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Markovprozess Modelle für neuronale Ensemblen mit Spike-Frequenzadaptation

Diese Arbeit stellt ein Modell basierend auf einem Markovprozess für ein Ensemble von spike-

frequenz-adaptierendem Neuronen vor. Gängige Methoden wie “mean-adaptation”-Näherungen

und die Theorie der inhomogenenen Erneuerungsprozesse werden durch allgemeine Besetzungs-

dichtemethoden zu einem einheitlichen, theoretischen Rahmen vereinigt und erweitert. Diese

Erweiterung erlaubt, unter anderem, die Beschreibung von Korrelationen zwischen aufeinan-

derfolgenden Interspike-Intervallen. Methoden sowohl zur effizienten Erzeugung inhomogener

Realisationen des vorgestellten Markovprozesses, als auch zur numerischen Lösung der Ensem-

blegleichungen und zur numerischen Bestimmung der Interspike-Intervallkorrelationen erster Ord-

nung werden präsentiert. Darüber hinaus wird gezeigt, dass durch eine adiabatisches Näherung

die fünfdimensionale Mastergleichung für ein leitfähigkeitbasiertes Integrate-and-Fire Neuron

mit Spike-Frequenzadaptation und einem relativen Refraktärzeitmechanismus zu einer zweidi-

mensionale Verallgemeinerung des vorgestellten Markovprozesses reduziert werden kann. Für

statische und dynamische Stimuli werden die durch Monte-Carlo-Simulationen bestimmten neg-

ativen seriellen Interspike-Intervalkorrelationen bzw. die zeitliche Dynamik der Aktivität des

fünfdimensionalen Systems von dem vereinfachten zweidimensionalen Markovprozess mit hoher

Genauigkeit reproduziert. Die Methoden werden angewandt, um die möglichen Funktionen von

Spike-Frequenzadaptation zu erforschen. Verwicklungen für die Kodierung früh im Primaten-

visionsystem, wo die funktionelle Kopplung zwischen fixierten Augenbewegungen und Spike-

Frequenzadaptation schon bekannt ist, werden diskutiert.

Markov Process Models for Neural Ensembles with Spike-Frequency Adaptation

A Markov process model for spike-frequency adapting neural ensembles is proposed which

synthesizes existing mean-adaptation approaches for spike-frequency adaptation and inhomo-

geneous renewal theory with population density methods resulting in a unified and tractable

framework which accounts for correlations between subsequent interspike intervals. A method

for efficiently generating inhomogeneous realizations of the proposed Markov process is given,

methods for solving the population equation are presented, and an expression for the first-order

interspike interval correlation is derived. Further, it is shown that the full five-dimensional master

equation for a conductance-based integrate-and-fire neuron with spike-frequency adaptation and a

relative refractory mechanism can be reduced to a two-dimensional generalization of the proposed

Markov process by an adiabatic elimination of fast variables. For static and dynamic stimulation,

negative serial interspike interval correlations and transient population responses respectively of

Monte-Carlo simulations of the full five-dimensional system can be accurately described by the

proposed two-dimensional Markov process. The techniques are applied to investigate possible

functional roles of spike-frequency adaptation. Implications are discussed for coding early in the

primate visual system, where fixational eye movements and adaptation mechanisms are known

to be functionally coupled.





Do you ever question your life
Do you ever wonder why

Do you ever see in your dreams...
All the castles in the sky

Oh tell me why...
Do we build castles in the sky

Oh tell me why...
All the castles way up high.

Martine Theeuwen





M.C.Escher, “Castle in the air”.
All M.C. Escher works (c) 2006 The M.C. Escher Company - The Netherlands.

All rights reserved. Used by permission. www.mcescher.com.





An imagination is, to attempt to put it to words, a fleeting image in the mind’s
eye idealizing and anticipating, often influenced by desires and predispositions,
how the world behaves under our influence. How to realize what one imagines?

For simple objects and desires, such as the want of consuming the apple resting
on the buro, the facilities of the mind find little challenge and hoards of subordinate
subconcious zombies alot themselves in a wink so that the mind can be entertained
by more exciting dreams.

For contemplating the clock-work of the facilities of the mind, the mind yet
lacks the support of an appropriate language. Imaginations run wild as a child in
a candy store of diverse selection, that in browsing for his fancy here, forgets what
was over there. We construct theories of its function which are castles in the sky.
Supported by a tortoise swimming in the sea, we jesture towards the dream as if
to raise the water and bring us closer to the truth. Still, legend has it, a wise old
lady once reported it’s turtles all the way down. The young man inquires, “but
dear grandmother, I see a sea of turtles. How should I choose?” She pauses, and
her gaze seeks tranquility at the horizon as if she is multiplying large numbers in
her head. “Choose however you like.”





So it is a struggle in the dark
except for a few occasional glimmers of light

until the approach of one or more attempts is so close
that it cannot be denied.

Kenneth S. Cole, Membranes, Ions and Impulses
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Chapter 1

Foundations

For if truth be at all within the reach
of human capacity, ’tis certain it
must lie very deep and abstruse; and
to hope we shall arrive at it with-
out the utmost pains must certainly
be esteemed sufficiently vain and pre-
sumptuous.

David Hume, A Treatise of Human Nature

1.1 Introduction

Since Ramón y Cajal’s proposal at the turn of the 20th century that the cen-
tral nervous system is made up of billions of separate neurons that communicate
via junctions coined synapses, we can ask the question: What is the nature of
the communication between neurons? Contemporaries of Cajal, such as Julius
Berstein, were aware of electrical pulses, so-called action potentials, generated by
nerve tissues, and could measure their time courses and velocities of propagation
(Berstein, 1902; Schuetze, 1983; Seyfarth, 2006). It was the seminal work of Alan
Hodgkin and Andrew Huxley (Hodgkin & Huxley, 1952), using the recently in-
vented voltage-clamp technique (Curtis & Cole, 1939) to investigate overshoots
of the neuron membrane potential during an action potential, which resulted in
the now standard approach for describing and modeling action potential gener-
ation and propagation. While initially the Hodgkin-Huxley equations, as they
are now known, were solved using hand operated calculating machines (Huxley,
2002), the same general framework, augmented by a bouquet of additional ionic
currents, is the basis for modern large-scale compartmental modeling (Meunier
& Segev, 2002). Phenomenological models for neuronal excitability such as the
integrate-and-fire (I&F) neuron models due to (Lapicque, 1907) which predate the
work of Hodgkin and Huxley (HH) can be formulated in a hybrid way to take on
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much of the qualitative and quantitative behavior of HH models while remain-
ing analytically tractable and efficient for simulating large-scale neural networks
(Destexhe, 1997). One example of such a hybrid model is the conductance-based
integrate-and-fire neuron model considered in the present dissertation work.

Given an adequate description of the behavior of single neuron classes, it is nat-
ural to direct one’s attention to the behavior of networks of neurons as occurring
in the biological specimen, in for example the cortex, if one seeks to understand
the nature of the neural code. Given neuron firing rates and interconnectivity in
the cortex, each neuron there is under intense bombardment by both excitatory
and inhibitory synapses. These mutually opposing showers of excitation and inhi-
bition induce highly irregular fluctuations of the membrane potential reminiscent
of a random walk. The resulting dominance of the mean synaptic conductances
over the leak results in a markedly shortened effective membrane time constant,
a dynamical regime known as the high-conductance state (Destexhe, Rudolph, &
Paré, 2003; Shelley, McLaughlin, Shapley, & Wielaard, 2002). In this regime ac-
tion potentials are emitted when the membrane potential chances across the firing
threshold and the resulting interspike intervals (ISIs) appear stochastic and are
roughly gamma distributed (Softky & Koch, 1993; Destexhe, Rudolph, Fellous, &
Sejnowski, 2001; Dayan & Abbott, 2001, pp. 33).

Originally introduced in (Knight, 1972), and recently the subject of intense
study, population density formalisms provide powerful tools to understand neural
ensemble and network behavior in the active network state of the cortex, for ex-
ample, in a quantitative way (Brunel, 2000; Omurtag, Knight, & Sirovich, 2000;
Nykamp & Tranchina, 2000, 2001; Fourcaud & Brunel, 2002; Meffin, Burkitt, &
Grayden, 2004; Renart, Brunel, & Wang, 2004). Such studies are mostly restricted
to exactly solvable white noise input approximations, with notable exceptions
(Nykamp & Tranchina, 2001; Fourcaud & Brunel, 2002). In (Fourcaud & Brunel,
2002), the key observation is made that colored input noise due to synaptic filter-
ing results in a probability density of the membrane potential which is non-zero
near the threshold, and allows neurons to respond instantaneously to injected cur-
rents. Conductance-based neurons with finite synaptic time constants are treated
in (Rudolph & Destexhe, 2003; Richardson, 2004; Rudolph & Destexhe, 2005;
Richardson & Gerstner, 2005), however only in the sub-threshold regime, limit-
ing their applicability for understanding single cell ensemble firing statistics and
networks dynamics. The problem with threshold has yet to be solved exactly,
however it is treated in (Moreno-Bote & Parga, 2004a, 2004b; Büsing, 2006).

An alternate and fruitful approach to describe the statistics of neural firing is
to apply renewal theory as presented in detail in (Gerstner & Kistler, 2002). The
defining characteristic of renewal theory is that the firing probability is modeled
as a function the time since last spike, or age, and successive ISIs are statisti-
cally independent. As such, these models neglect by definition the observations in
(Chacron, Pakdaman, & Longtin, 2003) and (Lindner & Longtin, 2003) that neu-
rons with spike-frequency adaptation (SFA), a mechanism present in the majority
of excitatory cells, exhibit negative serial ISI correlations.
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While the great majority of excitatory neurons exhibit SFA, there has yet to be
a population density treatment accounting for it, given the difficulty in treating the
added dimension analytically and numerically. The aim of the present study is to
account for the ensemble behavior of spike-frequency adapting neurons in the high-
conductance state in a quantitative way. Thus opening the doors to quantitative
studies of the function of SFA for the coding dynamics of large networks.

To begin, this chapter will provide the necessary background on SFA and in-
homogeneous renewal theory, and go beyond the renewal theory formalism by
introducing a dependence between ISIs resulting in a Markov model described by
a master equation, the standard continuity equation describing the time evolution
of the ensemble probability distribution. A connection to renewal theory is found
by a suitable variable transformation, and expressions for the ISI distribution
and conditional ISI distribution are derived. Chapter 2 treats the full five di-
mensional master equation of the canonical conductance-based integrate-and-fire
neuron model driven by Poisson spike trains augmented by SFA and a relative re-
fractory mechanism of the form given in (Dayan & Abbott, 2001, pp. 166). By ap-
plying an adiabatic elimination of fast relaxing variables (Haken, 1983; Gardiner,
1984), it is argued that this five-dimensional master equation can be approximated
by a two-dimensional master equation of the same form as the “beyond renewal
theory” Markov model proposed in this chapter. Methods to calibrate the gener-
alized hazard function of the Markov model by fitting to Monte-Carlo simulations
of the full system are given. By reasoning as in (Fourcaud & Brunel, 2002; Renart
et al., 2004; La Camera, Rauch, Lüscher, Senn, & Fusi, 2004), it is shown how the
generalized hazard function applies in the dynamic case by accounting for synaptic
filtering. In chapter 3, numerical methods are given for solving the master equa-
tions, and generating realizations of the proposed Markov processes. In chapter
4, predictions for ISI correlations and conditional ISI distributions in the static
case, and firing rates in the dynamic case due to the proposed Markov model are
compared to Monte-Carlo simulations of the full system. The master equation is
then employed to analyze the domain of validity of previous mean-adaptation ap-
proaches to model the ensemble firing rate of spike-frequency adapting ensembles.
Further, the correlations introduced due to gathering statistics in time rather than
over trial, as is typical in analysis of biological data, are modeled and analyzed.
Finally, inhomogeneous gamma renewal processes are used to investigate the fil-
tering properties due to spike-frequency adaptation, the compounding effects of
successive adapting populations, and the balanced network response to adapting
transients. Functional implications of spike-frequency adaptation are considered
in the discussion.

1.2 Spike-Frequency Adaptation

Spike-frequency adaptation (SFA) refers to the intrinsic property of certain neu-
rons to fire with gradually increasing interspike intervals (ISIs) in response to a
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steady injection of supra-threshold current in-vitro. SFA is ubiquitous: It has
been observed in many neural systems of diverse species (Fuhrmann, Markram,
& Tsodyks, 2002). In the mammalian visual system for example, the majority
of retinal ganglion cells (RGCs) (O’Brien, Isayama, Richardson, & Berson, 2002),
geniculate relay neurons (Smith, Cox, Sherman, & Rinzel, 2001), and neocorti-
cal and hippocampal regular spiking pyramidal neurons (McCormick, Connors,
Lighthall, & Prince, 1985) exhibit SFA.

The in-vitro conditions used to experimentally verify the presence of SFA are
far from the operational mode of a typical neuron in a network. For spike-frequency
adapting neurons driven by noisy currents representing input from an active net-
work, the characteristic increasing interspike interval transient is difficult to detect
by inspection due to highly variable spiking. Regardless, even in the static case
(homogeneous noise) the effects of SFA can be observed in the correlations of ISIs
(Chacron et al., 2003; Lindner & Longtin, 2003). In the dynamic case, the en-
semble firing rate transient induced by SFA can be clearly seen in the so-called
peri-stimulus time-histogram gathered over multiple trials of the stimulus proto-
col.

Phenomenological models for SFA and related relative refractory mechanisms
augmenting a standard conductance-based integrate-and-fire neuron model are
standard and given in (Dayan & Abbott, 2001, pp. 166) or (Koch, 1999, pp. 339)
and recently generalized in (Brette & Gerstner, 2005). In (Benda & Herz, 2003),
it is shown that a large class of biophysical mechanisms which induce SFA can
be reduced to these conductance-based phenomenological models. Similar but
current-based Adaptation mechanisms have been studied in (van Vreeswijk &
Hansel, 2001) and the related threshold fatigue model for adaptation, also known
as dynamic threshold, in (Chacron et al., 2003; Lindner & Longtin, 2003). See
(Ermentrout, Pascal, & Gutkin, 2001) for a bifurcation analysis of Iahp, the after-
hyperpolarization current, a calcium-dependent potassium current, and, Im, the
muscarinic slow voltage-dependent potassium current, the biophysical mechanisms
behind SFA, using a Hodgkin-Huxley type modeling framework.

Mean-adaptation approximations for the firing rate of populations of spike-
frequency adapting neurons augmenting the standard Wilson & Cowan neuron
population equations (Wilson & Cowan, 1972) were devised in (Latham, Rich-
mond, Nelson, & Nirenberg, 2000; Fuhrmann et al., 2002) and used to study the
synchronizing effects of SFA. Universal mean-adaptation methods for modeling the
firing rate of adapting neurons subject to supra-threshold noise-free current input
are given in (Benda & Herz, 2003). In (La Camera et al., 2004), mean-adaptation
methods are investigated to describe the static and dynamic firing rates of a large
class of integrate-and-fire neuron models with current-based and dynamic thresh-
old adaptation mechanisms driven by noisy input currents representing input from
an active network. The phenomenological firing rate relaxation dynamics of pre-
vious Wilson & Cowan studies is replaced in (La Camera et al., 2004) with a firing
rate which depends instantaneously on filtered synaptic currents as suggested in
(Fourcaud & Brunel, 2002; Renart et al., 2004). While for Wilson & Cowan ap-
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proaches the relaxation time constant is a free parameter, the approach due to (La
Camera et al., 2004) has no free parameters and excellent agreement is reported
in the static and dynamic case for several neuron models.

1.3 Ordinary Renewal Theory

Poisson and gamma renewal processes, both special cases of an ordinary renewal
process, enjoy widespread use in the literature to model the firing statistics of both
cortical neurons and primary sensory neurons. Here the definition of an ordinary
renewal process is reviewed and some useful properties presented, following the
more detailed discussion available in (Cox, 1962).

Suppose a system which resets after a time, T , has elapsed since the last reset.
Suppose that T , deemed the renewal interval, is a continuous random variable
identically distributed with probability density function (PDF), f(τ), defined as

f(τ) := lim
∆τ→0+

prob{τ < T ≤ τ + ∆t}
∆τ

. (1.1)

This system one calls, then, an ordinary renewal process. One calls the system a
Poisson process with rate ρ if

f(τ) = ρ exp(−ρτ). (1.2)

One calls the system a gamma renewal process (GRP) with parameters a and b if

f(τ) =
τa−1 exp(− τ

b )

baΓ(a)
. (1.3)

An ordinary renewal process is also called homogeneous, since the PDF is inde-
pendent of time.

The hazard function, ρ(τ), sometimes called the renewal density, is defined for
a renewal process as

ρ(τ) = lim
∆τ→0+

prob{> 0 renewals in [τ, τ + ∆τ)}
∆τ

, (1.4)

where τ denotes the time since the last renewal1. Since the probability of more
than one renewal in ∆τ is O(∆τ 2), ρ(τ)∆τ for ∆τ sufficiently small gives the
probability that one renewal occurs during the aging of the system from τ to
τ + ∆τ . Thus, the hazard function has units of 1/time, and gives the temporal
density of renewals or the average instantaneous renewal rate of a system of age

1For the discussion of renewal processes, the notation of (Cox, 1962) is followed except: τ

denotes age, t denotes time when later considering the inhomogeneous case, and ρ instead of h

denotes the hazard function.
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τ . The hazard function can be uniquely determined from the PDF (Cox, 1962).
Specifically,

ρ(τ) =
f(τ)

F(τ)
, (1.5)

where

F(τ) =

∫ ∞

s=τ
f(s)ds (1.6)

is known as the survivor function, as it gives the probability of no renewal (sur-
vival) for a time τ following the last renewal.

Given the hazard function, the PDF is also uniquely determined since it can
be shown that

F(τ) = exp(−
∫ τ

0
ρ(s)ds), (1.7)

and it follows from (1.5) that

f(τ) = ρ(τ) exp(−
∫ τ

0
ρ(s)ds). (1.8)

Thus, it is a general result that for an ordinary renewal process, the hazard func-
tion uniquely determines the PDF and vice-versa.

