

DCB interface is defined by the record DCB_word. Both records are illustrated in fig-

ure 7.17.

Figure 7.17: Structure of the records object_word and DCB_word

The record object_word consists of four parts: the subrecord .data which contains the

message’s payload, the subrecord .id which contains the receiver address as well as the

aligned-bit (used for serialized messages — see section 7.2.3) and the control bits valid and

invalid.
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7.3.2 System Templates

In order to represent the static part of the design (and thus all pre-defined parameters

like the number of provided Task Areas or the size of a message), System Templates are

used. Figure 7.18 illustrates the directory structure of a template and explains which data

is stored at which position.

Figure 7.18: Directory structure of the System Templates
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7.3.3 Structure of the VHDL code

Usually, the structure of the VHDL code highly corresponds to the logical structure of

the design as presented in chapter 6.2.4 in figure 6.6. Unfortunately, this haptic approach

cannot be used for the implementation of the Framework since PlanAhead is used as the

orchestrator for the creation of the (partial) bitfiles. PlanAhead dictates a structure of the

VHDL code that is geared to the partitioning into static and dynamic parts. The top

VHDL component must contain the static part as subcomponent, the dynamic areas as

subcomponents and the busmacros (as black box subcomponents8). Optionally, it can

contain I/O-buffer instantiations. All other logic must be placed in the subcomponents.

Busmacros are not allowed to be placed in the subcomponents at all.

Figure 7.19: Structure of the VHDL code

As a consequence, although a dynamic module is a logical subcomponent of a static

component (as it is the case in the Framework — see figure 6.6) it cannot be implemented

as a VHDL subcomponent of this static component. Rather, it has to be implemented

as a subcomponent of the dynamic part. The corresponding signals between the static

component and the dynamic subcomponent have to be passed through enclosing VHDL

components and must be routed through the busmacros in the top VHDL component.

Figure 7.19 illustrates the resulting structure of the VHDL code.

8The busmacros are added to the design as pre-routed and pre-placed hardmacros (NMC files) during the

place and route process
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The Matrix

The Communication Matrix has to connect each Task Area FIFO with each Class Buffer

multiplexer and each Class Buffer FIFO with each Task Area multiplexer. For this, nested

VHDL generates are used. Figure 7.20 shows the implementation of the interconnection

between Class Buffers and Task Areas. Both, data_in and data_out are of type object_word.

If less than 16 POL classes are used, the unneeded signals are not connected to a compo-

nent and thus removed by the synthesis tool.

gen_taskareas : for area in 0 to 15 generate begin

gen_taskarea : for buff in 0 to 15 generate begin

process (reset , ...)

begin

if (reset=’1’) then

taskarea(area). data_in(buff) <= no_data;

class_buffers (buff). data_out_read_enable(area) <= no_read;

class_buffers (buff). data_in(area) <= no_data;

taskarea(area). data_out_read_enable(buff) <= no_read;

else

taskarea(area). data_in(buff) <= class_buffers (buff). data_out;

class_buffers (buff). data_out_read_enable(area)

<= taskarea(area). data_in_read_enable (buff);

class_buffers (buff). data_in(area) <= taskarea(area). data_out;

taskarea(area). data_out_read_enable(buff)

<= class_buffers (buff). data_in_read_enable (area);

end if;

end process;

end generate;

end generate;

Figure 7.20: Nested generates used to interconnect the Class Buffers with the Task Areas

The Active Multiplexers

In order to support the usage of active multiplexers which decide, whether a message is

to be accepted or not, all FIFOs in the system are of type FWFT (First Word Fall Through).

This means that the multiplexers see the topmost message stored in the FIFO as well as

a control bit (valid) indicating whether the FIFO output is valid or not. If it is valid, the

corresponding multiplexer processes the output and sends an acknowledge signal to the

FIFO (in figure 7.20 this acknowledge signal is called data_in_read_enable). In addition to

the valid bit, the messages contain an invalid bit. This bit is used by the FIFOs to inform the

multiplexers that another multiplexer has read the data and that it is therefore no longer

valid. This is necessary, since the actual valid bit is a single pulse and the information

regarding validity is cached by all multiplexers. Setting the invalid bit to ’1’ clears this

cached valid bit.

The third control bit is the aligned bit. It is used by the POL compiler to tag serialized

messages. In normal operating mode, a multiplexer checks all connected FIFOs for new

data. If multiple FIFOs send concurrent messages a multiplexer, the data from the FIFO
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with the lowest number is taken. So, it could happen that a message stream coming

from Task Area 2 is interrupted by a message coming from Task Area 1. For serialized

messages this behavior is undesirable. Therefore, if the aligned bit of a message is set to

’1’, the multiplexer that processed this message only checks for messages coming from

the same FIFO. The POL compiler sets all aligned bits except that of the last word of a

serialized message to ’1’.

The FIFOs

As previously explained, all FIFOs inside the Communication Matrix are of type FWFT.

Since the interface of a FIFO supports bit vectors, but no records, the messages need to

be converted to normal bit vectors. All bits of a message with the exception of the valid

and the invalid bits are stored in the FIFOs. The width of the FIFOs is 32 bit. The depth of

each FIFO is 512 words. Thus, each FIFO matches exactly one single BRAM.

Dynamic Elements

The number of needed Class Buffers depends on the POL source code (namely on the

number of instantiated POL classes). Thus, the Communication Matrix makes use of

VHDL templates which provide keywords that are replaced by the Merger with the

correct number of Class Buffer instantiations before synthesis. Furthermore, multiple

synthesis runs are needed to create all netlists needed by PlanAhead. The runs for the dy-

namic modules depend on the instantiation of the correct VHDL component representing

the correct POL class. This is realized by the script matrix_synthesis which is described in

detail in section 7.5.

The number of Task Areas is an attribute of the used System Template. A change of

the number of available Task Areas requires a change of the template. For development

and testing of the Framework, two System Templates have been implemented: a tem-

plate providing one Task Area and a template providing two Task Areas. The following

sections focus on the latter.
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7.4 Behavioral Simulation

For the development of the Communication Matrix and of the POL-Compiler an addi-

tional testing layer has been introduced: behavioral simulation. Before the VHDL code is

used for bitfile generation, it can be simulated using Modelsim. This makes it possible to

detect and remove errors at an early stage. Please note that this additional step was only

necessary for the development of the Framework. A user of the Framework does not

have to care about behavioral simulations at all. The correctness of the generated code

and of the Communication Matrix is assured by the Framework itself.

The biggest problem regarding behavioral simulation comes with the usage of DPR.

Today, there is no simulation tool that directly supports runtime reconfiguration. Thus,

the reconfiguration has to be substituted by a comparable but simulatable process. For

the behavioral simulation of the Framework the file taskarea.vhd9 has been adopted. Nor-

mally, it instantiates the classes alternately. The correct class ID is set by the Merger —

n classes require n synthesis runs. At each run, only one single class is instantiated10.

This behavior has been changed for simulation. Here, all classes are instantiated simul-

taneously. Which class is virtually loaded to the FPGA is decided by a multiplexer which

emulates the runtime reconfiguration.

The processor subsystem is not part of the simulation. Only the matrix control interface

(see section 7.6.2) is simulated. The behavior of the Scheduler is emulated by do-files

(which actually are tcl11-scripts) that assign the correct signal sequences to the matrix

control interface:

peek Reads one data item from the Communication Matrix.

poke Writes one data item to the Communication Matrix.

reconf.do Emulates a reconfiguration.

swapin.do Activates an instance.

swapout.do Deactivates an instance.

schedule.do Activates an instance for a certain time interval.

scenario1.do Used to simulate a complete Scheduler cycle. It first initializes

the Communication Matrix. Then it answers to new-instance re-

quests (caused by the constructor of the initial class). Next, it

sends some data messages to the Communication Matrix and al-

ternately activates the instances (using schedule.do). Finally it uses

peek to receive produced output messages.

9see figure 7.19
10More details about bitfile generation will be shown in the following section 7.5
11Tool Command Language
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Figure 7.21 illustrates the content of reconf.do. Figure 7.22 shows a screenshot of the

simulation of the adder-multiplier example realized via scenario1.do.

force -freeze /tb_vhd/uut/stat/busmacro_enable_i (0) ’0’

force -freeze /tb_vhd/uut/stat/taskarea_reset_i (0) ’1’

run 100 ns

force -freeze /tb_vhd/uut/taskarea0/ta_0/select_task $1

force -freeze /tb_vhd/uut/taskarea0/ta_0/task1/this $2

force -freeze /tb_vhd/uut/taskarea0/ta_0/task1/select_instance $2

force -freeze /tb_vhd/uut/stat/active_class_0_i (7 downto 6) $1

force -freeze /tb_vhd/uut/stat/active_class_0_i (5 downto 0) $2

run 100 ns

force -freeze /tb_vhd/uut/stat/busmacro_enable_i (0) ’1’

force -freeze /tb_vhd/uut/stat/taskarea_reset_i (0) ’0’

run 100 ns

Figure 7.21: reconf.do

Figure 7.22: Simulation screenshot of the adder-multiplier example

Performed calculation: (1 + 2) · (3 + 4) = 21
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7.5 Bitfile Generation

In the following section, the creation of the full and the partial bitfiles is described. The

sources of the bitfile generation are the VHDL files generated by the POL compiler, the

netlists representing the processor subdesign, and the VHDL files representing the Com-

munication Matrix.

