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From Shared Input to correlated Neuron Dynamics: Development of a
Predictive Framework

Depending on the nature and number of shared afferent inputs, neurons display vary-
ing degrees of correlated behavior. Especially in, but not only limited to, the context of
neuromorphic hardware, where finite bandwidth may cause inevitable input overlap, it
is important to be able to quantify and predict the resulting amount of neural response
correlation. In this thesis, a mathematical framework is derived which allows an ana-
lytic prediction of membrane potential distributions of LIF neurons, both current- and
conductance-based, the latter being treated in the high conductance state approximation.
These results are subsequently used to predict both subthreshold and spike-based corre-
lations, as quantified by two different measures: Pearson’s product-moment correlation
coefficient and the Symmetric Uncertainty.

Entwicklung eines Formalismus zur Vorhersage korrelierter neuronaler
Dynamik aufgrund gemeinsamer Inputs

Abhängig von den Eigenschaften und der Anzahl ihrer gemeinsamen Inputs weisen
Neurone ein variierendes Maß an korreliertem Verhalten auf. Insbesondere, aber nicht
nur, im Kontext neuromorpher Hardware, bei der begrenzte Bandbreite unweigerlich zu
Überlagerungen des Inputs führen kann, ist es wichtig, die daraus resultierende korrelierte
Dynamik quantifizieren und vorhersagen zu können. In dieser Arbeit wird ein mathe-
matischer Formalismus entwickelt, welcher es erlaubt, die Membranpotentialverteilung
von LIF-Neuronen vorherzusagen, sowohl für den strom- als auch für den konduk-
tanzbasierten Fall. Bei Letzterem wird als Näherung ein Zustand hoher Membrankonduk-
tanz angenommen. Die hieraus gewonnenen Resultate werden benutzt, um Korrelationen
des unterschwelligen Membranpotentialverlaufs und des Spike-Verhaltens vorherzusagen.
Diese werden definiert über zwei Maße: der Pearson-Korrelationskoeffizient und die Sym-
metrische Unbestimmtheit.
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1 Introduction

With the formulation of the "neuron theory" around the beginning of the 20th century,
Ramon y Cajal set the foundations of an entirely new research discipline, one that would
finally be able to address the age-old questions about perception and consciousness on
a scientific basis. Over a comparatively short period of time, neuroscience has evolved
at a breathtaking pace, not least due to the many technological breakthroughs achieved
during the last hundred years.

Maybe the most important experimental breakthrough came with the development of
intra-and extracellular recording techniques, which allowed A. L. Hodgkin and A. F.
Huxley the formulation of their eponymous neuron model in 1952. Over time, ever more
complex and detailed measurements have been allowed by new techniques such as patch
clamping, multi-electrode arrays, EEG, MEG, FMRI etc. These experimental methods
allowed the development of microscopic (on the level of single neurons and synapses) as
well as macroscopic (on the network level) neuroscientific models.

In parallel with the accumulation of experimental findings, theoretical methods have
also been under constant development. In the attempt of formalizing the dynamics of
neural networks, a wealth of models has been developed. Neuron models cover a vast
range of abstraction and complexity, from the Integrate and Fire model proposed as
early as 1907 by Lapicque to the Adaptive Exponential Integrate and Fire model by
Brette and Gerstner in 2005, culminating in extremely detailed models down to the level
of individual ion channels, as investigated e.g. in the Blue Brain Project. For studying
entire networks of neurons, various mathematical tools have been developed or borrowed
from related disciplines, such as stochastic differential calculus, mean-field theory and
information theory, only to name a few (Dayan and Abbott [2001], Gerstner and Kistler
[2002], Rieke et al. [1997] ).

Because, however, many functional aspects of neural networks seem to reside in their
complexity, purely mathematical approaches have a hard time capturing the multiple
spatial and temporal scales involved in their dynamics. With the dawn of the computer
age around the 1950s, an extremely useful tool became available to the neuroscientific
community, giving birth to a new branch of research - computational neuroscience.
The unparalleled technological progress achieved during the following decades, famously
epitomized by Moore’s law, allowed an equivalently rapid increase in the complexity and
size of simulated networks. Today, standard desktop machines are routinely utilized to
simulate networks of tens of thousands of point neurons, while dedicated multiprocessor
architectures (such as IBMs Blue Gene) are able to efficiently simulate networks of tens
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1 Introduction

of millions of multicompartment Hodgkin-Huxley neurons (Djurfeld et al. [2008]).

Nevertheless, standard general-purpose processor architectures present an obvious draw-
back when used for neural network simulations: their (by design) inherently serial in-
formation processing is extremely inefficient in reproducing the massively parallel pro-
cessing which occurs in the brain. With raw computational power per unit of surface
soon reaching a threshold imposed by miniaturization limitations, the only remaining
option resides in the design of parallel processing architectures, as for example realized
by the IBM Blue Gene series mentioned above. However, this approach also suffers from
strong scalability limitations, including communication bandwidth, power consumption
and speed. Not least do these machines also pose the problem of availability to the larger
scientific community, as only few of them are likely to be available at any one time in
the future.

1.1 Neuromorphic Hardware, FACETS and BrainScaleS

An alternative approach was first proposed by Mead in the 1980s. The idea behind
so-called neuromorphic hardware is the direct implementation of neuron and synapse
models within circuits on a silicon substrate using available VLSI 1 technology. In
this context, the term "emulation" has been coined, because instead of numerically
integrating the appropriate differential equations in a general-purpose processor (i.e.
simulating the network), neuromorphic circuits intrinsically obey the same dynamics
as their biological archetypes. This circumvents the glaring inefficacy of simulating a
parallel system on a serial processor, thus greatly reducing unnecessary expenditure of
hardware components - with a corresponding reduction in power consumption - while
also coming with an added (and somewhat inevitable) speedup benefit: because typical
circuit elements in VLSI are much smaller than their biological counterparts, the intrinsic
time constants also become proportionately small.

While many research teams focus on specialized architectures (Brüderle et al. [2011]),
only few approaches are concerned with building general-purpose emulation platforms.
The FACETS 2 project, as well as its successor BrainScaleS, has been a leading pro-
ponent of such a general-purpose neuromorphic device. These projects have united a
highly interdisciplinary group of teams under a common banner, providing expertise
in experimental neurobiology, physics, mathematics, computer science and electronics,
in a joint effort to understand and reproduce emergent phenomena of biological neural
networks, with a particular focus on the mammalian neocortex. One of the main pillars
of these projects is the design and construction of a highly accelerated neuromorphic
device which is to serve as an emulation platform for neural network models developed
by the consortium.

1Very Large Scale Inegration
2Fast Analog Computing with Emergent Transient States

2



1.1 Neuromorphic Hardware, FACETS and BrainScaleS
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Figure 1.1: Illustration of a HICANN-chip. (Image is used with permission from B.
Vogginger, Vogginger [2010] )

In the first years of FACETS, a single-chip device has been constructed and tested -
the Spikey chip (Schemmel et al. [2007]). It implements 384 conductance-based Leaky
Integrate and Fire neurons and a synaptic array with a total of 98304 synapses, allow-
ing almost arbitrary interconnections between the neurons on the chip. The synapses
themselves feature both short-term3 and long-term4 STDP - Spike-Timing Dependent
Plasticity plasticity. This device operates at an acceleration factor of 10000 with respect
to biological real-time.

The Spikey chip, however, was only a prototype for a much larger device. In a first step,
a new neuromorphic core was designed - the HICANN chip5 (fig. 1.1). Taken on its own,
this chip has two blocks with 256 AdEx6 neurons and 65536 synapses7 each. The more
crucial second step, however, involves the technique of wafer-scale integration: instead of
cutting the silicon substrate into individual chips, the full wafer, containing 352 HICANN
modules, is subjected to a post-processing procedure which allows the interconnection of
the individual modules with a high connection density (Schemmel et al. [2010]). The final
wafer, which can operate at a speedup ranging from 103 to 105 compared to biological
real time, contains about 2 · 105 neurons and 4 · 107 configurable synapses 1.2.

3as described in Markram et al. [1998]
4Song and Abbott [2001]
5High Input Count Analog Neural Network
6Adaptive Exponential Integrate and Fire Model, Brette and Gerstner [2005]
7with the same plasticity mechanisms as in the Spikey chip
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1 Introduction

Figure 1.2: Illustration of a HICANN-wafer. (Image is taken from Schemmel et al. [2010])

1.2 The Bandwidth Bottleneck: Causes and Consequences

The finite size of the individual chips is a critical limiting factor to the total number
of available synapses, as they require the most space. On the Spikey chip, for instance,
when each neuron has at least one projection on another neuron, only a maximum of
128 external input channels remain (Bruederle [2009]). Along with input bandwidth
limitations due to the high acceleration rate, this can easily lead to situations where it
is impossible to provide each neuron with independent input sources.

Concerning the input bandwidth, a particular improvement over the Spikey chip is the
inclusion of 8 Poisson spike generators on each HICANN. However, these are obviously
not enough to stimulate each of the 512 neurons in the chip independently. Even when
considering external inputs, for emulated networks beyond a certain size, the available
maximum bandwidth does not allow independent stimulation of every neuron in a
biologically realistic regime.

These limitations are in no way particular to the FACETS/BrainScaleS hardware, since
the physical limitations of any hardware device impose hard restrictions to the maximum
possible input bandwidth. Unfortunately, in many network models, independent stimu-
lation of neurons is assumed (e.g. Lundqvist et al. [2006], Kremkow et al. [2010]). Lack
of independence can cause correlated behavior, possibly leading to strongly distorted
network dynamics which can easily break down the functionality of the network. It
therefore appears inevitable that the effects of such correlations need to be investigated
and minimized before attempting neuromorphic emulation.

It is quite evident that for any two neurons, decreasing the number of shared inputs also
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1.2 The Bandwidth Bottleneck: Causes and Consequences

decreases the amount of (undesired) correlation in their behavior. The aforementioned
minimization step can therefore be formulated as the following optimization problem:
given a number of input channels and a number of neurons, which configurations mini-
mize the number of shared channels and maximize the number of independent channels
at the same time? (See fig 1.3) This particular question has been addressed elswhere8

and will not be of further concern here.

Figure 1.3: A neuron pair N1 and N2 receiving Poisson input from several sources, with
two shared channels. In addition to the shared channels, both N1 and N2
receive inputs from three and four independent sources, respectively. De-
pending on the input configuration, the response of the neurons N1 and N2
displays varying degrees of correlation.

It turns out that there is no single solution to the above problem, but rather a set of
solutions with varying number of shared and private channels per neuron pair. A second
step is therefore necessary, where one needs to find which one of these configurations also
causes minimal neural response correlations9. It is therefore necessary to define what
one understands by "correlations" by defining a measure for these and then quantify the

8Petrovici, Bytschok and Bill, to be published
9While this might sound like a trivial problem - and, in some cases, it is - there are situations where it is
not. Consider, for example, the configurations (2,3) and (3,4), with (x,y) standing for the number of
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1 Introduction

effects of particular input configurations on this measure. Ideally, one would like to find
a way to predict these effects without performing the simulation itself.

shared and private channels, respectively. It is not immediately clear which configuration yields, for
instance, less correlated spiking. The problem becomes even more complicated when the individual
channels carry different spike frequencies and impinge on the neurons with different weights.

6



1.3 Outline

1.3 Outline

This thesis is structured as follows. Following the introduction in chapter 1, chapter 2
gives a brief description of the membrane properties of biological neurons and derives
the dynamic equations for the Leaky Integrate and Fire (LIF) model, both current- and
conductance-based, which will then be used throughout the rest of the thesis. Chapter
3 develops the mathematical framework on which the later predictions are based. In it,
the LIF equations are solved analytically for the current based case and for the high-
conductance-state approximation. The mean and variance of fluctuations induced by a
Poisson point process are derived and the results are used, together with the analytic
solutions to the LIF equations, to predict the distribution of a neuron membrane under
the influence of multiple Poisson inputs.

In chapter 4, a measure of correlation for subthreshold fluctuations is defined and an
analytic prediction is described, based on the results from chapter 3, the quality of which
is investigated by comparison to computer simulations. Similarly, chapter 5 addresses
the definition and prediction of a measure for spike-based correlations. The final chapter
6 contains a brief summary and a discussion of the obtained results.

7



2 From Biological Neurons to Leaky
Integrators

The first section of this thesis will be dedicated to derivation of the so-called Leaky
Integrate and Fire (LIF) model based on electrophysiologic properties of biological neu-
rons. In particular, this includes clarifying the terminology and the fundamentals of the
simulation setup which will be used throughout this thesis.

2.1 Fundamentals of Neurophysiology

The functionality of a neuron is essentially defined by the electrodynamic properties
of its membrane, which in turn are governed by ion fluxes and the capacitance of the
membrane. Living tissue is placeholder perfused by a large variety of charged chemical
compunds, both intracellularly and in the extracellular medium. All cells are bounded
by a cell membrane which consists of a lipid bilayer and is essentially impermeable to
most of these charged particles.

However, certain channels embedded in the cellular membrane allow an exchange between
the intra- and extracellular medium.

Figure 2.1: Illustration of membrane with with ion channels. (Picture taken from Dayan
and Abbott [2001])

So-called active and passive ion channels control these ion fluxes and thereby determine
key variables such as concentration gradients and charge accumulations. Despite there
being a large variety of ions which influence neurodynamics, the basic functionality can
be accounted for by two ion types, both positively charged: Na+ and K+. Inside the

8



2.1 Fundamentals of Neurophysiology

neuron, the K+ concentration [K+] is a lot higher than in the exterior of the cell. The
opposite applies for Na+-ions, whose concentration is higher outside the neuron1.

There are several kinds of ion channels in the membrane:

• Passive and active ion channels can be subdivided into three categories:
Always open (Passive), ligand-gated and voltage-gated. While the latter two are
mainly responsible for synaptic-input-controlled subthreshold oscillations and ac-
tion potential dynamics respectively, the first type determines the stable resting
state of a neuron. Because of the concentration gradient of K+ towards the exte-
rior of the cell, open ion channels cause an outward K+ ion flux, causing the cell
interior to become more negatively charged. The exact opposite is true for Na+

ions. The permeability of the K+ ion channels is larger by far (see Hodgkin [1951]).

• Active Transporters counteract the above processes by acting as ion pumps, actively
transporting ions opposed to the fluxes consuming energy (ATP) in the process. If
there were no such ion pumps, the nonzero leakage of Na+ would slowly disturb the
concentration gradient by leakingNa+ ions into the cell and increasing the potential
inside. Ion pumps maintain the ion concentration on both sides, by exchanging
threeNa+ ions from inside the cell with twoK+ ions from the extracellular medium
in every pump step (see Hodgkin [1951]).

As a result, the cell is in an equilibrium, with a certain amount of charged particles
outside and inside the cell whose overall concentrations do not change. The active chan-
nels cause a net amount of positive charge current into the neuron, by pumping more
positive ions outside the neuron (Na+) than inside (K+). This causes a negative electric
potential between the interior and exterior of the neuron membrane. As by definition
the extracellular medium has zero electric potential, this so-called rest (or leak) potential
of the cell EL has, on average, around −65 mV. the membrane potential Vmem = −65 mV.

The value of this resting state can be explained by the Nernst equation, which relates
the concentrations of a specific ion [ion]out and [ion]in, outside and inside the neuron, to
the resulting reversal potential Erev, at which there is no net flux of this specific ion.

Erev =
R · T
z · F

· ln
(

[ion]out
[ion]in

)
(2.1)

where R denotes the ideal gas constant, T the absolute temperature, z the charge of an
ion, and F the Faraday constant.

In the case of K+ ions, EK+

rev ranges between2 −70 mV and −90 mV. Given a hypothetical
setup with [K+] as a sole ion population in a cell, the membrane potential would converge

1[K+]in = 120 − 155 mmol/l, [K+]out = 4 − 5 mmol/l. [Na+]in = 7 − 11 mmol/l, [Na+]out = 144
mmol/l (Klinke [2005])

2Dayan and Abbott [2001]
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2 From Biological Neurons to Leaky Integrators

to EK+

rev by transmitting ions through the passive ion channels, if there were no pumps
counteracting this process. The same applies for sodium ions, with ENa+rev = 40−60 mV.3

Cumulatively, this results in a resting potential close to EK+

rev , because the permeability
of passive K+ ion channels is higher than the one of sodium ion channels.

From a modeling perspective, this system can be described as an electric circuit contain-
ing a capacitance Cmem connected to voltage sources EKrev and ENarev via leak conductances
gK+ and gNa+ respectively, with an additional current source representing the ion pumps.
All ion flux contributions can be formally replaced by the resting potential Erest con-
nected to the membrane capacitance via the leak conductance gL.

This RC circuit has a characteristic time constant

τmem = R · Cmem =
Cmem
gL

. (2.2)

This time constant is often referred to as the membrane time constant and describes the
rate at which the membrane potential changes due to external perturbations.

Those dynamics can be described by the differential equation

Cmem ·
dVmem
dt

= −(Vmem − Erest) · gL (2.3)

Before proceeding to synaptic inputs to describe the membrane potential in a non-resting
state, it should be noted that only a so-called point-neuron is considered, meaning that
any effects linked to the spatial configuration of dendrites, soma and axon are disregarded.
This especially means that the propagation of membrane perturbations are neglected, a
treatment of which can be found in Gerstner and Kistler [2002] and which most certainly
do carry importance related to neural coding in certain configurations (Emri et al.).

2.2 Neurons with Synaptic input

Up to now, the membrane was described in its resting state. The interesting properties
arise if one considers membrane fluctuations caused by activation of ligand-/voltage-
gated ion channels.

The main activation source of ligand-gated ion channels is a release of neurotrans-
mitter molecules at the bouton synapses of a neuron, where its dendrites connect to
axons of other neurons. These neurotransmitters are released as a consequence of so-
called action potentials (or spikes) from afferent neurons, which will be addressed shortly.

3Dayan and Abbott [2001]
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2.2 Neurons with Synaptic input

Receptors at the dendritic end of a bouton synapse bind these neurotransmitters, which
in turn activate certain types of ion channels, increasing the permeability of the cell
membrane to certain ions.

The reaction of the membrane potential depends on the channels which have been ac-
tivated, which in turn are specific for every synapse. Excitatory synapses frequently
use glutamate as a neurotransmitter, and cause Na+ channels to open. The influx of
Na+ ions causes a depolarization (i.e. an excitation) of the membrane towards ENa+rev .
Inhibitory synapses often use GABA to activate K+ channels4, allowing K+ to escape
from the cell interior, thus causing a hyperpolarization (i.e. inhibition) of the membrane
towards EK+

rev
5.

In general, a change of the membrane potential due to synaptic input is called a post
synaptic potential (PSP).

After a certain period of time (in the order of ms) the neurotransmitters detach again
and are metabolyzed, causing the ligand-gated ion channels to close and allowing the
leak mechanism described above to revert the cell to its resting state.

In order to model synaptic inputs, the equivalent circuit can be extended by adding
time-dependent conductances gK+ and gNa+ connecting Cmem to voltage sources EK+

and ENa+ , respectively. Since a neuron can have multiple synapses, the model equation
now becomes

Cmem ·
dV

dt
= gL · (EL − V (t)) +

∑
exc. i

gi · (ENa
+

rev − V (t)) +
∑
inh. j

gj · (EK
+

rev − V (t))

(2.4)

If the membrane potential is excited to a sufficiently high state, which can be called the
membrane threshold Vtheshr, an action potential is generated, which will be called an
output spike. The generation of such spikes can be understood in more detail through
the Hodgkin-Huxley model (Hodgkin and Huxley [1952]).