1.4 Inhomogeneous Renewal Theory

To what extent neural firing patterns are random due to sensory noise and vari-
ous unreliabilities of the neural substrate or rather part of a complex and dynamic
code remains an ongoing debate (Softky & Koch, 1993; Rieke, Warland, de Ruyter
van Steveninck, & Bialek, 1997; Shadlen & Newsome, 1998; Bialek, 2002). Nev-
ertheless, it is common modeling practice to express time varying macroscopic
parameters, such as local activity or stimulus intensity, in the instantaneous rate
parameter of an inhomogeneous Poisson process, inherently assuming stochastic-
ity in coding. Indeed, at the sensory periphery, such a rate coding hypothesis
seems to be the whole story (Bialek, 2002; Uzzell & Chichilnisky, 2004). Where
relative refractory periods or SFA effects are to be modeled, gamma renewal pro-
cesses are often used, or other related renewal hazard recovery dynamics (Uzzell &
Chichilnisky, 2004). Such studies are generally limited to static parameters of the
spike train statistics, since the random number generation schemes required to gen-
erate an inhomogeneous gamma renewal process are not present in the literature
of the neuron modeling community. Occasionally, the standard inverse-integrated-
rate function approach for Poisson processes (Devroye, 1986) is applied directly to
the gamma renewal process without considering the effect this has on the shape
parameter, a, of the gamma distribution in equation 1.3 (Gazères, Borg-Graham,
& Frégnac, 1998).

A formalism for treating a general inhomogeneous renewal process is given in
detail in (Gerstner & Kistler, 2002) in sections 5.2, 5.3, 6.2.2 and 6.3.2. While the
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treatment in section 6.2.2 is developed for Spike Response Model neurons with
escape noise, and in section 6.3.2 for populations of neurons satisfying a few basic
assumptions, it is not explicitly stated there that the analysis is that of an arbitrary
inhomogeneous renewal process, though it is mentioned briefly in (Gerstner, 2001).
First, this fact is reiterated by producing the main results of section 6.2.2 and
6.3.2 of (Gerstner & Kistler, 2002) using an inhomogeneous generalization of the
notation of (Cox, 1962), a classic reference work on homogeneous renewal theory.
Subsequently, In section 3.5, a recipe is presented for efficiently generating spike
trains of a general inhomogeneous renewal process.2

The basic assumption of inhomogeneous renewal theory is that the state of the
modeled system can be described by a single state variable, τ , the time since last
renewal, or age of the system, and time t. The limiting probability density for the
neuron to spike, or more generally, for the system to renew after surviving a time
interval τ ,

ρ(τ, t) = lim
∆t→0+

prob{> 0 renewals in [t, t+ ∆t) | τ}
∆t

, (1.9)

also known as the hazard function (Cox, 1962), is a function of time, t, and age,
τ .

The ensemble firing rate3 at t, denoted by α(t), is the expectation value,

α(t) = 〈ρ(t)〉 =

∫ ∞

0
ρ(s, t)f−(s, t)ds, (1.10)

where f−(τ, t) denotes the inhomogeneous probability density function (PDF) of
times since last renewal, also called the backward recurrence-time in (Cox, 1962),
or the refractory density in (Gerstner & Kistler, 2002). Following conventional
notation, the argument t is the time parameter, and is not to be mistaken for a
distribution variable. Thus normalization is only over the distribution variable τ ,
i.e.

∫ ∞

0
f−(τ, t)dτ = 1. (1.11)

This notational convention for including a time parameter in the PDF will be used
throughout the text. The PDF, f−(τ, t), can be determined by reasoning that the
probability that the system has an age in the interval (τ, τ + ∆τ) is equal to the
probability that there is a renewal in the time interval (t− τ, t− τ +∆τ) and that
the system subsequently survives until t. This yields

f−(τ, t) = α(t− τ)F(τ, t− τ), (1.12)

2In what follows, the pitfall of other studies which erroneously assume an intensity-rescaling
transformation of a stationary gamma renewal process with parameter a (see equation 1.3) yields
an inhomogeneous gamma renewal process with parameter a (Barbieri, Quirk, Frank, Wilson, &
Brown, 2001; Gazères et al., 1998), is avoided by working exclusively with the inhomogeneous
hazard function.

3The ensemble firing rate is referred to as the population activity, A(t), in (Gerstner & Kistler,
2002).
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where F(∆t, t) is the inhomogeneous survival function, representing the probability
that the system will survive for a time ∆t after spiking at t. Generalizing equation
1.2.10 in (Cox, 1962) for the inhomogeneous case, one has

F(∆t, t) = exp

(

−
∫ ∆t

0
ρ(s, t+ s)ds

)

. (1.13)

Plugging equation 1.12 into 1.10 results in the equivalent of equations 6.44 and
6.45 of (Gerstner & Kistler, 2002).

A differential formulation of equation 1.10-1.13 is possible. First note that age
increases with increasing t and thus

dτ

dt
= 1.

This suggests a transform of the age variable τ → τ ′ = t− τ , as in equation 6.46
of (Gerstner & Kistler, 2002). This new age variable, τ ′, is stationary with the
evolution of t. Define the stationary backward recurrence-time PDF as

f−s (τ ′, t) := f−(t− τ ′, t).

Thus

d

dτ
f−s (τ ′, t) =

∂

∂t
f−s (τ ′, t)

=
∂

∂t

(

α(τ ′)F(t− τ ′, τ ′)
)

,

and differentiation of equation 1.13 yields d
dtF(t− τ ′, τ ′) = F(t− τ ′, τ ′)ρ(t− τ ′, t),

whereby one has

d

dt
f−s (τ ′, t) = −α(τ ′)F(t− τ ′, τ ′)ρ(t− τ ′, t)

d

dt
f−s (τ ′, t) = −f−s (τ ′, t)ρ(t− τ ′, t). (1.14)

This relation determines d
dtf

−
s (τ ′, t) for τ ′ ∈ (−∞, t). Additionally, normalization

of f−s (τ, t) must be preserved, namely
∫ ∞

−∞

∂

∂t
f−s (τ, t)dτ = 0. (1.15)

Splitting the integral into three regions of interest one has

lim
∆t→0+

[
∫ t−∆t

−∞

∂

∂t
f−s (s, t)ds

+

∫ t+∆t

t−∆t

∂

∂t
f−s (s, t)ds

+

∫ ∞

t+∆t

∂

∂t
f−s (s, t)ds

]

= 0.
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Since f−s (τ ′ > t, t) = 0, the third integral is zero. One has then

lim
∆t→0+

∫ t+∆t

t−∆t

∂

∂t
f−s (s, t)ds = −

∫ t

−∞

∂

∂t
f−s (s, t)ds.

Since the contribution from equation 1.14 in the integral on the left hand side is
vanishing, it is necessary to add an additional term to d

dtf
−
s (τ, t) which is zero for

all τ 6= t but which has a finite integral when integrating around t. This can be
achieved by addition of a δ-function term, namely

d

dt
f−s (τ, t) → d

dt
f−s (τ, t) − δ(τ − t)

∫ t

−∞

∂

∂t
f−s (s, t)ds.

Notice the factor behind the δ-function is α(t). Thus one has the final form,

d

dt
f−s (τ ′, t) =

{

−f−s (τ ′, t)ρ(t− τ ′, t), τ ′ < t
0, τ ′ ≥ t

+α(t)δ(τ ′ − t), (1.16)

defined for τ ′ ∈ (−∞,∞). Equation 1.16 expressed in terms of f−(τ, t) results in
the master equation (Risken, 1996)

∂

∂t
f−(τ, t) = − ∂

∂τ
f−(τ, t) − f−(τ, t)ρ(τ, t) + α(t)δ(τ), (1.17)

defined for τ ∈ [0,∞). Thus, the renewal process is a special case of the more
general Markov process.

Given α(t), the number of renewals that occur on the interval (t, t+dt) summed
over m trials (or m realizations of a renewal process) is Poisson distributed with
a mean, µ = α(t) · m · dt and standard deviation, σ =

√
µ. The ensemble firing

rate estimated to a resolution ∆t by binning spike times wrt t of sufficiently many
trials is known as the peri-stimulus time histogram (PSTH).

1.5 Beyond Renewal Theory

The defining characteristic of renewal theory is that the firing probability is mod-
eled as a function the time since last spike, or age, and successive ISIs are statis-
tically independent. As such, these models neglect by definition the observations
in (Chacron et al., 2003) and (Lindner & Longtin, 2003) that neurons with spike-
frequency adaptation (SFA), a mechanism present in the majority of excitatory
cells, exhibit negative serial ISI correlations.

As stated in (Gerstner & Kistler, 2002, pp. 246), “A generalization of the
[renewal] population equation to neuron models with [spike-frequency] adaptation
is not straightforward since the [renewal] formalism assumes that only the last
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spike suffices. ... A full treatment of adaptation would involve a density description
in the high-dimensional space of the microscopic neuronal variables [as in] (Knight,
2000).”

In section 2.2 a full treatment of the density description mentioned above is
provided. However, before proceeding it is instructive to consider what a model
might look like which allows for a statistical dependence (correlation) between
subsequent ISIs.

Consider the standard phenomenological model for SFA proposed in (Dayan
& Abbott, 2001) where a given neuron model is augmented with a conductance
gs(t) which makes the jump gs(t+dt) = gs(t)+ qs when the neuron spikes at time
t and is otherwise governed by

dgs(t)

dt
= − 1

τs
gs(t). (1.18)

Now consider a neuron that has gs as a state variable and a probability density
to fire of the form

hg(gs, t) = lim
∆t→0+

prob{> 0 spikes in [t, t+ ∆t) | gs}
∆t

, (1.19)

where gs evolves in time by equation 1.18. This process is analogous to a renewal
process, but now with a single state variable, gs, which is not reset at each occur-
rence of a spike, but which slowly forgets with a timescale of τs due to equation
1.18. For a model of this form, it is possible for correlations to arise between
subsequent ISIs. Both the renewal hazard function, ρ(τ, t), and the hg(gs, t) de-
fined here are referred to as hazard functions as they both represent a probability
density of the system to spike, given the state variable τ or gs.

It is straight-forward to show that the ensemble of such neurons is a Markov
process governed by a master equation of the form

∂

∂t
P (gs, t) =

∂

∂gs

[

gs

τs
P (gs, t)

]

+hg(gs − qs, t)P (gs − qs, t)

−hg(gs, t)P (gs, t), (1.20)

where P (gs, t) is the distribution of state variables gs with P (gs < 0, t) ≡ 0. The
distribution P (gs, t) is analogous to the distribution of ages, f−(τ, t), of renewal
theory, and equation 1.20 is analogous to the renewal theory equation 1.17. The
model defined by equation 1.20 is referred to as the 1-D Markov (1DM) model
throughout the text. See Table 3.1 for an overview of the models considered in
the text.

Understanding the connection of the 1DM model to its renewal theory cousin
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is facilitated by transforming gs to a pseudo age variable ts by4

ts = η(gs) := −τs log (gs/qs) . (1.21)

The hazard function hg(gs, t) becomes h(ts, t) = hg

(

η−1(ts), t
)

, a hazard function
as in equation 1.9 of the pseudo age variable ts, but defined also for ts < 0. The
distribution of states P (gs, t) becomes P (ts, t), where they are related by

P (ts, t) = P
(

gs = η−1(ts), t
) d

dts
η−1(ts). (1.22)

The reset condition is not ts 7→ 0 as for a renewal process, but

ts 7→ η(gs + qs) = −τs log

(

gs

qs
+ 1

)

= −τs log

(

exp

(−ts
τs

)

+ 1

)

. (1.23)

The variable ts is then a general state variable which no longer represents the time
since last spike, as in renewal theory. Defining the reset mapping

ψ(ts) := −τs log

(

exp

(−ts
τs

)

+ 1

)

, (1.24)

with its inverse given by

ψ−1(ts) = −τs log

(

exp

(−ts
τs

)

− 1

)

, (1.25)

whereby ψ(ψ−1(t)) = t and ψ−1(ψ(t)) = t as required by the definition of the
inverse, the reset condition becomes ts 7→ ψ(ts). Since ψ : R → R

−, it follows that
all trajectories are reinserted at negative pseudo ages, and it can be seen from
the form of ψ that “younger” trajectories are reinserted at more negative pseudo
ages. This dependence of the reinserted state on the state just prior to spiking
yields a Markov process (Risken, 1996) which cannot be described by the subset
of Markov processes encompassed by renewal theory.

The master equation in terms of ts takes the form

∂

∂t
P (ts, t) = − ∂

∂ts
P (ts, t)

+

{

−h(ts, t)P (ts, t), ts ≥ 0
h(ψ−1(ts), t)P (ψ−1(ts), t) − h(ts, t)P (ts, t) ts < 0.

(1.26)

4The convention of using positional arguments for functions and labeled arguments for deriva-
tives will be followed throughout the text. Probability distributions are excepted from this rule,
as they are not functions but densities. The notation “:=” denotes definition of a function and
it’s positional arguments.
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revealing the advantage of the variable transformation gs → ts: The deterministic
drift term in equation 1.20 for the exponential decay of gs is transformed to a
constant drift term in ts analogous to age in renewal theory. As a result, much
can be calculated by analogy to renewal theory, and one is freed from the difficulty
of treating the non-constant drift towards zero in equation 1.20 numerically. It
will be seen in later sections that h(ts, t) is, in practice, approximately of the form

h(ts, t) = ah(t) exp (−bh(t)qs exp (−ts/τs)) (1.27)

for the neuron model and SFA mechanism considered here, where ah(t) and bh(t)
are determined by the stimulus. The subscript h distinguishes ah and bh from the
parameters a and b of the gamma renewal process.

For the static case where h(ts, t) ≡ h(ts), P (ts) can be found from equation
1.26 by setting ∂/∂t P (ts, t) = 0. The resulting equation for ts ≥ 0,

∂

∂ts
P (ts) = −h(ts)P (ts), (1.28)

is exactly as for a renewal process. The solution is the homogeneous survival
function

P (ts) = kW(ts, 0), (1.29)

where

k =

[
∫ ∞

−∞

W(ts, 0)dts

]−1

(1.30)

is a constant of normalization, and the generalized survival function,

W(∆t, t0s) = exp

(

−
∫ ∆t

0
h(t0s + s)ds

)

, (1.31)

and analogously the inhomogeneous generalized survival function

W(∆t, t0s, t) = exp

(

−
∫ ∆t

0
h(t0s + s, t+ s)ds

)

, (1.32)

represent the probability that a system with initial state t0s ∈ R will survive for
a time ∆t, and a time ∆t after t, respectively and are analogous to the survival
function of renewal theory, except for the explicit dependence on the initial state,
t0s. The distribution P (ts) for ts < 0 was solved numerically by discretizing and
integrating back from ts = 0. An iterative analytical approach is given in (Büsing,
2006).

The distribution of pseudo ages just prior to spiking at t, P ∗(ts, t), is related
to P (ts, t) by

P ∗(ts, t) =
h(ts, t)P (ts, t)

α(t)
, (1.33)

where

α(t) =

∫ ∞

−∞

h(ts, t)P (ts, t)dts (1.34)
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is the normalizing constant and also the firing rate of the ensemble.

The distribution of pseudo ages just after spiking at t, P †(ts, t), is related
to P ∗(ts, t) by transforming variables by the reset mapping (equation 1.24) for a
probability distribution:

P †(ts, t) = P ∗(ψ−1(ts), t)
d

dts
ψ−1(ts). (1.35)

1.5.1 Computing Renewal Quantities

The various quantities of renewal theory such as the ISI distribution, hazard func-
tion, and survival function are of interest, and are straight-forward to calculate.

First, the renewal survival function, F(τ, t), the probability that a system
which spiked at t will survive the time interval τ is given by

F(τ, t) =

∫ ∞

−∞

W(τ, ts, t)P
†(ts, t)dts. (1.36)

The ISI distribution, f(τ, t), the probability that a neuron which spiked at t
will survive for an interval τ and subsequently spike at t+ τ is

f(τ, t) =

∫ ∞

−∞

h(ts + τ, t+ τ)W(τ, ts, t)P
†(ts, t)dts. (1.37)

Equivalently in terms of P ∗(ts, t),

f(τ, t) =

∫ ∞

−∞

h(ψ(ts) + τ, t+ τ)W(τ, ψ(ts), t)P
∗(ts, t)dts. (1.38)

The hazard function of the system in a renewal sense, ρ(τ, t), where τ is a true
age, is by definition the firing rate of the sub-population which previously spiked
at time t− τ . Thus,

ρ(τ, t) =

∫ ∞

−∞

h(ts, t)P (ts, t| spike at t− τ)dts, (1.39)

where the state distribution of the system given a spike at t−τ , P (ts, t| spike at t−
τ), can be determined by reasoning that it is the distribution of states just after
spiking with arguments ts − τ and t − τ , P †(ts − τ, t − τ), which subsequently
survive the interval τ ,

P (ts, t| spike at t− τ) = k1P
†(ts − τ, t− τ)W(τ, ts − τ, t− τ), (1.40)

where k1 is the normalization factor

k1 =

[
∫ ∞

−∞

P †(ts − τ, t− τ)W(τ, ts − τ, t− τ)dts

]−1

, (1.41)
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and by inspection of equation 1.36,

k1 = F(τ, t− τ), (1.42)

such that

ρ(τ, t) =
1

F(τ, t− τ)

∫ ∞

−∞

h(ts, t)P
†(ts − τ, t− τ)W(τ, ts − τ, t− τ)dts. (1.43)

Clearly, the numerator is just f(τ, t− τ), resulting in

ρ(τ, t) =
f(τ, t− τ)

F(τ, t− τ)
. (1.44)

This verifies that the standard renewal theory relation given by equation 1.5,
generalized for the homogeneous case, still holds. It is interesting to note that, in
the inhomogeneous case, there is an alternate definition for the ISI distribution
which is equally sensible, namely, define f̂(τ, t) as the probability that a neuron
which spiked at t−τ will survive the interval τ and subsequently spike at t. This is
the ISI distribution which treats the spike at t as the final spike of the ISI, rather
than the initial spike as in equation 1.38. If one prefers this alternate definition
of the ISI distribution, as in (Gerstner & Kistler, 2002), then one has

f̂(τ, t) =

∫ ∞

−∞

h(ts + τ, t)W(τ, ts, t− τ)P †(ts, t− τ)dts, (1.45)

implying that f̂(τ, t) = f(τ, t− τ) and equation 1.44 becomes

ρ(τ, t) =
f̂(τ, t)

F(τ, t− τ)
. (1.46)

1.5.2 Correlations

In this section, an expression for the joint serial ISI distribution, f(τi+1, τi, t), will
be derived for the proposed adapting Markov process, and shown to exhibit ISI
correlations.

Recall the definition of the absence of correlations between two random vari-
ables: τi and τi+1 are uncorrelated (independent) if and only if

f(τi+1, τi) = f(τi+1)f(τi), (1.47)

where f(τi+1, τi) is the joint probability distribution of two back to back ISIs in
the homogeneous case.

