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Entwicklung einer fehlertoleranten Softcore CPU für FPGAs

In Umgebungenmit erhöhter Teilchenstrahlung ist der fehlerfreie Betrieb SRAM-basierter
feldprogrammierbarer Hardware nicht mehr garantiert. Radioaktive Strahlung kann
sowohl die Konfiguration, als auch den Zustand dieser Geräte und damit ihr Verhal-
ten ändern. Gängige Ansätze benutzen dreifach redundante Logik (TMR) mit Mehrheit-
sentscheiden um strahlungsbedingtes Fehlverhalten zu kompensieren. Dies bringt je-
doch ein erhebliches Maß an zusätzlicher Logik mit sich. Diese Diplomarbeit stellt eine
fehlertolerante Softcore-CPU für FPGAs vor, die durch die Kombination von zweifach
redundanter Logik und kontinuierlichem Schreiben der FPGA-Konfiguration mit einem
geringeren Maß an zusätzlicher Logik auskommt. Die Wirksamkeit der angewandten
Methoden konnte sowohl mit Fehlersimulationen, als auch im Teilchenstrahl Experiment
nachgewiesen werden.

Development of a Fault Tolerant Softcore CPU for FPGAs

In radiative environments, the accurate operation of SRAM based field programmable
hardware cannot be guaranteed. Radiation can alter configuration and state of these
devices and thus change their behavior. Common approaches use triple modular redun-

dancy (TMR) in combinationwithmajority voters to compensate radiation induced errors.
However, this comeswith a large area overhead. This thesis proposes a fault tolerant soft-
core CPU for FPGAs with reduced area overhead by using double modular redundant
logic in combination with continuous FPGA configuration writing. The effectiveness of
the applied methods could be verified with both error simulation and particle beam ex-
periments.
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1 Introduction and Motivation

With the invention of the transistor in the middle of the 20th century, a new era in elec-
tronic devices was started. The previously used tubes could gradually be replaced with
these low voltage, low area, highly flexible circuit elements. Research over the years led
to continuously decreasing structure sizes allowing the creation of systems with millions
of transistors on a single chip. However, creating custom application specific integrated
circuits (ASICs) is a time consuming and expensive task. The manufacturing costs can
only be mitigated by producing large numbers of chips. An approach to make micro-
electronic devices available to a broader spectrum of applications was the development
of microcontroller systems, starting in the 1970s. Several different modules, all produced
in large series and thus cheap, can be combined to form a custom electronic system. But
even with increasing functionality, these devices cannot reach the performance of ASICs
and their hardware based functionality is fixed once assembled.

This gap has been recognized by Ross Freeman, founder of Xilinx1, in 1984. He invented
the field programmable gate array (FPGA). The patented idea was to supply a single chip
with "a plurality of configurable logic elements variably interconnected in response to
control signals to perform a selected logic function" [Fre89]. Freeman postulated this de-
vice to be affordable for customers due to decreasing costs for transistors over time. Xil-
inx is now a multi billion dollar enterprise and "the worldwide leader in programmable
logic solutions" [Xilun]. The possibility to use the same chip for arbitrary circuits opened
a new field of applications. Complex tasks previously implemented as sequential mi-
croprocessor instructions can be parallelized in FPGAs. The concrete functionality of an
FPGA has only roughly to be specified during the construction of an electronic device
and thus significantly increases the time-to-market. The possibility for users to change
the configuration of the FPGA offers the potential to supply several different applica-
tions with the same device or "upgrade" an existing implementation with bug-fixes or
new functionality. FPGAs developed from ASIC prototyping platforms to solutions for
digital signal processing, high performance computing, defense, aerospace and high en-
ergy physics applications.

Especially in high energy physics experiments, FPGAs have become an important part.
Data rates produced by current particle detectors are orders too high to be saved com-
pletely. A trigger system is required to select the interesting events to be saved for further

1http://www.xilinx.com
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analysis. This trigger decision requires a lot of calculations and data management impos-
sible with common sequential processor systems. Fast ASIC solutions are very expensive
for small production series and give no flexibility once implemented, so FPGAs are used
to parallelize these calculations and evaluate a trigger condition. Another FPGA appli-
cation is the implementation of embedded systems for controlling tasks. FPGAs are able
to run full operating systems. The flexibility on both, the hardware and the software as-
pects opens a broad field of applications. FPGAs have successfully been integrated in the
current experimental buildup at CERN2 and play a key role in the development of the
Condensed Baryonic Matter3 (CBM) experiment at GSI Darmstadt.

However, there are some problems in using commercial off-the-shelf (COTS) FPGAs in
particle detectors, avionics or space missions. These FPGAs are susceptible to radiation
induced configuration and user logic changes. The FPGA itself is usually not damaged,
but its current configuration is altered due to radiation. The correct behavior of the circuit
in a radiative environment can therefore not be guaranteed.

This work addresses mitigation strategies for radiation induced effects in SRAM based
FPGAs applied on a fault tolerant softcore CPU. Chapter two describes the targeting
FPGA architecture and chapter three explains the possible effects of radiation on these
FPGAs. Chapter four shows an overview of previously done work to mitigate radia-
tion effects. This work’s approach, in contrast to others, and how it was implemented is
described in chapter five and six. The effectiveness of the applied methods on the im-
plemented designs have been verified with both error simulation and particle beam test
as described in chapters seven and eight. Finally, all relevant aspects of the work will be
drawn together in chapter nine.

2http://www.cern.ch
3http://www.gsi.de/fair/experiments/CBM/
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2 FPGA Architecture

A Field Programmable Gate Array (FPGA) is an array of several different logic elements
packed into a single semiconductor device. In contrast to common electronic devices, the
logic functions of the single internal elements and their connection with each other are
volatile and can be programmed by the user at any time. Several input and output pins
can easily be used to make connections to almost any other electronic component with
the common electrical signalling standards. Only FPGAs from Xilinx1 have been used
in this work, so architectures from other vendors have been neglected in the following
descriptions.

Figure 2.1: Simplified floor-
plan from Xilinx PlanAhead
for a Virtex-4 FX20 FPGA.
The blue bordered rectan-
gles are CLBs, BRAMs are
colored green, IOBs orange,
DSPs yellow. The white rect-
angle in the center is a Pow-
erPC core.

The elements forming the array structure in a Xilinx Virtex-4
FPGA are called Configurable Logic Blocks (CLB). As the name
implies, the behavior of these logic blocks and their connec-
tion with each other are configurable by the user. A config-
urable switch matrix attached to any CLB grants access to
the chip wide routing network. The CLBs are arranged peri-
odically in rows and columns and cover the main part of the
FPGA. Apart from the CLBs, there are some further config-
urable columns containing Block-RAMs (BRAM) as on-chip
storage, Digital Signal Processors (DSP) for specific calcula-
tions,Multi Gigabit Tranceivers (MGT) for fast serial commu-
nication, and Input/Output Buffers (IOB) as connection into
and out of the FPGA. The FPGAs from Xilinx’ FX line have
also hard wired IBM PowerPC RISC Processor Cores [Xil08d].
A sample arrangement is shown in figure 2.1.

The CLBs are subdivided into finer grained programmable
logic blocks called slices, fast connections between them and
connections to the chip-wide routing network. There are
two types of slices called SLICEM and SLICEL, M standing
formemory and L for logic. The look-up tables in the SLICEM
components possess the additional ability that their config-
uration doesn’t need to be completely static during runtime, so they can be used as cheap
distributed memories or shift registers. Both types of slices are available in equal num-
bers. A CLB consists of two columns, each with two slices. The left column contains

1http://www.xilinx.com
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(a) Contents of a CLB [Xil08e] (b) Contents of a slice

Figure 2.2: Arrangement of slices within a CLB (left) and simplified internals of a slice (right)

SLICEMs, the right SLICELs. Each CLB is connected to its neighbors and a chip-wide
configurable routing network. A sketch of a CLB is shown in figure 2.2(a).

The slices mainly consist of look-up tables (LUT), flip-flops (FF), Multiplexers (MUX),
and some basic gates. Look-up tables are small programmable memory blocks that pro-
duce an output vector to any input vector. The input vector can be understood as an
address-line selecting one of the memory values and giving this value to the LUT-output.
Current FPGA architectures have look-up tables with four to six inputs and one to two
outputs. With the according configuration, any boolean function of the input vectors can
be realized. Therefore FPGAs do not need to supply basic gates like AND, OR, NOT,
XOR etc. as any combination of those gates can be realized with look-up tables. Un-
like the gate implementation, the propagation delay through a LUT is independent of
its logic function.Virtex-4 FPGAs have look-up tables with four inputs and one output.
The flip-flops can be used as edge-triggered D-type flip-flops or as level sensitive latches.
The control signals reset, set and clock_enable can be used as synchronous or asynchronous
signals and the initial- and reset-values can be specified via configuration. Two LUTs and
two flip-flops are grouped with some basic gates and multiplexers to form a slice. Both
flip-flops in a slice use the same clock, reset, set and clock_enable signals which cannot come
directly from a LUT within the same slice. These flip-flop control signals have the ability
to be inverted at the entrance to the slice. The flip-flop’s data input line is connected to
the preceding LUT’s output and the slices’ output can come from the FF or directly from
the LUT. Furthermore, there are carry and shift lines connecting proximate slices to allow
the implementation of fast adders, comparators or shifters. Figure 2.2(b) illustrates the
components within a slice, a more detailed description can be found in the Virtex-4 User

Guide [Xil08e].

The routing between and within the different elements is done with multiplexers and
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Figure 2.3: Model of the FPGA routing net. The connections between the available wires are
configurable with programmable interconnect points (PIP). (Source: [SV06]).

programmable interconnect points (PIP). Multiplexers with statically configured select
lines control the signaling within the slices. Outside the slices, the routing is done via
static wires. Only the connection between, not the wires themselves are configurable
with PIPs. A model of the PIP based routing network is shown in figure 2.3. The PIPs are
grouped in switch matrices on CLB level as shown in figure 2.2(a).

The clock signals for synchronous designs have a second, separate routing net spanning
throughout the whole device. This global clock net can reach any clock inputs within the
FPGA and can be controlled with clock buffers and digital clock managers (DCM). Apart
from the global clock net, the FPGA is further divided into several clock regions to allow
different local clocks for specific parts of the design.

All of the elements mentioned above have an underlying layer controlling their behavior.
Any look-up table to be used must be filled with initial values to act like the desired
logic function. Connections between two logic elements must be made by combining
according parts of the routing net via switchable interconnect points. Any flip-flop can
hold a reset value and can be defined as synchronous or asynchronous. Any IO-Buffer
can be used as input or output, with several possible voltage levels just by setting the
according configuration bits. This configuration layer is read- and writable for the user
and thus makes the FPGA field programmable.

The configuration of the FPGA can be done by using one of the vendor supplied con-
figuration interfaces. All of these interfaces are fed with a bitfile containing the values
for any configuration bit in the FPGA. Details on the configuration interfaces and the
configuration process are further described in chapter 7.

The whole FPGA used in this thesis, including configuration and user logic, is made of
SRAM cells. SRAM stands for Static Random Access Memory. "Static" in this case means
that the memory cell will keep its current value as long as it is powered on. This is
in contrast to dynamic RAM (DRAM), which stores its values in small capacitors that
lose their charge if not refreshed periodically. If the device is powered off, both types
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(a) SRAM cell schematic
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(b) six transistor CMOS implementation of an
SRAM cell

Figure 2.4: SRAM cell schematic as bistable inverters (left) and its six transistor CMOS imple-
mentation (right)

of memory lose their contents. Random Access means that the memory contents can be
read and written at any time. A SRAM cell is a bistable circuit element. It can easily be
understood by imagining two oppositely arranged parallel inverters as shown in figure
2.4(a). The cell always holds two values: the value Q and its inversion Q. As long as the
drive strength on Q and Q is smaller than the drive strength of the inverters, the current
value will be held as long as power is applied to the inverters. If the drive strength on
Q and Q exceeds this limit, a new value is written into the cell, according to the levels
of Q and Q. The actual CMOS implementation shown in figure 2.4(b) is only little more
complicated. On reads, both bit lines BL and BL are precharged weakly. By selecting the
cell with its word line (WL), the transistors T5 and T6 get conductive and therefore Q and
Q drive the bit lines to their stored values. On writes, the bit lines are driven stronger
than T1-T4 can do. By selecting the cell with its word line the previously stored values
get overwritten with the values of BL and BL. For more information about field effect
transistor (FET) properties or circuits see [HH89].
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3 Radiation Effects in SRAM-based FPGAs

After a brief theoretical background, this chapter gives an overview on any possible ef-
fects of radiation on semiconductor electronics. A focus is set on their impact on SRAM
based FPGA applications.

3.1 Theoretical Background

3.1.1 Electric Conductivity in Semiconductors

The correct theoretical explanation of electrical conductivity in crystalline solids is a
highly complex problem requiring quantum mechanical calculations of the time depen-
dent Schrödinger equation in external fields. However, it is mostly sufficient to use semi-
classical models of electron wave packets with effective mass and speed, derived from
their interaction with the crystal lattice in form of electron-phonon-scattering, electron-
defect-scattering or electron-electron-scattering. This leads to a theory of electrical con-
ductivity being highly dependent on temperature, lattice structure and its defects like
foreign, missing, additional or displaced atoms.

The conductivity can be described with a band structure represented by an orbital-like
model of atoms in a lattice. There are two bands: the valance and the conduction band.
Charge carriers in the valence band are bound to lattice atoms, whereas the carriers in
the conduction band are free to move. By exciting an atom in the lattice, an electron is
lifted to the conduction band, leaving a hole in the valence band. With an electric field
attached to this solid, the now free electronwill move along the field. The left hole is filled
with electrons from a neighbor atom by leaving a hole there. Thus, the hole effectively
moves to the opposite direction. Both, the electrons and the holes give their share to the
conductivity, but one can easily imagine, that the mobility of electrons is higher than the
mobility of the holes. More information about models of electric conductivity and band
structures in solids can be found in [Kit04].

A solid is an electrical conductor if there are always free electrons in the conduction band,
and it is an isolator if there are no free carriers in this band. As thermal energy can excite
atoms, this is a temperature dependent issue. Semiconductors are solids with a small
band gap of one to four eV and they are isolators for small temperatures. The conductiv-
ity increases with temperature as more and more electron hole pairs can be excited with
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Radiation Effects in SRAM-based FPGAs

(a) Nonconducting NMOS transistor (b) active NMOS transistor

Figure 3.1: Simplified sketch of NMOS functionality

the thermal energy. Conductivity can further be affected by adding foreign atoms into
the lattice (doping). Adding atoms with more or less valence electrons than the base ma-
terial results in a n- or p-doped semiconductor. This creates states for electrons or holes
between the former valance and conduction bands and therefore moves the Fermi energy
of the solid. Combining p and n-doped silicon gives the well known depletion regions
and potential effects exploited by diodes and transistors.

3.1.2 MOSFET Basics

Ametal oxide semiconductor field effect transistor (MOSFET) is a voltage controlled cur-
rent source. It has four connections: drain, source, gate and bulk. The gate is isolated
from the other ports with a thin layer of silicon oxide and the current from source to
drain is controlled by the voltage applied between gate and source. The bulk connection
is used to keep the substrate on a well defined potential and is usually directly connected
to the source. The functionality is exemplary shown on a n-type MOSFET (NMOS) in fig-
ure 3.1. The p-substrate holds a lot of free holes, but only few free electrons, whereas the
n-wells hold more free electrons than holes. Without a positive voltage applied between
gate and source, the connection between source and drain acts like a reverse biased diode
and only small sub-threshold leakage currents can flow. By applying a positive voltage
between gate and source, an electric field between gate and bulk is formed. Exceeding
a specific threshold voltage, this field pushes the holes away and pulls some of the free
electrons in the p-substrate to the interface between bulk and gate oxide. This forms a
n-conducting channel between source and drain. The voltage applied on the gate can
therefore control the current between source and drain.

Devices with the opposite doping of NMOS are PMOS transistors. In PMOS transistors
the bulk substrate is n-doped and the source and drain wells are p-doped. The function-
ality is quite similar, but the PMOS is conducting without a gate source voltage applied
and is based on the holes as charge carriers. PMOS transistors are therefore slower than
their n-doped counterparts. PMOS transistors can be placed on the same substrate as
NMOS transistors, if a n-doped region for the whole PMOS is created in the p-substrate
or vice versa.
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3.1 Theoretical Background

The combination of both, PMOS and NMOS transistors on the same substrate is called
Complementary MOS (CMOS) technology and is nowadays one of the most frequently
used logic family. Any logic gates can be created with CMOS. The SRAM cell in figure
2.4(b) is an example, too.

3.1.3 Passage of Particles through Matter

Almost any kind of radiation and particle can have an effect passing through matter. The
effect depends on the incoming particle, its energy and the target material. Concerning
radiation effects in semiconductors, the following radiation particles and effects can be
distinguished:

• charged leptons like electrons or muons
→ bremsstrahlung and ionization effects

• charged hadrons like protons or α particles up to heavy ions
→ ionization and nuclear effects

• charge less hadrons like neutrons
→ no direct ionization, nuclear effects only

• γ particles
→ ionization, coulomb scattering, pair production

Both charged leptons and charged hadrons can interact with matter by ionizing atoms in
the targetmaterial. The incoming particle ionizes the targetmaterial’s atoms by scattering
with their electrons. This ionization process creates electron hole pairs along the particle’s
way through the target material. The electron hole pairs can recombine within a short
time as long as they are not separated by external electric fields. The energy required for
the creation of a single electron hole pair in silicon semiconductors has been measured to
3.6 eV [Lut07], whereas in silicon oxide 17 eV are required [Sch96]. The energy loss for
charged hadrons due to ionization can be calculated with the Bethe-Bloch-formula giving
an energy loss per distance:

dE

dx
= 2πN0r
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2ρ
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β2 [ln(
2meγ

2υ2Wmax
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with N0 the Avogadro Number, re the classical electron radius e2

4πmec2
, me the electron

mass, Z and A the atomic number and weight of the medium, z the charge of the incident
particle, ρ the density of the medium, I an effective ionization potential, υ the velocity of
the incident particle, β = υ

c , γ = 1√
1−β2

, δ a density correction and Wmax the maximum

energy transfer in a single collision. The calculation of I, δ and Wmax can be found in
[Leo94] chapter 2.2.2.

The resulting unit of the energy loss is [MeV
cm ]. A typical unit in radiation tests of electronic

devices is the Linear Energy Transfer (LET) defined as [MeVcm2

mg ]. This can be achieved by
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dividing formula 3.1 by the target material’s density ρ. The Calculation of the energy
loss of a specific particle going through a defined material can easily be done for the
entry point to the material, but gives non trivial differential equations, if the particle
significantly slows down within the material. There are some simulators for energy loss
determinations like SRIM1, FLUKA2 or the TVDG LET Calculator3 to simplify life with
these calculations. The ionization losses as calculated above cover themain part of energy
transfer for heavy ion and hadron scattering. This model is not sufficient for light charged
particles like electrons.

Bremsstrahlung occurs, when light charged particles are influenced by the electric field
of the target material’s atom nuclei. The nuclei change the trajectory of the incoming
particle due to acceleration in the nuclei’s electric field. Any acceleration of a charged
particle leads to an emission of bremsstrahlung in form of a photon. The energy loss
due to Bremsstrahlung is dependent on the incoming particle’s energy, the screening of
the target material’s nucleon charge and therefore the target material itself. Due to the
small lepton mass, bremsstrahlung covers the main part of energy loss for charged lep-
tons above a few MeV ([Leo94], p.37). For low energies, ionization is dominating over
Bremsstrahlung. The energy loss of charged leptons is therefore a sum of ionization losses
and bremsstrahlung losses. The formula for calculating the ionization losses for electrons
is quite similar to the Bethe-Bloch formula shown above, but takes into account that elec-
trons are much lighter than hadrons and therefore their trajectory significantly changes
on collisions. Furthermore, the scattering is now done between identical, indistinguish-
able particles. For calculation details and examples, see [Leo94] chapter 2.4.

Nuclear effects occur due to the scattering of incoming particles with the nuclei of the
target material. This includes elastic and inelastic scattering resulting in movement, exci-
tation or decay of the target nuclei. Moving atoms in a semiconductor can lead to lattice
defects having a direct impact on the semiconductor’s band structure. Nuclear scattering
is not directly ionizing, but the results from scattering induced nuclear reactions can be.
A typical neutron induced nuclear reaction in silicon is the decay of p-doping Boron-10
into Lithium and an ionizing α particle.

γ particles interact with the electrons of the target material. This can result in electrons
being excited to higher orbitals or atoms being ionized. For high energies, the γ particles
can change to fermion anti-fermion pairs like electron and positron or quark and anti-
quark within the target material (pair production). These particles can then interact with
the material via ionizing or nuclear effects as described above.

1http://www.srim.org
2http://www.fluka.org
3http://tvdg10.phy.bnl.gov/LETCalc.html

24



3.2 Radiation Effects in SRAM Cells

3.2 Radiation Effects in SRAM Cells

The radiation processes affecting the correct behavior of semiconductor circuits in gen-
eral, and particularly SRAM cells, are mainly ionization and nuclear scattering. An ioniz-
ing particle going through a semiconductor leaves a number of electron hole pairs along
its way. These electron hole pairs would recombine within short time if they are not sep-
arated by electric fields. A running semiconductor device however holds a lot of electric
fields because every single transistor relies on them. These fields are quite strong because
the distances between two electric poles are in the order of several nanometers down to
a few atom layers for the gate oxide. The electron hole pairs created from a charged par-
ticle going through a transistor with strong electric fields will not be able to completely
recombine before they are separated by the electric field. The consequence are additional
free charges in the semiconductor with different mobilities. The mobility of the electrons
is higher than the mobility of the holes as described in chapter 3.1.1. Nuclear scattering
processes play a role as these interactions can create ionizing particles or move atoms
in the semiconductor’s lattice structure. Both of these processes lead to two indepen-
dent effects: cumulative effects and single event effects. Single event effects result, as the
name implies, from single radiation particles, whereas the cumulative effects rely on the
accumulation of effects from several particles during the whole device’s lifetime.

3.2.1 Cumulative Effects

Cumulative effects are gradual effects during the whole lifetime of the radiated device.
They rely on the accumulation of radiation effects and lead to a failure when a certain
limit is reached. There are two types of cumulative effects: total ionizing dose (TID) and
displacement.

TID effects result from charge collection in the transistor’s gate oxide, at the silicon-to-
oxide interface or in the field oxide between transistors. If electron hole pairs in the
oxide do not recombine immediately after the particle strike, they get separated by the
electric field. The electrons can leave the oxide quickly due to their higher mobility. The
transportation of holes according to the external field is much slower than for electrons
as they need to hop between localized states in the oxide [Sch96]. During their way to the
gate-to-oxide or silicon-to-oxide interface, the holes may get trapped, forming positive
oxide charges for both p- and n-channel transistors. These charges screen or increase
the electric field from gate to bulk and thus shift the threshold voltage and affect the
leakage current. These trapped oxide charges however can be annealed even with room
temperature over time.

A further effect of holes moving through the oxide is the release of hydrogen ions out of
the oxide structure. These ions can move to the silicon-to-oxide interface where they may

25



Radiation Effects in SRAM-based FPGAs

become interface traps [Sch96]. These traps form states in the band gap of the semicon-
ductor exactly at the silicon-to-oxide interface being responsible for the voltage controlled
conductivity of the transistor. For p-channel transistors, these traps are predominantly
in the lower part of the band gap allowing positive charges. Traps in the upper part of
the band gap are mostly formed for n-channel transistors enabling negative charges. In
combination with the trapped positive charge in the oxide, these effects may compensate
or add up. The interface traps do not anneal with room temperature like the oxide charge
buildup and degrade the device with shifted threshold voltage and decreased carrier mo-
bility [Sch96]. This leads to timing errors, increased current or uncontrollable transistors
switching.

The TID value used for device characterization is the energy deposited in the material of
interest in form of ionization. The unit of the TID is Gray or radwhere 1 Joule

kg = 1 Gray =

100 rad. The value for the TID rate in a particle beam experiment can be derived from the
LET value calculated with the Bethe-Bloch formula 3.1 or one of the simulators:

TID rate [
rad

s
] = 100 · LET · φ · e/A (3.2)

The factor 100 is for the conversion from Gray to rad, LET is the calculated energy transfer
in [ eV cm2

kg ], φ the particle flux through the FPGA in [ 1s ], e the elementary charge 1.602 ·
10−19 Joule and A the contributing FPGA area in [cm2]. This calculation is due to its units
independent of the thickness of the contributing oxide volume.