Even though the Hodgkin-Huxley model has no specific voltage threshold at which a
spike is triggered, it behaves similar to what one would expect if such a threshold existed.
For modeling purposes, it therefore often suffices to disregard the complex dynamics
of the voltage-gated ion channels and to define a threshold voltage, which causes the
emission of an action potential when reached by the membrane.

Most action potentials are also highly similar events of very short duration (∼ 2 ms)
and can therefore be considered as identical, singular events. In the equivalent circuit,

4GABA can also activate Cl− channels, which will be neglected here
5It is important to mention that only few ions are sufficient for alrge local membrane potential fluctu-
ations, thus not affecting ion concentrations and therefore keeping Exrev constant

11



2 From Biological Neurons to Leaky Integrators

this can be modeled by changing Vmem to Vreset to a period equal to τref and emitting
a singular pulse δ(t− ts), where ts is the time of the occuring action potential.

V (ts) = Vthresh

→ send action potential at time ts
→ reset: lim

t→ts
t>ts

V (t) = Vreset

The value Vreset is often chosen as the resting potential Erest. From now on, for conve-
nience, the specific values ENa+ and EK+

rev will be named Eexc and Einh, respectively.

This completes the so-called LIF neuron model, which now obeys the following set of
equations:

Cmem ·
dV

dt
= gL · (EL − V (t)) +

∑
exc. i

gi · (ENa
+

rev − V (t) +
∑
inh. j

gj · (EK
+

rev − V (t)

(2.5)

V (ts) = Vthresh

→ δspike(ts)

→ reset: lim
t→ts
t>ts

V (t) = Vreset

Equation (2.5) is the differential equation of a leaky integrator, which gives the model its
name. It describes the integration of synaptic input currents gsyn(t) · (V (t)−Esyn), with
a leak term −gL · (V (t)− EL).
This equation is essential to the theoretic framework described in this thesis. In the next
chapter, it is analyzed in detail.
For a complete formulation of equation (2.5), one needs to specify the shape of the
conductances gi(t).

The leak conductance gL represents the summation of passive ion channels and ion
pumps working to establish the resting potential. These contributions to the total
conductance can be considered constant.

The synaptic conductances however, are time dependent. There are different possibilities
to model gsyn(t) (Gerstner and Kistler [2002]). Throughout this thesis, the so-called ex-
ponential model (for reasons addressed in section 3.1.4) is considered. The conductances
are modeled as instant rises at the arrival time of the input spike ti, decaying afterwards
along an exponential with the the synaptic time constant τsyn:

12



2.2 Neurons with Synaptic input

gsyn(t) =

wsyn · exp
− (t−ti)

τsyn if t ≥ ti
0 if t < ti

(2.6)

Similar to the membrane time constant τmem, the synaptic time constant indicates the
time scale on which changes in the conductance occur, and wsyn are measures of the
efficacy of the synapse, also called synaptic weights. The higher they are, the stronger
the impact of the input spike will be. Values of τsyn can vary greatly, in biology (see
Thompson [1985]).

Contrary to what one might naively expect, when the membrane potential changes its
equilibrium state due to synaptic conductances, its dynamics are no longer governed by
its resting state time constant τmem.

Instead, one obtains an effective time constant τeff (see Shelley et al. [2002]):

τeff =
Cmem

ginh(t) + gexc(t) + gL
. (2.7)

This equation will be formally derived in the next chapter, section (3.1)

The total synaptic conductance can be written as

gsyn(t) = wsyn
∑
tspk

exp
−

(t−tspk)
τsyn ·Θ(t− tspk) . (2.8)

This equation shows the total conductance as a linear sum of all conductances of single
input spikes.

This linearity is a result of spatial and temporal summation of synaptic inputs, which are
essential principles of membrane dynamics. It means that the impact (here: conductance
rise) of multiple afferent synapses (spatial summation), as well as from afferent spikes
different times (temporal summation) can be simply added to yield the total conductance.

Mathematically, this means that kernels such as the exponential for the conductance can
be summed to yield the total conductance.

13



3 On the membrane potential of LIF
models

Before adressing the issue of correlated neural dynamics, this chapter will discuss the
behavior of the membrane potential in a single conductance-based Leaky Integrate and
Fire unit and its statistical properties.

As conductance-based models have more relevance both in the biological context and
for the FACETS/BSS hardware, the current-based LIF model will be useful as it allows
a more straightforward analytic treatment. The main goal of this chapter will be to
derive the membrane potential time course of the conductance-based LIF model from its
differential equation, which will allow calculating statistical measures of its behavior.

For the synaptic input, the biologically most relevant case of Poisson-distributed excita-
tory and inhibitory spikes will be considered, which in turn trigger post-synaptic poten-
tials. These PSPs are essential for the membrane potential traces, as they represent the
defining dynamic component. The derivation of the PSP time course will be achieved
through several approximations of the differential equation of the conductance-based LIF
model, eq. (2.5):

Cmem ·
dV

dt
= −gL · (V (t)− EL)−

∑
syn∈{exc,inh}

gsyn(t) · (V (t)− Esyn) (3.1)

At the end of this chapter, the membrane potential amplitude distributions will be dis-
cussed, showing parameter regions where they can be assumed as Gaussians. This will
be important in the following chapters, as these statistical properties have a significant
influence on the analytic prediction of correlation measures.

3.1 Theoretical approximation of the membrane potential
time course

The goal of the methods described in this section is to be able to understand and predict
the dynamics of the membrane potential when stimulating the neuron through afferent
spikes, which in turn evoke subthreshold variations of the membrane potential, the PSPs.

As described in the previous, introductory chapter, voltage-gated ion channels are equiv-
alent to conductances from the membrane to the respective reversal potentials, whose
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3.1 Theoretical approximation of the membrane potential time course

competition determine both EL and τmem. Synaptic input causes the opening of addi-
tional channels, thus modifying the conductances towards the same reversal potentials,
defining a new, dynamic value Veff (t) for the equilibrium membrane potential and also
modifying the membrane time constant towards a new, likewise dynamic value τeff (t).

One can regard the typical time course of a PSP as the membrane following Veff with a
lag determined by τeff .

Figure 3.1: The membrane potential and effective potential in a comparison for excitatory
inputs. One can see that Veff is more susceptible to inputs, as it reacts
immediately to synaptic inputs. As Vmem decays towards Veff along an
exponential with time constant τeff , the peaks of the PSPs become smaller
as a result. The mean values of both traces are the same, although the
variance of Veff is higher.

These considerations are easy to reproduce analytically by incremental modifications to
the LIF equation (3.1):

Cmem ·
dV

dt
= −gL · (V (t)− EL)−

∑
syn∈{exc,inh}

gsyn(t) · (V (t)− Esyn) (3.2)

⇔ Cmem ·
dV

dt
=

∑
i∈{Leak,syn}

gi · (Ei − V (t)) (3.3)
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3 On the membrane potential of LIF models

Dividing both sides by the total conductance gtot(t) =
∑
gi(t) yields

Cmem
gtot(t)

· dV
dt

=

∑
gi(t) · Ei
gtot(t)

− V (t) (3.4)

Now the dynamic equilibria discussed above can be defined

τeff =
Cmem
gtot(t)

and Veff =

∑
gi(t) · Ei
gtot(t)

(3.5)

Substituting these into (3.4) finally yields

τeff (t) · dV
dt

= Veff (t)− V (t) (3.6)

which gives the mathematical representation of the phenomenologic considerations above.

In general, eq. (3.6) can not be solved analytically, since, in addition to V (t), τeff and
Veff are also time-dependent and can take on complex forms, depending on synaptic
dynamics and the nature of the input. However, under certain circumstances, approxi-
mations can be made which allow an analytic treatment and ultimately yield excellent
predictions, as shall be described in the following.

3.1.1 Current-based approximation in the Leaky Integrate and Fire Model

One possible way to approximate and simplify equation (3.6), is to make a so-called
current-based approximation. This implies that the PSPs are not caused by conductance,
but rather directly by ion currents Ii passing through the ion channels of the membrane.
Analogously to equation (2.8), these can be modeled as exponentially decaying synaptic
currents

Isyn(t) = isyn
∑
tspk

exp
−

(t−tspk)
τsyn ·Θ(t− tspk) (3.7)

Note that isyn are the equivalents to the synaptic weights wsyn that are used in the
conductance-based model. They both determine the height of the PSPs in the respective
model, but have different scales for similar PSPs.
In effect, the conductance in this approximation will be held constant at gL, resulting in a
time-independent membrane time constant τmem. Obviously, reversal potentials are not
considered in these approximations. Overall, considering equation (3.5), the following
substitutions result from these thoughts:
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3.1 Theoretical approximation of the membrane potential time course

τeff (t) =
Cmem
gtot(t)

−→ τmem =
Cmem
gL

(3.8)

Veff =

∑
gi(t) · Ei
gtot(t)

−→ Veff =

∑
Ii(t)

gL
(3.9)

with IL = gL · EL as the leak current. This simplifies the form of the effective potential
in the current-based approximation, Veff , and allows an analytic solution of equation
(3.6), which transforms into

τmem ·
dV

dt
= Veff (t)− V (t) (3.10)

⇔ τmem ·
dV

dt
=

∑
i∈{L,exc,inh}

Ii(t)

gL
− V (t) (3.11)

The consequences of this approximation are:

• The fact that τmem = const. makes the shapes of all synaptic PSPs identical for
a synapse, because the membrane potential basically reacts in the same way for
every synaptic input, as the charging rate of the membrane does not change during
the simulation.

• Veff has no influence from reversal potentials, making the PSP amplitude inde-
pendent from the potential value given at the time of the occurance of the afferent
spike. This is fundamentally different from the conductance-based model, when
the input spike arrives at a time when the membrane potential is close to the cor-
responding reversal potential (excitatory or inhibitory), the induced PSP will be
small on account of the term proportional to (V (t) − Erev). In these regions sat-
uration effects can be seen (in fig. 3.3), which do not appear in the current-based
model.

The second point is especially important, as it linearizes the differential equation for
the membrane potential, because there is no dependence on the value of the membrane
potential on the right hand side of the equation, and it does not matter at what potential
the current-induced PSP was triggered.

This linearity of the equation ensures that instead of computing the effect of the sum of
different current sources V (t − ~tspk), it is possible to compute the membrane potential
resulting from a single afferent spike and then take the sum

∑
tspk

V (t− tspk),

V (t− ~tspk) =
∑
tspk

V (t− tspk) . (3.12)
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3 On the membrane potential of LIF models

(a) Conductance based LIF model (w = 10−2µS) (b) Current based LIF model (i = 10−2nA)

Figure 3.2: Figures show a comparison of both models in a state with equal synaptic
rates νinh = νexc = ν = 50Hz and also equal synaptic weights (i and w
respectively).
One can see the influence of the reversal potentials Einh = −70 and Eexc = 0
mV on fig. 3.2a. The average potential is at ∼ −62 mV. In spite of equal
synaptic weights w, the excitatory PSPs are, on average, about

∣∣∣ (V (t)−Eexc)
(V (t)−Einh)

∣∣∣ ≈
8 times as high as the inhibitory PSPs (see (3.1)).
In fig. 3.2b, there are no reversal potentials involved. The PSPs are equal,
the membrane potential oscillates around the resting potential at −65 mV.

In fact, this approximation yields the dynamic equations of the eponymous current-based
LIF model (see Gerstner and Kistler [2002]) and represents a significant simplification
of the membrane subthreshold dynamics, which will be of interest especially later in this
chapter, as well as in the following one.

In the next section, the differential equation describing the current-based LIF model will
be used to derive a closed-form expression for the shape of current-based PSPs.

Solving the current-based Leaky Integrator Differential Equation

To solve the differential equation (3.6) and calculate the shape of a single PSP, two states
will be considered. These two states will be described by two effective potentials, as they
represent the dynamic equilibria of the membrane potential. The first state, described
by Veff (t), is an unspecified effective potential and V ′eff (t) - the effective potential with
exactly the same progression as Veff (t) except for an additional input spike that occurs
at time t = 0.

Let Vpsp(t) be the difference of the effective membrane potential time courses resulting
from the input spike.
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3.1 Theoretical approximation of the membrane potential time course

(a) Conductance based LIF model, bounded at Einh (b) Current based LIF model, no lower bound by Einh

Figure 3.3: Both neurons were stimulated by high-frequent inhibitory input (5000 Hz)
and sparse excitatory input spikes (10 Hz) with i = 10−2 nA and w = 10−2µS.
In the conductance based case in fig. 3.3a, the membrane potential ranges
between the resting potential (−65 mV) and Einh (−70 mV).
As the amplitude of the PSPs decreases linearly with smaller distance to
Einh, the potential never falls below Einh, but remains close to it due to
the high-frequent inhibitory inputs. Note that excitatory spikes induce large
PSPs due to the distance of Vmem to Eexc = 0 mV.
In 3.3b, there is no such limitation because the PSPs remain the same regard-
less of the membrane potential value. In principle, the membrane potential
can take on arbitrarily low (or high) values. Excitatory PSPs are as small as
inhibitory ones.

∆Veff (t) := V ′eff (t)− Veff (t) (3.13)

From eq. 3.9, one finds

Veff =

∑
Ii(t)

gL

spike x−−−−→ V ′ = Veff +
Ix(t)

gL
(3.14)

This indicates that the difference of the effective potentials lies in the PSP, triggered by
an input spike x, causing a synaptic current Ix(t), which has an exponential time course
in eq. (3.7):

∆Veff (t) =
Ix(t)

gL
(3.15)

Inserting both V ′(t)eff , V (t)eff , and the respective membrane potentials V ′(t), V (t) into
the main equation (3.10) results in
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3 On the membrane potential of LIF models

τmem ·
dV ′(t)

dt
= V ′eff (t)− V ′(t) (3.16)

τmem ·
dV (t)

dt
= Veff (t)− V (t) (3.17)

Now, one can restrict the possible input currents Ix(t) as a result of synaptic inputs, and
can therefore substituted

Ix(t) −→ Isyn(t) = isyn · e
− t
τsyn (3.18)

Subtracting eq. (3.17) from (3.16) and dividing by τmem yields

τmem ·
d(V ′ − V )

dt
=

1

τmem
·
(

Isyn(t)

gL︸ ︷︷ ︸
=∆Veff (t)

− Vpsp(t)︸ ︷︷ ︸
:=V ′(t)−V (t)

)
(3.19)

This has the form of an Ordinary Differential Equation of first order in time:

d

dt
f(t) = a(t) · f(t) + b(t) (3.20)

A solution for this particular type of ODE is guaranteed to exist and can be expressed
as (see Hartman [2002])

f(t) = eF (t)

[∫ t

0
b(x) · e−F (x) dx+ C

]
(3.21)

with F (x) =

∫ x

0
a(x′) dx′ (3.22)

For equation (3.19), one can simply replace the dependencies by

a(t) = − 1

τmem
(3.23)

b(t) =
Isyn(t)

τmem · gL
=

isyn
gL · τmem

· e−
t

τsyn (3.24)

and see that

F (x) = − x

τmem
(3.25)
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3.1 Theoretical approximation of the membrane potential time course

so now the post-synaptic time course Vpsp(t) can be easily computed by integrating

Vpsp = e−
t

τmem

eF (t)

[ ∫ t

0

isyn
gL · τmem

· e−
x

τsyn

b(x)

· e
x

τmem

e−F (x)

dx+ C

]
(3.26)

This yields1

Vpsp =
isyn

gL · τmem · ( 1
τsyn
− 1

τmem
)
·
[
e−

t
τmem − e−

t
τsyn

]
(3.27)

With the substitution

τc :=

[
1

τsyn
− 1

τmem

]−1

(3.28)

the result of this computation can finally be written down as:

PSP time course for a current-based LIF neuron

The synaptic PSP triggered by synaptic currents Isyn with the time constant τsyn in
a current-based LIF neuron with leak current IL, leak conductance gL, and membrane
time constant τmem:

Vpsp(t) =
isyn · τc
gL · τmem

·
[
e−

t
τmem − e−

t
τsyn

]
(3.29)

τmem =
Cmem
gL

τc =

[
1

τsyn
− 1

τmem

]−1

Veff =

∑
i Isyn
gL

with i ∈ {L, syn}

In the following, a similar approach will be used to derive an analytic expression for the
shape of a PSP for the more biologically plausible conductance-based LIF model. While,
as described earlier, the general case has no analytic solution, biological neurons often
operate in a regime called a high-conductance state (Rudolph and Destexhe [2006]) which
allows the derivation of a closed-form expression.

1In the result, C = 0 because the initial condition is Vpsp(t = 0) = 0
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3 On the membrane potential of LIF models

3.1.2 Approximation of the Leaky Integrate and Fire Model for a High
Conductance State

The high conductance state is a state of the membrane potential generated and sustained
by high-frequency synaptic input2 with relatively low synaptic weights wi, we. This
results in a constantly high synaptic conductance gsyn(t) ≈ const. which is comparable
to, or even exceeds the leak conductance, gL.
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(a) high conductance state
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(b) low-frequency stimulation

Figure 3.4: A comparison of conductance-based, subthreshold membrane potential os-
cillations with Vrest = −65mV . Figure (3.4a) shows a simulation with
νexc = νinh = 2 kHz, winh = wexc = 10−3µS.
Simulation (3.4b) was conducted with νexc = νnnh = 200 Hz, winh =
wexc = 10−2µS resulting in the same average membrane potential, due to
wsyn ·νsyn = const., but with a significantly higher variance. This also causes
the membrane to come close to the inhibitory resting potential, dynamically
altering inhibitory PSP amplitudes, which is essentially the reason for which
the general conductance-based LIF equation has no closed-form solution.

In the limit of high input frequencies and low synaptic weights, one expects the pertur-
bations of the total conductance to remain small compared to its average value. This
would validate the first-order approximation

gtot ≈ gtot(t) = gexc(t) + ginh(t) + gL � g′syn , (3.30)

with g′syn being the contribution to the conductance from a single synapse. This will
allow to simplify and eventually solve the equation (3.6) in a similar way as for the
current-based case.

2in this thesis: Poisson-distributed input

22



3.1 Theoretical approximation of the membrane potential time course

The required mathematical formalism is the subject of the next section, which aims to
derive a general formula for computation of statistical properties of linear superpositions
of Poisson-process-induced fluctuations.

3.1.3 Statistical Characterization of Additive Fluctuations induced by
Poisson Processes

Consider a sequence of points in time generated by a Poisson process ti ∈ ~t = {t1, ...., tn}.

Let κ(t) be a kernel which is triggered by above process. Such a kernel marks the impact
of the point process on a continuous function of time Y (t).

Assuming superposition linearity, the total effect of the Poisson process becomes

Y (t) =
∑
ti≤t

κ(t− ti) . (3.31)

The goal of this section is to find general expressions for the computation of the mean
and variance of Y (t) for a given kernel κ(ti).

One can start by considering a poisson process with a rate λ andN events for a continuous
variable t ∈ [0, T ]:

pλ(N) =
e−λ·T · (λ · T )N

N !
(3.32)

First, one can look at the weighted, conditinional expectation values, which are the
expectation values for a predefined number of spike occurences, weighted with pλ(Nspk).

In case of zero occuring events (this result is possible, despite λ 6= 0), this would result
in

E[Y ] = E0
pλ(0)
= 0 (3.33)

For one occurence, one will have

E1 = pλ(1) ·
T∫

0

p1(t) · κ(T − t) dt = λ · e−λ ·
T∫

0

1

T
· κ(T − t) dt (3.34)

with 1
T being the probability density of the occurence of one event in the interval t ∈ [0, T ].