For the inhomogeneous case, a separation of this joint distribution f(τi+1, τi, t)
by Bayes’ theorem,

f(τi+1, τi, t) = f(τi+1, t|τi)f(τi, t− τi), (1.48)
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reveals a subtlety: The time argument of f(τi, t), the marginal distribution of τi,
must be retarded by τi. This is due to the fact that for τi to precede τi+1 at t,
it must occur at t − τi. Given that f(τ, t) is known, it is left to determine an
expression for f(τi+1, t|τi). This can be achieved using equation 1.38 by replacing
P ∗(ts, t) with the conditional distribution of states just after spiking given a spike
at t− τi, which is denoted by P ∗(ts, t|τi).

The distribution P ∗(ts, t|τi), the conditional distribution of states just prior to
spiking, given a spike at t− τi, takes the form

P ∗(ts, t|τi) = k2h(ts, t)P (ts, t| spike at t− τi), (1.49)

where k2 is a normalization factor, and an expression for P (ts, t| spike at t − τi)
was given in equation 1.40. By inspection, it can be seen that k−1

2 = ρ(τi, t).
Plugging this expression for P ∗(ts, t|τi) into equation 1.38 yields

f(τi+1, τi, t) =

f(τi+1, t|τi)f(τi, t− τi) =

∫ ∞

−∞

h(ψ(ts) + τi+1, t+ τi+1)W(τi+1, ψ(ts), t)

× h(ts, t)W(τi, ts − τi, t− τi)P
†(ts − τi, t− τi)dts, (1.50)

an inhomogeneous expression for the joint ISI distribution of two successive ISIs.
It is instructive to verify that for the case of a renewal process, equation 1.50

predicts no correlations. For a renewal process, ψ(ts) = 0 and P †(ts, t) = δ(ts),
such that equation 1.50 becomes

f(τi+1, τi, t) =

h(τi+1, t+ τi+1)W(τi+1, 0, t) · h(τi, t)W(τi, 0, t− τi). (1.51)

In addition, the ISI distribution given by equation 1.37 reduces to

f(τ, t) = h(τ, t+ τ)W(τ, 0, t), (1.52)

the inhomogeneous equivalent to equation 1.5 of ordinary renewal theory. Thus,
it can be seen by inspection that equation 1.51 is of the form

f(τi+1, τi, t) = f(τi+1, t)f(τi, t− τi), (1.53)

implying as expected that successive ISIs are uncorrelated for a renewal process.
While the calculations in this chapter are perhaps difficult when seen for the

first time, they become almost trivial once one is familiar with the various quan-
tities, W, P †, etc., and how they fit together to calculate a quantity of interest.
Thus, while it has not yet occurred to the author, it is not unreasonable to expect
that one could find an abstract algebra to express the calculations in a more con-
cise way. Such an algebra would facilitate, among other things, a generalization
of the calculations to higher order serial correlations, and make such calculations
interesting to a wider audience.





Chapter 2

Ensembles of Detailed Neurons

It appears then that a sufficiently
complex stochastic process will give a
satisfactory representation of a dis-
crete source.

Claude E. Shannon, The Mathematical Theory
of Communication

In this chapter, the canonical conductance-based integrate-and-fire neuron
model driven by Poisson spike trains, augmented by mechanisms for spike-frequ-
ency adaptation and a relative refractory period will be considered. It will be
shown that the full five-dimensional master equation for this system can be re-
duced to a two-dimensional generalization of the one-dimensional Markov model
(1DM) of the previous chapter by an adiabatic elimination of fast variables. Fit-
ting methods are given for calibrating the reduced two-dimensional model and
renewal theory models to this full system.

2.1 Neuron Model, Adaptation, Input

Following (Rudolph & Destexhe, 2003; Richardson, 2004; Richardson & Gerstner,
2005; Rudolph & Destexhe, 2005), considered here are the equations for the mem-
brane potential, v(t), and excitatory and inhibitory synaptic conductances, ge(t)
and gi(t), of the conductance-based integrate-and-fire neuron driven by Poisson
input:

cm
dv(t)

dt
= gl(El − v(t)) + ge(t)(Ee − v(t)) + gi(t)(Ei − v(t)) (2.1)

dge(t)

dt
= − 1

τe
ge(t) + qeSe(t) (2.2)

dgi(t)

dt
= − 1

τi
gi(t) + qiSi(t), (2.3)
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where cm represents the membrane capacitance, gl the leak conductance, Ex the
various reversal potentials, qx the quantal conductance increases, and τx the synap-
tic time constants. The exact parameters used are given in appendix A. The
excitatory and inhibitory input spike trains, Sx(t) with x ∈ {e, i} respectively, are
given by

Sx(t) =
∑

k

δ (t− sx,k) , (2.4)

where sx,k are the spike-times of a realization of an inhomogeneous Poisson process
(Papoulis & Pillai, 1991). Thus, Sx(t) satisfies the constraints

〈Sx(t)〉 = νx(t) (2.5)

〈

Sx(t)Sx(t′)
〉

= νx(t)νx(t′) + νx(t′)δ(t − t′). (2.6)

Here νx(t) represents the time varying rate of the inhomogeneous Poisson process
and 〈〉 represents the expectation value over the ensemble of realizations. In what
follows, all Poisson processes are assumed inhomogeneous unless otherwise stated.

To put the neuron in a state of high-conductance, it is bombarded byNe = 1000
and Ni = 250 excitatory and inhibitory Poisson processes all with rate functions
λe(t) and λi(t) respectively so that

νx(t) = Nxλx(t). (2.7)

A simple thresholding mechanism approximates the action potential dynamics
of real neurons: If v(t) exceeds the threshold, vth, v(t) is reset to vreset. Thus,
analogous to the input spike train, the output spike train takes the form

A(t) =
∑

k

δ (t− sk) , (2.8)

where sk are the times of membrane potential threshold crossings enumerated by
k.

SFA and a relative refractory period can be modeled both with the addition
of a current to equation 2.1 of the form proposed in (Dayan & Abbott, 2001),

gy(t)(Ey − v(t)), (2.9)

where Ey is a reversal potential. The conductance gy(t) is governed by

dgy(t)

dt
= − 1

τy
gy(t) + qyA(t), (2.10)

where τy and qy are the time constant and quantal conductance increase of the
mechanism. The subscripts y = s and y = r label SFA and the relative refractory
mechanism, respectively. Defining

βv(v, ge, gi, gs, gr) := gl(El − v) +
∑

µ=e,i,s,r

gµ(Eµ − v), (2.11)
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and for µ = e, i, s, r,

βµ(gµ) := − 1

τµ
gµ, (2.12)

the five-dimensional system of coupled differential equations describing the conduc-
tance-based spike-frequency adapting relative refractory integrate-and-fire neuron
driven by Poisson input is:

cm
dv(t)

dt
= βv(v(t), . . . , gr(t)) − (Vth − Vreset)A(t) (2.13)

dgx(t)

dt
= βx(gx(t), t) + qxSx(t) (2.14)

dgy(t)

dt
= βy(gy(t), t) + qyA(t), (2.15)

where x ∈ {e, i} and y ∈ {s, r}. Equations 2.13-2.15 are referred to as the full five-
dimensional (5DF) model throughout the text (see the model overview in Table
3.1). The parameters used are given in Table A.1.

2.2 Ensemble Behavior

It is natural to look for an ensemble description of equations 2.13-2.15, given that
the input is described in terms of an ensemble.

Equations 2.13-2.15 are a set of concurrent first order differential equations, i.e.
the right hand sides at time t are functions of the instantaneous values of the state
variables,

(

v(t), ge(t), gi(t), gs(t), gr(t)
)

, implying no delays or memory effects are
to be modeled. The system is, therefore, a Markov process and given an initial
distribution P (v, ge, gi, gs, gr, t0) for some t0, the evolution of P (v, ge, gi, gs, gr, t)
can be described by a suitable master equation (Risken, 1996). For the system in
question here, the master equation takes the form

∂

∂t
P (v, ge, gi, gs, gr, t) = −div J (v, ge, gi, gs, gr, t)

+ δ (v − vreset) Jv (vth, ge, gi, gs − qs, gr − qr, t) , (2.16)

where the probability current density, J , is a vector with components

Jv(v, ge, gi, gs, gr, t) = βv(v, ge, gi, gs, gr, t)P (v, ge, gi, gs, gr, t) (2.17)

Jµ := βµ(gµ, t)P (v, ge, gi, gs, gr, t), (2.18)

with µ ∈ {s, r}. For Je and Ji see appendix B. The δ term in equation 2.16
implements the reinsertion of probability flux that crosses the threshold, and is
equivalent to an appropriately chosen boundary condition. Furthermore, it is
defined that P (v, ge, gi, gs, gr, t) = 0 if one or more of the conductances ge, . . . , gr

is negative.
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There exists a wealth of literature treating master equations of conductance
and current-based integrate-and-fire neuron models in the absence of adaptation
and relative refractory mechanisms (Knight, 1972; Gerstner, 1995; Brunel, 2000;
Omurtag et al., 2000; Nykamp & Tranchina, 2000; Knight, Omurtag, & Sirovich,
2000; Gerstner, 2000; Fourcaud & Brunel, 2002; Rudolph & Destexhe, 2003;
Richardson, 2004; Rudolph & Destexhe, 2005; Richardson & Gerstner, 2005).
The usual approach is to make the so-called diffusion approximation, yielding
generally a Fokker-Planck equation for the membrane potential, and perhaps one
or two other dimensions treating synaptic conductances.

A novel approach is given here, applicable for neurons in the high-conductance
state, whereby the variables v, ge, gi are eliminated by a technique known as an
adiabatic elimination of fast variables (Haken, 1983; Gardiner, 1984), and the sys-
tem is reduced to a master equation for the two-dimensional marginal probability
distribution, P (gs, gr, t), of the slow variables, gs and gr. As it will be seen, the
membrane potential, v, and the synaptic conductances, ge and gi, are thus en-
capsulated in the hazard function, hg(gs, gr, t). The static input case, λe, λi, is
treated here. The reasoning is generalized for dynamic external input λe(t), λi(t)
in section 2.3.

Followed here is the intuitive treatment of adiabatic elimination given in (Haken,
1983). To begin, P (v, . . . , gr) is integrated over the fast variables v, ge, gi yielding
the marginal distribution for the slow variables gs, gr,

P (gs, gr, t) =

∫ ∞

0

∫ ∞

0

∫ vth

−∞

P (v, ge, gi, gs, gr, t)dvdgedgi. (2.19)

Integrating equation 2.16 over v, ge, gi yields

∂

∂t
P (gs, gr, t) = −

∑

µ=s,r

∂

∂gµ
(βµ(gµ)P (gs, gr, t))

−
∫ ∞

0

∫ ∞

0
βv(vth, ge, gi, gs, gr)P (vth, ge, gi, gs, gr, t)dgedgi

+

∫ ∞

0

∫ ∞

0
βv(vth, ge, gi, gs − qs, gr − qr)P (vth, ge, gi, gs − qs, gr − qr, t)dgedgi.

(2.20)

For the details of the calculation, see appendix B. Now the marginal distribution
for the slow variables is separated from the full distribution under the integral in
equation 2.20 such that

P (v, ge, gi, gs, gr, t) = P (v, ge, gi, t|gs, gr, t)P (gs, gr, t), (2.21)

and the adiabatic approximation as in (Haken, 1983) is made, i.e. that

P (v, ge, gi, t|gs, gr, t) ≈ P (gs,gr)(v, ge, gi, t)P (gs, gr, t), (2.22)
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where P (gs,gr)(v, ge, gi, t) is the solution to the three-dimensional master equation
for the canonical conductance-based integrate-and-fire neuron with a constant
bias current, I(gs, gr) = gs(Es − v)+ gr(Er − v), with neither SFA nor the relative
refractory mechanism. This is equivalent to the assumption that v, ge, gi are im-
mediately at equilibrium given the slow variables, or in other words, the system
responds adiabatically to the dynamics of the slow variables gs, gr. The adia-
batic assumption ensures the two-dimensional process of the slow state variables,
(gs(t), gr(t)), is a Markov process.

Now defining the hazard function

hg(gs, gr, t) :=

∫ ∞

0

∫ ∞

0
βv(vth, ge, gi, gs, gr)P

(gs,gr)(v, ge, gi, t)dgedgi, (2.23)

the master equation 2.20 becomes

∂

∂t
P (gs, gr, t) = −

∑

µ=s,r

∂

∂gµ
(βµ(gµ)P (gs, gr, t))

−hg(gs, gr, t)P (gs, gr, t)

+hg(gs − qs, gr − qr, t)P (gs − qs, gr − qr, t). (2.24)

The model defined by equation 2.24 is referred to as the 2-D Markov (2DM) model
throughout the text (see the model overview in Table 3.1).

The assumption that gs is slow compared to v, ge, gi is easily justified as the
timescale of gs is on the order of 100 ms, while the timescale of v is on the order
of 2 ms in the high-conductance state. The timescale of the mean and standard
deviation of ge and gi are on the order of τe = 1.5 ms and τi = 10 ms respectively,
while the fluctuations of ge and gi are the source of stochasticity of the system
and on still a shorter timescale, due to their instantaneous jumps.

The timescale of gr is significantly faster than gs, though its treatment as
a slow variable also justifiable, be it in a somewhat indirect manner. As has
been argued in (Fourcaud & Brunel, 2002; Renart et al., 2004), for neurons with
synaptic time constants comparable to or larger than the effective membrane time
constant and driven by sufficient input noise, as is the case here, the firing rate
follows the input current almost instantaneously. It is this property which allows
the dynamic firing rate to be treated as a function of the time-dependent means
and variances of the synaptic conductances in (La Camera et al., 2004), a method
also followed here in section 2.3. This suggests such modulations do not push the
system far from equilibrium, and the system returns to equilibrium on a timescale
faster than that of the synaptic means (τe, τi). Since over the domain of the gr

trajectory for which the integrals on the rhs in equation 2.20 are non-zero, gr has
a timescale comparable to the mean of the synapses, the argument applies equally
to gr. However, since gr is spike-triggered, gr remains in the master equation,
while the synaptic variables, ge and gi, determine hg(gs, gr, t) and can be treated
outside of the master equation formalism.
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Methods to undertake a rigorous analysis of the error in the adiabatic ap-
proximation are beyond the scope of this work. What follows are a variety of
numerical comparisons to demonstrate the accuracy and domain of applicability
of the proposed approximation.

2.3 Calibration of Markov Process Models

In this section, methods for determining appropriate homogeneous and inhomoge-
neous hazard functions for the 1DM, 2DM, and renewal models are provided. Since
no analytical expression for equation 2.23, or the renewal hazard function of the
5DF model are yet known, fits of the homogeneous hazard functions determined
by 5DF Monte-Carlo simulations in the static case are used. The inhomogeneous
functions are then constructed from the homogeneous ones by discretizing time
and taking one homogeneous hazard function for the duration of a single time bin.

2.3.1 Determining the Static Hazard Function for Adapting Mar-

kov Models

Given a finite subset of the possible realizations of the Poisson input spike trains,
the 5DF model equations 2.13-2.15 can be integrated for each input realization.
Any statistical quantity of interest can then be approximated by averaging or
histogramming over this finite set of trajectories. This approach is known as
the Monte-Carlo method. By increasing the number of trials in this finite set
of realizations, the statistical quantities determined by the Monte-Carlo method
converge to the true quantities. Therefore, Monte-Carlo simulations are used
for determining the unknown hazard functions as well as later benchmarking the
reduced master equations.

By Monte-Carlo simulations of the 5DF model under static stimulation, the
quantities P ∗(gs + gr), P (gs + gr), and α(t) can be obtained. Then analogous to
equation 1.33, hg(gs, gr) can be determined by

hg(gs, gr) = hg(gs + gr) =
αP ∗(gs + gr)

P (gs + gr)
, (2.25)

where the sum of the conductances, gs + gr, can be treated, rather than each
independently because their reversal potentials have been chosen to be equal (see
appendix A). It was found that hg(gs, gr) can be fit well by a function of the form:

hg(gs, gr) = ah exp (−bh · (gs + gr)) , (2.26)

where ah and bh are fit parameters. Some typical fits for various excitatory Poisson
input rates are shown in Figure 2.1. For the 1DM model, the same fit parameters
were used but with gr = 0. Transforming to (ts, tr) by the inverse of equation 1.21
results in

h(ts, tr) = ah exp
(

− bh ·
(

qs exp (−ts/τs) + qr exp (−tr/τr)
)

)

. (2.27)
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Figure 2.1: hg(gs, gr) = hg(gs + gr) as a function of gtot = gs + gr, as deter-
mined from 5DF Monte-Carlo (data points, 1000 trials per λe, 10 s per trial,
dt = 0.01 ms) by equation 2.25, was found to be approximately exponential for
a range of excitatory stimulation rates, λe, with the inhibitory stimulation rate
fixed at λi = 11.4Hz. For the definition of the 5DF model, see Table 3.1. The
exponential fits (lines) are good for low rates (C: λe = 5.26 Hz, 5: λe = 5.56 Hz,
4: λe = 5.88 Hz, ×: λe = 6.01 Hz, �: λe = 6.25 Hz, ©: λe = 6.67 Hz) in (A),
but poorer for gs near zero for high rates (C: λe = 6.90 Hz, 5: λe = 7.14 Hz, 4:
λe = 7.69 Hz, ×: λe = 8.33 Hz, �: λe = 9.09 Hz, ©: λe = 10.0 Hz) in (B).
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2.3.2 Constructing Inhomogeneous Hazard Functions

Now given the hazard functions determined under static input statistics, the in-
homogeneous hazard function given time-varying Poisson input rates λe(t), λi(t)
can be constructed by accounting for synaptic filtering.

The homogeneous hazard functions given static stimulation rates λe, λi deter-
mined by the recipes in section 2.3.1 are the hazard functions given synaptic con-
ductance distributions parameterized by 〈ge,i〉, neglecting higher order moments.
It can be shown that

d

dt
〈gx(t)〉 = − 1

τx

(

〈gx(t)〉 − qxτxNxλx(t)
)

, (2.28)

with x ∈ {e, i}, a low-pass filter equation of the quantity qxτxNxλx(t) with a cutoff
frequency of 2π/τ (Gardiner, 1985; Brunel, 2000; La Camera et al., 2004).