The maximum total ionizing dose an FPGA can handle depends on its silicon oxide and
gate size and therefore its manufacturing process technology. There is a military stan-
dard testing method for TID resistance called MIL-STD 883 Test Method 1019 [Dep97] to
allow comparison between different electronic devices. TID measurements from Xilinx
[FDLH08] according to this testing procedure gave a maximum TID resistance of 100
krad for the early Virtex devices with 220 nm technology. Decreasing technology size
reduced the volume of TID susceptible silicon oxide and the gate volume and therefore
led to an increased TID resistance. The Virtex-II architecture manufactured in 150nm
technology already had a tolerance of about 200 krad and the following Virtex-II Pro FP-
GAs reached 250 krad according to test procedure 1019. The Virtex-4 devices used in this
work are manufactured in 90nm technology and have a total ionizing dose resistance of
around 300 krad. According to [FDLH08], the modern architectures in 90nm technology
can handle doses up to 1 Mrad with "proper design margins". Virtex-5 devices in 65nm
technology are supposed to handle even more.

A further cumulative effect is displacement. The recoil from a high energetic radiation
particle can move the target particle in the semiconductor’s lattice structure. The moved
lattice atom generates an interstitial and leaves a vacancy. With enough energy, the hit
atom can displace further lattice atoms and generate a defect cascade. These defects gen-
erate traps, can influence the carrier mobility or increase the thermal generation of elec-
tron hole pairs. According to [Sch96], about 90% of interstitial vacancy pairs recombine
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3.2 Radiation Effects in SRAM Cells

Figure 3.2: Single ionizing particle going
through a p-n junction. The particle cre-
ates electron hole pairs that may get sepa-
rated by electric fields before they can re-
combine. The resulting charge can have
several effects. The charge in the funneling
region contributes to the charge collection.
Charges in deeper substrate regions do not
affect the device.

within a minute after irradiation and the displacement effects are relatively unimportant
for MOS transistors.

3.2.2 Single Event Effects

Single event effects (SEE) are the effects of single ionizing particles going through semi-
conductor electronics. The deposited charge can have different effects from temporary or
correctable soft errors up to permanent and uncorrectable hard errors. As described above,
an ionizing particle creates a high density electron hole plasma along its way through the
semiconductor. The energy deposited within the semiconductor is defined as the linear
energy transfer (LET) and can be calculated as shown in chapter 3.1.3. Under normal
circumstances, only the charges deposited in the top silicon region should actually affect
the circuit. But a charged particle going through a p-n junction extends the depletion
region along its path. This effect is called funneling. The electron hole pairs in the fun-
neling region therefore contribute to the total accumulated charge. If this total charge is
big enough, it can considerably affect the circuit’s behavior. But even if funneling signifi-
cantly extends the volume fromwhich the charge may be accumulated into the substrate,
the contributing volume is in the top few micrometers of the substrate.

Hard Errors

Hard errors are errors that result in a physical damage of the radiated device. These er-
rors cannot be recovered. Hard errors can be distinguished between single event burnout
(SEBO), single event gate rupture (SEGR) and single event latch-up (SEL). They mostly
induced by heavy ion particles because a lot of energy has to be deposited to cause these
effects. Single event burnout affects solely high power devices like power MOSFETs, IG-
BTs and power diodes. Particles going through these multi-layered p-n devices can create
a positive feedback of internal parasitic transistors getting conducting until breakdown
and destruction of the device. Single event gate rupture is an effect in mainly power
MOSFETs, but has also been observed in MOS transistors [Wro87]. Under normal con-
ditions, the electric field between gate and substrate is large, but not large enough to
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Figure 3.3: Comparison of Virtex-II and Virtex-
4 heavy ion SEU cross sections vs. linear energy
transfer (LET). The cross section starts increas-
ing from a certain threshold LET and goes into
saturation for high values of LET. The measured
curves can be fitted using a Weibull fit. (Source:
[GKS+06])

rupture the isolating silicon oxide layer. In case of an ion striking through gate oxide
and substrate leaving an electron hole plasma, this plasma may get conducting. With a
strong electric field, the resulting current could melt the oxide and destroy the device.
Single event latch-up is an effect of closely placed p- and n-channel MOSFETs on the
same substrate. The combination of differently doped regions automatically leads to par-
asitic transistors. This is no problem as long as all of these regions are kept to a fixed and
well defined potential. But the situation can easily change if an ionizing particle deposits
charge in the parasitic devices. The change of state of a single transistor can produce
a positive feedback by enabling surrounding parasitic transistors leading to a latch-up.
This latch-up can be interrupted by cutting the power supply, otherwise the device will
be destroyed.

Hard errors are usually not a concern for CMOS circuits in space or particle detector
applications because these errors are either very unlikely or the radiation energy is too
low.

Soft Errors

Soft errors are errors that do not cause physical damage to a semiconductor device. These
errors are temporary or can be corrected by reconfiguring the device. There are two types
of soft errors: single event transients (SET) and single event upsets (SEU).

Single event upsets (SEU) are flipped bits of memory cells. As this work addresses SRAM
based FPGAs, SRAM cells are here used for explanation. If an ionizing particle deposits
enough charge in an SRAM cell, the content of the memory cell can change. Further, not
any point within an SRAM cell will be eligible to change the memory content with any
amount of charge. Thus, to produce an SEU a critical amount of charge in a sensitive
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3.2 Radiation Effects in SRAM Cells

Figure 3.4: SEU sensitive
volumes of SRAM cells.
Only particle strikes within
these colored areas and
with enough energy are
able to flip the memory cell.
(Source: [Xila])

volume must be exceeded. The sensitive volume of an SRAM cell is sketched in figure
3.4. Particles with less energy or outside the sensitive volume will therefore just give
a short current pulse without changing the memory cell’s content. The dependency of
SEU cross section and linear energy transfer (LET) is exemplary shown for a Virtex-4
FPGA and heavy ion radiation in figure 3.3. Below a certain threshold LET, there will
not be any SEUs possible, because the deposit charge in the sensitive area will not be
sufficient. Exceeding this threshold LET, more and more SEUs can be induced. This cross
section seems to saturate for high values of LET and therefore simply depends on the
probability of hitting the right parts of the SRAM cell. The shape of this cross section vs.
LET behavior can mathematically described with a Weibull fit. A detailed explanation
of the shape of this cross section vs. LET curve in combination with the mathematical
formulas describing the Weibull model can be found in [Edm96]. In an FPGA single
event upsets show up as flipped memory bits, in both, the device configuration and the
user logic flip-flops. The possible effects of SEUs in an FPGA are shown in chapter 3.3

The second class of soft errors are single event transients (SET). SETs are based on the
same radiation effect as SEUs, but do not require to hit the sensitive area of an SRAM cell.
The deposit of charge in the semiconductor leads to short current pulses. The magnitude
of these pulses highly depends on the deposited charge and the capacity of the hit line.
These pulses are usually in the order of 100 to 200 picoseconds in CMOS circuits and can
propagate as glitches in the user logic [ME00]. SETs can have serious consequences if the
affected signal is sampled by a system clock as shown in figure 3.5. As long as a SET
arrives at a flip-flop’s data input in the absence of the sampling clock edge, the SET will
not have an effect. This changes, if both, the SET glitch and the sampling clock edge come
approximately at the same time. A SET being sampled correctly at a clock edge becomes
static and has the same effects as a direct SEU. A SET occurring at a certain moment
may violate setup or hold times and therefore produce unpredictable or even metastable
flip-flop outputs. Further, the clock or reset lines may be affected by SETs, too. This
could lead to desynchronized or spontaneously reseted parts of the FPGA. The rate of
SETs becoming glitches is dependent of the flux and energy of the ionizing radiation.
However, the probability of a SET being sampled and becoming an SEU is additionally
dependent on the clock frequency. The more often a value is sampled, the higher the
chance to hit a glitch.
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Figure 3.5: Effects of SETs in synchronous designs. The SET induced glitch on d_in does not have
an effect on d_out as long as it occurs apart from a rising clock edge at the flip-flop’s input. A SET
being sampled at a rising clock edge becomes a static upset and shows the same effects as a direct
SEU. If the glitch violates setup or hold times, the flip-flop’s output may be unpredictable or even
metastable.

Single event upsets (SEU) and single event transients (SET) are the mainly observed ef-
fects when using semiconductor electronics in a radiative environment.

3.3 SEU Categories

The Virtex-4 FX20 FPGA used in this work has about 7 million configuration bits and
around 17.000 user flip-flops. The probability of changing an user flip-flop is therefore
small compared to the probability of changing a configuration bit. A single event upset in
the device configuration can have several effects on the running design. A classification
of possible SEU effects in a Virtex-I FPGA has been done in [GCZ03]. According to this
source, around 80% of all SEUs affect the routing. The majority of remaining SEUs can be
identified as look-up table value changes and upsets of the bits controlling miscellaneous
functionality of the whole CLB or IOB. An overview of the most common SEU effects is
shown in figure 3.6

3.3.1 Routing Effects

The SEU effects on the FPGA routing net have extensively been studied for Virtex devices
by Xilinx [GCZ03] and Sterpone & Violante [SV06]. As described in chapter 2, the routing
of signals through the FPGA is done with programmable interconnect points (PIP). The
behavior of these PIPs is controlled by configuration bits. Long lines may be assisted with
switchable buffers. A SEU in a PIP may open or shorten two wires. An open simply dis-
connects the two lines, so no further signal transmission between them is possible. A PIP
short can affect both sides of the PIP as both logic levels now depend on each other. SEUs
in the buffer control bits only affect the driven wire and do not have a direct feedback
effect. Another routing effect are SEUs in the select line configuration of multiplexers
(MUX). If these bits are changed, a different signal will be forwarded through the MUX.
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Figure 3.6: Overview of SEU effects in routing and look-up tables. Programmable interconnect
points (PIP) in the routing net can be shortened or opened affecting both sides of the PIP. Shorts or
opens in buffers have only an effect on the loadwire. Multiplexers controlled by configuration bits
can select wrong signals on SEUs. A SEU in the LUT values leads to a change of the implemented
logic function. SEU effects on flip-flops, CLB control bits or on any other FPGA block beside the
CLBs are not shown in this picture. These images are taken from [GCZ03].

31



Radiation Effects in SRAM-based FPGAs

Both MUX, buffer and PIP shorts may increase the current consumption as wires driven
with Vdd could get connected to grounded wires. According to the work of Sterpone &
Violante, a single event upset can even have multiple effects on pairs of routing nets. The
authors claim, that a single event upset can shorten two nets, delete multiple connections
or re-route an existing net by deleting the old and adding a new net due to a decoded
PIP configuration in Virtex FPGAs. Unfortunately, no studies on SEU routing effects for
Virtex-4 devices could be found. The architecture and the arrangement of blocks in the
FPGA changed since Virtex-I, but the principles should have stayed the same.

3.3.2 SEUs in Slices

The main contents of the slices are a look-up table (LUT), a flip-flop (FF), several multi-
plexers, gates and wires connecting anything with each other as described in chapter 2. A
single event upset in a LUT changes one of the memory cells. This implies a change of the
currently implemented logic function and therefore can lead to a change of the device’s
functionality. The look-up tables of SLICEMs have the ability to be used as distributed
memory or shift register. The operating mode is defined with configuration bits and can
thus be changed by SEUs. Upsets in a flip-flop can directly change its content, but can
also change its configuration. The initial- and reset values plus whether it is used as latch
or flip-flop is defined with configuration bits. Another set of configuration bits controls
whether the clock, clock_enable or reset inputs are inverted. A SEU in these bits is likely to
produce timing errors as the flip-flop may get its control signals at the wrong clock edge.
The multiplexers and routing lines within the slices can be affected in the same way as
described for the inter-slice routing.

3.3.3 SEUs in I/O Buffers

The Virtex input/output buffers (IOBs) deliver a lot of configuration options. This con-
figuration decides whether the buffer is used as input, output or bi-directional tri-state
buffer and defines the electrical standard to be used out of 16 possibilities. Furthermore,
each IOB contains three flip-flops to enable registering of the values read or to be writ-
ten. Radiation induced configuration changes in these bits could have a large impact
on the whole system of FPGA and its peripherals. The behavior of the Virtex IOBs in
the presence of SEUs has been studied by Wirthlin, Rollins, Caffrey and Graham in 2002
[RWCG02]. They recognized that only one single bit out of 324 IOB configuration bits and
two two-bit-combinations of flipped configuration bits were able to flip the IOB’s output
value or to actually change an input pin to an actively driven output pin for Virtex FP-
GAs. The probability of destabilizing a whole system due to SEUs in the FPGA IOBs is
therefore relatively low. As for the routing effects, no explicit Virtex-4 characterization of
IOB SEU susceptibility could be found, but it looks like the IOBs did not change a lot.
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3.4 Multi Bit Upsets

3.3.4 SEUs in BRAMs

The block RAM (BRAM) memories are made of SRAM storage cells as well, so they are
also susceptible to SEUs. According to a Virtex-4 SEU study from George, Koga, Swift,
Allen, Carmichael and Tseng in 2006 [GKS+06], the BRAMs have an even higher cross
section for SEUs than the CLB configuration bits. The authors assume an explanation for
this result in differences in themanufacturing. The CLB SRAM cells have larger channels,
a thicker oxide and contain more metal than the BRAM cells. The actual cross sections for
BRAMs and CLBs compared to Virtex-II devices in proton and heavy ion beam tests can
be found in [GKS+06]. However, the number of BRAM bits on the FPGA is smaller than
the number of CLB/IOB configuration bits, so the reduced probability of hitting a BRAM
instead of an non-BRAM bit may mitigate this increased BRAM SEU cross section.

3.3.5 SEUs in further Parts of the FPGA

According to [GKS+06], SEUs in Virtex-4 FPGAs can also affect the power-on-reset (POR)
circuit initiating a full or partial reset of the FPGA. Furthermore, the configuration ports
like JTAG or SelectMAP could be hit, interrupting configuration processes or requiring
a power cycle to reconfigure the FPGA. An upset characterization of the PowerPC hard
core processor implemented in the Xilinx FX series was done for both Virtex-II and Virtex-
4 by Allen, Swift and Miller in 2007 [ASM07]. As the PowerPC core will not be available
anymore in the further Virtex-6 / Spartan-6 devices, these characterizations become ob-
solete. A specific upset study on DSP-blocks, MGT-blocks or clock managers could not
be found. Another effect that can be found in literature is the SEU susceptibility of half
latches. Half latches keep a line on a defined potential and are more efficient than do-
ing the same by using LUTs. These circuit elements showed an SEU susceptibility in the
Virtex and Virtex-II FPGAs but are no concern for Virtex-4 FPGAs [ASCT07].

3.4 Multi Bit Upsets

The recent technology changes lead to continuously decreasing device structure sizes,
whereas the regions affected by ionizing radiation remain unchanged. The probability
of single ionizing particles affecting several transistor structures or several SRAM cells
increases with decreasing technology size. The consequences are increasing numbers of
multi bit upsets (MBUs), single particle strikes changing several SRAM cells at a time.
The cross sections for multi bit upsets in Virtex, Virtex-II, Virtex-II Pro and Virtex-4 FP-
GAs in proton and heavy ion beams are published in [QGK+05]. According to this source,
MBUs have hardly been a problem in the first Virtex FPGAs but are an increasing concern
for the newer devices. In proton tests with Virtex-4 devices, around 3% of all upsets can
be identified as multi bit upsets. Heavy ion tests with Virtex-II and Virtex-II Pro FPGAs
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demonstrated that up to a third of all events at the highest tested LET value were MBUs.
The newer Virtex-5 FPGAs tested in [QMG+07] reached even 59% of MBUs in all upsets
with heavy ion tests.
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This chapter gives an overview of the commonly known and used SEU and SET miti-
gation techniques. There are mitigation strategies for all abstraction layers starting from
modified CMOS circuits applying at the lowest level up to radiation tolerant FPGA ar-
chitectures. Redundancy and data encoding can be applied in the user logic to detect or
correct upsets. The exploitation of FPGA features and combinations of several methods
have shown an increased radiation tolerance. Mitigation aspects for higher abstraction
layers are touched in the last part of this chapter.

4.1 Radiation Hardened CMOS Logic

Any of the radiation effects described above rely on the principle of connecting differently
doped silicon areas and voltage levels. A first effort would therefore be, to harden these
CMOS cells against single event and cumulative effects. On the one hand, the amount of
possible charge collection from a single particle can be decreased, one the other hand, the
amount of charge required in a sensitive volume to flip a bit can be increased.

An approach to the first method is the use of an insulating layer between the doped ar-
eas and the substrate. These Silicon-on-Insulator (SOI) devices significantly reduce the
amount of collectible charge as the depletion- and funneling regions are limited by the
insulating layer. The complete isolation between n-well and p-well structures gives addi-
tionally an increased latch-up resistance, because parasitic pnpn-structures do not exist
anymore [Fac99]. Another positive effect of SOI-structures is the reduced capacitance
improving power consumption and maximum frequency. This layer is mostly made of
silicon oxide or sapphire (Silicon-on-Sapphire, SOS). A similar approach, but with an in-
creased area consumption, is the use of isolating guard rings around the transistors to
remove parasitic transistors and to keep the substrate on a fixed potential [Bak07].

In order to increase the critical charge required in the sensitive volume, the capacitance
of the nodes can be increased by increasing their size. A higher capacitance leads to a
lower voltage swing with the same amount of charge collected. A popular approach is
the use of additional resistors within the memory cell. These resistors affect the timing
parameters of the cell and can compensate short current pulses. According to [Sch96],
these resistors may not even increase the circuit area. A sample implementation is shown
in figure 4.1(a).
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(a) Resistor hardened SRAM cell (b) Dual interlocked storage cell

Figure 4.1: The resistor hardened memory cell (left) can compensate short current pulses. The
image is taken from [KSR+88]. The principle of a dual interlocked storage cell (DICE) is shown
on the right. The image is taken from [CNV96]. Both approaches decrease the SEU susceptibility
of SRAM cells.

There are further approaches hardening SRAM cells by using different design techniques.
An example is the dual interlocked storage cell (DICE) [CNV96] shown in figure 4.1(b).
This cell uses redundancy on CMOS level to store multiple instances of the desired val-
ues. Even if one part of the cell is modified by SEUs, the remaining instances restore the
correct state of the hit part. The advantage of approaches like this is that they just require
a change in the cell design, not in the manufacturing process like the SOI approach. A
similar approach was chosen in [BV93] by creating a heavy ion tolerant memory cell (HIT
cell).

The main disadvantage of all of these CMOS techniques is the effort to build an FPGA
with them. They are a good option for custom ASIC designs but would be too expensive
for small series of FPGAs with radiation tolerant CMOS designs.

4.2 Radiation Tolerant FPGA Architectures

The commercial off-the-shelf (COTS) SRAM based FPGAs have shown to be susceptible
to both, radiation induced single event effects and cumulative effects. Apart from these
devices, there are several architectures and technologies delivering increased radiation
tolerance to FPGAs. The main representatives are flash FPGAs, antifuse FPGAs and ra-
diation hardened SRAM FPGAs.

4.2.1 Flash FPGAs

Flash memories are unlike SRAM cells non-volatile and therefore do not lose their stored
value when powered off. The principle of flashmemories relies on the use of floating gate
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(a) Floating gate transistor (b) non-conducting and fused ONO
structure

Figure 4.2: Flash and antifuse principles

transistors. The gates of these transistors are completely isolated from the other parts of
the device. Above this floating gate is another control gate. By applying voltages on
the control gate, the floating gate can be charged and uncharged by exploiting tunneling
effects. Once the charge is deposited on the floating gate, it will remain there, regardless
of whether the device is connected to a power supply or not. This non-volatile gate charge
leads to a decreased power consumption compared to SRAM based implementations.

The main advantage of flash FPGAs regarding the operation in radiative environments
is that the floating gate requires much more charge than a single ionizing particles can
deposit or compensate. According to [SWC+99], a heavy ion with a LET of 37MeVcm2

mg can
only contribute less than 1% of the total charge on a floating gate. FPGAs built with this
flash technology are therefore mostly resistant against single event upsets in the config-
uration memory. The user flip-flops are expected to be as susceptible to SEUs as their
SRAM counterparts from the same manufacturing technology. SETs on the routing nets
are still a concern. The effects of single event gate rupture (SEGR) are possible during con-
figuration and the flash technology delivers no increased total ionizing dose resistance
compared to SRAM based architectures of the same manufacturing process [SWC+99].

The disadvantage of flash based FPGAs is that they require additional manufacturing
steps beyond the standard CMOS process and are therefore often some technology gen-
erations behind the newest CMOS technologies. Furthermore, the array structure of user
configurable logic elements (tiles) is much simpler than in the Xilinx Virtex architectures
and the supported clock frequencies are lower. The current flash FPGAs offer also on-
chip RAM, but are missing things like digital signal processors (DSPs), multi gigabit
transceivers(MGTs) or integrated Ethernet PHYs. Actel1 is one of the most important
manufacturers for flash based radiation hardened FPGAs.

4.2.2 Antifuse FPGAs

Another possibility to achieve increased radiation tolerance is the use of antifuse FPGAs.
Actually antifuse FPGAs are more similar to ASICs than to SRAM FPGAs, as they are

1http://actel.com
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non-volatile and their configuration is writable only once. After that initial write, the con-
figuration is static and cannot be changed anymore. These FPGAs use antifuse switches
consisting of an oxide-nitride-oxide (ONO) layer sandwich. The programming can be
done by applying high voltage pulses to the desired ONO structures and therefore fus-
ing them. The TID resistance of current antifuse FPGAs is in the order of 300 krad [Act08]
and the configuration can, due to its static nature, not be modified by SEUs. There are
even antifuse FPGAs with SEU-hardened registers and integrated SRAM scrubbers like
the Actel RTAX-S/SL RadTolerant FPGA [Act08] available for space applications. Those
devices allow an excellent implementation of radiation tolerance, but their static nature
denies any application requiring the ability to change the currently implemented design.
An antifuse FPGA implementation of the LEON3FT fault tolerant softcore SPARC CPU
system for avionic and space applications has been done by Actel in their RTAX-S/SL

chips. The LEON3FT uses error correcting codes in any memories for up to four errors
per 32 bit word or cache tag. A more detailed description of the LEON3FT Actel imple-
mentation can be found in [Aer09].

4.2.3 Radiation Tolerant Xilinx FPGAs

Xilinx delivers radiation tolerant versions of their SRAM based devices for space and
military applications. These versions are based on the commercial Xilinx FPGAs and
are currently available for Virtex-II, Virtex-II Pro, Virtex-4 and Virtex-5 architecture. For
Virtex-4 architecture, these FPGAs are called Virtex-4 QPro-V [Xil08b] and are available
in the same three platforms as their commercial counterparts: LX-series for high perfor-
mance logic, SX-series for signal processing and FX-series with a PowerPC core. Xilinx
delivers the Virtex-4 QPro-V FPGAs with a guaranteed resistance against total ionizing
dose and single event latch-up combined with an SEU characterization. According to
[Xil08b], the devices can handle a total ionizing dose of at least 250krad(Si) and are im-
mune to single event latch-up up to a heavy ion linear energy transfer (LET) of 100MeVcm2

mg .
The main difference to the commercial Virtex-4 FPGAs are

• a thin epitaxial layer during the wafer manufacturing process to increase SEL im-
munity

• a well defined test procedure for each wafer lot regarding the electrical specifica-
tions and timing parameters in combination with TID levels

• a full characterization for proton and heavy ion effects

• an increased maximum temperature range

Due to these improvements and characterizations, the Virtex-4 QPro-V FPGAs are much
more expensive than their commercial counterparts.
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(a) TMR with one voter (b) TMR with three voters

Figure 4.3: Triple Modular Redundancy (TMR) with one or three majority voters. TMR with
one voter is resistant to single errors in one of the instances, but the voter itself is unsecured. By
securing the voting process with triplication, every part of the surrounding design is needed three
times.

4.3 Redundancy

Any of the radiation hardened FPGA architectures mentioned above have still a remain-
ing susceptibility to at least SEUs in the user flip-flops and SETs in the routing net. The
standard SRAM FPGAs are further vulnerable to changes in the device configuration as
shown in chapter 3.3.

One solution to these problems is redundancy. Redundancy can be applied to almost any
grain, frommultiple instances of whole macroscopic systems like computers down to the
replication of single gates within a device. If the same object exists in multiple instances,
the probability for every instance failing decreases with the degree of redundancy. By as-
suming not more than one upset at a time, the duplication of an instance allows to detect
differences between them. By triplicating the instances, at least a majority of correct re-
sults can be obtained. Higher orders of redundancy allow a higher reliability or a higher
number of possible upsets at a time.

Redundancy can be implemented both temporal and spacial. Temporal redundancy al-
lows to compare results from different times of execution and can be used to mitigate
temporary errors. Spacial redundancy is implemented as several parallel instances cal-
culating simultaneously in order to mitigate static errors.

