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Kurzfassung

In dieser Arbeit wird die Photoproduktion von D∗–Mesonen in ep–Kollisionen bei HERA unter-
sucht. Die D∗–Mesonen werden anhand ihres ’goldenen’ Zerfalls D∗ → Kππs mit dem H1–Detektor
nachgewiesen. Gegenüber früheren Analysen konnte der systematische Fehler durch zwei wesentliche
Verbesserungen verringert werden. Zum einen ermöglicht die Simulation des Fast Track Trigger, der
auf Spuren in den zentralen Spurkammern basiert, eine korrekte Berücksichtigung der Abhängigkeiten
der Triggereffizienz von unterschiedlichen kinematischen Grössen. Zum anderen erlaubt die Verwen-
dung des spezifischen Energieverlusts eine bessere Unterdrückung von nicht–resonantem Untergrund.
Um die Teilchenidentifikation anhand des spezifischen Energieverlustes in der Analyse verwenden zu
können, wurde die Simulation des Energieverlustes in den Spurkammern des H1–Experiments verbessert
und die notwendigen Korrekturfunktionen und Kalibrationen bestimmt. Mit dieser verbesserten H1–
Detektorsimulation wird der Wirkungsquerschnitt der Photoproduktion von D∗ –Mesonen in den HERAII
Daten bestimmt. Die Daten ensprechen einer integrierten Luminosität von 113 pb−1. Die Messung er-
folgt im kinematischen Bereich von Q2 < 2GeV für Photon–Virtualitäten und Photon–Proton Schwer-
punktsenergien von 100 < Wγp < 285GeV. Einfach und doppelt differenziellen Wirkungsquer-
schnitte von D∗–Mesonen mit Transversalimpulsen pT (D∗) > 1.8GeV und im Bereich zentraler Pseu-
dorapiditäten |η(D∗) | < 1.5 werden bestimmt und perturbativen QCD Vorhersagen in führender und
nächstführender Ordnung gegenübergestellt.

Abstract

In this thesis the photoproduction of D∗ mesons in ep collisions at HERA is analysed. D∗ mesons
are detected in the ’golden’ decay channel D∗ → Kππs with the H1 detector. Compared to earlier
analyses, the systematic uncertainty is reduced due to two main improvements. Firstly, the simulation
of the Fast Track Trigger, which is based on tracks measured within the central jet chambers, allows
the trigger efficiency dependence of various kinematic variables to be evaluated. Secondly, the use of
specific energy loss provides the possibility to suppress the non–resonant background. In order to use
particle identification with the specific energy loss in the analysis, the simulation of the specific energy
loss in the central jet chambers of the H1 detector is improved and the necessary correction functions
and calibrations have been determined. This improved final H1 detector simulation is used to determine
the cross section of photoproduction of D∗ mesons in the HERA II data sample, which corresponds to
an integrated luminosity of 113 pb−1. The measurement was performed in the kinematic region of Q2 <
2GeV for the photon virtuality and photon-proton center of mass energies of 100 < Wγp < 285 GeV.
Single and double differential cross sections of D∗ mesons with transverse momenta above 1.8GeV and
in the central pseudorapidity range of |η(D∗)| < 1.5 are determined and are compared to leading and
next to leading order QCD predictions.
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Chapter 1

Introduction

In the so called ’Standard Model’ (SM) of particle physics, leptons and quarks are grouped into
three families. Matter is composed of in total six leptons, the electron, the muon and the tau and
the corresponding neutrinos, and six quark flavours, up, down, charm, strange, beauty and top.
In addition each particle has a corresponding anti–particle with the same mass and lifetime but
opposite charge sign. Hadrons, like protons, are composed of quarks.
The interactions between particles are explained with the electromagnetic, the weak, and the
strong forces. The forces are mediated by bosons: in an electromagnetic interaction a photon
is exchanged, in weak interactions Z or W bosons and the strong interaction is mediated by
gluons. The latter interaction is described successfully by the theory of Quantum–Chromo–
Dynamics (QCD).
The HERA collider at DESY is used as a microscope to resolve the building blocks of nature.
HERA was the world’s first electron–proton collider, where the particles are accelerated and
collided in a 6.3km long ring tunnel at a center of mass energy of 319 GeV. The interaction
products of the collisions were detected with the H1 experiment. The concept of colliding one
fundamental particle with one composite object allows the study of the structure of that object.
The HERA collider was in operation until summer 2007. With the HERA machine it was
possible to study in high precision many properties of the SM. The measurement of structure
functions and the extraction of the parton density functions of the proton provide the necessary
knowledge for present high energy experiments like the Large Hadron Collider at CERN where
two proton beams are brought into collision, currently at a center of mass energy of 7 TeV.
In this thesis the photoproduction of charm quarks is studied. Photoproduction denotes that the
electron is scattered under low angles after the electron proton collision, so that it is not detected
within the H1 detector volume and that the exchanged photon in this process has low virtualities.
The charm quark pairs are dominantly produced via the boson–gluon–fusion process, where a
virtual photon from the electron interacts with a gluon from the proton.
The photoproduction of charm quarks is of particular interest because the heavy charm quark
mass provides a hard scale such that it is feasible to apply perturbative QCD calculations. Hence
with the experimental results of the measurement of charm quarks in photoproduction it is
possible to test the current understanding of perturbative QCD.



CHAPTER 1. INTRODUCTION

Motivation

The use of particle identification with the specific energy loss of particles in material is an
elegant method to suppress background, but it requires a good description of the data by the
simulation. The Monte Carlo (MC) events have to be generated properly and in addition a de-
tector simulation is needed. The earlier simulation of the specific energy loss in the H1 detector
showed discrepancies in the data description, mainly due to not considering the energy strag-
gling in a gaseous absorber material in the required way.
In this thesis, one component of the H1 detector simulation, the simulation of the specific en-
ergy loss in the central jet chambers, was studied and simulated anew. The new simulation now
takes into account the thickness of the absorber material in an improved way, with the imple-
mentation of four different energy straggling models each valid for certain absorber material
conditions.
However, the specific energy loss information cannot be used for particle identification directly,
because the main detector effects are simulated too. The energy loss simulation needs to be
calibrated and corrected for these detector effects. The neccessary correction functions and cal-
ibrations have been determined in this thesis.
The measurement of the specific energy loss in data was already studied and calibrated [1].
Since data and MC agree well with the new simulation, the specific energy loss simulation in
the central jet chambers was included to the H1 simulation sofware and provides the possibility
to use particle identification in the track reconstruction. Particle identification is an important
tool in the analysis of heavy quark production, where a large background suppression factor
is needed. Examples are the measurement of D∗ mesons in photoproduction which is studied
in this thesis, or in the measurement of beauty photoproduction using di-electron events [2].
The latter analysis benefits from the new possibility of electron identification with the specific
energy loss information, where the background is reduced significantly and a higher rejection
is achieved.

In this thesis charm production is studied with the measurement of inclusive cross sections
ofD∗ mesons in photoproduction. Charm quarks are produced in boson–gluon–fusion and frag-
ment into the charmed D∗ meson. Here D∗ mesons are identified in the so called golden decay
channel D∗± → D0π±slow → K∓π±π±slow. The event selection is performed with the Fast Track
Trigger of the H1 detector. Low virtualities, Q2 < 2 GeV2, of the exchanged photon define
the photoproduction region of charm production. D∗ mesons are measured with transverse mo-
menta above 1.8 GeV and in the central pseudorapidity range of |η(D∗)| < 1.5.

With this analysis it is possible to test leading order (LO) and next to leading order (NLO)
predictions of perturbative QCD (pQCD), because the high mass of the charm quark provides
a hard scale. Furthermore it is possible with this new measurement to investigate phase space
regions where previous measurements of inclusiveD∗ mesons in photoproduction by the H1 [3]
and ZEUS collaborations claim to observe discrepancies compared to pQCD predictions. The
latest ZEUS publication [4] exhibits an excess in the double differential cross sections in trans-
verse momenta and pseudorapidity of the D∗ meson in the forward region of the detector in the
highest analysed pT bin, shown in figure 1.1a).
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This excess was not found in the latest H1 publication [7], but this analysis has limited statis-
tics. A recent analysis of inclusive D∗ mesons in photoproduction of the HERA II run period
was presented at the DIS conference in 2008 [3]. Here a factor eight in statistics compared to
the earlier analysis was gained. The excess in the forward region is still observed, see figure 1.1
b).
In this thesis the improved final H1 detector simulation and reconstruction is used for analysing
the photoproduction of D∗ mesons in the HERA II data anew. This includes the benefit of an
improved track reconstruction and particle identification with the specific energy loss measure-
ment as well as the final Fast Track Trigger simulation.

In the analysis of D∗ mesons in photoproduction a huge amount of non–resonant back-
ground is present at the D∗ meson signal extraction. This non–resonant background can be
significantly reduced with the usage of specific energy loss information of the decay particles
of the D∗ meson. In the previous analysis the background reduction was only possible with
hard cuts on other quantities which results in a source of systematic uncertainty.
One of the dominant systematic uncertainties of the previous analysis was due to the trigger ef-
ficiency. Several studies of the trigger efficiency have been performed to reduce the systematic
error. In addition it was assumed in the previous analysis that the trigger efficiency depends
only on the transverse momentum of the D∗ meson. The trigger efficiency will be presented in

0

0.2

0.4

0.6

0.8

-1 0 1

η
D*

dσ
ep

 →
D

*X
/d
η

D
*

(n
b)

(d) p
⊥

D* > 6 GeV

a)

(D*)η
-1.5 -1 -0.5 0 0.5 1 1.5

 (
D

*)
[n

b
/G

e
V

]
η

d t
/d

p
σ

2
d

0

10

20

30

(D*)η
-1.5 -1 -0.5 0 0.5 1 1.5

 (
D

*)
[n

b
/G

e
V

]
η

d t
/d

p
σ

2
d

0

10

20

30
H1 Preliminary
HERA II (D*) < 2.5 GeV

t
1.8 < p

D* in Photoproduction

(D*)η
-1.5 -1 -0.5 0 0.5 1 1.5

 (
D

*)
[n

b
/G

e
V

]
η

d t
/d

p
σ

2
d

0

2

4

6

8

10

(D*)η
-1.5 -1 -0.5 0 0.5 1 1.5

 (
D

*)
[n

b
/G

e
V

]
η

d t
/d

p
σ

2
d

0

2

4

6

8

10
H1 Preliminary
HERA II (D*) < 4.5 GeV

t
2.5 < p

D* in Photoproduction

(D*)η
-1.5 -1 -0.5 0 0.5 1 1.5

 (
D

*)
[n

b
/G

e
V

]
η

d t
/d

p
σ

2
d

0

0.1

0.2

0.3

0.4

0.5

(D*)η
-1.5 -1 -0.5 0 0.5 1 1.5

 (
D

*)
[n

b
/G

e
V

]
η

d t
/d

p
σ

2
d

0

0.1

0.2

0.3

0.4

0.5
H1 Preliminary
HERA II (D*) < 12.5 GeV

t
4.5 < p

D* in Photoproduction

H1 data (prel.)

FFNS (CTEQ5F3)
 < 1.7 GeV c1.3 < m

 < 22
t

+p2
cm /  

r,f
µ0.5 < 

GMVFNS (CTEQ6.5)

b)

Figure 1.1: In a) the differential cross section as a function of the pseudorapidity in the highest
pT bin for D∗ mesons in photoproduction of the ZEUS publication [4] is shown. Open circles
refer to the decay channelD∗ → (Kπππ)πs and full dots forD∗ → (Kπ)πs. The cross sections
are compared to next to leading order QCD predictions by the massive charm approach (dash–
dotted, dashed and dotted lines) and by the massless approach of [5] (upper curve) and [6]
(lower curve). In b) the double differential cross section in pseudorapidity in the highest pT bin
of the H1 preliminary result [3] is presented. In addition the next to leading order predictions
by the massive approach (yellow curve and uncertainty band) and by the general mass variable
flavor number scheme (blue curve and uncertainty band) are shown.
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CHAPTER 1. INTRODUCTION

this thesis and it shows that this is not the case. In the present analysis the simulation of the
Fast Track Trigger is used which allows to consider the dependence of the trigger efficiency on
various kinematic variables.

Outline of the Thesis

The kinematics of the electron–proton scattering and more precisely the theory of photopro-
duction of charm quarks at the HERA collider is introduced in chapter 2. Chapter 3 gives an
overview of the HERA machine and the H1 detector. The main detector components used in
the present thesis are presented.
Chapter 4 deals with the simulation of the specific energy loss in the central jet chambers of the
H1 detector. First a general description of the H1 detector simulation is given. Then properties
of the the new simulation of the specific energy loss developed in this thesis are discussed. The
calibration of the new simulation and the determination of all corrections needed to consider
the simulated detector effects is presented in chapter 5.
The final H1 detector simulation software has major changes in the particle identification with
the central jet chambers and uses this information in the tracking. It is used in the following
chapters for analysing the HERA II data of D∗ mesons in photoproduction anew with the in-
tent to reduce the systematic uncertainties. In chapter 6 the leading order MC generators used
in this analysis and next to leading order calculations are introduced. The reconstruction of
D∗ mesons and the signal extraction is described in chapter 7. Here the particle identification is
used to reduce the amount of combinatorial background. The final event selection is presented
in chapter 8. The data events are compared in chapter 9 to the detector simulation with control
distributions. The trigger efficiency is studied in chapter 10. The detector effects which have
to be considered for the cross section measurement together with a detailed presentation of all
systematic uncertainties of this analysis are discussed in chapter 11. In the chapter 12 the re-
sulting single and double differential cross sections in comparison to leading order and next to
leading order QCD predictions are shown. In addition, the cross section results are compared
to the earlier H1 publication of D∗ mesons in photoproduction.

4



Chapter 2

D∗ Mesons in Photoproduction in ep
Scattering

In collisions of electrons and protons at the HERA collider charm quarks are produced. In this
chapter an overview of the theory of D∗ mesons in photoproduction is given. In the first part,
the physics of electron–proton scattering is introduced and the kinematic variables are defined.
Then the basic concepts of QCD are briefly summarized and the production mechanism of
charm quarks at HERA is described. In the last section of this chapter the fragmentation of the
produced charm quark into the detectable charmed D∗ meson is discussed.

2.1 Electron–Proton Scattering

Electron–proton interactions in high energy collisions at the electron1 proton collider HERA
can be described via the exchange of virtual gauge bosons of the electromagnetic or weak force.
Figure 2.1 displays the Feynman diagrams of the neutral and charged current processes where
the incoming electron with four–momentum k scatters with a proton with four–momentum P .
The variable q denotes the transfered momentum from the lepton to the proton. The outgoing
electron carries the four-momentum k′.
In neutral current (NC) events, ep → e′X , a photon γ or Z0 boson is exchanged, figure 2.1 a),
whereas in charged current events (CC), ep → νeX , the exchanged particle is a charged W±

boson, and in the final state a neutrino is found, figure 2.1 b).