As argued in (Fourcaud & Brunel, 2002; Renart et al., 2004), the firing rate
of neurons with non-zero synaptic time-constants driven by sufficient noise follow
their input currents instantaneously. Then the hazard function hg(gs, gr, t) here is
also determined instantaneously by the mean synaptic conductances. Therefore,
inhomogeneous parameters ah(t) and bh(t) in equation 2.27 can be determined
by interpolating the parameters determined from static 〈ge〉 and 〈gi〉 with the
instantaneous dynamic 〈ge(t)〉 and 〈gi(t)〉 determined by integrating equation 2.28
for some given arbitrary time-varying input parameterized by λe(t), λi(t). The
resulting inhomogeneous hazard function is then

hg(gs, gr, t) = ah(t) exp (−bh(t) · (gs + gr)) . (2.29)

A similar approach was taken in (La Camera et al., 2004), except that the dy-
namics of the standard deviation of the synaptic conductance is not accounted for
by the fitting approach used here. This could be remedied given an analytically
solvable neuron model as was used in (La Camera et al., 2004).

In the present study, only time varying excitation is investigated. Treating
inhibition in addition would require additional fits and two-dimensional interpo-
lation of the resulting parameters, and would allow the master equations to be
used to study balanced randomly connected networks of inhibiting and adapting
excitatory neurons, extending (Brunel, 2000; Latham et al., 2000).

2.3.3 Renewal Theory Models

In homogeneous renewal theory, only the time since the last spike (age) enters into
the hazard function (Gerstner & Kistler, 2002) to introduce statistical dependence
between spike times. While such theories cannot account for ISI correlations due
to SFA, they can account for much of the gradual increase in excitability, which
follows a spike due to SFA, by an appropriately chosen hazard function. Perhaps
surprisingly, such models are sufficient to exhibit “adapting” transients to step
stimuli in the inhomogeneous case. Like the 2DM model, one seeks to calibrate



2.3 Calibration of Markov Process Models 27

such renewal models to the 5DF system, and assess their suitability for modeling
the ensemble firing rate under dynamic stimuli. Sufficient for such a comparison
is a recipe for specifying the hazard function as a function of the static stimulus.
The dynamic case can then be constructed by using the effective synaptic filtered
stimulus to determine the inhomogeneous hazard function at each instant in time,
as for the adapting Markov models in the previous section.

For the static case, one can determine the hazard function as a function of
the stimulus by interpolating the ISI distribution due to 5DF Monte-Carlo and
applying equation 1.5. The renewal model will thus reproduce the ISI distribu-
tion of 5DF Monte-Carlo under static stimulation. This process is numerically
unstable for large τ , and for the dynamic case too costly. Another approach is
to determine the renewal hazard function by the two-dimensional generalization
of equation 1.43, as the adiabatic elimination shows the resulting hazard function
should accurately describe the full system. There is one caveat: Since the resulting
renewal hazard function must be uniquely determined by the stimulus, P (ts, tr, t)
in equation 1.43 1 must be replaced by P∞(ts, tr, t), the instantaneous equilib-
rium distribution, or asymptotic state distribution for large time resulting from a
h(ts, tr, t) fixed at the instantaneous value at time t. The renewal hazard function
determined by this recipe, combined with the renewal master equation 1.17 define
what will subsequently be referred to as the effective renewal (ER) model (see
the model overview in Table 3.1). The parameters of the GRP hazard function
are uniquely determined by the criteria that the hazard function must be equal
to the ER renewal hazard function at large τ , and have the same average firing
rate. Given the GRP hazard parameters, the GRP hazard function was computed
as discussed in section 3.5. Typical hazard functions are shown in Figure 2.2.
Indeed, the renewal hazard functions determined by the two-dimensional general-
ization of equation 1.43 are consistent with those of 5DF Monte-Carlo determined
by equation 1.5.

Simulation of the ER model implies that the master equation for P (ts, tr, t)
must be allowed to converge to P∞(ts, tr, t) for each time step where the stimulation
changes. This is costly, and makes the ER models much less efficient to simulate
than the 1DM and 2DM models, but allows a direct comparison of renewal models
with the 1DM and 2DM models, and 5DF Monte-Carlo. When the renewal hazard
function is known a priori, such as for GRPs or when the hazard functions can be
fit by simple functions, the renewal theory ensemble equations are comparatively
more efficient to simulate than the 1DM and 2DM models.

1P †(ts, tr, t) is required and comes from equations 1.33 and 1.35 applied to P (ts, tr, t).



28 Ensembles of Detailed Neurons

� ����� ����� ����� ������

�	�


	�

�����

��
��

� �����	� �����	
�

���

���

���

���
� ����� ����� ����
 ����
�

�

���

� �

�	�

� �����	� �����	
�

�

�




2DM prediction

α
=

 6
.3

3 
H

z
α

=
 1

8.
67

 H
z

[H
z]

ρ(
τ)

τ [s]

Gamma RP

5DF Monte−Carlo

Figure 2.2: The renewal hazard function, ρ(τ), for an ensemble firing rate of
α = 6.33 Hz (top row), and α = 18.67 Hz (bottom row). The renewal hazard
function for 5DF Monte-Carlo (circles) was computed by equation 1.5 with a
spike train of 104 s. The renewal hazard function due to the 2DM model (solid
line) was determined by the two-dimensional generalization of equation 1.43. The
renewal hazard function for a gamma renewal process (dashed line) equal to the
2DM renewal hazard function at large τ , and with the same average firing rate
was computed as discussed in section 3.5. The small τ region is shown blown-up
in the right column. For the definition of the 2DM and 5DF models, see Table
3.1.



Chapter 3

Numerics and Computational

Methods

Any computing problem can be
solved by adding another level of
abstraction−except the problem of
having too many layers of abstrac-
tion.

Hacker proverb

In this section the numerical techniques applied to solve the various master
equations, generate inhomogeneous realizations of the 1DM, 2DM and renewal
processes, and solve the 5DF neuron model equations are described.

3.1 Numerical Solution of Master Equations

The 1DM and 2DM master equations were solved numerically by discretizing
P (ts, t) and P (ts, tr, t) respectively, applying the exponential Euler method for
the death term, and reinserting the lost probability by walking the negative time
domain and fetching the probability sources of each bin determined by the inverse
reset mapping given by equation 1.25. The one-dimensional case is presented here,
and the generalization to two dimensions is straight-forward.

The distribution P (ts, t) is discretized on equally spaced grids tis and tj with
grid spacings ∆ts := ti+1

s − tis and ∆t := tj+1 − tj respectively, with ∆ts = ∆t,
such that P (ts, t) → P i,j. The discretized form of the master equation 1.26 then
takes the form

P i+1,j+1 = P i,j exp
(

−∆t · h(tis, tj)
)

+ P i,j
r , (3.1)

where the first term is the exponential Euler computation of loss of probability
due to the death term. On the lhs, the first super-script of P , i + 1, leads i by



30 Numerics and Computational Methods

one to implement the constant drift of ts, dts/dt = 1. The reinserted probability,
P i,j

r , is computed for tis + ∆ts < 0 by

P i,j
r :=

irif(t
i+1
s )−1
∑

m=irif(tis)

Pm,j
d

+
ψ−1(ti+1

s ) − irif(t
i+1
s )

∆ts
P i+1,j

d

−ψ
−1(tis) − irif(t

i
s)

∆ts
P i,j

d , (3.2)

where P i,j
d is the loss of probability computed by

P i,j
d := ∆t · P i,j · h(tis, tj), (3.3)

and irif refers to the “reinserted-from” index which satisfies

tirif(t
i
s)

s ≤ ψ−1(tis) < tirif(t
i
s)

s + ∆ts. (3.4)

The first term in equation 3.2 is just a sum of all P i,j
d except the fractional

last bin which send probability to the interval t ∈ [tis, t
i
s + ∆ts). The second two

terms subtract the fractional first and add the fractional last bins of P i,j
d which

are reinserted to the interval, and thus implement a sort of anti-aliasing of the
reinsertion mapping.

3.2 Neuron Simulations

Monte-Carlo simulations of the full-system (5DF Monte-Carlo) were performed
by solving equations 2.13-2.15 using the NEST simulation kernel (Diesmann &
Gewaltig, 2002) with a time step of 0.01ms. Parallelization of the simulation
and analysis, for execution on the in-house Linux cluster, was implemented on
a per Monte-Carlo trial basis using Python, numpy (Jones, Oliphant, Peterson,
et al., 2001–), and a custom master-slave interpreter framework written on top
of MPI4PY (Dalcin, Paz, & Storti, 2005). The requisite Python binding for the
NEST simulation kernel, PyNEST, is also a custom implementation which en-
joys attention from a wider user base (Cannon et al., 2006), as it allows flexible
configuration of the simulations without a significant performance reduction (Bro-
ker, Chinellato, & Geus, 2005), MATLAB-like analysis on-line, and exposes the
simulator core to a modern dynamic programming language with an extensive
module library, an enabler for, for example, the parallelization of the simulation
and analysis.
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3.3 Generating Realizations of Adapting Markov Pro-

cesses

Generating realizations of the proposed 1DM or 2DM processes is straight-forward:
The thinning method for a general hazard function described in (Devroye, 1986)
can be applied. The quantity hmax = maxts,t (h(ts, t)) for the 1DM case, or
hmax = maxts,tr ,t (h(ts, tr, t)) for the 2DM case must be known. The variables
t and ts (1DM), or t, ts, and tr (2DM) are required and can have initial values
of zero. Sequential intervals are generated using a homogeneous Poisson process
with hazard rate ρ = hmax. Given one such interval, ∆ti, it is added to t and ts
(1DM), or t, ts, and tr (2DM). Next, a spike is generated at time t with probability
h(ts, t)/hmax (1DM) or h(ts, tr, t)/hmax (2DM), and if a spike is generated, ts 7→
ψs(ts), and tr 7→ ψr(tr), where ψs and ψr refer to the reinsertion mappings as in
equation 1.24 with the respective parameters for the two mechanisms.

3.4 Numerical Solution of the Renewal Master Equa-

tion

As the renewal master equation 1.17 is just a special case of the 1DM master
equation, it can be solved with the same numerical techniques as described in
section 3.1. The content of the δ term in equation 1.17 is that all probability
lost due to the death term (the second term on the rhs) is accumulated and
reinserted to the τ = 0 bin. Thus, one is spared the complication of treating state
dependent reinsertion of probability, as was necessary for the 1DM and 2DM
master equations.

3.5 Generating Realizations of a General Inhomoge-

neous Renewal Process

Realizations for a inhomogeneous renewal process with a given hazard function
can be also generated by the thinning method as discussed in (Devroye, 1986).
The maximum of the hazard function, ρmax = maxτ,t (ρ(τ, t)), must be known.
Sequential event intervals are generated using a homogeneous Poisson process
with a rate of ρmax. The resulting spike train is then sequentially thinned, given
the event time t and time since last event τ , by the rule:

1. Generate a uniform random number, T , on [0, 1).

2. if ρ(τ, t)/ρmax > T keep the event in the spike train otherwise remove it.

The remaining event times are consistent with the prescribed hazard function.
For the case of random number generation for a GRP, evaluation of ρ(τ, t)

using equation 1.5 is numerically unstable for large τ , and costly. An implementa-
tion of the algorithm (Shea, 1988) for calculating the cumulative hazard function
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of a gamma renewal process is available in pgamma.c of the Mathlib of the R
statistics environment (Ihaka & Gentleman, 1996) under the GNU Public License.
Alternatively, the logarithm of the function gsl_sf_gamma_inc_Q provided by the
GNU Scientific Library can be used. The hazard function can then be calculated
by a simple discrete difference calculation of the derivative. Time dependence
can be introduced by giving a time dependence to the parameters of the gamma
distribution.
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A

Model Description Keywords

1DM one-dimensional Markov process beyond renewal theory,
spike-frequency adaptation,
master equation, ensemble

5DF spike-frequency adapting
relative refractory conductance-based
integrate-and-fire neuron
driven by Poisson input

full five-dimensional system,
Monte-Carlo, reference,
benchmark

2DM two-dimensional Markov process adiabatic elimination of 5DF,
spike-frequency adaptation,
relative refractory period,
master equation, ensemble

ER effective renewal theory model inhomogeneous,
master equation

B

Model Defined
in
(section)

Equations Calibration to
5DF recipe in
(section)

Numerics in (section)

1DM 1.5 1.20, 1.26 2.3.1, 2.3.2 3.1 (master equation),
3.3 (realizations)

5DF 2.1, A 2.13-2.15 N/A 3.2

2DM 2.2 2.24 2.3.1, 2.3.2 3.1 (master equation),
3.3 (realizations)

ER 1.4 1.17 2.3.3, 2.3.2 3.4 (master equation),
3.5 (realizations)

Table 3.1: (A) An overview of the models defined and compared throughout the
text. (B) A quick reference for the defining equations and sections for the various
models.





Chapter 4

Results

... showing by mathematical simula-
tion that a theory leads to plausible
results is not evidence that the the-
ory is correct.

Andrew Huxley in (Huxley, 2002)

In this chapter, the various reduced Markov models (1DM, 2DM, ER) are com-
pared to Monte-Carlo simulations of the conductance-based spike-frequency adapt-
ing relative refractory integrate-and-fire neuron driven by Poisson spike trains
(5DF). The two-dimensional Markov (2DM) model, derived from the 5DF mas-
ter equation by an adiabatic elimination in chapter 2, is shown to accurately
reproduce the dynamic ensemble firing rate statistics and static ISI correlations
of 5DF Monte-Carlo. Subsequently, the one-dimensional Markov model is used
to analyse mean-adaptation treatments of spike-frequency adaptation (SFA). A
mean+variance-adaptation theory is derived and used to clarify the domain of
validity of mean-adaptation theories. Further, ISI correlations due to temporal
averaging of an inhomogeneous process are treated. Finally, the inhomogeneous
gamma renewal process is used to investigate the filtering properties of SFA, the
compounding effects of SFA in subsequent populations, and the network response
to SFA induced transients at weak changes in stimulation.

4.1 Comparisons of Calibrated Models to Full System

In this section, the ISI distributions, static ISI correlations, and firing rate dynam-
ics of the 1DM, 2DM, and ER models are compared to those of 5DF Monte-Carlo.

4.1.1 Interspike Interval Distributions

The predictions due to the ER and 2DM model are in excellent agreement with
the static ISI distribution of 5DF Monte-Carlo (not shown). The prediction due
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Model Corr. coef.

α = 6.33Hz

5DF −0.148 ± 0.004
2DM −0.147 ± 0.003
1DM −0.160 ± 0.003
ER 0.0042 ± 0.0043

α = 18.67Hz

5DF −0.235 ± 0.002
2DM −0.236 ± 0.002
1DM −0.283 ± 0.002
ER 0.001 ± 0.002

Table 4.1: Correlation coefficients for Monte-Carlo simulations of the full five-
dimensional system (5DF), realizations of the one- and two-dimensional Markov
models (1DM, 2DM) as described in section 3.3, and realizations of the effective
renewal theory model (ER) as described in section 3.5, for ensemble firing rates
α = 6.33Hz and α = 18.67Hz.

to the 1DM model neglects refractory effects and is therefore poor for low ISIs as
can be seen in Figure 4.1.

4.1.2 Interspike Interval Correlations

In this section, correlations between subsequent ISIs are investigated, a feature
of the proposed 1DM and 2DM models which is absent by definition in renewal
theory models of spike statistics.

The correlation coefficient, r, for a finite number of observations is computed
by

r2 =
(
∑

(xi − x̄)(yi − ȳ))2
∑

(xi − x̄)2
∑

(yi − ȳ)2
, (4.1)

and is the standard measure by which to quantify correlations between two random
variables x, y, where xi, yi denote the individual observations and x̄, ȳ denote the
means.

The correlation coefficients of subsequent ISIs under static stimulation were
calculated for 100 runs of 100 s and the mean and deviation in the mean are given
in Table 4.1. Indeed, the renewal process shows no ISI correlations. For low
and high firing rates, the difference between the correlation coefficients for 5DF
Monte-Carlo and realizations of the 2DM model is consistent with zero. Both
exhibit negative ISI correlations, implying short ISIs are generally followed by long
ISIs and vice versa, as has been observed in previous experimental and theoretical
studies (Longtin & Racicot, 1997; Chacron, Longtin, & Maler, 2000; Chacron et
al., 2003; Nawrot et al., 2006).
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The conditional ISI distribution, f(τi+1|τi) can be computed for the 1DM and
2DM models by equation 1.50 and its two-dimensional generalization. Predictions
due to the 2DM model are in agreement with 5DF Monte-Carlo for low and high-
rates, and both long and short τi, as shown in Figure 4.1. Applying equation 1.50,
one can compute the quantity

〈τi+1|τi〉τi+1 =

∫ ∞

0
τi+1f(τi+1|τi)dτi+1. (4.2)

As discussed in (Whittaker & Robinson, 1967, pp. 334-337), this is a linear function
of τi for normal distributions, the slope of which is the correlation coefficient. As
the ISI distributions here are not normal, there are deviations from linearity, as
shown in Figure 4.2. Predictions due to equation 4.2 for the 2DM model are
consistent with 5DF Monte-Carlo for both low and high rates, as seen in Figure
4.2. Thus when considering static correlations, the 2DM model is indistinguishable
from the full system.

4.1.3 Firing Rate Dynamics

In this section, the ensemble firing rates of the 1DM, 2DM and ER models are
compared to 5DF Monte-Carlo for small to large step-stimuli, and for random
fluctuating stimuli generated by an Ornstein-Uhlenbeck process.

The neural ensemble is subjected to a dynamic stimulus by specifying a time-
varying excitatory Poisson input rate, λe(t). Given the time dependent hazard
function determined by the Poisson input rates as described in section 2.3.2, the
ensemble firing rate, α(t), of the 1DM and 2DM models can be calculated by solv-
ing equations 1.26 and 2.24 respectively for the time dependent state distribution,
and subsequently applying equation 1.34 or the 2-D generalization of it. For the
ER model, the hazard function was calculated by the methods discussed in section
2.3.3, and the ensemble firing rate was determined by solving equation 1.17.

For weak step-stimuli that do not bring the system too far from equilibrium,
all models (ER, 1DM, 2DM) faithfully reproduce the step stimulus response of
5DF Monte-Carlo (not shown, but for GRPs see Figure 4.13). For moderate step-
stimuli, only the 2DM model faithfully reproduces the step stimulus response of
5DF Monte-Carlo, shown in Figure 4.3. For large step-stimuli, the 2DM model
starts to deviate from 5DF Monte-Carlo as seen in Figure 4.4.