4.3.1 Triple Modular Redundancy

Spacial redundancy is mostly implemented with Triple Modular Redundancy (TMR) and
can be applied at any level. Regarding FPGA applications, TMR can imply the use of
three independent FPGAs mounted on the same or even on different chips, the use of re-
dundant IP-cores within a single FPGA down to triplication and voting of single look-up
tables or flip-flops. Three independent modules do the same operation and their results
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Figure 4.4: Implementation of Double Module Redundancy (DMR) / Duplication With Compar-
ison (DWC). This method can only detect erros and is not able to determine which of the outputs
is the faulty one.

are compared. A majority voter can determine the correct result even if one of the mod-
ules supplied a wrong value. But this principle does only work as long as the voter and
the common input line for all three instances are correct. This cannot be guaranteed if
they are implemented with FPGA logic. In order to deal with susceptible inputs and vot-
ers, all of the logic has to be triplicated. Three input signals were independently handled
by three module instances and their outputs are voted with three majority voters. This
version can even handle one upset in an instance and one upset in a voter simultaneously
and still returns a majority of correct results. Sample implementations of TMR are shown
in figure 4.3(a) and 4.3(b). The penalty of this method is its resource usage. As every part
of the design has to be triplicated, the area increase for the triplication is a factor of three.
Furthermore, voters have to be added. A voter for three signals can be implemented in
one look-up table (LUT3). According to the grain of TMR implementation this can be one
further LUT3 for each single flip-flop down to one additional LUT3 for each output of the
IP-core or the whole system. The overall resource usage is therefore at least greater than
three times the original usage and can even grow to a factor of six [WRCG03]. The power
consumption of TMR-hardened designs will increase with the resource usage and the
additional logic in each signal path leads inevitably to a decreased timing performance.
TMR will also provide an improved tolerance to SETs, because even if one branch of the
logic is temporarily affected by a SET, the majority will still hold the correct values.

4.3.2 Double Modular Redundancy

A spacial redundancy implementation with reduced area overhead but also reduced
functionality is Double Modular Redundancy (DMR). As for TMR, DMR can be applied
at any level, from whole systems down to single logic elements. DMR implies the du-
plication of logic blocks. The independent evaluation of two identical logic blocks with
identical inputs allows to detect errors by comparing their results. If the results differ, one
of the instances produced a wrong output. This method is often also named as duplication
with comparison (DWC) [dLKNH+04]. The limitation of this method is that a system with
solely DMR cannot decide which of the signals is the faulty one in case of a difference.
Like for TMR, it has to be assured that the input lines and the comparison logic deliver
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(a) Sampling with different clocks (b) Delaying the output signal

Figure 4.5: Examples for temporal sampling to mitigate SET effects. By sampling a signal with
three differently shifted clocks (left), at most one flip-flop can get a wrong value due to SETs. A
similar approach is to delay the data output in two steps (right).

reliable results, so they may have to be implemented with DMR, too. A sketch of a DMR
implementation is shown in figure 4.4. Assuming single configuration upsets again, both
comparators will indicate errors if the upset affected one of the instances or any routing
net to the comparators. If single errors in the compare logic appear, at least one of the
comparators will give a correct result. This, of course, could lead to false positives. There
is also an increased tolerance to SETs as they could be detected by the comparators, how-
ever this tolerance is smaller than with TMR because SETs affecting the outputs may be
missed by the comparators due to different signal propagation delays. The increase of
area usage is a factor of two for the duplication of any logic plus the logic required for
the comparison. The power consumption will increase with resource usage. Both, the
area usage and the power consumption are lower than for TMR. This method will also
decrease the maximum frequency or increase the latency because additional logic in the
data path is required to compare outputs.

Double Module Redundancy is often combined with concurrent error detection (CED)
schemes. Regarding a module F with input i and output F(i), a CED checker module pre-
dicts specific output characteristics of the concerned module F without the need of doing
the identical operation. These predicted characteristics can be used to detect errors and
can extend a DMR system with CEDs in each module. This extension makes it possible
for the system to decide, which of both modules is the faulty one. As only characteris-
tics are used for prediction, the number of detectable errors depends on the module and
the used characteristics. Several concurrent error detection schemes have been evaluated
and compared in [MM00].

4.3.3 Temporal Redundancy

Temporal redundancy evaluates the result of a module at different points of time. This
form of redundancy addresses transient faults only, because static faults would give the
same wrong result all the time. One possible implementation of temporal hardware re-
dundancy is to sample the output of a module with different relatively shifted clocks as
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shown in figure 4.5(a). As long as the transient width of the SET is smaller than the phase
shift of the clocks, the SET will have no effect on the subsequent logic. If a transient oc-
curs in the considered module, it will not arrive at the flip-flops data inputs in the same
time with more than one of the three sampling clock edges. Thus, the worst case would
be that one of the flip-flops actually samples the transient fault. Cases like this are then
eased by the subsequent voter. Approaches to build temporal sampling latches relying
on this principle are presented in [ME00].

Another approach to temporal redundancy is to sample differently delayed outputs of
the same module with one clock as shown in figure 4.5(b). As long as the transient width
is smaller than the signal delay, not more than one of the lines will be upset at a time. The
voter will therefore keep the output stable. This approach is not well fitting for FPGA
applications because fixed signal delays are not easy to implement.

The temporal redundancy approach with several sampling clocks can be combined with
triple modular redundancy to achieve SEU and SET tolerance [RWS+07].

4.4 Error Detection and Correction

Another aspect of fault tolerance is the implementation of error detecting or even error
correcting codes. The simplest example for error detection is the use of a parity bit. A
parity bit is an additional bit added to a word of bits determining whether there is an
odd or even number of logic ones in the considered word. The combination of word and
parity bit makes it possible to detect single bit flips in the word or the parity bit. A parity
bit can easily be created in hardware as it is only the XOR-operation of any bits in the
word. The single parity bit algorithm is not capable of detecting more than one upset,
because any even number of flipped bits will result in the same parity bit. However,there
are several algorithms providing multiple error detection.

The Hamming error correcting code (ECC) is an example for an algorithm able to correct
up to one and detect up to two errors. This code uses seven additional bits on a 32 bit
word and eight bits on 64 bit words. The algorithm for calculating Hamming bits uses
only XOR operations of bits in the word, but due to cleverly chosen combinations of
these operations, single errors in both the word and the Hamming bits can be corrected
with the according correction logic. This algorithm and sample HDL implementations of
Hamming encoder and decoder are described in [Tam06].

Both parity andHamming codes are common techniques when targeting applications us-
ing lossy mediums but reliable decoding/encoding hardware. More complex codes like
Reed-Solomon-Codes are used for CompactDics, mobile phones or digital video broadcast-
ing (DVB).
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The theory of encoding combinations of bits can further be applied to FPGAs using state
machines. State machines control the sequential behavior of hardware modules. The
current state is hold in registers and the next state is derived from the current state and/or
further inputs. Each state of a state machine is encoded as a unique sequence of bits. The
most common encodings are Gray, using the binary representation of an incrementing
number, or One Hot, using one bit per possible state. Single event upsets in these state
bits can alter the current state to another or invalid state and thus induce an unexpected
behavior of the whole system. By encoding these states with a hamming distance, invalid
states due to SEUs can be detected and corrected. Several state machine applications and
encodings have been compared with a focus on SEU resistance in [BT04].

4.5 Scrubbing

Previous investigations have shown that radiation can alter the state of the FPGA con-
figuration bits and therefore change the behavior of the system. A logic consequence to
achieve increased fault tolerance is, to try to keep this configuration mostly static. The
Xilinx Virtex-4 FPGAs offer several interfaces for initial FPGA configuration and for re-
configuration during runtime. These interfaces allow any part of the FPGA configuration
to be read back or written while the device is operating. The technique of writing only
parts of the configuration is called dynamic partial reconfiguration (DPR) and is also a
well known instrument for dynamic circuits and object orientated system approaches
[AGM+08]. The advantages of reconfiguration during runtime in the presence of single
event upsets is that the FPGA configuration can be read back, compared to a correct bit-
stream and rewritten into the FPGA correctly. This allows to identify, correct and avoid
the accumulation of SEUs in the FPGA configuration memory.

The idea of correcting upsets with reconfiguration is called scrubbing and has already
been published for the first Virtex FPGAs [AP98]. The implementation on the current
Virtex-4 FPGAs is presented in a Xilinx application note [CT08]. There are basically two
approaches to exploit this reconfiguration feature for SEU mitigation. The first approach
is to continuously write the correct bitstream into the FPGA, regardless of whether there
are upsets or not. This technique is easy to implement with a state machine reading the
configuration from a memory and writing it into the FPGA. The second approach is to
read back the configuration first, check if there are configuration errors by using check-
sums or by comparing it to a correct bitstream and finally correcting the configuration
only if errors were found. Xilinx even recommends to read back a corrected configura-
tion again after the write, to ensure that the error was actually corrected.

Reconfiguration can be done with either an FPGA internal configuration port accessible
from the user logic called ICAP or via one of the external configuration ports like JTAG or
SelectMAP. The configuration process is further described in chapter 7. The disadvantage
of the internal reconfiguration port is that it is implemented with common FPGA logic
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and therefore susceptible to SEUs itself. A comparison of the reliability of both, the in-
ternal and the external configuration ports has been published in [BPP+08]. Performing
the reconfiguration via SelectMAP gives the opportunity to monitor the configuration
control signals in order to detect errors in the configuration interface.

4.6 FastBoot

The idea of FastBoot is to take a snap shot of the complete FPGA system during runtime
including all flip-flop states. By using the captured flip-flop states as the flip-flop reset
states in a new bitfile, the whole system could be restored to this captured state by up-
loading the newly created bitfile. This technique can be used to mitigate the effects of
uncorrectable errors. If snap shots are taken regularly, the latest snap shot can be used
as reprogramming bitfile in case of uncorrectable errors. The system would restart at the
latest captured point and does not need to restart "from zero". The current states of the
flip-flops are accessible via the Xilinx FPGA configuration interfaces. There is still some
work to do when using FastBoot in combination with peripherals requiring a power up
sequence, but the reboot time of a system in case of uncorrectable errors could be reduced.
More information about FastBoot can be found in [MK09].

4.7 Shielding

A quite simple SEE mitigation scheme is the shielding of the electronic device. Particles
that do not reach the FPGA cannot induce radiation effects. Shielding is highly depen-
dent on the radiation and can have negative effects, if the radiation is not completely
stopped but only slowed down. The energy deposition of radiation in matter is a func-
tion of its energy and can increase with decreasing energy. High energetic particles can
thus have a lower LET resulting in a lower SEU probability than the same particles with a
lower energy. This effect is known as Bragg peak and can be derived from the Bethe-Bloch
formula presented in chapter 3.1.3.

4.8 Automated and Combined SEE Mitigation

Implementations

All of the methods presented above give an increased tolerance to single event effects.
The TMR implementation is handled as the best "general purpose" solution for radiation
tolerant FPGA designs and was compared to temporal redundancy, quadded logic and
state machine encoding in [MMPW07]. There are several papers about how TMR can be
implemented efficiently like [WRCG03], [Car06] or [KSCR05], however, they require a lot
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of work to harden existing designs. Tool flows that automatically apply TMR techniques
already exist.

Xilinx TMR-Tool is one possibility to automate the hardening of an existing FPGA design
with TMR techniques. The tool promises complete SEU and SET immunity [Xilb] by
applying triple modular redundancy in the whole design. It can be integrated into the
common implementation tool flow and is advised to be used along with scrubbing.

Wirthlin et al. are developing a Java API for analyzing, creating and modifying EDIF
netlists for FPGA desings. This approach includes tools to automate the implementation
of both TMR and DWC. This software is open source and released under GNU GPL.
A complete description with documentation and download links can be found on the
project’s homepage [Bri].

A further approach to improve the SEU tolerance of TMR designs is presented in [SV06].
The authors describe a custom reliability orientated place and route algorithm. This algorithm
performs reliability orientated mapping and routing between logic functions in a way,
that SEUs affecting two different connections are not possible anymore.

A common FPGA design uses a lot of configuration bits but not all of these bits actually
affect the running design on SEUs. There are several approaches to indicate, which con-
figuration bits in a design are actually sensitive to SEUs. In order to reduce the costs of full
TMR regarding area and power consumption, there are approaches to apply TMR only
to subsets of the original FPGA design [PCG+06] [SRK04]. One of these approaches is
called "Partial TMR" and classifies all configuration bits according to their effects on the
design. Only the SEU critical parts of the design are triplicated with TMR and therefore
allow a trade-off of high SEU tolerance and acceptable area costs.

An approach applying triple modular redundancy with HDL functions is presented in
[Hab02]. Radiation tests comparing the Xilinx TMR-Tool approach with this functional
TMR approach have been accomplished with Virtex-II FPGAs by Saab Ericsson Space AB
[SM04]. Among others, these tests have been done using a combination of scrubbing and
redundant logic to avoid the accumulation of upsets.

There are also works addressing a significantly lower area overhead compared to the
TMR techniques. The double modular redundancy approach has proved to be able to
detect errors while scrubbing is able to correct them. The combination of both scrubbing
and DMR/DWC enables the creation of systems with increased SEE tolerance and area
costs significantly lower than TMR. One implementation is published in [BQS07]. The
authors implemented several modules in DMR connected to a scrubbing mechanism.
The detection of an error induces a partial reconfiguration of the module reporting the
error. Another approach exploiting the combination of DMR and scrubbing is presented
in [RVMR09]. An embedded softcore processor has been implemented twice as a master-
checker-system. A checker logic implemented in TMR is used to detect differences be-
tween master and checker, to initiate the creation of checkpoints and to force a rollback
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of previously stored checkpoints in case of errors. The presence of a memory scrubber is
only assumed at this point.

The idea of implementing an additionalWatchdog Processorwas already published in 1988
[MM88]. A small and simple co-processor monitors the behavior of the main processor.
Detected errors can be signaled to the checked processor or an external error handling
unit.

A SEU and SET mitigation technique combining TMR and DMR with temporal redun-
dancy and scrubbing is described in [LCR03]. The authors duplicate all logic and detect
errors by comparison. The outputs of each of their duplicated modules were sampled
with two clocks to mitigate SET effects. Any flip-flop is built with TMR to correct user
logic upsets and scrubbing is used to correct the FPGA configuration.

4.9 Fault Tolerance in Higher Abstraction Layers

All hardware fault tolerance techniques proposed above rely on redundant or additional
hardware. There are further approaches regarding fault tolerance on software level with-
out the need of further hardware, but with increased runtime.

One aspect of providing software based fault tolerance to an embedded system could be
to regularly perform a context save of all registers, the memory and the program counter.
The latest snap shot can be restored, if an uncorrectable error occurs [RVMR09]. An-
other approach is redundant execution of software. Any command could be executed
identically twice or with shifted operands to detect malfunctions in the hardware. One
approach in this area using redundant execution in combination with validation instruc-
tions is published as software implemented fault tolerance (SWIFT) [RCV+05].

There are probably plenty of other methods providing fault tolerance on higher abstrac-
tion layers, yet, as this field is not relevant for the purpose of this work, only a short
insight was intended.
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The previous chapters have shown that SRAM based FPGA systems are susceptible to
radiation induced memory changes and therefore cannot guarantee correct behavior of
every single part of the FPGA in radiative environments. However, exploiting SEU miti-
gation techniques as described above can lead to a significantly increased SEU tolerance.
The following chapter gives an overview of SEU mitigation techniques applied on this
work.

5.1 Radiation Tolerance in a Multilayer System

The aim of this work is to apply fault tolerance techniques to SRAM based reconfigurable
FPGAs not by blindly triplicating all logic, but by exploitingmitigation techniques on dif-
ferent layers to keep the area overhead on a moderate level. The commercial off-the-shelf
(COTS) SRAM architecture is chosen not because of any improved radiation tolerance
features compared to the competing architectures, but due to its flexibility and price. In-
deed, according to the requested application, a radiation hardened SRAM FPGA, a flash
based FPGA or even an antifuse solution may give a significantly better radiation toler-
ance. The aim is rather to find out what is possible with these cheap and well spread
SRAM based FPGAs. The SRAM FPGA market is continuously growing, the flexibility
and the possibilities for applications have increased with every Virtex generation, so why
not use them in a radiative environment, if it is possible with a fair effort?

Different SEE mitigation techniques are used in this work to develop a radiation tolerant
softcore CPU for SRAM based FPGAs. This CPU is designed to be part of a radiation tol-
erant multilayer system spanning all layers of modern FPGA based embedded systems.
This includes the FPGA configuration layer and the actual FPGA system architecture
with CPU and peripherals. An operating system contributes an abstraction layer for the
hardware and allows applications to use it. A sketch of the layer structure is shown in
figure 5.1. All these layers will give their share to an overall radiation hardened system
by applying different error and radiation effect mitigation techniques on each level. As
shown above, the FPGA configuration layer allows to be read and written in order to cor-
rect upsets or to apply FastBoot techniques. The implemented logic can be extended with
redundancy to detect or even correct single event effects. An operating system could im-
plement redundant execution of codes or context saves and software could be hardened
with appropriate coding techniques or error detection schemes.
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Figure 5.1: Layer structure of modern
FPGA based embedded systems. In order to
provide radiation tolerance in such a multi-
layer system, any layer can give a share by
applying layer specific mitigation methods.

5.2 FPGA SEU Mitigation Techniques for the lowest Layers

A radiation tolerant softcore CPU for SRAM based FPGAs as part of a multilayer system
covers only the lowest abstraction layers. Operating system or software aspects have
no effect as long as a base for executing single commands has not yet been created. The
mitigation techniques used in this work therefore refer to the lowest two layers: the FPGA
configuration and the user logic implementation.

The most important issue when dealing with radiation effects in SRAM based FPGAs is
to minimize the number of configuration upsets at a time. A system accumulating config-
uration upsets over time will almost in any case have a limit of errors it can deal with. As
shown in the previous chapter, Xilinx Virtex-4 FPGAs offer the possibility to read or write
their configuration during runtime. This feature can be used to correct configuration up-
sets while the system is running. Thus, the scrubbing technique as described above is
one of the key features of this approach. The effectiveness of scrubbing is dependent on
how fast the configuration can be written. The higher the scrubbing frequency for a given
upset rate, the lower the statistical number of configuration upsets at the same time. This
recommends the use of a fast configuration interface. Configuration errors due to single
event upsets cannot be avoided, but they can be corrected with scrubbing within a short
period of time. The application of FastBoot techniques is thinkable, but has not been
examined in this work.

The second part of SEU mitigation is hardening the user logic implementation. The use
of cheap commercial off-the-shelf (COTS) FPGAs as base architecture requires the use of
redundancy techniques with an area overhead. As shown above, double modular redun-
dancy (DMR) is just able to detect errors, but not to chose the correct result . Therefore, a
general reaction on a detected error cannot be formulated. Many projects advice the use
of triple modular redundancy (TMR) instead of DMR techniques to ensure that at least
the majority of three signals is correct. However, the disadvantage of TMR is an increased
area requirement of more than three times the original design.

The main aspect of this work is the exploitation of the combination of both, scrubbing
and redundant logic. Scrubbing guarantees that within a short period of time a configu-
ration error will be corrected. With this knowledge, it is sufficient to use double modular
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redundancy to detect errors and wait for them to be corrected by the scrubbing mecha-
nism. This of course demands that a software application tolerates a CPU waiting for an
error to be corrected by scrubbing. Consequently, a system required to handle realtime
conditions will hardly be possible with this method and time dependent software has to
be considered carefully. If these limitations do not exclude the desired application, this
method gives a remarkably increased radiation tolerance with a significantly smaller area
overhead than TMR.

5.3 Physical System Layout

Figure 5.2: System layout. The light gray boxes are physical elements whereas the dark gray
boxes represent the according FPGA configuration. A small flash FPGA is used to load bitfiles
from a flash memory and perform scrubbing on the SRAM FPGA. The SRAM FPGA is the main
part of the system holding the softcore CPU and its peripheral controllers.

The physical layout of the fault tolerant system is shown in figure 5.2. The heart of the
whole system is an SRAM based Xilinx Virtex-4 FPGA. This FPGA will hold the softcore
System-on-Chip (SoC) containing the fault tolerant CPU, a system bus, internal periph-
erals and controllers for external peripherals. These controllers can access the pins to the
physical peripherals. Exemplary shown are DDR-SDRAM chips and a Universal Asyn-
chronous Receiver Transmitter (UART) connection. The BRAMs are pure FPGA internal
memory blocks. Possible further peripherals like Ethernet, SD-Card, MGTs etc. are not
shown here. The initial FPGA configuration and the scrubbing process is performed
by a small Actel flash FPGA connected to the Virtex’ configuration interface. This flash
FPGA continuously runs a scrubbing engine and uses dedicated flash memories to store
the configuration bitfiles. The scrubbing engine already existed from a previous work
[Roh08] and has hardly been touched in this work. The only change was the addition of
a signal indicating the completion of a scrubbing cycle by sending a short pulse to the
SRAM FPGA.
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5.4 Choosing a suitable Softcore CPU

The base of a multilayer system is a CPU with a well defined instruction set. This in-
struction set allows commands to be sequentially executed and therefore software to be
developed. With an appropriate system of CPU and peripherals, even an operating sys-
tem can be used. As the wheel does not need to be reinvented, it should be considered to
implement a CPUwith an existing instruction set or better an existing processor architec-
ture definition. This allows existing compilers and software to be used and simplifies the
implementation of software and operating systems. A freely available radiation tolerant
implementation of a CPU could not be found, so a standard softcore CPU has to be mod-
ified. As already mentioned, some requirements on the architecture simplify the future
extension to a radiation tolerant multilayer system. The main demands on the softcore
CPU with these purposes are:

• simple 32 bit architecture, not stack based

• HDL source code available to adapt fault tolerance

• HDL code actually synthesizable, not only a simulation model

• software compiler / GCC available to allow software development

• easy attachment of further peripherals

• optional: existing linux port

There are several different softcore CPUs for FPGAs available. The most famous softcore
CPUs are Xilinx’ Microblaze, Altera’s1 Nios and Gaisler’s2 LEON series. Unfortunately,
none of them is really applicable for the requested needs. More promising are free custom
implementation like the cores published on opencores.org.

Microblaze

Xilinx’ Microblaze is a 32 bit RISC processor highly optimized for Xilinx FPGAs. It has
a huge amount of configuration options including Memory Management Unit (MMU),
cache, floating point unit, interrupt- and exception handling up to connections with sev-
eral peripherals over different bus protocols. All these options are set with a graphical
user interface (GUI) and do not need to touch any line of HDL code. In a standard Xilinx
subscription, Microblaze comes as pre-synthesized netlists, so the actual HDL code can
neither be seen nor changed. The full details about Microblaze can be found in [Xil08a].
The high optimization, complexity and the not freely available VHDL source code gave
the criterion for exclusion.

1http://www.altera.com
2http://www.gaisler.com
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LEON

Quite similar arguments fit to the LEON-processors of Gaisler . There are currently two
active versions of LEON: LEON2 and its successor LEON3. LEON is a SPARC3 CPUwith
a lot of configuration options and peripherals. Like Microblaze, there are MMU, cache,
interrupt handling, bus connection and debug support. There is also a fault tolerant
version of LEON3 available as described in chapter 4.2.2, but this VHDL design is meant
as ASIC/antifuse FPGA prototype for avionic and space applications but not for SRAM
FPGAs. This means, this design handles only bit upsets in system memory, caches and
registers. It does not take any changes in routing or logic behavior into account as this
cannot happen in an antifuse FPGA or ASIC implementation. In contrast to the standard
LEON3, the fault tolerant version’s VHDL code is not available under GNU GPL but
must be purchased. Compared to Microblaze, the SPARC instruction set is more complex
and things like rotating register windowsmake life really hard when trying to modify the
code. More details about SPARC and its instruction set can be found in the SPARC V8

Architecture Manual [SPA].

Nios

Nios is Altera’s counterpart to Xilinx’ Microblaze and is therefore optimized for Altera
FPGAs. The current version is NIOS II. It is also a 32 bit RISC architecture with customiz-
able cache, MMU, debug modules and a lot of peripherals all attachable with a graphical
user interface. More information about Nios can be found in [Alt09]. In contrast to Mi-
croblaze, Nios gives the possibility to add user defined instruction. Licensing is done
through Synopsys Designware4 as third party IP provider. The complexity and the need to
port the Altera design to a Xilinx FPGA made a decision against Nios.

Custom Implementations

There are a lot of free implementations of several CPU architectures available on hosts
like opencores.org or private pages. Unfortunately, a lot of them are rather eight or 16 bit
architectures, are incomplete or hardly documented. The DLX architecture presented in
the early versions of Computer Architecture: A Quantitative Approach [HP96] would have
been a good candidate, because any part of the architecture is described in detail in this
book. A lot of implementation of the DLX architecture combined with compilers, sim-
ulators and sample software could be found. However, none of them was actually syn-
thezisable, but rather a simulation model only.

3http://www.sparc.org
4http://www.synopsys.com
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A promising implementation meeting the most important requirements was found in
Steve Rhoads’ Plasma - most MIPS I(TM) opcodes project [Rho09] hosted on opencores.org.
It has been chosen, because it is a quite simple 32 bit RISCmicroprocessor systemwith the
most important peripherals already attached and ready to run. It is written in VHDL and
can be synthesized with either a two or three stage pipeline. The CPU is implemented
with the MIPS I instruction set able to run code produced from the standard GCC MIPS
cross compiler. This CPU does not have a cache or a MMU, thus keeping the whole sys-
tem simple. There is a lot of sample software from simple test programs up to a custom
built small operating systemwith TCP/IP stack and running a webserver. A software en-
vironment for both developing and simulating own applications is also supplied. Even
beginners are able to create own application running on the FPGA within some hours.
Unfortunately, this design is not very flexible. Any peripheral is "hard wired" to the CPU
without using a defined bus protocol. Thus, users need to have a deep knowledge of
whats happening inside the CPU to be able to add custom peripherals. Furthermore, the
interrupt/exception handling and the co-processor registers are not implemented as the
MIPS specification suggests or are partially not existent. The VHDL code is written in a
quite unusual way and the synthesized design is comparably slow.