2.2 Kinematics

Three Lorentz invariant kinematic variables are used to describe the the electron–proton scat-
tering process e + p → e(νe) + X : the negative four–momentum transfer squared Q2, the

1In the following the term ’electron’ refers to positron and electron.
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e(k) e′(k′)

P (p)

X

γ/Z0(q)

a)
e(k) νe

P (p)

X

W±(q)

b)

Figure 2.1: Leading order Feynman diagrams for electron proton scattering for a) neutral cur-
rent process and b) charged current processes. The quantities in brackets denote the four–
momenta of the particles.

dimensionless scaling variable Bjorken x and the inelasticity y.
Q2 is defined as

Q2 := −q2 = −(k − k′)2, (2.1)

with the four–momenta of the ingoing and the scattered lepton. If the exchanged gauge boson
is a photon, Q2 corresponds to the virtuality of the exchanged photon. The relative energy loss
of the scattered lepton in the proton rest frame is measured with the inelasticity y

y :=
(p · q)
(p · k) , 0 < y < 1. (2.2)

The Bjorken variable x is defined as

x :=
Q2

2(p · q) , 0 < x < 1. (2.3)

In the Quark Parton Model [8], more details in section 2.3, the variable x represents the frac-
tional momentum of the proton which is carried by the struck quark.
The definition of the center of mass energy is given by the square root of the Mandelstam vari-
able s

s := (k + p)2. (2.4)

For the HERA collider with beam energies of Ee = 27.5 GeV and Ep = 920 GeV, where Ee is
the electron beam and Ep is the proton beam, and neglecting the particle masses the center of
mass energy is

√
s =

√
4 · Ee · Ep = 319 GeV.

The negative four–momentum transfer squared can be calculated, with again neglecting the
rest masses of the particles, with the kinematic variables s, x and y as

Q2 = sxy. (2.5)

6



2.2. KINEMATICS

The center of mass energy of the photon–proton system is defined as

W 2
γp = (q + P )2 = y · s−Q2 ' y · s (2.6)

with the four momentum P of the proton and q the four momentum of the photon. At HERA
with center of mass energies of

√
s ∼ 320 GeV and at low virtualities, Q2 is negligible for the

calculation of Wγp.

Photoproduction

The scattering processes at HERA can be divided with respect to their virtualities into two
kinematic regimes: the photoproduction and the deep inelastic scattering (DIS) regime. The
scattered electron of the ep scattering process is used to clearly distinguish the two regions.
In the DIS regime the scattered electron is measured within the detector whereas in photo-
production the electron is not detected because it is scattered into the beam pipe and escapes
detection. Hence the acceptance of the H1 detector defines the corresponding virtuallity regions
of DIS 2 < Q2 < 1000 GeV2 and photoproduction 0 < Q2 < 2 GeV2.
In general in ep scattering the exchanged particles are photons, Z0 or W± bosons. However in
photoproduction the four–momentum transfer is too low to produce bosons of the weak force
with sufficient probability,−q2 ¿ m2(W±, Z0), because Z0 andW± bosons have high masses.
Hence, in the scattering process dominantly photons are exchanged.

Further this low virtualities in photoproduction imply the exchange of a quasi real photon.
In the equivalent photon approximation [9–11] the electron–proton interaction is approximated
with a photon–proton interaction

σep =

∫ ymax

ymin

dy

∫ Q2
max

Q2
min

dQ2fγ(y,Q
2)σγ p, (2.7)

with the flux of photons fγ(y,Q
2) originating from the electron and the photon–proton cross

section σγp. The flux is depending on the energy fraction y of the electron energy which is
carried by the photon,

fγ(y,Q
2) =

α

2πyQ2

(
1 + (1− y)2 − 2me

y2

Q2

)
. (2.8)

The ep cross section is proportional to 1/Q4. This implies a dominance of the photoproduc-
tion over the DIS part of the cross section.

7
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2.3 QCD Models, Factorisation and Parton Evolution

Data from early ep scattering experiments were well described by the naive quark parton
model [8]. The constituents of the proton are point-like, spin 1/2 particles which were later
identified with the quarks from QCD. The partons are not allowed to interact. The proton
structure is parametrized by so–called structure functions, F1(x) and F2(x) , which depend
only on the scaling variable x. The deep–inelastic ep scattering is the elastic scattering on one
of the partons.
However, it was expected in the naive quark parton model that the structure functions depend
only on x and not on Q2, further experimental results, e.g. the scaling violation which shows
the additional Q2 dependence of the structure functions, revealed that this picture is incomplete.
Today the gauge field theory of QCD is used to describe high energy collisions. Here each quark
carries a color charge. The strong force between the quarks is exchanged via gluons, which are
massless bosons. The gluons carry themselves color so that gluons can interact with gluons.
They can radiate themselves gluons (g → gg) or split into quark-antiquark pairs (g → qq̄). In
contrast to the naive quark parton model, where the quarks the constituents of the proton are
described as static, in QCD the constituents are allowed to interact via the radiation of gluons.
The interaction between two particles is described with the strong coupling constant αs, which
will be discussed in the next section.

The cross section of the neutral current process (see 2.1 a)) in the Born approximation2

neglecting the contributions from W and Z exchange is defined as [12]

d2σNC
Born

dxdQ2
=

2πα2
em

xQ4
· [(1 + (1− y)2) · F2(x,Q

2)− y2 · FL(x,Q2)
]
, (2.9)

where αem denotes the electromagnetic coupling constant. The structure function F2 and the
longitudinal structure function FL are related via the structure function F1

F2(x,Q
2)− 2x · F1(x,Q

2) = FL(x,Q2). (2.10)

The longitudinal structure function takes into account that the exchanged photon can have in
addition to the transverse polarizations also a longitudinally polarization3. It has only contri-
butions for very large inelasticities y. A recent H1 measurement of the structure function F2 is
given in [13], and for FL in [14].

The strong coupling constant

During the calculation of gluon radiation and splitting processes in perturbative QCD diver-
gences, the ultraviolet divergences and the collinear divergences, occur. The origin of these
divergences and their treatment will be presented in the following.
In quantum field theories like QED and QCD infinities occur during the calculation of inter-
actions. The momenta of the virtual particles in closed fermion loops in QED or gluon loops
in QCD are not restricted by conservation laws. This results in divergent integrals of the form

2This denotes the one boson exchange.
3In the naive parton model the longitudinal structure function is zero.

8
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∫
dp/p, where p is the momentum of the particles in the loop and hence introduce logarithmic

divergences, for a more detailed explanation see e.g. [15]. The divergent integrals can be han-
dled with the renormalization method: These so called ultraviolet divergences are solved in the
running of the strong coupling constant αs. Therefore the αs dependence on the renormaliza-
tion scale parameter µr is introduced. In case µr À ΛQCD, where ΛQCD is the scale where the
coupling becomes strong, αs is small so that pQCD calculations diverge. At µr = ΛQCD the
strong coupling diverges.
Experimentally with measurements of αs it is found that ΛQCD is around 200 MeV.
Neglecting the quark masses the renormalization group equations 4 give for the effective cou-
pling constant

µ2
r ·
∂αs(µr)

∂µ2
r

= β(αs(µr)), (2.11)

with the β-function β(αs(µr)). This gives in the one loop approximation for the strong coupling

αs(µr) =
1

β0 · ln(µ2
r/Λ

2
QCD)

, (2.12)

with the first coefficient of the beta function β0 =
33−2·nf

12π
, where nf is the number of active

flavors.
In deep inelastic scattering the relevant scale is Q2 so that µ2

r = Q2. In heavy quark production
the quark mass becomes relevant and usually µ2

r = Q2 +m2
quark is chosen.

For large scales with large µr it is possible to use perturbative QCD. In the limit µ2
r → ∞

the coupling between quarks and gluons becomes small, so that the quarks can be regarded as
quasi–free particles. This behavior is known as asymptotic freedom.
For small scales (µr → ΛQCD) the coupling becomes strong, so that free quarks are not ob-
served but they are always bound as partons of the hadrons. This is known as confinement. The
logarithm in the αs formula goes to 1 and it is not possible to calculate perturbatively.

In deep–inelastic scattering pQCD calculations are applicable above Q2 ≈ 3 − 4 GeV2. In
photoproduction with low virtualities, Q2 is not an adequate scale for pQCD calculations. Here
possible scales for pQCD calculations are the transversal jet energy or for heavy quarks the high
quark mass.

The collinear divergences arise from gluons which are emitted collinearly to the quark. Such
gluon radiation and splitting of gluons into quarks can occur several times and are summarized
in a parton ladder. The solution is to introduce a cut-off scale, the factorization scale µf , which
divides the gluon ladder into a long distance (virtualities smaller than µ2

f ) and a short distance
(virtualities greater than µ2

f ) regime.
At short distances it is possible to calculate in pQCD. The divergences in the long distance part
are absorbed in parton density functions (PDFs) f p

i (x, µ2
f , µr) which represent the probability

of finding a parton i with a momentum fraction x of the proton momentum. They depend on
the factorization scheme like the minimal substraction scheme (MS) or DIS which was used.
The MS scheme is the most common used factorization scheme of the PDF fitting groups (like

4For reference see e.g. [16]
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e e′

P

X

σ̂i

µf

θi

θi−1

θ1

xi, kT,i

xi−1, kT,i−1

x1, kT,1

x0, kT,0

Figure 2.2: The parton ladder summarising the gluon emission collinear to the quark is shown
here. The factorisation scale µf is visualized which seperates the hard matrix element σ̂i from
the parton evolution. The gluons carry the longitudinal momenta xi, the transverse momenta
kT,i and are emitted under the angle θi.

MSTW and CT). Usually µ2
f = Q2 is chosen. In figure 2.2 the parton ladder and the factoriza-

tion ansatz is shown.
Parton density functions are not calculable in pQCD. In general two approaches exist to extract
the PDFs at a starting scale Q0 as a function of x from measurements of the function F2 at e.g.
HERA or fixed target experiments. On the one hand global fits of data are performed, e.g. by
the CT or the MSTW groups. On the other hand pure DIS data is included in the fits, e.g. in
the Alekhin and HERA PDF sets. The recent HERA PDFs, HERAPDF1.0 [17], are shown in
figure 2.3. This figure shows that at small x the proton is dominated by gluons.

As long as αs is small, it is possible to apply perturbative theory to predict PDFs at other
scales with evolution equations. The evolution equations evolve the PDFs of quarks qi(x,Q2)
and gluons g(x,Q2) from the scale Q0 to higher Q. Several appoaches of the evolution exist
which are valid for different x and Q2 regimes.
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Figure 2.3: The parton density function HERAPDF1.0 extracted from combined H1 and ZEUS
inclusive deep inelastic scattering cross sections of neutral and charged current data [17]. xuv

is the parton density distribution for u–valence quarks, xdv for d–valence quarks, xS for sea
quarks and xg for gluons.

DGLAP

The parton evolution can be described with the DGLAP approach from Dokshitzer, Gribov,
Lipatov and Altarelli, Parisi [18–22] which is also named collinear factorization. The transverse
momenta kT of the radiated gluons (see figure 2.2) are ordered, e.g. k2

T,i−1 ¿ k2
T,i. In addition

the longitudinal momentum of the parton is softly ordered with xi−1 < xi and is restricted to
be large compared to the transverse momentum kT . The radiated partons are demanded to be
radiated collinear to the incident ones. The resulting parton densities depend only on x and µf

and not on kT . At small x the restriction xi À kT,i might be violated.

BFKL

At small x regimes where the DGLAP ansatz is not longer valid, the BFKL (Balitsky, Fadin,
Kuraev, Lipatov) approach can be used [23, 24]. The longitudinal momenta of the emitted
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partons are ordered xi ¿ xi−1 whereas the transverse momenta are not ordered and can be
in the same order of magnitude as the longitudinal momenta. For the evolution in the small
x regime only gluons have to be considered. In the BFKL evolution the kT factorization is
implemented: The gluon density function depends now on kT , and the kT of a parton can be
comparable to the size of the transverse momentum of the hard subprocess. Thus it cannot
longer be neglected. The BFKL approach does not describe the higher x regime so that it is not
used during this analysis.

CCFM

In the CCFM (from Ciafolani, Catani, Fiorani and Marchesi) approach [25–28] the emission
angles θi of the radiated partons are ordered θi > θi−1. As in BFKL only gluons are considered
in the evolution and kT factorization is implemented.
The ordering of the CCFM approach becomes similar to the DGLAP ordering in the regime of
higher x and small emission angles, where the momentum fraction xi/xi−1 ∼ 1. However at
small x the CCFM evolution results are closer to the BFKL evolution scheme which means a
faster rise of the parton density distributions. The gluon density function depends on x, µf and
on kT .

With the measurement of structure functions [29, 30] it is possible to study the DGLAP
scheme at HERA down to very low x values at around 10−4. The expected DGLAP break down
is not observed. In forward jet production indications were found that the DGLAP approach
has deficiencies in special event topologies. In addition a better description of three- to four-jet
production data at low x from H1 [31] is given by an unordered kT approach than with DGLAP.
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2.4 Photoproduction of Charm Quarks at HERA

In this thesis the charm quark production at HERA is analyzed. Charm quarks are produced
in quark and antiquark pairs in open charm production. At HERA heavy quark production
includes the production of charm and beauty quarks. The total cross section of charm quark
production is two orders of magnitude higher as the total cross section for beauty quark produc-
tion [32]. This can be explained with the higher mass and lower electric charge of the beauty
quark, mb ≈ 4.75GeV and qb = 1/3, than of the charm quark , mc ≈ 1.5 GeV and qc = 2/3.
Top quark production is not possible at HERA energies.
In DIS a hard scale is given by the four-momentum transferredQ2, but in photoproductionQ2 is
around zero, and so cannot be used as hard scale. The heavy quark masses fulfill mq À ΛQCD

such that the quark mass provides a hard scale and perturbative QCD calculations are possible.
Therefore photoproduction of charm quarks provides a test of perturbative QCD. In practice
usually in heavy quark production the transverse mass m2

t = m2
c +(p2

t,c +p2
t,c̄)/2 is used as hard

scale where p2
t,c(c̄) is the transverse momentum of the charm or anticharm quark, respectively.

The leading order Feynman diagrams for charm production relevant for this analysis of
charm quarks in photoproduction are shown in figure 2.4. In these processes the hadronic struc-
ture of the exchanged quasi real photon is considered. Before entering the hard interaction the
photon can fluctuate into a quark-antiquark pair. The quarks can radiate gluons and in addition
gluon splitting may occur. In this way the photon has a hadronic structure. The photon fluctua-
tion causes two different types of processes the direct–photon process and the resolved–photon
process. In the direct process the photon from the beam lepton enters directly the hard process,
whereas in the resolved process a charm quark or a gluon which originate from the photon takes
part in the hard interaction. The energy which goes into the hard interaction is the fraction of
the photon energy which is carried by the charm quark or the gluon. At HERA charm quarks
are mainly produced in the direct process, the Boson–Gluon–Fusion (BGF) [33], where the ex-
changed photon and a gluon from the proton side interact via a quark–antiquark pair γg → cc̄.
This direct BGF process is shown in figure 2.4 a). In addition the resolved processes (see fig-
ure 2.4 b)-e)) have to be taken into account for the charm production cross section. The resolved
process depicted in figure 2.4 b) is called a hadron like process. In figure 2.4 c)-e) the charm
excitation processes are illustrated.

A clear separation in resolved and direct processes is possible in leading order, but at next
to leading order the classification in direct or resolved is chosen by convention. For example in
the next to leading order final state of a BGF process two charm quarks and an additional gluon
occur. This leads to the same final state as a resolved process where out of the photon fluctuation
two quarks are produced which undergo afterwards a qg → qg process, see figure 2.5.