For N events, this would transform into
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3 On the membrane potential of LIF models

pN (t1, . . . , tN ) =

N∏
i=1

pi(ti) =
1

TN
(3.35)

(Poissonian events are independent of each other) (3.36)

Applying this, two occuring events at rate λ yield

E2 = E0 + E1 +

T∫
0

T∫
0

p2(t1, t2) · (κ(T − t1) + κ(T − t2)) dt1 dt2 (3.37)

The sum of these terms gives the total expectation value in case of two arrivals, since it
is a sum over all possibilities of occuring spikes for a predefined input rate.

In general, despite having rate λ, one can not limit the amount of occuring events. This
means that one has to consider a sum with infinite elements for the general expectation
value, Eλ.

Eλ =
∞∑
i=1

pλ(i)

T∫
0

. . .

T∫
0︸ ︷︷ ︸

×i

pi(t1, . . . , ti)︸ ︷︷ ︸
1

Ti

·
i∑

j=1

κ(T − tj) dt1 . . . dti (3.38)

E0 = 0⇒ summation starts at i = 1 (3.39)

Simplifying and reorganizing this equation (
∫ ∑

· · · =
∑∫

. . . ) yields

Eλ =

∞∑
i=1

pλ(i)

T i

i∑
j=1

T∫
0

. . .

T∫
0

κ(T − tj) dt1 . . . dti (3.40)

=
∞∑
i=1

pλ(i)

T i

i∑
j=1

T∫
0

. . .

T∫
0︸ ︷︷ ︸

i−1

 T∫
0

κ(T − tj′) dtj′


︸ ︷︷ ︸

=A

dt1 . . . dtj′−1 dtj′+1 . . . dti (3.41)

This double sum then collapses into
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Eλ = A ·
∞∑
i=1

pλ(i)

T i

i∑
j=1

T∫
0

. . .

T∫
0

dt1 . . . dtj′−1 dtj′+1 . . . dti︸ ︷︷ ︸
T i−1

(3.42)

= A ·
∞∑
i=1

pλ(i)

T i

i∑
j=1

T i−1 = A ·
∞∑
i=1

pλ(i) · i
T

(3.43)

Substituting pλ(i) from eq. (3.32) finally yields

Eλ =

T∑
i=1

e−λ·T · (λ · T )i

i!
(3.44)

= e−λ·T · λ ·A ·
∞∑
i=1

(λ · T )i−1

(i− 1)!︸ ︷︷ ︸
eλ·T

(3.45)

= λ ·A (3.46)

The total expectation value is then

Eλ[Y ] = λ ·
T∫

0

κ(t) dt (3.47)

This can not be directly applied for variances, which have a quadratic dependence on the
summed kernels.

V ar[Y ] = E[(Y − E[Y ])2] = E[Y 2]− E[Y ]2 (3.48)

However, to compute the variance, a similar derivation can be used like the one for the
expectation value (3.47).

The term E[Y ]2 can be computed via (3.47), but the first term E[Y 2] requires a formula
for the computation of squared kernels of random variables, as formula (3.47) covers
only linear superposition.

Nevertheless, it is possible to start with equation (3.38), this time with a squared sum
of kernels κ(t):

Eλ[Y 2] =
∞∑
i=1

pλ(i)

T∫
0

. . .

T∫
0︸ ︷︷ ︸

×i

pi(t1, . . . , ti)︸ ︷︷ ︸
1

Ti

·

 i∑
j=1

κ(tj)

2

dt1 . . . dti (3.49)
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This expression can be decomposed into two terms:

 i∑
j=1

κ(tj)

2

=

i∑
j=1

κ2(tj)

(1)

+

i∑
j=1

i∑
k=1

κ(tj) · κ(tk)

(2)

. (3.50)

Plugging term (1) back into equation (3.49) yields

E
(1)
λ [Y 2] =

∞∑
i=1

pλ(i)

T∫
0

. . .

T∫
0

1

T i

i∑
j=1

κ2(tj) dt1 . . . dti , (3.51)

which can be computed by using the derived formula (3.47). In this case, the sum
consists of the kernels κ2(ti), allowing to use the same method that was already derived
for a linear summation of kernels.

As a result, the computation of term (1) will be

E
(1)
λ [Y 2] = λ

T∫
0

κ2(t) dt (3.52)

Now, term (2) needs to be evaluated in equation (3.49):

E
(2)
λ [Y 2] =

∞∑
i=2

pλ(i)

T∫
0

. . .

T∫
0

1

T i

i∑
j=1

i∑
k=1

κ(tj) · κ(tk) dt1 . . . dti (3.53)

i∑
j=1

i∑
k=1

κ(tj) · κ(tk) =
∑
j<k

2 · κ(tj) · κ(tk) (3.54)

The index i starts at i = 2 in equation (3.53), because at least two events are necessary
to examine the product of two separated kernels κ(tj), κ(tk).

Equation (3.53) can now be further simplified:
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E
(2)
λ [Y 2] =

∞∑
i=2

2 · pλ(i)

T i

i∑
j<k

T∫
0

. . .

T∫
0

κ(tj) · κ(tk) dt1 . . . dti (3.55)

(3.41)
=

∞∑
i=2

2 · pλ(i)

T i

i∑
j<k

T∫
0

. . .

T∫
0

dt1 . . . dtj′−1 dtj′+1 . . . dtk′−1 dtk′+1 . . . dti︸ ︷︷ ︸
i−2

· (3.56)

·

 T∫
0

κ(tj′) dtj′

T∫
0

κ(tk′) dtk′


︸ ︷︷ ︸

:=A2
j,k

This equation can be modified analogously to (3.42), computing non-framed integrals:

E
(2)
λ [Y 2] =

∞∑
i=2

2 · pλ(i)

T i
· T i−2 ·

i∑
j<k

A2
j,k (3.57)

Here, it is possible to exploit the relation
i∑

j<k

= (i−1)·i
2 , yielding

E
(2)
λ [Y 2] =

∞∑
i=2

pλ(i)

T 2
· (i− 1) · i ·A2

j,k (3.58)

Eventually, one can write down the Poisson-probabilities pλ(i) explicitly, and find a final
form of the expectation value for the computation of the term (2):

E
(2)
λ [Y 2] =

∞∑
i=2

e−λ·T · (λ · T )i

i! · T 2
· (i− 1) · i ·A2

j,k (3.59)

= λ2 · e−λ·T ·A2
j,k ·

∞∑
i=2

(λ · T )i−2

(i− 2)!︸ ︷︷ ︸
=eλ·T

(3.60)

= λ2 ·A2
j,k (3.61)

As A2
j,k constitutes the squared integral of the kernel κ(t), as defined in eq. (3.57), one

can express it as the squared mean of the sum of random variables E[X]2

E
(2)
λ [Y 2] =

λ T∫
0

κ(t) dt

2

= E[Y ]2 (3.62)
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This means that the full expression of the variance yields

V arλ[Y ] = E(1)[Y 2] + E(2)[Y 2]− E2[Y ] (3.63)

eq. (3.52), (3.62)⇒V arλ[X] = λ2 ·A (3.64)

⇒ V arλ[Y ] = λ2 ·
T∫

0

κ(T − t) dt (3.65)

The same result can also be derived in an intuitively more appealing way, which will be
shown in the following.

First, the mean of Y1(t) in case of one occuring event in t ∈ [0, T ] can be computed:

E[Y1] =
1

T

∫ T

0
κ(T − t) dt︸ ︷︷ ︸

:=A

=
A

T
(3.66)

(3.67)

All occuring events in [0, T ] generated by a Poisson process arrive independently of each
other, thus have the same single mean E[Y1]. Due to the linear superposition of the
kernels, the mean total effect of the Poisson process Eλ[Y ] can be written as a sum of
means E[Y1] for long intervals T ,

Eλ[Y ] =

N∑
E[Y1] , (3.68)

with N being the total number of occuring events. If the time window [0, T ] is long
enough, then the total number of expected events can be expressed as N = λ · T . This
leads to the total mean of Y (t):

Eλ[Y ]
N=λ·T

= λ · T · E[Y1] = λ ·A (3.69)

=λ ·
T∫

0

κ(T − t) dt (3.70)

This can be identified with the result from (3.47).
In the same fashion it is possible to derive the variance V ar[Y ]. At first, the variance of
the total effect of one single occuring event V ar[Y1] will be computed:

28



3.1 Theoretical approximation of the membrane potential time course

V ar[Y1] = E[Y 2
1 ]− E[Y1]2 (3.71)

(3.66)
=

1

T

T∫
0

κ2(T − t) dt

︸ ︷︷ ︸
:=A2

−
(
A

T

)2

(3.72)

Again, one can reach the same result with the following intuitive reasoning, one can
express the total variance of V ar[Y ] as the sum of variances of N independent occurences:

V ar[Y ] =
N∑
V ar[Y1] (3.73)

For long intervals [0, T ], again, one can therefore approximate N = λ · T , which leads to

V arλ = N · V ar[Y1] = λ · T ·

[
A2

T
−
(
A

T

)2
]

(3.74)

= λ ·
[
A2 −

A2

T

]
(3.75)

For long intervals T , the second term vanishes. This leads to the final result

V arλ[Y ] = λ ·
T∫

0

κ2(T − t) dt , (3.76)

which is of course identical with (3.78).

The two essential results of this section, Eλ[Y ] and V arλ[Y ] will be summarized briefly:

The total expectation value Eλ[Y ] and variance V arλ[Y ] of a variable Y (t) representing
a linear superposition of kernels κ(t) triggered by a Poisson point process with rate λ
are:

Eλ[Y ] = λ ·
T∫

0

κ(t) dt (3.77)

V arλ[Y ] = λ ·
T∫

0

κ2(t) dt (3.78)
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3 On the membrane potential of LIF models

3.1.4 Characterization of the Synaptic Conductance

The results from the previous section will serve in validating the first-order approxima-
tion from eq. (3.30), as they will be used to derive analytic expressions for the mean
and the variance of both the synaptic conductance and the membrane potential.

At this point, it is important to stress the generality of the methods described through-
out the following sections. While the following formalism can be applied to arbitrary
shapes of spike-induced kernels, for the synaptic conductance, we consider the case of
exponential kernels (see eq.(2.8), which is experimentally motivated by the hardware
model implementation, which is, in turn, based on empirical evidence from biological
measurements. This will have immediate consequences for the prediction of the mem-
brane potential time course.

From eq. (2.8), one can calculate the total membrane conductance of a neuron

gtot(t) = gsyn(t) + gL (3.79)

=
∑
syn

wsyn
∑
spikes

exp
−

(t−tspk)
τsyn ·Θ(t− tspk) + gL (3.80)

For a single synapse stimulated by a poisson spike train, one can identify the following
characteristics:

→ conductance course κ(t) = wsyn · e
− t
τsyn (3.81)

→ input rate νsyn (corresponds to the λ in the standard Poisson notation) (3.82)
→ simulation time Tsim (3.83)

Then, one can directly apply equation (3.77) to find

E[gsyn] = νsyn ·
Tsim∫
0

wsyn · e
− t
τsyn dt (3.84)

This integral is easy to compute, leading to the solution

E[gsyn] = νsyn · wsyn · τsyn (3.85)

By making the appropriate substitutions of the parameters from (3.81), (3.82), (3.83)
into equation (3.78), one directly obtains the variance of the conductance course:

V ar[gsyn] = νsyn ·
Tsim∫
0

[
wsyn · e

− t
τsyn

]2

dt (3.86)

=
1

2
· νsyn · w2

syn · τsyn (3.87)
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3.1 Theoretical approximation of the membrane potential time course

With E[gsyn] and V ar[gsyn] now known for single synapses, the extrapolation to E[gtot]
and V ar[gtot] is trivial, due to the spatial summation principle and the assumed inde-
pendence of the afferent spike trains from different synapses (see p. 13).
Again, the results for the inhibitory and excitatory values can be added like in eq. (3.30).

This leads to the following summarizing conclusion:

Given the input rates νsyn, the synaptic weights wsyn and the synaptic time constantsa

τsyn for every synapse, as well as the leak conductance gL, the variance and mean of
the synaptic conductance in the LIF model are

gtot =
∑
syn

νsyn · wsyn · τsyn + gL (3.88)

V ar[gtot] =
1

2
·
∑
syn

νsyn · w2
syn · τsyn (3.89)

aIn later simulations, both synaptic time constants, for excitation and inhibition, will be set equal to
simplify the computations

These results represent a significant progress because now the total conductance gtot in
the effective potential Veff from eq. (3.5) can be assumed, in a first-order aproximation,
to have no time dependency:

Veff (t) =

∑
syn gsyn(t) · Esyn

gtot(t)

gtot(t)≈const.−−−−−−−−→
∑

syn gsyn(t) · Esyn
gtot(t)

(3.90)

Before reaping the benefits of this assumption, i.e. solving the differential equation (3.6),
the quality of this approximation has to be tested. In the following, it will be shown that
the substitution

gtot(t) ≈ gtot(t) = const. (3.91)

is valid for the high conductance state regime, where a high synaptic frequency, trig-
gering small post synaptic potentials, sustains a conductance level high above the leak
conductance.

For this purpose, the coefficient of variation will be employed, which is the quotient of
the standard deviation and the mean of a distribution

cv =
σ

µ
(3.92)
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3 On the membrane potential of LIF models

This measure provides information on how densely the distributed data is clustered
around the mean.

To simplify the evaluation of cv, the neuron will be stimulated by a single synapse,
resulting in the mean and variance (3.88), (3.89) of the conductance of the stimulated
neuron.

The coefficient of variation is then

cv =

√
1
2 · w2

syn · νsyn · τsyn
wsyn · νsyn · τsyn

(3.93)

=
1√

2 · νsyn · τsyn
(3.94)

This result shows that the measure only depends on the inverse of the square root of the
input rate, and not on the synaptic weights, as one might naively expect.

Figure (3.5) shows the behavior of cv.

Figure 3.5: Illustration of the coefficient of variation of the synaptic conductance cv with
rising νsyn on a double logarithmic scale. The red line denotes the theoretical
equation (3.94), which has a gradient of −1

2 on a logarithmic scale. The green
dots show the simulated results, with errorbars as the standard deviation. A
decrease of the coefficient of variation signifies a more clustered set of data
points in the proximity of the mean.

Therefore, one can assume the approximation (3.91) to be correct within an error margin
of 10%, given a typical synaptic time constant of 5 ms, for total synaptic input rates
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3.1 Theoretical approximation of the membrane potential time course

above 10 kHz3, which represents a realistic regime for cortical neurons in vivo (see
Destexhe et al. [2003]). This condition is further loosened by the membrane potential
effectively constituting a low-pass filter for the conductance, thus further smoothing fast
fluctuations.

3.1.5 High Conductance-based Approximation of the Leaky Integrate and
Fire Model

Now that it is shown that gsyn(t) + gL ≈ gtot(t) = gtot = const., it follows

Veff (t) =

∑
i gsyn(t) · Ei
gtot��(t)

(3.95)

Again, the focal point of this section is equation

τeff ·
dV

dt
= Veff (t)− V (t) (3.96)

Now, knowing more about Veff (t), two different effective potentials will be considered,
Veff (t) being an unspecified effective potential and V ′eff (t) the effective potential with
exactly the same progression as Veff (t), except with an additional input spike that oc-
cured at time t = 0. This additional synaptic spike opens a conductance gx towards the
reversal potential Ex.

Veff (t) =

∑
i gin(t) · Ei
gtot

(3.97)

V ′eff (t) =

∑
i gin(t) · Ei + gx(t) · Ex

gtot
(3.98)

i ∈ {L, syn} (3.99)

Of course, the two membrane potentials V (t) and V ′(t) will be different due to the added
input in the primed situation.

To be able to solve (3.96), the difference of the effecitve potentials V ′eff (t)− Veff (t) will
be computed.

To be able to do this, an approximation will be aplied. Because the total conductance
in the high conductance state is sustained by many occuring input spikes, the impact on
the total conductance from one single spike gx(t) is negligible compared with the total
conductance gtot(t).

Therefore, equation (3.98) will be approximated as the first two terms of its Taylor-Series.
The general form of this equation is

3assuming approximately equal weight synapses
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3 On the membrane potential of LIF models

f(x) =
a+ b · x
c+ x

. (3.100)

The first two terms of the Taylor-Series of (3.100) at x = 0 is then

f(x→ 0) =
a

c
+
b · (c+ x)− (a+ bx)

(c+ x)2

∣∣∣∣
x=0

· x =
a

c
+
bc− a
c2

· x (3.101)

Making the following substitutions,

x = gx(t) a =
∑
i

gi · Ei (3.102)

b = Ex c = gtot , (3.103)

results in

V ′eff ≈
∑

i gi(t) · Ei
gtot

+

gtot · Ex −
∑
i
gi · Ei

g2
tot

· gx(t) (3.104)

=

∑
i gi(t) · Ei
gtot

+
gtot · Ex − Veff (t) · gtot

g2
tot

· gx(t) (3.105)

=

∑
i gi(t) · Ei
gtot

+
Ex − Veff (t)

gtot
· gx(t) (3.106)

The difference of both effective potentials is then

∆Veff (t) := V ′eff (t)− Veff (t) =
Ex − Veff (t)

gtot
· gx(t) (3.107)

The next step will be exactly the same as for the current-based LIF mode in section
3.1.1: Inserting V ′eff (t) and Veff (t) in equation (3.96) and subtracting them, yields

τeff ·
dV ′(t)

dt
= V ′eff (t)− V ′(t) (3.108)

τeff ·
dV (t)

dt
= Veff (t)− V (t) (3.109)

Subtracting eq. (3.109) from (3.108) and dividing by τeff , yields

d(V ′ − V )

dt
=

1

τeff
·
(
Ex − Veff (t)

gtot
· gx(t)︸ ︷︷ ︸

=∆Veff (t)

− Vpsp(t)︸ ︷︷ ︸
:=V ′(t)−V (t)

)
(3.110)

34



3.1 Theoretical approximation of the membrane potential time course

The index x denotes the synaptic conductances, as well the synaptic reversal potentials,
since every input will be synaptical. Therefore, it is possible to substitute at this point,
without losing generality:

gx −→ gsyn = wsyn · e
− t
τsyn (3.111)

Ex −→ Esyn (3.112)

The only hindrance to solving differential equation (3.117) is the complex time depen-
dence of ∆Veff (t), which is a consequence of the time dependence in Veff (t). Therefore,
the last approximation is to take the mean of ∆Veff (t) instead, by computing Veff (t).