7.5.1 Synthesis

The usage of dynamic partial reconfiguration and the utilization of PlanAhead as orches-

trator of the bitfile generation have a strong influence on the structure of the VHDL code

(see section 7.3.3) as well as the way the synthesis is performed. If n is the number of used

POL classes and a is the number of Task Areas, PlanAhead expects a · n + 2 NGC files (see

section 2.6.1): n · a NGC files representing the dynamic modules, one NGC file represent-

ing the static part and one NGC file representing the top module. The generation of these

NGC files has to be done in the following way:

• For the synthesis of the top module, the busmacros, the dynamic components (rep-

resenting the dynamic areas) and the static component have to be included as black

boxes.

• For the synthesis of the static part, the static module has to be declared as the top

module. The actual top module as well as the dynamic modules are left out.

• For the synthesis of n dynamic modules, n · a synthesis runs are needed. The corre-

sponding algorithm can be explained best in pseudo code:

for (i=1; i<=a; i++) {

USE DYNAMIC AREA i AS TOP MODULE

for (j=1; j<=n; j++) {

INSTANTIATE DYNAMIC MODULE j AS "PART I"

DO SYNTHESIS

}

}

For the alternate instantiation of the dynamic modules and for the instantiation of the

correct number of Class Buffers, VHDL templates are used. The templates contain the

actual VHDL code and so called magic comments. These magic comments are replaced

by the Merger with the needed VHDL component instantiations. The syntax of these

comments is:

--POL: command

The available magic comment commands are shown in table 7.11. The Merger uses the

file task.cfg (which has been created by the POL compiler) as an input file to assign the

correct class name and class type to a class ID.
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Command VHDL inserted by the Merger

static_taskarea_number an integer constant counting the static taskareas

dynamic_taskarea_number an integer constant counting the dynamic taskareas

dynamic_task_instantiation instantiation of a particular dynamic module

(the module number is an argument of the Merger)

task_declarations declaration of all dynamic modules

task_instantiations instantiation of all dynamic modules

static_taskarea_instantiations instantiation of all static Task Areas

Table 7.11: Template commands the merger substitutes

The Merger is a Linux binary and is called via the command merger. It provides several

options that control the behavior of the Merger and determine which magic comments

shall be replaced. The Merger uses the current directory as input directory, parses each

VHDL template file (ending with “.vhdt”) and translates it to a usual VHDL file. Please

note that this means that the “.vhdt” files are the actual source files, not the corresponding

“.vhd” files. Table 7.12 lists the available Merger options.

Merger option Description

--static_tasks return a list of the names of all static classes

--dynamic_tasks return a list of the names of all dynamic classes

--expand_static expand all static task templates

--expand_dynamic class expand all dynamic module templates with

class class

--create_pol_h create header file ’pol.h’ for the Scheduler

Table 7.12: Command line options for the merger.

The whole synthesis process is controlled by the bash script matrix_synthesis. In the

following part, the synthesis will be illustrated step by step. Please note that a user of the

Framework does not have to deal with these implementation details at all. He or she just

calls the synthesis script.
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Preparation

Firstly, the synthesis script clears all temporary directories used for synthesis. These are

runs and planahead_data. Next, it builds up the necessary temporary directory structure.

The directory runs is used to store all temporary synthesis files. The directory plana-

head_data is used to store the created NGC files. Next, the Merger is used to create a list

of all dynamic modules. The corresponding command is:

dynamic_tasks=‘merger --dynamic_tasks ../pol/‘

This list is used to copy all VHDL files representing a POL class from the directory pol

to the directory vhdl. Finally, the file full_files.txt is created. It contains a list of all VHDL

files which have to be synthesized.

The Static Part

For the generation of the static part, the Merger is used to expand all static task templates.

The corresponding command is:

merger --expand_static

This option causes the Merger to replace all magic comments that contain one of the

following commands:

static_taskarea_number, dynamic_taskarea_number or static_taskarea_instantiations

The affected files are communication_matrix.vhdt and matrix_components.vhdt. Finally, the

synthesis of the static part is started. The file create_static.txt determines the synthesis

options. It inter alia defines the static component as top module. The corresponding

command is:

xst -intstyle xflow -ifn ../script/create_static.txt \

-ofn ../runs/report/static.txt

The Dynamic Parts

As previously mentioned, the synthesis of n dynamic modules for a dynamic areas re-

quires a · n synthesis runs. For the instantiation of the correct dynamic module, the

Merger is used. Since the number of available dynamic Task Areas is an attribute of

the System Template, the runs needed for each Task Area are denoted explicitly. The

corresponding commands are:

for dynamic_task in $dynamic_tasks; do

merger --expand_dynamic $dynamic_task --expand_static

xst -intstyle xflow -ifn ../script/create_dynamic.txt \

-ofn "../runs/report/$dynamic_task.0.txt"

xst -intstyle xflow -ifn ../script/create_dynamic1.txt \

-ofn "../runs/report/$dynamic_task.1.txt"

done
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The option expand_dynamic causes the Merger to replace all magic comments that contain

one of the following commands:

dynamic_taskarea_number or dynamic_task_instantiation

The affected files are dynamic.vhdt, dynamic1.vhdt and taskarea.vhdt. Figure 7.23 lists the

content of dynamic.vhdt and the corresponding generated dynamic.vhd.

Figure 7.23: Comparison of the VHDL template file dynamic.vhdt with the generated VHDL file

The generated VHDL line of paramount importance is the generic map determining

the value of the generic class_id. In the file taskarea.vhdt each POL class is instantiated in

an if-generate depending on the value of class_id. It is the generic class_id that determines

the POL class that is actually used for synthesis.

The file dynamic1.vhdt is a one-to-one copy of dynamic.vhdt. Different names have been

introduced as a workaround for a PlanAhead bug: PlanAhead confuses the areas if both

are implemented as an instance of the same VHDL component.
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The Top Module

In order to generate the top module, the Merger is not needed. The file create_top.txt

determines the synthesis options. It defines the top module and reduces the set of used

VHDL source files to main.vhd and matrix_components.vhd. Thus, all subcomponents are

implemented as black boxes as expected by PlanAhead.

xst -intstyle xflow -ifn ../script/create_top.txt \

-ofn ../runs/report/top.txt

Completion

After all synthesis runs have been performed, the generated NGC files are copied to the

directory planahead_data. It contains 4 + n subdirectories (this directory structure is also

geared to the needs of PlanAhead):

top only contains the top module

static contains the static part including the processor subdesign

busmacros contains the hardmacros representing the busmacros

ucf contains the constraints file representing the floorplan

Adder_csym contains the files dynamic.ngc and dynamic1.ngc representing the

POL class Adder in the first and the second dynamic area

... (since two dynamic areas are used, each POL class is represented

by two files called dynamic.ngc and dynamic1.ngc)

Next, the Merger creates the file pol.h which is used by the Scheduler to determine

the number of POL classes and the class ID of the initial class. Finally, a summary of all

synthesis reports is shown, giving the developer a chance to check quickly if the synthesis

runs have been successful. If an error has occurred, the synthesis reports stored in the

directory runs/report can be used to determine the error source.
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7.5.2 Place, Route and Merging

The creation of the partial bitfiles is realized with Xilinx ISE 9.1i SP2 enhanced by the

PREA patch. PlanAhead is used as orchestrator. This means that the ISE commands are

not called directly, but via scripts generated by PlanAhead. This final step can be done in

two ways. First, the graphical user interface of PlanAhead can be used. This comes with

the advantage of a user-friendly interface that makes debugging much easier but depends

on user-interaction and demands a lot of time-consuming clicks. Secondly, PlanAhead can

be started in batch mode, which makes it possible to fully automate the bitfile generation

via tcl12-scripts.

The Framework makes use of the batch mode, but all steps are implemented in a way

that makes it possible to fall back to the graphical version whenever needed (e.g. if an

error occurs). The whole process is controlled by the script matrix_implementation which

has to be called with one argument. This argument determines the name of the PlanAhead

project that will be created as well as the name of the subdirectory of PlanAhead_Projects

where the project is stored. In the following part the script is described in detail.

Preparation

Firstly, the Merger is used to generate a list of all dynamic modules. This list is stored in

a shell variable. Next, the file task.cfg is parsed to determine the name of the class that

is configured initially to the dynamic areas (in the following, this class is called the dis-

patcher). Finally, the project directory is removed and re-created as blank directory.

Floorplaning and the Static Part

After preparation, PlanAhead is started in batch mode. The corresponding command is:

planAhead -mode batch -source $pwd/script/static.tcl

The file static.tcl is a tcl-script that controls PlanAhead in batch mode. PlanAhead uses the

namespace hdi to provide special functions regarding floorplanning and bitfile genera-

tion. In order to be able to parameterize commands as well as arguments without the

constraints and restrictions of tcl, templates (named “.tclt”) have been used. These tem-

plates contain special placeholders that are replaced via the Linux tool sed13. They are

used to generate the actual tcl-scripts. Table 7.13 lists these placeholders and how they

are replaced.

12Tool Command Language
13Stream EDitor
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Placeholder Replaced by

$pname the project name

$dir the project directory

$dispatcher the entity name of the dispatcher

$list the list of all dynamic modules

Table 7.13: Placeholders and their replacement

The script static.tcl first creates a new project via hdi::project new. The main.ngc is de-

fined as top module and the subdirectories under planahead_data are used as NGC source

directories. Next, the script sets the correct target architecture. Then it reads the prede-

fined floorplanning informations from the file main.ucf. This file contains the placement

of the I/O-pins, the definitions of the clock nets, the placement of the BRAMs and the

placement of the dynamic areas. The latter is implemented via so called area constraints

which are illustrated in figure 7.24.