Quarks are additionally produced in the fragmentation5 process by gluon splitting. For
charm quarks this is negligible because of the high quark mass [34].

5The fragmentation of charm quarks will be discussed in section 2.5.
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Figure 2.4: Leading order Feynman diagrams for the production mechanisms of charm quarks
in photoproduction relevant in this analysis. In a) the BGF process and b)-e) the resolved pro-
cesses are depicted. The process in b) is denoted as hadron like and c)-e) are charm excitation
processes.
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e e′

γ

c

c̄

P

Figure 2.5: NLO process of a BGF process with two charm quarks and an additional gluon in
the final state, or of the process where out of the photon fluctuation two quarks are produced
which undergo afterwards a qg → qg process.

The factorization theorem [35] allows the photon–proton cross section dσ of heavy hadron
production, like D∗ production, to be written in the following way [36]

dσ =
∑

i,j,k

fγ
i (x1, µf )⊗ fP

j (x2, µf )⊗ dσ̂ij→kX(µf )⊗DH
k (z, µf ), (2.13)

where fγ
i (x1, µf ) is the photon and fP

j (x2, µf ) the proton PDF. The photon parton density func-
tion is needed for resolved processes, while for the direct process it is a δ function.
The fragmentation functions DH

k (z, µf ) represent the probability of a quark, with index k, to
fragment into a hadron H . The hadron carries the momentum fraction z of the parton momen-
tum. In the next section the fragmentation from quarks to hadrons will be studied further.

Moreover dσ̂ij→kX(µf ) is the matrix element of the hard scattering process of the partons i
and j. At the factorization scale the collinear divergences are absorbed within the parton dis-
tribution functions. Hence it is possible to calculate the matrix element perturbatively. The
choice of the scale is not unique, because with the transverse momentum of the charm quark,
the charm mass and in DIS also Q2 several possible hard scales are present. In general, three
different heavy flavor schemes exist which treat the multiple scales in a different way. In the fol-
lowing the main properties of the fixed flavour number scheme, the zero–mass variable number
scheme and the general mass variable number scheme are discussed. In addition, the differ-
ent regions of the phase space where these schemes are expected to give reliable results are
depicted.

FFNS

In the fixed flavor number scheme (FFNS) only light quark flavors u, d and s and gluons are
treated as active constituents of the proton [37, 38]. It is also called massive scheme because
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the charm and beauty quarks are taken as massive which means the mass is taken into account
in the hard matrix element. The heavy quarks are not constituents of the proton or the photon
and therefore the final state heavy quarks, e.g. the charm quark relevant for this analysis, are
produced via the hard scattering. In the direct case this happens only via BGF. For beauty
production the charm quark is assumed to be a light flavor. The FFNS ansatz can be used if pT ,
the transverse momentum of the charm quark, is of similar size compared to the charm quark
mass mc. The FFNS cross section calculation diverges logarithmically for pT À mc.

ZMVFNS

The zero-mass variable flavor number scheme (ZMVFNS) is also referred to as massless quark
scheme [5, 39]. Here all quarks are treated massless in the hard matrix element although the
mass of the heavy quark is higher than ΛQCD. Above a certain scale, which is often set to the
mass of the heavy quark mheavyquark, heavy quark flavors are switched on as active partons in
the proton. Above this scale the heavy quark flavors have an own PDF in the proton and are
treated as incoming partons. The resolved processes are taken into account with the heavy quark
PDF of the photon which is switched on at the same scale as the proton PDF.
The ZMVFNS approach is a reliable treatment at phase space regions where the transverse
momentum is the dominating scale, which means that the transverse momentum of the heavy
quarks is at much larger than the heavy quark mass pT À mc.

GMVFNS

The general mass variable flavor number scheme (GMVFNS) [40] is a mixed scheme which
tries to unify the massless and the massive schemes to give a description for low and high
scales. Gluons, light and heavy quarks are treated as active partons. The general approach is the
following [41, 42]: The divergence of the FFNS cross section calculation for pT À mc can be
absorbed into the charm PDF of the proton and the photon and into the fragmentation function
of the charm quark to the hadron. The remaining dependence on the charm mass stays in the
hard cross section and yields to a good description of the intermediate region pT & mc. In
addition in the limit m → 0 the calculation of the ZMVFNS approach should give the same
results. To achieve this requirement the finite terms of the cross section must be specified and
properly subtracted, too. Such the main feature of the GMVFNS is that it contains the full mass
dependence of the massive approach and matches at pT À mc the massless approach.

PDFs are assumed to be universal for different processes, but they depend on the flavor
scheme and the order. The impact of the different schemes on the gluon distribution function is
displayed at a scale Q2 = 10 GeV2 in figure 2.6. The CTEQ6L is a leading order PDF where
NLO diagrams are missing such that this PDF is not an appropriate choice for a next to leading
order prediction.
The NLO PDFs HERAPDF1.0 and CTEQ6.5 are extracted in a general mass variable flavor
number scheme and have a similar gluon PDF at this scale. The fourth PDF CTEQ5F3 shown
here is a fixed flavor PDF. It is in general higher as the other two NLO PDFs because in the
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FFNS charm quarks occur only via BGF and are not constituents of the proton. More gluons
are needed for the heavy quark production than in a variable flavor scheme where at a scale
Q2 = 10 GeV2 > m2

c charm quarks from the proton PDF contribute.

Figure 2.6: The gluon density functions in the proton from the CTEQ group and from HERAPDF
at Q2 = 10 GeV2.

2.5 Charm Fragmentation to D* Mesons

The produced charm quarks carry color. But in nature only colorless objects are found, because
of the confinement in QCD. In a process called fragmentation the charm quarks produced in the
hard interaction become colorless charmed hadrons. This process is not calculable perturba-
tively, but described within the fragmentation formalism with phenomenological models. More
precisely this process is divided into the fragmentation and the hadronisation process.
Until their virtuality is small and they become on-shell, partons from the hard process radiate
in the fragmentation process. This parton showering can be calculated with perturbative QCD
using a DGLAP evolution approach.
The hadronisation process describes the formation of hadrons after the parton showering. For
quarks leaving the hard process the strong coupling constant rises with increasing distance from
the interaction. At long distances perturbative QCD calculations are not possible.
Phenomenological models like the Lund String model [43, 44], the cluster model [45] or the
independent fragmentation model [46] are needed to describe the fragmentation. Most Monte
Carlo generators use the Lund String fragmentation. In this model color strings evolve between
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outgoing, colored particles, quarks and gluons, from the hard interaction. The energy which is
saved in this color-string increases with the distance between them. The string breaks if enough
energy was stored and a new quark-antiquark pair is formed. This happens until the energy is
exhausted.

Furthermore, several phenomenological fragmentation functionsDH
Q (z) are available which

describe the longitudinal momentum transfer z from the color string to the final hadron. The
fragmentation function represents the probability of the hadron H to carry the energy fraction
z = EH/EQ of the quark Q. The common approaches are the Peterson [47], the Bowler [48]
and the Kartvelishvili [49] fragmentation functions.
They are defined in the following way

Peterson : DH
Q (z) ∝ 1

z[1− 1/z − εQ/(1− z)]2
, (2.14)

Bowler : DH
Q (z) ∝ 1

z1+brQm2
Q

· (1− z)a · exp
bM2

T

z
, (2.15)

Kartvelishvili : DH
Q (z) ∝ zα · (1− z). (2.16)

The Peterson and Kartvelishvili parameterizations have one free parameter εQ and α, re-
spectively, whereas the Bowler function has two free parameters a and b. The value mQ is the
mass of the heavy quark and MT =

√
M2

H + p2
T denotes the transverse mass with the mass

MH and the transverse momentum pT of the hadron. The quark radius parameter rQ is set to 1
by default. All the parameters depend on the hadron which was considered. The εQ parameter
scales for charm and beauty fragmentation with 1/m2

Q [50]. The heavy quark fragmentation
function is expected to be harder than that of light flavors because the formed hadron carries a
high momentum fraction of the quarks momentum and for very heavy quarks the fragmentation
function peaks near one [16]. The recent H1 measurement of the fragmentation function in
ep→ eD∗ X processes [51] and its impact on this analysis will be discussed in section 3.2.

The D∗ meson

Properties of the D∗+ meson:
Mass m(D∗+) = (2010.25± 0.14) MeV
quark content (cd̄)
I(JP ) = 1

2
(1−)

Full width Γ = (96± 22) keV

Table 2.1: General overview of D∗+ meson properties [16]. The properties are aquivalent for
the charge conjugate D∗− meson. I denotes here the isospin, J the spin and P the parity.

In this analysis the charm production is studied with charm quarks which have fragmented
to charged D∗ mesons6. Here only general properties of the D∗ meson are presented, further
explanation of the D∗ selection will be given in section 7.1.

6in the following D∗ meson represents both charge signs
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The fragmentation from a charm quark to a D∗ meson has the relative probability of
f(c→ D∗±X) = (23.5± 0.7± 0.7)% [52]. In this study the golden decay channel

D∗± (67.7±0.5)%−→ D0π±slow

(3.8±0.05)%−→ K∓π±π±slow (2.17)

is used for the D∗ selection with a total branching ration of BR = (2.6 ± 0.04)% [16]. An
overview of the general properties of the D∗ meson is given in table 2.1. The mass difference
of the decaying D∗ meson and the D0 is just above the pion mass. Hence the produced pion has
only a small momentum and is called πslow
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Chapter 3

MC Generators

The data results from ep scattering experiments are compared to Monte Carlo (MC) event gen-
erators. The calculation of physics processes can be done in leading order or next to leading
order of αs. Events generated by leading order MC generators include the hadronisation to
the final state hadrons, whereas the NLO calculations predict only NLO parton level cross sec-
tions by fixed order perturbation theory without any non–perturbative hadronisation process.
In LO MCs higher order corrections are approximated with parton showers. They can mimic
changes in shape but it is not expected to give the correct normalization in contrast to the NLO
predictions. For data correction, efficiency determination and uncertainty estimation LO MCs
have been used. The measured cross section are compared to LO and NLO predictions. In the
following these predictions will be introduced.

3.1 Leading Order MC Generators

The generation of final state particles is factorized in several steps which are related to the
QCD factorization theorem. The MC generator starts with the hard interaction process of the ep
scattering. The hard matrix element is generated in LO αs. The event kinematics of the process
are set by the hard interaction. The incoming parton from the proton side of the process is
represented with the proton PDF. The proton PDF is evolved with DGLAP or CCFM evolution
equations to the necessary factorization scale. The hard matrix element is convoluted with the
PDF.
In charm quark photoproduction direct and resolved–photon processes occur. In the resolced
processes the partons which take part in the hard interaction is emitted by the photon. Because
of this hadronic behavior a photon PDF is required. The flux of the exchanged photons is
calculated with the Weizsäcker-Williams approximation [9–11].
The MC generators also include initial and final state parton showers evolving with DGLAP
evolution equations. Parton shower proceed until no virtual parton is left and all partons are
on-shell partons. In the hadronisation step the transition of the colored generated partons to
real colorless hadrons is computed. The output of a MC generator are events, four momentum
vectors, which have in ideal case the same properties as real data. These events are then passed
through the H1 detector simulation, which is based on the GEANT simulation program [53],
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see section 3.4.
In the following the two different LO MC event generators, Pythia and Cascade, which have
been used in this analysis will be briefly presented.

PYTHIA

The leading order matrix element in the MC generator program PYTHIA [54] includes direct
photon–gluon fusion and the resolved photon processes from hadron like and charm excitation
processes. The processes are calculated separately and added afterwards. The cross section of
the hadron like resolved process is negligible because it is one order of magnitude smaller than
the direct or excitation cross section.
In this analysis PYTHIA is used in the massless mode which means that the heavy charm quark
is treated as a massless parton.
Furthermore PYTHIA can be run in the massive mode, which is also named full inclusive mode.
In this mode the charm quark is treated as a massless parton like the other light flavors in the
charm excitation process and in all other processes the charm quark is handled as massive in all
steps of the calculation. The massive mode is not used in this analysis.
The PYTHIA program uses the collinear factorization approach. The DGLAP evolution equa-
tions were used to calculate parton showers. The initial transverse momenta kT of the incoming
partons, which go into the hard scattering process, are neglected in the further calculation.
Transverse momenta have to be generated within the hard interaction. The matrix element does
not depend on the transverse momenta of the incoming gluon and is calculated on-shell.
The hadronisation process is performed with the Lund String fragmentation model [43,44] and
with the Bowler fragmentation function for the longitudinal fragmentation of the charm quark
into the D∗ meson was chosen.
The used proton PDF is CTEQ6L [55] and the photon PDF GRVLO [56, 57].

CASCADE

In the CASCADE [58] MC program the initial state cascade is computed with the CCFM evo-
lution equations [25–28] with an unintegrated parton density function. The CCFM approach
includes angular constraints and no ordering in the transverse momentum of the radiated par-
tons. Here incoming gluons can possess finite momentum. Thus the matrix element depends
on kT and has to be calculated off-mass-shell. The charm quark is treated as massive. The used
PDF set A0 [59] was fitted to F2 data from HERA. CASCADE includes only the direct BGF
process and not the resolved processes. However, some charm excitation effects are mimicked
by the implementation of the unordered kT approach in the parton evolution. For the hadro-
nisation process of partons to hadrons the the Lund String model is used as implemented in
the PYTHIA program. The Peterson parametrization for the longitudinal fragmentation of the
charm quarks into the D∗ mesons is used.
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3.2 Fragmentation

The PYTHIA MC simulation which has been used for the data correction was generated with a
Bowler fragmentation function with the fragmentation parameters a = 0.437 and b = 0.850.
A recent H1 measurement [60] of the fragmentation variable z1 has observed that the data
prefers not one fragmentation function for the whole phase space, but different fragmentation
parameters in different regions of photon gluon center of mass energies ŝ. The fragmentation
variable is defined here as the fraction of energy carried by the parton which is transferred to
the hadron. Low ŝ values imply that the D∗ production has happened close to the threshold and
that additional particle production in the event is unlikely. In contrast in the high ŝ region it is
possible that many more particles occur in the event. The parameters α for the Kartvelishvili
fragmentation function were determined in this two regions. The threshold between these two
regions was set to be near ŝ = 70 GeV2 [61].
In the PYTHIA MC simulation this ŝ dependence is not implemented. Hence the generated frag-
mentation distribution is reweighted to the Kartvelishvili parametrization [49] with a ŝ depen-
dence. Therefore the PYTHIA MC is divided into two samples with events with ŝ < 70 GeV2

and events which have a photon–gluon center of mass energy above the threshold. The distri-
bution of the fragmentation variable z for the two samples and the total sample are illustrated
in figure 3.1.
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ŝ > 70GeV2s
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Figure 3.1: Distribution of the generated fragmentation variable z. The filled dots corresponds
to events with ŝ > 70 GeV2 and the rectangle to ŝ < 70 GeV2. The generated distribution for
the whole sample is drawn as a black solid line.

Then the distributions of both MC samples are reweighted to follow Kartvelishvili parametriza-
tions which have the same α values (α = 4.4 for ŝ < 70GeV2 and α = 10.3 for ŝ > 70GeV2)
for the corresponding ŝ region as measured at H1 [60]. This H1 measurement is a DIS mea-
surement, and in the present analysis the values for RAPGAP MC are used because it is similar
to the PYTHIA MC simulation. The used fragmentation parameters α are listed in table 3.1.