These facts started a deep modification and finally lead to a complete rewrite reusing
only minor parts of the original code.

5.5 The base CPU

The final version of the CPU is now quite similar to the MIPS R2000/R3000 system and
is supplied with

• 32 bit address and data width, byte addressed, big or little endian

• a five stage pipeline

• a hardware multiplication and division unit

• interrupt and exception handling as suggested by the MIPS specification [KH91]

• a Wishbone bus interface as specified in [Her02]

The implemented instruction set can be found in appendix A. A graphical representation
of the CPU system is shown in figure 5.3. The CPU and any peripherals can be controlled
using the standard GCC MIPS cross compiler. The implemented MIPS CPU is a three
operand architecture with 32 general purpose 32 bit registers and several co-processor
registers used for interrupt and exception handling. As its predecessor, it neither has a
cache nor a MMU at this time, whereas a cache for this architecture is currently in devel-
opment. The lack of separate instruction and data caches require that both, instruction
fetch and memory access share the same bus. The pipelined execution of commands is
separated into instruction fetch (IF), instruction decode (DE), register access (RA), execute (EX)
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Figure 5.3: Pipeline stages and bus concept of the implemented MIPS CPU. The CPU is divided
into five pipeline stages and can be attached to almost any peripherals using a Wishbone bus.
Bus access is done using either the program counter (PC) or the address supplied from memo-
ry/writeback stage. The currently connected peripherals are an internal BRAM block, a UART
interface and a DDR-SDRAM controller.

and memory / writeback (MW). IF-stage fetches the next instruction from the bus and DE-
stage decodes it and creates the select signals for the multiplexers in the later stages. RA-
stage loads the contents of the registers according to these signals. EX-stage performs the
requested logic combination of the previously loaded register contents. MW-stage redi-
rects the result back into one of the registers or performs a bus access. The Wishbone bus
currently grants access to an internal BlockRAM, a UART controller and a DDR-SDRAM
controller.

5.5.1 Interrupt and Exception Handling

Exceptions are a superset of all spontaneous events in the CPU. The currently imple-
mented exceptions are interrupts, integer overflow and SYSCALL/BREAK instructions.
All exceptions induce a jump to a predefined address, the exception handler. An integer
overflow exception occurs, if signed additions or subtractions exceed limit the of the 32
bit number range and therefore produce a wrong result. SYSCALL and BREAK are spe-
cial instructions directly inducing a jump to the exception handler by software.

An interrupt is an external signal raising an exception and thus forcing the CPU to jump
to the exception handler. This exception handler disables further interrupts, saves the
interrupted program counter address and all important register contents to memory, de-
termines the source of the interrupt and handles it. After the interrupt is cleared, the
saved register contents are restored, interrupts are re-enabled and the CPU returns to the
previously interrupted program counter address. If the CPU is the only device being
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able to initiate bus transfers, interrupts are the only possibility for peripherals to indi-
cate events. An example for an interrupting peripheral is a UART interface. The CPU
can write characters via the UART at any time, but cannot know when the UART will
receive a character. One possibility would be, to continuously access the UART interface
to check whether a character was received or not (active polling). This is not very effi-
cient. The other possibility is, to make the UART raise an interrupt every time a character
is received. The CPU gets interrupted, checks where the interrupt came from and can
read the received character from the UART interface for further operations. The MIPS
architecture delivers eight different interrupts. Six of them are external signals that can
be connected to peripherals. The remaining two interrupts are software interrupts be-
ing raised by writing into a specific register by software. All of these interrupts can be
enabled or disabled separately and have all the same priority.

5.5.2 The Wishbone Bus and its Peripherals

The Wishbone bus is a simple handshake protocol for communication between different
interfaces. The specification can be found in [Her02]. The bus system is divided into
master and slave devices, where only the masters can initiate transfers. The implemented
CPU acts as a single bus master with its peripherals as bus slaves. The CPU can only
initiate single transfers instead of bursts at this time and has a data width of 32 bit. The
bus is addressing 32 bit words with a 30 bit address line and refers to single bytes within
these words via four bit select lines. Further peripherals can easily be added into the
address mapping.

The peripherals currently connected are an internal block memory (BRAM), a UART con-
troller and a DDR-SDRAM controller.

5.6 Applying Fault Tolerance

In order to apply fault tolerance to a softcore CPU on FPGA logic level, some kind of
redundancy has to be used. As described above, this approach tries to keep area over-
head low by avoiding triple modular redundancy (TMR) in support of combining double
modular redundancy (DMR) with scrubbing.

The CPU is fed with a sequence of instructions strongly related on each other. A sample
sequence is shown below.

ADD R3, R1, R2 # R3 = R1 + R2

SW R3, R5 # write content of R3 to the address stored in R5

JR R3 # Jump to address stored in R3
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Figure 5.4: Sketch of the fault tolerant softcore CPU. The whole pipeline has been duplicated to
detect SEEs and shares a common register bank. Comparison between the pipeline stages is done
in two steps. The program counter is the only part of the CPU implemented with TMR.

If one of these instructions fails and returns a wrong result or a wrong destination ad-
dress, any successive instructions relying on this result will not have any chance to com-
plete correctly. If the addition in the example above fails and R3 gets a wrong value,
this value is written to memory with the following instruction. By even jumping to the
wrongly calculated address R3 with the third instruction shown above, the behavior of
the system gets unpredictable. The CPU will produce wrong output or get stuck in parts
of the code it shouldn’t be. The key fact is: even if the functional behavior of the system
is corrected, wrong register or memory values will affect the system sooner or later. The
most critical part in hardening the CPU is therefore to avoid wrong data being written
back into a register or in any other part of the memory.

5.6.1 Duplicating the Pipeline

DMR on the softcore CPU has been implemented by duplicating the whole pipeline. Any
of the pipeline stages IF, DE, RA, EX and MW have been instantiated twice forming a
completely identical second pipeline. Both pipelines operate independently and have
their own pipeline control signals, but are fed with identical inputs. In order to detect
SEEs, both pipelines are compared with each other. A sketch of this double pipeline CPU
is shown in figure 5.4.

There are two possibilities to detect errors in the pipelines. One approach is to monitor
a lot of equivalent signals from all pipeline stages to detect an error as early as possible.
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The second approach is to reduce the comparison to only the outputs of the MW-stage in
order to detect errors just before they would be written back. Both approaches have been
implemented during this work.

The comparison between the pipeline stages is designed to be done in two steps. A first
step compares the inputs of the stages DE, RA and EX, a second step uses the first step
results and the outputs of the MW-stage. Both comparison approaches can be realized by
either including the first step’s comparison result to the second step or not.

The second comparison step has to be done combinatorially because its result is required
in the same pipeline step to detect differences between both pipelines and prevent the
writeback of faulty data. The first comparison step is not that time critical, because the
instructions in these stages cannot perform anywriting to registers or memory. The result
of this comparison is registered and used as input to the second comparison step. Even
if an error was detected in the first step, but forwarded to the second comparison step
one cycle later, the pipeline shifted its instructions at maximum one step. The worst case
would be that the instruction raising the error condition arrives at MW together with its
error signal. The error is still handled before any wrong pipeline data can be written
back.

The same argument allows the comparison of just the input signals to the pipeline stages
instead of their results in the first comparison step. An error in the outputs of a pipeline
stage may be undetected in one of the early pipeline stages unless the pipeline is shifted
one step. The error will then result in a difference of the input signals to the next pipeline
stage and gets detected. Errors like these are detected with a delay, but the detection will
be in any case before the according instruction completes the MW-stage.

The advantage of splitting the comparison process into two steps is mainly due to perfor-
mance aspects. In the first pipeline stages, a lot of signals are compared to detect a broad
range of possible errors. If all of these signals would be compared in the MW-stage, a
lot of comparisons had to be in the data path deciding whether a result can be written
back or not. This would significantly decrease the maximum possible clock frequency
and therefore the throughput. With this two step approach, only the result of the first
comparison has to be included to the MW-stage output comparison.

For both comparison steps, any differences between the two instances of each pipeline
stage are detected as errors, if at least one of them ismarked as valid. Instructionsmarked
invalid in both instances are not taken into account. The pipeline control signals from
both pipelines are compared, too, and are evaluated in the first comparison step.

5.6.2 Duplicating the Compare Logic

As shown in the chapters above, any reduction from redundancy to a single signal is a
SEE critical point. The final result of a comparison is typically one bit: ’0’ if the compared
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Figure 5.5: CPU behavior on error
detection. If an error is detected,
the pipeline is flushed by mark-
ing all instructions as invalid (white
numbering) and restarts with the in-
struction in MW-stage. By copy-
ing the PC of the MW-stage in all
pipeline stages, the CPU restarts
with this instruction.

signals are equal, ’1’ if they differ. If this comparison logic gets struck, a reliable error
detection is not possible anymore. In order to avoid this single point of failure as far
as it is possible, the comparison logic is implemented twice, too. The optional first step
and the required second comparison step are implemented with DMR, too. Both second
step comparisons use the outputs of each first step comparison as inputs for their own
results.

5.6.3 Reacting on Errors

If an error was detected with the compare logic described above, the CPU has to react on
it. Error handling is only done according to the output of the second comparison step.
This automatically includes errors detected in the first step delayed by one clock cycle.
The most important fact is that in any case an error is detected, the CPU will not try to
write to any memory. The pipeline is flushed by marking all instructions as invalid and
copying the program counter of the MW-stage to any pipeline stages. This induces, that
the address of the instruction in MW-stage at the time the error occurred is used as new
address for instruction fetch. An example is shown in figure 5.5: While instruction 3 is
being prepared for writeback, an error is detected and the result from 3 is not written
back. The pipeline is marked as invalid (white numbering) and the program counter
from the MW-stage is copied to any stage. The program counter of all states now points
to address 3. As this includes the PC in IF-stage, the pipeline continues with fetching
instruction 3. Four pipeline steps later, the pipeline’s state is the same that resulted in an
error before. If the error was a transient, the CPU will continue normally at that point. If
the error is a static upset, the error condition will be raised again. This results in a loop
until the error gets corrected by scrubbing. The error detected in this example does not
necessarily come from instruction 3 but can also be an error raised by any of the earlier
pipeline stages.
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Figure 5.6: Triplicated
program counter. The PC
address from any pipeline
stage is stored triple and
voted to inputs of the next
stage. The PC control
unit handling the signals
from both pipelines is
implemented with TMR,
too. refresh_was_done is
an external signal from
the flash FPGA indicating
when a scrubbing cycle
has completed.

5.6.4 Triplicating the Program Counter

The error handling techniques above have shown that the program counter is a very
important part when recalculating failed instructions. If the program counter is altered
or cannot set the according addresses reliably, all of the methods described above will
fail. The program counter is the most sensitive part of the CPU and has therefore been
implemented with TMR. This is the only part of the CPU that uses TMR. The program
counter from any pipeline stage is stored triple and is voted to the inputs of the next
pipeline stage. Only if both pipelines give identical control and data signals, the PC
array is shifted to the next stages.

The experiment showed that the complexity of the system still holds a probability that
raised error conditions may not be cleared with scrubbing. This results in an uncor-
rectable error and requires a reset of the CPU. In order to detect whether or not the CPU
is still working, the program counter in the memory stage is monitored over time. A
signal from the flash FPGA indicates when a scrubbing cycle has completed. The combi-
nation of both signals allows to detect, if the CPU’s MW-stage PC address did not change
for several scrubbing cycles and can initiate a reset of the CPU. By resetting the CPU, it
restarts from PC address zero.

5.6.5 Register Bank

There are two choices when duplicating the pipeline: Any pipeline gets its own regis-
ter bank or both pipelines share the same. Both versions have been implemented and
tested during this work. The problem for both versions is, that the redundancy cannot
be extended to the lowest levels. Any flip-flop has a single data input and a single clock
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enable. Any redundant signal has to be reduced to one signal if it is used as data input or
write enable. By ensuring, that both instances of data input and both instances of write
enable are equal and correct, the result will be a single clock enable signal. The correct-
ness of this single signal cannot be assured without just shifting the problem. This last
part from comparison to the flip-flop is still vulnerable to SEEs and though wrong bits
being written cannot be completely avoided. The probability of undetected errors in this
part of the design can be reduced with the length of the single signals, thus by placing
the comparison of the redundant signals as close as possible to the targeting flip-flop.

By giving an own register bank to each pipeline, another form of redundancy is imple-
mented. Assuming undetected single errors during a write to the register bank, at least
one instance will hold the correct value. Any further access to the faulty register resulted
in two differing values in the pipelines raising an error condition, inducing a pipeline
flush and re-executing the instruction. However, this endless loop cannot be recovered
with scrubbing, because the error is not based on a configuration upset. Detecting differ-
ences between both instances is not a problem at all, but how to react on differences? The
first guess would be to re-execute the instruction if the writeback resulted in errors. Now
imagine a command like this:

ADD R3, R3, R3 # R3 = R3 + R3

In order to re-execute this command, the previous value of R3 had to be saved. Extending
this to spontaneous errors in registers that are not accessed in the current instruction,
a complete second instance of the register bank with a lot of overhead controlling the
snapshot/restore procedure would be required. A single general purpose registers bank
consists of 31 registers with 32 bit each, thus just below 1000 registers and there are also
some co-processor registers. The whole fault tolerant CPU without register bank uses
around 2.500 flip-flops. Three or even four instances of a register bank do not get along
with a low area approach. Further, if differences between the register banks occurred
anyway, the CPU had to be reseted.

The second approach uses one shared register bank for both pipelines. As described
above, the data and control signals from both pipelines are used to create a single data
and clock enable as close as possible to the targeting register. There is another comparison
logic before each flip-flop comparing only the single bits from both pipelines for this
flip-flop. If these signals differ and the difference was not yet detected by the two step
pipeline comparison, the bit is not written. One of the two data bits to each flip-flop has
to be chosen as data input. The inputs from the first pipeline are used here. Reading
is done independently for both pipelines. This implementation tolerates, that single bits
within awordmay not bewritten even if no error was detected by comparing the pipeline
stages. This is a lack of hardware based fault tolerance but gives a great chance to error
mitigation techniques on software level.
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The demands for a low area implementation would prefer one shared register bank for
both pipelines, if the radiation tolerance does not suffer from that. Both versions have
been implemented and tested on their SEU susceptibility during this work.

5.6.6 Securing the Wishbone Bus with Hamming Codes

The Wishbone bus is a common source for both pipelines. If wrong instructions were
fetched via this bus, both pipelines would be fed with the same faulty data and the error
was not detectable by comparison. In order to avoid this situation, the Wishbone bus has
to be secured. The Wishbone specification [Her02] allows the use of tag-fields for both
the address and the data lines. Their contents can be defined by the user. Chapter 4.4
showed, that Hamming codes offer the possibility to detect several errors and therefore
give a good candidate to be used as tags.

An own implementation of both Hamming encoder and decoder has been done during
this work. The Hamming encoder to generate the check bits for a 32 bit input word could
be implemented using 44 look-up tables and the decoder to correct single errors in a 32 bit
word took 104 LUTs. By recalling, that storing these 32+7 bits in flip-flops needs 20 slices,
whereas the decoder needs over 50 slices and by remembering, that the functionality
of these slices cannot be guaranteed in a radiative environment, the advantage of error
correction gets questionable. As both encoder and decoder are not radiation hardened
in the described implementation, their usage in internal logic will make the design more
susceptible to SEEs as it would be without these methods.

Due to these facts, only error detection mechanisms and no error correction logic have
been used in this work. Both, the data lines and the address lines are secured with seven
Hamming bits each. These bits are mapped into the tag fields and are able to detect up
to two errors in a 32 bit word. The error detection of data read from the bus is done
for each pipeline separately. If the combination of data and tag is faulty, both pipelines
will detect an error. If one of the Hamming encoders fails, the result will be detected as
difference between equivalent pipeline stages. Feeding both pipelines from the same bus
is therefore no longer a single point of failure. Writing on the bus is only done, if both
pipelines give identical signals. Otherwise, an error condition is raised. Again, the values
from the first pipeline are actually used as output.

If the addressed peripherals receive faulty data or address values, they may respond to
the CPUwith an ERR signal instead of acknowledging the transfer. Receiving an ERR has
the same effect in the CPU as detecting a difference between pipeline stages: the pipeline
is flushed and restarted with the instruction in MW-stage. This functionality is the only
fault tolerance technique applied to the peripherals. Further error mitigation strategies
for the peripherals have not been evaluated in this work.
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MIPS CPU

This chapter gives a detailed overview of the fault tolerant softcore CPU including the
concrete behavior and its reactions on detected errors. Both, the functionality provided
by the MIPS architecture and the modifications to increase fault tolerance are described
here. Apart from the description of fault tolerance techniques for each module, this chap-
ter gives assistance to add new peripherals to the system or write custom software. A
non-hardened version of the CPU is presented to create a reference for the fault tolerant
CPU regarding SEU susceptibility, resource usage and current consumption.

6.1 Target Devices and Tool Flow

The target device for the whole fault tolerant system is a Syscore 1 board developed at
Kirchhoff Institute for Physics in Heidelberg. The heart of this board is a Xilinx Virtex-
4 FX20 FPGA (XC4VFX20-11FF672). The Virtex-4 FPGAs are manufactured in ten layer
triple-oxide 90nm CMOS technology and are assembled in flip-chip geometry. The FX20
version of this device generation offers

• around 17.000 four-input LUTs and flip-flops

• 68 BRAM blocks with 18 kbit each, though around 1.200 kbit internal memory

• four digital clock managers (DCM)

• 32 digital signal processor (DSP) blocks

• one PowerPC 405 Hardcore CPU

• two Ethernet MACs

• eight multi gigabit tranceiver (MGT) blocks

The Xilinx FPGA is connected to DDR-SDRAM, Ethernet PHY, UART, USB controller, SD-
Card slot and several other general purpose input and output ports as shown in figure
6.1. The DDR-SDRAM chips assembled on the Syscore 1 board are Micron MT46V64M16
-6TA chips. Two of these chips are arranged in parallel to get the double data width of 64
bit and an overall memory of 256 MByte. Beside the Virtex-4 FPGA, there is a small Actel
ProASIC3 A3P125 flash FPGA. The Actel FPGA is manufactured in seven layer 130nm
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Figure 6.1: Sketch and photo of the Syscore 1 board

CMOS technology and offers around 3.000 tiles. This FPGA has access to two 8 MByte
flash memory chips and is amongst others connected to the Virtex’ SelectMAP interface.
It is though able to configure and reconfigure the Xilinx FPGA.

The user logic on both FPGAs is described with the hardware description languages
VHDL or Verilog. The Xilinx FPGA logic is synthesized with the Xilinx XST compiler.
Implementation is done using Xilinx Place and Route (PAR) tools. Xilinx bitgen is used
to create the FPGA configuration bitfile. All of these tools can be controlled and config-
ured using Xilinx ISE as graphical user interface (GUI). Xilinx PlanAhead allows graphical
floor-planning and FPGA-Editor shows the actual implementation of a placed and routed
design. The configuration bitfiles are uploaded into the FPGA using Xilinx Impact with
either a graphical interface or as command line tool. All of these tools are used as they
come in Xilinx ISE Design Suite 9.1 and 10.1.

The Actel ProASIC3 flash FPGA comes with an own design flow. The HDL code is writ-
ten in Verilog and can be synthesized with Synplify. Place and Route and the creation of
the programming file is done with Actel Designer Software. The Actel Libero GUI gives a
graphical front end to these tools. Uploading the programming file into the flash FPGA
is done with an Actel FlashPro3 programming cable and software.

6.2 The Actel Flash FPGA

The main purpose of the Actel flash FPGA is to perform the continuous configuration
writing (scrubbing) on the Xilinx FPGA. As this FPGA is based on a flash architecture,
it is mostly immune against radiation induced configuration upsets and only needs to
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address SETs and user logic SEUs. The Xilinx bitfiles to be written are stored in the
attached flash memories. The bitfiles for the Actel FPGA have hardly been touched for
this thesis and are taken from a previous work described in [Roh08]. This work delivers
a tool chain for writing bitfiles into the flash memories and includes a design for the
Actel FPGA to perform the scrubbing operation on the Xilinx FPGA. The Actel FPGA
design includes a flash controller for reading and writing the flash memories and a state
machine that writes the Xilinx bitfiles from the flash memory to the Xilinx SelectMAP
interface. The current operation of the Actel FPGA is determined with two jumpers.

Unfortunately, the Actel FPGA does not have a ready-to-use UART, Ethernet or USB
connection in order to write Xilinx bitfiles into the flash memories. On the other hand,
the only possibility to write the flash memories is to use the Actel FPGA. A sketch of this
architecture is shown in figure 6.1. The tool chain for writing the bitfiles into the flash
memories therefore requires both FPGAs. A UART connection with a PC is established
with the Xilinx FPGA, running a PowerPC system with the standard Xilinx IP-Cores and
a custom peripheral for driving the data lines between the Xilinx and the Actel FPGA.
The data to be written is forwarded to the Actel FPGA and finally written into the flash
memories by the flash controller running on the Actel FPGA. This implementation in
both FPGAs does not use any fault tolerance techniques, yet. Changing the contents of
the flash memories in a radiative environment is not reliably possible at this time.

There are some minor modifications done on the Actel design and the writing tool chain
during this work. A signal has been added in the Actel design, that sends a single pulse
from the internal 40MHz clock to the Xilinx FPGA via one of the data lines. This pulse is
sent each time the scrubbing state machine in the Actel FPGA has completed one scrub-
bing cycle. The addition of this signal allows the CPU on the Xilinx FPGA to check
whether a configuration refresh could correct a single event upset or not. The modifica-
tions in the writing tool chain consist of porting of the PC UART interface software from
Windows to Linux. Both, the new Actel bitfile and the Linux UART software interface
can be found on the CD attached to this thesis.

The scrubbing state machine currently implements only "blind" scrubbing. The partial
bitfile is written continuously into the Xilinx SRAM FPGA, but the current configuration
is neither read back, nor is the configuration interface checked for SEU-induced malfunc-
tions. Unfortunately, the scrubbing is performed relatively slow at this time. The state
machine requires more than a second to perform a single write cycle. Theoretically, writ-
ing the Xilinx bitstream via a 33 MHz eight bit bus should be possible in less than 100
ms. The limiting factors in the current design have not been investigated yet. The Actel
design currently does not contain any fault tolerance techniques. Due to the flash archi-
tecture, the probability for SEUs in the configuration memory is very low, but SEUs and
SETs in the user logic can still occur like in any SRAM device. Future versions of the
Actel design should consider SET mitigation techniques and redundant modules. A new
implementation of the whole Actel design "from scratch" is currently in development.
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6.3 Hierarchy of the SRAM FPGA Design

Figure 6.2: Hierarchy of the SRAM FPGA design. The applied error mitigation techniques are
attached in red.

The complete hierarchy of the implemented softcore CPU system is shown in figure 6.2.
All elements are plotted according to their hierarchy in the HDL implementation and
are further described in this chapter. The toplevel file instantiates the CPU, a BRAM
controller, a UART controller and a DDR-SDRAM controller, all connected with a Wish-
bone bus. A DCM as clock generator delivers the clocks required for the bus, the CPU
and any peripherals. SEU-analyzer is a module built to report detected errors and the
current status of the CPU via UART. Any pipeline stage within the CPU, the hardware
multiplier/divider modules and the error detection mechanisms are implemented with
DMR. Error detection is implemented in both versions, with one or two step comparison.
Both instances of the pipelines use either one common register bank or are supplied with
one register bank for each instance. Both pipelines are fed from a triplicated program
counter. The Wishbone bus uses Hamming codes to detect bus errors. This work’s SEE
mitigation techniques are addressed to the softcore CPU only, so there have nomitigation
techniques been applied on the peripherals during this work.

The whole SRAM FPGA design is written with VHDL using a modular approach. In
order to keep the code clear, the component declarations, the type definitions and some
basic system settings like endianess, interrupt handler address, processor ID or UART
baud rate are implemented using VHDL packages.
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Figure 6.3: The pipelining con-
cept. Any pipeline stage han-
dles one instruction. The re-
sults from every pipeline stage is
synchronously shifted to the next
stage. Instruction 3 exemplary
fulfills a jump condition in EX, so
the instructions in IF and DE are
invalid and needlessly fetched.
Instruction 4 is executed as branch
delay slot. The pipeline continues
with the new address (here: 1).