∆Veff (t) =
∑
syn

Esyn − Veff (t)

gtot
· gsyn · e

− t
τsyn (3.113)

Veff (t) =
∑

i∈{L,syn}

gi · Ei
gtot

−→ Veff (t) =
∑

i∈{L,syn}

gi · Ei
gtot

(3.114)

This approximation can be justified by the results from section (3.1.4), which allowed to
state gtot ≈ gtot(t). This can be applied to the effective potential, as its time course is
determined by conductance changes from inputs.
The mean of the effective potential can be computed simply by the substitutiion

gsyn(t)→ gsyn = νsyn · wsyn · τsyn . (3.115)

The mean effective potential is then

Veff =

∑
syn

νsyn · wsyn · τsyn · Esyn + gL · EL

gtot
, (3.116)

giving the final form of the differential equation to solve;

dVpsp(t)

dt
=

1

τeff
·
(
Esyn − Veff

gtot
− Vpsp

)
(3.117)

This is done exactly like the derivation of the current-based PSPs in section (3.1.1), since
both equations have the same structure, the only difference being the kernels and their
time constants. Remembering the equations that lead to the solution of the current-based
LIF model ((3.23) and (3.24)), one can simply modify them:

a(t) = − 1

τmem
→ − 1

τeff
(3.118)

b(t) =
isyn

gL · τmem
· e−

t
τsyn →

gsyn · (Esyn − Veff )

gtot · τeff
· e−

t
τsyn (3.119)
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3 On the membrane potential of LIF models

The rest of the computation applies to the current-based case, resulting in eq. (3.29).
The result is then

PSP time course for a LIF neuron in the high conductance state

The synaptic PSP triggered by a conductance rise through synaptic weight wsyn with
time constant τsyn in the high conductance approximation of a LIF neuron with reversal
potentials Esyn, a total conductance gtot and membrane time constant τeff :

Vpsp(t) =
wsyn · (Esyn − Veff ) · τg

gtot · τeff
·
[
e
− t
τeff − e−

t
τsyn

]
(3.120)

gtot = gsyn + gL = νsyn · wsyn · τsyn + gL

τeff =
Cmem
gtot

τg =

[
1

τsyn
− 1

τeff

]−1

Veff =

∑
i gi · Ei
gtot

with i ∈ {L, syn}

Several important points need to be stressed:

• The starting point was the differential equation of the LIF model, (3.6). It has
been shown that one can approximate the total conductance as its mean value
gtot ≈ gtot, see section (3.1.4). With this first important approximation, it is
possible to solve equation (3.6) analytically, because the time dependency in τeff
has been eliminated.

• The membrane potential was assumed to be found close to the mean of the effective
potential Veff at all times, so every PSP rises with a factor proportional to the
constant difference wsyn ·|Esyn−E[Veff ]|. This means that all evoked PSPs have an
identical shape, given by exp(− t

τeff
)−exp(− t

τsyn
), with the differences in magnitude

resulting only from the individual synaptic weights and reversal potentials.

This approximation in the high conductance state has potential shortcomings:

The quality of this model obviously depends on the input parameters winh, wexc, νinh,
νexc. If the membrane potential lies too far away from the dynamic equilibrium Veff , the
term Ex = Erev−Veff can deviate significantly from the actual scaling of the simulation.

A fast plausibility test of this approximation can be achieved by reducing the effective
time constant τeff . At the beginning of this chapter, it was explained that the membrane
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3.1 Theoretical approximation of the membrane potential time course

(a) Time course of PSP

Figure 3.6: Post synaptic potential of excitatory input for different time constants

potential of a conductance-based LIF model reacts to synaptic input as a low-pass-filter
with a specific time constant τeff . The effective potential Veff (t) (which represents a
purely mathematical construct and has no directly measurable physical equivalent in the
cell) reacts to synaptic input immediately. The PSP time course derived above should
exhibit the same behavior, if τeff converges to zero. In this approach, the PSP time
course should rise abruptly instead of showing an alpha-shaped rise, as depicted in fig.
3.6. This can be tested on the derived PSP time course 3.120 by making it independent
of τ :

Vpsp(t) =
wsyn · (Esyn − Veff ) · τsyn

gtot · (τeff − τsyn)
·
[
e
− t
τeff − e−

t
τsyn

]
(3.121)

Applying

τeff → 0 (3.122)

to equation (3.120) results in

V ′psp(t) =
wx · (Esyn − Veff ) · τsyn

gtot · τsyn
· e−

t
τsyn (3.123)

This equals precisely ∆Veff (t), which comes to prove the plausibility of the results derived
above.
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3 On the membrane potential of LIF models

(a) Low conductance state with νexc

(b) Low conductance state with νinh

Figure 3.7: Two membrane potentials and their means (red dashed lines) with νsyn =
100 Hz for both simulations. Figure (3.7a) shows an excitatory stimulation
with good agreement between the simulated and theoretical trace (as in eq.
(3.120)). The term of the theoretical trace PSPexc ∼ |Eexc − Veff | ≈ 59
mV scales slightly too high for regions far above the mean. The same, yet
more dominant effect occurs for purely inhibitory input in fig. (3.7b). The
deviations are higher in this case, because the theoretical trace gets close to
the inhibitory reversal potential Einh at −70 mV. Therefore, the differences
of the simulated PSPs to the theoretical ones are higher than in the situation
with only excitatory inputs, where Eexc = 0 mV.

By increasing the input rates and lowering the synaptic weights, better general agree-
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3.1 Theoretical approximation of the membrane potential time course

ment between the theoretical and simulated traces can be achieved than for the states
that have been shown in fig. (3.7), as the simulated and the theoretical traces are closer
to the mean (fig. 3.8).
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(a) High conductance state of a depolarized neuron

Figure 3.8: An example of the high conductance state with high synaptic rates of νinh =
νexc = 4500 Hz, and low weights wexc = 5 · 10−4 µS, winh = 5 · 10−4 µS.
The traces show nearly perfect agreement, even better than the depolarized
neuron in fig. (3.7a). Note that this neuron is also depolarized, but is more
clustered around its mean (red dashed line), therefore not deviating much
from the stereotypical PSPs proportional to (Esyn − Veff )
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(a) High conductance state of a hyperpolarized neuron

Figure 3.9: A hyperpolarized high conductance state with synaptic inputs of
νinh = νexc = 4500 Hz and low synaptic weights wexc = 1 · 10−4µS,
winh = 30 · 10−4µS. The mean value close to both the resting and reversal
potential at −67.5 mV. As the membrane potential drops closer towards Einh,
the quality of the approximation decreases visibly, but not as drastically as
the state driven by comparably high synaptic weights and low input rates
depicted in fig. 3.7b. Again, just like in the depolorazied high conductance
state in fig. 3.8, the membrane potential is more clustered around the mean
(red dashed line), hence approximated well by PSPs proportional to (Esyn−
Veff ).
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3.1 Theoretical approximation of the membrane potential time course

The following conclusions can be obtained from this illustration of the conductance-based
approximation:
The membrane potential value itself is not the decisive factor for the quality of the ap-
proximation through stereotypical PSPs, but rather its distance to the reversal potentials
Esyn. The excitatory PSPs are generally approximated better, because Eexc = 0 mV is
far away from all subthreshold regions of the membrane potential. In contrast, the in-
hibitory reversal potential Einh = −70 mV is much closer to all subthreshold regions of
the membrane potential, which can cause problems when inhibition becomes too strong.
A high standard deviation of the membrane potential can therefore produce a less
precise approximation of the PSPs (and thus, membrane potential), because the
PSPs ∼ (Einh − Veff ) can underlie heavier deviations than their excitatory coun-
terparts (Eexc − Veff ).

For an analysis of correlated neuron dynamics, which is the subject of chapters 3 and 4,
an accurate description of membrane potential statistics is necessary.

To this end, the mean and variance of the theoretical (current- and conductance-based)
approximations to the LIF neuron will be derived in the following section.

3.1.6 Membrane Potential Statistics

Deriving closed-form expressions for the mean and variance of the membrane potential
of a LIF neuron can be done mostly without specifying the approximation of the referred
LIF model (i.e. current-based or cond.-based in a high conductance state), as the PSP
time courses are similar:

Vpsp = S ·
(
e
− t
τi − e−

t
τsyn

)
(3.124)
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3 On the membrane potential of LIF models

Both PSP kernels have the same structure, consisting of a scaling multiplicator Ssyn
and two exponentials determining their shape

Vpsp(t) = Ssyn ·
(
e−

t
τ − e−

t
τsyn

)
(3.125)

cond: curr:
τ = τeff τ = τmem

τg =

[
1

τsyn
− 1

τeff

]−1

τc =

[
1

τsyn
− 1

τmem

]−1

Ssyn =
wsyn · (Esyn − Veff ) · τg

gtot · τeff
Ssyn =

isyn · τc
gL · τmem

(3.126)

Mean and variance for the current-based model:

For the current-based model, the computation of the mean and variance of the membrane
potential can be done in a straightforward way, utilizing the results from section 3.1.3
with the following parameters:

→ synaptic input rates νsyn, (3.127)
→ Ssyn, taken from the general definition in (3.125), gives kernel (3.128)

κ(t) = Ssyn ·
(
e−

t
τmem − e−

t
τsyn

)
(3.129)

Substituting these into equation (3.77) yields the integral for the mean of the PSPs:

E[V syn
psp ] = νsyn · Ssyn ·

Tsim∫
0

(
e−

t
τmem − e−

t
τsyn

)
dt (3.130)

This integral is easy to compute, resulting in:

E[V syn
psp ] = νsyn · Ssyn · (τmem − τsyn) (3.131)

=
νsyn · isyn · τsyn

gL
(3.132)
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3.1 Theoretical approximation of the membrane potential time course

This result applies to a single synapse firing with rate νsyn. To compute the total synaptic
mean, the crucial property of spatial summation can be used, which was described in
more detail on p. 13. This means that the total mean of the membrane potential can be
expressed as the sum of the contributions from each synapse E[V syn

psp ]:

E

[∑
syn

V syn
psp

]
=
∑
syn

E[V syn
psp ] (3.133)

Additionally, the result is shifted by the leak term IL
gL

(see eq. (3.9)), resulting in

E[Vmem] =
∑
syn

νsyn · isyn · τsyn
gL

+
IL
gL

(3.134)

=

∑
i Ii
gL

with i ∈ {L, syn} (3.135)

= Veff . (3.136)

Naturally, the average of the membrane potential is the average of the dynamic equilib-
rium of the stimulated neuron, Veff .

The variance of the membrane potential can be derived in the same fashion, substituting
parameters (3.127) and (3.129) into (3.78), to yield the integral

V ar[V syn
psp ] = νsyn ·

Tsim∫
0

S2
syn ·

(
e−

t
τmem − e−

t
τsyn

)2

dt (3.137)

= νsyn · S2
syn ·

∫ Tsim

0

[
e
− 2·t
τsyn + e−

2·t
τmem − 2 · e−t·

(
1

τsyn
+ 1
τmem

)]
dt (3.138)

The evaluation of this integral gives

V ar[V syn
psp ] = νsyn · S2

syn ·

[
τmem

2
+
τsyn

2
− 2 · τmem · τsyn

τmem + τsyn

]
. (3.139)

This result applies to each synapse.

With the same reasoning that has been applied before when evaluating the mean, the
spatial summation allows to express the total variance of all PSPs as the sum of variances
of each single PSP:

V ar[Vpsp] = V ar

[∑
syn

V syn
psp

]
=
∑
syn

V ar[V syn
psp ] (3.140)
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V ar[Vpsp] =
∑
syn

νsyn · S2
syn ·

[
τsyn

2
+
τmem

2
− 2 · τmem · τsyn

τmem + τsyn

]
(3.141)

=
∑
syn

νsyn ·
(
isyn · τc
τmem · gL

)2

·

[
τsyn

2
+
τmem

2
− 2 · τmem · τsyn

τmem + τsyn

]
(3.142)

This is the variance of the PSPs for all synapses, which is obviously equivalent to the
total variance of the membrane potential.

Mean and variance for the high conductance state approximation:

Because of the differences between the current-based and conductance-based LIF neuron,
the approach to compute mean for the latter is less straightforward than the previous
derivations for the current-based model.

First of all, the derivation of the PSP time course was only possible because the neuron
was considered to be in a constantly stimulated state at the times of all spike occurences.
This means that the neuron is kept in this state by frequent synaptic input, and every
incoming PSP contributes to maintain it.

The average of this state is the effective potential Veff (already derived in (3.116)), and
also the mean of the membrane potential itself (as derived for the current-based model
in (3.136)):

E[Vmem]
(3.116)

= Veff =

∑
i∈{L,syn}

gi · Ei

gtot
(3.143)

To compute the variance of the membrane potential, one needs to compute the variance
of all evoked PSPs, which has been done for the current-based approximation already.
The only difference is the different scaling Ssyn and membrane time constant, as can be
seen on p. 42.

The integral to compute the variance of occuring PSPs generated with an input rate νsyn
from one synapse is then basically the same as in eq. (3.137), but with the substitution
τmem → τeff . The end result of the variance for the variance of the membrane potential
of the high conductance approximation of the LIF neuron is

V ar[Vmem] =
∑

syn∈{exc,inh}

νsyn ·
(
wsyn · (Esyn − Veff · τg

τeff · gtot

)2

· (3.144)

·

[
τsyn

2
+
τeff

2
− 2 ·

τeff · τsyn
τeff + τsyn

]
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3.1 Theoretical approximation of the membrane potential time course

The results and conclusions of this subsection should be briefly summarized at this point:

Expectation values and variances of the membrane potential of high conductance- and
current-based LIF model with the leak conductance gL at the resting potential EL,
stimulated by synaptic input with input rates νinh, νexc with synaptic strengths

(cond:) wsyn or (current:) isyn:

Mean:

E[Vmem] = Veff (3.145)

cond.: curr.:

Veff =
∑
syn

Esyn · gsyn
gtot

+ EL Veff =
∑
syn

Isyn
gL

+ EL (3.146)

gsyn = νsyn · wsyn · τsyn isyn = νsyn · isyn · τsyn

Variance:

V ar[Vmem] =
∑

syn∈{exc,inh}

νsyn · S2
syn ·

[
τsyn

2
+
τ

2
− 2 · τ · τsyn

τ + τsyn

]
(3.147)

cond: curr:
τ = τeff τ = τmem

τg =

[
1

τsyn
− 1

τeff

]−1

τc =

[
1

τsyn
− 1

τmem

]−1

Ssyn =
wsyn · (Esyn − Veff ) · τg

τeff · gtot
Ssyn =

isyn · τc
τmem · gL
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3 On the membrane potential of LIF models

3.1.7 Systematic Deviations from the theoretical Approximation

It has been noted before that there are regions where the high conductance approxima-
tion shows notable deviations from the actual membrane potential.

On the other hand, the results derived for the current-based model are expected to be
precise for all synaptic input regimes.

To have an overview of the quality of both approximations for different configurations,
a sweep was performed over the four input parameters within such limits that output
spiking was not induced, as it would skew the membrane potential statistics.

To ensure a sufficient number of samples, for a broad parameter range, the input rates
were chosen very high. Accordingly, to avoid output spiking, synaptic weights were
adjusted to a low range.

Due to the large difference in equally weighted synaptic input from excitatory and in-
hibitory synapses,

• Eexc − Erest = 65 mV,

• Einh − Erest = −5 mV,

A factor of 13 results as a difference in scaling of the PSPs. To achieve balanced stimu-
lation, the inhibitory synaptic weights were chosen to be 13× higher than the excitatory
weights.
For the current-based case, the contribution due to the synaptic weights is equal for equal
synaptic currents. The current parameters were chosen equal for both synapses.

Parameter spaces

High-conductance-based parameters:

wexc ∈ [5 · 10−4µS, 5 · 10−3µS ]

winh ∈ [65 · 10−4µS, 65 · 10−3µS ]

νexc, νinh ∈ [200 Hz, 2900 Hz]

Current-based model parameters:

iexc, iinh ∈ [5 · 10−3 nA, 5 · 10−2 nA]

νexc, νinh ∈ [200 Hz, 2900 Hz]

At first, one can validate the influence of the input parameters on the statistical val-
ues that have been derived for the mean and variance in (3.146) and (3.147), respectively.
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3.1 Theoretical approximation of the membrane potential time course

The mean value receives equal linear contribution from synaptic rates and weights,
whereas the variances exhibit a quadratic dependence on synaptic weights and are influ-
enced linearly by synaptic rates:

E[Vmem] ∼ wsyn · νsyn (3.148)

V ar[Vmem] ∼ w2
syn · νsyn (3.149)

(a) Means for cond.-based νinh, winh (b) Variances cond.-based for νinh, winh

(c) Means for curr.-based νinh, iinh (d) Variances for curr.-based νinh, iinh

Figure 3.10: Color plots of statistical values with varying inhibitory input paramters and
constant excitatory inputs, validating eq. (3.148) and (3.149).
Fig. (3.10a) and (3.10c) show an equal impact of synaptic rate and weight on
the mean, which decreases symmetrically due to ∼ winh · νinh, as predicted
in (3.148). Figure (3.10b) shows the variances in the conductance-based
model. The variance depends quadratically on winh, and linearly on νinh,
as predicted in (3.149). For even higher inhibitory input, variance decreases
as the mean comes closer to Einh. There are no such saturation effects for
the current-based model (3.10d), due to lack of reversal potentials. The
asymmetry in influence of the variance also applies for the current-based
model in with V ar[Vmem] ∼ νinh · i2inh.

47



3 On the membrane potential of LIF models

Figures in (3.10) show this behaviour for both the simulated and theoretical statistical
values for the current-based- as well as the conductance-based model for the inhibitory
case. This strongly supports the analytical results that have been obtained in the past
section, which exhibit the same dependencies on the synaptic inputs as the simulated
membrane potentials.

Throughout all input ranges, the mean of the simulated LIF neuron is very precisely
approximated by the theoretical mean. This can be seen in the color plots in fig. 3.11,
where an equal increase of νexc and νinh yields perfect agreement in all hyperpolarized,
as well as depolarized neurons.

Figure 3.11: Illustration of means of theoretical and simulated traces. In fig. (3.11a),
the synaptic weights were chosen to give equal contributions, with wexc =
15 · 10−4µS, and winh = Eexc

Einh
· wexc = 13 · wexc = 195 · 10−4µS. For all

parameter regions, the theoretical values approximate the real mean values
very well.
Figure (3.11b) shows such a comparison for a relatively large inhibitory
weight. With wexc = 5 · 10−4µS, winh = 65 · 10−3µS > 13 · wexc, the
means are very close to the resting- and inhibitory potential. Nevertheless,
the theoretical mean values again show very good agreement in parameter
regions where the neuron is hyperpolarized.

As opposed to this, the theoretical variances of the high conductance approximation,
are expected to show systematic errors. This is a consequence of the problematic factor
Esyn− Veff , which is included in the scaling of the conductance-based theoretical PSPs,
and also in the variance. Any deviation from the average effective potential causes a
difference to the simulated PSP.

The reason for this was discussed in more detail at the end of section 3.1.5. Resulting
deviations between the theoretical and simulated traces arise when the membrane po-
tential is located at the proximity of the inhibitory reversal potential Einh, shown in
figures 3.7b and 3.9.
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3.1 Theoretical approximation of the membrane potential time course

This means that the systematic error of the variance in the conductance-based model is
expected to become larger for dominant inhibitory input. To show this, inhibitory rate
and weight were increased gradually in figures 3.12 and 3.13, respectively. The color plot
shows the resulting relative error

Err =

∣∣∣∣σ2
sim − σ2

th

σ2
sim

∣∣∣∣ . (3.150)

(a) νinh = 800 Hz (b) νinh = 1100 Hz

(c) νinh = 1400 Hz (d) νinh = 1700 Hz

Figure 3.12: These four colorplots show the relative errors (eq. 3.150) between the the-
oretical variances and the ones from the simulated membrane potential, in
dependence on winh and wexc. For each figure, the yellow curves enclose
the area with Err > 0.4. In each plot, it can be seen that regions of high
relative errors can be found for low wexc and high winh. Additionally, the
inhibitory synaptic rate is increased gradually from 3.12a to 3.12d. This
results in a growth of areas of high relative error (brown colored area) for
high winh.
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3 On the membrane potential of LIF models

(a) winh = 195 · 10−4 µS (b) winh = 260 · 10−4 µS

(c) winh = 325 · 10−4 µS (d) winh = 390 · 10−4 µS

Figure 3.13: All colorplots show the relative errors (eq. 3.150) between the theoretical
variances and the ones from the simulated membrane potential, analoguously
to fig. 3.12. Here, the axes show the synaptic rates νinh and νexc. Again,
the relative errors increase for high inhibition, for all four plots. The yellow
curves enclose the area with Err > 0.4. From 3.13a to 3.13d, the inhibition
is further increased by growing winh. As a result, the area of high errors
grows for higher inhibitory weights from 3.13a to 3.13d.