INST "taskarea0 /*" AREA_GROUP=task0;

AREA_GROUP "task0" RANGE = SLICE_X40Y127 :SLICE_X71Y64;

AREA_GROUP "task0" RANGE = RAMB16_X3Y15:RAMB16_X3Y15;

AREA_GROUP "task0" RANGE = DSP48_X0Y16:DSP48_X0Y31;

INST "taskarea1 /*" AREA_GROUP=task1;

AREA_GROUP "task1" RANGE = SLICE_X40Y63:SLICE_X71Y0;

AREA_GROUP "task1" RANGE = RAMB16_X3Y7:RAMB16_X3Y7;

AREA_GROUP "task1" RANGE = DSP48_X0Y0:DSP48_X0Y15;

Figure 7.24: Area constraints placing the dynamic areas

After creating the project, a DRC check is performed. Then, the project is declared as a

partial reconfiguration project. From then on, PlanAhead’s DPR functionality can be used.

The corresponding procedure is:

hdi::pr setProject -name $pname

Before the project has been defined as a DPR project, taskarea0 and taskarea1 have been

interpreted as usual floorplanning areas used for better chip utilization. Now, the pro-

cedure hdi::pr setInstance can be used to define these two areas as dynamic areas. Next,

additional NGC files (that means all dynamic modules but the dispatcher) are assigned

to these dynamic areas (the dispatcher is already assigned to the dynamic areas, since it

has been used at project creation). Finally the creation of the static netlist is invoked. This

is realized by an independent script called launch1.sh. While this script is running, the

project is saved and PlanAhead is closed. Control returns to matrix_implementation which

waits until launch1.sh has finished. The result is an NCD file representing the placed and

routed netlist of the static part.
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The Dynamic Parts

In order to create the dynamic modules, PlanAhead is started in batch mode again. The

corresponding command is:

planAhead -mode batch -source $pwd/script/dynamic.tcl

The script dynamic.tcl makes use of the procedure hdi::run schedule to schedule the creation

of the NCD files representing the dynamic modules. Next, the procedure hdi::run launch is

used to start it. An separate script called launch2.sh is started. While this script is running,

the project is saved and PlanAhead is closed. Control returns to matrix_implementation

which waits until launch2.sh has finished.

The scripts launch1.sh and launch2.sh both make use of subscripts called runme.sh which

contain the actual functionality and are stored in the subdirectories that belong to the

static and the dynamic modules. These subscripts are called once for each module. Fig-

ure 7.25 illustrates how runme.sh uses the ISE tools to generate the NCD files.

ngdbuild -intstyle ise -modular module -active dynamic -uc "dynamic.ucf" "top.edn"

map -intstyle ise "top.ngd"

par -intstyle ise "top.ncd" -w "top_routed.ncd"

Figure 7.25: Part of runme.sh that calls the ISE tools

PR Assemble

After creation of the dynamic parts, the PlanAhead project contains a set of NCD files ei-

ther representing the static part or a dynamic module. Finally, these parts have to come

together. For this, PlanAhead is started in batch mode again. The corresponding com-

mand is:

planAhead -mode batch -source $pwd/script/assemble.tcl

The script assemble.tcl uses the procedure hdi::pr assemble to create the shell script assem-

ble.sh. Next, the project is saved, PlanAhead is closed and assemble.sh is called. This script

collects all created NCD files in one directory and calls the ISE tools PR_verifydesign and

PR_assemble to merge the NCD files.

PR_assemble merges the NCD files in a way that allows the usage of feed-through

routes. It generates the merged NCD files as well as the corresponding bitfiles. These

are:
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static_full.bit the full bitfile containing the static part as well as the

initial dynamic modules

task0_blank.bit a partial bitfile clearing the first dynamic area

(it contains nothing but the feed-through routes)

task1_blank.bit a partial bitfile clearing the second dynamic area

(it contains nothing but the feed-through routes)

taskarea0_Adder_csym.bit a partial bitfile representing the Adder in the first dy-

namic area

taskarea1_Adder_csym.bit a partial bitfile representing the Adder in the second

dynamic area

... (since two dynamic areas are used, each POL class is

represented twice)

Completion

After the bitfiles have been created, they are copied to the directory bitfiles. This is realized

via the program bitcopy which additionally removes the dispensable preamble (located

before the synchronization word 0xFFFFFFFF) from the bitfiles since this preamble would

disturb the ICAP controller. Furthermore the elf-file representing the Scheduler is copied

to this directory. Next, the file xmd.ini (which is used to upload the partial bitfiles to the

correct position in the DDR-RAM) is adapted to the bitfile names. Finally, all log files

are displayed. If an error occurred, PlanAhead can be started in GUI mode for further

investigations.

If the bitfile generation was successful and the target FPGA is connected, a user of the

Framework must simply navigate to the directory bitfiles enter the following commands:

# impact -batch < usbdownload.dat

# xmd

The configuration files usbdownload.dat and xmd.ini automate the upload of the full bitfile

via iMPACT and the upload of the partial bitfiles via the xmd14 tool.

Thereafter, the Framework should be up and running.

14Xilinx Microprocessor Debugger
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7.6 Scheduler

The Scheduler is a software program running on an embedded processor, which is part

of the FPGA design. It is responsible for the reconfiguration management. That means,

it conducts the dynamic creation as well as the dynamic destruction of instances and

controls the Short Reconfiguration as well as the Long Reconfiguration. Furthermore, it

monitors the Communication Matrix. For this, it provides a Scheduler Shell that allows

the user of the Framework to observe and to control the behavior of the generated system.

7.6.1 Processor Subsystem

Since the Scheduler is a software program, it is dependent on the implementation of

an embedded processor and the corresponding infrastructure (namely buses and con-

trollers). Xilinx offers two types of embedded processors: PPC and MircoBlaze. The PPC

is a hard-core processor. That means it is a hardwired subcomponent of the FPGA which

is not reconfigurable (see chapter 2.1). The utilization of a PPC depends on its availability

(e.g. only the FX chips of the Virtex-4 series contain a PPC). In contrast, the MicroBlaze

is a soft-core processor. That means it is implemented entirely in the configurable parts

of the FPGA. Therefore it can be utilized on every FPGA — but in contrast to the PPC it

consumes reconfigurable logic.

The Scheduler has been implemented in a way that allows its usage on the MicroBlaze

as well as on the PPC. Due to the fact, that all example designs have been tested on the

ML405 board, equipped with a Virtex-4 FX20 (which contains a PPC) the implemented

System Templates make use of the PPC and the corresponding infrastructure. The pro-

cessor subdesign contains the following components:

• the PPC itself

• a DDR-RAM controller (used to store the software as well as the partial bitfiles)

• a BRAM controller (used for booting)

• a JTAG debug interface (used by the xmd tool to upload the partial bitfiles)

• a RS232 UART user interface (used to provide a Scheduler Shell)

• an ICAP controller (used to perform the partial reconfigurations)

• a matrix control interface (used to observe and to manage the Communication Ma-

trix)

The processor subdesign has been created using the EDK (Embedded Development Kit).

The generated NGC files are used as direct input for PlanAhead. The script matrix_synthesis

copies them from the directory ppc/implementation to the directory planahead_data/static.

Figure 7.26 illustrates the structure of the generated system including the processor sub-

design as well as the Communication Matrix.
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Figure 7.26: Generated system including the processor subsystem as well as the Communication

Matrix

7.6.2 The Matrix Control Interface

The Scheduler has to be able to interact with the Communication Matrix. This is realized

via the matrix control interface. It maps bus addresses to VHDL signals and therefore

allows the Scheduler software to observe and to control the behavior of particular com-

ponents via address accesses. The managed components are:

• the FIFOs — the Scheduler is able to read the filling level as well as the topmost

messages; this information is used as input for the scheduling algorithm (especially

for Short Reconfigurations)

• the active multiplexers of the Task Areas — the Scheduler is able to set the class ID

and the instance ID of the object loaded to the dynamic area; this is used whenever

a Long Reconfiguration is performed

• the DCB — used for the interactions between Scheduler and hardware objects,

which is needed for the dynamic creation and destruction of objects as well as for

the swap-out process (see chapter 6.3.1).
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DCB

If the Scheduler wants to swap out a running instance, this instance has to be notified.

The reason is that a hardware object can only be interrupted at particular interruptible

states. Furthermore, parts of the context have to be saved to the Context Memory before

an instance can be swapped out (see chapter 7.2.5). The Scheduler makes use of the

DCB to send the corresponding object the DCB command ready for reconfiguration. Then

it waits, until the instance sends a ready for reconfiguration command via the DCB. The

Scheduler waits for a preassigned period (e.g. 3 seconds). If the instance fails to answer

in time, the Scheduler deactivates the instance without saving its context and reports an

error. This situation is comparable to a kill -9 under Linux. After such a rigorous kill of

the instance the Framework cannot assure the correct behavior of the system any longer.

If an instance wants to create a new object, it uses the DCB to send the Scheduler

the command new instance request. The corresponding data is the class ID of the new

instance. As response, the Scheduler checks for a free instance ID and adds a new entry

in the instance list. Next, the Scheduler sends the DCB command new instance reply. The

corresponding data is the instance ID of the new instance.

If an instance receives a Destruction Message, it ultimately stops its execution. At the

very end, it uses the DCB to send the Scheduler the command self deletion. In answer to

this, the Scheduler removes the instance from the list of active instances and marks the

corresponding dynamic area as unused. Table 7.14 lists the available DCB commands

and the corresponding DCB data.