6.4 Implementation of the Fault Tolerant CPU

The following sections will describe both the functionality of the fault tolerant CPU and
how this is implemented in this work. The basic functionality of a CPU in general will
only roughly be described here, so the reader may be redirected to [HP96]. The orig-
inal plasma project implements a large subset of the MIPS I instruction set. This has
been kept for this work and extended with the "return from exception" (RFE) instruction.
The complete implemented instruction set is shown in appendix A. An architecture im-
plementing this MIPS I instruction set could be found in the MIPS R2000/R3000. The
fault tolerant CPU is leaned on this architecture regarding pipeline organization and co-
processor registers, but does not implement caches, memory management unit (MMU)
or virtual addressing / translation lookaside buffer (TLB). A detailed description of the
MIPS R2000/R3000 architecture can be found in [KH91].

6.4.1 The Pipelining Concept

The whole CPU is implemented using a five stage pipeline with instruction fetch (IF) in-
struction decode (DE), register access (RA), execute (EX) andmemory/writeback (MW). Dealing
with a single instruction from IF to MW includes a lot of logical steps. These steps can be
handled in a single clock cycle using a slow clock or in several cycles using a fast clock.
The idea of pipelining is to parallelize the handling of sequential instructions using a fast
clock. This concept is shown in figure 6.3. In the first step, instruction 1 is fetched. While
instruction 1 is decoded, the next instruction (2) can already be fetched. If both of these
completed their stage, the whole pipeline content is shifted to its next stage by fetching
instruction 3, decoding instruction 2 and performing register access for instruction 1. As-
suming a single instruction needs n clock cycles for each stage, it takes 5n clock cycles for
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the completion of a single instruction. As the pipeline handles five instructions in par-
allel, the CPU completes one instruction every n cycles in the optimal case. The benefit
of pipelining is obvious: parallelization increases the throughput without significantly
changing the latency.

But there are problems with pipelining, too. Imagine instruction 1 writes its result to a
register and instruction 2 needs this value to calculate its own result: the writing of in-
struction 1 is performed in MW, whereas instruction 2 wants to read this value in RA.
While instruction 2 is in RA, instruction 1 has not yet reached MW but is still calculating
the result. There are two solutions to this problem: Instruction 2 has to wait for instruc-
tion 1 completing MW by negating the advantages of pipelining or instruction 1 makes
its result available to instruction 2 before it is written back in MW. The second solution is
applied here: By using bypass lines, the result of one instruction can be forwarded to one
of its followers, so the pipeline does not have to be stalled until a single instruction has
completed. This bypassing is done automatically if needed.

A program counter (PC) stores the addresses of the currently executing instructions. This
program counter is stored for each instruction in each pipeline stage. The PC in the IF-
stage is used as address to fetch the next instruction and is incremented automatically,
unless there is no jump to a specific PC-address.

The worst case for pipelining is a code with a lot of jumps. In most cases, the decision
whether a jump has to be done or not is not available until EX-stage. By reaching EX, the
following two instructions are already in the pipeline and a third is currently fetched. If
the jump has to be done, at least two of these following instructions have been fetched
needlessly and have to be marked as invalid in the pipeline. The pipeline now continues
with the calculated jump address. The more jumps in the software, the less effective is
the pipelining concept. The MIPS architecture offers the benefit that for the common
conditional and unconditional jump commands, the instruction following the jump is
executed, too. This is called branch delay slot and lowers the cost of jumps in a pipelined
architecture a little bit. The branch delay slot is not executed on exceptions.

6.4.2 Description of the Pipeline Stages

Instruction Fetch Stage (IF)

The IF-stage is the only stage with no own entity definition. Most of the functionality
of the IF-stage is placed within the EX-stage, because the program counter for the next
instruction to be fetched relies on whether a jump is done or not. Without a jump, the
program counter for the IF-stage is incremented by one for each instruction. If a jump
condition is fulfilled, the new program counter is calculated within the EX-stage module.
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The correct program counter is used as Wishbone bus address to fetch the next instruc-
tion. The fetched instruction is stored in the opcode0 and opcode1 registers for each pipeline
respectively.

Decode Stage (DE)

The DE-stage decodes the instruction currently stored in the opcode0/1 registers. This en-
tity is mostly taken from the original Plasma project [Rho09]. According to the bits in the
opcode, this entity generates the select signals for the registers to be loaded in RA-stage,
the select signals for the logic combination of them in EX-stage and the select signals for
the result to be written back in MW-stage. Parts of the select signals are implemented
using VHDL type definitions to keep the code readable. Further, there is a first detection,
whether bypass lines are required to load the needed values from currently executing
instructions.

Register Access Stage (RA)

The RA-stage fetches the requested register values by applying the according registers
addresses at the register bank. The read values are redirected to the EX-stage. Again, the
signals of the preceding instructions are checked, to see if the read values are out of date
and bypassing values is required. The select signals concerning EX-stage or MW-stage
are just forwarded.

Execute Stage (EX)

The EX-stage actually performs the requested logic operation. Two operands are selected
according to the supplied select signals out of the register values fetched in RA, the cur-
rent PC address or the signed or unsigned lower part of the instruction word. These
operands are combined in the requested logical operation. In case of signed addition or
subtraction, it is checked whether the result exceeded the 32 bit number space (overflow
exception). A further multiplexer selects the correct output for the following pipeline
stage. The register values read in RA-stage are compared to determine possible branch
conditions. This pipeline stage also holds the calculation for the IF PC address, because
its determination is strongly related to what’s happening in EX-stage. In cases of jump-
s/branches or exceptions, the PC calculated from the EX-stage values is used, in any
other cases, the current PC is incremented by one. The EX-stage also redirects the input
values for multiplication or division to the according modules.
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Memory/Writeback Stage (MW)

The last pipeline stage prepares the calculated values to be written into the requested
destination register or to any peripherals via the Wishbone bus. There are several pos-
sibilities how data can be written to peripherals. The instruction set supports the write
of both halfwords (16 bit) and bytes (8 bit) additionally to the option of writing full 32
bit words. If halfwords or bytes are written, the data has to be aligned within the 32 bit
Wishbone bus data according to the configured endianess (big or little endian). The write
enable and select signal for theWishbone bus are created here, too. In case of halfword or
byte bus reads, the incoming data can be interpreted as signed or unsigned requiring the
data to be sign extended before it is written to a 32 bit register. If data has to be written
to one of the registers in the register bank, MW-stage creates the write_enable signals for
the according registers.

6.4.3 Hardware Multiplier and Divider

Both multiplication and division is implemented in hardware for signed and unsigned
32 bit words. Multiplication is realized with DSP-Blocks, the multiplication module is
generated with Xilinx Core Generator. In order to realize both signed and unsigned mul-
tiplication, the module has been created as 33x33 bit signed multiplier and the highest
bits are set according to the requested operation and the sign of the input vectors. Multi-
plication is currently done in six clock cycles. Division is done using the same algorithm
as provided with the plasma project:

long upper=a, lower=0;

a = b << 31;

for(i = 0; i < 32; ++i)

{

lower = lower << 1;

if(upper >= a && a && b < 2)

{

upper = upper - a;

lower |= 1;

}

a = ((b&2) << 30) | (a >> 1);

b = b >> 1;

}

a and b are dividend and divisor, the values of upper and lower are the requested quotient
and remainder. The implementation of this algorithm has been rewritten and partially
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type t_de_out_ra_in is record

valid : std_logic;

rfe : std_logic;

opcode : std_logic_vector(25 downto 0);

rs_index : std_logic_vector(5 downto 0);

rt_index : std_logic_vector(4 downto 0);

rd_index : std_logic_vector(5 downto 0);

alu_func : t_alu_func;

shift_func : t_shift_func;

sign : t_sign;

mult_func : t_mult_func;

branch_func : t_branch_func;

bypass : t_de_bypass;

a_source : t_a_source;

b_source : t_b_source;

c_source : t_c_source;

mem_source : t_mem_source;

mem_mode : t_mem_mode;

pc_source : t_pc_source;

end record;

signal pl0_de_out: t_de_out_ra_in;

signal pl0_ra_in : t_de_out_ra_in;

[...]

pl0_seq : process(clk)

begin

if rising_edge(clk) then

if rst=’1’ then

[...]

pl0_ra_in <= reset_ra_in;

else

[...]

-- register to RA-stage

pl0_ra_in <= pl0_de_out;

[...]

end if;

end if;

end process;

Figure 6.4: Implementation of pipeline data signals with records. The left column shown the
record definition. Registers for all elements within the record are inferred in the right column
with one line of VHDL code.

pipelined for the use with clock frequencies of around 100 MHz. The division is done in
33 clock cycles.

Both multiplier and divider have been implemented twice, so every pipeline uses its own
instances.

6.4.4 HDL Dual Pipeline Implementation

The pipeline has been implemented using amodular approach. The logic of each pipeline
stage is implemented as a combinatorial process placed in an own entity. There are regis-
ters between two subsequent combinatorial pipeline stages. The inputs, outputs and the
data transfer between two successive pipeline stages are mainly realized with records.
The records allow to easily put registers between all outputs of one entity and the inputs
to the next entity. This is independent of the number of signals and keeps the code clear.
The example in figure 6.4 shows the record and the register generation between DE-stage
and RA-stage. All outputs of DE-stage are inputs for RA-stage. By grouping them with
a record (left), the flip-flops for any signals within this record can be generated with one
line of HDL code (right).

Any pipeline stage is instantiated twice forming an identical second pipeline instance.
The data lines between adjacent pipeline stages in one pipeline do not have an effect on
the second pipeline and both instances have their own set of pipeline control signals.
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However, the registers between adjacent stages share a common clock enable for both
pipelines. All of these pipeline registers are implemented with one VHDL process and
their common clock enable is derived from both pipeline’s control signals.

6.4.5 Register Bank Organization

The register bank consists of 32 general purpose registers (GPRs) with 32 bit each. The
first register, R0, is read-only and always contains zero. The other registers are read
and writable and are used for different purposes from the compiler. An overview of
the GPRs is shown in table 6.1. A typical instruction loads the values from two of these
registers, combines them with a logical operation and writes the result back to one of
these registers. An example is:

ADD R3, R1, R2 # R3 = R1 + R2

Register Name Function
R0 zero read-only, always contains zero
R1 at Assembler temporary
R2-R3 v0-v1 Function return values
R4-R7 a0-a3 Function parameters
R8-R15 t0-t7 Function temporary values
R16-R23 s0-s7 Saved registers across function calls
R24-R25 t8-t9 Function temporary values
R26-R27 k0-k1 Reserved for exception handler
R28 gp Global pointer
R29 sp Stack pointer
R30 s8 Saved register across function calls
R31 ra Return address from function call

Table 6.1: General purpose registers. This information is taken from [Rho09].

Additionally to the general purpose registers, there are some special registers accessible.
The registers HI and LO are used to store the results from multiplication and division.
These registers can be accessed via the MFHI, MFLO, MTHI and MTLO instructions (see
appendix A). In case of multiplication, the result of multiplying two 32 bit values may
be up to 64 bits wide. The HI register stores the upper 32 bit of this result and the LO
register stores the lower 32 bit. In case of division, both the quotient and the remainder
are calculated. The quotient is written to LO and the remainder to HI.

Another set of special registers are the co-processor 0 (CP0) registers. They are accessible
via the MTC0 and MFC0 instructions (see appendix A) and are used for interrupt and
exception handling and control. Table 6.2 shows the implemented registers.
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Register Name
CP0-R12 Status register
CP0-R13 Cause register
CP0-R14 Exception Program Counter (EPC)
CP0-R15 Processor Revision Identifier (PRId)

Table 6.2: Implemented co-processor 0 registers

Figure 6.5: Status register on exceptions. All flags are shifted left on exceptions while disabling
interrupts and kernel mode. The RFE instructions restores the previous state

Status Register

The status register regulates if interrupts are allowed, which interrupts are allowed and
whether the CPU is currently in kernel or user mode. The status register format is shown
in table 6.3. The Co-processor Usable (CU) flag controls the usability of the four possi-

Bits 31:28 27:16 15:8 7:6 5 4 3 2 1 0
Content CU 0 IM 0 KUo IEo KUp IEp KUc IEc

Table 6.3: Status register format

ble co-processor units and is statically implemented to "0001". The Interrupt Mask (IM)
controls, which interrupts are enabled. There are eight interrupt lines, six external lines
and two software interrupts. The interrupt mask allows to enable only a subset of all
interrupts. Bits 15:10 are mapped to the external interrupts and bits 9:8 to the software
interrupts. The remaining bits are Interrupt Enable (IE) and Kernel/User mode (KU) bits
in three instances: old (IEo, KUo), previous (IEp, KUp) and current (IEc and KUc). Only
the current values are writable. The current Interrupt Enable (IEc) dominates all settings
in the interrupt mask. If IEc is zero, interrupts are completely deactivated regardless
of the settings in IM. If IEc is one, the IM settings apply. In case of an exception, the old

values are overwritten with the previous values, the current values are written into the pre-
vious fields and the new current values are set to zero. This deactivates all interrupts and
allows exception handling. After this is done, the Return From Exception (RFE) instruc-
tion reverses the shift: the previous values are copied to the current, and the old values are
copied to the previous fields. A graphical representation of these shifts is shown in figure
6.5.
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Cause Register

The cause register describes the cause of the last exception and is organized as shown in
table 6.4. The Branch Delay (BD) flag indicates, whether the last exception occurred in a

Bits 31 30 29:28 27:16 15:8 7 6:2 1:0
Content BD 0 CE 0 IP 0 ExcCode 0

Table 6.4: Cause register format

branch delay slot. The return address had to be adjusted in case of a BD-slot. The Co-
processor Enable (CE) flag could indicate the number of the co-processor, if a co-processor
unusable exception was raised. This functionality is not implemented, so these fields are
statically zero. The Interrupt Pending (IP) field indicates, which of the eight possible
lines raised an interrupt in case of an interrupt exception. IP(7:2) map to the external
interrupts and IP(1:0) map to the software interrupts. These IP(1:0) are writable for the
users. Writing a ’1’ in there raises an interrupt condition, if the according IM and IEc
are set in the status register. The Exception Code (ExcCode) field defines the type of
exception. The implemented exceptions are shown in table 6.5. Both, the BD-flag and the

ExcCode Description
0 Interrupt
8 SYSCALL exception
9 Breakpoint exception
12 Arithmetic overflow exception

Table 6.5: Implemented exceptions and their exception codes

ExcCode are written automatically each time an exception occurs. By reading this cause
register during the exception handling, the CPU can determine the cause of the exception
and can react on it accordingly.

Exception Program Counter (EPC)

The EPC is a 32 bit read-only register containing the address of the interrupted instruction
due to any exception. The value of this register is used to resume the program after an
exception has been handled. This register value is automatically written each time an
exception occurs.
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Figure 6.6: Technology schematic of a single register in the common register bank for both
pipelines. Screenshot from Xilinx Technology Viewer, modified for readability.

Processor Revision Identifier (PRId)

The PRId is a 32 bit read-only register. It contains information about the implementation
and revision level of the CPU. As the implemented architecture is similar to the MIPS
R3000 CPU, the according value 0x00000200 has been implemented. This value is taken
from [KH91] and can be changed in the system configuration package.

6.4.6 Register Bank Implementation

As described in the chapters above, the register bank is implemented in two versions: one
common register bank for both pipelines or one register bank for each pipeline. The dual
register bank implementation does not include specific error detectionmechanisms. Each
register bank "blindly" writes what it gets from its pipeline, so no special implementation
is chosen in this case.

If both pipelines share a common register bank, the signals from both pipelines have
to be evaluated to set correct values. Each MW-stage returns a select signal, defining
which register shall be written. A entity called get_write_enable returns a write_enable
signal according to the pipeline control signals, the identity of both MW-stages and the
result from the first pipeline comparison step. This entity is implemented twice, too. Any
register in the common register bank is therefore fed with:

• the data signals from both pipelines: din0, din1

• the write_enable signal from both get_write_enable entities: we[1:0]

• the select signal for each register from both pipelines: ce0, ce1

As described in chapter 5.6.5, the double redundancy is kept as long as possible, in order
to rather do not perform the write than to write a wrong value. The implementation
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(a) Without copying the PC addresses (b) With copying the PC addresses

Figure 6.7: PC behavior on errors. Without copying the PC addresses to any pipeline stages
on errors, a reliable restart address could not be determined (left). The right picture shows the
implemented behavior

is done with the instantiation of single look-up tables and flip-flops as shown for one
flip-flop in figure 6.6. The write_enable vector and the two select lines are checked to be
all equal to ’1’ in the first look-up table. The second LUT uses this signal as input and
includes both data inputs. Only if both data lines are equal and the result from the first
LUT is ’1’, a clock_enable signal is sent to the flip-flop, sampling din0 at the next rising
clock edge. Both LUTs and the flip-flop have been instantiated with their primitives "by
hand" and are replicated 32 times with a for-loop. This entity is used for any register in
the register bank except for the cause and status registers.

6.4.7 Program Counter Implementation

As described in the chapters above, the program counter is the only part of the CPU that
is implemented with triple modular redundancy. Three instances of the stored program
counter addresses for the instructions in all pipeline stages are working in conjunction.
All three instances use the signals from both pipelines and voted values of their own
outputs as inputs. The majority voting of signals, vectors and records is implemented
with VHDL functions. The output of current PC addresses to any of the pipeline stages is
done from all three instances. Any pipeline stage uses its own voters to reduce the triple
signals to singles.

In case of an error detected by the CPU, the program counter address of the instruction
currently in MW-stage is copied to any pipeline stages. In case of a regular jump, the
address of the jump instruction is used for all stages from DE to MW. This feature allows
to use theMW-stage PC address as restart address in any cases of an error, without having
to consider, which of the instructions currently in the pipeline are valid or have not yet
been executed.

74



6.4 Implementation of the Fault Tolerant CPU

An example showing the purpose of this method is shown in figure 6.7. One of the
stages suddenly gives a wrong result due to an SEU and the error gets detected. If the
PC addresses remained unchanged, the restart point could not be determined reliably.
The first detected error can be handled well by restarting with the MW-instruction. The
problem points out, if a second error is detected during the pipeline refill. If the MW-
instruction (instruction 6) would be chosen in this second case, the CPU would omit the
instructions 3-5. The two step comparison technique does not allow to detect, which of
the early pipeline stages failed and therefore can not determine the correct restart point if
the MW-PC address is not copied to any stage on errors. Determining the correct restart
address without copying the MW-stage PC would require additional logic. It had to be
recorded, which instructions have already been executed and which instructions are not
valid or may no be executed at all due to regular jumps.

In every instance of the program counter, there is a process checking whether the PC
address inMW-stage changed during the last clock cycles. In combination with the signal
from the Actel FPGA, indicating when a scrubbing cycle has completed, this can be used
to detect if scrubbing could correct an error. If the PC address in MW-stage is stuck for
several scrubbing cycles, the CPU state is uncorrectable with scrubbing and needs to be
reseted. The TMR-voted signal of this condition is used to reset the CPU automatically.
This reset currently affects only the CPU and has no impact on the other peripherals.

6.4.8 Error Detection and Error Handling

As described above, error detection is done in two stages. A first step compares the inputs
to the pipeline stages DE, RA and EX with their equivalents from the second pipeline. A
further input to the first comparison step are the registered values of the pipeline control
signals from both pipelines. An error condition is raised, if equivalent pipeline stages
differ or if equivalent pipeline control signals differ. Differences in the pipeline stages do
only contribute, if at least one of both instances is marked as valid. Pipeline data marked
as invalid in both instances cannot raise an error condition. The result of this comparison
is registered. This first comparison stage is implemented twice, too, so there are two
instances of the comparison result. The result of this comparison is not time critical,
because none of the early pipeline stages can write to memory. It has just to be ensured,
that the instruction raising the error condition does not complete MW-stage before the
error is handled. This will never be the case with just one register step. Even if an error
was raised from EX-stage and this instruction is shifted to MW-stage in the following
clock cycle, it will not have completed MW-stage before the error is detected.

The second comparison step is done asynchronously, its result is required in the same
clock cycle to prevent faulty data being written. This second step compares all outputs
of the MW-stages, all data being prepared to be put on bus and the results for the next
program counter address. Furthermore, it continuously checks for Hamming code errors
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Figure 6.8: Behavior on errors shown in a Modelsim simulation.

in the data received from the bus and takes the result from the first comparison step into
account. As for the first step, both, the comparison and the Hamming code checker are
implemented twice and both results from the first steps are fed into each of this second
step comparators. So, this also results in two independent error signals. An error is
detected, if one of those two signals differs from zero.

A second implementation has been done by solely using the second comparison step,
but including the pipeline control signals. The inputs to the early pipeline stages are not
compared in this approach. This should save a lot of combinatorial logic, but will not
detect errors in the early pipeline stages. The effects on the overall radiation tolerance of
this approach are studied in chapter 8.

If an error is detected in the second comparison step, the instruction in MW-stage will
not yet be completed. This error condition makes the program counter to copy the MW-
PC address to all stages and induces the flush_pipeline signal. This signal marks both
instances of DE, RA, EX and MW as invalid and the pipeline restarts with the instruction
previously inMW-stage. In case of a transient fault, a second attempt to process the failed
instruction will succeed and the CPU can continue its operation. In case of a static upset,
a re-execution of the failed instruction will not correct the error. An error like this will
be detected every time after the pipeline restarted and will flush it again. The CPU will
stay in this loop until the error gets corrected by scrubbing. If the error is corrected, the
pipeline will get correct values and this error condition is not raised again.
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(a) Implemented Wishbone signals (b) shared bus principle

Figure 6.9: Wishbone bus signals and shared bus principle

The detection of an error is exemplary shown in figure 6.8. The sign output of the RA-
stage is used as SEE affected signal. The output from the second pipeline is correctly
zero, whereas the output of the first pipeline is forced to a logic one for a short period
of time. As sign is an output of one of the early pipeline stages, the difference is not de-
tected immediately. After the whole pipeline content gets shifted one stage, the previous
RA-stage output becomes an input to EX-stage. The inputs from this stage contribute to
the first step comparison and the error gets detected one clock cycle later. The second
stage handles this result combinatorially. The output from the first step comparison is
pl_error_reg and the output from the second comparison step is pl_error. This second com-
parison step result induces that the PC address from MW-stage is copied to any stages
and that the flush_pipeline is raised. Flushing the pipeline is performed by marking the
DE, RA, EX andMW instructions as invalid. The PC fromMW-stage is then used to fetch
the failed instruction again. For clarity reasons, only one instance of the TMR program
counter, only the valid-signals from one pipeline and only the differing pipeline signals
are shown in the described figure.

6.5 Wishbone Bus

The Wishbone bus is meant as a public domain common interface between different IP-
core components, its exact specification can be found in [Her02]. Wishbone defines a
standard data exchange protocol between modules without regulating their IP-core func-
tionality. This bus protocol is recommended by opencores.org to assist the connectivity
between different IP-cores. The Wishbone bus is a master/slave architecture, where only
masters can initiate a bus transaction and the slaves are only allowed to respond. The
architecture is not limited to a single bus master, however bus arbitration has to be done
if there are multiple masters.
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Figure 6.10: Wishbone read cycle. The master asserts CYC & STB in combination with valid ADR
and TGA. WE and SEL are assumed to be zero. The slave responds with ACK and valid DAT &
TGD. After the ACK was sampled with the following rising edge, the master de-asserts CYC &
STB whereupon the slave releases its ACK signal.

In this implementation, the CPU is the only bus master and its peripherals are connected
as bus slaves. The bus is used as single shared bus for all peripherals. The Wishbone
signals and their widths as they are implemented in this work are shown in figure 6.9(a).
The clock and reset lines are fed from a configurable digital clockmanager (DCM) and are
used for both, the bus, the CPU and the peripherals. A Wishbone transfer is initiated by
the master setting CYC and STB to ’1’ in combination with a valid address (ADR+TGA)
and a valid write enable (WE). In case of a write access, data (DAT+TGD) and select (SEL)
have to be valid, too. The master waits for the slave to reply with any of the transfer
terminating signals ACK or ERR. On read cycles, the slave’s data output (DAT+TGD)
has to be valid while ACK is ’1’. The data is sampled at the first rising edge while ACK
or ERR are ’1’ and themaster releases CYC& STB. The slave can then pull the termination
signal back to ’0’. A sample read cycle is shown in figure 6.10.

CYC is meant to make connection to a slave and STB is meant to actually initiate a trans-
fer. The current implementation of the CPU uses both signals synchronously, they have
always the same value. There was no need to hold a connection to a slave without trans-
ferring data, so these signals could be used to implement redundancy in the bus. ADR
is the address field and TGA is its tag field holding the Hamming bits for the current ad-
dress. Accordingly, TGD is the tag field for the data lines (DAT) holding their Hamming
bits. The select (SEL) line is used to address single bytes or halfwords within the data
words for write cycles. It consists of four bit for a 32 bit data width. In combination with
WE=’1’, valid values for SEL are "1111" to write the full word, ("0011", "1100") to write
the lower or upper halfword or ("1000", "0100", "0010", "0001") to write one of the bytes
within the word.