1Please note that the fragmentation variable z and the inelasticity of the D∗ meson z(D∗) are different quanti-
ties.
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ŝ α α uncertainty
< 70GeV2 4.4 +0.6

−0.5

> 70GeV2 10.3 +1.9
−1.6

Table 3.1: Parameter of the fragmentation function for the corresponding ŝ region from [60].
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Figure 3.2: Distribution of the reweighted z to Kartvelishvili. The red line corresponds to events
with ŝ > 70GeV2 and the blue line to ŝ < 70GeV2. The obtained value of α parameter amount
to 4.4 and 10.37 respectively. The reweighted distribution for the whole sample is drawn as a
black solid line.

In figure 3.2 the distribution of the fragmentation variable after the reweighting is presented
for the total MC and for the low and high ŝ samples. To check if the reweighting was success-
full the reweighted distributions are fitted again with a Kartvelishvili parametrization and the
resulting α parameter amounts to 4.4 and 10.37 for the corresponding ŝ regions.
Because the CASCADE MC simulation is generated with the same Bowler fragmentation func-
tion the same reweighting procedure is needed to achieve a ŝ dependent fragmentation function.
The reweighting factors for CASCADE and PYTHIA have been calculated separately.

3.3 Next to Leading Order Calculations

For the comparison with next to leading order predictions calculations the FFNS from the
FMNR program and calculations based on the general mass variable flavor number scheme
are used.
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FMNR
Parameter name Central value Variation
Charm mass mc = 1.5 GeV 1.3 < mc < 1.7

Renorm. Scale µr = µ0 =
√
m2

c + (p2
t,c + p2

t,c̄)/2 0.5 < µr/µ0 < 2

Fact. Scale µf = 2 · µ0 1. < µf/µ0 < 4

GMVFNS
Parameter name Central value Variation
Charm mass mc = 1.5 GeV

Renorm. Scale µr = µ0 =
√
m2

c + (p2
t,c + p2

t,c̄)/2 0.5 < µr/µ0 < 2.0

Fact. Scale µf = µ0 0.5 < µf/µ0 < 2.0

Table 3.2: Parameters used in the NLO MC simulations. Shown are the central values and the
variations of the parameters.

FMNR

In the FMNR program [37] a fixed flavor number scheme NLO calculation in the collinear
approach is implemented. The program predicts parton level cross sections for heavy flavors,
in this case charm quarks, in photoproduction. In contrast to MC event generators, where
predictions for the full hadronic final state are given, here weighted parton level events are
provided. The FMNR program can be run in a single differential mode where weighted parton
level events containing one outgoing quark are generated, or in the double differential mode
with two or three final state partons, i.e. a charm quark pair and in addition one light parton.
The resolved and direct processes are provided separately and are added afterwards for the
comparison with the measurement. The fragmentation from a charm quark to a D∗ meson is
done by the Peterson fragmentation. The quark momentum is multiplied by a random number
which is distributed according to the Peterson function. For the photon PDF the GRV-HO [56,
57] and for the proton PDF the HERAPDF1.0 [17] is used.
The FMNR program requires some steering parameters as program input. For example the
value for the ΛQCD parameter has to be set. The ΛQCD parameter is connected to αs by

ΛQCD = µr exp

[
1

β0αs(µr)
− β1

β2
0

ln [
−2

β0αs(µr)
] + C +

1

β3
0

(β2β0 − β2
1)αs(µr) +O(α2

s)

]
,

(3.1)
where C is an arbitrary constant and βi are parameters of the β-function which depend on the
number of flavors nf [62]. The choice of the ΛQCD value has to be consistent with the value
used for the PDF extraction. One has to point out that the FMNR program requires a Λ5

QCD,MS

value [63], which means that the number of active flavors is nf = 5. In the MS scheme C is
set to 0 and with numbers Λ5

QCD,MS
can be expressed with

Λ5
QCD,MS

= µrexp

[
− 6

23

(
π

αs(µr)
− 29

23
ln

[ 12π

23αs(µr)

]− 91581

152352

αs(µr)

π

)]
, (3.2)
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[62]. If a PDF with nf not equal to 5 is provided by the used PDF table, the ΛQCD value has to
be converted to a Λ5

QCD,MS
according to [62]. The impact of the choice of the ΛQCD parameter

on the strong coupling αs is illustrated in figure 3.3. The αs dependence with the number of
flavors nf = 3 and a corresponding Λ3

QCD is totally different at small scales µr relevant in this
analysis compared to the αs dependence with a number of flavor nf = 5 and a corresponding
Λ5

QCD. At µr ∼ 100 GeV the two curves will match.
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Figure 3.3: αs as a function of µ2
r for different choices of the ΛQCD parameter. The red curve

corresponds to ΛQCD,3 and the black curve to ΛQCD,5. For the ΛQCD values used here the
αs(MZ) amounts to 0.115 for ΛQCD,3 and 0.118 for ΛQCD,5.

For the used PDF HERAPDF1.0 Λ5
QCD = 0.2626 is given directly in the PDF table.

Another steering parameter is the charm mass value. It is set to mc = 1.5 GeV.
In general the charm mass, the transverse momentum of the charm quark and Q2 are possible
renormalization scales. In photoproduction Q2 cannot be an appropriate choice and a combina-
tion of the charm quark mass and the transverse momentum is used as renormalization scale.
The renormalization scale is chosen to be the transverse mass mt =

√
m2

c + (p2
T,c + p2

T,c̄)/2

and the factorization scale is set to 2 ·mt.
The uncertainties on the FMNR predictions are estimated by varying the charm mass, the fac-
torization and the renormalization scale independently and adding the resulting differences in
quadrature. The differences according to the PDF choice are small compared to the scale vari-
ation uncertainties. The detailed settings are presented in table 3.2.
The effect of each particular variation is discussed in section 11.
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GMVFNS

A next to leading order cross section prediction in the GMVFNS is provided by Kramer, Spies-
berger and Kniehl [41, 64]. The main properties of this approach have been presented in sec-
tion 2.4. Predictions for direct and resolved contributions to the cross section have been cal-
culated in GMVFNS. The transition from quarks to the D∗ meson is determined with frag-
mentation functions from [65] containing recent experimental data from the Belle and CLEO
collaborations [42]. The HERAPDF1.0 for the proton PDF and AFG04 [66] for the photon
PDF have been used.
The renormalization and factorization scale are set to µ2

r,f = p2
T + m2

c and the charm mass
is mc = 1.5 GeV. The uncertainty of the GMVFNS prediction is determined by varying the
renormalization, the factorization scale for the initial state and the factorization scale for the
final state within 0.5 < µ/µ0 < 2 with a scale µ. All combinations of variation are studied
where the ratio of any two scales is not larger than 2. The combination with the maximal or
minimal cross section value is taken as uncertainty, respectively.

3.4 Detector Simulation

MC generators have been used in this analysis to determine the cross section of inclusive
D∗ mesons in photoproduction. In the data analysis the acceptance, the selection efficiency
for selecting events containing a D∗ meson and the systematic uncertainties associated with the
measurement are determined with LO MCs.
MC programs provide the four vectors of the stable final state particles. In order to compare
them to the H1 data, the generated events are passed through the H1SIM package which is a
simulation of the H1 detector response based on the GEANT simulation program [53]. In the
H1 detector central jet chamber simulation the specific energy loss of particles in the detector
volume, particle avalanches and the readout electronics are simulated. All detector components
together with their inefficiencies, detector acceptance, dead material and secondary particle pro-
duction are taken into account in H1SIM. A detailed description of the central jet chamber hit
simulation and the specific energy loss in the central jet chambers of the H1 detector is given in
section 5.
Moreover for this analysis the H1 trigger simulation of the Fast Track Trigger is used for the
D∗ event selection. The Fast Track Trigger simulation is not simulated in H1SIM but has to be
simulated in a post processing step within the FTTEMU package.
The H1SIM output of the whole event has to pass the reconstruction package H1REC which is
the same software as used for data reconstruction of a certain run period. The run period has
to be chosen with respect to the run period of the data to which it is compared. For the com-
parison of cross sections the MC luminosity is required. In a preprocessing step the generated
luminosity is distributed over the run period.
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Chapter 4

HERA and the H1 Detector

In this chapter first a brief overview of the HERA collider and the H1 detector is presented. Then
the main components relevant for this analysis are depicted. This is followed by a description
of the H1 luminosity and trigger systems.

4.1 HERA Storage Ring at DESY

The ’Hadron-Elektron Ring Anlage’, HERA, is an electron proton collider at DESY (Deutsches
Elektronen Synchrotron) in Hamburg. It is located in a 6.3 km long ring tunnel and was oper-
ating from 1992 until 2007. Figure 4.1 illustrates the HERA accelerator together with the two
smaller pre-accelerator facilities PETRA and DESY III. Within the HERA machine electrons or

HERA
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DORIS

HASYLAB
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Halle NORD (H1)
Hall NORTH (H1)

Halle OST (HERMES)
Hall EAST (HERMES)
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Hall est (HERMES)

Rayonnement Synchrotron

Hall sud (ZEUS)

Electrons / Positons 

Protons


Figure 4.1: HERA storage ring with the preaccelerators PETRA and DESY and the experimental
hall where the experiments H1, ZEUS, HERMES and HERA-B were located. The picture is
adopted from [67].
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positrons were accelerated to beam energies of Ee = 27.6 GeV and protons to Ep = 920 GeV1,
with the electrons rotating clockwise and the protons conversely in the accelerator ring. The
HERA machine operated with 180 particle bunches, each of them filled with 1010 particles. The
length of the electron and proton bunches were ∼ 8 mm and ∼ 30 cm, respectively.
At the HERA machine four experiments were situated. H1 and ZEUS were placed at the two
interaction points in the north and south where the beams were brought to collision. The two col-
lider experiments H1 and ZEUS were built as multipurpose detectors, designed for the precise
measurement of electron–proton interactions. The bunch crossing rate was 10.4 MHz which
corresponds to a time interval between the bunch crossings of 96.5 ns. The center of mass
energy which was available at the collision points at the two collider experiments amounts to√
s ≈ 319 GeV.

The HERA experiments HERMES and HERA-B are placed in the west and east halls. These
experiments were “fixed target” experiments with special physics programs. At the HERMES
experiment the spin structure of the nucleon was studied by colliding the polarized electron
beam with a polarized gas target. The purpose of the HERA-B experiment was to study CP
violation in decays of B mesons in nucleon proton interactions. This measurement was per-
formed using the proton beam which was collided with nuclei of fixed target wires. Data taking
at HERA-B was already finished in 2001.

At H1 the first data taking period from 1992 to 2000 (HERAI) ended with a shutdown of the
accelerator in order to perform a machine and detector upgrade to increase the luminosity. In
the second running period (HERAII) data for physics analysis were recorded during the years
2004–2007. In figure 4.2 the development of the luminosity collected by the H1 experiment
is illustrated. The total luminosity collected by H1 amounts to 0.5 fb−1. In addition the figure
displays the luminosity of the low proton beam energy runs,Ep = 460 GeV andEp = 575 GeV,
collected in the last three months, used to measure the structure function FL [68].

4.2 H1 Detector

The H1 detector is used to study the high energy collisions of electrons and protons. A detector
overview is illustrated in the technical drawing of figure 4.3 with the list of the abbreviations
summarised in table 4.1.

The H1 coordinate system is chosen as follows: The origin of the H1 coordinate system is
located in the nominal interaction point (IP). The direction of the outgoing proton beam defines
the positive z-axis (forward region). The x-axis points to the middle of the HERA ring and the
y-axis points upwards. The measurement of transverse momenta of particles is performed in
the x–y plane. Moreover, the coordinates can be described with the polar angle (θ) and the az-
imuthal angle (φ) which are defined as angle between the trajectory and the z-axis and as angle
in the x–y plane, respectively. With this the pseudorapidity is defined as η = − ln tan(θ/2).

1Until 1996 the proton beam energy was Ep = 820 GeV.
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Figure 4.2: Development of the luminosity collected by the H1 experiment in the years 1992-
2007 [67]. The luminosity for the low proton energy run is depicted too.
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Figure 4.3: The technical drawing of the H1 detector after the upgrade (from [67]). The num-
bers are listed and explained in table 4.1.
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Number detector component abbreviation
1 nominal Interaction Point IP
2 Central Silicon Tracker CST
3 Backward Silicon Tracker BST
4 Forward Silicon Tracker FST
5 Central Inner Proportional Chamber CIP2k
6 Central Outer Proportional Chamber COP
7 Central Jet Chamber 1 CJC1
8 Central Jet Chamber 2 CJC2
9 Forward Tracking Detector FTD
10 Backward Proportional Chamber BPC
11 Liquid Argon cryostat LAr cryostat
12 electromagnetic Liquid Argon Calorimeter LAr (el.)
13 hadronic Liquid Argon Calorimeter LAr (had.)
14 electromagnetic Spaghetti Calorimeter SpaCal (el.)
15 hadronic Spaghetti Calorimeter SpaCal (had.)
16 Central Myon System CMS
17 Forward Myon System FMS
18 backward super-conducting magnet GG
19 forward super-conducting magnet GO
20 super-conducting coil
21 concrete shielding

Table 4.1: Summary of the H1 detector components and their corresponding number in fig-
ure 4.3.

The H1 detector covers nearly the full solid angle (4π). Furthermore the design of the H1
detector takes into account the asymmetry of the electron and proton beam energies. The in-
strumentation is concentrated predominantly in the proton direction, whereas the less complex
instrumentation in the backward region is mainly used for the detection of the scattered elec-
tron.
In the following an overview of the detector components is given. A detailed description of the
H1 detector can be found in [69, 70].
Silicon detectors surround the IP 1 to measure the decay vertices from long lived particles.
The Central Silicon tracker (CST) 2 encloses the beam pipe with an angular coverage of
30◦ ≤ θ ≤ 150◦. The angular coverage is completed with the Forward Silicon Tracker (FST)
4 located in the forward direction and the Backward Silicon Tracker (BST) 3 placed in the

backward direction.
The components of the central tracking detector are located further outward and will be dis-
cussed in more detail in section 4.3. The main components are the two Central Jet Chambers
(CJC1 and CJC2) 7 , 8 which are used for track reconstruction. A detailed discussion of the
properties of the Central Jet Chambers will be given in section 4.4.
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The identification and track reconstruction of hadronic final state particles in the forward direc-
tion can be done with the Forward Tracking Detector (FTD) 9 . Tracks of the scattered electron
can be detected with the Backward Proportional Chamber (BPC) 10 .
The calorimeter system is located around the tracking devices. The Liquid Argon Calorimeter
(LAr) is split into an electromagnetic 12 and a hadronic part 13 and covers the forward and
central region. In addition the Spaghetti Calorimeter (SpaCal), which consist of an electro-
magnetic 14 and hadronic 15 section, is placed in the backward direction. The calorimeter
devices will be explained in detail in section 4.5. A superconducting coil 20 surrounds this
detector components and yields a magnetic field of B = 1.16 T in the tracking detector. Muons
can be detected with the Forward Muon Spectrometer (FMS) 17 and the Central Muon Sys-
tem (CMS) 16 situated in the outer part of the detector. The two colliding electron and proton
beams were finally focused by two magnets arranged in the backward 18 and forward 19
direction to the IP.
In the following sections the detector components relevant in the present thesis are explained in
detail.