Results for the conductance-based approximation:

• In general, the approximation for the conductance-based membrane potential yields
a good estimation of mean values for all input parameter ranges, as can be seen in
(3.11).

• The theoretical variances are more difficult to predict with the membrane potential
composed of stereotypical PSPs. As inhibitory input is increased (via νinh or
winh), the variances show deviations, as shown in figures 3.12 and 3.13.
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3.2 Distribution of the Membrane Potential

(a) Means of current-based simulation (b) Variances of current-based simulation

Figure 3.14: Both figures show current-based statistical results with equal synaptic cur-
rents iexc = iinh = 25 · 10−3 nA, exhibiting perfect agreement between the
theoretical mean values (3.14a) and variances (3.14b).

For parameter regions which result in depolarized neurons, the variances show
good results. With the increase of inhibitory input, the membrane potential is
driven towards Einh with every inhibitory spike occurence.

Because of this proximity, the real scaling of the PSPs, Einh − Veff (t) differs from
the approximated scaling in the theoretical derivation Einh − Veff .

Results for the current-based model:

• In the theoretical derivation of the current-based PSPs was no approxion used. The
derivation is exact, and therefore the derived results yield ideal agreement (as seen
in fig. 3.14) with the ones from simulation.

3.2 Distribution of the Membrane Potential

The modeling and prediction of the membrane potential has been successful so far for
parameter regions that do not put it close to the inhibitory reversal potential and do
not cause action potentials for high synaptic weights.

As the last step before finally committing to define and predict correlated behavior
of neurons, it is essential to accurately describe the shape of the membrane potential
distribution.

In this section, it will be shown that under certain circumstances, the membrane potential
follows a Gaussian distribution. This will have crucial implications for the predictability
of correlation measures as it will be possible to make use of several elegant properties of
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3 On the membrane potential of LIF models

this particular class of distributions.

In the derivation of the PSP time courses in section 3.1.5, a general PSP kernel was
defined (eq. 3.125), covering both the HC-state and current-based LIF neuron models.
In both cases, the superposition of PSP kernels is assumed to be linear, due to the
fundamental principle of temporal and spatial summation of synaptic inputs, which
was initially discussed on page 13 in the introductory chapter, and the approximations
allowed by the considered input parameter ranges, discussed in section 3.1.7.

In this context, there is no difference between the current-based and conductance-based
approximation, as both membrane potentials are sums of exponential kernels. This
section will focus on the implications of the summation of kernels for the shape of the
distribution of the membrane potentials.

3.2.1 Central Limit Theorem in the Current-based Model

Up to this point there was no information provided about the kind of distribution of the
membrane potential amplitudes, simply because it was not necessary, even after deriving
the variance and mean value of the potential. Certain factors determine the statistic
nature of the membrane potential of a LIF model.

Mathematically, the generation of the PSPs is triggered by point processes. These are
points of interest in the time space - i.e. input spike times (Dayan and Abbott [2001]).
The PSPs are then generated by a kernel which is the PSP time course Vpsp(t) (as
derived in (3.1.5)). The time constants of this kernel are the two time constants τ and
synaptic time constant τsyn.

If the input spike times follow poisson statistics (as proposed at the beginning of this
chapter), it also applies to the PSPs. The filter process is then called a shot noise.

Moreover, if condition

ν >>
1

τsyn
(3.151)

holds, then the resulting membrane potential amplitude distribution can be approxi-
mated as a normal distribution due to the Central Limit Theorem (Papoulis [2002]).

The Central Limit Theorem states that the sum of independent random variables, con-
verges towards a normal distribution with the increase of the sample size.
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3.2 Distribution of the Membrane Potential

The classical Central Limit Theorem states:

Consider an N-sized random sample {X1, . . . , XN} of identically distributed, indepen-
dent random variables, each with the mean µ and variance σ2.
For large N, the sample mean of their sum, SN = X1+···+XN

N , is then a normal distri-
bution N (µ, σ2) with the mean µ and the variance 1

N · σ
2.

In this case, a single random variable is the impact of an individual PSP (t) on the
membrane potential at time T .

PSP (t = T ) = Ssyn(tspk) ·
(
e−

(T−tspk)
τ − e−

(T−tspk)
τsyn

)
(3.152)

with τ = τmem , τeff for current- or conductance-based model respectively. Dependent
on where the PSP was triggered tspk ∈ [0, T ], this impact will vary heavily. For many
of these PSPs, with the sample size being approximately N = Tsim · ν for very high
simulation times T , the sum of all these impacts will converge to a normal distribution
N (µ, σ2) for t→∞.

The implications for the conductance-based model will be addressed in the next section.
If the total input rate is too small, then condition (3.151) is not fulfilled, because a
fast relaxation of the membrane potental to the resting potential results in a surplus
of probability in the regions closer to the resting potential. The membrane potential
distribution becomes asymmetrical (see fig. 3.15).

The skewness of a membrane potential distribution ρ(Vmem) is a quantity which can be
measured as the third statistic moment,

ρVmem = E

(∣∣∣∣Vmem − E(Vmem)

V ar(Vmem)

∣∣∣∣3
)

. (3.153)

An upper boundary for the impact of the skewness of a distribution of a random variable
on the convergence of the sum of such variables towards a Gaussian is provided by the
Berry-Esseen Theorem (Esseen [1942])).

Unfortunately, the Berry-Esseen Theorem allows no particular assumptions for the shape
of the individual distributions of the cumulated random variables and therefore provides
upper bounds which are much larger than the trace errors resulting from low synaptic
firing rates.

With no satisfactory theoretical tool available, estimates for the approximation quality
have been obtained through numerical simulations. As a measure for the derivation of the
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3 On the membrane potential of LIF models

(a) Vmem for νinh = 20 Hz (b) Vmem for νexc = 20 Hz

Figure 3.15: The Current-based LIF neurons were stimulated by low input rates, and
isyn = 0.08 nA current weight and do not resemble normal distributions (red
curves), but have the same mean values. In fig. (3.15a) and (3.15b), the
distribtions are skewed to the region of lower potentials because the neuron
is more often in a relaxating state than in an excited state immediately
after a PSP generation. The small peaks in the center of the distribution
show the maximum PSP height. The figures below the histograms show
the cumulative density functions of the distributions (dotted lines), and the
ones from theoretical Gaussians with the same mean and variance.

theoretical prediction from the experimental results, the L2-norm was used to quantify
the integrated difference of a sample of the theoretical membrane potential Vsample and
a theoretical Gaussian sample Vgauss:

L2(Vsample, Vgauss) =

∞∫
−∞

[Φ(V )sample(x)− Φ(V )gauss(x)]2 dx (3.154)

Figure 3.16 shows a small discrepancy between a theoretical normal distribution and
a sample from the membrane potential trace, offering strong support to the idea of
approximating the mebrane potential as a Gaussian distribution.
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3.2 Distribution of the Membrane Potential

Figure 3.16: The L2-norm of the difference between a normal distribution and a sample
of the simulated membrane potential distribution with the same mean and
variance. The synaptic excitatory rate was varied for a constant τsyn = 5
ms. The L2-norm shows large deviations below input rates < 60 Hz. For
higher rates, the norm remains more or less constant and small, assuring a
good agreement with the normal distribution.

Conclusion:

If the interspike intervals are shorter than the relaxation constant, then the distribution
will be skewed, as shown in fig. (3.15a), and not be similar to a Gaussian at all. If the
input rate is high enough (> 60 Hz), then the Central Limit Theorem applies and ensures
convergence towards a normal distribution of the membrane potential distribution.

Figure 3.17: A current-based LIF neuron with an input rate of νexc = 100 Hz

55



3 On the membrane potential of LIF models

3.2.2 Membrane potential statistics in the conductance based LIF model

For the general case in the conductance based model, a normally distributed membrane
potential is not guaranteed formally, because of a critical difference between the current-
based and the conductance-based model: the dependence of the PSPs on the membrane
potential at the time of input spike arrival.

The Central Limit Theorem, as depicted on p. 53, requires all PSPs to be distributed
with a definite mean µ. Formally, this does not apply for a conductance-based model,
as the shape of a PSP depends on the membrane potential at the arrival time of the
synaptic input.

This means that the random variables, which constitute the impact of the PSPs on
the membrane potential, are dependent on the state of the membrane potential. For
example, if the membrane potential is close to the inhibitory reversal potential Einh,
the impacts of the occuring inhibitory PSPs are very small. They do not contribute
equally to the ones close to the threshold. Therefore, a sum of random variables SN , as
described in the Central Limit Theorem on p. 53, is not defined, as every impact of a
PSP Xi contributes differently.

However, for high input rates and small synaptic weights causing membrane potentials
in [−50 mV,−65 mV], there is an obvious similarity of the structure of the current based
and the conductance based LIF model, due to following reasons:

• In the current based model, τmem = const. ensures identically shaped PSPs.
Because of the possibility to approximate gtot(t) ≈ gtot(t) = gtot (as shown in
3.1.4), the time dependency of the time constant τeff��(t) = Cmem

gtot
can be seen as

eliminated in the conductance based model.
This leads to approximately identically shaped PSPs not only in the current-based
model, but also in the conductance-based model in a high conductance state, which
has been derived in section 3.1.5.

• Although τeff is approximately constant for all PSPs, their size still would change
depending on the distance of the membrane potential to the reversal potentials at
the time of the occuring input spike.

However, in the high conductance state, individual PSPs are relatively small. This
results in the membrane potential staying very close to its mean. In this case, one
can assume that the deviation of the conductance-based membrane potential from
its mean value is small compared to |Erev − Veff (t)|. This, in turn, implies that
the height of the PSPs remains unaffected by the exact value of V (t) at the onset
time of the PSP, as the PSP-shaping term stays approximately constant (equations
(3.125), (3.126) on p. 42).
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3.2 Distribution of the Membrane Potential

These two points taken into account, it can be concluded that the considerations in the
prior section also apply for the conductance-based LIF neuron in the high conductance
state. This means that the membrane potential of a conductance-based LIF-neuron can
also be regarded as a normal distribution for input parameters (see fig. 3.18) similar to
the ones discussed in the previous section (which is also supported by Destexhe et al.
[2003]).
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(a) Vmem for νexc = 120 Hz, wexc = 10−2µS

Figure 3.18: The theoretical and simulated membrane potential trace of a conductance
based LIF model with νexc = 120 Hz, and wexc = 10−2µS, resulting in
E[Vmem] ≈ −58 mV (dashed line). These input rates are already high
enough to justify a normal distribution of the membrane potential ampli-
tudes.

In conclusion, the results of this chapter consist in deriving the solution of the leaky
integrator differential equations for the current- and conductance-based model4, which
yield an exact (current-based) and approximated (conductance-based) PSPs evoked in
the membrane potential by Poisson-distributed synaptic input spikes.

The overall very good quality of these theoretically derived membrane potential traces
and also their statistical characteristics (mean µ and variance σ2) have been examined
in sections 3.1.1, 3.1.5 and 3.1.7. Finally, its was shown that the distribution of the
membrane potential can be approximated as Gaussian even for medium synaptic rates
(νsyn > 60 Hz) for τsyn = 5 ms.

4by applying the approximation for the high conductance state
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3 On the membrane potential of LIF models

The statistical properties of the normal distribution of the membrane potentials N (µ, σ2)
will be highly useful in the next chapter, where correlated neuronal dynamics will be
introduced upon the knowledge gained in this chapter.
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3.2 Distribution of the Membrane Potential
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(a) Vmem for νexc = νinh = 2500 Hz, winh = 5 · 10−3µS, wexc = 10−3µS
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(b) Vmem for νexc = νinh = 2500 Hz, winh = 18 · 10−3µS, wexc = 10−3µS

Figure 3.19: In fig. (3.19a), distributions show very good agreement with the theoretical
data, and the modeled high frequency PSPs show excellent correspondence
to the simulated data.
In (3.19b), both distributions can still be approximated by a normal dis-
tribution, but the amplitude distribution of the simulated trace is slightly
skewed to the right, because the membrane potential trace comes close to
Einh = −70 mV.
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4 Correlation Measure for subthreshold
Membrane Potental Fluctuations

Before one can have a concept of measuring any correlations between two neurons, it is
obligatory to define their source and strength. The general concept of correlated neural
dynamics between a LIF neuron pair will be ascribed to shared synaptic input, which
will be introduced in the following.

The input parameters are the synaptic weights and input rates. The output carrying
the impact of these shared input channels will be the membrane potentials of both LIF
neurons.

Technically, this means that a part of the total number of Poisson-distrbuted input spikes
will have the same arrival times for both neurons. This will be formalized in the following:

The private synapses of each neuron generate independent input. The shared synapses
are connected to both neurons, stimulating them with the exact same spike times.

The spike times for each neuron consists of both parts:

~t1 = ~t1p + ~ts (4.1)
~t2 = ~t2p + ~ts (4.2)

Intuitively, one can assume that the membrane potentials of both neurons exhibit similar
fluctuations when shared spiking occurs. Quantifying and predicting this similarity due
to shared input on the membrane potentials will be the goal of this chapter, if also
the input parameters for each synapse are varied. These parameters were the synaptic
weights and rates wsyn, νsyn.

4.1 Towards a Correlation Measure: the Joint Probability
Distribution:

In the last chapter it was shown that the approximation of the distribution of a mem-
brane potential as a normal distribution is valid for sufficiently high input rates, as
shown in the previous chapter. It also was stated that the classification of the membrane
potential amplitude distribution as a Gaussian is valid for high input rates and small
synaptic weights and would simplify the theoretical treatment of correlations between
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4.1 Towards a Correlation Measure: the Joint Probability Distribution:

Figure 4.1: Two conductance-based LIF neurons, each neuron with a total amount of
excitatory input channels of Sytot = 7. They consist of Sy1p = Sy2p = 2
“private“ input channels for each neuron and Sys = 5 input channels ”shared”
by both neurons. As expected, the membrane potential time course is very
similar, due to the high proportion of shared inputs.

neurons to a great extent.
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4 Correlation Measure for subthreshold Membrane Potental Fluctuations

The joint distribution of two membrane potentials V1(t), V2(t), each of them following
a Gaussian marginal distribution, with respective means µ1, µ2 and variances σ2

1, σ2
2

can be formulated as a bivariate normal distributiona with the correlation coefficient ρ.

p(V1, V2) =
1

2σ1σ2

√
1− ρ2

· exp (−z(V1, V2)) (4.3)

z(V1, V2) =
z2

1(V1)

2 · (1− ρ2)
+

z2
1(V2)

2 · (1− ρ2)
− z1(V1) · z2(V2)

1− ρ2
(4.4)

z1(V1) :=
V1 − µ1

σ1
z2(V2) :=

V2 − µ2

σ2
(4.5)

and ρ =
Cov[V1, V2]

σ1 · σ2
(4.6)

aMore generally speaking, the joint membrane potential distribution of a set of neurons can be modeled
as a multivariate Gaussian, but since pairwise correlations represent the subject of investigation
here, only sets of two variables will be considered.
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Figure 4.2: An example of bivariate normal distributions of neuron membrane potentials
with identical means and variances. The only difference between the two
distributions is the correlation coefficient, which describes uncorrelated (left)
or correlated (right) membrane potentials V1, V2.
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4.1 Towards a Correlation Measure: the Joint Probability Distribution:

A nonzero correlation coefficient ρ is the result of overlapping inputs for both membrane
potentials and should be a function of the input parameters. For completely independent
potentials (ρ→ 0) the distribution would approach the product of two Gaussians:

p(V1, V2) = p(V1) · p(V2)

The next section will be dedicated to deriving the exact dependence of the correlation
coefficient not only on the configuration of shared and private input synapses, but also
on the input parameters wsyn, νsyn.

4.1.1 Predicting the Correlation Coefficient

Pearson’s product-moment correlation coefficient, which appears naturally in the bivari-
ate Gaussian distribution (eq. (4.3)), is defined as

ρV1,V2 =
Cov[V1, V2]

σ1 · σ2
(4.7)

=
E[(V1 − E[V1])(V2 − E[V2])]√

V ar[V1] ·
√
V ar[V2]

(4.8)

(4.9)

From the Cauchy-Schwartz inequality it follows that, for any two stochastic variables x
and y,

Cov[x, y] ≤
√
V ar[x] · V ar[y] . (4.10)

Therefore, ρxy ∈ [−1, 1], with the extremal values 1 and −1 standing for linear depen-
dence of x and y, i.e. perfect correlation and anticorrelation, respectively. For indepen-
dent (and therefore uncorrelated1) variables, ρ = 0.
The important part in equation (4.7) is the covariance Cov[V1, V2] in the numerator. Its
value indicates the way both membrane potentials propagate in time in reference to each
other. The variances of the PSPs in the denominator of this equation serve merely as
normalization constants due to relation 4.10.

1The reverse does not hold!
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4 Correlation Measure for subthreshold Membrane Potental Fluctuations

(a) ρV1,V2 = 1

(b) ρV1,V2 = −1

Figure 4.3: Two membrane potentials with identical input channels and weights illus-
trate the two bounds of ρV1,V2 . The red line shows the resting potential. In
Fig. 4.3b, both neurons receive the input as excitatory, and both membranes
are depolarized simultaneously. This perfect synchrony results in ρV1,V2 = 1.
In Fig. 4.3b, the upper neuron receives excitatory post synaptic potentials,
the lower neuron receives inhibitory post synaptic potentials at the same
times, triggering identically shaped PSPs. This guarantees completely anti-
synchronous behavior, yielding ρV1,V2 = −1.

The amount and impact of common input spikes, which directly relates to the number,
frequency and synaptic weights of shared and private input channels, determines the
correlation coefficient of two neuron membrane potentials. Therefore, the correlation
coefficient carries the dependencies
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4.1 Towards a Correlation Measure: the Joint Probability Distribution:

ρV1,V2 = ρV1,V2 (~w, ~ν, s, p1, p2) (4.11)

with w =


w1

·
·
·
wn

 and ν =


ν1

·
·
·
νn

 (4.12)

denoting the weights and frequencies of the n input channels and s and p1,2 denoting
the subsets of shared and private channels, respectively.

The mean and variance in (4.8) of the corresponding random variables have already been
derived in 3.1.5 and 3.1.6, making it possible to derive an analytical expression ρV1,V2 .

Let V1i be the sum of PSPs triggered by input spikes from a certain synapse i (temporal
summation, p. 13) in the membrane potential of neuron 1. The total covariance of the
membrane potentials of both neurons and all channels, is then

Cov[V1, V2] = Cov

∑
i

V1i,
∑
j

V2j

 (4.13)

Now, one can separate the sums of all PSPs
∑
i
V1i,

∑
j
V2j into the ones that have been

triggered by shared channels and private, independent channels (spatial summation, p.
13).