The effective renewal theory (ER) model does a reasonable job of predicting the
ensemble firing rate of the system to low-amplitude step-stimuli. This is perhaps
surprising, since one does not expect renewal models to faithfully reproduce the
dynamical responses of spike-frequency adapting neurons, as renewal models do
not account for the dependencies of the firing probability density (hazard function)
on spikes prior to the most recent. However, this shows that if the system is not
pushed too far from equilibrium, knowledge of just the last spike is sufficient to
predict the firing rate of the ensemble.
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Figure 4.1: A comparison of the conditional ISI distributions due to 5DF Monte-
Carlo with predictions due to effective renewal theory (ER, dotted line), the 1DM
model (dashed line, determined by equation 1.50), and the 2DM model (solid
line, determined by the 2-D generalization of equation 1.50). For the definition
of the 1DM, 2DM, 5DF, and ER models, see Table 3.1. The left column shows
three representative conditional ISI distributions for an ensemble firing rate of
α = 18.67 Hz, and the right column shows the same for α = 6.33 Hz. The
upper, middle, and lower rows of plots show the conditional ISI distribution for τi

much shorter than, equal to, and much longer than the mean, respectively. The
preceding ISI, τi, is given on each plot, and a small interval around τi is used
to compute the distributions from 5DF Monte-Carlo to yield sufficient statistics.
The theoretical predictions of the conditional ISI distributions using the 2DM
model are in good agreement with 5DF Monte-Carlo for all situations considered.
The ISI distribution due to 5DF Monte-Carlo is consistent with the renewal ISI
distribution only when the preceding ISI is equal to the mean ISI (middle row).
Spike trains of duration 104 s were used. Error bars represent the relative error
in the histogram bin counts, 1/

√
count.
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Figure 4.2: The mean of the conditional ISI distribution (defined by equation
4.2) as a function of the preceding ISI, τi, for high ensemble firing rates (A,
α = 18.67Hz) and low ensemble firing rates (B, α = 6.33Hz). The data points
(triangles) shown are for 5DF Monte-Carlo. Theoretical predictions due to the
1DM (dashed line), 2DM (solid line), and ER (dotted line) models are shown. For
the definition of the 1DM, 2DM, 5DF, and ER models, see Table 3.1. A linear
function with slope equal to the correlation coefficient would be the functional
form if the ISI distributions were normal. Thus, these linear functions are plotted
for comparison (dashed-dotted line).
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Figure 4.3: (A) The ensemble firing rate, α(t), in response to a moderate step
stimulus, determined by 5DF Monte-Carlo (5 ·105 trials, solid line), and numerical
solution of the 1DM (dotted line), 2DM (dashed line), and ER (dashed dotted line)
master equations. For the definition of the 5DF, 1DM, 2DM, and ER models,
see Table 3.1. The region outlined by the dashed rectangle is enlarged in (B)
showing consistency between the two-dimensional Markov (2DM) model and the
full system (5DF Monte-Carlo) apart from a 0.5ms lead of the 2DM solution. This
discrepancy is likely due to the neglected membrane potential dynamics.

Further, 5DF Monte-Carlo and predictions of the 2DM model were compared
for a stimulus, λe(t), generated by an Ornstein-Uhlenbeck (OU) process. Let ζ(t)
be an OU process with mean of 10Hz, standard deviation of 0.6Hz, and time
constant of 0.2 s. Then the excitatory synaptic inputs were supplied with Poisson
input rates λe(t) = ζ(t).

The ensemble firing rates for the 2DM model, its adiabatic solution, and 5DF
Monte-Carlo and are shown in Figure 4.5. The adiabatic solution of the 2DM
model is defined as the system which at each instant in time has a distribu-
tion of states equal to the instantaneous equilibrium distribution, P∞(ts, tr, t), the
asymptotic state distribution for large time resulting from a h(ts, tr, t) fixed at the
instantaneous value at time t. The firing rate of the adiabatic 2DM model is then
calculated by

α∞(t) =

∫ ∞

−∞

h(ts, tr, t)P∞(ts, tr, t)dtsdtr. (4.3)

By comparison of the ensemble firing rates of the 2DM model with its adiabatic
solution in Figure 4.5, one can see that the system is being driven from equilibrium
by the stimulus. Furthermore, the behavior of the 2DM model far from equilibrium
captures the ensemble firing rate dynamics of 5DF Monte-Carlo faithfully. This is
a robust result under variation of neuron parameters and stimuli, so long as the
ensemble is not pushed too far from equilibrium.
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Figure 4.4: (A) The ensemble firing rate, α(t), in response to a large step stimulus,
determined by 5DF Monte-Carlo (5 · 105 trials, solid line), and numerical solution
of the 1DM (dotted line), 2DM (dashed line), and ER (dashed dotted line) master
equations. For the definition of the 5DF, 1DM, 2DM, and ER models, see Table
3.1. The region outlined by the dashed rectangle is enlarged in (B) showing
the two-dimensional Markov (2DM) model does a fairly good job of reproducing
the oscillations of the full system (5DF Monte-Carlo). The oscillation amplitude
discrepancy is likely due to the poor fitting of the hazard function for gs near 0
for high rates observed in figure 2.1.
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Figure 4.5: (A) The ensemble firing rate, α(t), in response to an Ornstein-
Uhlenbeck process stimulus (as described in the text), determined by 5DF Monte-
Carlo (solid line), numerical solution of the 2DM master equation (dashed line),
and the adiabatic solution (adiabatic 2DM, dotted line) computed by equation 4.3.
For the definition of the 5DF, and 2DM models, see Table 3.1. The region outlined
by the dashed rectangle is enlarged in (B) showing consistency between the two-
dimensional Markov (2DM) model and the full system (5DF Monte-Carlo), even
thought the system is far from equilibrium, as is evident from the large discrepancy
with the adiabatic solution.
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4.2 Beyond Mean-Adaptation Approximations

In this section, it is show that statistical moment theory approximations such as
the mean-adaptation theories due to (La Camera et al., 2004) can be derived from
the 1DM master equation. The approach generalizes, and the next order moment
theory approximation, a mean+variance-adaptation theory, is derived and used
to clarify the domain of validity of mean-adaptation theories.

Recall the 1DM master equation for a spike-frequency adapting neuron,

∂

∂t
P (gs, t) =

∂

∂gs

[

gs

τs
P (gs, t)

]

+hg(gs − qs, t)P (gs − qs, t)

−hg(gs, t)P (gs, t), (4.4)

where P (gs, t) is the probability density of the adaptation state variable, gs, and
P (gs < 0, t) = 0. The ensemble firing rate, α(t), is given by

α(t) =

∫ ∞

−∞

hg(gs, t)P (gs, t)dgs. (4.5)

The mean adaptation variable is:

〈gs(t)〉 =

∫ ∞

−∞

gsP (gs, t)dgs. (4.6)

Multiplying equation 4.4 by gs and integrating over gs yields the time evolution
of the mean, 〈gs(t)〉,

d〈gs(t)〉
dt

= − 1

τs
〈gs(t)〉 + qsα(t). (4.7)

By Taylor expanding hg(gs) in equation 4.5 around 〈gs(t)〉, and keeping up to
linear terms, a mean-adaptation theory as in (La Camera et al., 2004) results.
Keeping up to quadratic terms one has

α(t) ≈ α
(

〈gs(t)〉, 〈∆g2
s (t)〉

)

= hg

(

〈gs(t)〉
)

− 1

2
h′′g

(

〈gs(t)〉
)

· 〈∆g2
s(t)〉, (4.8)

where the h′g

(

〈gs(t)〉
)

term vanishes by a cancellation of means. A mean+variance-

adaptation theory results, but we require the time evolution of the variance. Mul-

tiplying equation 4.4 by
(

gs − 〈gs(t)〉
)2

and integrating over gs yields the time

evolution of the variance, 〈∆g2
s(t)〉,

d〈∆g2
s (t)〉
dt

= − 2

τs
〈∆g2

s(t)〉 + q2
sα(t) + 2qs

∫ ∞

0

(

gs − 〈gs(t)〉
)

hg(gs, t)P (gs, t)dgs.

(4.9)
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Approximating hg(gs) ≈ hg

(

〈gs(t)〉
)

+ h′g

(

〈gs(t)〉
)(

gs − 〈gs(t)〉
)

, equation 4.9

becomes

d〈∆g2
s (t)〉
dt

≈ − 2

τs
〈∆g2

s(t)〉 + q2
sα
(

〈gs(t)〉, 〈∆g2
s (t)〉

)

+ 2qsh
′
g

(

〈gs(t)〉
)

· 〈∆g2
s(t)〉,
(4.10)

which has a steady state

〈∆g2
s 〉 =

1

2

q2sα
(

〈gs〉, 〈∆g2
s 〉
)

1
τ − qsh′g

(

〈gs〉
) . (4.11)

Thus the mean+variance-adaptation theory consistency relation for the adapted
equilibrium firing rate, α∗, reads:

α∗ = hg(qsτsα
∗) +

1

4
h′′g(qsτsα

∗)

[

q2sα
∗

1
τ − qsh′g(qsτsα

∗)

]

. (4.12)

Higher order moment theories can be derived by keeping higher terms in the
expansions in equations 4.8 and 4.10, and computing the necessary equations for
the time evolution of higher statistical moments from the master equation 4.4.

4.2.1 Validity of Mean-Adaptation Theories

In this section, a heuristic criterion is given for the validity of mean-adaptation
theories in the static case, and the improved accuracy of the mean+variance-
adaptation theory is demonstrated by a numerical example. It is illustrative to first
investigate the exactly solvable leaky integrate-and-fire neuron driven by white
noise for the parameters considered in (La Camera et al., 2004), and subsequently
contrast the findings to the 5DF model defined by equations 2.13-2.15.

It can be seen by inspection of equation 4.12 that if h′′g(gs) ≈ 0 over the
regime where P (gs) is appreciably non-zero, then the mean-adaptation consistency
relation,

α∗ = hg(qsτsα
∗), (4.13)

as in (La Camera et al., 2004) results.
First, the 1DM master equation is used to verify the ensemble firing rate

predictions of the mean-adaptation theory for the leaky integrate-and-fire neuron
driven by white noise considered in (La Camera et al., 2004). The hazard function,
hg(gs, t), is referred to there as the response function in the presence of noise, and
has the exact solution,

hg(gs, t) =

[

τ

∫
Cθ−(m−gs)τ

σ
√

τ

CVr−(m−gs)τ
σ
√

τ

√
πex

2
(1 + erf (x)) dx

]−1

, (4.14)

due to (Siegert, 1951; Ricciardi, 1977; Amit & Tsodyks, 1991), where Vr is the
reset potential, θ is the threshold, τ is the membrane potential, C is the membrane
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capacitance and erf(x) = (2/
√
π)
∫ x
0 e

−t2dt is the error function. As in (La Camera
et al., 2004), m and σ are the mean and standard deviation of the input current.
Upon firing, the adaptation current, gs, makes a jump of qs and relaxes with a
time-constant τs. As can be seen in Figure 4.6a, hg(gs) is quite near linear over
the regime where P (gs) is appreciably non-zero, and predictions of the adapted
firing rate due to a mean-adaptation theory predictions are in excellent agreement
with the 1DM master equation as shown in Figure 4.6b. The mean+variance-
adaptation theory helps us to understand this: agreement is good because h ′′

g(gs) ≈
0 over the regime where P (gs) is appreciably non-zero for all firing rates considered.

For the 5DF models defined by equations 2.13-2.15, one has hg(gs) ≈ ah ·
exp(−bhgs). As can be seen in Figure 4.7a, hg(gs) has an appreciable second
derivative over P (gs), and thus one expects mean-adaptation equilibrium ensem-
ble firing rate predictions to deviate from the ensemble firing rate of the 1DM
master equation. Indeed, such deviations are observed and are corrected by the
mean+variance-adaptation consistency relation, as seen in Figure 4.7b. Thus, a
heuristic condition for the validity of mean-adaptation theories is that one must
have h′′g(gs) ≈ 0 over the regime where P (gs) is appreciably non-zero. Less heuris-
tically, the contributions due to the second term (and all neglected higher order
terms) on the rhs of equation 4.12 must vanish compared to the first. When this
condition is violated, higher-order moment theories such as the mean+variance-
adaptation theory given here, or the 1DM master equation should be applied to
determine the ensemble firing rate.

For the neuron models considered here, the accuracy of the mean+variance-
adaptation theory was also verified in the dynamic case for an OU stimulus as in
Figure 4.5, as shown in Figure 4.8.

4.3 Correlations due to Temporal Averaging

In section 1.5.2, a general expression for the inhomogeneous joint distribution of
subsequent ISIs was derived and subsequently shown to be correlation free for
the case of a inhomogeneous renewal process. Interestingly, this result denies
the presence of correlations between successive ISIs even for any arbitrary time-
varying hazard function. This is due to the fact that the instantaneous or local
ISI statistics of the ensemble are being considered. Another common definition of
the ISI distribution is to collect events over time for a single trial or realization
of the process. For the homogeneous case, such an ISI distribution is equivalent
to the instantaneous ISI distribution determined by collecting statistics over the
ensemble or realizations. In the inhomogeneous case, i.e. the case of a time-varying
stimulus, they are not equivalent.

In this section, an expression for the time-averaged joint ISI distribution in
terms of the joint distribution, equation 1.50, is given. For the case of an inhomo-
geneous renewal process, the distribution is not in general ISI correlation free, as
shown by considering a Poisson process with sinusoidal hazard rate.
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Figure 4.6: (A, top) The hazard function, hg(gs), and (A, bottom) the equi-
librium distribution of adaptation states, P (gs), in the low-firing rate regime

(α∗ = 4.83 Hz, mean current input m = 0.25 nA and noise σ =
√

0.72 nA ·ms
1
2 ) of

the leaky integrate-and-fire neuron (LIF) used in (La Camera et al., 2004). P (gs)
was determined by numerical solution of the 1DM master equation using the haz-
ard function given in equation 4.14. Neuron parameters: C = 0.5 nF, τm = 20 ms,
Vth = 20 mV, Vr = 10 mV. Adaptation parameters: τs = 110 ms, qs ·τs = 4 pA · s.
For comparison, the neuron and adaptation parameters are as for Figure 1a in
(La Camera et al., 2004), except τr = 0 ms and τs = 110 ms. For the definition
of the 1DM model, see Table 3.1. The hazard function is nearly linear over the
distribution of states, thus terms depending on the variance of P (gs) in equation
4.12 can be neglected, and mean-adaptation theories will yield good approxima-
tions to the adapted ensemble firing rate. (B) The adapted ensemble firing rate,
α∗, for a range of mean current inputs, m, determined by numerical solution of
the 1DM master equation (circles), and the mean-adaptation theory consistency
relation (solid line).
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Figure 4.7: (A, top) The hazard function, hg(gs), and (A, bottom) the equilibrium
distribution of adaptation states, P (gs), determined by numerical solution of the
1DM master equation. The hazard function, hg(gs), was determined by fitting to
5DF Monte-Carlo as in Figure 2.1 with λe = 9.75 Hz, λi = 11.4 Hz. For the defini-
tion of the 5DF and 1DM model, see Table 3.1. The hazard function has non-zero
curvature (h′′g(gs) > 0) over the distribution of states, thus terms depending on
the variance of P (gs) in equation 4.12 cannot be neglected, and mean-adaptation
theory predictions for the adapted ensemble firing rate are expected to be in error.
(B) The adapted ensemble firing rate, α∗, for a range of Poisson input rates, λe,
determined by solution of the 1DM master equation (circles), the mean-adaptation
theory consistency relation (dashed line), and the mean+variance-adaptation con-
sistency relation (solid line). As expected, mean-adaptation theory predictions for
the adapted firing rate are corrected by the mean+variance-adaptation theory
consistency relation given by equation 4.12.
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Figure 4.8: (A) The ensemble firing rate, α(t), in response to an Ornstein-
Uhlenbeck process stimulus (as for Figure 4.5), determined by the 1DM
model (solid line), the adiabatic solution (thick solid line) computed by
the mean+variance-adaptation consistency relation equation 4.12, the dynamic
mean+variance-adaptation theory equations 4.7-4.9 (dotted line), and the dy-
namic mean-adaptation theory equations (dashed line). The region outlined by
the dashed rectangle is enlarged in (B) showing consistency between the 1DM
model and the mean+variance-adaptation theory, while predictions due to the
mean-adaptation theory are poor. For the definition of the 1DM model, see Table
3.1.
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4.3.1 Time-Averaged Joint ISI Distribution

The joint ISI distribution averaged over some time interval t ∈ [t0, t1), denoted by
f[t0,t1)(τi+1, τi), can be determined by the weighted average over time of equation
1.50, where the weight is α(t− τi):

f[t0,t1)(τi+1, τi) =

(
∫ t1

t0

α(s− τi)ds

)−1

×
∫ t1

t0

α(t− τi)

∫ ∞

−∞

h(ψ(ts) + τi+1, t+ τi+1)W(τi+1, ψ(ts), t)

× h(ts, t)W(τi, ts − τi, t− τi)P
†(ts − τi, t− τi)dtsdt. (4.15)

For the renewal process, this reduces to

f[t0,t1)(τi+1, τi) =

(
∫ t1

t0

α(s− τi)ds

)−1

×
∫ t1

t0

α(t− τi)h(τi+1, t+ τi+1)W(τi+1, 0, t) · h(τi, t)W(τi, 0, t − τi)dt. (4.16)

4.3.2 Example: Sinusoidal Poisson Process

Now consider the Poisson process with sinusoidal hazard function

α(t) = h(t) = α0 +A sin(2πFt), (4.17)

where A < α0 ensures α(t) > 0 for all t. Further, consider the average over a time
interval large compared to the period, 1/F . Then, to a good approximation one
can consider the average over one period of α(t) in equation 4.16:

f[0,1/F )(τi+1, τi) =

1

α0

∫ 1

0
α (ξ/F − τi)α (ξ/F )α (ξ/F + τi+1) exp

(

−
∫

ξ
F

+τi+1

ξ
F
−τi

α(s)ds

)

dξ, (4.18)

where the integration variable has been changed to the fractional period variable
ξ, the factors of 1/F in the numerator and denominator cancel, and the survival
functions have been massaged into one term. The integral inside the exponential
can be evaluated resulting in

f[0,1/F )(τi+1, τi) =

1

α0

∫ 1

0
α (ξ/F − τi)α (ξ/F )α (ξ/F + τi+1) exp

(

− α0(τi+1 + τi)
)

× exp
(

A cos(ξ/F + τi+1) −A cos(ξ/F − τi)
)

dξ. (4.19)
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Equation 4.19 is not separable into a form f(τi+1)f(τi), and thus will exhibit
ISI correlations. This fact will now be verified by comparing the predicted joint
distribution to those actually obtained from time averaging of realizations of a
Poisson process with sinusoidal hazard rate.