4.3 Central Tracking Detector

In the central region of the H1 detector 25◦ ≤ θ ≤ 155◦, corresponding to a pseudorapidity
range of −1.5 < η < 1.5, tracks of charged particles are detected with the detectors of the
central tracking system. The central tracking detectors are arranged concentrically around the
beam pipe and are presented in figure 4.4. They are all situated in a solenoidal magnetic field of
1.16 T so that the measurement of transverse momenta of charged particles can be performed.
Closest to the beam pipe is the central silicon tracker which is used to measure precisely the
primary and secondary vertex of a particle interaction [71]. Then follows the central inner
proportional chamber (CIP2k). The CIP2k consists of five cylindrical multiwire proportional
chambers. It is mainly used for triggering events from ep interactions and rejects events from
beam related background [72].
The two large central jet chambers are separated by the two outer chambers, the central outer z
chamber (COZ) and the central outer proportional chamber (COP). The COP was active until
2006. The COZ is a drift chamber which has the wire perpendicular to the beam pipe. Hence it
can be use for measuring the z–coordinate of the tracks. The COZ enhances the precision of the
z–coordinate measurement and therefore the θ measurement of the particle tracks of the CJCs.

4.4 Central Jet Chambers and Measurement of the Energy
Loss

H1 has two central jet chambers, the inner smaller CJC1 and the outer larger CJC2. The CJC
has a length of 220 cm and is designed as follows: The signal wires have been arranged parallel
to the z-axis. The smaller inner CJC1 has 30 cells in φ, which are tilted by 30 degrees, and
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Figure 4.4: Components of the CTD: The CJCs, CIP, COZ, COP, from [67]

24 signal wires per cell whereas the CJC2 surrounds the CJC1 and consists of 60 cells with
32 signal wires per cell (see figure 4.4). In total the CJC has 2640 signal wires. The CJC
parameters are summarized in table 4.2.

CJC Parameters
Parameter CJC1 CJC2
# cells 30 60
# sense wires per cell 24 32
# sense wires 720 1920
total amount of wires 3990 10380
sense wire distance 10.16 mm
sensitive wire length 2200 mm

Table 4.2: Summary of CJC parameters taken from [67] where a more detailed summary of
CJC properties can be found. In addition to the sense wire the CJC consists of potential wires,
field wires and cathode wires which are not summarized in this table.

With the CJC it is possible to measure the properties of charged tracks. The tilt of the cells
has here two advantages: First, the electrons which have been produced by the particle ionizing
the chamber gas drift perpendicular to the track for a wide range of particle transverse momenta.
In addition, also large pT tracks which traverse straight through the chambers are measured in
at least two cells.

The CJC wire information is further used for track based triggering by the DC–R/φ trig-
ger [73] and in the years 2005-2007 by the Fast Track Trigger [74, 75].
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Track reconstruction

The present analysis deals with particle tracks of the decay products of the D∗ meson. Hence
a precise track reconstruction is needed for a sufficient measurement of the particle properties.
In the central jet chambers the momentum of the track is determined by the measurement of the
track curvature κ

pT [GeV] = −Q
0.3 · Bz[T]

κ[m−1]
, (4.1)

where Q represents the charge and Bz the magnetic field. Due to the dead material between the
two jet chambers the momentum and scattering angle of a track can change during the transi-
tion from CJC1 to CJC2. The two track segments of the inner chamber and outer chamber are
combined with a broken-line fit [76].
In addition corrections due to the energy loss of particles in material, e.g. the gas of the central
jet chambers, are taken into account. These corrections depend on the particle type and are ap-
plied to the data summary tapes produced with the final detector simulation and reconstruction
software (DST7). The new simulation of the specific energy loss in the CJCs in the H1 detector
simulation software and its calibration and correction implemented in the H1 reconstruction
software have been developed in this thesis, see chapters 5 and 6. After the first track fit the
particle is identified using the specific energy loss dE/dx information. Then the track fit is
redone with the correct particle hypotheses. The information is stored in so called non vertex
fitted tracks.
In the next step the precision of the track can be enhanced by fitting the tracks to the event
vertex. The material in front of the central jet chambers has to be taken into account. Moreover
informations from other detector components are used. Additional hits from the COZ lead to
a higher θ precision. The vertex information from FST and BST detectors help to get a high
precision for the event vertex position. The information of the tracker devices together with the
calorimeter devices is used to reconstruct the hadronic final state particles.

The resolution of the transverse momentum for tracks with CJC and CST information is
σ(pT )/pT ≈ 0.015 ⊕ 0.002pT/GeV determined from cosmic data [77]. For tracks which can
be fitted to the vertex the same resolution is found even without the CST information.

Measurement of the energy loss in the CJC

If a particle traverses the CJC it ionizes the chamber gas and produces electrons. During this
process the particle looses its energy. The energy loss of a particle depends on the atomic charge
and the density of the material it traverses. The chambers work with a gas mixture of argon and
ethan (50 : 50) at atmospheric pressure. For argon one has Z

A
= 0.450589, with the atomic

number Z and the atomic weight A, and ρ = 1.782 · 10−3 g/cm3. For ethane the values are
〈Z

A
〉 = 0.59861 and ρ = 1.356 · 10−3 g/cm3. From this, the average is 〈ρ Z

A
〉 = 0.807 g/cm3,

and the quantity characterizing the mean energy loss in the material, here the gas, is

K

〈
ρZ

A

〉
= 0.24791 keV/cm. (4.2)
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with
K = 4 π NA r

2
e me = 307.075 keV g−1 cm2. (4.3)

Here NA is Avogadro’s constant, re is the classical electron radius and me is the electron mass.

The electrons produced in the ionization process drift to the signal wires and deposit their
charge. The charge deposited on the wires is therefore proportional to the energy loss of the
particle.

The charge pulses are digitized and the charge amplitude A± of a signal wire is

A± = g± · q±, (4.4)

where the ± denotes the two wire ends. The gain g± represents the electronic amplification
whereas the gas amplification is included in the charge q±.
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Figure 4.5: The amplitude of the digitized signal as a function of time in bins of 10ns for both
wire ends (indicated with the full and the dashed curve), from [1].

However not every signal on the wire ends is stored as hit. A signal hit after the digitization
is depicted in figure 4.5 together with the pedestal on the left and the tail on the right side of
the pulse. If the pulse height is above a threshold the ’QT code’ integrates a certain interval
of the pulse and stores this information. The remaining charge is cut away because of storage
limitation. The charge deposited in a cell and the size of a cell are measured. However, the
specific energy loss is defined as the energy loss per unit pathlength. With the measurement of
the angle θ, the angle between the track and the z-axis, the size of the cell ∆r can be converted
into the tracklength in the cell by dividing ∆r by sin θ. The relation between the tracklength ∆l
and the cell size ∆r is sketched in figure 4.6.
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Figure 4.6: The size of the cell ∆r can be converted into the path length ∆l by dividing ∆r by
sin θ. The cell size is depicted with the dotted lines and the signal wires with the dashed lines.
The drift region is illustrated as hatched area. The electrons produced within the drift region
drift to the signal wire in the center of the cell.

From the single hit measurement the mean energy loss is calculated. For this procedure
the averaging over 1/

√
dE/dx is performed, which is more symmetric function as the dE/dx

distribution, see section 6.

4.5 Calorimeter

LAr Calorimeter

The forward and central region of the H1 detector is enclosed by the LAr calorimeter. The LAr
calorimeter is a non–compensating calorimeter with coverage of 4◦ < θ < 154◦.
It consists of an inner electromagnetic (ECAL) 12 and an outer hadronic (HCAL) 13 part.
The electromagnetic part is used for electron and photon detection. The energy deposit of
hadrons is measured in both parts. Both calorimeter parts use as active medium liquid ar-
gon. The low temperature needed for the liquid phase of the argon is achieved with a cryo-
stat which surrounds the calorimeter. The absorber material in the ECAL is lead whereas
in the HCAL stainless steel was used. The material in the ECAL amounts to 20-30 radia-
tion lengths and in the HCAL to 4.7-7.0 interaction lengths. The LAr has 45,000 readout
cells. The precision of the electromagnetic and the hadronic energies was determined in test
beam measurements [78, 79]. The electromagnetic shower energy can be measured with a
precision of σ(E)/E = 12%/

√
(E/GeV ) ⊕ 1% and the hadronic energy with σ(E)/E =

50%/
√

(E/GeV )⊕ 2%.

SPACAL

At H1 particles in the backward region 155◦ < θ < 175◦ of the detector are measured with
the Spaghetti calorimeter (SpaCal [70]). This calorimeter was designed for the detection of
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charged and neutral particles as a scintillating fibre calorimeter with lead as absorber mate-
rial. The precise measurement of electrons with a relative energy resolution of σ(E)/E =
7%/

√
(E/GeV )⊕ 1% is achived with the electromagnetic part of the SpaCal, see [80]. In ad-

dition the calorimeter has a separated hadronic part.
In the present thesis the SpaCal is used for identifying the photoproduction regime with a veto
on a scattered electron in the SpaCal.

4.6 Luminosity Measurement

The luminosity measurement is performed with the Bethe–Heitler process, a purely electro-
magnetic process with a precisely known cross section. In this process the electron and proton
scatter elastically and the lepton radiates an additional photon, ep→ epγ.
The radiated photon is used to determine the rate of the Bethe–Heitler process. It is detected
with a photon detector at z = −101.8 m. The photon detector is designed as an electromag-
netic, sampling calorimeter. The active medium is composed of scintillating quartz fibres and
the absorber is tungsten. In addition, background suppression is reached with a beryllium filter
and a water Cerenkov counter.
The charged lepton is not detected within the calorimeter because it is deflected by the magnetic
field of the HERA magnets. It is possible to detect the electron with the electron tagger which
is located at z = −5.4 m. The electron measurement is used for cross checks of the luminosity
measurement.
Further details of the composition and location of the detectors of the luminosity system can be
found in [81].

4.7 Trigger System

In high energy physics trigger systems are used to reduce the data rate to a storable size by
selecting the interesting physics events. At the H1 experiment the electrons and protons bunches
cross every 96 ns which corresponds to a bunch crossing rate of 10.4 MHz. A four level trigger
system [69] selects events which originate from ep interactions. The final H1 readout rate is
around 10 Hz.
On each of the trigger levels a rate reduction is performed. The latency for the decision time
and the complexity of the decision algorithms increases towards higher trigger levels. To reject
events as fast as possible on each trigger level the readout can be aborted. In figure 4.7 a
schematic view of the H1 trigger system is shown.

Level 1

The shortest decision period of 2.3µs is allowed at the first trigger level [82]. The data are stored
in a pipeline such that no dead time occurs. The central trigger logic receives the information
generated from different subdetectors also called trigger elements. At H1 256 trigger elements

36



4.7. TRIGGER SYSTEM

L1 L2 L3 L4/5
Power−PC
Farm:

hardwired

µs µs µs1002,3 22

max.max. max.

1kHz 200Hz 50Hz
~10MHz

10Hz

L4Reject

L3RejectL2Reject
Reject

Written

L4Keep

to tape

Pipeline

Erase and re−enable pipelines

Stop

Pipelines Pipelines

Readout

Readout
Continue

L1Keep L2Keep L3Keep

Subdetector data

Deadtime free Deadtime

L2Keep

~500 sm

Trigger data

Software
based:L2nn,

FTT−L3L2tt,FTT−L2
Logic:Muon,
Calo,TOF,
FTT−L1,etc.

Builder
p

e
Event

Asynchronous phase

H1−Detector

Figure 4.7: Sketch from [83] of the four trigger layers of the H1 trigger system.

exist which are combined by the central trigger logic to 128 subtriggers (s1-s128).
If at least one subtrigger condition is fullfilled the central trigger decides L1Keep. The pipeline
is stopped and the dead time begins. If not the pipelines remain open. After level 1 the data rate
is of order 1 kHz.

Level 2

After an L1Keep decision of the first trigger level, the rate is reduced to about 200 Hz at the
second trigger level [84]. During 22µs the decision has to be derived. The longer latency is
used for further event analysis. The trigger information of the subdetectors were combined at
the second level to 96 trigger elements, which were further combined to subtrigger elements in
the central trigger logic. Three independent level 2 systems, the topological trigger L2TT [85],
the neural net trigger L2NN [86] and the level 2 of the Fast Track Trigger [74] contribute to the
L2 decision. A level 2 subtrigger validates certain level 1 subtriggers.
The H1 readout begins if a positive decision was made on level 2, L2Keep. In contrast if the
event is rejected, L2Reject, it will be erased and no longer stored. In addition the pipeline is
again activated for the next event.

Level 3

The third trigger level is realized with the third level of the Fast Track Trigger. A detailed
description of the third trigger level of the FTT can be found here [83, 87–89]. The level 3
trigger system decides within 100µs if the level 1 and 2 decisions are valid. On this trigger
level it is possible to perform searches for special particle decays and event topologies. The FTT
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analyses track based information together with additional information from the calorimeter and
muon systems. After a positive decision of the central trigger logic, L3Keep, the event is fully
read out. A negative signal, L3Reject, leads again to the erasure of the event and an opening of
the pipeline. As soon as an event is rejected the readout is aborted. The output rate is reduced
to a rate of maximal 50 Hz.

Level 4

The last step of rate reduction is done on the fourth trigger level and is asynchronous to the
HERA clock. It has a latency of 500 ms. The input rate has to be lower than 50 Hz because for
higher rates the dead time rises significantly. It is necessary to have a short dead time because
it is not possible to record a new event during the dead time such that interesting events may be
lost. The event which has passed the lower trigger level is transferred to a PC computer farm.
Here the full detector information is available. After passing the H1 reconstruction software
H1REC the incoming event is classified into event classes. Remaining events from beam gas
and beam wall interaction which have not been rejected earlier by the level one trigger decision
with the usage of the CIP2k are removed. After this step the data is written to tape. The output
rate is around 10–20 Hz with an event size of 100–150 kByte.
In addition to events which had a positive level 4 decision some other events with a negative
level 4 decision are stored too. Very frequent occur events which do not match any of the event
classes and have a low Q2. The rate of such soft physics processes is reduced by prescaling of
a factor of 10 such that only every 10th event is recorded.

Prescales

The problem occurs that the input rate for a following higher trigger level is too high or even that
the remaining event rate after the use of all trigger levels is not low enough for storage. Then
additional rate reduction is achieved by assigning prescale factors. Each of the level 1 subtrig-
gers gets a prescale factor n. The rate reduction for a subtrigger with prescale n is achieved
by recording only every nth event satisfying the subtrigger condition. The value of the prescale
factor depends on the priority of the subtrigger element. No prescales are assigned to high prior-
ity subtriggers. Low prescales of order 1 or 2 get those subtriggers which have high priority but
in addition a high rate. An example for such triggers are the FTT L3 photoproduction triggers
used in the present thesis. The rate of subtriggers and therefore the prescales depends on the
running conditions like beam currents and background rates.

FTT

At small Q2 the cross section increases strongly which results in high physics rates. For trig-
gering photoproduction events the three level Fast Track Trigger (FTT) [74, 75, 90–93] is used.
After the HERA-machine upgrade in the years 2001-2002 a higher luminosity and interaction
rate was achieved and a new trigger system, the FTT, was needed for sufficient rate reduction.
Since then the third level of the FTT is implemented as the third trigger level of the H1 trigger
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system. The FTT performs a search for track segments in 12 wire layers of the CJCs. In addi-
tion a precise on-line track reconstruction is done on trigger level.