∑
i

V1i =
∑
1s

V1s +
∑
1p

V1p (4.14)

∑
j

V2j =
∑
2s

V2s +
∑
2p

V2p . (4.15)

Note that although the spiking times are identical for all input from shared channels, the
impact on the membrane potential through the PSPs can be different in both neurons
due to different synaptic weights. This is the reason why V1s and V2s can differ.

The covariance now has the form

Cov

∑
1s

V1s +
∑
1p

V1p

 ,

∑
2s

V2s +
∑
2p

V2p

 . (4.16)
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4 Correlation Measure for subthreshold Membrane Potental Fluctuations

This can be simplified by exploiting the bilinearity of the covariance,

Cov

∑
i

Xi,
∑
j

Yj

 =
∑
i

∑
j

Cov[Xi, Yi] . (4.17)

Applying this relation to (4.16) yields

Cov[V1, V2] =
∑

i,j∈{s,p}

Cov [V1i, V2j ] (4.18)

The last equation couples the contributions from all possible pairs of input channels.
This can be simplified drastically by omitting the covariances that are zero.

This happens for all covariance terms that have private channels as arguments because
of their independence from all other channels, shared and private alike. The only contri-
butions to the total covariance came from the products of the terms belonging to shared
channels s. Therefore, the covariance can be written as

Cov[V1, V2] =
∑
s

Cov [V1s, V2s] (4.19)

To compute the total covariance, it is necessary to evaluate only the expression for the
covariance of the contributions to the membrane potential from single, shared synapses.

This calculation is similar to the ones that were performed in the previous chapter, in
section 3.1.6 to yield the variance of kernels triggered by Poisson spike sources.

The covariance can be written as

Cov[V1, V2] = E[V1 · V2]− E[V1] · E[V2] . (4.20)

E[Vi] has already been derived in section 3.1.3, eq. (3.77), whereas for E[V1 · V2] the
same formalism can be applied as in eq. (3.78), but with this time with the kernel

κ2(t) = S1s · S2s ·
(
e−

t
τ − e−

t
τsyn

)2

(4.21)

cond: curr:

Ss =
ws · (Es − Veff ) · τg

gtot · τeff
Ssyn =

is · τc
gL · τmem

(4.22)
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with τ , τg, etc. as defined on p. 42.
The total covariance then becomes

Cov[V1, V2] =
∑
s

νs · S1s · S2s ·
∞∫

0

(
e−

t
τ − e−

t
τsyn

)2

dt (4.23)

This class of integrals has already been solved in the previous chapter in section 3.1.6.
The result can be identified immediately:

Cov[V1, V2] =
∑
s

νs · S1s · S2s ·

[
τ

2
+
τsyn

2
− 2 · τ · τsyn

τ + τsyn

]
(4.24)

The variances of the membrane potentials can also be computed as in section 3.1.6, eq.
3.137, including the private, as well as the shared contributions:

V ar[V1] =

∑
s

νs · S2
1s +

∑
1p

ν1p · S1p

 ·(τ
2

+
τsyn

2
− 2 · τ · τsyn

τ + τsyn

)
(4.25)

V ar[V2] =

∑
s

νs · S2
2s +

∑
2p

ν2p · S2p

 ·(τ
2

+
τsyn

2
− 2 · τ · τsyn

τ + τsyn

)
(4.26)

Plugging Cov[V1, V2], V ar[V ], into eq. (4.7) leads to the result of the correlation coeffi-
cient:

ρV1,V2 =

∑
s
νs · S1s · S2s√√√√(∑

s
νs · S2

1s +
∑
2p
ν1p · S2

1p

)
·

(∑
s
νs · S2

2s +
∑
2p
ν2p · S2

2p

) (4.27)

This expression can still be simplified explicitly for each LIF neuron model.

For the conductance-based LIF model, equation (4.27) results in

ρV1,V2 =

∑
s
νs · w1s · w2s · (E1s − Veff1) · (E2s − Veff2)√√√√ ∏

i∈{1,2}

[∑
s
νs · w2

is(Eis − Veffi)2 +
∑
ip
νip · w2

ip(Eip − Veffi)2

] (4.28)

The result for the current-based case is then
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4 Correlation Measure for subthreshold Membrane Potental Fluctuations

ρV1,V2 =

∑
s
νs · i1s · i2s√√√√ ∏

j∈{1,2}

[∑
s
νs · i2js +

∑
jp
νjp · i2jp

] (4.29)

These results can be summarized at this point:
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Correlation coefficient

The correlation coefficient ρV1,V2 of a LIF neuron pair with s shared and p private
synapses, equal synaptic currents (current-based) isyn or (conductance-based) weights
wsyn firing at input rates νsyns and νsynp , evoking synaptic PSPs Ssyn a is predicted as:

conductance-based LIF model:

ρV1,V2 =

∑
s
νs · w1s · w2s · (E1s − Veff1) · (E2s − Veff2)√√√√ ∏

i∈{1,2}

[∑
s
νs · w2

is(Eis − Veffi)2 +
∑
ip
νip · w2

ip(Eip − Veffi)2

] (4.30)

current-based LIF model:

ρV1,V2 =

∑
s
νs · i1s · i2s√√√√ ∏

j∈{1,2}

[∑
s
νs · i2js +

∑
jp
νjp · i2jp

] (4.31)

• The input correlation is carried in the numerator, with the products of the
weights/currents determining the correlation strenghts. Positive contributions to
the correlation coefficient arise if products of excitatory-excitatory weights/cur-
rents exist. This increases the synchronous fluctuation of both membrane po-
tentials. Antisynchronuous fluctuations, and therefore negative contributors in
the correlation coefficient, arise for excitatory-inhibitory coupling. Lack of shared
channels automatically results in a correlation coefficient of zero.

• If synchronuous and antisynchronuous fluctuations exist, the correlation coeffi-
cient can not directly measure the number of private channels. If, for example,
the excitatory-excitatory coupling equals the excitatory-inhibitory coupling, the
numerators in 4.30 and 4.31 become zero, yielding the same result as if there was
no shared input whatsoever.

aThe reversal potentials Esyn and average effective potential Veff for the conductance-based model
are as given on p. 42

From this point on, the correlation coefficient from eq. 4.30 and 4.31, respectively, will
be the measure of correlations for subthreshold membrane potential fluctuations.
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4 Correlation Measure for subthreshold Membrane Potental Fluctuations

In the next section, it will be shown that the agreement is very good between the the-
oretical correlation coefficient, as derived above, and the correlation coefficient obtained
directly from the simulated voltage traces.

4.2 The Correlation Coefficient: Prediction and Simulation

The quality of the predicted correlation coefficient can be tested by varying all possible
input parameters, as well as the number of shared and private input channels.

In this section, simplifications will be made to test the quality of the theoretical cor-
relation coefficient for regions of high excitation and high inhibition. The latter was
identified as a problematic parameter space for the computation of the statistical values,
as described in section 3.1.7.

For the analysis of the theoretical correlation coefficient, its values will be compared to
the correlation coefficient resulting from the simulation if the ratio

shared channels
private channels

(4.32)

is changed. To simplify the comparison between the theoretical results and those calcu-
lated from the simulation, the following parameter space will be restricted as follows:

• Input rates from all channels will be equal, νs = ν1p = ν2p. Therefore, the change
of shared or private input will be regulated by changing the amount of shared or
private channels.

• The synaptic weights/currents will be chosen equal for each channel, w1s = w2s =
w1p = w2p, also only inhibitory-inhibitory and excitatory-excitatory coupling are
activated. This restricts the theoretical correlation coefficient to ρ ∈ [0, 1], but not
the analysis for different parameter ranges, since it is possible to choose the total
excitatory and inhibitory input rates.

• The total numbers of inhibitory and excitatory input channels will stay fixed at
Ninh = Nexc = Nchan = 100. Therefore, an increase in shared channels implies a
decrease of private channels. Additionally, both neurons will have the same total
number of private channels, P1 = P2 = Pinh = Pexc =: P . As a consequence, the
inhibitory input rates will always be equal to the excitatory rates.

Due to these simplifications of equations 4.30 and 4.31, the theoretical correlation coef-
ficient becomes completely independent from the input rates and weights/currents, the
only dependence being the numbers of total shared and private channels S and P .

ρV1,V2 =
S

S + P
=

S

Nchan
(4.33)
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Figure 4.4: The figures show distributions of bivariate normal membrane potentials in a
subthreshold regime. The contours on these color plots indicate the theoret-
ical distribution, which show very good agreement with the simulation data.
As the ratio shared channels

private channels increases, the shape of the distribution, as well as
the contours become more elliptical, due to the increase of the correlation co-
efficient. Fig. 4.4g shows the linear increase of the correlation coefficient with
an increasing number of shared channels for all configurations. The theoret-
ical correlation coefficient, as defined in eq. (4.33), is in compliance with the
simulation results. All simulations were conducted with 50 biological seconds
simulation time.
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4 Correlation Measure for subthreshold Membrane Potental Fluctuations

Figure 4.5: The figures show bivariate membrane potential distributions for an increasing
ratio of shared channels

private channels , with the contours indicating the theoretical bivariate
Gaussian. The simulation duration is 5 biological seconds, only a tenth of
the simulations in fig. 4.4. To that effect, the sample distributions exhibit
significant distortions. The correlation coefficients are shown in 4.5g and yield
a good approximation to the theoretical values, albeit with larger standard
deviations than in 4.4g.
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Im this form, ρV1,V2 will stay constant for a particular ratio S
P , allowing to test whether

this applies to all parameter ranges of this measure, or is affected by the effects of the
proximity of Einh in the conductance-based LIF model.

For the current-based LIF model the agreement between the theoretical correlation
coefficient and the one from the simulated case is expected to be perfect in the limit of
Tsim →∞, due to the exact derivation of its statistical values in the previous chapter.

Figures 4.4 and 4.2 below show joint distributions of conductance-based LIF membrane
potential traces. The overlayed contours belong to the indicated bivariate normal distri-
bution with the theoretical statistical values.

The plots in fig. 4.4 show simulations with a duration of 50 biological seconds, whereas
the figures are a result from simulations of 5 biological seconds.
The simulation time required for these plots has to be increased considerably as compared
to the one-dimensional analysis that has been conducted in the last chapter, because of
the much larger relevant configuration space of the bivariate normal distribution.

Figure 4.4 shows bivariate distributions of the two conductance-based LIF membrane
potentials with an increasing number of shared channels, as discussed above. The
theoretical distribution is indicated by the contours and overlaps excellently with the
illustrated density of the data points. The increase of the correlation coefficient can
also be seen in the changing shape of the bivariate distribution, as the initially spherical
shape becomes more elliptic with an increase of overlapping input channels.

To analyze the change of the correlation coefficient more extensively, simulations over
a wide range of input parameters have been performed, with an expected correlation
coefficient as given in 4.33.

The chosen parameter ranges are identical with the ones from the previous chapter, as
defined in section 3.1.7.

Conclusively, it can be stated that the prediction of the correlation coefficient for in-
creasing shared channels shows very good results, as the figures in 4.2 indicate. The
correlated subthreshold fluctuations of a LIF neuron pair can therefore be quantified by
the correlation coefficient. This also can be done for a wide range of parameters, as
fig. 4.6 indicate. The appearing deviations between the simulation correlation coefficient
and the one derived theoretically, are merely statistical errors. Their influence will be
discussed in the following.

4.2.1 Estimating the Statistical Errors of the Correlation Coefficient

A particularly important point concerns the duration of the simulations. The quality
of the approximation towards the theoretical correlation coefficient is influenced by the
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(a) Conductance-based theoretical prediction of ρ

ν
exc  [Hz] 800

1600
2400

w ex
c
 [nS

]

15
30

45

ρ
 S
im
.

0.0

0.3

0.6

0.9

ν
exc  [Hz] 800

1600
2400

w ex
c
 [nS

]

15
30

45

ρ
 S
im
.

0.0

0.3

0.6

0.9

0
100

10
100

20
100

45
100

65
100

80
100

99
100

Shared 
   channels 

(b) Conductance-based simulation results of ρ
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(c) Current-based theoretical prediction of ρ
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(d) Current-based simulation results of ρ

Figure 4.6: Figures 4.6a and 4.6b show the correlation coefficients of the simulation re-
sults for different parameters in the conductance-based model and its predic-
tion. The theoretical hypersurfaces are not dependent on synaptic weights
and input rates (see eq. 4.33). It can be observed that the fluctuations of
the correlation coefficient increase in the hypersurfaces for smaller number of
shared channels. This is also true for the current-based simulation, as shown
in fig. 4.6d, where the same trend for a decreasing number of shared channels
can be observed. (See text for further details)

simulation time. The results from 4.2, for example, are obtained for the exact same
configurations of shared and private channels with the same input parameters as in fig.
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4.4, but with a simulation time of 5 biological seconds. Consequently, the distribution
of the gathered data from this simulation represents a highly distorted version of the
expected bivariate Gaussian.

The difference in quality between fig. 4.4 and 4.2 can be ascribed to the simulation time
Tsim. The joint distribution of the membrane potentials converges slower (in terms of
required samples, which is equal to Tsim/∆t) to the bivariate distribution than a one-
dimensional distribution. Intuitively, this is due to the data points being required to
cover an interval, in the univariate use, and and an area, in the bivariate use.
For a fixed Tsim, the lower the number of shared channels is, the stronger the deviations
from the target bivariate Gaussian become. This phenomenon can be explained by the
argument of the exponential in equation 4.4, which can be interpreted as the equation
of an elliptic geometrical shape in the two-dimensional Euclidean space. The following
calculations will show that an increasing correlation coefficient decreases the area of a
given confidence interval, leading to less distortion in the sample distribution for a given
number of data points.

Considering a fixed bivariate normal distribution p(V1, V2), as given in 4.3,

p(V1, V2) · n = e−z(V1,V2) (4.34)

with n = 2 · πσ1σ2

√
1− ρ2 , (4.35)

the natural logarithm can be applied on both sides to yield

ln

(
1

p(V1, V2) · n

)
= z(V1, V2) (4.36)

4.4
=

z2
1(V1)

2 · (1− ρ2)
+

z2
1(V2)

2 · (1− ρ2)
− z1(V1) · z2(V2)

1− ρ2
. (4.37)

So for some value p̃ � 1 (such that samples with a smaller probability almost never
occur), it holds that

R =

(
z2

1(V1)

2 · (1− ρ2)
+

z2
1(V2)

2 · (1− ρ2)
− z1(V1) · z2(V2)

1− ρ2

)
, (4.38)

with

R =: A · z2
1(V1) +B · z2

2(V2) + C · z1(V1) · z2(V2) (4.39)

This is the canonical equation for an ellipse with R defining its size (constant!), and ρ
the shape. If ρ > 0, the main axis of the ellipse lies along the line z1(V1) = z2(V2). For
ρ < 0, the main axis lies along z1(V1) = −z2(V2) .
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4 Correlation Measure for subthreshold Membrane Potental Fluctuations

Because a multivariate Gaussian is a quasiconcave function, the set of arguments for
which p(~x) ≥ p̃, ∀p̃ ∈ R is convex. Since the boundary of the set {(V1, V2)|p(V1, V2) ≥ p̃
is the ellipse from eq. 4.39, the complete set contains all the interval points of the ellipse
and therefore has a cardinality equal to Ar ·Da, with Ar being the surface of the ellipse
and Dn the configuration space density.

⇒ N := card ({(V1, V2)|p(V1, V2) ≥ p̃}) =
2 · π ·R ·Dn√
4 ·A ·B −B2

. (4.40)

Inserting the substitutes for A, B, C in this equation results in

N = 2 · π · σ1 · σ2 · z(V1, V2) ·
√

1− ρ2 ·R ·Dn (4.41)

It now becomes clear that because the area in configuration space to be sampled from
decreases with increasing |ρ|, for a fixed Tsim, the distribution of the sampled set approx-
imates the target distribution better as the number of shared channels increases.

(a) Influence of the increase in simulation time Tsim on
σρ

Figure 4.7: The figure shows the plotted standard variation of the correlation coefficient
for increasing simulation times Tsim (and therefore, the sample size)), for
S = 0. The deviations show a significant decrease.

76



5 Investigating Correlations in the
Spiking Activity of Neurons

In the previous chapter, synaptic input correlations were introduced and an analytic ex-
pression for their effect on the correlation coefficient of subthreshold membrane potential
traces, was derived.

In this chapter, input correlations will again originate from the shared input channels,
but neuronal dynamics will not be restricted to subthreshold fluctuations, like in the
previous chapter. Instead, output spiking will be subject of analysis for a correlated
neuron pair.

Under various circumstances, being able to predict correlated spiking can be very useful.
In many cases, correlated input heavily distorts network dynamics, such as in attractor
configurations (Lundqvist et al. [2006]) or in networks exhibiting asynchronous irregular
behaviors (Kremkow et al. [2010]). Especially in the context of neuromorphic hardware,
where neurons might be forced to share inputs due to bandwidth limitations, correla-
tion prediction becomes an indispensable tool for minimizing this usually undesired effect.

The simplest approach to describing the spiking behavior of a neuron is to define a
binary variable encoding the “state” of a neuron.

In this thesis, ON-states will be states which coincide with spiking activity of a post-
synaptic neuron. An ON-state is initialized by an output spike and temporally restricted
by a fixed time bin tON . This means that the membrane potential must at least reach
the spiking threshold Ethresh = −50 mV to activate such a state. In case of renewed spik-
ing within an ON-state, the state is instantly refreshed for another period tON . When
multiple events of this kind occur, the output spike sequence is often referred to as burst
spikes. Spikes occuring in an interspike interval longer than tON , will be called single
spikes.
Reasonable values of the newly introduced parameter tON are yet to be found. They are
assumed to be somehow related to the input parameters

{νexc, νinh, wexc, winh} . (5.1)

In the past chapter, the correlation coefficient has proven to be a reliable measure to
predict neuronal membrane fluctuations in dependence of these input parameters. Now,
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Figure 5.1: ON-states caused by a strong input.

instead of applying it to voltage traces, it can be applied to the newly defined state
variable

s(t) =

{
1 if ∃ tspike ∈ (t− tON , t]
0 else

(5.2)

Figure 5.2: ON/OFF-states of a neuron pair with shared inputs. The green lines repre-
sent the output spikes of the two neurons.

As the interest lies in considering a neuron pair with each neuron being in a state as
expressed in eq. (5.2), the configuration space of two neurons consists of 4 possible
states:
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5.1 A New Correlation Measure: Symmetric Uncertainty

[s1, s2] ∈ {[1, 1], [0, 0], [1, 0], [0, 1]} =: Ω (5.3)

For the state variables s1 and s2 of the two neurons in question, the correlation coefficient
can be written as

ρs1,s2 =
Cov[s1, s2]√

V ar[s1] · V ar[s2]
=

E[s1, s2]− E[s1] · E[s2]√
[E[s2

1]− E2[s1]] · [E[s2
2]− E2[s2]]

(5.4)

=

∑
(s1,s2)∈Ω

p(s1, s2) · s1 · s2 −
∑

s1∈{0,1}
p(s1)s1

∑
s2∈{0,1}

p(s2)s2√√√√√ ∏
n∈{1,2}

 ∑
sn∈{0,1}

p(sn)s2
n −

( ∑
sn∈{0,1}

p(sn)sn

)2


(5.5)

In every sum, all terms containing either s1 = 0 of s2 = 0 disappear, leaving only

ρs1s2 =
p11 − p1

1 · p2
1√(

p1
1 − (p2

1)2
) (
p2

1 − (p2
1)2
) (5.6)

with pij = p(s1 = i, s2 = j) (5.7)

and pji = p(sj = i) (5.8)

These used notations will be formally introduced in the next section, but are required
here to illustrate the instability of ρ at low spike rates.