Each DCB message sent to the Scheduler consists of a DCB command, DCB data and

the number of the Task Area from which it comes. Each DCB message sent to an hardware

object consists of a DCB command, DCB data and the corresponding class ID and instance

ID. The Scheduler has to assign the Task Area number to the correct class ID and instance

ID to be able to process the incoming data correctly.

DCB Command Description DCB Data

Instance to Scheduler

00001 new instance request new class ID

00010 ready for suspension -

00011 self deletion -

Scheduler to Instance

00001 new instance reply instance ID

00010 prepare for suspension -

Table 7.14: List of available DCB commands
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7.6.3 ICAP Controller

The ICAP controller coming with the Xilinx EDK has been designed to be flexible and

easy to handle. However, it does not provide a high throughput. Therefore, using the

Xilinx ICAP controller leads to very long reconfiguration times. This is primarily caused

by the fact that each data packet has to be transported multiple times (see figure 7.27).

Figure 7.27: Xilinx ICAP controller - Each Minor Frame has to be transported three times: from

the DDR-RAM to the PPC, from the PPC to the BRAM of the ICAP Controller, and finally from

this BRAM to the ICAP

For Runtime Scheduling, the reconfiguration speed has to be as high as possible (see

chapter 5). Due to this, the decision was made to implement a customized ICAP con-

troller based on [40] which makes use of DMA (Direct Memory Access). Thus, each

Minor Frame is transported only once (see figure 7.28), which significantly increases the

reconfiguration speed.

Figure 7.28: Customized ICAP controller - Each Minor Frame is transported only once

7.6.4 The Software

The Scheduler software has been created using the SDK (Software Development Kit)

which is part of the EDK. It is written as a C program which is running directly on

the embedded processor (no underlying operating system, no multithreading, no virtual

memory). It consists mainly of two parts: First, the Scheduler Shell which allows user

interaction and direct control of the Communication Matrix as well as the Scheduler. Sec-

ond, an Orchestrator which performs the necessary operations (instance management,

DCB interaction, Short Reconfiguration, Long Reconfiguration and connection manage-

ment) automatically.
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Instance Management

For instance management, the Scheduler makes use of a struct named matrix_data to store

all informations about classes and instances (see figure 7.29).

Figure 7.29: Struct matrix_data storing all informations about classes and instances

Every class is related to a partial bitfile which is stored in the attached DDR-RAM. Sev-

eral instances of the same class share one single bitfile. To enable the upload of these

partial bitfiles via xmd, the partial bitfiles are not stored in a dynamic array but in a ded-

icated area of the DDR-RAM. This area begins at address 0x03000000 and is not touched

by the linker at all. In contrast, the context of the instances is stored in the DDR-RAM as

a dynamic array (created on demand).

The dynamic instantiation of an instance leads to the search for an unused (inactive)

instance ID. If such an ID is found, the corresponding instance is set to active and the

context is initialized (which means that the corresponding array storing the context is

created, completely zeroed and the bits representing the first word of the Context Mem-

ory are configured to represent the instance ID). This can be done automatically by the

Orchestrator, or manually using the Scheduler Shell: the command addInst adds an in-

stance to a given class. The command context displays the context of a given instance.

In order to dynamically destroy an instance, the corresponding instance and the corre-

sponding Task Area are set to inactive and the array storing the context is deleted. The

Scheduler Shell offers the command disable which allows to deactivate a Task Area man-

ually. Furthermore, it provides the command ls sw which returns the actual content of

matrix_data.
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DCB

The DCB bus can either be controlled by the Orchestrator or by the Scheduler Shell. In the

first case, the Orchestrator automatically responds to DCB requests coming from running

instances. If an instance is asked by the Scheduler to suspend itself, the corresponding

answer (ready for suspension) is received by the Orchestrator which sets the ready bit of the

instance to 1. This way, the Scheduler is informed that it can swap out the corresponding

instance.

The Scheduler Shell provides the following commands to control the DCB bus manually:

writeDCB class inst command Writes the DCB command command with destination

class class and instance inst to the DCB

readDCB Reads a single word from the DCB

DCBnewInst Special command to send a new_instance_reply

Short Reconfiguration

A Short Reconfiguration is a change from an instance of a class to an other instance of the

same class. This requires a read-back of the old context (swap-out) and a configuration

of the new context (swap-in). A reconfiguration of the whole dynamic area is not needed

at all. If an instance has been loaded to Task Area 1, suspended and shall now be loaded

to Task Area 2, the corresponding context has to be adopted. This is due to the fact that

the bits of the upper BRAMs are organized other than those of the lower BRAMs. The

context adaption is realized by the function context_move().

The Orchestrator is able to perform necessary Short Reconfigurations automatically. If

it is configured to do so, it monitors the outputs of the Class Buffer FIFOs. If an instance

of class A is currently active and the topmost message of Class Buffer A is heading for

an inactive instance of this class, a Short Reconfiguration loading the addressed instance

is triggered. The Scheduler Shell offers the command shortReconf which allows to invoke

a Short Reconfiguration manually. If a manually suspended instance does not answer

in time, the user is asked to press ESC to kill this instance, or to press an other key to

keep it running. The commands ls hw and ll hw return a list of all used FIFOs and the

corresponding attributes (filling level and topmost message).

Long Reconfiguration

A Long Reconfiguration is a change from an instance of a class to an instance of another

class. This requires a read-back of the old context (swap-out), a reconfiguration of the

dynamic area and a configuration of the new context (swap-in). The Orchestrator is able

to perform the Long Reconfigurations automatically. In contrast to Short Reconfigura-

tions, the time a Long Reconfiguration has to take place is not strictly determined. The
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Scheduler uses the resulting degrees of freedom to minimize the number of needed re-

configurations as well as to prevent data loss caused by full FIFOs. For this, it monitors

the development of the filling levels of the FIFOs. The more data sent to a class the higher

its priority.

The Scheduler Shell offers the command longReconf to invoke a Long Reconfiguration

manually.

Connections and Messages

In order to keep the number of consumed hardware resources as small as possible, only

particular parts of System InOut15 are implemented in hardware. All messages (data mes-

sages as well as Connection Messages) sent to or coming from the Scheduler are handled

in software. Only particular Signals and Slots that are connected to a hardware compo-

nent (e.g. an audio codec) are managed in hardware. This significantly reduces the size

(in LUTs) of the Connection Manager. If and how channels are handled in hardware is

determined by the used System Template. In order to handle the messages correctly, the

Scheduler contains functions to tag outgoing and to untag incoming messages.

The Orchestrator is able to receive and to display incoming data. For this it makes

use of the function check_Output() which is part of the file application.c. This file contains

functions which can/shall be modified in an application specific way. The raw version of

check_Output() just displays all received data.

Table 7.15 lists the commands the Scheduler Shell provides for managing connections

and messages manually.

ls con Lists all connections on input Signals established by the

software part of the Connection Manager

connect Sends a Connection Message establishing a connection

disconnect Sends a Connection Message dissolving a connection

put data sig Sends a message via Signal sig (depends on the established

connections)

put data class inst slot Sends a message to Slot slot of instance inst of class class

(independent from the Connection Manager)

Table 7.15: Shell commands for managing connections and messages

Furthermore, the Scheduler Shell offers the command play which leaves the Shell and

hands control over to the application specific function Application_Interface() which is

part of application.c. This function can/shall be used to provide an application specific

interface. Its raw version just returns control to the Shell.

15see chapter 6.2.3
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The Big Picture

The Orchestrator and the Scheduler Shell can be used concurrently without any restric-

tions. This is realized by a function called polling() which subsequently starts the differ-

ent parts of the Orchestrator and is called whenever the Scheduler Shell is waiting for a

keystroke. The Shell allows to activate and deactivate the Orchestrator via CTRL+Y and

CTRL+X. The command setConfig allows a more fine-grained control. It makes it possible

to activate and deactivate particular parts (Long Reconfiguration, Short Reconfiguration,

Message control, DCB control) of the Orchestrator. Furthermore, the Scheduler Shell of-

fers the command debug which can be used to activate and deactivate debug messages

(e.g. the Orchestrator can be configured to report an info message for each performed

Long Reconfiguration). The command reset can be used to reset the Scheduler, the Com-

munication Matrix or the whole Framework.

The Scheduler is compiled with the cross compiler powerpc-eabi-gcc. The C sources are

stored in ppc/SDK_projects/Scheduler. The output of the compiler is a PPC binary called

Orchestrator.elf. It is copied to bitfiles/executable.elf and uploaded via xmd at system start-

up. Figure 7.30 illustrates the corresponding output of the Scheduler Shell using the

adder-multiplier example.

At first, the Orchestrator is activated (pressing CTRL+Y). Thus, the class Dispatcher

(which has been configured to the dynamic areas via the full bitfile) is started. It creates

two instances of Adder and one instance of Multiplier. Next, it establishes the connections

between them. Four Connection Messages are sent to System InOut. They are processed

by the software part of the Connection Manager. The command ls con displays the cor-

responding established connections. The command ls sw lists the content of matrix_data

which can be used to monitor the created instances. At this point, put is used to send

four data messages (1, 2, 3 and 4) to the four input Signals. The data is processed by the

Framework and the corresponding output is send to the surrounding system (and thus

to the Scheduler). The received value 21 is printed out.
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Figure 7.30: The Scheduler Shell

The application specific command play sends a sequence of data values to the Com-

munication Matrix and compares the returned value to the result calculated in software.