FTT Level 1

x

y

vertex

CJC1 CJC2
wire layers

hits

1 2 3 4

track

trigger layers

CJC1 CJC2

trigger layers

1 3 42x

y

vertex

hits

track

wire layers

Figure 4.8: Illustration of the H1 Central Jet Chambers in the xy plane, adopted from [74].
For the Fast Track Trigger 12 of the 56 CJC wire layers were grouped into 4 so–called trigger
layers.

The Fast Track Trigger uses tracking information from the H1 Central Jet Chambers to
select events. Therefore a track segment search is performed in four trigger layers. 12 of the
56 CJC wires were used, with three wires organized in one trigger layer, see figure 4.8. Three
layers are in the inner chamber CJC1 and the fourth is situated in the outer CJC2. With a rate
of 80 MHz the signal of both wire ends are sampled. They are digitized by a fast Qt algorithm.
Then the hits are send into shift registers. The method of charge division is used to determine
the z position [90].
At the first trigger level the effective sampling rate amounts to 20 MHz. The track segments
search is performed by comparing the hit information, which was stored in the shift registers, to
pre-calculated masks of possible tracks originating from the interaction vertex. The identified
track segments are filled into κ − φ histograms with 16x60 bins. Here κ denotes the track
curvature, which can be derived from the measurement of the transverse momentum and the
magnetic field in the CJC. The low number of bins of the κ−φ histograms limits the resolution.
The linking of track segments to tracks is done with a sliding window technique. If at least two
out of the four layers show coincidences the track segments are linked together. The trigger
decision takes into account the number of tracks above certain pT thresholds and decides within
a latency of 2.3µs.
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FTT Level 2

The second level of the FTT uses information of shift registers which were filled with the full
bandwidth of 80 MHz of the sampling rate. The decision time is 23µs. As at the first trigger
level a track finding is performed but now with a much higher resolution. The linking is redone
but with a finer binning of 60x640 bins in κ−φ. As for level 1 for the linking of track segments
coincidences are required in two out of four layers.
The curvature κ and the angles φ and θ are determined by fits. For κ and φ a non-iterative
helix track fit [94] was applied which uses the x,y position of the track segments. The angle θ
is found by a linear fit of the z position of the track segment. The FTT was designed for the
reconstruction of up to 48 tracks per event on level 2. Searches for exclusive final states can be
performed but are limited to a search for particles which decay to two particles because of the
short trigger decision time.
The level 2 trigger elements decide with respect to the amount of tracks above a certain threshold
in transverse momentum, event topologies and more complex conditions on the invariant mass
of two body decays and the track quality. Finally the decision is sent to the central trigger.

FTT Level 3

Events with more complex topologies like charm or beauty production with the reconstruction
of particle decays can be selected with the third trigger level. Selection algorithms for D∗ ,
inelastic J/ψ , electron and muon identification are implemented to select the interesting events
on-line. On this trigger level not only the CJCs are providing information, other detectors like
the muons system are used as well. The trigger decision is made within 130µs and a negative
decision implies an abortion of the H1 readout.
For the present analysis theD∗ triggers have been used. In the following the selection algorithm
of D∗ mesons in the golden decay channel will be explained.
D∗ mesons are identified by the three tracks of the three charged final state particles. On-line no
particle identification is implemented and the full combinatorics have to be analysed. First the
D0 candidate is reconstructed by combining two tracks with opposite charges under the kaon
and pion mass hypothesis. It is required that the transverse momentum of each the two tracks
is above a certain transverse momentum threshold. Then the invariant mass is calculated and
checked to be within a mass window of 180 MeV around the nominal D0 mass.
The tracks of the D0 candidates are then combined with a third track which corresponds to
the πslow. The invariant mass of the D0 and Kππslow are calculated. A D∗ candidate has
to fulfill ∆M < 180 or ∆M < 280 MeV depending on its transverse momentum, where
∆M = M(D∗ )−M(D0). If the requirement is not fulfilled no D∗ is identified and other track
combinations are checked.

In particular three D∗ triggers with different transverse momenta and invariant mass cuts
have been used in the present analysis. Two triggers have the same invariant mass cut of ∆M <
180 MeV but different cuts in the transverse momenta. The low pT trigger cuts at pT > 1.5 GeV,
the medium pT trigger at pT > 2.5 GeV. The third, high pT D∗ trigger requires ∆M <
280 MeV and pT > 4.5 GeV, for more details see [95].
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Chapter 5

Simulation of the Energy Loss of Particles
in the CJC

5.1 Specific Energy Loss in the CJC

The two central jet chambers of the H1 central tracking system are designed as drift chambers
for the momentum measurement. The momentum p of a charged particle is obtained from the
properties of the particle track in the magnetic field in the chamber. In addition the specific
energy loss dE/dx of particles is measured. The energy loss depends mainly on the velocity
β = v

c
of the particle. The momentum and dE/dx information together allow to draw conclu-

sions on the mass of the particle and the particles identity.

Within the software H1SIM the specific energy loss in the CJCs is simulated, and the track
reconstruction is performed within the software package H1REC. However not only the theo-
retical energy loss is simulated, several expected detector effects are simulated too. To identify
particles the comparison of the measured and predicted energy loss is needed. The measured
dE/dx in MC needs corrections for the detector effects. In the following the dE/dx simulation
and the corrections for detector effects are described.

Mean Energy Loss: The Bethe–Bloch Equation

Within the energy regime studied with the H1 experiment the energy loss of particles traversing
through the CJC happens predominantly via ionization or atomic excitation of the material. The
mean energy loss dE/dx of charged particles can be described by the so called Bethe–Bloch
formula [96, 97], [98, eq. 23.1]:

−dE

dx
=

1

2

KρZ

A

z2

β2

(
ln

2 me β
2γ2 Tmax

I2
− 2β2 − δ

)
, (5.1)
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where z is the charge of the incident particle, β is the velocity of the incident particle, γ =
(1−β2)−1/2, Z and A are the atomic charge and atomic mass of the absorber, me is the electron
mass and K is given by equation 5.2. The constant K is defined as

K = 4πNAr
2
emec

2, (5.2)

with the Avogadro number NA and the classical electron radius re. I represents the mean
excitation energy and Tmax is the maximum energy transfer per single collision, which is given
by [98, eq. 23.2]:

Tmax =
2me β

2γ2

1 + 2γme/M + (me/M)2
, (5.3)

where M is the mass of the incident particle.

Further the Bethe–Bloch formula needs the density correction δ. This density correction has
been calculated by Sternheimer [99] and depends on X = p/M = βγ:

δ =

{
2 ln 10 log10X + C + a (X1 −X)m for X0 < X < X1

2 ln 10 log10X + C for X > X1
(5.4)

The parameters C, a,m are material constants. Here it should be noted that 2 ln 10 log10X =
lnX2 = ln β2γ2.

Therefore the specific energy loss for a particle traversing through matter has the following
behavior: First the energy loss falls with ∼ 1/β2 with increasing βγ. Then, after it has reached
the minimum ionization energy, the so called relativistic rise with ln β2γ2is observed. Finally it
remains at a constant value at the so called Fermi plateau.

In case that γ ¿M/me, or M →∞ one can approximate

Tmax ≈ 2me β
2γ2. (5.5)

This approximation is not valid for electrons With this the specific energy can be calculated as

−dE

dx
=

1

2

KρZ

A

z2

β2

(
ln

(2 me β
2γ2)2

I2
− 2β2 − δ

)
(5.6)

=
KρZ

A

z2

β2
·
(

ln
2 me β

2γ2

I
− β2 − 1

2
δ

)
. (5.7)

In this approximation the constant plateau value will not be reached, because for very large
values of βγ the relativistic rise term ln β2γ2 is no longer compensated by δ/2 = 1/2 ln β2γ2.
But by using a density correction multiplied by a factor of 2, as was done by e.g. JADE,
OPAL [100] and Steinhart [101], this can be prevented:

−dE

dx
=

KρZ

A

z2

β2
·
(

ln
2 me β

2γ2

I
− β2 − δ

)
(5.8)

=
KρZ

A

z2

β2
·
(

ln
2 me

I
+ ln β2γ2 − β2 − δ

)
. (5.9)

For electrons and positrons the Bethe–Bloch equation has to be modified [102], but this is not
implemented in H1SIM.
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5.2 Energy Straggling Distribution

When simulating the real behavior of particles depositing energy one has to consider that ion-
ization has a statistical nature, such that the deposited ionization energy fluctuates statistically
around the mean value. The fluctuation follows a distribution called energy straggling distri-
bution. For most cases the Landau distribution can be used which has a long tail towards high
energies. Hence large fluctuations occur in reality. In H1SIM four approximations which take
into account this fluctuations and the configuration of the absorber material are in use and will
be presented. For this the quantity κ is introduced with

κ =
ξ

Tmax

, (5.10)

where ξ is the mean energy loss in a collision ξ is defined with respect to the Rutherford scat-
tering cross section by

ξ =
1

2
K

〈
ρZ

A

〉
z2

β2
∆x. (5.11)

κ denotes the ratio of the mean energy loss to the maximum allowed energy transfer in a
single collision with an atomic electron. Here, ∆x is the layer thickness of the material.

With this quantity it is possible to distinguish between several approximations for the energy
straggling:

• κ > 10: Gaussian approximation

• 0.02 < κ < 10: Vavilov approximation

• κ < 0.02: Landau approximation

• very thin layers: Urban Model

In the following the energy straggling approximations will be explained in detail.

Landau Approximation

In H1SIM the Landau approximation is used for κ < 0.02. For these small values of κ, the
probability f for the particle depositing an energy ε is given by (see e.g. [103], [53])

fL (ε) =
1

ξ
φ (λ) (5.12)

with the universal Landau function [104] φ and the parameter

λ =
ε− 〈ε〉
ξ

− 1 + γE − β2 − lnκ. (5.13)
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Figure 5.1: Bethe-Bloch function as used in the H1 detector simulation (in collaboration
with [105]). The energy loss dE is depicted for different particles and different absorber thick-
ness of 1 cm/ sin θ with θ = 90◦(dashed lines) and θ = 20◦ (continuous lines). The black
vertical line denotes the valid range for the Urban model which is used for energy losses below
(500 · I) = 74 keV with I = 147 eV.

Here γE is the Euler’s constant γE = 0.577215 and the mean energy loss 〈ε〉 = −dE/dx as
given by the Bethe–Bloch formula, see equation (5.1).

The computation of the Landau distribution is performed with routines provided by the
CERN library [106]1. With this routines a random variable distributed according to φ (λ) is
generated from a random number that is distributed evenly between 0 and 1. As output the
inverse of the integral of the Landau distribution is given. The energy loss ε can be determined
with λ by

ε = ξ (λ+ 1− γE + β2 + ln κ) + 〈ε〉. (5.14)

The Landau formalism reveals a problem when summing up the fluctuations to determine
the average value of the Landau distribution. The determined value is not the same as the
measured average dE/dx value. In order to have the correct average for the mean energy loss,
it is required that for the mean value of λ holds [53, sect. PHYS332]

〈λ〉 = −1 + γE − β2 − ln κ. (5.15)

For this an upper cutoff λmax for λ is introduced and λmax is set to [53, sect. PHYS332]

λmax = 0.60715+1.1934 〈λ〉+(0.67794+0.052382 〈λ〉) exp (0.74442+0.94753 〈λ〉). (5.16)

1Based on the work presented in [107].
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Figure 5.2: Value of κ = ξ/Tmax (see text) for 1 cm/ sin θ of gas, assuming K〈Zρ/A〉 =
247 eV/cm, for pions, kaons, protons and alpha particles as a function of their momentum p, for
θ = 90◦(dashed lines) and θ = 20◦(continuous line), respectively (in collaboration with [105]).
The different colors denote different particle types.

However, for very thin absorbers additional complications arise: The Landau theory is only
valid if the mean energy loss is small compared to the maximal energy loss in a single collision
(which corresponds to a small value of κ), but it assumes that the average energy loss is still
large compared to the energy levels of the absorber atoms or molecules. Hence the Landau
approximation demands that the energy is transferred in many collisions.

In very thin absorbers this assumption is no longer valid. A detailed modelling of energy
losses in very thin absorbers, which is typically based on the photo-absorption model, is quite
complex and unsuitable for a fast simulation. However, GEANT contains a simplified model
from Lassila-Perini and Urban [108], which gives a reasonable approximation sufficient for the
CJC simulation.

Urban Model

The Landau approach is not a good approximation for the energy loss in very thin layers. Hence
the Landau approximation is not used for the simulation of the specific energy loss in gaseous
detectors like the CJCs of the H1 detector. A minimal ionizing particle (MIP) traversing 1 cm
of gas in the CJC deposits around 3.5 keV of energy and the energy losses are comparable to
the binding energies of the inner electrons. An approach which considers the atomic energy
levels is needed to get an appropriate simulation. In H1SIM the model of Lassila-Perini and

45



CHAPTER 5. SIMULATION OF THE ENERGY LOSS OF PARTICLES IN THE CJC

Urban [108], [53, sect. PHYS332] is used. This model has a smoth transition to the Landau
form for mean energy losses which are large comparable to the binding energies of the inner
electrons. For the CJC gas mixture of Argon and C2H6 the mean ionisation potential I is
calculated with the ’mean’ Z of the CJC gas mixture: I = 16eV · 0.5 · (Z0.9

1 + Z0.9
2 ) with

Z1 = 18 for Argon and Z2 = 6 for C. If the energy loss is not much larger than the mean
ionisation potential (the cut in H1SIM is 500 · I) the Urban model is used.

For the Urban model an atom is approximated to have only two energy levels E1 and E2.
The mean energy loss in a step is here the sum of the excitation and ionization contributions

−dE

dx
∆x = [σ1E1 + σ2E2 + σ3

∫ Emax+I

I

Eg(E)dE]∆x (5.17)

with the mean ionization energy I , the upper energy cut for δ-ray production Emax, the macro-
scopic cross-section for excitation σi (i=1,2) and the macroscopic cross-section for ionization
σ3. The distribution of the energy loss due to the ionization g(E) is proportional to 1/E2 and
fulfills ∫ Emax+I

I

g(E)dE = 1. (5.18)

This denotes an ionization with such an energy loss g(E) = (Emax+I)I
Emax

1
E2 .

Fig. 5.3 shows the simulated dE/dx values for various values of the gas layer thickness
and different particles. In the top row the simulated specific energy loss for minimal ionizing
pions with a βγ of 3.5 is presented. The right plot shows the dE/dx distribution for different
layer thickness of 1 cm, 2 cm and 4 cm of gas. The peak gets broader with decreasing layer
thickness. In addition the peak position changes. On the left the more symmetric distribution
for 1/

√
dE/dx is depicted.

The lower row shows the dE/dx and 1/
√

dE/dx for a layer thickness of 1 cm gas for pions,
protons and electrons.

Vavilov Approximation

In H1SIM the Vavilov approximation [109] is used for values of 0.02 < κ < 10.

The straggling distribution is defined as

fV (ε) =
1

ξ
φV (λ, κ, β2) (5.19)

with the Vavilov function φV (λ, κ, β2) and the parameter

λ =
ε− 〈ε〉
ξ

− 1 + γE − β2 − lnκ. (5.20)

Like the Landau distribution it depends on a variable λ , but in addition its functional form
depends on β and κ.