Spike-trains of a Poisson process with sinusoidal hazard rate and 1 × 105 s
duration were generated by the thinning method given in section 3.5. The hazard
rate, α(t) = h(t) = ρ(t), took the form given in equation 4.17, with A = 5 Hz and
α0 = 10 Hz. The conditional ISI distribution was determined by the distribution
of all ISIs with a preceding ISI in the range [τi − ∆τ, τi + ∆τ) with ∆τ = 0.01 s
to yield sufficient statistics. The conditional mean, given by equation 4.2, and the
conditional ISI distribution for high and low mean were compared to predictions
due to equation 4.19 for various hazard rate oscillation frequencies. Hazard rate
oscillations with a period ten times the mean ISI (F = 1 Hz), twice the mean ISI
(F = 5 Hz), and half the mean ISI (F = 20 Hz) in figures 4.9, 4.10, and 4.11
respectively, were considered. Predictions due to equation 4.19 are in excellent
agreement with the quantities computed from the Poisson spike-trains.

In figure 4.9 it can be seen that a slow hazard rate introduces significant serial
ISI correlations for the time-averaged ISI distribution. However, such modulations
are slow compared to the average ISI and could be detected in the firing rate of a
single trial and eliminated. For modulations on the order of the mean ISI, signifi-
cant correlations were still observed, as seen in figure 4.10. Such correlations could
not be reliably eliminated without multiple trials to determine the ensemble firing
rate. Such ensemble data is usually not possible in in-vivo or awake preparations,
as the background activity is only poorly controlled. In figure 4.11 it can be seen
that the correlations introduced in the time-averaged ISI distribution for hazard
rate oscillation frequencies faster than the mean ISI are vanishing.

It would be interesting to further refine the techniques given in this section and
apply them to a combination of in-vitro and awake data to separate correlation
effects due to SFA from correlation effects due to on-going background activity, and
determine the statistics of the latter, for the case of oscillations of the background
activity on the timescale of the mean ISI.

4.4 Inhomogeneous Gamma Renewal Process Models

In this section, the transient response to step stimuli for the inhomogeneous GRP
random number generator and the master equation for an inhomogeneous GRP
are calculated and agreement between the two models is verified, as is qualitative
agreement with adapting I&F neuron models in a high-conductance state. The
filtering properties of an inhomogeneous GRP are investigated using numerical
solution of the renewal master equation for sinusoidal stimuli. The compounding
effects of SFA are investigated in successive populations of inhomogeneous GRPs.
Finally, the response to step stimuli of a network model characterizing a local
circuit of cortical layer IV is investigated. Specifically, the network response to the
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Figure 4.9: The time-averaged statistics of a Poisson process with a sinusoidal
hazard rate as given by equation 4.17 with A = 5.0 Hz, α0 = 10.0 Hz, F = 1.0 Hz.
(A) The ensemble firing rate time-histogram for 1×105 trials and a bin size of 1 ms.
(B) The conditional mean, 〈τi+1|τi〉τi+1 , as a function of τi given by equation 4.2
for the time-averaged joint distribution determined by equation 4.19 (solid line)
and from a realization of 1× 105 s duration (data points) as described in the text.
The dashed vertical lines indicate the τi for which the conditional time-averaged
ISI distributions were determined. The left is shown in (C), and the right in
(D). The exponential ISI distribution for a Poisson process with hazard rate α0 is
shown (dashed-line) in (C) and (D) for comparison.
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Figure 4.10: The time-averaged statistics of a Poisson process with a sinusoidal
hazard rate as given by equation 4.17 with A = 5.0 Hz, α0 = 10.0 Hz, F = 5.0 Hz.
(A) The ensemble firing rate time-histogram for 1×105 trials and a bin size of 1 ms.
(B) The conditional mean, 〈τi+1|τi〉τi+1 , as a function of τi given by equation 4.2
for the time-averaged joint distribution determined by equation 4.19 (solid line)
and from a realization of 1× 105 s duration (data points) as described in the text.
The dashed vertical lines indicate the τi for which the conditional time-averaged
ISI distributions were determined. The left is shown in (C), and the right in
(D). The exponential ISI distribution for a Poisson process with hazard rate α0 is
shown (dashed-line) in (C) and (D) for comparison.
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Figure 4.11: The time-averaged statistics of a Poisson process with a sinusoidal
hazard rate as given by equation 4.17 with A = 5.0 Hz, α0 = 10.0 Hz, F = 20.0 Hz.
(A) The ensemble firing rate time-histogram for 1×105 trials and a bin size of 1 ms.
(B) The conditional mean, 〈τi+1|τi〉τi+1 , as a function of τi given by equation 4.2
for the time-averaged joint distribution determined by equation 4.19 (solid line)
and from a realization of 1× 105 s duration (data points) as described in the text.
The dashed vertical lines indicate the τi for which the conditional time-averaged
ISI distributions were determined. The left is shown in (C), and the right in
(D). The exponential ISI distribution for a Poisson process with hazard rate α0 is
shown (dashed-line) in (C) and (D) for comparison.
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initial transient in the input at step up for an inhomogeneous GRP is contrasted
to the inhomogeneous Poisson input case where no such transient exists.

4.4.1 Response to Step Stimuli

Consider a step change in the excitatory Poisson input rate, λe(t), such that the
adiabatic equilibrium firing rate, α∞(t), takes the form

α∞(t) =







α0, t < 0.3 s
α+ ∆α, 0.3 s ≤ t < 0.6 s
α0, t ≥ 0.6 s

, (4.20)

where α0 is the initial adiabatic firing rate and ∆α is the transient increase in the
adiabatic firing rate. For the inhomogeneous Poisson process, the integral in (1.10)
collapses and α(t) = ρ(t). Thus, the ensemble firing rate is exactly the adiabatic
firing rate. This implies that the inhomogeneous Poisson process is immediately
and always at equilibrium, a special property of the Poisson process which is not
true for a general inhomogeneous renewal process.

For the inhomogeneous GRP, the parameters a(t) and b(t) in 1.3 were de-
termined by fitting the ISI statistics of the 5DF neuron model which exhibits
equilibrium ensemble firing rates α0 and α0 + ∆α accordingly.

As seen in Figure 4.12 (top), the Poisson process responds instantaneously
and linearly, reproducing, as expected, exactly the adiabatic solution. For the
GRP, the deviation from Poisson behavior is striking. The ensemble firing rate
exhibits transient behavior following the change in stimulus at τ = 0.3 s, whereby
it responds promptly to the stimulus change and peaks at more than twice its
equilibrium value as shown in Figure 4.12 (bottom). Also shown is the ensem-
ble firing rate estimated from time-histograms for realizations of the respective
inhomogeneous processes as discussed in section 3.5. Indeed, numerical solutions
of the renewal master equation 1.17 model the ensemble firing rate of the spike
train realizations. Conversely, the transients which emerge for the inhomogeneous
GRP random number generator at instantaneous changes in parameters are not
artifacts but represent the inherent dynamics of the GRP.

The ensemble firing rate response of the GRPs was compared to that of the
5DF neuron (synaptic filtering was not accounted for). Behavior of the 5DF
neuron is qualitatively similar to the GRP model, with reasonable quantitative
agreement for a moderate step stimulus which does not bring the system too far
from equilibrium, as shown in Figure 4.13.

4.4.2 Filtering Properties of an Inhomogeneous Gamma Renewal

Process

Following observations of the high-pass filtering properties of SFA due to (Benda,
Longtin, & Maler, 2005), the gain as a function of stimulus oscillation frequency
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Figure 4.12: The ensemble firing rate given a step-stimulus by numerical solution
of the renewal master equation 1.17 (α(t), dashed line) and a time histogram
of spike-train realizations (PSTH, dotted line) for a Poisson process (top) and
GRP (bottom) undergoing a step in the adiabatic firing rate at t = 0.3 s − 0.6 s
(50000 trials, bin size ∆t = 1ms) from 5.67Hz to 23.87Hz.
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Figure 4.13: The ensemble firing rate for a 5DF neuron undergoing a step increase
in excitatory Poisson synaptic bombardment rate at t = 0.3 s − 0.6 s determined
by Monte-Carlo simulations (solid line, 50000 trials, bin size ∆t = 0.2ms). The
adiabatic firing rate (adiabatic, dotted line) and the inhomogeneous GRP response
(dashed line) with parameters determined by fitting to 5DF ISI distributions in
the static case are shown for (A): a moderate step increate in stimulus where a
reasonable fit to the 5DF ISI distribution with a GRP was possible, and (B): a
larger step increase in stimulus where the equilibrium firing rate in the step is
∼ 15Hz and the 5DF hazard function deviates from GRP behavior as was seen in
Figure 2.2.
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for an inhomogeneous GRP was calculated by numerical solution of the renewal
master equation.

Consider a sinusoidal stimulus such that the adiabatic firing rate, α∞(t), takes
the form,

α∞(t) = α0 +A sin(2πFt).

The signal gain as a function of stimulus frequency, F , defined as

g(F ) := AGRP (F )/A, (4.21)

where AGRP (F ) is the GRP response amplitude, was investigated for various stim-
ulus means, α0, and oscillation amplitudes, A. As can be seen in Figure 4.14B
for α0 = 10Hz, the gain shows a characteristic frequency dependence which is
independent of A. The gain was observed to be independent of amplitude for all
α0 and A considered, except for α0 = 5Hz where large oscillations approached the
x-axis, inducing asymmetries in the equilibrium firing rate oscillations about the
mean. This explains the reduction in gain for large F and large A seen in Figure
4.14A.

Shown in Figure 4.14D are the g(F ) curves for A = 0.1Hz for all α0 considered.
For increasing α0, the gain onset occurs at ever increasing frequency. A sigmoidal
function in log(x) − log(y) space of the form

log(y) =
c1

1 + e
−c2 log( x

x0
)
,

where c1, c2, and x0 are fit parameters, was found to fit the observed gain functions
well. The filtering behavior in the high-gain regime is indeed that of a high-
pass filter, whereby in the low-gain regime there is deviation from high-pass filter
behavior: For low frequencies the gain never falls below unity while for a high-pass
filter the gain vanishes for small frequencies. The cut-off frequency of a high-pass
filter, the frequency at which the gain falls to 1/

√
2 its maximum value, can be

determined from the sigmoidal fit. Shown in Figure 4.14C is the cut-off frequency
as a function of α0. The cut-off frequency is found to be proportional to α0 with
a slope of 0.384 ± 0.002.

4.4.3 Compounding Effects in Successive Adapting Populations

It is interesting to consider the compounding effects of successive GRP popula-
tions characterizing the successive adapting populations of, for example, the visual
pathway from a cone/rod population to a bipolar population (the cone/rod and
bipolar response is also similarly adapted, though not due to SFA as they do not
spike) to a ganglion population to a LGN population to a V1 population and then
to other populations in other areas of the cortex. The suggestion is that the tran-
sient and filtering effects of SFA observed in sections 4.4.1 and 4.4.2 are amplified
in successive adapting populations.
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Figure 4.14: The filtering properties of an ensemble of inhomogeneous GRPs. (A-
B) show the GRP ensemble gain as a function of stimulus oscillation frequency
and oscillation amplitude. The gain is found to be independent of oscillation
amplitude for small oscillations. For α0 = 5Hz, an amplitude dependence in the
gain for oscillation amplitudes A = 2Hz and greater is observed, as the stimulus
function is approaching zero, introducing asymmetry in the GRP ensemble firing
rate. For the high-gain region, the gain exhibits the frequency dependence of a
high-pass filter. For the low-gain region, the gain converges to unity, in contrast
to vanishing gain for a high-pass filter. The gain-frequency curves are well fit by
a sigmoid in log-log space (dashed lines in A, C, and D). (D) shows the gain as a
function of frequency for various stimulation function means, α0. For increasing
α0 the gain-frequency curves are shifted to ever larger frequencies. (C) The cut-off
frequency of the high-pass regime is found to be proportional to α0.
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Given an arbitrary stimulus, the adiabatic ensemble firing rate, α∞(t), is
uniquely determined and the parameters a(t) and b(t) of a GRP can be deter-
mined by fitting the equilibrium ISI statistics of the 5DF model neuron with the
equilibrium ensemble firing rate α∞(t). For successive GRP ensembles the adi-
abatic ensemble firing rate, α∞(t), of the i + 1th population was chosen to be
the ensemble firing rate of the ith. Thus, due to this assumption, only the case
where a neuron’s adiabatic ensemble firing rate follows its input rate unamplified
is treated. This is not necessarily the case for real networks of both excitatory and
inhibitory neurons with feedback, or even single neurons. However, by considering
such non-amplifying successions of neuron populations, the transient and filtering
properties of adaptation in successive populations can be isolated.

For a GRP with a step in adiabatic firing rate, as in section 4.4.1, the ensemble
firing rate of successive populations computed using the renewal master equation
is shown in Figure 4.15. Clearly, sharp peaks are emerging as the transient effects
of SFA are compounding down the populations. It should be stressed that such
peaks do not emerge for successive populations of Poisson processes because for
such systems the amplification is independent of the activity history and therefore
unity.

Consider as in the previous section, a GRP with a sinusoidal equilibrium firing
rate, α∞(t) of the form,

α∞(t) = α0 +A sin(2πFt).

For α0 = 5Hz, A = 1Hz, and F = 5Hz, the stimulus has a period comparable to
1/α0, the preferred firing period of the individual neurons. The observed hazard
rate of successive populations is shown in Figure 4.16A.

If the stimulus has a period which is long compared to 1/α0, the preferred
firing period of the individual neurons, multiple peaks emerge for a single stimulus
period as shown in Figure 4.16B.

If the stimulus is periodic with a period short compared to 1/α0, the GRP
population density model predicts responses of successive populations identical to
those in Figure 4.16A merely of higher frequency.

4.4.4 Network Response

In this section, a network characterizing a local cortical layer IV circuit is consid-
ered, and the network response to step stimuli due to GRP stimulation (transient
behavior) is contrasted to that of Poisson process stimulation (no transient be-
havior).

The response of a balanced network of inhibitory and adapting excitatory
model I&F neurons, based on (Muller, 2003) characterizing a local circuit of cor-
tical layer IV, to stimulation by the presented inhomogeneous GRPs or Poisson
processes was investigated in simulation.
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Figure 4.15: The compounding effects of adaptation in successive GRP popula-
tions for a step stimulus. Population 1: The response of a GRP population to
a step stimulus. Population i: The response of a GRP population to a stimulus
equal to the ensemble firing rate of GRP population i− 1.
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Figure 4.16: The compounding effects of adaptation in successive GRP popula-
tions for a sinusoidal stimulus. (A) Population 1 shows the response of a GRP pop-
ulation to a sinusoidal equilibrium firing rate α∞(t) = 5Hz+(1Hz)·sin(2π(5Hz)t).
Population i shows the response of a GRP population to a stimulus identical
to the ensemble firing rate of GRP population i − 1. (B) As A with stimulus
α∞(t) = 5Hz + (1Hz) · sin(2π(2.5Hz)t). Multiple peaks per stimulus period
emerge in successive populations.
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The network consisted of 729 neurons (80% excitatory, 20% inhibitory) ar-
ranged on a 9×9×9 lattice, each with 1000 excitatory and 250 inhibitory synapses.
The details and parameters of the neuron and synapse models are described in
appendix A. A connectivity slightly sparser than in (Muller, 2003) was used as
it is known to eliminate the spontaneous oscillations reported there, producing
the elusive stable active network state. The connection probabilities used were
uniform and as follows: ce→e = 0.14, ci→e = 0.17, ce→i = 0.20, ci→i = 0.20, where
cX→Y refers to the proportion (on average) of population Y to which a neuron of
population X is presynaptic. The remaining synapses were supplied with GRP
activity to maintain the high-conductance state in each neuron. The parameters
of the excitatory GRPs were chosen so that their ISI statistics were indistinguish-
able from the excitatory neurons while the same was true simultaneously for the
inhibitory GRPs and neurons, and all had low asynchronous firing rates in the
range ≈ 5 − 20Hz. Such a consistency between GRP supplied excitatory and
inhibitory “background” activity and modeled excitatory and inhibitory neuron
activity is possible with plausible I&F neuron model parameters and the resulting
average synaptic conductance magnitudes are consistent with observations of the
high-conductance state (Destexhe et al., 2003; Muller, 2003). Poisson processes
could also have been used to maintain the high-conductance state, with their rate
parameter chosen as the equilibrium firing rate of the GRP. For static stimulation,
the GRP and Poisson process were observed to be interchangeable. The network
activity initialization scheme was the same as in (Muller, 2003). The network was
simulated using the CSIM neural simulator (Natschläger & Maass, 2001–).

Compared to an equivalent population of unconnected neurons under static
uniform stimulation, the connected network exhibited a larger variability in the en-
semble firing rates, and the emergence spontaneous synchronous events or bursts.
The frequency of spontaneous bursting was quantified: If one sets an activity
threshold of 15Hz for burst events, one simulation of 7 s in five exhibited a burst
event, however weaker burst-like events were more frequent. Shown in Figure 4.17
are three typical simulations of connected networks compared to the unconnected
neuron population.

To model time-varying LGN or thalamic input to the network, the static GRPs
which remained after the network was connected were replaced so that 20% of
the total number of excitatory synaptic inputs of both excitatory and inhibitory
neurons were supplied by GRPs or Poisson processes with a time-varying rate,
where 20% is based on estimates of thalamocortical synapse densities in layer IV
(Braitenberg & Schüz, 1991). A weak step-stimulus was supplied to these synapses
specified by a an equilibrium ensemble firing rate, α∞, of the form

α∞(t) =







α0, t < 2.0 s
α0 + ∆α, 2.0 s ≤ t < 4.0 s
α0, t ≥ 4.0 s

, (4.22)

where α0 = 5.4Hz and ∆α = 1.5Hz. For both the GRP and Poisson process,
an absolute refractory period, τref = 10ms, was also modeled so that a · b =
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Figure 4.17: (A) shows the activity of the ≈ 580 adapting excitatory I&F neurons
unconnected. (B-D) show three trials of the activity of the adapting excitatory
I&F neurons participating in the connected network described in the text. The
connected network shows largely stable activity but with larger bin-to-bin vari-
ation in the activity than for the unconnected neurons in A. Occasionally syn-
chronous bursts occur spontaneously, as indicated in D. The activity is calculated
as a PSTH by counting the number of spikes occurring in a small time bin of width
dt = 30ms for all m neurons considered, then normalizing by the factor 1/(mdt).
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1/α∞ − τref and 1/ρ = 1/α∞ − τref respectively. For the GRP, the parameter a
was chosen so that the GRP firing statistics were roughly that of the excitatory
I&F neuron class firing at a rate α∞ (a ≈ 2.0 − 3.0).