The CPU’s output signals WE, SEL, DAT, TGD, ADR and TGA are statically connected to
all peripherals. Only the control signals CYC and STB are multiplexed to only one slave
at a time according to the current bus address. The slaves’ output signals DAT, TGD,
ACK and ERR are all multiplexed to the CPU’s inputs according to the address, too.
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Figure 6.11: Behavior of the Wishbone state machine. The WB_RESET state keeps CYC & STB
low for one cycle. The WB_ACTIVE state waits for the slave responding with a cycle termination
signal. The pipeline is shifted one step at the red dotted lines. The second bus cycle shows the
situation when MW and IF have to share the same bus.

6.5.1 The Wishbone State Machine

TheWishbonemaster within the CPU is implemented as a small statemachinewith states
WB_RESET and WB_ACTIVE. WB_RESET forces both CYC and STB to zero, whereas
they are high in WB_ACTIVE and the CPU waits for one of the cycle termination signals
ACK or ERR. This behavior is shown in figure 6.11. The data and address lines are not
shown in this figure, but are assumed to be valid. The red lines indicate the points where
each instruction is shifted to the next pipeline stage. Exemplary shown is a regular regis-
ter accessing instruction in the first bus cycle. IF fetches the next instruction, while MW
only uses the internal register bank and does not need to access the bus. The second bus
cycle shows the situation when both IF and MW have to access the bus. IF has to fetch
the next instruction, whereas MW in this example wants to write a value to a peripheral
via bus. As both stages have to share the same bus, the request has to be handled sequen-
tially. In the first phase of the cycle, MW-stage performs its writing to the bus. In the
second phase, IF fetches the next instruction. The sequential handling of both stages re-
questing bus access is controlled by the signals pause_pipeline and pause_pipeline_reg. This
situation can be accelerated by using dedicated instruction and data caches.

Bus Access in Combination with Multi-Cycle Instructions

With most of the instructions, the bus access will be the speed limiting part. The majority
of the instructions will complete their current pipeline stage within one clock cycle. A
bus access currently takes at least four clock cycles. However, there are some multi-cycle
instructions like MULT, MULTU, DIV and DIVU. They may require more clock cycles
than a bus access, so the CPU waits for them to complete before it proceeds to the next
instruction and therefore the next bus access. While the CPU is waiting for multi-cycle
instructions to complete, the Wishbone state machine will remain in WB_ACTIVE, so
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CYC and STB will stay high regardless of an ACK or ERR signal. The peripherals have to
be able to keep their cycle termination signals high as long as CYC & STB stay active.

Skipping needless Instruction Fetches on Jumps

In case of branch/jump instructions, the jump condition is evaluated in EX-stage. The
following two instruction are already handled by DE and RA and the third following
instruction is currently fetched (IF). In case of a regular jump, the instruction in RA is
executed as branch delay slot, but the instructions in DE and IF have tomarked as invalid.
The jump condition is available within the first clock cycle of the according instruction
in EX-stage. The Wishbone bus is meanwhile in WB_RESET, so this bus cycle can still be
canceled to mitigate the costs of the jump in this pipelined architecture. The number of
needlessly fetched instructions on jump conditions can therefore be reduced to the one
instruction in DE-stage. The implementation of this bus cycle canceling is done with the
wb_skip signal.

6.5.2 Fault Tolerance Aspects of the Wishbone Bus

As mentioned above, the Wishbone bus uses seven bit Hamming codes to protect both,
the address and the data fields. Both pipelines calculate their values for DAT, TGD, ADR
and TGA independently. These values are compared and checked for identity before the
values from the first pipeline are put on bus. New values are only put on bus, if the
Wishbone state machine is in WB_RESET, so these values should not change during a
bus access. The Hamming encoding for a 32 bit word is done with a custom built VHDL
function called hamming_encode(std_logic_vector(31 downto 0)). This function returns the
Hamming bits as a std_logic_vector(6 downto 0). The algorithm to calculate the Hamming
bits is taken from Xilinx Application Note 988 [CT08] and is synthesized using around 44
LUTs for a 32 bit word.

6.5.3 Adding new Peripherals

New Wishbone peripherals can be added in the design’s toplevel file wb_arbiter.vhd and
do not need to touch any signals within the CPU. The currently connected peripherals are
listed in a VHDL type definition and use records for the incoming and outgoing signals:

signal from_bram, from_ddr, from_uart : wb_slave_out_master_in;

signal to_bram, to_ddr, to_uart : wb_slave_in_master_out;

type PERIPHERALS is (NONE, BRAM_CTRL, DDR_CTRL, UART_CTRL);

The following steps have to be done to add a new peripheral:
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• add the peripheral to the signals and types described above

• add the new peripheral type to the data_signals process

• connect the broadcast signals to the new peripheral

• add the new peripheral in the address_mapper process with the desired address
range

• connect the according Wishbone control signals in the control_signals process

6.5.4 The current Address Mapping

Every peripheral connected to the Wishbone bus is listening to a defined range of ad-
dresses. The current address mapping is shown in table 6.6. This mapping is chosen
arbitrary and can easily be changed in the address_mapper process in the toplevel file.
Accessing an unmapped address results in a bus cycle termination via ERR. The UART
controller currently occupies an address range of 128 MByte, however using only two
registers internally.

Start End Size Peripheral
0x00000000 0x00001FFF 8 kByte BlockRAM
0x10000000 0x17FFFFFF 128 MByte DDR-SDRAM
0x20000000 0x27FFFFFF - UART

Table 6.6: Implemented Wishbone address mapping

6.6 Peripherals

6.6.1 UART

The UART controller is mostly taken from the original Plasma project and extended with
a Wishbone interface. It is implemented to handle one start bit, eight data bits and one
stop bit. The baud rate can be set in the configuration package viaCOUNT_VALUE by set-
ting the number of system clock cycles required for one UART bit. This value is currently
set to 115200 Hz for a clock frequency of 71 MHz. The UART controller distinguishes two
addresses: one common address to fetch the read data or to write data via UART, and a
second address to access the read-only UART status register. The status register indicates,
whether the UART is currently busy writing or if new data has been received. There is no
write FIFO implemented in the UART. If the CPUwrote data to the UARTwhile it is busy,
the UART would make the CPU to wait for the transfer to finish before answering with
ACK. By checking the status register before writing, the CPU can determine, whether the
UART is busy and can continue with other calculations in the meantime. The current
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address mappings for both addresses are shown in table 6.7 and the bit explanation of
the status register are described in table 6.8.

Address
0x20000000 UART_READ and UART_WRITE
0x20000020 UART_STATUS

Table 6.7: Address mapping for the UART and status bit explanation

UART_STATUS bits
0 ’1’: new data available
1 ’1’: UART is busy writing

2-31 unused

Table 6.8: UART status bit explanation

The status bit zero indicating new data is also used as output to the CPU and is connected
to one of the CPU’s interrupt lines. Any time a character is received, this bit goes high
and raises an interrupt in the CPU. This bit stays high as long as the received word is not
read from the CPU.

There are two versions of the UART included, one version with conventional UART be-
havior (uart_wb.vhd) and one version to be used in conjunction with SEU simulation or
beam tests (uart_wb_seusim.vhd). This second version continuously transmits a diagnosis
vector to report the current state of the CPU. The lower four bit are used for this diagnosis
vector and the upper four bit remain writable via Wishbone bus.

6.6.2 Block-RAM

The BRAM instance is created via Xilinx Core Generator and currently uses four RAMB16
blocks with 16 kbit each. The current total block memory is therefore 8 kByte. This
amount is chosen arbitrary and was enough for small test software. There are a lot of
unused BRAMs available, so this may be extended if needed. The locations of these
current four RAMB16 blocks are set in the constraint file. The contents of the BRAMs can
be changed in the final bitfile using the Xilinx data2mem software. This allows the CPU
software to be changed in the final bitfile. The work flow to change the software is further
shown in chapter 6.9. The BRAM instance has been extended with a small state machine
to enable access via Wishbone. A BlockRAM instance using the Xilinx ECC-BlockRAMs
with redundancy is currently in development.
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6.6.3 DDR-SDRAM Controller

The DDR-SDRAM controller used in this work is taken from [Pai07] and has been ported
to the Syscore 1 board. Most of the required changes could be done in the controller’s
configuration package by setting the appropriate address widths, the refresh frequency
and the IDELAY value. The change of the address widths required a minor change in
the address path to retain the refresh-controlling bits at the correct position within the
address line. A further change in the controller was required, because it used differential
output buffers at a site where the Virtex-4 FPGA did not support them. They had to be
replace by two regular output buffers with opposite clocks. The ported version for the
Syscore 1 board is attached to this work.

6.6.4 SEU-Analyzer

The SEU-analyzer is a module to record and report the errors detected by the CPU. This
module is not required for the system to run, but is used to analyze the behavior of the
CPU during SEU simulation and beam tests. It is not connected to the Wishbone bus, but
accesses several CPU signals directly. The inputs and outputs to this module are:

sim_pl_error : in std_logic_vector(1 downto 0);

sim_wbi_error : in std_logic_vector(1 downto 0);

sim_mem_pc0 : in std_logic_vector(31 downto 2);

sim_mem_pc1 : in std_logic_vector(31 downto 2);

sim_mem_pc2 : in std_logic_vector(31 downto 2);

sim_jmp_error : in std_logic_vector(2 downto 0);

uart_ack : in std_logic;

diag_data : out std_logic_vector(3 downto 0)

sim_pl_error is the two bit error signal resulting from the second step comparison within
the CPU. If this value is differing from "00" an error in any part of the CPU was detected.
sim_wbi_error is a sub-element from sim_pl_error indicating only errors detected via Ham-
ming encoding of the Wishbone bus signals. The signals sim_mem_pc0/1/2 are the current
values of the PC addresses in MW-stage from all three instances of the program counter.
The voted majority of these signals is again monitored for changes. sim_jmp_error in-
dicates when the CPU resets itself due to a stuck MW-stage PC for more than three
scrubbing cycles. These four error conditions are mapped to the four bit diagnosis vec-
tor diag_data shown in table 6.9. The UART is configured to continuously transmit the
content of its internal data register. The upper four bit of this eight bit register remain
writable via Wishbone bus, whereas the lower four bit are fed with the diagnosis output
of the SEU analyzer. The diag_data register is reset each time after its contents have been
accepted to be written by uart_ack and accumulates all events occurring during the write.
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diag_data bit value meaning value meaning
0 ’1’ general error detected ’0’ no error detected
1 ’1’ Wishbone error detected ’0’ no Wishbone error
2 ’1’ CPU auto-reset done ’0’ no reset
3 ’1’ PC in MW-stage still changing ’0’ PC stuck

Table 6.9: Encoding of the SEU-analyzer diagnosis output

Any event driving one of the diag_data lines for longer than one clock cycle will be cap-
tured and transmitted via UART in the next write cycle. If no error occurs, the UART
will continuously transmit 0x8hex in the lower four bits: 0x8hex = ”1000”2 → no general
error, no Wishbone error, no reset, and the PC is still changing.

6.7 Coding Techniques for Redundant Logic

The modern HDL compilers do a lot of effort to optimize the logic describes with an
hardware description language (HDL). They try to simplify the user’s input, map it to
the target technology and detect identical or unused signals in order to use the required
resources optimally. Logic may also be duplicated for timing issues. This is a great benefit
when writing high level HDL code, but can make a lot of trouble when trying to infer
redundancy intentionally. With the standard compiler settings, any detected redundancy
will be removed. This may automatically remove any SEE mitigation logic and thus, will
not result in an enhanced fault tolerance even if the redundancy is described with the
HDL.

One starting point is to deny the removal of equivalent registers. The option to dis-
able equivalent register removal in XST for the whole project can be found in systhesis
options: Synthesis Options → Xilinx Specific Options → Equivalent Register Removal. This
may not be the desired case, if several modules are implemented redundantly whereas
each single module is designated to be optimized. The solution to this is to use VHDL
attributes. Attributes can be applied to wide range of objects, among others to sig-
nals, types, functions, labels, entities etc. One of the XST supported attributes is equiva-
lent_register_removal:

architecture Behavioral of cpu_wb is

[...]

attribute equivalent_register_removal : string;

signal pl_error_reg : std_logic_vector(1 downto 0);

attribute equivalent_register_removal of pl_error_reg: signal is "no";

[...]
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The equivalent attribute for the Synplicity compiler is syn_preserve:

library synplify;

use synplify.attributes.all;

[...]

architecture Behavioral of cpu_wb is

[...]

attribute syn_preserve : boolean;

signal pl_error_reg : std_logic_vector(1 downto 0);

attribute syn_preserve of pl_error_reg: signal is true;

[...]

This piece of code will make pl_error_reg to be implemented with two registers even if
both of its values are detected to be identical. This has been used on most of the redun-
dant signals. The XST attribute keep may be useful, too, as it denies nets to be absorbed
into logic blocks.

Simply denying the removal of equivalent registers may not be sufficient to implement
redundancy. Even if the registers are preserved, the logic creating the data input for the
registers may be collapsed into one instance feeding both registers. This can be avoided
by implementing the module as an own entity and instantiating it twice. The contents of
different instantiations are usually not merged.

A possibility to replicate single look-up tables is to instantiate themwith switched inputs
and therefore different configurations. XST does not detect their identity. This has been
used in the TMR program counter for an enable signal.

6.8 The non-hardened CPU

In order to allow an efficiency estimation of the implemented SEE mitigation methods,
the area overhead of redundancy and power consumption, the same system of CPU and
peripherals has also been built without any radiation tolerance techniques applied. This
non-hardened version of the CPU uses the same pipeline modules as the fault toler-
ant implementation, but is lacking any redundancy or error detection mechanisms. The
pipeline has been implemented in one single instance, using one register bank. The re-
sults are written back to one of the registers or to the bus as they drop out of MW-stage.
There are no tag-fields carrying Hamming codes in the Wishbone bus and the ERR trans-
fer termination signal is not supported. The program counter is implemented as a single
instance and does not monitor, if the MW-stage PC is still changing. The addition of a
module recording and reporting the current state of the CPU like the SEU-analyzer de-
scribed abovemakes also no sense in this implementation. This version of the CPU allows
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the same software to be used as the previously described fault tolerant implementation
and behaves in the same way on interrupts or exceptions.

6.9 Running Software on the CPU

The software for both versions of the CPU can be developed using a standard MIPS cross
compiler environment. The plasma project offers a Windows version of the MIPS GCC
ELF compiler for download from its project page [Rho09]. A linux version of the GNU

toolchain for MIPS Processors can be downloaded from CodeSourcery1. The light edition
of this package is free and includes any tools required to compile own software. In order
to create software with the MIPS I instruction set, the according architecture flag has to
be set when running GCC. The listing below shows a section from the makefile, mostly
taken from the plasma project:

GCC_MIPS = $(BIN_MIPS)/mips-linux-gnu-gcc $(CFLAGS)

CFLAGS = -Wall -c -s -march=mips1

The CPU starts executing the code from its internal address 0x00000000. This is the low-
est BRAM address. Code to be executed has therefore to be put into the BRAMs. The
plasma project includes some software tools to automatically create a VHDL file contain-
ing the BRAMs with appropriate content. This is no flexible solution, because the whole
system had to be re-synthesized to change the software. The later part of this section will
show, how the BRAM content can be changed in the final bitfile without re-synthesizing
the whole design. However, this tool flow can be used and modified to get the compiled
software as a list of 32 bit instructions. The convert tool coming with the plasma project
can be used to convert the compiled MIPS binary into an ASCII list of 32 bit hex instruc-
tions. This format is, apart from a small header, mostly similar to the coe-file format
used for BRAM initialization files and allows the change of the BRAM content for both
synthesis and simulation. The coe file can be created with a small script (make_coe.pl).

6.9.1 Creating Own Applications

The applications coming with the plasma project mainly consist of three parts. An As-
sembler file is used as initialization file. Pointers are set, memory areas are cleared and
the jump to the C-code entry point is included. Furthermore, there is some basic inter-
rupt / exception handling and some special functions are written in Assembler, too. The
second part is a C-file containing basic function definitions and the high level interrupt
and exception handling. The third part is the actual user application. This part can be
written in C, too, and can use all functions defined in one of the prior parts.

1http://www.codesourcery.com/sgpp/lite/mips
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Part 1: The Assembler File

This file is the entry point to the software world and is executed from its beginning. This
part is mostly taken from the plasma project. A sample entry point file is shown below:

.comm InitStack, 512 #Reserve 512 bytes for stack

.text

.align 2

.global entry

.ent entry

entry:

.set noreorder

la $gp, _gp #initialize global pointer

la $5, __bss_start #$5 = .sbss_start

la $4, _end #$4 = .bss_end

la $sp, InitStack+488 #initialize stack pointer

$BSS_CLEAR:

sw $0, 0($5) #write zero to address in $5

slt $3, $5, $4

bnez $3, $BSS_CLEAR #restart with BSS_CLEAR if bss_end is not reached

addiu $5, $5, 4 #branch delay slot: increment $5 by 4

jal main #jump to main() (see part 3)

nop #nop in branch delay slot

These lines of code initialize the global and stack pointers according to the information
from the compiler. The $BSS_CLEAR routine overwrites the whole memory range for
.bss with zero. This is a nice example for the efficient usage of the branch delay slot. As
long as the address loop is running, the BNEZ instruction gives the jump condition to
restart, whereas the incrementation of the address pointer is done in the branch delay
slot. If the loop completed, the program will jump to the main() function defined in the
C-file of part three.

A second example for code in the Assembler file is the basic interrupt / exception han-
dling. If an exception occurs, the CPU jumps to the exception handler address. This is
currently set to 0x0000003C, so a valid piece of code has to be at this address. In this case,
this is reached by "counting" the instructions in the Assembler file and placing the excep-
tion handler code at the right place. Parts of the exception handler are shown below:
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#Save all temporary registers

sw $1, 16($29) #at

sw $2, 20($29) #v0

sw $3, 24($29) #v1

sw $4, 28($29) #a0

sw $5, 32($29) #a1

sw $6, 36($29) #a2

sw $7, 40($29) #a3

sw $8, 44($29) #t0

sw $9, 48($29) #t1

sw $10, 52($29) #t2

sw $11, 56($29) #t3

sw $12, 60($29) #t4

sw $13, 64($29) #t5

sw $14, 68($29) #t6

sw $15, 72($29) #t7

sw $24, 76($29) #t8

sw $25, 80($29) #t9

sw $31, 84($29) #lr

#load EPC

mfc0 $26, $14

#adjust return address according

#to cause and BD-flag

[...]

#save return address

sw $26, 88($29)

mfhi $27

sw $27, 92($29) #hi

mflo $27

sw $27, 96($29) #lo

#use cause as function argument

mfc0 $4, $13

jal OS_InterruptServiceRoutine

[...]

[...]

#Restore all temporary registers

lw $1, 16($29) #at

lw $2, 20($29) #v0

lw $3, 24($29) #v1

lw $4, 28($29) #a0

lw $5, 32($29) #a1

lw $6, 36($29) #a2

lw $7, 40($29) #a3

lw $8, 44($29) #t0

lw $9, 48($29) #t1

lw $10, 52($29) #t2

lw $11, 56($29) #t3

lw $12, 60($29) #t4

lw $13, 64($29) #t5

lw $14, 68($29) #t6

lw $15, 72($29) #t7

lw $24, 76($29) #t8

lw $25, 80($29) #t9

lw $31, 84($29) #lr

lw $26, 88($29) #EPC

lw $27, 92($29) #hi

mthi $27

lw $27, 96($29) #lo

mtlo $27

addi $29, $29, 104 #adjust sp

#jump to return address

jr $26

#BD-slot: return from exception

rfe

[...]

The left column shows how the temporary register values are stored to memory. The
address of the interrupted instruction is automatically stored in the EPC co-processor
register. This value is loaded and modified to be used as return address. In case of
an interrupt, the interrupted instruction must be used as return address. In case of a
SYSCALL or BREAK instruction, using the same value would result in an endless loop.
Another aspect is the branch delay flag in the cause register. If this value is set, the EPC
value has at least to be decremented by four to point to the preceding jump instruction as
return address. The values from the HI and LO registers are saved, too. After the context
save, the program jumps to the OS_InterruptServiceRoutine. This function is part of the
function definition file described in part two. After returning from this function, the
previous context is restored (right column) and the CPU jumps to the according return
address. The RFE instruction in the branch delay slot restores the previous values of the
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interrupt enable (IEp) and kernel/user mode (KUp) flags as described in chapter 6.4.5.

A third example is the irq_enable() function. Functions like this are easier in Assembler
than in C and the definition in the Assembler file makes them accessible to any of the C
files.

.global irq_enable

.ent irq_enable

irq_enable:

.set noreorder

#set IRQ-mask to 0xFF and IEc to 1

ori $24, $0, 0xff01

jr $31

mtc0 $24, $12 #enable interrupts

.set reorder

.end irq_enable

Part 2: The Function Definitions

This file is used for function definitions in C. Sample functions are the high level excep-
tion handler void OS_InterruptServiceRoutine(int cause)with its cause parameter described
above or simple functions to read or write memory.

#define MemoryRead(A) (*(volatile unsigned int*)(A))

#define MemoryWrite(A,V) *(volatile unsigned int*)(A)=(V)

void putchar(int value)

{

while(!(MemoryRead(IRQ_STATUS) & IRQ_UART_WRITE_AVAILABLE));

MemoryWrite(UART_WRITE, value);

}

This example shows a very simple UART driver. The status register of the UART is read
to check whether the UART is busy or not and waits for it to be ready. After that, the
requested value is written. This, for example, may be extended to deliver functions for
writing strings or numbers. The function definition file may be used for any user defined
functions.

Part 3: The User Application

The third part is the actual user application. This application can access any functions
described in the previous parts. The Assembler file in the first part initiates a jump to the
user application’s main() function.
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extern void irq_enable();

extern int puts(const char *string);

int main()

{

irq_enable();

puts("Hello World\n");

while(1);

return 0;

}

Putting it all together

All three parts have to be combined to a single application. They are compiled for the
MIPS I instruction set with a MIPS GCC and put together by the linker. An example
makefile is shown below:

myapp:

$(AS_MIPS) -o boot.o boot.asm

$(GCC_MIPS) functions.c

$(GCC_MIPS) myapp.c

$(LD_MIPS) -Ttext 0 -eentry -Map test.map -s -N -o test.axf \

boot.o functions.o myapp.o

@$(DUMP_MIPS) --disassemble test.axf > test.lst

convert_bin.exe

boot.asm is the Assembler file from part one, functions.c is the function definition file from
part two andmyapp.c is the user application from part three. The linker combines all three
compiled binaries to one program. The disassembly is optional, but can help to debug
applications. The resulting test.axf has still a file header. This header is removed by the
convert tool supplied with the plasma project, so the binary can directly be executed from
the CPU.

There are a lot of free MIPS simulators to test the software on a common PC, the plasma
project even supplies its own, but none of them have been used or tested in this work.

6.9.2 Changing BRAM Contents

In order to run software on the CPU, the instructions have to be placed into the BRAMs.
This can be done before sythesis as described above, or it can be done in the final bitfile.
Changing the bitfile saves a lot of time, because the design does not have to be synthe-
sized again. Xilinx delivers a tool called Data2Mem to change the BRAM contents of a
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bitfile. This tool is capable of changing the content of any BRAM block within the FPGA,
so it has to be known where the "used" BRAMs are placed on the chip. It is advised to fix
the locations of the used BRAMs with location contraints in the user constraint file (UCF)
during implementation. A sample placement contraint is shown below:

INST "BRAM/blockram/BU2/U0/blk_mem_generator/valid.cstr/ramloop[3].ram.r/

v4_init.ram/SP.SINGLE_PRIM.SP" LOC = "RAMB16_X3Y1";

INST "BRAM/blockram/BU2/U0/blk_mem_generator/valid.cstr/ramloop[2].ram.r/

v4_init.ram/SP.SINGLE_PRIM.SP" LOC = "RAMB16_X3Y0";

INST "BRAM/blockram/BU2/U0/blk_mem_generator/valid.cstr/ramloop[1].ram.r/

v4_init.ram/SP.SINGLE_PRIM.SP" LOC = "RAMB16_X4Y1";

INST "BRAM/blockram/BU2/U0/blk_mem_generator/valid.cstr/ramloop[0].ram.r/

v4_init.ram/SP.SINGLE_PRIM.SP" LOC = "RAMB16_X4Y0";

This information can be used to tell Data2Memwhich BRAMs are used and how they are
arranged. This has to be done via a BMM file as shown below:

ADDRESS_MAP mymap PPC405 0

ADDRESS_SPACE BRAM COMBINED INDEX_ADDRESSING[0x00000000:0x00001FFF]

ADDRESS_RANGE RAMB16

BUS_BLOCK

wb_arbiter/BRAM/BU2/U0/blk_mem_generator/valid.cstr/ramloop[3].ram.r/

v4_init.ram/SP.SINGLE_PRIM.SP [31:24] PLACED=X3Y1;

wb_arbiter/BRAM/BU2/U0/blk_mem_generator/valid.cstr/ramloop[2].ram.r/

v4_init.ram/SP.SINGLE_PRIM.SP [23:16] PLACED=X3Y0;

wb_arbiter/BRAM/BU2/U0/blk_mem_generator/valid.cstr/ramloop[1].ram.r/

v4_init.ram/SP.SINGLE_PRIM.SP [15:8] PLACED=X4Y1;

wb_arbiter/BRAM/BU2/U0/blk_mem_generator/valid.cstr/ramloop[0].ram.r/

v4_init.ram/SP.SINGLE_PRIM.SP [7:0] PLACED=X4Y0;

END_BUS_BLOCK;

END_ADDRESS_RANGE;

END_ADDRESS_SPACE;

END_ADDRESS_MAP;

The locations of the requested BRAMs are specified and an address space for the whole
BRAM content is created. This address space is only to define the relative organization of
the used BRAMs and has nothing to do with the CPU’s address space. The current con-
figuration shows four BRAM blocks arranged in parallel, where each block contributes
eight bit to the resulting 32 bit word stored in all four blocks.