The Vavilov function automatically has the correct mean value, so that no cut on λ has to be
employed.
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Figure 5.3: The new dE/dx distribution for minimal ionizing pions for different values of the
layer thickness of 1 cm (red), 2 cm (green) and 4 cm (blue) is depicted in the top row. In the
left column the dE/dx distribution is illustrated and in the right column the more symmetric
1/

√
dE/dx distribution is shown. In the bottom row the dE/dx and 1/

√
dE/dx distributions

for different particle types, pions π, protons p and electrons e, in 1 cm of gas is presented [110].

Gaussian Approximation

It is possible for large values of κ to approximate the energy straggling function sufficiently by
a Gaussian with a width [111, 112]

σ2 =
ξ2

κ

(
1− β2

2

)
= ξ Tmax

(
1− β2

2

)
(5.21)

instead of the Vavilov approximation. The appropriate mean value is the mean value predicted
by the Bethe–Bloch equation. The Gaussian approximation is used in H1SIM for κ > 10.

Summary Energy straggling

The new simulation in H1SIM takes into account the thickness of the absorber. This is il-
lustrated in figure 5.1, where the Bethe–Bloch function used in H1SIM is shown for different
particle types and for different absorber thickness of 1. cm/ sin θ with θ = 90◦ and θ = 20◦ as a
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function of the particle momentum. The Urban model is employed for energy losses in a single
cell below 74 keV.

In this diagram particles with energy losses, which are outside the Urban model range,
are observed. For the absorber thickness with θ = 90◦ the only particles which can reach
higher energy losses are α particles with momenta below 1.3 GeV. In addition for the absorber
thickness at θ = 20◦, also protons with momenta below 0.27 GeV and kaons below 0.15 GeV
can be located outside the range of the Urban model.

The κ values corresponding to this momenta can be found in figure 5.2. Here the κ values
for absorber thickness of 1 cm/ sin θ of the CJC gas mixture for different particle types are
presented as a function of the particle momentum. The kappa value are shown for angles of
θ = 90◦ and θ = 20◦. It can be observed that for these momenta, the corresponding values of κ
are around 0.05− 1. In this κ range the Vavilov approximation is valid. In H1SIM the Vavilov
approximation is used for κ values between 0.02 and 10.

The Landau approximation is used for κ values below 0.02. Only α particles at shallow
angles (θ < 20◦) can reach simultaneously κ values below 0.02 and mean energy transfers
above 74 keV. Particles with κ > 10 for which a Gaussian approximation would be applied in
H1SIM, are not observed.

In H1SIM the width of the energy straggling function is increased by an additional Gaussian
smearing to reach the best agreement with data. The total width is increased with

σ2 = ξ
[
(1.7)2 · 10−6

]
. (5.22)

The constant factor was derived with a comparison to the data width.

5.3 dE/dx Parametrization in H1SIM

The parametrization of the specific energy loss distribution in H1SIM is computed with four
parameters PA(i) (i=1–4) according to the Bethe–Bloch equation as

−dE

dx
=
PA(3)

β2

(
PA(4) + ln β2γ2 − β2 − δ

)
. (5.23)

The density correction is given by

δ =

{
2 ln 10(X − PA(2)) + PA(1) · (X1 −X)m for X0 < X < X1

2 ln 10(X − PA(2)) for X > X1,
(5.24)

with m = 3, X0 = PA(2)− PA(1) · DXm

2 ln 10
, X1 = X0 +DX

and DX =

√∣∣∣ 2 ln 10
PA(1)·m

∣∣∣.

The parameter values are taken from the values determined for data in [1] and are summa-
rized in table 5.1.
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Parameter Name Parameter value H1SIM
a PA(1) 0.0341
−C/(2 ln 10) PA(2) -0.442
K

〈
ρZ
A

〉
[keV/cm] PA(3) 1.309

ln 2me

I
PA(4) 6.80

m 3
I = 2me · exp(−PA(4))[eV] 569
DX 6.71
X0 -2.68
X1 4.03

Table 5.1: Bethe–Bloch parameters for equation 5.24 used in H1SIM. The parameters are set
to the derived values of the data parametrization [1].
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Chapter 6

Calibration and Correction of the Specific
Energy Loss

There are several effects which influence the measurement of the specific energy loss and for
which the measurement has to be corrected for.

The corrections can be divided into hit level and track level corrections. Hit level corrections
are the dependence on the wire layers, on the angle β 1 and the staggering. The threshold effect,
the dependence on cos θ and for the charge sign of the particle has to be corrected on track level.
The saturation effect for which one has to correct in data is not simulated here. In this thesis
only the correction for MC simulation are discussed, for data see [1].

6.1 Hit Level Corrections

The measurement of the mean energy loss of a track in the CJC is performed with averaging
the single hit charge of the wires. The hit charge originates from particles which have ionized
the CJC gas and so have lost energy while passing through the CJC. The electrons which have
been produced in the ionization process drift to the wires and deposit their charge, such that
the deposited charge is proportional to the initial energy loss of the particle in the CJC. The
single hit energy loss follows a Landau distribution with a long tail towards high energies. This
implies that large fluctuations can occur for the single dE/dx measurement. Hence the mean
energy loss is not determined with using the dE/dx value but with averaging over 1/

√
dE/dx,

which follows a more symmetric function. Figure 6.1 illustrates the more symmetric shape of
the 1/

√
dE/dx than of the dE/dx distribution.

The raw dE/dx measurement has to be corrected for several detector effects. The first
correction which has to be applied is the dependence on the wire layers of the energy loss
measurement. In the H1 simulation it is considered that the wires close to the edge of the CJCs
(wire layer 0, 23-26 and 55) are thicker than the inner wires. In figure 6.2, in the top row, the

1β denotes the angle between the electron drift direction and the orthogonal to the particle track.
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Figure 6.1: For the determination of the mean specific energy loss the more symmetric
1/

√
dE/dx (dashed line) instead of the single hit energy loss is used. The dE/dx (contin-

uous black line) value follows a Landau distribution with a long tail.

distribution of 1/
√
Q, where Q is the deposited charge on the wire, vs wire layer number for

single minimal ionizing pions (βγ = 3.5) is shown.

For every wire layer a Gaussian was fitted and the mean of this 1/
√
QGaussian distributions

is presented in figure 6.2 bottom. This averaging procedure is similar to the determination of
the mean dE/dx value of a track in the CJC with averaging over the single hits. For the inner
wires no correction is necessary; the correction factors for the edge layers are determined from
this diagram.

Furthermore the dependence on the angle β, see figure 6.3, and the staggering effect have to
be corrected on hit level. This two effects can be studied and corrected together.

β is the angle between the drift direction of the electrons and the orthogonal to the track of
the particle. The angle β of a track influences the measured specific energy loss in the following
way: If a track is orthogonal to the drift direction then | β | is around zero. All the drift electrons
have the same drift length to the wire and reach it nearly at the same time. So the charge pulse is
sharp and high and is located fully within the integration interval. If the track has a β different
from zero then the electrons arrive at different times on the signal wire. The charge pulse is
wider and a larger fraction of the puls is outside the integration interval. So parts of the charge
are cut away and the energy loss measurement has to be corrected for this missing charge.

In addition the signal wires do not lay in a line in a layer, they are staggered from the anode
layer with 160µm, see figure 6.4. Some of the drift electrons can drift directly to a signal wire
but others have to cross the anode layer to reach a signal wire. On this way an electron feels the
shielding field from the signal wires in the front of the anode layer. Not all electrons overcome
the field and reach the signal wires. So not the whole charge is deposited on the wire.

In figure 6.5 the distributions of the mean 1/
√
Q vs. tan β are presented. It displays the

missing of the charge due to the staggering and the dependence on β for electrons which could
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Figure 6.2: For CJC1(left) and CJC2(right) the distribution of 1/
√
Q(top) and the mean of this

1/
√
Q distributions (bottom) determined with a Gaussian fit vs wire layer numbers, both for

minimal ionizing pions (βγ = 3.5). Q denotes the deposited charge on the wire.

drift directly to the wire (Figure 6.5 a)) and for electrons which have to cross the wire plane
(Figure 6.5 b)). The different height of the minimum of the two distributions exhibits the stag-
gering effect. Electrons which have to cross the wire plane deposit less charge which results in a
greater 1/

√
Q value in the minimum than for electrons which can deposit their charge directly.

For this diagram single electrons with a momentum in the plateau region of the Bethe-Bloch
distribution have been used.

The single hit charge is corrected by a function with the form

chit(β, sstag) = (1 + p1sstag)(1 + p2,itanβ + p3,i(tanβ)2), (6.1)

where the index i accounts for the possibility, that the electrons feel shielding effects because
they have to cross the wire plane, or that the electrons can deposit charge directly.

The anode staggering is taken into account with the first parameter p1 and sstag = ±1
depending on the position of the wire with respect to the wire plane. The parameters p2 and p3

are fitted independently for the two cases that the electrons deposit charge directly or have to
cross the plane. Thus in total 5 correction parameters for the single hits are needed.
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6.2. TRACK LEVEL CORRECTIONS

Figure 6.3: Definition of the β angle in the CJC. The crosses illustrate the signal wires. The
open circles are potential and cathode wires. The drift lines of electrons are indicated with the
dotted lines.

-
6

Figure 6.4: Staggering of the CJC wires [113]

6.2 Track Level Corrections

The corrections of detector effects on the track level are studied after the correction of the single
hits. The first effect which is examined is called threshold effect. In the H1 detector not every
hit on a signal wire is detected. For the hit detection it is required that the hit amplitude has to
lie above a certain threshold. This results in cutting away an amount of charge from hits which
had amplitudes below this threshold. This effect can be studied by plotting the average charge
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Figure 6.5: Distribution of tan β vs 1/
√
Q for electrons which drift directly to a wire in a) and

for electrons which have to cross a wire layer in b).

Qmean of a track divided by the median track charge Qmed versus logarithm of the expected
charge Qa. The median of the track charge is determined including the wires crossed by the
track without leaving a hit as hits with charge zero. For the calculation of the average charge
hits with charge zero are excluded. The expected charge is Qa = Qr · g/ sin(θ), where Qr

denotes the theoretical Bethe-Bloch charge on a wire and g is the CJC gain. The gain includes
the gas amplification and has to be chosen with respect to the regarded run period. The default
gain for each run period is summarized in table 6.2. The distribution of the ratio of average
charge to mean track charge as a function of the logarithm of the expected charge is displayed
in figure 6.6 and is fitted with

fthr(Qa) =
Qmean

Qmed

= (1.0 + p1Q
p2
a ) (6.2)

where the fit results are p1 = 0.213 and p2 = −1.228. As expected the correction is largest for
small expected charges Qa.

The threshold effect can be visualized in addition with another distribution. In figure 6.7
a) the mean energy loss as a function of cos θ is shown before the threshold correction. If θ is
around 90◦ the track length within a cell is short. Hence the deposited charge is small and more
of the charge is cut away. After correcting for the threshold effect there is no dependence on
cos θ in the central region with | cos θ| < 0.8, see figure 6.7b).

In the outer part even after the threshold correction a dependence on θ is visible. This depen-
dence results from the change of the most probable value of the energy loss of a particle which
traverses through different thickness of gas. This is displayed in figure 5.3, where straggling
distributions for different layer sizes are plotted. The energy loss is corrected for this effect with
the fitted polynomial of order 6 with only even orders. The dE/dx is corrected for the threshold
effect and the parameter values are determined from the dE/dx versus cos θ distribution with
the following fit

flayerthickness(cosθ) = (par1) + (par2 · cos θ2) + (par3 · cos θ4) + (par4 · cos θ6). (6.3)
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Figure 6.6: Correction of the threshold effect with the ratio of Qmean/Qmed as a function of
log (Qa). The fit function is presented in addition.
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Figure 6.7: In a) the cos θ distribution before threshold effect correction was applied is pre-
sented. For this figure only negative charged pions of a certain gain period have been used. In
b) the threshold effect was corrected. In addition the fit result of the cos θ correction is shown.
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Run Range default gain changes
319331-376810 0.98
376811-401570 0.98 pressure compensation active
401571-429938 0.95 HV change
429939-433335 1.072 HV change
433336-435283 1.23 HV change
435284-435864 1.23 according to H1 database
435865-445020 1.23 according to H1 database
445021-452777 1.23 according to H1 database +

QT code change at run no. 448036
452778-465087 1.19 QT code change

465088- 1.395 HV change

Table 6.1: Summary of the run periods with constant CJC gain. The HV changes are quoted
according to [1].

Since the CJC cells are tilted, the charge sign of the particles plays a role. Positively charged
particles have in the magnetic field the same curvature as the tilt direction of the chamber cells,
whereas the negatively charged particles curve in the opposite direction. They have to cross
more often the cells than the positive ones. To take into account effects from the charge sign of
the particles, the dE/dx, corrected for the threshold, versus cos θ distribution is fitted separately
for negative and positive charged particles. In figure 6.7 b) the cos θ dependence together with
the fit result for negatively charged pions is shown.

During the HERAII run period the high voltage setting of the CJC has changed several
times. In addition the QT code was modified twice. These changes are taken into account in
the detector simulation. In total 10 different periods have been identified with respect to the
gain and QT code changes and according to already existing changes in the H1 database, see
table 6.2.

In figure 6.8 the CJC gain in data as a function of the run number for CJC1 and 2 is presented.
Before the pressure compensation was operating, before run number 373016, large fluctuations
in the gain occur. For each of the constant gain periods the threshold and cos θ correction
parameters have to be determined separately. The track level correction parameters are stored
together with the default gain of the respective run period.

6.3 The Bethe–Bloch Equation in H1REC

Even after all detector effects simulated have been corrected the reconstructed specific energy
loss does not follow the dE/dx formula used in H1SIM, see equation 5.23. To use the specific
energy loss for particle identification a good description of the specific energy loss is required.
The parametrisation of the specific energy loss used in H1SIM is modified to describe the MC:

dE

dx
=

dE

dx

∣∣∣∣
MIP

· PA(3)

β2PA(5)

(
PA(4) + ln β2γ2 − β2 − δ

)
. (6.4)
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2007/07/23   17.36

CJC1 gain vs run

CJC2 gain vs run

Figure 6.8: The CJC online gain versus run number for the HERA II run period. Changes due
to the QT code version and high voltage settings lead to 10 gain periods, from [67].

Parameter Name parameter for MC parameter for data
a PA(1) 0.03167 0.0341± 0.0004
−C/(2 ln 10) PA(2) -0.4495 −0.442± 0.009

K
〈

ρZ
A

〉
[keV/cm] PA(3) 0.407 0.384± 0.006

ln 2me

I
PA(4) 6.8 6.80± 0.04

Exponent of β PA(5) 1.164 1.10± 0.01
Plateau [keV/cm] 1.51 1.44
dE/dx for βγ = 3.5 [keV/cm] 1.00 1.00
Plateau/MIP 1.51 1.44

Table 6.2: Bethe-Bloch parameters for eqs. 6.4 for the MC parametrization in H1REC and the
derived data values from [1].

An additional parameter PA(5) is introduced to get a better description of the low momenta
part of the distribution. The fit parameters of the completely corrected energy loss versus the
logarithm of βγ for the MC simulation have been determined with simulated single protons,
electrons, muons, kaons and pions with both charges covering the whole momentum range
of particles which could be detected in the CJCs. In table 6.2 the fit parameters for the MC
simulation and for comparison for the data are summarized.