For either very strong (p11 → 1, pji → 1) or very weak (p11 → 0, pji → 0) input, both
numerator and denominator in the fraction from eq. (5.6) approach zero, making only
the slightest error in their calculation or measurement have an arbitrarily large impact
on the value of ρ. Therefore, for an exhaustive description of state correlations under a
broad spectrum of input regimes, a more stable measure is required.

Essentially, this means that the measure should encode the difference between the true
joint probability distribution p(s1, s2) and the (hypothetical) situation where the states
are independent: p1(s1, s2) = p(s1) · p(s2).

5.1 A New Correlation Measure: Symmetric Uncertainty1

As implied in the last section, there are at least two conditions which have to be fulfilled
by the new measure. It must be capable of detecting (anti-)synchrony and has to operate

1This measure has already been proposed in 2009 by M. Petrovici and J. Bill, albeit for a very particular
case of input regimes
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on the state function s(t) described in (5.3).

The probability p(si = 1) of finding neuron i in an ON-state in a simulation duration
Tsim, and only one occuring spike would yield a probability of

p(si = 1) =
tON
Tsim

(5.9)

A particular measure which takes this into account, is the Kullback-Leibler divergence
(see Dayan and Abbott [2001]). Given a random variable X with the distributions p(X),
and q(X), the Kullback-Leibler divergence is defined as

D(p(X)||q(X)) =
∑
x

q(x) · log

(
q(x)

p(x)

)
. (5.10)

D(p(S1, S2)|p(S1) · p(S2)) =
∑

s1∈{0,1}

∑
s2∈{0,1}

p(s1, s2) · log

(
p(s1, s2)

p(s1) · p(s2)

)
(5.11)

This equation is intimately connected to the concept of entropy. In the context of In-
formation theory, this quantity can be described as a measure of uncertainty of random
variable A, with a ∈ {a1, a2, . . . } being the observables of this variable.

H(A) = −
∑
a

p(a) · log p(a) , (5.12)

For the configuration space chosen above, there are two extreme cases which can be used
to illustrate this quantity. The first is the case where the probability of finding neuron
N1 in the ON-state is very low,

p(s1 = 1) ≈ 0⇒ −p(s1 = 1) · log p(s1 = 1)
rule of L’Hôspital−−−−−−−−−−−→ 0 (5.13)

This means that if a state occurs too rarely, it will not contribute much to the entropy.
In the other case

p(s1 = 1) ≈ 1⇒ log p(s1 = 1) = 0 (5.14)

the outcome is not “uncertain” at all, as it always shows that the neuron is in its ON-state.

The maximum entropy for binarily coded information is given if p(s1 = 1) = p(s1 =
0) = 1

2 , where both states appear often enough to contribute but there is still a high
uncertainty to find the neuron in a certain state.
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These considerations will be important in understanding the new measure of synchrony,
after modifying equation (5.11) by using the Bayes’ theorem

p(A|B) =
p(B|A)

p(A) · p(B)
. (5.15)

This yields

D(p(S1, S2)||p(S1) · p(S2)) =
∑

s1,s2∈Ω

p(s1, s2) · log

(
p(s1|s2)

p(s1)

)
(5.16)

=
∑

s1,s2∈Ω

p(s1, s2) · p(s2) · p(s1, s2) · log p(s1|s2) (5.17)

−
∑

s1,s2∈Ω

p(s2) · p(s1|s2) log p(s1) (5.18)

=
∑

s2∈{0,1}

p(s2)
∑

s1∈{0,1}

p(s1|s2) · log p(s1|s2)

︸ ︷︷ ︸
−H(S1|S2)

(5.19)

−
∑

s1∈{0,1}

p(s1) · log p(s1)

︸ ︷︷ ︸
H(S1)

The RHS term is simply the entropy of the neuron state S1. The LHS term is a negative
conditional entropy H(S1|S2), which will be explained now.

−H(S1|s2) =
∑

s1∈{0,1}

p(s1|s2) · log p(s1|s2) (5.20)

determines the negative entropy if S2 remains in a certain state while summing over the
contributions of all states of S1. This negative entropy is a result of the total uncertainty
of S1 after observing a predetermined state s2. Summing over all possible states of S2

yields the total conditional entropy

H(S1|S2) =
∑
s2

p(s2) ·H(S1|s2) (5.21)

= −
∑
s2

p(s2)
∑
s1

p(s1|s2) · log p(s1|s2) . (5.22)

The conditional entropy H(S1|S2) shows what remains of the entropy of S1 after S2 is
observed. This is also called noise entropy, because what remains of S1 that is not due to
S2 is presumably due to noise. Subtracting this from H(S1) one remains with everything
in S1 that is due to S2, and vice-versa.
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5 Investigating Correlations in the Spiking Activity of Neurons

D(p(S1, S2)||p(S1) · p(S2)) = H(S1)−H(S1|S2) =: I(S1, S2) (5.23)

This quantity is known as the Mutual Information I(S1, S2), and satisfies all conditions
of a metric, which will not be shown here2.

For example, if observing S2 has no influence on the entropy of S1, then H(S1|S2) =
H(S1)⇒ I(S1, S2) = 0
Obtaining the mutual information is a crucial step towards a measure that can detect
(anti)synchronous firing states, as it considers (anti)synchronous states by also evaluating
probability states where one neuron spikes and the other is tranquil: p(s1 = 0, s2 = 1),
p(s1 = 1, s2 = 0)

A remaining concern of this measure is its overall dependence on the spike rates of
the individual neurons, which obviously change when input parameters νsyn, wsyn are
altered. To have a normalized measure of the dependency of the ON/OFF-states of the
neuron pair, different methods can be considered. One possibility, which does not affect
symmetry, lies in the division by the sum of the individual entropies, because

I(N1, N2) ≤ H(N1), H(N2) , (5.24)

This finally yields the Symmetric Uncertainty.

SU(S1, S2) =
2 · I(S1, S2)

H(S1) +H(S2)
(5.25)

SU(S1, S2) ∈ [0, 1] (5.26)

This denomination stems fromWitten and Frank [2005] and can be somewhat misleading,
since one would expect “uncertainty“ to decrease when two random variables become
more correlated. However, the opposite is the case, given that the SU conserves the
dependencies of the mutual information, being merely a normalization thereof.

2 For further information, see (Kraskov et al. [2003])
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Mutual Information

Given the random variables Si as the states of a neuron defined by si(t) (see eq. 5.2) and
the probability of finding the neuron in such a state p(si), the difference between the
entropy of one state H(S1) and the conditional entropy H(S1|S2) is called the mutual
information I(S1, S2):

I(S1, S2) = H(S1)−H(S1|S2) (5.27)

It also can be interpreted as the Kullback − Leibler distance between the joint distri-
bution p(s1, s2) and the product of the two marginal distributions p(s1) · p(s2)

MI =
∑

s1∈{0,1}

∑
s2∈{0,1}

p(s1, s2) · log

(
p(s1, s2)

p(s1) · p(s2)

)
(5.28)

The MI has all the properties of a metric.

Symmetric Uncertainty

To be able to quantify the statistical dependency of the distributions p(s1), p(s2) over a
wide range of input parameters, this can be normalized by the entropies H(Si) to yield
the Symmetric Uncertainty SU(S1, S2), which represents the desired new measure of
synchrony:

SU(S1, S2) =
2 · I(S1, S2)

H(S1) +H(S2)
(5.29)

SU(S1, S2) ∈ [0, 1] (5.30)

An example of the Symmetric Uncertainty measure on a neuron pair are given in figure
5.4
To be able to predict input correlations by using the SU , it is necessary to somehow
estimate the duration of the ON-states.

A possible approach can be made by using the theoretical membrane potential statistics
that have been derived in chapter 3, yielding very good approximations to the real
membrane potential of the neurons.

For spiking neurons, the statistical values of the theoretical membrane potentials are an
equally good approximation of the free membrane potential, which is the exact mem-
brane potential for subthreshold regimes, but not restricted by a spiking threshold and
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5 Investigating Correlations in the Spiking Activity of Neurons

Figure 5.3: ON-states of a neuron pair with 5 shared inputs, and 2 private ones for each
neuron.

therefore does not generate output spikes (which would distort the statistical values). In
other words, the free membrane potential behaves like the membrane potential for an
infinite spiking threshold Vthresh =∞.
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Figure 5.4: Example of the free membrane potential (dashed curve), which behaves like
the real membrane potential (solid curve) in the subthreshold regime.
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5.1 A New Correlation Measure: Symmetric Uncertainty

The theoretically derived membrane potential with stereotypical PSPs will henceforth be
named the Load function L(t), if its role is to approximate the free membrane potential
of spiking neurons.

Additionally, it was found out that the amplitude of the Load-function can be approx-
imated by a Gaussian, if the input rates are high enough (section 3.2). This simplifies
the theoretical computations of such statistical ON/OFF-states, because the probability
density of normal distributions can be treated analytically.

This allows to analytically calculate predictions for ON/OFF-states of neurons without
extensive numerical computations:

If the Load function L(t) is normally distributed with the mean µL and variance σ2
L,

the probability of a neuron being in an ON-state is

p(si = 1) =

∞∫
Vthr

N (µL, σ
2
L) dx , (5.31)

with N (µL, σ
2
L) being the probability density of a Gaussian.

The corresponding OFF-state is evaluated in the same fashion,

p(si = 0) =

Vthr∫
−∞

N (µL, σ
2
L) dx (5.32)

The same applies to the joint probabilities of spiking states of neurons. To do this, the
bivariate gaussian distribution N (µL1, σ

2
L1, µL2, σ

2
L2) is used, which has been discussed

in chapter 4:
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5 Investigating Correlations in the Spiking Activity of Neurons

If the Load functions L1(t), L2(t) of a LIF neuron pair with the means µL1 , µL2 and
variances σ2

L1
, σ2

L2
are normally distributed, the probability of both neurons being in

an ON-state is

p11 := p(s1 = 1, s2 = 1) =

∞∫
Vthr

∞∫
Vthr

N (µL1 , σ
2
L1
, µL2 , σ

2
L2

) d2x . (5.33)

The other three states measuring the overlaps of ON/OFF-states of a neuron pair can
be expressed analogously:

p10 := p(s1 = 1, s2 = 0) =

∞∫
Vthr

Vthr∫
−∞

N (µL1 , σ
2
L1
, µL2 , σ

2
L2

) d2x (5.34)

p01 := p(s1 = 0, s2 = 1) =

Vthr∫
−∞

∞∫
Vthr

N (µL1 , σ
2
L1
, µL2 , σ

2
L2

) d2x (5.35)

p00 := p(s1 = 0, s2 = 0) =

Vthr∫
−∞

Vthr∫
−∞

N (µL1 , σ
2
L1
, µL2 , σ

2
L2

) d2x (5.36)

p11 + p00 + p10 + p01 = 1 (5.37)

The Symmetric Uncertainty will then be evaluated by plugging these probabilities to
equation (5.29)

The crucial idea behind this definition of the probability of ON-states is the ability
to predict them theoretically, utilizing the knowledge which has been obtained in the
preceding chapters about the theoretical membrane potential (which in this case is the
Load-function).

This would imply that it is possible to predict the Symmetric Uncertainty without
time-consuming simulations. The next step is now to analyze where such a prediction of
correlation is possible and to determine its limitations. To be able to do this, one has to
compare the Symmetric Uncertainty resulting from the theoretical ON/OFF-states to
ON/OFF-states of a spiking neuron pair of a simulation.

The role of the introduced parameter tON is a critical component to this, as it will be
used to compare the theoretical SU with the one retrieved from the simulation.
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5.2 ON-States of Simulated Spiking Neuron Pairs

Theor. ON-state Sim. ON-state
Load above threshold ←→ Neuron in spiking state with minimum length tON

↪→ SUL SUtON ←↩

5.2 ON-States of Simulated Spiking Neuron Pairs

Before the analysis of the theoretical prediction of such ON-states can begin, the still
undefined minimal ON-state tON needs to be defined, as it is vital to know the impact
of different tON on the prediction.

Not only the length of tON , but also the centering of the ON-state relative to the oc-
curence of the action potential has to be addressed. The rise of the membrane potential
due to an excitatory PSP compared to its fall resulting from the relaxation is short
compared to the time the Load function is above threshold. In fact, the higher the
conductance of the membrane, the faster the membrane reacts to any synaptic input.
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(a) ON-state centering the output spike
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(b) ON-state begins 0.1 ms after output spike

Figure 5.5: Input spike with high synaptic weight w = 0.04 µS, triggering a single output
spike. The blue ON-state defined by the crossing of the threshold at −50 mV
starts almost immediately before the generation of the action potential. Left
figure shows the green ON-state centered around the output spike, which
results in a bad overlap. In the right picture, the ON-state in the simulation
is activated 0.1 ms after the output is generated - this yields a better overlap
and thereby approximation of the ON-states.

In case of burst spiking without inhibition, the extraordinary height (wexc > 10−2 µS) of
the synaptic weights makes it possible to trigger even more than one output spike before
the free membrane potential relaxes below the spiking threshold at −50 mV. The rise
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5 Investigating Correlations in the Spiking Activity of Neurons

of the membrane potential towards the spiking threshold is very fast (≈ 1 ms), which
means that the ON-state triggered by the output realistically begins when the Load
function is at the threshold, as shown in fig. 5.5. Therefore, it is a valid approximation
to start the ON-state at the time of the output spike occurence.

5.2.1 Fixing the ON-State Length for Simulated Neuron Pairs

Determining the length of tON is not as simple. First of all, it is necessary to check
if the structures of the joint probabilities p10 p11, p00, p10 show dependencies on this
parameter. In order to find this out, simulations for a conductance-based LIF neuron
pair were performed, iterating over reasonable values of tON , and varying input rates and
weights νexc, wexc, the stimulation being equal for both neurons.

Parameter space:

tON ∈ {10 ms, 15 ms, 20 ms, 25 ms}
wexc ∈ [15 · 10−3µS, 50 · 10−3µS ]

νexc ∈ [100 Hz, 300 Hz]

These input parameter regions include neuron states where frequent burst spiking occurs
(high wexc, low νexc), and also regions where membrane potentials fluctuate in the
proximity of the threshold, triggering output spikes in lower frequency (low wexc, high
νexc).

The results of these iterations for the probabilities p11 and p00 can be seen in fig. 5.6,
and the ones for p10 in fig. 5.8:

• While the values of the p11- and p00-hypersurfaces in the parameter space depend
on tON , their monotonicity properties are the same. The differences between
the planes for different tON are merely monotonic transformations. These are of
course expected, because the larger tON becomes, the larger p11 becomes, and
inversely p00. However, it is apparent that there are no fundamental differences of
p11-hypersurfaces with differing tON .

Indeed, the color plots of the theoretical structures of such color plots in 5.7 show
a very similar pattern and impact of νexc and wexc on the probabilities.

• The p10-hypersurfaces3, in fig. 5.8 differ for increasing tON . Again, the impact
of νexc and wexc on the p10-hypersurface is symmetrical, which can be seen as a

3The probability hypersurfaces of p01 are not shown, because for sufficiently long time periods, p10 ≈ p01
for equal excitatory stimulation in both neurons.
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(d) Color plot for tON = 15 ms

Figure 5.6: Figures 5.6a and 5.6b show hypersurfaces of probabilities p11 and p00 for
different tON in the parameter space of wexc and νexc. It can be seen that
the general behavior on all four hypersurfaces is the same. Surfaces of higher
tON values are shifted up systematically for p11, and down systematically for
p00. This is expected intuitively. Figures 5.6c and 5.6d show the symmetrical
structure of one such hypersurfaces, tON = 15 ms. It can be seen that both
wexc and νexc affect the state probabilities.

consequence of the symmetry in the p11- and p00-hypersurfaces with the sum of
all probabilities being 1. Overall, even here, the comparison with the theoretical
p10-hypersurface shows good agreement.
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Figure 5.7: Figures 5.6a and 5.6b show the theoretical hypersurfaces of probabilities p11

and p00 in the same wexc and νexc parameter space as the probabilities of the
simulated ON-states in fig. 5.6. The hypersurfaces show the same properties
as the ones in fig. 5.6.

At this point, the results indicate that there are different possible parameters tON that
can be used to analyze the prediction capabilities of the SU measure for correlated inputs
with different configurations of shared inputs.

Before making an extensive parameter sweep for both the current-based and conductance-
based4 LIF neuron pairs, it is necessary to determine a tON parameter which suits most
of the relevant regions of all probabilities.

The most important condition which must be fulfilled, is

psim1 = pth1 . (5.38)

This condition demands that for the input parameter space, the total probability of a
neuron being in a spiking state must be close for the theoretical and the ON-states from
the simulation, triggered by output spiking.

The probabilities from the simulations of the parameter sweep for the conductance-based
LIF model will be compared to the theoretical values by computing the relative error

Err =
psim1 − pth1

pth1
. (5.39)

4in the high conductance approximation, as derived in section 3.1.5
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Figure 5.8: Figure 5.8a shows the hypersurfaces for different parameters of tON . It is
noteable that the transformation of the hypersurfaces is not monotonic, in
contrast to the probabilities in 5.6a and 5.6b. Figures 5.8c and 5.8d show the
color plots of the probabilities for tON = 15 ms and tON = 25 ms, respectively.
Overall, for both tON values, the color plots have the same structure as the
theoretical one from 5.8b. Remarkably, the influences of increasing wexc and
νexc are practically the same.

As figure 5.9 shows, the parameter value tON = 15 ms induces the lowest relative error
and therefore will be the value of choice. In the next section, it will be used to generate the
ON-states in simulation, and making it possible to compare the Symmetric Uncertainty
with the Symmetric Uncertainty utilizing theoretical ON-states.
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(a) Err for tON = 10 ms (b) Err for tON = 15 ms

(c) relative error for tON = 20 ms (d) relative error for tON = 25 ms

Figure 5.9: The figures show the relative errors based on eq. (5.39) for simulations with
constant winh and νinh. The best overall agreement for all parameter regions
can be found in fig. 5.9b, although it has a very high relative error for very
low excitation. This heavily decreased excitation leads to a lack of output
spikes, which is visible in all four color plots.

5.3 Predicting Correlated Input Configurations

Finally, the quality of the prediction of the Symmetric Uncertainty measure will be
tested. The goal of this section is to evaluate three quantities regarding the Symmetric
Uncertainty measure:

• SUth / SUN : the predicted SU measure, which is the result of integrating the
assumed bivariate normal distribution of the Load-function, as described on p. 86

• SUload: the SU measure which will be evaluated from the numeric simulation of
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5.3 Predicting Correlated Input Configurations

the Load-function:
L(t) > Vthresh ⇒ ON − state

• SUsim: the SU measure as a result from the ON/OFF-states of output spiking of
the LIF neuron pair with a minimal ON-state of tON = 15 ms, as mentioned in the
previous section.

This simulation setup will be performed for the following synaptic configuration of shared
and private channels:

• Overall, there will be 100 available channels ch = 100

• The total synaptic input rates will be νexc, νinh, distributed equally over all channels
for each LIF neuron:
νchansyn =

νsyn
ch

• The occuring input spikes will be weighted with synaptic weights wsyn for the
conductance-based LIF neuron.

• The shared channels will be increased, also increasing the shared shared synaptic
rates, therefore increasing the correlation of spiking phases of the neuron pair.