To demonstrate the functionality of the Shell, SetConfig is used to deactivate the Orches-

trator. Next, a Long Reconfiguration is invoked manually. Since the DCB unit of the

Orchestrator has been deactivated the ready-bit of the running instance is not set to 1 al-

though the instance has sent a ready_for_suspension message via DCB. Thus, a warning

message is printed out and the Scheduler waits for user interaction. In figure 7.30 ESC is

pressed to kill the instance.
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8 Results

In order to evaluate the design and the implementation of the Framework, two example

applications have been used. This chapter presents these two examples as well as the

corresponding measurements. Furthermore some extrapolations are used to illustrate

the implementation-independent possibilities and limitations of the Framework. Finally,

the measured and calculated results are interpreted.

8.1 Example Implementations

The example implementations have been realized on the same hardware as presented in

chapter 7. The POL-Compiler was running on a Linux PC. For bitfile generation, the Xil-

inx tools ISE 9.1i SP2 enhanced by the PREA1 patch and PlanAhead 10.1i have been used.

The Emulator was running on a Windows PC which was equipped with an Intel Core

2 CPU running on 1,67 GHz. For testing of the generated bitfiles, the Xilinx Evaluation

Board ML405 containing a Virtex-4 FX20 has been used. All implementations are realized

based on a System Template providing two dynamic areas.

8.1.1 Pong Game

The first example implementation focuses on the functionality of the Framework itself.

The dynamic instantiation of reconfigurable modules, their alternating execution (swap-

out, swap-in) and the final removal of instances has to work correctly in order to be able

to do Runtime Scheduling. To verify this functionality, the intuitive and playful example

Pong has been chosen. Pong is is one of the earliest arcade video games and was one of

the first video games to reach mainstream popularity [177]. It is a tennis-inspired game

for two players. Each player can move a bar up and down on his edge of the screen

and tries to bounce the ball back when it arrives at his side. The implementation used to

evaluate the Framework is able to contain more than one ball. New balls can be added to

the game by simply pressing a key. A ball can also leave the game when it is missed by

a player. To verify the Framework, the balls and bars were implemented as POL classes.

The adding of a new ball correlates to the instantiation of a new instance. The removal of

a ball correlates to the destruction of an instance.

1Partial Reconfiguration Early Access
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Figure 8.1: POL source code of the Pong example

Figure 8.1 shows the POL source code of the Pong example. It consists of three classes:

Ball, Bar and Dispatcher. An instance of Ball represents a ball. An instance of Bar repre-

sents a bar. Dispatcher derives from DispObj and is therefore automatically instantiated at

system start-up. It manages the dynamic creation and destruction of balls as well as the

communication of the objects with each other. The two bars are created at system start-up

in the constructor of Dispatcher. They are not destroyed at all. The Signals called clk_out
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and the Slots called clk_in are used to synchronize the objects at message layer. These are

usual messages and should not be confused with VHDL clock signals. Please note that

the clk_out-Signals make use of the possibility to add more than one receiving Slot to a

Signal (see line 110 and line 124). The part of the Dispatcher that manages the sending

and the receiving of synchronization signals via clk_in and clk_out has been omitted in

figure 8.1.

The Dispatcher is connected to the outside world via a Slot called keys and a Signal called

data — keys is used to receive keystrokes, while data is used to report the position of the

balls. If a ball leaves the playing field (size 80x40) on the left or the right side, it sends its

object reference to the Dispatcher via the Signal dead (line 21 and line 25). In answer to this

the Dispatcher removes all connections from or to the ball via disconnect and then removes

the ball via finish (line 120 – line 130).

Although Pong is a very playful example, the here presented implementation is a real

stress test for the Framework. The creation and the removal of balls is correlated to the

instantiation and the destruction of instances. Furthermore Pong depends on the estab-

lishing and the dissolving of connections at runtime. Since the used System Template

contains two dynamic areas, the usage of one Dispatcher instance and two Bar instances

results in the usage of Runtime Reconfiguration. Each instantiated Ball increases the de-

mands and leads to more necessary Runtime Reconfigurations. The synchronization via

the clk-messages has been done in a way that causes a deadlock as soon as a data message

is lost. Thus, erroneous implementations of the instance handling, the context manage-

ment, the connection management or the message transport would be visible immedi-

ately. In other words: a running Pong game indicates that all components of the Frame-

work are working correctly.

package application;

import pol .*;

import components .*;

public class JSB {

public static void main(String [] args) {

Dispatcher disp1 = new Dispatcher ();

Control control = new Control ();

control.getControlDevice(Constants.usedOutputs );

PongIn PongButtons = new PongIn ();

PongButtons.getInputDevice(POL.In[0]. myFifo );

PongOut pong = new PongOut ();

pong.getOutputDevice (POL.Out [0]. myFifo );

disp1.go();

}

}

Figure 8.2: Implementation of JSB.java for the Pong example

201



Results

Emulation

After writing the POL sources, the POL-Compiler is started. It generates the VHDL files

used for synthesis as well as the Java files used for emulation. In order to be able to

emulate the Pong example, a class emulating the outside world is needed. Figure 8.2

illustrates the implementation of this class. In order to provide an user interface that

blends in well with Pong, the input class PongIn and the output class PongOut have been

implemented. PongIn provides a set of push buttons which can be used to move the

bars and to create a new ball. PongOut provides a graphical view of the playing field.

Figure 8.3 shows a screenshot of the Pong emulation.

Figure 8.3: Screenshot of the Emulator

In its first implementation, the Pong source code contained a few errors in data mes-

sage handling and the synchronization via the clk-messages. All these errors could be

found early, during the emulation, since the Emulator exactly reproduces the behavior

of the hardware at message layer. For this, the GUI of the Control-Thread emulating the

Scheduler was very important. For synchronization, it made it possible to detect the exact

error source, since it shows the filling level of all used buffers.

For the performance evaluation of the Emulator, the emulation was monitored using

the JConsole tool which is part of the JDK2. After starting the Pong example, 92 threads

are running. This is due to the fact that each functional block of the Emulator (e.g. the

buffers) is represented by a thread in order to represent the functionality of the hardware.

The 92 threads are:

2Java Development Kit [178]

202



8.1 Example Implementations

• 3 POL objects (Dispatcher and two instances of Bar)

• 18 Slots

• 11 Signals

• 35 FIFO objects

• 1 ClassFIFO representing the Communication Matrix

• 1 Control-Thread representing the Scheduler

• additional internal Java classes (such as TimerQueue)

The instantiation of a Ball caused the creation of 6 additional Slots (3 Slots directly visible

in POL and 3 additional internal Slots), 4 additional Signals, 9 additional FIFO objects,

and of course 1 additional POL object representing the new ball.

The memory usage was quite independent from the number of instantiated objects:

it stayed at about 5 Mb. The CPU usage primarily depended on the usage of the exact

Scheduler emulation. As long as all POL objects were allowed to run all the time (Sched-

uler emulation turned off) the CPU usage was about 60% plus 3% per ball. Once the

exact Scheduler emulation was activated, the CPU usage was increased by about 20%

(see figure 8.4).

Figure 8.4: Overview of the CPU and memory usage in JConsole
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High Level Synthesis

The first step of the synthesis is the translation of the POL sources to VHDL. This is

realized by the POL-Compiler and takes about 0.5 seconds. As described in chapter 6.4,

the POL-Compiler translates each POL class to a FSM which is located in a separate

VHDL entity. The number of used states is optimized via state merging (two subsequent

calculations are merged into one state as long as they do not depend on each other). The

Pong example is translated as follows:

Number of states Number of states Number of states used

before optimization after optimization for context-management

Ball 137 100 44

Bar 90 67 36

Dispatcher 350 233 64

Before the VHDL code is used for bitfile generation, it can be simulated using Model-

sim. Figure 8.5 illustrates the first start of the Dispatcher. In order to simulate DPR, an

additional multiplexer has been introduced. This multiplexer decides, which instance

is running when. It is controlled by tcl-scripts emulating the behavior of the Scheduler,

since the processor subsystem is not part of the behavioral simulation.

Figure 8.5: First execution of the Dispatcher

Table 8.1 lists a more detailed analysis of the number of clock cycles required by the

generated VHDL code.

The large number of clock cycles needed for an emit is caused by the possibility to

connect multiple Slots to one Signal. Due to this, each emit requires at least one BRAM

access to read the number of connected Slots and additional BRAM accesses to get the

addresses of all connected Slots. As a consequence, the minimum number of required

clock cycles to handle one single data item (from receiving to transmitting) is 10 (get: 2,

assign: 1, emit: 7).
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Operation Time consumption in clock cycles

assignment 1

while loop 2 per iteration

do loop 3 per iteration

get 2

connect 2

emit 3 · #receivers + 4

Table 8.1: Time consumption of the generated VHDL code

All buffers and multiplexers in the Communication Matrix require 2 clock cycles per

data item. In the current implementation the Communication Matrix is running with

100 MHz. The payload of the transported messages is 16 bit. This means that the Com-

munication Matrix has a maximum throughput of 100 MB/s. In contrast, the generated

VHDL code has a maximum throughput of 20 MB/s. Hence, in the current version of the

Framework the generated VHDL code is the bottleneck.

Figure 8.6 illustrates the behavioral simulation of the Pong example. It shows the exe-

cution of two so called turns. One cycle consists of the subsequent execution of all active

instances and requires 16 µs. Please note, that the times needed to perform a partial re-

configuration are not considered in figure 8.6, at all. However, if the reconfiguration times

are known, they can simply be added to the behavioral simulation. The corresponding

dead times just have to be added to the tcl-scripts that emulate the Scheduler.