In combination with this BMM file,Data2Mem can be fed with data. The compiled binary
filewithout header dropping out of the compilation process sketched above has to be con-
verted into a format Data2Mem understands. This format is chosen to beMEM, an ASCII
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format showing the hexadecimal representation of the instructions. The SRecord pack-
age2 supplies a tool called srec_cat to convert the binary file into this MEM format. The
code snippet below shows the part of the make flow creating theMEM file and changing
the BRAM content of a bitfile.

srec_cat $(SW)/test.bin -binary -o $(PROG).mem -vmem 8

data2mem -bm $(BMM_file) -bt $(BIT_file) -bd $(PROG).mem -o b $(PROG).bit

test.bin is the software binary without header. This file is converted to MEM. The BMM

file describes the organization and arrangment of the targeting BRAMs, BIT_file is the
bitfile to be altered and the MEM file contains the new BRAM content. According to this
information,Data2Mem creates a new bitfile with the requested content in the appropriate
BRAMs. This file can directly be uploaded into the FPGA.

2http://srecord.sourceforge.net/
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This chapter describes how partial bitfiles can be created and how they can be used for
both scrubbing and SEU simulation. Simulating SEUs within the real hardware without
the need of a radiative environment allows a reliable estimation of the SEU tolerance of
a specific design implementation.

7.1 Xilinx Configuration Protocol

At the end of each synthesis tool flow is a bitfile containing the final value for each con-
figuration bit in the targeted FPGA. This bitfile can be uploaded into Xilinx FPGAs using
one of the available configuration interfaces: Serial, SelectMAP or JTAG. Serial mode
configures, as the name implies, the FPGA with one bit per configuration clock cycle.
SelectMAP provides an eight bit bi-directional data interface to the FPGA, which can be
used for both reading and writing the configuration. The JTAG interface gives an access
port to the configuration using the IEEE 1149.1 Test Access Port and Boundary Scan Archi-

tecture. This standard is a widely used test and debugging possibility. More Information
about JTAG can be found in [MK09]. The actual configuration process is controlled by
several configuration options. These options control the write process andmust be set be-
fore any FPGA configuration data is written. Therefore, the bitfile to be uploaded consists
of the actual FPGA configuration data trailed by commands to write the options registers
and initiate the actual configuration writing. A complete overview of all configuration
registers and the process of configuration is described in the Virtex-4 Configuration User

Guide [Xil08e], chapter 7: Configuration Details.

7.2 Creating Partial Bitfiles

The bitfiles created by the Xilinx tools are per default full bitfiles. Full bitfile means, a
complete set of configuration commands is used. This includes commands for resetting
all flip-flops and input/output registers to their initialization values and pulling all inter-
connects to high impedance during the whole configuration process. A sample configu-
ration command sequence is shown in table 7.1. Furthermore, every full bitfile contains
the initial configuration of any BRAMblock on the chip and overwrites any previous con-
tent. These commands are not wanted for dynamic reconfiguration, as their use would
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make the whole design restart from its reset state. The purpose of scrubbing is, to con-
tinuously write the same partial bitfile during runtime without resetting the device after
each write and without overwriting dynamic values. To enable partial reconfiguration,
several requirements have to be fulfilled:

• Allow SelectMAP pins to persist: In a standard FPGA design, the pins used for Se-
lectMAP do not need to remain reserved for programming purposes only and are
per default freed for any user designs. If reconfiguration using direct SelectMAP ac-
cess is needed, these pins must not be freed after the initial programming and must
be persisted as SelectMAP pins. This can be reached by enabling Create ReadBack

Data Files andAllow SelectMAP Pins to Persist via properties ofGenerate Programming

File → Readback Options or by setting the -g Persist option in bitgen. This option is
important if configuration is done from the Actel FPGA, but does not affect JTAG
configuration.

• Drive DONE pin high: The DONE pin is an FPGA output pin indicating, if the
current programming cycle has finished. This option can be set in properties of
Generate Programming File → Startup Options. This is also required for SelectMAP
programming.

• Do not use LUTs as distributed memory or shift registers: Distributed memories or
shift registers are implemented in look-up tables of SLICEMs as described in sec-
tion 2 and their dynamic values are therefore overwritten on reconfiguration. There
seem to be possibilities on Virtex-4 to use these anyway by setting appropriate val-
ues in the configuration options, but this has not been tried in this work.

A partial bitfile can be generated by taking out any of the reset or high impedance com-
mands. In order to additionally preserve the dynamic BRAM content, this partial bitfile
can be reduced to a version without BRAM contents.

7.2.1 Full bitfile format

The default full bitfile format is shown in table 7.1 and consists of the following parts:

• Bitfile header: contains mainly the filename of the bitfile and the date. This header
has no fixed length as it depends on the filename. The bitfile header is not trans-
mitted to the FPGA and is used by the Xilinx tools only.

• Fixed synchronization word: 0xAA995566. This word signals the beginning of the
actual data. Any word from here is a configuration command or FPGA configura-
tion data and is transfered to the FPGA.

• Commands to write device ID, CRC checksums and configuration options registers.
The device ID in the bitfile must match the device ID stored on the FPGA. If they
differ, the configuration will not be written. Checking the device ID can be disabled
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Figure 7.1: Modified PlanAhead
screenshot showing the BRAM or-
ganization within the Xilinx Virtex-4
FX20 FPGA. The BRAM columns are
colored red. The white rectangle in
the center is the PowerPC core.

by setting the appropriate options. A description of all configuration options can
be found in the Virtex-4 Configuration User Guide [Xil08c].

• FPGA configuration data to set any configuration bit within the whole FPGA. This
is initiated by a Type-2 command [Xil08c] specifying the number of configuration
words to be written.

• Commands to reset the device and set all interconnects to high impedance.

• Commands to release the reset condition and start the device operation.

7.2.2 Removing BRAM Contents

The internal organization of the FPGA and the number of configuration bits required
for specific resources like CLBs, IOBs, BRAMs, DSPs and so on is roughly described in
Xilinx Application Note 988 [CT08]. In combination with FPGA-Editor or PlanAhead, the
organization for the specific device can be deduced. The BRAM contents are the last data
written into the FPGA during the configuration and can therefore be removed by some
simple calculations. As shown in figure 7.1, the Virtex-4 FX20 is arranged in two halves
(top / bottom half) and two rows on each half. The rows are counted beginning from the
middle, so the device in top-down-view consists of: top row1, top row0, bottom row0,
bottom row1. Each row has five columns of BRAM blocks. The "missing" BRAMs due
to the PowerPC did not show any effect and the experiment proved that they can be
counted in this calculation as if they were there.

The smallest writable unit is a frame. Each frame consists of 41 words with 32 bits per
word. A BRAM content column requires 64 frames for configuration. With five columns
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in two rows and two halves this results in:

NBRAMwords = 41 ∗ 64 ∗ 5 ∗ 2 ∗ 2 = 52480 words = 0xCD00hex words

This means, the complete BRAM contents for all Block RAMs on the FPGA are stored
in the last 0xCD00 words of the FPGA configuration data. Looking into a full bitfile at
the Type-2 command shows, that a full bitfile uses 0x36EF0 words for a complete con-
figuration. By changing this number to 0x36EF0 - 0xCD00 = 0x2A1F0 and cutting out
the last 0xCD00 words of configuration data one can create a bitfile without any BRAM
contents.

7.2.3 Getting Rid of the Reset Commands

The bitfile is a binary file, but any hex code used is documented in the Virtex-4 Configu-

ration User Guide [Xil08c]. The commands responsible for resetting and high impedance
operations are START, DGHIGH / LFRM and GRESTORE. These commands ensure in a
full bitfile that the device starts from a well defined state. In order to use scrubbing, a bit-
file without these commands but with the correct FPGA configuration data is required.
Scrubbing has no effect on the running design, if there are no errors to be corrected. If
errors are corrected with scrubbing or if the partial bitfile is used to inject errors into the
FPGA configuration, these changes will come asynchronously to any device clock, they
do not need to comply with the internal setup- or hold times.

As partial bitfiles are only used after an initial full configuration, some of the configura-
tion options do not need to be set again in the partial bitfile. A good starting point for
creating partial bitfiles is to let Xilinx’ bitgen create a partial bitfile using the -r option and
looking into that. A comparison between the original full bitfile and the partial bitfile is
shown in table 7.1. The main differences are:

• Mask and control registers do not need to be written again

• Amount of data to be written is reduced by the BRAM contents

• GRESTORE, DGHIGH/LFRM and START are taken out

• CRC is not used

• number of NOPs and order of the commands slightly differ

7.2.4 Automating the Creation of Partial Bitfiles

A little C program called parbitgen has been written during this work and is attached to
this thesis. The program automatically creates partial bitfiles out of full bitfiles by remov-
ing both, reset commands and BRAM contents. It is currently configured for Virtex-4
FX20 FPGAs, but it should be no problem to extend this to other devices.
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Full bitfile
configuration sequence:

Partial bitfile
configuration sequence:

SYNCWORD (aa995566) SYNCWORD (aa995566)

NOP NOP

WRITE REG CMD(4): RCRC(7) WRITE REG CMD(4): RCRC(7)

2x NOP 2x NOP

WRITE REG COR(9): 11043fe5 WRITE REG DEVICE_ID(12): 01e64093

WRITE REG DEVICE_ID(12): 01e64093 WRITE REG COR(9): 11043fe5

WRITE REG CMD(4): SWITCH(9)

NOP

WRITE REG MASK(6): 00000600

WRITE REG CTL(5): 00000600

1149xNOP

WRITE REG MASK(6): 00000600

WRITE REG CTL(5): 00000000

WRITE REG CMD(4): NULL(0)

NOP 5x NOP

WRITE REG FAR(1):00000000 WRITE REG CMD(4): WCFG(1)

NOP

WRITE REG CMD(4): WCFG(1) WRITE REG FAR(1): 00000000

NOP NOP

WRITE REG FDRI(2) with 00036ef0 words: WRITE REG FDRI(2) with 0002a1f0 words:

36EF0 words of FPGA configuration... . 2A1F0 words of FPGA configuration...

WRITE REG CRC(0): 0000defc

WRITE REG CMD(4): GRESTORE(10)

NOP

WRITE REG CMD(4): DGHIGH/LFRM(3)

99x NOP 101x NOP

WRITE REG CMD(4): GRESTORE(10)

NOP

WRITE REG CMD(4): NULL(0)

NOP

WRITE REG FAR(1): 00008ac0

WRITE REG CMD(4): START(5)

NOP

WRITE REG MASK(6): 00000008

WRITE REG CTL(5): 00000008

WRITE REG CRC(0): 0000defc

WRITE REG CMD(4): DESYNCH(13) WRITE REG CMD(4): DESYNCH(13)

16x NOP 4x NOP

Table 7.1: Comparison between full and partial bitfile configuration command sequences.
The main differences in the configuration commands are colored red whereas the actual configu-
ration data, which covers the main part of the bitfile, is not shown here
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7.2.5 Partial Bitfiles Used for Scrubbing

The resulting bitfile is used by the peripheral Actel FPGA running the scrubbing mech-
anism. Due to the fact, that BRAM contents are left out of this file, it is significantly
smaller in size. The full bitfile had 0x36ef0 configuration words, the partial bitfile has
only 0x2a1f0 words. As the scrubbing cycle time is dependent of the words to be written,
writing a partial bitfile without BRAM contents gives a speedup of factor 1.3 on a Virtex-4
FX20. If BRAMs are not used at all, one could consider calculating out the BRAM inter-
connect frames as well.

7.3 Error Injection through Partial Reconfiguration

Working with these partial bitfiles mentioned above allows them not only to be used for
scrubbing. Changing one single bit in the FPGA configuration part of the partial bitfile
should have the same effect as a radiation particle flipping a single SRAM cell. Writing
a correct partial bitfile has the same effect as doing scrubbing. In order to write defective
bitfiles with a single configuration bit flipped, the CRC mechanisms of the configuration
protocol have to be disabled. Without disabling these, a CRC error would be detected
and the bitfile would not be written. CRC can be disabled in ISE by unchecking Enable

Cyclic Redundancy Checking (CRC) in properties of Generate Programming File → General

Options.

The partial bitfiles can therefore be exploited to simulate SEUs within the real hardware
implementation. The flipped bit in the bitfile will change a bit in the FPGA configuration.
This bit will flip during the write of the configuration and asynchronous to any system
clock. This means, the flipping bit may violate setup- and hold times. These are the
same effects that can be seen on radiation induced direct SEUs. SETs cannot be simulated
in this way because partial reconfiguration is not capable of giving short pulses on the
FPGA routing nets or configuration bits. Unfortunately, the exact meaning of the cur-
rently flipped bit in the design cannot be reconstructed as the correlation between bitfile
bits and actual FPGA configuration bits is not officially published at this time. However,
there are approaches to decode bitfiles like shown in [NR08]. Nevertheless, a rough es-
timation in which part of the design the flipped bit will affect the logic, can be done by
counting the frames.

Device CLB cols IO cols DSP cols CLK cols MGT cols PAD cols

Virtex-4 FX20 36 3 1 4 2 1

Table 7.2: Row contents of a Virtex-4 FX20 configuration row. The number of rows for CLBs, IOs,
DSPs, CLKs and MGTs can be found in PlanAhead and FPGA-Editor. The PAD-frame is written
at the end of each row and is roughly documented in [Xil08c].
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CLB IO DSP CLK MGT BRAM in-
terconnect

BRAM
content

PAD
frame

configuration
frames per
element

22 30 21 2 20 20 64 1

Table 7.3: Number of configuration frames per element in a Virtex-4 FPGA. This information is
taken from [CT08] and [Xil08c].

The FPGA is configured beginning at themiddle writing top row0→ top row 1→ bottom
row0→ bottom row1. According to PlanAhead and FPGA-Editor, one row in the Virtex-
4 FX20 has the columns shown in table 7.2. The ordering of these columns can be seen
in PlanAhead and FPGA-Editor, the number of frames required for each component can
be found in table 7.3 and [CT08]. By reconstructing the frame number of the flipped bit
within the bitstream, one can decide in which half (top/bottom), row (0/1) and frame
position (CLB, IO, CLK, DSP, MGT) the flipped bit will affect the targeted design. The
logic affiliated with this frame can be seen in FPGA-Editor. Unfortunately, this is the
finest possible grain with this method. The exact part of the logic affected with a certain
configuration bit cannot be reconstructed.

7.3.1 Floor-Planning

As shown above, SEU simulation can easily be done by modifying the bitfiles. Config-
uration errors can be injected into any part of the FPGA. This is a great benefit, but also
a problem in this case. This thesis covers a radiation hardened CPU only without using
radiation hardened peripherals. Injecting errors in these peripherals would give wrong
statistics about the radiation tolerance of the CPU. The solution to this is to use floor-
planning: The CPU is placed in a well defined area of the FPGA, whereas the peripherals
are forced into another area. Injecting errors into the CPU’s area only gives a reliable
statistic of the CPU’s radiation tolerance.

There are several solutions for reconfiguring specific parts of the FPGA only. Xilinx de-
livers some methods granting reliable signal transfer between static and dynamic FPGA
areas via bus macros and allows writing of rectangular areas within the FPGA by "jump-
ing" to different frame addresses during the write. All these methods deliver more func-
tionality and complexity as needed in this case. As already mentioned above, the FPGA
configuration rows are being written in the order top row0 → top row1 → bottom row0
→ bottom row1. By cutting the configuration after bottom row0, only 3/4 of the FPGA
would be written and/or changed by flipped bits. This means 75% of the chip area could
be used for the CPU and 25% for all the peripherals. Unfortunately, 3/4 of the chip was
not sufficient for the CPU with increasing fault tolerance, so parts of bottom row0 had
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Figure 7.2: Sketch of the Xilinx FX20 floor-plan for SEU simulation. The
CPU is placed in the top three rows plus the half of the forth row. The
whole CPU area is chosen in this way, because the lowest row is written
last and any row is written from left to right. Placing the CPU according
to these facts allows "partial reconfiguration" by simply interrupting the
write at a certain point.

to be used for the CPU, too. Stopping the configuration within a row requires the calcu-
lations sketched above. The rows are written from left to right. Therefore, the left half
of the row can additionally be used for the CPU. This includes 1 MGT column, 2 CLK
columns, 1 IO column and 18 CLB columns. These numbers are extracted from PlanA-
head’s device overview for a FX20. Combining this with tables 7.2 and 7.3 gives a total
number of 3*952 frames for the three rows plus 432 frames for the half of the forth row to
be written on error injection. A sketch of the floor-plan is shown in figure 7.2.

7.4 CPU Testing

Both, the fault tolerant implementations and the non-hardened version of the CPU have
been tested for SEU tolerance using single error injection as mentioned above. The fastest
way of testing many different flipped bits in respect of their effect on a running design
is to use SelectMAP on chip level with a peripheral controller directly connected to the
FPGA. In case of the Syscore board, this could be done using the Actel FPGA which is
responsible for scrubbing. An appropriate Actel design for injecting random errors into
a bitfile did not exist at this time and there are only few connections that could be used
as status and debug output. Due to this fact, the SEU simulation had to be done using
JTAG. A great advantage of this method is, that it can easily be seen in the uploading
software whether the programming has succeeded or not. The main disadvantage is,
that programming over JTAG is much slower than using SelectMAP. It takes two to three
seconds for each bitfile to be loaded into the FPGA. In order to simulate SEUs via JTAG for
an approach that relies on scrubbing, the scrubbing cycles have to be performed via JTAG
as well. The simulation of a single bit flip therefore requires the write of an erroneous
bitfile plus at least one write of the correct partial bitfile to simulate the scrubbing. The
required time for the simulation of one bit flip is the sum of these write times and is in the
order of five seconds per flipped bit. The FPGA area used for the CPU design includes
3288 frames = 3288 * 41 words = 3288 * 41 * 32 bit ≈ 4 million bit. Even without taking
into account, that some flipped bits may need more than one configuration refresh for
the CPU to continue its operation, the required time for simulating any flipped bit in this
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area would take more than 200 days. A full testing of all bits in the design is thus not
possible and the results obtained from these tests are statistical. The bits to be flipped are
chosen randomly using the common C functions.

The fault tolerant versions of the CPU requiremore resources than the plain version. A bit
flip in an unused area of the chip will not have an effect on the running design. The costs
of additional chip area for the SEU mitigation methods producing further SEU sensible
bits have to be taken into account. In order to get comparable results, all versions of
the CPU are placed in the same FPGA area shown in figure 7.2, one CPU at a time. Error
injection is done on the whole available area for the CPUs. This compensates the effects of
differing resource utilization and makes all tested CPU versions directly comparable.

Test programs running on the CPUs

As described in chapter 6.6.4, the lower 4 bit of the UART output are used for CPU de-
bugging in the fault tolerant versions. These bits show, whether the CPU is still running
or why it has stopped. The upper 4 bit of the UART output can be used by both versions
for the software running on the CPU. These bits indicate the progress of the program.
The test program used covers the main aspects of the CPU:

• Calculate Fibonacci numbers: Lots of register transfers and additions

• Shift left/right: The shift amounts are calculated during runtime

• Multiply and divide

Specific bits of each calculation step’s result are used as UART output. If no error occurs,
the Fibonacci numbers return 0x10, shifting returns 0x20 and multiply / divide returns
0x30. This program runs in an endless loop and takes a few milliseconds for a single
run through all three stages of the test program. The source code of the test program
can be found on the CD attached to this work. The UART output of the FPGA system
is monitored by a PC, parsing progress and debug bits. According to this data, FPGA
programming, error-injection or refresh is initiated using the Xilinx tools.

SEU Simulation in the Non-Hardened CPU

The CPU is placed in the area shown in figure 7.2, the SEU simulation procedure is shown
in figure 7.3(a). At the beginning, a full bitfile is uploaded. This design is reconfigured
with a defective partial bitfile containing a single faulty bit. Independently of the CPUs
behavior, this configuration error is corrected with a partial bitfile containing the valid
design (refresh). The refresh is done to prevent that multiple bits can be flipped at the
same time. If this bit flip did not produce any effect on the CPU, the next random bit is
chosen to be flipped for the next iteration of the testing procedure. Wrong, stuck or no
UART outputs show the results of wrong internal computations, dead lock situations or
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(a) Testing of the non-
hardened version

(b) Testing of the fault tolerant version

Figure 7.3: Test procedures for both versions of the CPU.

accesses to non-existing addresses. Each of these effects clearly indicate a malfunction
of the CPU and force a complete reprogramming of the FPGA with a full bitfile. The
number of flipped bits and the number of detected errors are recorded in combination
with a detailed log of the UART output.

SEU Simulation in the Fault Tolerant Implementations

Things get little more complicated when the fault tolerant CPU design is tested. A stuck
UART output for example does not have to be a malfunction, as the CPU may stop on
errors. Only if the scrubbing cannot repair this, it may be counted as error. A sketch of
the SEU simulation procedure is shown in figure 7.3(b). At the beginning, a full bitfile is
loaded. After that, a defective bitfile with one randomly flipped bit is uploaded and the
system’s output is monitored to detect errors and malfunctions. A configuration refresh
by uploading a clean partial bitfile to correct the previously flipped bit is done after each
error injection. If no functional error was detected or the current error could be repaired
with the configuration refresh, the simulation process continues with flipping the next
random configuration bit. If the CPU cannot continue its operation after a refresh, the
refresh is repeated several times without injecting new flipped bits until the error disap-
pears or it is marked as uncorrectable. An error is defined as uncorrectable, if the CPU is
stuck for more than six refresh cycles. This limit is chosen, because the CPU tries to reset
itself after being stuck for three refresh cycles. If resetting itself fails twice, the system
can be seen as irrecoverably stuck. Another reason for an irrecoverable error is a wrong
UART output. In both cases, the SEU simulation procedure restarts by writing the full
bitfile again including a full FPGA reset. As above, the number of flipped bits as well
as the numbers of corrected and uncorrectable errors are recorded in combination with a
detailed log file.
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8 Results

In this work, several versions of the CPU have been implemented: a non-hardened ver-
sion and three different fault tolerant versions. All versions are based on the same imple-
mentation and have the same functionality regarding the supported instruction set and
their behavior towards commands or exceptions. The SEE mitigation techniques applied
to the fault tolerant versions are

• continuous configuration scrubbing

• double modular redundancy applied on the pipeline

• two step or single step comparison for error detection

• Hamming codes and error signals in the Wishbone bus

• DMR register bank or single register bank with error detection

• triple modular redundancy program counter

• uncorrectable error detection and automatic CPU reset

The non-hardened version does not apply any of these fault tolerance techniques listed
above. This version can be used as reference for the fault tolerant implementations to
evaluate the effectiveness of the applied methods.

All implemented versions of the CPU have been compared with each other regarding
SEU susceptibility, resource usage and power consumption. The SEU tests have been
conducted with both, SEU simulation as described in chapter 7 and real particle beam
experiments.

8.1 Resource Usage and Power Consumption

As described in the previous chapter, one non-hardened CPU and several fault tolerant
CPU implementations have been done in this work. The synthesis results from all ver-
sions tested on SEU susceptibility are shown in table 8.1. This table shows the synthesis
result from synthesizing solely the CPU, peripherals are not included. Both, the absolute
values of the occupied resources and the relative values compared to the non-hardened
implementation are shown.
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Elements non-hardened FT version FT version FT version
version DMR reg.bank single reg.bank single reg.bank

absolute values 2 step comp. 2 step comp. 1 step comp.
slices 2416 5732 6503 5532
flip-flops 2254 4698 3605 3605
look-up tables 3502 10415 11687 10303
DSPs 4 8 8 8

relative values
slices 100% 237% 269% 229%
flip-flops 100% 208% 160% 160%
look-up tables 100% 297% 334% 294%
DSPs 100% 200% 200% 200%

Table 8.1: Comparison of synthesis results for all tested versions of the CPU

The fault tolerant implementation with two instances of the register bank uses a little
more than twice the registers of the non-hardened version. This is because any logic is
duplicated and there are some further registers for Hamming bits and fault detection
mechanisms. The number of look-up tables has grown to approximately the triple of the
non-hardened version. This is due to the comparison logic and the Hamming encoder as
both require exclusively LUTs. The fault tolerant version with one single register bank
saves more than 1000 registers by omitting a second register bank. However, the number
of LUTs increases by approximately the same value because any register requires an ad-
ditional LUT to generate the clock_enable according to the data input signals, as shown
in chapter 6.4.6. The smallest fault tolerant implementation was be done by reducing the
comparison to less signals and only one step. This saves a lot of LUTs. The DSPs for all
fault tolerant versions have doubled compared to the non-hardened version because any
pipeline uses its own multiplication unit.