For both GRP and Poisson process input, five simulations of 7 s duration were
run. Synchronous events similar to spontaneous synchronous events were observed
directly following stimulus step-up, however GRP stimulation was found to evoke
stronger network synchronous events more reliably than Poisson process stimula-
tion as seen in Figure 4.18.
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Figure 4.18: A comparison of the activity of the excitatory neurons (≈ 580 neu-
rons) in the connected network (top two rows, one trial per row) for Poisson (left
column) and gamma renewal process (right column) input at 20% of excitatory
synapses of all neurons with the equilibrium firing rate, α∞(t), shown (bottom
row). The GRP stimulated network exhibits a synchronous event directly fol-
lowing the step-up in stimulus for all trials, while the Poisson process stimulated
network activity directly following the step-up in stimulus is not reliably distin-
guishable from the activity variations prior to it, except by accumulating extensive
statistics in time. A total of five trials per input mode were simulated. The two
shown are representative. The activity is calculated as for Figure 4.17.





Chapter 5

Discussion

It would not be paradoxical to say
that the person who initiates the so-
lution to a problem is different from
the one who solves it.

David Hume, A Treatise of Human Nature

In the present article, a one-dimensional Markov process (the 1DM model) was
proposed for modeling neural ensemble activity and spike train statistics which
goes beyond renewal theory by accounting for interspike interval (ISI) correlations
due to spike-frequency adaptation (SFA) mechanisms without the need to model
the high-dimensional space of the microscopic neuronal state variables.

It was demonstrated that the full five-dimensional master equation of a conduc-
tance-based integrate-and-fire neuron with SFA and a relative refractory mecha-
nism driven by Poisson spike trains (the 5DF model) can be reduced to a two-
dimensional master equation plus filtering differential equations accounting for
synaptic dynamics (the 2DM model), under an adiabatic elimination of the fast
variables v, ge, gi, assuming the neuron has non-zero synaptic time constants and
is in the high-conductance state. The resulting 2DM master equation is a two-
dimensional generalization of the Markov process proposed at the outset as an
extension of renewal theory to account for ISI correlations.

Methods were presented for generating inhomogeneous realizations of the pro-
posed 1DM and 2DM models, and for solving their master equations numerically.
The 2DM model was shown to accurately predict firing rate profiles of the full
system under dynamic stimulation, and conditional ISI distributions and serial
ISI correlations under static stimulation.

It was shown that mean-adaptation theories for spike-frequency adapting neu-
rons with noisy inputs such as in (La Camera et al., 2004), and higher order
statistical moment theories can be derived from the 1DM master equation as long
as one neglects the refractory period. A heuristic condition for the validity of
mean-adaptation theories was derived and found to be violated for the neuron
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model (5DF) and parameters considered here. Furthermore, a mean+variance-
adaptation theory was derived which corrected the ensemble firing rate predictions
of mean-adaptation theories in this case.

5.1 Comparison with Other Studies of Adaptation

Studies of the firing rates of networks and ensembles of spike-frequency adapting
neurons due to (Latham et al., 2000; Fuhrmann et al., 2002) augment a Wil-
son & Cowan equation (Wilson & Cowan, 1972) for the firing rate with a mean
adaptation variable.

As is typical of the Wilson & Cowan approach, the ensemble firing rate, α,
enters a differential equation of the form

τe
dα

dt
= −α+ hg

(

〈gs(t)〉, · · ·
)

, (5.1)

where hg(〈gs(t)〉, · · · ) is the static firing rate given input including dependence
on the mean adaptation, and τe is the timescale for relaxation to a firing rate
equilibrium. As is suggested in (Fuhrmann et al., 2002), τe is determined mainly
by the membrane time constant of the neuron, but is also affected by the mean
amplitude of the input, and is treated there as a free parameter.

It has been argued in (Gerstner, 2000; Brunel, Chance, Fourcaud, & Abbott,
2001; Fourcaud & Brunel, 2002; Renart et al., 2004; La Camera et al., 2004)
that for current and conductance-based synapses with non-zero time-constants
and biological input statistics, the ensemble firing rate responds instantaneously to
input currents and filtering due to the synapses dominates. In this case, the Wilson
& Cowan equation for α can be replaced by an instantaneous f-I function, and the
synaptic currents or conductances modeled by relaxation equations for their means
and variances. This is the approach taken in (La Camera et al., 2004). Thus one
side-steps the concerns mentioned in (Fuhrmann et al., 2002) that the Wilson &
Cowan equation “cannot be rigorously derived from the detailed integrate-and-fire
model”, and has been “shown not to accurately describe the firing rate dynamics
[by] (Gerstner, 2000).”

The models due to (Latham et al., 2000; Fuhrmann et al., 2002; La Camera et
al., 2004) all approximate the evolution of the ensemble of adaptation variables by
its mean value, and are therefore mean-adaptation theories. In (La Camera et al.,
2004), it is stated that such mean-adaptation theories are a good approximation
under the assumption that “adaptation is slow compared to the timescale of the
neural dynamics. In such a case, the feedback [adaptation] current ... is a slowly
fluctuating variable and does not affect the value of s [the standard deviation of
the input current].” They explore an adaptation time constant on the order of
100ms under this assumption that the adaptation dynamics are “typically slower
than the average ISI.” They report that “for irregular spike trains the agreement
is remarkable also at very low frequencies, where the condition that the average
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ISI be smaller than τN [the time constant of adaptation] is violated. This may be
explained by the fact that although 〈ISI〉 > τN , the ISI distribution is skewed
towards smaller values, and [the mean adaptation current proportional to the
firing rate] ... is still a good approximation.”

In section 4.2 the 1DM master equation was used to derive a mean+variance-
adaptation theory, the next correction to the mean-adaptation theories in (La
Camera et al., 2004), yielding another explanation for the success reported there.
It was found that the error in the firing rate in (La Camera et al., 2004) remained
small because the hazard function used there is a nearly linear function of the
adaptation variable in the interesting regime where P (gs) is appreciably non-zero.
Thus perturbing contributions to the average firing rate from deviations of the
adaptation variable above and below the mean over the course of one ISI roughly
cancel on average, regardless of the timescale of τs compared to the mean ISI. For
the neuron model (5DF) and parameters considered here, the hazard function has
an appreciable non-linearity resulting in erroneous predictions of the firing rate
when using a mean-adaptation theory. The mean+variance-adaptation theory
derived here corrected the predictions.

It is appropriate to reiterate that both the 1DM master equation and the
resulting mean+variance-adaptation theory approximation considered here neglect
refractory dynamics. It was demonstrated by the adiabatic reduction of the 5DF
model to the 2DM model that the inclusion of a relative refractory period requires
a two-dimensional master equation. Indeed, as shown in Figure 4.4, oscillations
emerge for large and fast stimulus changes which are qualitatively captured by the
2DM model, but not by the 1DM model. It remains to be seen if a two-dimensional
mean- or mean+variance-adaptation theory can be constructed which accounts for
this behavior, and under what conditions it can be reduced to a one-dimensional
model by simply rescaling the firing rate by α′ = 1/(1/α+ τeff), as in (La Camera
et al., 2004) for the absolute refractory period case, where τeff is some effective
absolute refractory period of the relative refractory mechanism.

In (Benda & Herz, 2003), a thorough mathematical analysis of several well
known mechanisms for SFA based on biophysical kinetics is undertaken for the
case of a supra-threshold current. A universal phenomenological mean-adaptation
model for such biophysical mechanisms for SFA is introduced with much the same
form as in (La Camera et al., 2004). Methods are given to completely parameter-
ize the model using quantities that can be easily measured by standard recording
techniques. Implications for signal processing are considered there and in subse-
quent publications (Benda et al., 2005).

In (Chacron et al., 2003), a novel approach is taken compared to (Latham et
al., 2000; Fuhrmann et al., 2002; Benda & Herz, 2003; La Camera et al., 2004).
There, an expression is derived for the serial correlation coefficient of ISIs in the
static case by employing a Markov chain. In their analysis, they define a quan-
tity which is analogous to the static distribution P †(ts) here. In their framework,
they prove that adaptation of the threshold fatigue form used there results in
ISI correlations as have been observed experimentally (Longtin & Racicot, 1997;
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Chacron et al., 2000; Nawrot et al., 2006). Their expression, however, contains
integrals which require “the computation of the FPT [first-passage time] PDF of
the Ornstein-Uhlenbeck process through an exponential boundary. Given that
no general analytical expression is available for this quantity, derivation of the
correlation from the integrals can be computationally more demanding than esti-
mating the same quantities from simulations.” Subsequently, only simulations are
performed and the derived expression is never compared to the simulated result.
Thus they miss an important benchmark to ensure the calculations are correct.
It is possible that the numerical techniques used here could be applied to com-
pute a prediction for the correlation coefficient by the expression they derive, and
subsequently compared to the simulated result.

Mean-adaptation theories cannot be used to model the correlation between
subsequent ISIs, as they do not preserve the ensemble statistics. Our approach is
that one simply not replace the trajectory of the adaptation variable, gs, by its
mean. This resolves the problem in the development in (La Camera et al., 2004)
that the mean input current and instantaneous gs have an equal role in deter-
mining the instantaneous firing rate, and gs cannot be consistently replaced by its
mean. What results is the 1DM master equation presented here. Subsequently, an
expression for the inhomogeneous conditional ISI distribution was calculated and
found to be in good agreement with 5DF Monte-Carlo in the static case. Further-
more, the variation of the mean of the conditional ISI distribution as a function of
the preceding ISI, a generalization of the serial correlation coefficient of ISIs, was
calculated and compared to 5DF Monte-Carlo. The Markov process master equa-
tion avoids the difficulty encountered in (Chacron et al., 2003) of treating the first
passage times of an Ornstein-Uhlenbeck process through an exponential boundary,
while capturing the full inhomogeneous ensemble dynamics in a framework which
is tractable.

5.2 On the Adiabatic Reduction of the Master Equa-

tion

Under the assumption that the neuron is in the high-conductance state due to
biologically realistic noisy inputs, it is shown that the 5DF master equation for
the conductance-based spike-frequency adapting relative refractory integrate-and-
fire neuron model used here can be reduced to the 2DM master equation by an
adiabatic elimination of fast variables. The variables which remain are those of
SFA and the relative refractory mechanism, and the form is analogous to the 1DM
master equation proposed to extend renewal theory to a class of Markov processes
which account for SFA.

The adiabatic reduction does not solve explicitly the firing rate of the given
neuron model (without adaptation or the refractory mechanism) nor does it rely
on such a solution. The firing rate dynamics of the given neuron model (without
adaptation or the refractory mechanism) is left encapsulated in equation 2.23. The
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approach applies to other models of adaptation such as the adapting threshold
models in (Chacron et al., 2003) and the current-based adaptation models in (La
Camera et al., 2004).

Concerning the generality of the adiabatic elimination for the adaptation vari-
able, it is expected to be applicable to a larger class of formally spiking neuron
models with fast intrinsic dynamics compared to adaptation. For those interested
in modeling a class of neurons where a solution to equation 2.23 already exists, the
framework can be easily and immediately applied. The fitting methods presented
allow the connection to be made between models for which an explicit solution
for the ensemble firing rate is unknown, and the 1DM and 2DM models presented
here. What results is a reduced state space to explore for functional implications.

The generality of treating the relative refractory mechanism as a slow vari-
able in the adiabatic elimination is less clear. There are some issues that need
to be clarified before one could specify the class of neurons to which it applies.
Specifically, the relationship between the requirement that the neuron be in the
high-conductance state (small effective τm), and the requirement that the synapses
have non-vanishing time-constants (τe > 0) resulting in a non-vanishing probabil-
ity at threshold (P (vth, · · · ) > 0) remains to be thoroughly investigated. The
delta-conductance based approach in (Meffin et al., 2004), for example, does not
satisfy the second requirement. The non-vanishing probability at threshold seems
to be a necessary condition for the ensemble firing rate to respond on a faster
timescale than the refractory mechanism dynamics (Fourcaud & Brunel, 2002;
Renart et al., 2004).

An important step in the reduction is the treatment of the synaptic conduc-
tances. As their statistics are assumed to instantaneously determine the equilib-
rium statistics of the membrane potential, they were removed from the Master
equation. Then, differential equations were found for their first statistical mo-
ments (means) in terms of the rate of the Poisson process input, as in (La Camera
et al., 2004). One weakness of the fitting approach used here is that it cannot
account for the dynamics of the second central moment (variance), as was done in
(La Camera et al., 2004), and modeling both dynamic excitation and inhibition
simultaneously requires a laborious fitting of a two dimensional space of synaptic
inputs. Further work will apply methods such as those due to (Moreno-Bote &
Parga, 2004b) to obtain a solution to equation 2.23 without fitting, thus allow-
ing ensemble studies of adapting network models and analysis as in (Latham et
al., 2000) with the rigor of, for example, (Brunel, 2000), and the possibility for
quantitative agreement with traditional large-scale network simulations.

5.3 Beyond Renewal Theory

We reviewed standard results of inhomogeneous renewal theory in section 1.4, and
uncovered a conceptual error often made in the literature when using the intensity-
rescaling transformation to make the transition from homogeneous (static) to in-
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homogeneous (dynamic) renewal theory. This problem was clarified and remedied
by presenting a correct renewal process generation scheme as discussed in (De-
vroye, 1986).

By means of a variable transformation, the link between the 1DM model and
inhomogeneous renewal theory methods becomes apparent, allowing direct com-
parison and contrast. The 1DM master equation was found to have an analogous
structure to the renewal master equation, however with a state space spanning the
whole real line. Furthermore, the 1DM state is not reborn to a universal initial
value upon spiking, as in renewal theory (zero age), but reinserted to a state which
is a function of the state just prior to spiking. This fact introduces a memory into
the system and results in negative ISI correlations as reported in (Chacron et al.,
2003).

Due to the detailed adiabatic reduction and fitting, the “nested exponential”
form of the hazard function as given by equation 1.27, and the state dependent
reinsertion function as given by equation 1.24 were proposed for the conductance-
based SFA mechanism considered here. The hazard function (perhaps time-
dependent) and the reinsertion function together are a complete specification of
the proposed Markov model given an initial distribution of states. A numeri-
cal recipe was provided to efficiently generate inhomogeneous realizations of the
proposed Markov process.

With an additional dimension for a relative refractory mechanism, the Markov
process faithfully reproduces the transient dynamics and ISI correlations of 5DF
Monte-Carlo, as expected by the adiabatic reduction. The same comparison be-
tween a one-dimensional Markov process and a neuron model without the relative
refractory mechanism was not done, as it was found that without a refractory
mechanism, the neuron model used exhibited a high probability to spike just after
spiking, due to correlations in the synaptic conductance on the timescale of the
refractory mechanism. The author feels this is a “bug” rather than a “feature” of
neuron models without a refractory mechanism. Thus a Markov process was not
built to account for it. Furthermore, the proposed relative refractory mechanism
requires only slightly more effort than treating an absolute refractory period as
done in (Nykamp & Tranchina, 2001). When the hazard function calibrated for
the 2DM model is used directly for the 1DM model, reasonable agreement to re-
fractory neuron models was still observed for the moderate firing rates considered.

5.4 Supra-Threshold Stimuli

For large and rapid changes in stimulus which bring the neurons into the supra-
threshold regime, the predictions due to numerical solutions of the 2DM model
deviated somewhat from 5DF Monte-Carlo simulations, as seen in Figure 4.4.
The reasons for this are twofold. First, the stimulus brings us into a regime
where the exponential fitting procedure for h(ts, tr) begins to fail, and was poorly
populated with data points. This fact likely accounts for the larger amplitude of
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the oscillations of the 2DM model compared to 5DF Monte-Carlo. It is likely that
a choice of function which improves the fit in this regime, or a proper analytical
solution for h(ts, tr) would improve the agreement here. Second, following the
large stimulus change, a large portion of the population is in the supra-threshold
regime where neurons make large migrations from the reset potential directly to
the threshold following a spike. The 2DM model completely neglects the dynamics
of the membrane potential and thus this migration period, resulting in the phase
lead over the full system.

A closer inspection of Figure 4.4, reveals a transition from supra- to sub-
threshold firing. Shortly after stimulus onset, a large portion of the population
fires almost immediately, and is reinserted with the adaptation conductance in-
creased by qs, i.e. a mass exodus in phase space. For the 2-D case, the neurons
also start a refractory period upon re-insertion, while in the 1-D case they do not.
The stimulus is sufficiently strong that, in the 2-D case, it is still supra-threshold
following the refractory period. In the 1-D case, there is no refractory period and
the neurons can fire immediately following a spike cycle, and no lull is seen in
the firing rate following the initial mass exodus. For the 2-D case, and even the
renewal case, the system is refractory following the mass exodus, and a lull in the
firing rate results, to peak again as the neurons are released from the refractory
state. With the accumulation of adaptation, subsequent exodus events are ever
diminished as more and more neurons enter the sub-threshold regime where neu-
rons survive for highly variable durations following the refractory period. Thus,
for large stimuli which keep the neuron supra-threshold over several spikes, the
population is initially synchronized, firing at a rate determined by the refrac-
tory mechanism. As adaptation accumulates, spiking becomes more irregular and
the neurons desynchronize. A similar effect has been observed experimentally in
(Mainen & Sejnowski, 1995).

Thus synchronized supra-threshold preparations are transient in practice, since
as adaptation accumulates over several spike cycles, the system relaxes to a sub-
threshold stochastic firing mode. This suggests a functional role for adaptation in
bringing neurons to and keeping them in the highly variable sub-threshold firing
regime given static stimulation, while amplifying and transiently synchronizing
the ensemble response to stimulus changes. This is an implementation of novelty
detection.

A recent study of the effects of SFA in the context of natural and behaviorally
relevant stimuli in-vivo suggests that the function of SFA is analogous to that of a
high-pass filter on the peri-stimulus time histogram (PSTH) (Benda et al., 2005),
i.e. to transmit rapid modulations with a larger gain than slow modulations. At
rapid increases in stimulation this results in short transients of high firing proba-
bility, which can be interpreted as a population synchronization at stimulus onset.
Quantitatively similar transient behavior was observed here at rapid changes in
stimulus across all models considered. Using numerical solutions of the renewal
master equation, the filtering properties of an inhomogeneous gamma renewal were
investigated allowing refinement of the high-pass filter interpretation. A similar
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analysis on the 2DM master equation is given in (Büsing, 2006).