Figure 8.6: Behavioral simulation of the Pong example
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Figure 8.7: Partitioning of the Virtex-4 FX20

Bitfile Generation

In order to execute the generated design on an FPGA it has to be translated from VHDL

to (partial) bitfiles. This has been realized using ISE 9.1 and PlanAhead. Before the bit-

file generation can be started, the target FPGA has to be partitioned into dynamic and

static areas and these areas have to be placed. Figure 8.7 shows the partitioning of the

Virtex-4 FX20. The FPGA contains 8 544 Slices, 68 BRAMs, one PowerPC and two ICAPs.

Each dynamic area contains 2 048 Slices and 16 BRAMs. In consequence, the static area

contains 4 448 Slices and 36 BRAMs. The PowerPC is part of the static area. The bitfile

generation (low level synthesis, place and route) of the Pong example took 91 minutes.

Component #Slices Part of the FPGA #BRAMs

Virtex-4 FX20 8 544 100% 68

static area 4 448 52% 36

Communication Matrix 1 695 20% 7

Processor subsystem 2 753 31% 3

dynamic area 0 2 048 24% 16

dynamic area 1 2 048 24% 16

Dispatcher 2 016 24% 1

Bar 1 119 13% 1

Ball 1 316 15% 1

Table 8.2: Resource consumption of the generated VHDL code
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The Communication Matrix requires 20% of the Slices. Please note that the size of the

Communication Matrix (especially the number of used BRAMs) depends on the POL

source code, since the Matrix contains one Class Buffer per POL class. The processor

subsystem consumes 31% of the Slices. Table 8.2 shows an overview of the ressource

consumption. The Pong example supports the instantiation of up to 10 Balls. Using the

POL compiler in combination with conventional hardware (without utilizing DPR) this

would lead to the consumption of approximately 1 695 + 2 016 + 2 · 1 119 + 10 · 1 316 =

19109 Slices, which are 223% of the FPGA (which means that the design would not fit

onto a FX20).

Hardware Execution

All input and output channels of System InOut were connected to the OPB and thus to

the Scheduler running on the PowerPC. Due to this, the Scheduler Shell could be used

to monitor the output of the Pong example and to produce input data. The application

specific output parser of the Scheduler receives the incoming data messages (y-position

of Bar0, y-position of Bar1, number of Balls and the positions of the Balls) and prints out

a message, if a value has changed.

Figure 8.8: Scheduler Shell output of the Pong example

The Pong example makes use of the standard ICAP controller coming with the EDK.

Table 8.3 shows the measured reconfiguration times. The time for the Short Reconfigu-

ration is the sum of the times for swap-in, swap-out and the DCB interaction between

Scheduler and reconfigurable module.
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Swap-Out: 671 µs

Swap-In: 518 µs

Short Reconfiguration: 1 209 µs

Long Reconfiguration: 19 146 µs

Table 8.3: Measured reconfiguration times

The Scheduler loaded the Dispatcher to Task Area 0. The instances of Bar and the in-

stances of Ball have been loaded to Task Area 1. Figure 8.9 illustrates one scheduling

cycle with 3 instances of Ball.

Figure 8.9: Scheduling cycle using the example of 3 active balls

Since the Scheduler Shell does not provide a very haptic user interface for Pong, the

final step regarding the Pong example was to implement a Java program that connects

to the serial interface and displays the received coordinates in a graphical interface. Fig-

ure 8.10 shows a screenshot of this Java program. One can see that the behavior of the

hardware is identical to that of the software emulation.

Figure 8.10: Java serial interface output of the Pong example
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8.1.2 Audio Filter

As shown in chapter 5, FPGAs usually are used to handle data streams with a very high

throughput. To evaluate the performance of the Framework regarding data streams, an

audio DSP application has been implemented. It makes use of the AC973 chip which

provides stereo audio inputs and outputs. All inputs and outputs have a size of 16 bit.

The audio example contains two hardware objects representing two different effects: a

high pass filter and a low pass filter. The filter objects are instantiated to activate the

corresponding effect on a single channel and removed to deactivate it. Due to the two

channels (left and right), each filter object can be instantiated twice. The used System

Template provides two Task Areas. So, if the user activates all effects on both channels,

the Scheduler has to use Runtime Reconfiguration. Figure 8.11 shows the POL source

code of the audio example. Please note, that in contrast to the Pong example, the Dis-

patcher is not needed for normal operation. The audio inputs and outputs are directly

linked to the filter objects. The Dispatcher is solely used to instantiate and to destroy the

filter objects and to establish the corresponding connections.

Figure 8.11: Source code of the audio filter example

3Audio Codec ’97
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Emulation

In order to provide an user interface that suits the audio filters, the input class AudioIn

has been created. It is producing an input signal that represents a sum of two sinus waves

— one with low and one with high frequency. Furthermore, the input class AudioButtonIn

and the output class AudioOut have been implemented. AudioButtonIn provides a set of

push buttons which can be used to activate and to deactivate a filter. AudioOut provides

a graphical view of the output wave. Figure 8.12 shows a set of screenshots of the audio

emulation.

Figure 8.12: Emulation of the audio filters

After startup, the Emulator was using of 48 threads. The memory usage was between

25 Mb and 35 Mb. After activating the lowpass filter, the number of threads increased

to 65. The memory usage was not influenced at all. With both filters active, the number

of used threads was 82. This is the maximum number of started threads. Figure 8.13

illustrates the CPU and memory usage during emulation.

Figure 8.13: Overview of the CPU and memory usage in JConsole
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High Level Synthesis

After verifying the functionality of the filters in the Emulator, the audio example has been

translated to VHDL by the POL-Compiler. Table 8.4 shows the corresponding number of

FSM states.

Number of states Number of states Number of states used

before optimization after optimization for context-management

high 79 59 40

low 71 55 36

Dispatcher 249 204 42

Table 8.4: Number of FSM states

Figure 8.14 shows the behavioral simulation of the lowpass filter. One can see that

processing one audio sample takes 110 ns (11 states). The highpass filter also processes

one audio sample in 11 states. This is made possible by the optimization step performed

by the POL compiler which merges line 17, 18 and 19 into one single state.

Figure 8.14: Behavioral simulation of the lowpass filter

Bitfile Generation

For the Pong example, all outputs and inputs were linked to the OPB. Such a design is

not very useful regarding streaming applications. Thus, for the generation of the audio

system, System InOut has been modified to transfer data which was send to Slot 0 directly

to the right output channel of the AC97 and to transfer data which was send for Slot 1

directly to the left output channel of the AC97. All other data messages are forwarded to

the OPB and are handled in software by the Scheduler.

The input channels of the AC97 were also linked directly to System InOut. For this,

System InOut analyzes the Connection Messages send to Slot 15. If they concern Signal 0 or

Signal 1 of System InOut, they are processed in hardware. Otherwise, they are forwarded
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to the Scheduler and handled in software. To keep the hardware simple and fast, Signal 0

and Signal 1 of System InOut only support one single receiver.

System InOut contains 4 additional FIFOs: one for each of the input channels and one

for each of the output channels. The input FIFOs collect the data samples coming from

the AC97. Once 125 samples have been collected, those from the right input are sent to

the Matrix. Then, those from the left input are transmitted. The output FIFOs collect

the data coming from the Communication Matrix. They only send a new output sample

to the AC97 if both (left and right output FIFO) contain data. Figure 8.15 illustrates the

resulting chip design.

Figure 8.15: Chip design using the AC97-specific version of System InOut

The Xilinx ICAP controller used for the Pong example is very slow. Due to this the

reconfiguration times are very long — too long for streaming applications. Hence, for

the audio example a customized ICAP controller using DMA was utilized for reconfigu-

ration (see chapter 7.6.3). The new ICAP controller contains 3 BRAMs (the Xilinx ICAP

controller contained only one) which are used as ROM for reconfiguration command se-

quences.

During the implementation of the audio example, the first attempt to generate the bit-

files failed during place and route. The possibility to fall back to the graphical version

of PlanAhead allowed a quick debugging. It turned out that due to the modification of

System InOut and the new ICAP controller, the static design increased in size. Due to this,

the floorplanning had to be re-done. The size of the dynamic areas had to be reduced in

order to increase the size of the static area. Figure 8.16 illustrates the resulting partition-

ing of the FPGA for the audio example. One can see that the new floorplan has a large

number of feed-through routes.

The bitfile generation of the audio example took 69 minutes. Table 8.5 shows an overview

of the resource consumption.
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Figure 8.16: Partitioning of the Virtex-4 FX20

Component #Slices Part of the FPGA #BRAMs

Virtex-4 FX20 8 544 100% 68

static area 5 472 64% 44

Communication Matrix 2 158 25% 11

Processor subsystem 3 037 36% 5

dynamic area 0 1 536 18% 12

dynamic area 1 1 536 18% 12

Dispatcher 1 088 13% 1

high 998 12% 1

low 966 11% 1

Table 8.5: Resource consumption

Hardware Execution

Table 8.6 illustrates the reconfiguration times coming with the usage of the customized

ICAP controller compared to the reconfiguration times coming with the usage of the

Xilinx ICAP controller. With the customized ICAP controller the reconfiguration speed

of Short Reconfigurations has been increased by a factor of 6.
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Customized ICAP driver Xilinx ICAP driver

Swap-Out: 83 µs 671 µs

Swap-In: 104 µs 518 µs

Short Reconfiguration: 215 µs 1 209 µs

Long Reconfiguration: 5 815 µs 19 146 µs

Table 8.6: Measured reconfiguration times

The times corresponding to the Xilinx controller are the same as in the Pong example.