The power consumption measurements have only been conducted roughly by monitor-
ing the current consumption of the whole Syscore board with the power supply display.
This includes a complete system with CPU, BRAMs and UART controller. The values for
all implemented versions plus the current consumption of the board without any design
loaded have been recorded and are summarized in table 8.2. The current consumption
increases with increasing resource usage.

Design none non- DMR reg.bank single reg.bank single reg.bank
hardened 2 step comp. 2 step comp. 1 step comp.

Current (mA) 280±10 390±10 450±10 440±10 430±10

Table 8.2: Current consumption
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8.2 SEU Simulation Results

8.2 SEU Simulation Results

All implemented CPU versions have been tested for SEU susceptibility with SEU simu-
lation as described in chapter 7. Single errors have been injected into the bitstream to flip
single configuration bits within the FPGA. The reaction of the CPU on this configuration
change has been monitored via the CPU’s UART output. As described above, the num-
ber of configuration bits is too large to test a design against configuration upsets in every
bit within a reasonable period of time. Thus, statistics of the SEU susceptibility have been
created with random error injection. Any tested version of the CPU has been placed in
the same area on the chip to take their different resource usage into account.

8.2.1 The Non-Hardened CPU

(a) Percentage of functional errors (b) Distribution of functional errors

Figure 8.1: Number of functional errors and their distribution for the non-hardened CPU.

The non-hardened version of the CPUwas tested with 129.784 flipped configuration bits,
one flipped bit a time. 20,079 of the flipped bits lead to a functional error of the CPU.
This equates 15.47% of the total number of flipped bits. The functional errors have been
distinguished into no UART output, wrong character and correct character, but in a wrong

order. 50% of the functional errors have shown up with a stopped UART output. This
is most likely a jump to a wrong piece of code or a completely stuck CPU. 43.55% of the
functional errors have been recorded to send a wrong character. The remaining 6.38%
of functional errors could be identified as suitable characters, but in a wrong order com-
pared to the previous characters. This may be a faulty conditional branch, for example.
A graphical representation of the total number of functional errors and their distribution
is shown in figure 8.1.
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8.2.2 The Fault Tolerant Implementations

The testing scheme for the fault tolerant implementations was the same as for the non-
hardened CPU, however, with changed error conditions. A stuck CPU is not an error
anymore, if it can be recovered with scrubbing. No differentiation between wrong char-
acter and wrong character order has been made, both cases have been covered with the
wrong character error. Three different implementations of the fault tolerant CPU have
been tested with SEU simulation:

• DMR register bank, two step comparison

• single register bank, two step comparison

• single register bank, single step comparison

DMR Register Bank, Two Step Comparison

(a) percentage of detected errors (b) distribution of the corrected errors

Figure 8.2: SEU simulation result for the DMR register bank implementation in the fault tolerant
CPU

The DMR register bank version was the first implemented version of the fault tolerant
CPU. It has been tested with 48,903 single configuration bit flips. A total of 36.94% of all
flipped bits have had an impact on the running CPU. 35.01% of all flipped bits have led
to detected errors that could be recovered with scrubbing. 1.94% of all flipped bits have
led to uncorrectable errors, either with wrong output, no output or with unrecoverable
error conditions. These numbers are shown in figure 8.2. The number of corrected errors
can further be distinguished into the number of upsets directly correctable with scrub-
bing and the number of errors successfully triggering an internal CPU reset. 16% of all
correctable errors had to be corrected with an automated reset, the remaining 84% have
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8.2 SEU Simulation Results

directly been correctable with scrubbing. The uncorrectable errors have consisted of 50%
stuck CPU or UART and 50% wrong UART output.

Single Register Bank, Two Step Comparison

(a) percentage of detected errors (b) distribution of corrected and uncor-
rectable errors

Figure 8.3: SEU simulation results for the single register bank implementation

A second implementation with one common register bank for both pipelines has been
tested in the same way. 86,780 configuration bits have been flipped during the SEU sim-
ulation of this implementation. The results are shown in figure 8.3. In this version, only
38.64% of all flipped bits had an impact on the running CPU. 36.80% led to errors cor-
rectable with scrubbing and 1.84% could have been identified as uncorrectable errors.
The correctable errors have consisted of 90% errors directly correctable with scrubbing
and 10% errors requiring an automated CPU reset. The uncorrectable errors have com-
promised 76% wrong characters and only 24% of stuck CPU or UART.

Single Register Bank, Single Step Comparison

In this version only the results from MW-stage have been used to detect errors between
both pipeline instances. Signals from the early pipeline stages have not been compared
here, however, comparison of the Wishbone Hamming bits and the pipeline control sig-
nals have remained unchanged. 53,062 flipped configuration bits have been injected into
this implementation. The overall susceptibility to configuration changes has been mea-
sured to 35.44%, where 32.81% of the upsets could have been corrected with scrubbing
and 2.63% have led to uncorrectable errors. 20.0% of the correctable errors have required

107



Results

a CPU reset, thus 80.0% could have directly been corrected with scrubbing. The distribu-
tion of uncorrectable errors has been similar to the other single register bank implemen-
tation. These results are also shown in figure 8.4.

(a) percentage of detected errors (b) distribution of corrected and uncor-
rectable errors

Figure 8.4: SEU simulation results for the single step comparison implementation

8.2.3 Summary

All tested fault tolerant versions of the CPU have shown an significantly increased resis-
tance against spontaneous configuration changes compared to the non-hardened imple-
mentation, however their overall percentage of SEU susceptible bits increased with their
resource usage.

The most promising implementation has been found in the fault tolerant version with
one common register bank for both pipelines and the two step comparison technique.
The probability for uncorrectable errors could have been reduced from 15.5% for the
non-hardened CPU down to 1.84% for this fault tolerant implementation. This means
an increase of factor 8.4. Furthermore, the uncorrectable errors in this implementation
have mainly consisted of wrong output characters. These errors are most likely based
on undetected register bank errors and are good candidates to be mitigated with fault
tolerant techniques on software level.

The implementation with two register banks has given comparable error rates, but does
not fit well the needs for a future fault tolerant multilayer system. Correcting differences
between both register banks reliably is an extensive task in hardware and impossible for
software. The single step comparison implementation has given the best result regarding
resource usage, but has not delivered as good error rates in SEU simulation as the other
two versions have done.
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8.3 Beamtime Results

(a) Sketch (b) Photo (Source: J. Gebelein)

Figure 8.5: Sketch and photo of the beam test arrangement.

8.3 Beamtime Results

A non-hardened version and a fault tolerant implementation of the CPU have been tested
in a particle beam experiment at GSI Darmstadt. A Syscore 1 board has been placed
directly into the beam, around 15 meters behind the last accelerator magnet. A pro-
gramming cable was connected to the Xilinx SRAM FPGA and to a laptop. The jumpers
controlling the scrubbing process have been managed by using a second FPGA, also con-
nected to the laptop. A sketch of the assembly is shown in figure 8.5. The laptop and the
FPGA controlling the jumpers have been placed out of the beam. The laptop has been
accessible via Ethernet and has thus been able control both, the SRAM FPGA configura-
tion and the scrubbing process. As the Syscore board has been placed fix in this position,
the contents of the flash bitfile memories could have only been changed during beam
breaks.

The beam particles have consisted of Ruthenium-96 ions with an energy of 1.69 GeV/u.
These particles have almost completely been ionized, 42 of the 44 electrons have been
stripped off. According to the calculations described in chapter 3.1.3, this complies with
a linear energy transfer of approximately 3.3MeV cm2

mg . In order to derive an SEU cross
section, the value can be compared with the previous measurements of cross section ver-
sus LET. The Weibull fit for Virtex-4 FPGAs is shown in figure 8.6. A LET of 3.3MeV cm2

mg

corresponds to an SEU cross section of approximately (2 . . . 4) · 10−9 cm2

bit . The Virtex-4
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Figure 8.6: SEU cross section vs. LET for
Virtex-4 FPGAs taken from [GKS+06]. The
LET value for the concerning beam test is
highlighted.

FX20 FPGA has around 7,200,000 configuration bits and covers an area of approximately
one square centimeter. By multiplying the cross section by the number of configuration
bits and dividing by the FPGA area, the number of SEUs per incident particle results in
0.014 . . . 0.029. Therefore the probability for a single particle of this beam to produce an
SEU in the FPGA is around one to three percent. The beam particles have arrived in spills,
one spill has taken around 15 seconds and has included 5 · 106 ions. At the location of
the FPGA, this beam has been expanded to an area of 10 to 30 cm2. The number of ions
going through the FPGA has therefore been in the order of 105 per spill. In combina-
tion with the SEU cross section, this results in an expected SEU ratio of approximately
2, 400 . . . 14, 500 upsets per spill. Unfortunately, the incident particle distribution in time
during a spill has not been known.

The time of a single scrubbing cycle has been in the order of one second and the expected
upset rate of the particle beam has been in the order of 103 · · · 104 per 15 seconds. By re-
calling that the double modular redundancy implementation is constructed to detect and
mitigate single errors, this beam test cannot give results directly comparable to the SEU
simulation above. This upset rate has been way to high to be eased by the implemented
fault tolerance techniques, because a significant probability has been given to alter both
instances of a double modular redundancy system. A reliable error detection has thus
not been possible anymore.

Both, the fault tolerant CPU in combination with scrubbing and the non-hardened ver-
sion without scrubbing have been tested in the beam. Regrettably, only the fault tolerant
version with two instances of the register bank has been ready to be tested at this time,
so no comparison between different fault tolerant implementations has been achieved.
The same test program as for the SEU simulation has been used in the CPU: calculation
of Fibonacci series, shift operations and multiply / divide operations. The UART output
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has been monitored to record the current status and to detect errors.

The non-hardened version has been uploaded into the FPGA using the programming
cable and time has been measured until the CPU has produced wrong results or got
stuck. A collection of data by programming the FPGA 2894 times has given an average
runtime of 1.2 seconds. However, there have been a lot of cases where the CPU did not
send a single character before the whole system got corrupted by SEUs.

The fault tolerant CPU has been run in combination with scrubbing, so the Actel flash
FPGA has been responsible for initial configuration and continuous reconfiguration via
SelectMAP. The operation mode of the Actel FPGA has been controlled via the jumper
lines connected to the second FPGA and could have been set from the laptop via a second
UART connection. By sending the according signals to this jumper control FPGA, the
initial configuration and the scrubbing could have been triggered. A measurement has
been started by initiating a full configuration followed by scrubbing. The CPU’s output
has beenmonitored to get the current software state and CPU status. In this case, runtime
has been defined as the time, the CPU "does not do anything wrong". This tolerates a
stuck CPUwaiting for reconfiguration as well as the automated resets, but does not allow
a stuck or wrong UART output. The measurement has also been canceled, if the UART
output did not change anymore. These measurement conditions has given an average
runtime of 15.7 seconds over a sample size of 4930 measurements. This time indicates
how long the CPU has not done anything wrong and has included a lot of automated
resets. It does not necessarily indicate the progress of the running software.

The absolute SEU rate is not the limiting factor regarding the fault tolerance of the radi-
ated FPGA design. More important is the interaction of scrubbing frequency and SEU
frequency. As long as only few configuration bits are upset during the same scrubbing
cycle, the DMR approach will be able to handle them. With a scrubbing frequency in
the order of one second, this has not been possible in this beam experiment. There have
been several measurements, where the CPU did not output a single character or got stuck
from the first second. However, there have been some examples where scrubbing could
directly correct detected errors or the automated reset could recover a stuck CPU.

Some positive examples of error mitigation techniques showing their effectiveness dur-
ing the beam test are listed in figure 8.7. The example in the left column shows the ap-
plication of the automated internal CPU reset. The CPU detects an error during the first
second of its runtime and waits for this error to be corrected. The error is uncorrectable
with scrubbing, but after three scrubbing cycles, the CPU resets itself. After the reset,
the CPU was able to continue its work for further two seconds until the next error was
detected. The example in the right column shows the co-operation of scrubbing and error
detection. After the initial programming, the CPU was able to run four seconds before
an error was detected. The following scrubbing cycle could correct this error within the
same second, so the CPU could continue. One second later, the CPU got stuck again due
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--initial programming

03-18 14:30:51 everything fine

03-18 14:30:51 pipeline error

03-18 14:30:51 pc_mem does not change

--refresh

--refresh

--refresh

03-18 14:30:57 pipeline error

03-18 14:30:57 CPU reset(29)

03-18 14:30:57 everything fine

--refresh

03-18 14:30:59 pc_mem does not change

03-18 14:31:01 pipeline error

...

--initial programming

03-18 14:31:47 everything fine

03-18 14:31:51 pipeline error

03-18 14:31:51 pc_mem does not change

03-18 14:31:51 pipeline error

--refresh

03-18 14:31:51 everything fine

03-18 14:31:52 pipeline error

03-18 14:31:52 pc_mem does not change

03-18 14:31:53 pipeline error

--refresh

03-18 14:31:53 everything fine

03-18 14:31:58 pipeline error

03-18 14:31:58 pc_mem does not change

03-18 14:31:59 pipeline error

--refresh

03-18 14:31:59 everything fine

03-18 14:32:05 pipeline error

...

Figure 8.7: Two examples of log files showing the effectiveness of the applied SEE mitigation
techniques during the beam test. The left column shows how the fault tolerant CPU resets itself
on uncorrectable errors. The right column shows the successful co-operation of scrubbing and
error detection.

to detected errors. Repairing this error with scrubbing again made the CPU to run an-
other five seconds before the next error was detected. A third error could be corrected
few seconds later.

In order two compare the results of the non-hardened and the fault tolerant CPU, it has
to be noted that the measurement on the non-hardened version has returned the time
the CPU operated correctly, whereas the measurement on the fault tolerant version has
returned the time the CPU did not do anything wrong. This is a difference in this imple-
mentation.

During the whole beam time experiment, a total number of 4.21 · 1011 Ru-96 Ions per cm2

have passed through the experiment. The expansion of the beam profile at the FPGA
board has been estimated to be 10 to 30 cm2. This results in approximately (1.4 . . . 4.2) ·
1010 ions through the FPGA. The total ionizing dose deposited within the FPGA during
the whole beam time has been calculated as described in chapter 3.2.1 to be between 740
krad and 2.2 Mrad. The imprecisely flux numbers due to the estimated beam profile area
do not allow a more accurate specification. Unfortunately, the current consumption of
the FPGA has not been monitored during the beam test, so a comparison to the TID mea-
surement from Xilinx can hardly be conducted. The only information on TID resistance
in this case is that the FPGA has not shown any malfunctions after the beam test and is
still completely usable.

The measurements have also shown that the configuration interfaces are susceptible to
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radiation induced malfunctions. Several cases could have been noticed, where the Actel
FPGA has not been able to program the Xilinx FPGA. This could mostly been recovered
by uploading an arbitrary bitfile from the laptop via JTAG. The JTAG configuration in-
terface has shown some errors, too. The device ID of the FPGA could temporary not be
read correctly, but could be corrected with several attempts.

A lot of problems have occurred by trying to change the content of the flash bitfile mem-
ories during a beam break. The transfer from the UART over both FPGAs into the memo-
ries has been extremely slow, but has seemed to work in principle. The reason for this has
not been determined yet, because the whole Actel design is currently being rewritten.

In further particle beam tests, the monitoring of FPGA current consumption should be
considered in order to see the effects of TID and prevent a possible damage of the device.
Furthermore, a more accurate measurement of particle flux and beam profile would help
to determine the expected error rates and doses more reliably. With a fixed particle flux
per area, the upset rate within the FPGA could be reduced by angling the device in the
beam. This would result in a reduced effective FPGA area and thus in a reduced number
of upsets. However, too flat angles can increase the probability of multi bit upsets. In
case of few beam breaks, a mechanism to move the FPGA out of the beam could help to
change the flash memories or to prevent damage due to high TID values.

8.4 Outlook

The first steps towards a radiation tolerant FPGA system have been done and gave
promising results, however there is still some work to do. The Wishbone state machine
is currently not yet hardened. An error here may cut the CPU from its peripherals. Fur-
thermore, there is also the possibility to add a tag to the Wishbone control signals, so the
reliability of these signals could be enhanced. This has not been implemented yet. There
is currently no floor-planning done to spatially separate redundant modules. This may
help to mitigate upsets affecting several parts of the logic.

There is currently no fault tolerance implemented in the peripherals. This has necessarily
to be done in order to achieve a fault tolerant system with the existing fault tolerant
CPU. An approach using ECC protected block RAMs is currently in development. This
ECC approach may be extensible to the DDR-SDRAM. Regarding the development of
software or even an operating system for this CPU, a hardware timer will most likely be
required. How a hardware timer and thus time dependent software can be implemented
into a CPU that is allowed to be stuck for some time has to be considered carefully. A
fault tolerant cache improving the performance of accessing the DDR-SDRAM memory
is currently in development. A memory management unit may be negligible for simple
operating systems.
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The tool flow to run custom software on the CPU currently consists of parts of the plasma
project and own snippets. The converting between several different file types is quite
cumbersome. This may not be sufficient for future applications and should be possible
to be realized more efficiently.

Regarding SEU simulation, the SEU susceptibility measurements could be extended to
several configuration errors at the same time. However, SEU simulation as it was con-
ducted is very time consuming. In this work, only a random subset of all possible con-
figuration bits could be tested and with multiple upsets, the number of possible upset
combinations would explode. A reduced time consumption for simulating both, single
and multiple upsets could be reached by using the Actel flash FPGA to directly inject
errors via SelectMAP. Programming via JTAG as shown in chapter 7 takes up to three
seconds, programming via SelectMAP should be possible within several milliseconds.
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9 Conclusion

Previous research has shown that SRAM based electronics are susceptible to radiation
induced memory changes and current pulses. In a field programmable gate array, these
effects lead to temporary or static modifications of the device configuration or affect di-
rectly the implemented user logic. However, there are several techniques to mitigate the
effects of radiation in SRAM based FPGA designs.

In this work, a fault tolerant softcore CPU for SRAM based FPGAs has been developed.
Apart from the common approach to implement the FPGA logic with triple modular
redundancy coming with a large area overhead, this work targets a fault tolerant imple-
mentation with lower resource usage. The combination of double modular redundancy
to detect errors and continuous FPGA configuration scrubbing to correct upsets is used
as base technique to built a fault tolerant system.

This work’s CPU is equipped with a five stage pipeline, hardware multiplier and divider,
interrupt and exception handling and a Wishbone bus connection. This CPU has been
extended with several error mitigation techniques. The whole pipeline has been imple-
mented twice to detect errors via differences between both instances. In order to detect
differences reliably, the error detection logic has also been duplicated and has been imple-
mented and tested in different versions. A focus has been set on the denial of faulty data
being written back to registers or any part of the memory. In case of detected errors, the
CPU flushes the pipeline and starts to re-execute the failed instruction until the error is
corrected with scrubbing. A promising implementation of the internal register bank has
been found by providing one common register bank with error detection mechanisms for
both pipelines. The program counter has proven to be a very sensible part of the CPU,
so a triple implementation has been necessary. AWishbone bus has been used to connect
arbitrary peripherals and it has been secured with error signals and error detecting codes
on both, address and data lines.

Several fault tolerant implementations and a non-hardened reference implementation
with the same functionality have been evaluated regarding single event upset suscep-
tibility, resource usage and power consumption. The resource usage has grown due to
the implemented redundancies, but has still been significantly below the area overhead
required for triple modular redundancy. The SEU tests have been conducted with both,
SEU simulation via error injection and real particle beam experiments. The results from
SEU simulation have shown an increased resistance against single configuration upsets
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with a factor 8.4 compared to the non-hardened version. The effectiveness of the ap-
plied error mitigation methods has also been verified with a heavy ion particle beam
experiment. A direct comparison between simulation and beam test results has not been
possible because SEU simulation has addressed to single upsets during one scrubbing
cycle and the beam experiment has produced hundreds of upsets in the same period.

As a result it can be stated that the applied radiation tolerance techniques could remark-
ably mitigate radiation induced single event effects. A significantly increased SEU resis-
tance has been measured without the need of implementing any part with triple modular
redundancy.
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Appendix A

Implemented Instruction Set

The implemented instruction set is a full MIPS I instruction set except unaligned load
and store operations (LWL, LWR, SWL, SWR). The MIPS GCC does usually not use these
instructions, so this should not be a limitation. As there is no co-processor and no cache,
all co-processor instructions except MFC0 and MTC0 and all cache control instructions
have been omitted. The implemented instruction set is shown in the table below and is
taken from [Rho09] and [KH91].

Opcode Name Action
ADDI rt, rs, imm Add Immediate rt=rs+imm
ADDIU rt, rs, imm Add Immediate Unsigned rt=rs+imm
ADD rd, rs, rt Add rd=rs+rt
ADDU rd, rs, rt Add Unsigned rd=rs+rt
ANDI rt, rs, imm And Immediate rt=rs&imm
AND rd, rs, rt And rd=rs&rt
BEQ rs,rt,offset Branch On Equal if(rs==rt) pc+=offset*4
BGEZAL rs,offset Branch On >= 0 And Link r31=pc; if(rs>=0) pc+=offset*4
BGEZ rs,offset Branch On >= 0 if(rs>=0) pc+=offset*4
BGTZ rs,offset Branch On > 0 if(rs>0) pc+=offset*4
BLEZ rs,offset Branch On <= 0 if(rs<=0) pc+=offset*4
BLTZAL rs,offset Branch On < 0 And Link r31=pc; if(rs<0) pc+=offset*4
BLTZ rs,offset Branch On < 0 if(rs<0) pc+=offset*4
BNE rs,rt,offset Branch On Not Equal if(rs!=rt) pc+=offset*4
BREAK Breakpoint epc=pc; pc=Exception Handler
DIV rs,rt Divide HI=rs%rt; LO=rs/rt
DIVU rs,rt Divide Unsigned HI=rs%rt; LO=rs/rt
JALR rs Jump And Link Register rd=pc; pc=rs
JAL target Jump And Link r31=pc; pc=target<<2
JR rs Jump Register pc=rs
J target Jump pc=pc_upper|(target<<2)
LB rt,offset(rs) Load Byte rt=*(char*)(offset+rs)
LBU rt,offset(rs) Load Byte Unsigned rt=*(Uchar*)(offset+rs)
LBU rt,offset(rs) Load Halfword Unsigned rt=*(Ushort*)(offset+rs)
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Opcode Name Action
LH rt,offset(rs) Load Halfword rt=*(short*)(offset+rs)
LUI rt, imm Load Upper Immediate rt=imm<<16
LW rt,offset(rs) Load Word rt=*(int*)(offset+rs)
MFC0 rt,rd Move From Coprocessor rt=CPR[0,rd]
MFHI rd Move From HI rd=HI
MFLO rd Move From LO rd=LO
MTC0 rt,rd Move To Coprocessor CPR[0,rd]=rt
MTHI rs Move To HI HI=rs
MTLO rs Move To LO LO=rs
MULT rs,rt Multiply HI,LO=rs*rt
MULTU rs,rt Multiply Unsigned HI,LO=rs*rt
NOR rd, rs, rt Nor rd=!(rs|rt)
ORI rt, rs, imm Or Immediate rt=(rs|imm)
OR rd, rs, rt Or rd=(rs|rt)
RFE Return From Exception
SB rt,offset(rs) Store Byte *(char*)(offset+rs)=rt
SH rt,offset(rs) Store Halfword *(short*)(offset+rs)=rt
SLL rd,rt,sa Shift Left Logical rd=rt<<sa
SLLV rd,rt,rs Shift Left Logical Variable rd=rt<<rs
SLTI rt, rs, imm Set On Less Than Immediate rt=rs<imm
SLTIU rt, rs, imm Set On Less Than Immediate Unsigned rt=rs<imm
SLT rd, rs, rt Set On Less Than rd=rs<rt
SLTU rd,rs,rt Set On Less Than Unsigned rd=rs<rt
SRA rd,rt,sa Shift Right Arithmetic rd=rt>>sa
SRAV rd,rt,rs Shift Right Arithmetic Variable rd=rt>>rs
SRL rd,rt,sa Shift Right Logical rd=rt>>sa
SRLV rd,rt,rs Shift Right Logical Variable rd=rt>>rs
SUB rd,rs,rt Subtract rd=rs-rt
SUBU rd,rs,rt Subtract Unsigned rd=rs-rt
SW rt,offset(rs) Store Word *(int*)(offset+rs)=rt
SYSCALL System Call epc=pc; pc=Exception Handler
XORI rt,rs,imm Exclusive Or Immediate rt=rsˆimm
XOR rd,rs,rt Exclusive Or rd=rsˆrt
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