The total input parameters of this extensive simulations, are

Parameter spaces

tON = 15 ms

Synaptic input rates

νexc, νinh ∈ [10 Hz, 250 Hz]

High-conductance-based synaptic weights:

wexc, winh ∈ [20 nS, 45 nS]

These parameter spaces require some explanation. The inhibitory rates are also taken
into account this time, to make assumptions about the impact of inhibition of the spiking
states.

The ranges for inhibitory and excitatory weights are different:
For the conductance-based model, equal weights lead to dominant excitation, as the
excitatory PSPs have higher amplitudes in this case. To prevent constant ON-states, the
range of inhibitory weights has to be set higher than the one for excitation.
These paramter ranges lead to a variety of spiking behaviors of both neurons, which can
be classified roughly into two characteristic behaviors:
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Figure 5.10: Both figures show different classes of ON-states of a conductance-based LIF
neuron. In 5.10a, the excitatory rate, at νexc = 50 Hz is low, but triggers
large PSPs due to a high synaptic weight wexc = 45 nS. The Load-function is
well above threshold due to multiple output spikes, initiating long ON-states.
A fundamentally different behavior is shown in fig. 5.10b, where comparably
high synaptic rates νexc = 210 Hz, νinh = 170 Hz trigger irregular ON-states
due to small-amplitude fluctuations of the membrane potential.

• Long ON-states due to output spike bursts, caused by a low excitatory rate νexc,
but very high excitatory weights/currents. The resulting output spiking patterns
can be seen in fig. 5.10a.

• Varying ON-state lengths resulting from membrane potential fluctuations induced
by high-frequent PSP generation. This behavior is shown in fig. 5.10b.

Before comparing the results of different shared input rates, the basic properties of
the predicted Symmetric Uncertainty SUth will be explained. As stated before, it as-
sumes a normally distributed Load-function and is computed by means of the predicted
ON/OFF-states p1, p0, p11, p00, p10, p01, as described on p. 86.

The impact of increasing shared rates is an increase in the SUth, which is expected, as
this is equivalent to an increase in correlated input.
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(a) SUth for winh = 0.035 µS, νinh = 50 Hz
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(b) SUth for different shared channels, winh =
0.035 µS, νinh = 50 Hz, νexc = 90 Hz, wexc =
0.03 µS

Figure 5.11: Figure 5.11a shows differently colored SU values for increasing shared input
rates. As the number of shared channels increases, the SUth hypersurfaces
change, albeit keeping the general shape. It shows that an increase in νexc
has more impact on the SU than wexc. This of course also applies to the
current-based SU, which is not shown here. Fig. 5.11b illustrates the evo-
lution of the SU in the (SU , no. of shared channels) hypersurface, showing
the rising increase of SUth, dependent on the shared input rates. The similar
shape for all hypersurfaces justifies analysing only one of them to show the
impact of variation of input parameters.
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Figure 5.12: Figure 5.12a shows a Load-function trace (red curve) and membrane po-
tential (blue curve) for high excitatory weights wexc = 0.05 µS) and low
synaptic rates (νexc = 20 Hz, νinh = 10 Hz. The agreement between the
states of the ON-states generated by output spiking (blue states) correspond
very well to the ON-states triggered by L(t) > Vthresh (red states). The same
parameters were used to compare SUsim and SUload to SUN in fig. 5.12b
for rising number of shared channels, out of 100 total channels. It is clear
that the agreement between SUsim and SUload is very good, as indicated by
the ON-states in fig. 5.12a, but SUN is systematically lower, which becomes
clear for increasing shared channel numbers. The reason for this can be seen
in fig. 5.12c, where the L2-norm of the difference of the Load-amplitude dis-
tribution and a theoretical Gaussian is plotted, as given in eq. (5.40). The
L2-norm increases drastically for high wexc and low νexc, implying that the
assumption of a normal distributed Load-function can not be held with low
input rates. This is also shown in chapter 3, section 3.2.
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5.3 Predicting Correlated Input Configurations

SU for low νexc, high wexc

This input parameter region, as illustrated in 5.10a, leads to generation of output spikes
due to high excitatory weights large PSPs.

In fig. 5.12, the Symmetric Uncertainty is evaluated for such regions in the conductance-
based LIF model. The three different SU results are shown, with visible deviations of
SUsim, SUload to SUth.

The cause of this deviation can be explained - in this case - by the difference between the
cumulative density function (cdf) of the Load-amplitude-distribution, and a theoretical
cdf of a Gaussian5:

L2(Lsample, Lgauss) =

∞∫
−∞

[Φ(L)sample(x)− Φ(L)gauss(x)]2 dx (5.40)

For low input rates, as is the case in fig. 5.12, the Load-function can not be approxi-
mated by a normal distribution. This problem has been discussed for the subthreshold
membrane potential in chapter 3.

Figures 5.12 indicates that the region of low synaptic input rates can not be estimated
by SUN , whereas the values of SUsim and SUload show a good agreement.

For higher input rates, the normal distribution of the Load-function amplitude distribu-
tion is well approximated by a Gaussian, as has been shown in chapter 3, section 3.2.
This leads directly to the second parameter region in which the Symmetric Uncertainty
will be analyzed:

SU for high νexc, low wexc

In these regions, SUsim and SUN will be compared, neglecting SUload, which converges
to the theoretical Symmetric Uncertainty.

To avoid constantly spiking neurons due to high excitation, the inhibitory input rates
will also be chosen high. Both these high input rates guarantee a normally distributed
Load-function, as already discussed. A typical simulation trace can be seen in fig. 5.13a.

The comparison of the Symmetric Uncertainty in such regions can be seen in fig. 5.17,
where critical deviations between the theoretical and simulation values can be identified
with the relative error.

5This concept has been already discussed on p. 54
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(c) SUsim for high inhibitory input
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(d) SUth for high inhibitory input

Figure 5.13: A typical simulated Load-function and membrane potential trace for high
νexc and low wexc can be seen in 5.13a. Due to the high input rates, the
membrane potential (and therefore the Load-function) fluctuates. This leads
to big differences in the lengths of ON-states if L(t) > Vthresh (blue states).
Because the output spike-triggered ON-states (red states) show minimum
lengths of tON = 15 ms, deviations between both states occur. This, in
turn, leads to deviations of the Symmetric Uncertainties.
For the whole parameter region, SUsim and SUth = SUN are shown in 5.13c
and 5.13d. A relatively high inhibitory input rate of νinh = 170 Hz and
low weight winh = 0.02 µS ensures that the amplitude distribution of the
Load-function can be approximated as a Gaussian, as opposed to the Load-
functions from 5.12. Yet, the hypersurfaces of SUsim from 5.13c show visible
deviations from the SUth values in 5.13d. Although only the hypersurface of
80 of 100 shared channels can be seen completely on the plots, this applies
to all configurations of shared channels, as can be seen in fig. 5.15, where
the relative error is shown.
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Figure 5.14: The simulation with νexc = 170 Hz, νinh = 170 Hz shows suboptimal over-
lap between the output spike-triggered ON-states (red) and the states ac-
tivated by the Load-function (blue). In simulations with high input rates,
the derived states are often longer than the ones derived in theory. This is
illustrated in fig. 5.14b. This results in p10

sim > p10
th . This results in system-

atically lower SUsim, which can be computed easily. Note that increasing
the ON-state length tON would distort the other probabilities p11

sim, p
00
sim.
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5 Investigating Correlations in the Spiking Activity of Neurons

The actual probabilities contributing to the Symmetric Uncertainty show the same
behavior for varying input parameters, for one specific configuration of shared channels.
This has also been shown in the previous section, in 5.7 and 5.8.

Two very important can be drawn from the analysis of figures 5.12, 5.13, 5.17:

• In fig. 5.12, the systematic errors in low-frequency ranges between SUth and SUsim
can be attributed to the fact that the distribution of the Load-amplitudes can not
be approximated as Gaussian. For these synaptic rate parameters, the Symmetric
Uncertainty can not be reliably predicted.

• For higher input rates, therefore justifying a normal distribution of the Load-
function, fig. 5.13 shows highly fluctuating SUsim. This is a sign of statistical
deviations, which is solidified by the direct comparison of both Symmetric Uncer-
tainties in fig. 5.17.

• Indications in fig. 5.17 suggest that, even for high simulation times, systematic
errors occur for high input rates, although the Load-function can be approximated
by a normal distribution.

These points suggest that SUsim is heavily susceptible to statistical errors of the prob-
abilities, but also systematic errors. Both classes of errors will be explained in the next
section.

5.4 Deviations of the Symmetric Uncertainty Measure

The previous section has exposed particular problems in the evaluation of the Symmetric
Uncertainty:

• SUsim is susceptible to statistical fluctuation of the probabilities.

• For long simulation times, with a minimum of statistical errors, systematic errors
of SUsim also can be seen.

Systematic Deviations:

As pointed out in fig. 5.13, the major difference between the ON-states triggered by
output spikes and the Load-function being above Vthresh, is that in simulation, a mini-
mum ON-state is triggered when output spiking occurs.

The higher the input rates, the more fluctuation shows the Load-function. In general, this
leads to less overlap of the ON-states activated by the Load-function with the ON-states
triggered by output spikes, as can be seen in fig. 5.14.
The cause of this problem is the fixed length of tON , which makes it impossible to
overlap the variable lengths of the ON-states triggered by the Load-function with only
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5.4 Deviations of the Symmetric Uncertainty Measure

one fixed length. This problem exists for all fixed time lengths and explains the limits
of the Symmetric Uncertainty to detect correlated spiking states.

However, it is difficult to implement ON-states that are not fixed states and overlap with
the Load-function if stimulated with high input rates, as output spike timings vary heavily
and do not always coincide with the ON-states given by the Load-function. Even minor
discrepancy can lead to a major contribution to the systematic error of the Symmetric
Uncertainty.

Statistical Deviations:

In addition to the discussed errors above, statistical errors of the probabilities are part of
the uncertainty propagation of SUsim. To evaluate an estimation of the total statistical
error of the Symmetric Uncertainty, it is helpful to alter the notation slightly:

SU =
∑

i,j∈{0,1}

pi,j · log

(
pi,j

pi1 · p
j
2

)
=: SU11 + SU00 + SU11 + SU10 (5.41)

=
∑

i,j∈{1,0}

SU i,j (5.42)

The true source of statistical errors are the probabilities which contribute to SUsim. The
probabilities p1

1, p1
2, p11, p10, p01 can be regarded as independent, because the rest of the

probabilities can be derived with the knowledge of the mentioned:

• Single OFF-states of neurons 1, 2: p0
1, p0

2

• OFF-state of both neurons p00:

p10 + p01 + p11 + p00 = 1

These relations can be used to derive the total result of the propagation of statistical
uncertainty:

∆SUsim =

√√√√ ∑
i∈{1,2}

(
∂SUsim
∂p1

i

·∆p1
i

)2

+
∑

j∈{11,10,01}

(
∂SUsim
∂pj

·∆pj
)2

(5.43)

Using the notation from eq. 5.42, the partial derivatives for all above probabilities are

∂SU ij

∂p1
k

∣∣∣∣
i,j∈{1,0}, k∈{1,2}

= A ·D(ij) log

(
pij

p1
k

)
, (5.44)

with A = log2(e) (5.45)
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and

D(ij) =

{
−1 if i = j = 0

1 else
(5.46)

and also

∂SU ij

∂pkm
= D(km) ·A ·

[
log

(
pkm

p1
1 · p1

2

)
+D(km)

]
(5.47)

(5.48)

Due to the proportionality given in the above equations, the terms ∂SU11

∂p11
, ∂SU

10

∂p10
, ∂SU

01

∂p01

and ∂SU00

∂pij
grow approximately logarithmically. Because p00 = p11 − p10 − p01, the

probabilities of one neuron spiking and the other not, are included in almost every term,
contributing significantly to the error propagation.

The total statistical error of the Symmetric Uncertainty, including all of the above terms,
can become very large. As an example, a typical uncertainty of ∆pk ≈ 10% for the
probabilities of SUsim (as has been shown in the previous section, in particular6 in fig.
5.13), ∆SUsim ≈ 0.08, which is about 35% of the theoretical value SUN = 0.23.

Lowering the input rates is the only way to decrease this error. Unfortunately, such an
increase would lead to a Load function amplitude distribution which is not a Gaussian,
as already seen in fig. 5.12.

6with wexc = 0.03 µS, winh = 0.02 µS, νexc = νinh = 170 Hz, for 80 shared channels
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Figure 5.15: All color plots have been taken from the simulation results of fig. 5.13, with
the absolute error between SUth and SUsim. The figures show that increas-
ing shared inputs decrease the deviation between both SUth and SUsim. In
all four plots, there are regions with relatively high deviations, but most
values (blue) show deviations below 15%, which is a satisfactory result.
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(d)

Figure 5.16: The color plots, based on simulations with high synaptic input, show the
absolute errors between the probabilities resulting from the simulations and
the ones derived theoretically for 65/100 shared channels. All error margins
are very low for all four probabilities. Even the maximum absolute error for
p11 in fig. 5.16b is slightly under 11%. The prediction of these states shows
very good results.
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Figure 5.17: The color plots show a general comparison between SUth and SUsim, taken

from the simulations from 5.13, where a constant high excitation is also
applied. The upper color plots 5.17a and 5.17b show a comparison of a
configuration with 80 shared channels. Considering the large stochastic
errors (which are estimated in section 5.4), both SU measures show a similar
trend. For low wexc and νexc, SUth = SUsim = 0, which is a consequence
of very long OFF-states due to a lack of output spikes. For higher νexc, the
SUth grows slowly, increasing symmetrically with rising wexc and νexc. The
simulated results show systematically lower SUsim, with patches of very high
SUsim. A similar trend can be seen on the lower color plots, for SUth in 5.17c
and SUsim in 5.17d, for a configuration of 65 shared channels. There, one
can see random high values and systematic deviations with SUth > SUsim.
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6 Conclusion & Outlook

In this chapter, the results from the previous chapters will be briefly summarized, and
will motivate further research based on the obtained results in this thesis.

LIF neuron dynamics

Before attempting to define any measure of correlations, thorough analysis and under-
standing of neuron membrane dynamics is required. Chapter 2 starts with electrophys-
iological properties of neurons and eventually the differential equations for the current-
and conductance-based Leaky Integrate and Fire neuron.

In chapter 3, the Leaky Integrator differential equation was used to predict the neural
dynamics of a current- and conductance-based LIF neuron. This equation, for the case
of presynaptic input, could be solved analytically for the current-based LIF neuron in
section 3.1.1, yielding a closed-form expression for the PSPs. An equivalent for the
conductance-based LIF neuron was found for the high conductance state.

When the requirements for this approximation are not met, the prediction exhibits devi-
ations from the simulated membrane potential trace. An important factor which affects
the quality of this theoretical prediction is the proximity of the membrane potential to
the inhibitory reversal potential.

In a subsequent step, the mean and variance of the membrane potential distributions
have been derived. Based on the solution of the PSP membrane potential, the calculation
of these quantities was conducted in section 3.1.6 for both LIF neuron models. The
obtained results are summarized on p. 45.

The systematic deviations of the mean and variance of the conductance-based membrane
potentials to the ones from the simulated membrane potentials were investigated in
section 3.1.7 for an extensive range of synaptic input parameters. Overall, the results
for the prediction of both the mean and variance of the conductance-based membrane
potential were very good, although the expected systematic deviations in the regime of
high inhibition were confirmed. For the current-based LIF neuron, the agreement was
perfect, as its differential equation was solved analytically.

To extend the valuable knowledge about the statistics of the membrane potential,
especially for the hardware-relevant conductance-based LIF neuron, the nature of the
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membrane potential amplitude distribution was analyzed in section 3.2.

By means of the Central Limit Theorem in section 3.2.1, it was argued that the membrane
potential distribution can be approximated by a Gaussian for sufficiently high synaptic
Poisson-input rates. This argument was underpinned through extensive software simu-
lations.
The essential achievements of these chapters are

• the theoretical derivation of the mean and variance for the current- and
conductance-based membrane potential, and

• the confirmation that membrane potential distribution can be approximated as a
Gaussian for the studied input regimes.

Quantifying correlated membrane potential fluctuations

In chapter 4, the concept of correlated input was introduced. Based on the results
from the previous chapter, the membrane potential distribution of a LIF neuron will
be approximated by a Gaussian. Therefore, in section 4.1, the membrane potential
distributions of a pair of LIF neurons has been described as a bivariate Gaussian.

This bivariate Gaussian is completely described by the two means and variances of the
neuron pair (as derived in the previous chapter), and the correlation coefficient. This
correlation coefficient, naturally embedded in the bivariate Gaussian, has been chosen as
the measure of correlated membrane potential fluctuations resulting from shared input
channels. In section 4.1.1, this quantity is derived as a function of synaptic input parame-
ters and the number of shared channels by using the statistical framework from chapter 3.

The results for the current- and conductance-based LIF neuron, summarized on p. 69,
were used to predict the correlation coefficient in section 4.2.

The prediction yielded very good results, albeit with existing statistical measurement
errors due to limited simulation times, which increase for a decreasing number of shared
input channels. The cause and magnitude of these errors can be estimated theoretically,
as shown in section 4.2.1.

Quantifying correlated neural spiking dynamics

In chapter 5, the correlation will be approached in the context of spiking neuron pairs,
therefore differing from the one in the past chapter, which investigated only subthreshold
dynamics.

In this context, two states were assigned to a neuron. A spiking state (ON-state), and
a non-spiking state (OFF-state). This implies four possible states for any pair of neurons.
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6 Conclusion & Outlook

The theoretical prediction of such states can be achieved by utilizing the previously
derived statistical values (chapter 3) through joint probabilites, as already utilized in
chapter 4.

Based on these predictions, a possible method to quantify correlations resulting from
shared channels input is the so-called Symmetric Uncertainty (SU), which was derived
in section 5.1.
It was found that, the theoretically derived probabilities show a very similar dependency
of input parameters as the results from the simulations.

In section 5.3, both the theoretical Symmetric Uncertainty and the one based on ON-
states from action potentials, were compared for different configurations of shared input
channels.

The quality of prediction depends heavily on the input rates. Low input rates prohibit
the use of a bivariate Gaussian as an approximation, while for high synaptic input rates,
notable statistical, as well as systematical errors exist. Their causes are discussed in
section 5.4, leading to the conclusion that the quality of the prediction of the Sym-
metric Uncertainty is limited by the high susceptibility of statistical errors and, more
importantly, the requirement of fixed ON-state lengths.

6.1 Outlook

In its present state, this work already has several direct applications. Together with the
overlap minimization algorithm mentioned in the introduction, it offers the necessary
tools to optimize the input-to-network mapping in the FACETS/BrainScaleS hardware,
for the single chip as well as for the waferscale system. Furthermore, the closed-form
expressions for the PSP shapes and the membrane potential distributions are already
being used for the calibration of synapse drivers on the Spikey chip and can be used
analogously for the HICANN module.

As an extension to the present work, it would be interesting to consider applying the
same framework to sets of more than just two neurons in order to quantify and predict
higher-order correlations. Naturally, the correlation coefficient will not suffice in this
situation, raising the requirement for a more sophisticated correlation measure.

On a final note, this framework might also be useful in neuroanatomical studies, where
simultaneous measurements of multiple neurons are notoriously difficult to perform. It is
conceivable that by analyzing statistics of neuron pairs - not necessarily recorded at the
same time - one can use a reversed version of the developed theory to infer the number
of common sources of a neuron pair from their correlated behavior. It might thereby
be possible to formulate hypotheses about the connectivity of deeper brain structures
without invasive measurement.
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