The time for the Short Reconfiguration is the sum of the times for swap-in, swap-out and

DCB interaction. It only depends on the size of the Context Memory, not on the POL

source code. The time for the Long Reconfiguration is determined by the number of used

minor frames. Although the size of the dynamic areas has been reduced, the number of

affected minor frames has not changed (since one minor frame utilizes one fourth of the

FPGA’s height and thus the change of the area size was smaller than the minor frame

granularity).

If both filters are activated, the Scheduler loads the instances of low to Task Area 0 and

the instances of high to Task Area 1. The Dispatcher is loaded on demand (when a filter

is requested to be activated or deactivated) to Task Area 0. Figure 8.17 illustrates the

minimum time for one scheduling cycle if both filters are activated and the Dispatcher

is not called to change the filter setup. The time at which an instance is loaded to a

dynamic area depends on the receiver address of the messages in the corresponding Class

Buffer. Due to the specific design of System InOut, a sequence of 125 audio samples is

sent to an instance of a filter class. The behavioral simulation showed that the filters need

110 ns to process one audio sample. Thus, they need about 14 µs to process 125 audio

samples. A Short Reconfiguration needs 215 µs. Since the two dynamic areas can only

be reconfigured successively, the minimum time an instance is loaded to a Task Area

is determined by the reconfiguration times. Hence, the maximum sample rate of the

runtime reconfigured system is 145 kHz.

Figure 8.17: Minimum time for one scheduling cycle with both filters activated

The sampling rate of the AC97 is 48 kHz. In consequence, every 20.83 µs a new audio

sample is stored in the input FIFOs. The input FIFOs store 125 audio samples before they

forward them to the Communication Matrix. This takes 2.6 ms. The Communication

Matrix processes the 2 · 125 audio samples in 0.86 ms. Next, it waits for new input

data. Due to this, the real cycle time is 2 604 µs. Figure 8.18 illustrates the corresponding

measured times.
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In the performed tests, all calculations presented here have been verified. The au-

dio stream (a song) was not interrupted, even when both filters were activated for both

channels and thus Short Reconfigurations were performed permanently as shown in fig-

ure 8.18. In contrast, the activation as well as the deactivation of a filter and the resulting

Long Reconfigurations caused an audible disruption of the audio stream.

Figure 8.18: Real time for one scheduling cycle with both filters activated

8.2 Extrapolations

In the following section some extrapolations are shown to illustrate the possibilities of

the Framework based on the usage of a faster ICAP controller and bigger FPGAs. As

shown in figure 8.17, the minimum cycle times and the resulting maximum sample rate

of a runtime reconfigured system are determined primarily by the reconfiguration times.

The customized ICAP controller used for the audio example had a maximum through-

put of 26 MB/s. This is caused by the relatively slow OPB-DDR-RAM controller coming

with the EDK, which cannot provide a higher data rate. However, using the ICAP con-

troller and the DDR-RAM controller presented in chapter 3.1.7, a maximum throughput

of 400 MB/s can be achieved on Virtex-4. Such a throughput would lead to reconfigu-

ration times of 13.12 µs for a Short Reconfiguration and 378.88 µs for a Long Reconfigu-

ration. Figure 8.19 illustrates the corresponding minimum time for one scheduling cycle

with both filters activated.

Figure 8.19: Minimum time for one scheduling cycle using an improved ICAP controller with

400 MB/s throughput
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One can see that the minimum cycle time is determined by both the reconfiguration

time (13 µs) and the filter processing time (14 µs). For two audio channels (left and right)

this amounts to about 54 µs. Thus, using such a fast ICAP controller the maximum sam-

ple rate of the runtime reconfigured system would be 2 314 kHz. Based on these values,

the audio example could support up to 96 audio channels with a sample rate of 48 kHz

each (2 604µs/
27µs

channel = 96 channels).

The Virtex-4 FX20 that has been used for the example implementations is one of the

smallest FPGAs of the Virtex-4 series. Due to this, the static design consumed a big part

of the FPGA. However, if a bigger FPGA is used, the number of Slices needed for the

static part does not increase. That means that the size of the FPGA’s part that can be

used for dynamic areas increases linearly with the size of the whole FPGA. Figure 8.20

illustrates the Virtex-4 FX20 and the FX140 in proportion to each other. Furthermore, it

shows the floorplan of the FX140 using 4 dynamic areas. The Communication Matrix

consumes only 4% of the FPGA while each of the dynamic areas on the FX140 is bigger

than the whole FX20.

Figure 8.20: Floorplan of a Virtex-4 FX140 compared to the size of a Virtex-4 FX20

Figure 8.21 illustrates the cycle times resulting from the usage of 4 Task Areas and 4

audio filters (lowpass, highpass, echo and distortion). One can see that the reconfigura-

tion times are determining the length of one scheduling cycle, even though the assumed

time for one single Short Reconfiguration is based on the usage of the very fast ICAP

controller providing 400 MB/s throughput. This is caused by the fact that the dynamic

areas only can be reconfigured one after another. Due to this, each additional dynamic

area that is part of the Runtime Scheduling increases the minimum cycle times and thus

decreases the maximum sample rate of the system.
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Figure 8.21: Minimum time for one scheduling cycle using an improved ICAP controller with

400 MB/s throughput and 4 different filter classes in 4 dynamic areas

Please note, that the time for a single Short Reconfiguration is not influenced by the

size of the dynamic areas since it only depends on the size of the Context Memory. In

contrast, the time for a Long Reconfiguration is proportional to the size of the dynamic

areas. For an area with the size of 10 240 Slices (as shown in figure 8.20) the time for a

Long Reconfiguration would be 2 526 µs (using the very fast ICAP controller).

8.3 Interpretation

Area

The Pong example has proven that all parts of the Framework are working correctly.

The POL-compiler produces valid Java code for emulation as well as valid VHDL code

for synthesis. The Emulator provides a platform for quick debugging on message layer

where it is identical to the hardware execution. The Communication Matrix transports

the messages without data loss, even if the system is reconfigured at runtime. The Sched-

uler is capable of Update Scheduling, Scenario Based Scheduling and Runtime Schedul-

ing. The latter made it possible to overmap the FPGA (instantiating 10 balls on conven-

tional hardware would lead to a FPGA utilization of 223%). Thus, the question if DPR

can be used to increase the capacity utilization of hardware created via HLS can definitely

be answered with yes.

Speed

The audio example shows that the Framework is able to handle streaming applications,

even if Runtime Scheduling is being used. This has primarily been enabled by the usage

of messages and the corresponding buffers for inter-module communication. Many of

today’s reconfigurable hardware accelerators make use of function calls (see chapter 3.2).

That means that a piece of hardware is called like a function in procedural programming.
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The problem of this approach is the potential absence of a called instance that leads to

a delay of the function call until the instance has been loaded onto the FPGA. The Qt-

like object-oriented and message-based inter-object communication helps to avoid these

delays. Instance A is able to process a set of messages (e.g. the 125 audio samples) and

to send it to instance B although instance B is currently not active. If and when instance

B is loaded to the FPGA by the Scheduler does not influence instance A at all — which is

very important for Runtime Reconfiguration.

The behavioral simulation has shown that the maximum sample rate of the filters is

1 sample per 110 ns. This is primarily caused by the functionality of the Signals which

allow to connect more than one Slot to one single Signal. In order to improve the maxi-

mum sample rate, it would make sense to introduce a fourth access modifier called Stream

which is used as a fast Signal and does only allow the connection of one single Slot. This

way the needed clock cycles for emit could be reduced to 1.

However, nowadays these optimizations of the POL-Compiler are secondary, since the

maximum throughput of a runtime reconfigured system is primarily determined by the

reconfiguration times. These times have been reduced significantly by the introduction

of the Short Reconfiguration. This method increases the reconfiguration speed by a factor

of 54 (using dynamic areas with a size of 1 536 Slices) and even by a factor of 360 (using

dynamic areas with a size of 10 240 Slices), since only the Context Memory has to be

read back and/or configured. Furthermore, the corresponding Long Reconfigurations

only have to configure the dynamic area. A read back of the whole dynamic area is not

necessary at all. Hence, the measured maximum sample rate of 145 kHz highly depends

on the usage of Short Reconfigurations. Without this technology the maximum sample

rate would have been less than 4 kHz and thus Runtime Scheduling could not have been

used in combination with the audio example.

The usage of Short Reconfiguration is enabled by the usage of object-orientation: chang-

ing from one instance of an object to another instance of the same object only requires a

change of the object’s state. The functionality stays the same. To put it in a nutshell, the

object-oriented approach helped to significantly decrease the reconfiguration times.

Having said that, it is important to underline that the maximum throughput of the

ICAP still is a very limiting factor. Even using Short Reconfiguration in combination

with the fastest available ICAP controller cannot change the fact that it are the recon-

figuration times which primarily limit the maximum sample rate of a runtime reconfig-

ured system. Due to this, Runtime Reconfiguration is ready to be used in environments

with a data rate of ∼100 000 samples/s (e.g. audio streaming) but it is not suitable for

very high data rates, like 100 MB/s (e.g. video streaming). Nevertheless, the underly-

ing scheduling technology can be used to automate the Scenario Based Scheduling. The

measured values show that Update Scheduling and Scenario Based Scheduling are ready

to be used in streaming applications with date rates of ∼100 000 000 samples/s (such as

video-streaming or data-acquisition in high energy physics).
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Productivity

As shown in the introduction of this thesis, the major motivation to use HLS is productiv-

ity. In many cases productivity is more important than efficiency. Thus, a very important

question is:

• Does the Framework increase the productivity?