5.5 Synchrony

It was shown that adapting I&F model neurons in the high-conductance state
exhibit transient behavior in response to step stimuli. Specifically, sharp peaks
in the PSTH or observed hazard rate emerged directly following an increase in
stimulation. Traditionally, these are thought to be artifact or “garbage” signals
sent by a neuron which is reconfiguring its coding scheme to a new realm of
sensitivity (Troy & Robson, 1992). Working towards the prospect that it is in fact
these transients which are the signal, and not the other way round, in this section
the interpretation of these transients as synchrony is discussed.

For discrete time systems, events which occur in the same time step are said
to be synchronous. For continuous time systems, such as a population of spiking
neurons, two or more spikes are said to be synchronous, in the truest sense of the
word, if they occur at exactly the same instant. However, such strict definitions of
synchrony represent an ideal situation which is experimentally impossible to verify.
Innate finite temporal smearing of event times and the ever present limitations in
the resolution of observation demand a choice of time scale. Possible time scales
might be the time scale of the spike evoked synaptic conductance (∼ 10ms),
the pulse length of a spike (∼ 1ms), or the time spread of the first transmitter
release event evoked by a spike. At one time scale, two neurons may be said to
be firing synchronously, while at another finer scale, the two neurons may not be
synchronous at all. Regardless, the standard approach for quantifying the degree
of synchrony in continuous-time systems is to discretize time to some arbitrary
time scale and count events per time bin. Unfortunately, this approach introduces
a phase dependence: two events at the transition between two time bins may not
be counted as synchronous. What is needed is a measure of synchrony which
accounts for all possible time scales at once, and is compatible with the stochastic
nature of neuronal firing.

In the population density formalisms presented here, the exactly synchronous
firing of a population of neurons at a time t0 can be described by an ensemble
firing rate delta peaked at t0 times a scalar between 0 and 1, representing the
fraction of the population participating in the synchronous event. However, peaks
of the ensemble firing rate of a finite width, ∆t, and unit area times a scalar
between 0 and 1 would also be said to be synchronous events if the discrete-time
approach for quantifying synchrony is employed with a time scale on the order
of ∆t and the bins are properly aligned so as not to cut the peak in two. Thus
the presence of peaks in the ensemble firing rate across a neuron population is an
indicator of synchrony on a time scale on the order of the peak width. No extra
measure of synchrony is necessary and the duality between dynamic firing rates
and synchrony is immediately apparent.

It was shown in section 4.4.1 that inhomogeneous GRP models of adapting
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neurons produce a peaked overshoot in the ensemble firing rate with a width on
the order of ∼ 10− 30ms when undergoing a step change in stimulus of a realistic
magnitude. The width of the overshoot peak is largely determined by the time
constant of SFA chosen, τs = 110ms. This indicates that the ensemble firing
rate of a population of adapting neurons is a non-linear function of its stimulus
history exhibiting synchrony effects for step changes in stimulation on a time
scale of ∼ 10 − 30ms. Indeed, raster plots of GRPs undergoing step changes in
equilibrium firing rates exhibit weak synchrony at the step stimulus increase where
sensitivity is initially high but quickly adapts to a lower equilibrium firing rate
(not shown). Successive adapting populations, as are involved in the transmission
of stimuli to cortex, were found to intensify the effect.

Given that spike-frequency adapting neurons exhibit transients at changes in
stimulation, the effect of these transients in the input of simulations of balanced
networks of inhibitory and adapting excitatory neurons characterizing cortical
layer IV was investigated by comparing the network response to sparse synap-
tic input consistent with thalamocortical synapse densities from inhomogeneous
GRPs and Poisson processes subject to a step stimulus. The transient behav-
ior of the GRP was found to significantly enhance the synchronous response of
the network to stimulus step-up over Poisson processes. Thus the simulations
here suggest delivering input by spike-frequency adapting neurons enhances local
synchrony of the cortex at changes in stimulation.

Due to the observation that weakly synchronous input reliably evokes bursts
in networks characterizing cortical layer IV, it is plausible that such bursts would
excite waves of synchrony which would stably propagate laterally in the cortex.
A distributed version of CSIM or NEST for use on Linux clusters, both currently
under development, would allow numerical investigation of this prospect, as would
a suitable neural field equation based on the various master equations investigated
here.

Finally, given such synchrony coded stimuli, correlation-based learning rules
such as STDP are put in a new realm of possibilities for spike correlations whereby
their functional relevance for learning may be revealed.

5.6 Implications for Early Visual Coding

In (Uzzell & Chichilnisky, 2004) it is shown that the firing statistics of retinal
ganglion cells are well modeled by a Poisson process plus recovery dynamics, due
to presumably the same mechanism which results in observations of SFA in-vitro.
Such models are a special case of the general inhomogeneous renewal process re-
viewed here. While it is likely that the 2DM process would be a better description
of retinal ganglion cell firing, accounting for ISI correlations, for example, one
fact is invariant across all such models: Changes in stimulation induce transient
responses.

In (Troy & Robson, 1992) it is claimed that if “one wishes to determine the
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cell’s capacity to signal the difference between two stimuli ... this requires a sample
of the cell’s discharge following one stimulus to be reliably different from a sample
of its discharge following the other.” The theoretical framework presented here
and recent experimental evidence provide a foundation on which this traditional
view of visual coding is to be challenged. Indeed, the authors there observe that
“when the sustained discharge rate of a cell was changed by a stationary pattern,
an initial transient followed by a monotonic trend in the discharge occurred before
the rate reached a steady level.” The claim is that it is these transients the
authors themselves observed at changes in stimulus which provide a reliable signal
of a change in stimulation, not a statistical sample of the steady-state discharge
before and after.

It has been demonstrated here that such transients are both amplified in succes-
sive populations, and can induce strong synchronous responses in network simula-
tions of I&F neurons characterizing a local circuit of cortical layer IV, even when
delivered by sparse connections consistent with thalamocortical synapse densi-
ties. Induced by a combination of fixational eye movements and [spike-frequency]
adaptation in the attentive animal, salient, high-contrast features are encoded and
transmitted to the cortex in the form of these transient peaks in the PSTH, i.e.
synchrony in ganglion populations with nearby receptive fields. There is ample
experimental support for this view: In primates, it is know that bursts of V1 cells
are systematically preceded by microsaccadic fixational eye movements (Martinez-
Conde, Macknik, & Hubel, 2000). Moreover, given that visual perception is known
to rapidly fade in retinal image stabilization experiments suggests these transients
are an important part of the code by which information is transmitted by the
retina to the cortex (see (Martinez-Conde, Macknik, & Hubel, 2004) for a review)
putting in serious question the notion of the “traditional rate code” of visual
stimuli for which the claims of (Troy & Robson, 1992) above are representative.

5.7 Concluding Remarks

The present manuscript has focused on establishing a framework for rigorously
treating the dynamic effects of spike-frequency adaptation and refractory mecha-
nisms on neural ensemble spiking. The resulting master equation formalism unifies
renewal theory models, and previous studies on adaptation such as (Latham et
al., 2000; Fuhrmann et al., 2002; Chacron et al., 2003; Benda & Herz, 2003; La
Camera et al., 2004) into an ensemble, or population density framework such as
those due to (Knight, 1972, 2000; Brunel, 2000; Omurtag et al., 2000; Nykamp
& Tranchina, 2000; Fourcaud & Brunel, 2002; Richardson, 2004; Rudolph & Des-
texhe, 2005; Meffin et al., 2004; Moreno-Bote & Parga, 2004b). The resulting
methods are new and powerful tools for accurately modeling spike-frequency adap-
tation, an aspect of neuron dynamics ubiquitous in excitatory neurons which has
been largely ignored in neural ensemble studies thus far, due to the added diffi-
culties of treating the extra state variable.
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By distilling the detailed neuron model down to two essential dimensions,
spike-frequency adaptation and a relative refractory period, using an adiabatic
elimination, their central role in perturbing neural firing is emphasized. Functional
implications for spike-frequency adaptation in visual coding were discussed. Given
the variety of intriguing and prominent consequences such as interspike interval
correlations, transient synchronization following stimulus changes, amplification
of this transient in successive populations, and the sensitivity with which cortical
layer IV like networks respond to the transient, it is unlikely that spike-frequency
adaptation can be neglected when considering, for example, the dynamic nature of
the neural code (Shadlen & Newsome, 1998; Rieke et al., 1997), the propagation of
synchrony (Abeles, 1991; Diesmann, Gewaltig, & Aertsen, 1999), or the function
of spike-timing based learning rules (Gerstner, Kempter, Leo van Hemmen, &
Wagner, 1996; Song, Miller, & Abbott, 2000).





Appendix A

Neuron and Adaptation Model

Parameters

The parameters of the 5DF neuron model given in equations 2.13-2.15 were de-
termined by fitting to a single compartment Hodgkin-Huxley (HH) model of a
pyramidal neuron under various conditions using NEURON (Hines & Carnevale,
1997) as described in (Muller, 2003). The HH model and parameters are taken
from (Destexhe, Contreras, & Steriade, 1998).

The phenomenological mechanism for spike-frequency adaptation (SFA) used
here, the counterpart to the M-current and AHP-current mechanisms in the HH
model, was inspired by (Dayan & Abbott, 2001, pp. 166), and similar models are
proposed in (Koch, 1999, pp. 339), and (Fuhrmann et al., 2002), and more recently
generalized in (Brette & Gerstner, 2005).

Additionally, a relative refractory period (RELREF) mechanism identical to
the SFA mechanism was added, but with a much shorter time constant and a
much larger conductance increase.

For the network simulations, inhibitory neurons were also modeled, as the 5DF
neuron model, but without the SFA mechanism. Parameters were determined by
fitting to the inhibitory class of HH model neurons in (Destexhe et al., 1998).

Both the SFA and RELREF mechanisms consist of an action potential (AP)
activated and exponentially decaying conductance coupled to an inhibiting reversal
potential so that the standard membrane equation takes the form:

cm
dv(t)

dt
= gl(El − v(t)) + gs(t)(Es − v(t))

+ gr(t)(Er − v(t)) + ge(t)(Ee − v(t)) + gi(t)(Ei − v(t)).

If v exceeds the threshold vth:

• v is reset to vreset.

• gs 7→ gs + qs.
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Parameter Description Value

vth threshold voltage −57mV (ex),
−54.5mV (inh)

vreset reset voltage −70mV

cm membrane capacitance 289.5 pF (ex),
141.0 pF (inh)

gl membrane leak conductance 28.95 nS (ex),
21.16 nS (inh)

El membrane reversal potential −70mV

qr RELREF quantal conductance increase 3214 nS (ex),
1565 nS (inh)

τr RELREF conductance decay time 1.97ms

Er RELREF reversal potential −70mV

qs SFA quantal conductance increase 14.48 nS (ex),
0.0 nS (inh)

τs SFA conductance decay time 110ms

Es SFA reversal potential −70mV

Ee,i reversal potential of excitatory and in-
hibitory synapses, respectively

0mV, −75mV

qe,i excitatory and inhibitory synaptic quan-
tal conductance increase

2 nS

τe,i excitatory and inhibitory synaptic decay
time

1.5ms, 10.0ms

Table A.1: The neuron and synapse model parameters used for simulations of the
full system (5DF) given by equations 2.13-2.15.

• gr 7→ gr + qr.

• The time of threshold crossing is added to the list of spike times.

All conductances, gx(t), where x ∈ {s, r, e, i}, are governed by an equation of the
form

dgx(t)

dt
= − 1

τx
gx(t).

The arrival of a spike at a synapse triggers gx 7→ gx + qx for x ∈ {e, i}. GRPs,
Poisson processes or other neurons were used to supply spike trains to the 1000
excitatory and 250 inhibitory synapses, where generally firing rates in the range
3 − 20Hz were used as described in the text for each specific simulation. The
synaptic model and parameters were directly transferred from the HH models,
while the remaining parameters, as determined by fits to the HH model, are given
in Table A.1.
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Further Details on the

Adiabatic Reduction

In this appendix, the mathematical steps that lead from equation 2.16 to 2.20 in
a more detailed way are given. The derivation was undertaken by L. Büsing as
part of his diploma thesis work (Büsing, 2006) and in contribution the general
framework given here and in (Muller, Buesing, Schemmel, & Meier, 2005).
For the sake of notational simplicity the five dimensional state variable x =
(v, ge, gi, gs, gr) is introduced. The indices 1, 2, 3, 4, 5 shall correspond to v, e, i, s, r,
as used in the definition of the neuron model in equations 2.13-2.15 (for example
τ2 := τe). The partial derivatives with respect to xµ are denoted by ∂µ, and with
respect to time by ∂t. Furthermore, P (x1, x2, x3, x4, x5) is defined to be zero if
one or more of the conductances x2, . . . , x5 is negative.
The master equation governing the evolution of the probability density P (x, t)
may be formulated as a conservation equation:

∂tP (x, t) = −div J(x, t) + δ(x1 − vreset)J1(vth, x2, x3, x4 − q4, x5 − q5, t). (B.1)

The second term on the rhs of equation B.1 accounts for neurons that cross the
threshold surface x1 = vth at time t with the state variables (vth, x2, x3, x4 −
q4, x5 − q5) and are reinserted to (vr, x2, x3, x4, x5).
The probability current J(x, t) is determined by the underlying stochastic differ-
ential equations 2.13-2.15. The components Jµ(x, t) for µ = 1, . . . , 5 consist of the
current due to the drift terms, βµ(x), and for µ = 2, 3 of additional currents due
to the excitatory and inhibitory input Poisson spike trains, respectively.
The drift term for the membrane potential reads:

β1(x) :=
1

cm





5
∑

µ=2

xµ (Eµ − x1) + gl(El − x1)



 . (B.2)

For the conductances xµ with µ = 2, . . . , 5, the drift terms are:

βµ(x) = βµ(xµ) := − 1

τµ
xµ. (B.3)
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The components of the probability current for µ = 1, 4, 5 obey the equation:

Jµ(x, t) = βµ(x)P (x, t). (B.4)

For the excitatory synaptic conductance x2 the component J2(x, t) is:

J2(x, t) = β2(x)P (x, t)

+

∫ x2

0

[
∫ ∞

0
W2(y2, y1, t)P (x1, y1, x3, . . . , x5)dy2

]

dy1

−
∫ x2

0

[∫ ∞

0
W2(y1, y2, t)P (x1, y2, x3, . . . , x5)dy2

]

dy1. (B.5)

The component J3(x, t) has a similar form with obvious modifications. Since the
synaptic input is modeled as a Poisson process, the transition rates Wµ(y1, y2, t)
for µ = 2, 3 may be written as

Wµ(y1, y2, t) = νµ(t)δ(y1 − (y2 + qµ)), (B.6)

given the presynaptic firing rates νµ(t). The diffusion approximation can be ob-
tained by a Kramers-Moyal expansion of the components J2 and J3 (Gardiner,
1985).

Integration

To obtain an equation for the marginal probability distribution, P (x4, x5, t), one
integrates equation B.1 over x1, x2, x3. The integral of the terms ∂µJµ(x, t) on the
rhs in B.1 for µ = 2, 3 vanish due to the boundary condition that the probability
current vanishes in the limit xµ → 0 and xµ → ∞ for µ = 2, 3:

∫ ∞

0
∂µJµ(x, t)dxµ = lim

xµ→∞
Jµ(x, t) − Jµ(x, t)

∣

∣

∣

xµ=0
= 0. (B.7)

The component J1(x, t) yields a nonvanishing contribution:

∫ ∞

0

∫ ∞

0

(∫ vth

−∞

∂1J1(x, t)dx1

)

dx2dx3 =

∫ ∞

0

∫ ∞

0
J1(vth, x2, . . . , x5, t)dx2dx3. (B.8)

The reinsertion term involves an integration over a delta distribution:

∫ ∞

0

∫ ∞

0

(∫ vth

−∞

δ(x1 − vreset)J1(vth, x2, x3, x4 − q4, x5 − q5, t)dx1

)

dx2dx3 =

∫ ∞

0

∫ ∞

0
J1(vth, x2, x3, x4 − q4, x5 − q5, t)dx2dx3. (B.9)
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Integration of the lhs in equation B.1 results in:

∫ ∞

0

∫ ∞

0

∫ vth

−∞

(∂tP (x, t)) dx1dx2dx3 = ∂tP (x4, x5, t). (B.10)

Plugging these results into equation 2.16 yields:

∂tP (x4, x5, t) = −
∑

µ=4,5

∂µ (βµ(xµ)P (x4, x5, t))

+

∫ ∞

0

∫ ∞

0
J1(vth, x2, x3, x4 − q4, x5 − q5, t)dx2dx3

−
∫ ∞

0

∫ ∞

0
J1(vth, x2, . . . , x5)dx2dx3. (B.11)

Returning to the initial notation and using the definition for J1(x, t) = β1(x, t)P (x, t)
yields equation 2.20.
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chenschaftliches Rechnen, Beiträge zum Heinz-Billing-Preis 2001 (Vol. 58,
pp. 43–70). Göttingen: Ges. für Wiss. Datenverarbeitung.

Diesmann, M., Gewaltig, M.-O., & Aertsen, A. (1999). Stable propagation of
synchronous spiking in cortical neural networks. Nature, 402, 529-533.

Ermentrout, B., Pascal, M., & Gutkin, B. (2001). The effects of spike frequency
adaptation and negative feedback on the synchronization of neural oscilla-
tors. Neural Computation, 13, 1285-1310.

Fourcaud, N., & Brunel, N. (2002). Dynamics of the firing probability of noisy
integrate-and-fire neurons. Neural Computation, 14, 2057-2110.

Fuhrmann, G., Markram, H., & Tsodyks, M. (2002). Spike frequency adaptation
and neocortical rhythms. Journal of Neurophysiology, 88, 761-770.

Gardiner, C. W. (1984). Adiabatic elimination in stochastic systems. i. formulation
of methods and application to few-variable systems. Physical Review A, 29,
2814-2823.



References 87

Gardiner, C. W. (1985). Handbook of stochastic methods. Berlin: Springer Verlag.
Gazères, N., Borg-Graham, L. J., & Frégnac, Y. (1998). A phenomenological
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La Camera, G., Rauch, A., Lüscher, H.-R., Senn, W., & Fusi, S. (2004). Minimal
models of adapted neuronal response to in-vivo-like input currents. Neural
Computation, 16, 2101-2124.

Lapicque, L. (1907). Recherches quantitatives sur l’excitation électrique des nerfs
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Allen Visionären und auch Mitarbeiter des Kirchhoff-Instituts für die Hilfsbere-
itschaft und stets angenehme und freundschaftliche Arbeitsathmosphäre, in der
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