Before this question can be answered, it has to be said that productivity measurement

is a very challenging task [179]. Productivity is commonly understood as the ratio of

produced outputs to consumed resources. This definition has many degrees of freedom.

For example, outputs can be measured in terms of delivered products or functionality.

Resources can be measured in terms of effort or monetary costs. The major problem

is that it is almost impossible to quantify “functionality” or “effort” through objective

measurements. The IEEE standard 1045 defines the functionality as the number of lines

of code or function points, but recommends variations (e.g. to address software re-use)

[180]. Due to this, the decision was made, not to try to answer the productivity question

in a quantitative but in a qualitative way.

Without using the Framework or a comparable development environment, the use of

DPR leads to struggling with architectural details of the FPGAs and the corresponding

synthesis and implementation tools. In consequence, the average time to introduce a stu-

dent who had already worked with VHDL or Verilog to DPR was about 1 to 3 months. In

contrast, POL allows to use DPR without going into detail with the FPGA architecture.

A developer uses new just like in software development. He or she does not have to care

about the underlying technology (e.g. whether DPR is used or not). The Framework

completely encapsulates these implementation details. Performed tests show, that a stu-

dent who has already worked with Java is able to make use of DPR within one day, if he

or she is using POL.

However, these values cannot be used to determine an exact factor. For example the

change from one Virtex-4 series (e.g. FX20) to another (e.g. FX40) requires a re-do of the

floorplanning, which demands a deeper understanding of the underlying system and

decreases the productivity. Furthermore a change of System InOut (as it has been per-

formed for the audio example) requires VHDL or Verilog skills and also decreases the

productivity.

In conclusion, it is not possible to denote an exact factor, but the question if the Frame-

work can help to increase the productivity can definitely be answered: yes, it does.
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9.1 Conclusions

This study focuses on the combination of dynamic partial reconfiguration (DPR) and

high level synthesis (HLS). As shown in chapter 3, both are very important future trends

regarding hardware design and have already proven to be very useful. However, the

combination of DPR and HLS is still in its infancy. Most of today’s software-to-hardware

compilers focus on conventional hardware and therefore have to remove dynamic as-

pects — while most of today’s DPR tools work on the lowest possible layer regarding

FPGAs: the bitfile level. There are hundreds of projects focusing on DPR and also hun-

dreds of projects focusing on HLS, but only 3 projects (namely OSSS+R, JHDL and MOR-

PHEUS) could be found which focus on a combination of both.

In chapter 4, the programming paradigms as well as the existing programming lan-

guages have been analyzed. It turned out that object-oriented programming (OOP) in

combination with multithreading is a very good way to describe dynamic hardware. The

reasons are the elegant way to express DPR in OOP via new and finish and the well-

established way to express concurrency explicitly via objects derived from a common

Thread class. Beyond that, the Signals and Slots as well as the methods connect and dis-

connect which are part of Qt, provide a very elegant way to establish a message-based

inter-object communication. All these language constructs are well-known by software

developers and do not depend on the introduction of cumbersome low-level statements

like par or delay in Handel-C.

In order to force the developer to make use of multi-threading, encapsulation and Sig-

nals and Slots, an enriched subset of Java was introduced: POL (Parallel Object Lan-

guage). It allows the developer to express coarse-grained concurrency explicitly via

parallel running objects, while potential fine-grained concurrency (between single state-

ments) is detected automatically by the POL-Compiler.

Chapter 5 analyzed the requirements coming with the specification of POL. For this,

typical FPGA applications have been evaluated and it has been shown that flexible stream-

ing algorithms are the application niche of FPGAs. Due to this, the hardware generated

from the POL sources has to be flexible (what is obviously in line with the utilization

of DPR) and it has to support streaming. Thus, the utilization of a central memory or a

simple bus for inter-object communication was not an option. In consequence, a flexible

but standardized network on chip was designed: the Communication Matrix. It intro-

duces an additional abstraction layer: messages containing both payload and receiver

address. These messages are stored in Class Buffers. Each Class Buffer collects all mes-

221



Conclusions and Outlook

sages heading for the instances of one single class. Thus, the Communication Matrix

has to instantiate as much Class Buffers, as POL classes are used. The whole messaging

system perfectly fits the way Signals, Slots, connect and disconnect are working.

All the concepts presented in chapter 6 with the exception of the Instance Buffer have

been implemented and are operational. The POL-Compiler takes POL source code and

produces a Java file for emulation as well as VHDL files for synthesis. The Emulator

makes it possible to perform early debugging on message layer. In fact, once the Frame-

work was running and teething troubles had been removed, the usage of the behavioral

simulation was not necessary any longer. A well running emulation was directly corre-

lated to a well running hardware design. Especially deadlocks coming with the misuse

of connects or disconnects were found and eliminated quickly in the Emulator.

In the FPGA, the dynamic modules produced by the POL-Compiler, the Communi-

cation Matrix and the Scheduler perfectly worked together. To demonstrate the Frame-

work, chapter 8 showcases two example applications: Pong and an audio filter. The Pong

example showed, that all parts of the Framework are working correctly. Furthermore it

proved that it is possible to overmap the FPGA using Runtime Scheduling. The audio

example was used to analyze the behavior of the Framework regarding data streams.

It showed that Runtime Reconfiguration can be used in environments with a data rate

of ∼100 000 samples/s, while Update Scheduling and Scenario Based Scheduling can be

used in streaming applications with data rates of ∼100 000 000 samples/s. There is a

multitude of applications that can benefit significantly from these scheduling strategies.

Examples are video streaming and data-acquisition in high energy physics which have

been illuminated in detail in chapter 5.2.

Figure 9.1: Typical innovation live cycle [181]
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At this point it is important to emphasize, that the real implementation of the Frame-

work is an essential feature of this thesis. The Framework is automatically producing

hardware that makes use of Runtime Scheduling from a language operating on algorith-

mic level. It has not only been conceived or simulated but is actually running and the

presented measured results are reproducible at any time. One resulting question is: is

the Framework ready to be used in real world applications (e.g. as commercial product)?

Figure 9.1 illustrates the live cycle of an innovation. At the beginning there is academic

curiosity which leads to a concrete idea. Next, the problems coming with the idea are

analyzed and solutions are developed. This results in the creation of a so called Solution

Design that represents a first running implementation. The corresponding measured re-

sults are used to improve the design and to implement a first prototype. At this step,

the basic approach can still be modified (due to encountered possibilities or limitations).

Next, the prototype is refined to a first test product. The experiences of users of this

product are used to perform further refinement steps.

The Object-Oriented Framework for DPR which is object of this thesis represents a So-

lution Design. It is a first implementation that solves the problems coming with the com-

bination of DPR and HLS. It has proven that it is possible to combine DPR and HLS and

that this combination enables developers to write programs on algorithmic level which

are actually executed in hardware and make use of DPR and all the advantages coming

with it (e.g. more flexibility, update management and overmapping). The next step is to

evaluate the measured and extrapolated results and to focus on the implementation of a

prototype. In the following section some possible further developments are discussed.
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9.2 Outlook

During design and implementation of the Framework the focus was on the development

of the Communication Matrix, on the elegant expression of coarse grained granularity,

and on the efficient expression and realization of dynamic hardware instantiation and

the corresponding dynamic inter-object communication. Projects like MORPHEUS (see

chapter 3.4.3) show that combining DPR with HLS is a huge topic which easily keeps a

consortium consisting of 18 partners from several universities all over Europe busy for

years. Therefore, during the design of the Framework, it was very important to stay fo-

cused and not to get lost in details or in secondary areas. So, one of the topics that were

out of scope is the optimized translation from calc() to VHDL. There are many research

groups which did or still do focus on the optimal translation of sequential algorithm de-

scriptions to efficient hardware (see chapter 3.3). Thus, the decision was made to keep

this part simple. The idea was to prove the elegance and power of POL regarding dy-

namic hardware instantiation and communication, and to combine this approach with

an efficient C-to-VHDL or Java-to-VHDL compiler (handling sequential and purely static

code) at a later point in time (e.g. as a follow-up thesis). Already established coopera-

tions between the Kirchhoff Institute for Physics Heidelberg and industrial partners are

very promising and show that the industry is highly interested into the here presented

way to combine DPR and HLS.

Since the Framework represents a Solution Design, the basic approach has to be revis-

ited for further development. At the moment the POL-Compiler solely creates VHDL

for hardware execution. In chapter 3.2 several approaches combining software and hard-

ware have been presented. It has been shown that the combination of a CPU with an

FPGA that is loading hardware accelerators on demand is a very promising approach.

Thus, a possible further development of POL could be the introduction of a fourth base

class called SoftObj. Objects deriving from SoftObj would be translated to software which

is running on an embedded processor that is part of the FPGA (just like the Scheduler)

or that is placed on the same board as the FPGA. Furthermore, the introduction of a base

class called SoftParObj could enable the POL-Compiler to translate a corresponding class

to both software and hardware. This way, the Scheduler could decide at runtime if an

instance shall be instantiated in hardware or in software.

Nowadays, the usage of Runtime Scheduling is limited to systems with a sample rate

of ∼100 000 samples/s. If Xilinx or any other vendor improves the time for the reconfig-

uration process, Runtime Scheduling will instantly become very interesting for systems

with a higher throughput (such as video streaming or data-acquisition) as well.
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