The fit parameters of the MC differ slightly from that of the data, although the data values
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CHAPTER 6. CALIBRATION AND CORRECTION OF THE SPECIFIC ENERGY LOSS

have been used as input for the simulation. The increase from the minimum to the plateau
of the Bethe-Bloch distribution amounts in MC to 1.51 and in data to 1.44. In addition an
extra parameter PA(5) = 1.164 is needed, although a β−2 (PA(5) = 1.) dependence was
implemented in the simulation. The differences to the simulated specific energy loss can be
explained with the additionally simulated detector effects. Overall a good agreement between
data and MC is found.

The distribution of the fully corrected specific energy loss as a function of log (p) is pre-
sented with the Bethe–Bloch parametrization in H1REC in figure 6.9 for protons, electrons,
muons, kaons and pions. The reference curves for this particle types is shown too.
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Figure 6.9: Reconstructed specific energy loss in MC simulation as a function of the logarithm
of the particle momentum. The reference curves for electrons (yellow line), protons (green),
kaons (blue), pions (red) and muons (pink) are depicted too.
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6.4. PARTICLE IDENTIFICATION IN MC

6.4 Particle Identification in MC

The resolution of the energy loss measurement in MC is determined with all particles used
within the Bethe-Bloch fit. The quantity ∆(dE/dx) is defined as
∆(dE/dx) =

dE/dxmeas−dE/dxexp

dE/dxexp
with the measured specific energy loss dE/dxmeas and the

expected dE/dxexp. It is expected that the resolution has a dependence on the amount of hit
counts in the CJCs

√
Nhit as the data. In figure 6.10 the Gaussian fit for ∆(dE/dx) · √Nhit for

all particles, which are included in the determination of the specific energy loss determination,
is presented. The resolution of this Gaussian gives σ = 0.527. Assuming a typical number of
hits Nhit ∼ 53.5 this yields to a relative resolution of 52.7%/

√
Nhit = 7.2%.
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Figure 6.10: For comparison with data a
√
Nhit dependence of the resolution is assumed. Here

∆(dE/dx) · √Nhitis fitted with a Gaussian fit for all particles which have been included in the
Bethe–Bloch fit determination. The fit result is depicted too.

In contrast for data a relative resolution of 46%/
√
Nhit = 6.3% for Nhit ∼ 53.5 was found.

A theoretical prediction of the resolution gives the Lehraus formula [114]

σ(dE/dx)/(dE/dx) = 5.7%L−0.37 (6.5)

with L = NsamplsampP [mbar]. For data in [1] the number of samples Nsamp and the sampling
length lsamp were set to Nsamp = 53.0 and lsamp = 0.87cm for long kaon tracks. For a pressure
of P = 1bar, the dE/dx resolution results to 7.6% [1]. Hence the data result is slightly better
than the predicted value and the MC result is close to the prediction of the Lehraus formula.

A further study reveales that the assumption of an 1/
√
Nhit dependence is not appropriate

for the MC. In figure 6.11 the distribution of ∆(dE/dx) as a function of
√
Nhit is presented.
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The distribution is fitted with the function

f(Nhit) = p1 + p2/
√
Nhit, (6.6)

with the parameters p1 = 0.05 and p2 = 0.4684. This reveals that the resolution has not a
1/
√
Nhit dependence as expected. The two resolution paramters are stored in the H1 data base.

They are used for the particle identification of a particle track in the CJC which is performed by
the determination of the likelihood for the different particle hypothesis.
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Figure 6.11:
√
Nhit dependence of the specific energy loss resolution. The fit result is drawn

too.

6.5 Summary Specific Energy Loss Simulation in the CJC

The new simulation of the specific energy loss in the central jet chambers of the H1 was pre-
sented in this chapter. The mean energy loss is calculated according to the Bethe–Bloch equa-
tion. The energy straggling is implemented with different straggling function which take into
account the thickness of the absorber material. The simulated specific energy loss was passed
through the H1 detector simulation software. The H1 detector simulation includes the sim-
ulation of detector effects too, so that the reconstructed energy loss needs corrections on hit
level and on track level. The corrected reconstructed specific energy loss requires a different
parametrization as used in the simulation. The resolution follows a slightly different depen-
dence on the amount of CJC hits as the 1/

√
Nhit dependence expected from the H1 data.

The new simulation and calibration of the specific energy loss for the HERAII run period
improves the H1 track reconstruction with the use of the particle identification information,
see section 4.4. Further it has applications in physics analysis, e.g. the electron identification
in the measurement of beauty in photoproduction [2]. In the following chapters the analysis
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of inclusive D∗ mesons in photoproduction will be presented. For this analysis the new track
reconstruction was used. In addition the background reduction due to the new possibility of par-
ticle identification has two main consequences: The D∗ signal is improved with the background
reduction and the systematic uncertainty is reduced too.
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Chapter 7

Event Selection

At H1 data are taken in so called runs. A run is a data taking period during a luminosity fill
with stable conditions of the H1 detector. Here a luminosity fill denotes the period from filling
electrons and protons into the accelerator to the final beam dump. The runs a categorized into
good, medium or poor runs. During a good run the important subdetectors for event reconstruc-
tion were operating. For this analysis only good and medium runs are included. In the selected
runs high voltage for the following subdetectors are demanded: CJC1 and CJC2, LAr, SpaCal,
TOF and the Luminosity system. Moreover it is demanded that the used runs have an integrated
luminosity above 0.1µb−1.
The selected data sample was taken in the years 2006 and 2007 1 and corresponds to an inte-
grated luminosity of L = 113.14pb−1.

To suppress background events coming from satellite bunches, which are located before
and after the colliding proton bunch, a cut |zvertex| < ±35 cm is applied to the z-coordinate of
the reconstructed primary vertex. The zvertex distribution is Gaussian and the satellite bunches
occur around ±70 cm. The zvertex distribution is simulated run–dependend and can be seen in
figure 7.1.

The photoproduction regime is separated by an upper Q2 cut of Q2 < 2 GeV2 from the DIS
regime. This low Q2 values result in low scattering angles of the scattered electron, such that
it is not detected but scattered into the beam pipe. Hence the escaped scattered electron can
be used for selecting photoproduction events by requiring a veto on the scattered electron in
the calorimeter. In the SpaCal electrons are found and identified by a cluster with an energy
deposition greater than 8 GeV and a radius of less than 4 cm.
In the reconstruction of the hadronic final state (HFS) the problem occurs that some HFS
particles are not detected Therefore the reconstruction of the event kinematics is done with
the method proposed by Jaquet–Blondel [115] from the hadronic energy flow: The quantity
yhad = (E − pz)had/(2Ee) is used, which is insensitive of such losses and can be used to deter-
mine the event kinematic properly. Here Ehad and pz,had denote the energy and the longitudinal
momentum of all particles in the HFS and Ee the electron beam energy.

1In 2006 and 2007 at HERA positrons and protons were collided.
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Figure 7.1: Simulated zvertex distribution with satellite bunches around ±70cm.

Two cuts restrict the yhad range: Events with the final state in the very forward region of the
detector are excluded by requesting yhad > 0.1 and the DIS background is suppressed with
yhad < 0.8. This yhad range corresponds to a Wγp range of 100 < Wγp < 285 GeV.

7.1 Charm Quark Tagging with D∗ Mesons

In the present analysis charm quarks in photoproduction are studied. The charm quark in the ep
scattering event is identified by reconstructing D∗ mesons.
The D∗ mesons are reconstructed using the so called golden decay channel D∗± → D0π±slow →
K∓π±π±slow with a branching fraction ofBR = (2.6±0.04)% [16]. Because all decay particles
are charged it is possible to reconstruct all tracks of the D∗ meson decay within the CTD.
The mass difference of D∗ and D0 mesons is close to the π meson mass. This means that the
produced pion of the D∗ decay has low transverse momentum, it is called slow pion πslow, and
can be measured with high precision in the CTD.
In this chapter the ∆M method for the D∗ reconstruction will be presented. Further the signal
extraction and possibilities for background reduction will be shown.

7.2 D* Recontruction in the Golden Decay Channel

Although the branching ratio of the golden decay channel is relatively small, this decay channel
has major advantages: On the one hand the three decay tracks can be measured within the
tracking system because every final state decay particle is charged. On the other hand because
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of the intermediate D0 meson and the small mass difference between the D∗ and the D0 meson
relatively low background is achieved.
First the D0 → K∓π± decay is reconstructed. Two oppositely charged tracks in the event are
combined to a pair. The invariant mass is calculated under the kaon and pion hypothesis and is
required to be consistent with the D0 mass, within a certain D0 mass window.
In the next step an additional track is added under the pion mass hypothesis to the K∓π±

candidate tracks. This track is demanded to have the same charge sign as the pion from the D0

decay. The D∗ candidates are selected using the mass difference method: The difference of the
invariant mass of the D∗ and D0 candidate is determined via the invariant masses of the decay
particles Kπ and Kππslow:

∆M = M(Kππslow)−M(Kπ). (7.1)

For D∗ candidates ∆M should be around 145.4 MeV [16]. The resolution of the mass distribu-
tions of the D∗ and D0 separately is given by the large uncertainty of the kaon and pion track.
Using the mass difference method the systematic errors from the pion and kaon track measure-
ment cancel to some extend, so that the ∆M resolution is defined by the track measurement
of the πslow. This slow particle track can be measured much more accurately, so that the ∆M
resolution is much better than of the D∗ and D0 mass distributions.
The tracks which fulfill the charge combination requirement presented so far are called
right charge (RC) combinations. In addition, so called wrong charged (WC) combinations exist.
Here the kaon and pion tracks from the D0 decay have the same charge sign and the slow pion
has the opposite sign than the pion track. The shape of the WC distribution has a very similar
behavior as the non-resonant background shape of the RC distribution.

7.3 Signal Extraction

The number of D∗ mesons is determined with a fit to the ∆M distribution. The sum of a signal
and a background fit function is used as fit function to discriminate the signal from the sizeable
background.
Figure 7.2 reveals that the signal shape is asymmetric and cannot be described by a Gaussian
function and a more complicated function is needed.

The tail towards larger ∆M values is due to the slow pion production threshold which can
only happen if the mass of the D∗ is above the threshold where a pion mass can be produced.

The best parametrization for the signal was found in [116] to be the Crystal Ball 2 func-
tion [117]. The Crystall Ball function is a combination of a Gaussian function with a power
law. The Gaussian function describes the low ∆M regions and the signal, whereas the power
law is demanded by the asymmetry of the peak.
The original Crystal Ball function has the tail on the left side. But here a function is needed with

2This function was first used at the study of charmonium spectroscopy at the Crystall Ball NaI(Tl) detector at
SLAC.

64



7.3. SIGNAL EXTRACTION

a tail on the other side to describe the ∆M distribution. This Crystal Ball function is defined as
a function of the mass difference m = ∆M

f(m) = N ·





exp

(
− 1

2
(m−µ

σ
)2

)
if m−µ

σ
≤ −α

( n
|α| )

n exp (− 1
2
α2)

( n
|α|−|α|−

m−µ
σ

)n if m−µ
σ

> −α
(7.2)

The parameter N corresponds to the normalization parameter, σ is the width and µ the most
probable value of the Gaussian function and the parameters α and n set the asymmetry of the
tail. The Crystal Ball function is provided by the RooFit package [118].
The background is fitted with a Granet parametrization [119]

f(m) = (δm)p1 · exp
(− p2δm− (−p3δm

2)
)

with δm = (m−mπ), (7.3)

where pi are the fit parameters.
It is expected that RC background and WC distribution have the same shape, so that for con-
straining the shape of the RC background a simultaneous fit of the RC and WC ∆M distribu-
tions is performed. Therefore the WC distribution sets the shape of the RC background and the
relative normalization of the background function is left free during this simultaneous fit. The
WC distribution of the total sample is presented in figure 7.2.
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Figure 7.2: Distribution of ∆M forD∗ candidates for RC (filled circles) and WC (open circles).
The fit function and parameters of the signal and background are also shown.
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The fit minimization is done with a negative log-likelihood method which is implemented
in the RooFit package.
This fitting procedure is applied to every analysis bin. The parameter n is fixed, see [116].
In addition, the parameter α is fixed for the fit of the individual analysis bins to the value
determined in a fit to the total data sample to improve the convergence of the fit. The width of
the peak is left free because it varies in dependence of the D∗ kinematics.
The mass difference ∆M = M(Kππslow) − M(Kπ) distribution of the final selected data
sample is presented in figure 7.2. A clear peak can be observed around the nominal value of
∆M = 145.3 MeV.
A good description is given by the Crystal Ball signal and Granet backgound fit functions and
in total 8232± 164 D∗ mesons have been found.
The systematic error due to the choice of the fit functions used for extraction of the number of
D∗ mesons is investigated with the usage of different fit functions, see chapter 10.3.
The fitting of the ∆M distribution of the MC used in the analysis proceeds the same way as in
data described before 3.

Background reduction

The new detector simulation includes a new simulation and calibration of the specific energy
loss dE/dx in the central jet chambers. For data a proper calibration of the specific energy
loss was already provided by [1], but the dE/dx information could not be used in analysis case
because the detector simulation was not sufficient and not calibrated.
In this analysis the signal to background ratio is improved by applying a particle identification
criterion based on the specific energy loss to the kaon candidates. The likelihood of the kaon
candidates is shown in figure 7.3. In the analysis the kaon is required to have a likelihood to be
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Figure 7.3: Distribution of the likelihood of kaon candidates.

3The same fit procedure is used but the starting value of the background fraction is smaller than in data to take
into account that signal MC is used
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a kaon of more than 0.02.
In figure 7.4 the reduction of the background is illustrated with the ∆M distribution before and
after the cut on the likelihood.
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Figure 7.4: ∆M distribution before a) and after b) the dE/dx cut on the kaon likelihood. Note
that in this distribution the inital f cut of f > 0.13 was applied.

The background after the cut is 30% less than before the cut, while the number ofD∗ mesons
in the signal looses 380D∗ candidates (4%) in total. Another advantage is that the simultaneous
signal and background fit is stabilized with the cut.
Further background reduction is achieved by an additional cut on the ratio of the transverse
momentum of theD∗ meson to the sum of the transverse momenta of all particles in the hadronic
final state. This ratio is called f and is defined as

f =
pT (D∗ )

Σθ>10◦
i Eisinθi

, (7.4)

where Ei represents the energy and θi the polar angle of the particle i in the hadronic final state.

The D∗ meson which was produced via charm fragmentation carries a large fraction of the
charm quark energy because of the hard fragmentation function. For light quark flavors of the
combinatorial background the fragmentation function is softer. Thus the quantity f is a suitable
cut quantity because it is expected that the D∗ meson carries a large fraction of the hadronic
final state energy and that the combinatoric background due to light flavors can be suppressed
by this cut.
In the previous analysis [120] is was investigated that the best cut value is f > 0.13 to reduce
the combinatorial background.
But the f cut introduces an inefficiency for signal events, which has to be taken into account in
the uncertainty introduced by the model used for the cross section extraction. These MC models
have different f distributions and hence the cut in the f distribution can result in an increase
of the model uncertainty. Here PYTHIA is used for the analysis and the model uncertainty is
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Figure 7.5: f distribution of PYTHIA (blue line) and CASCADE (red line) signal events.

determined by the comparison to CASCADE. In figure 7.5 the f distributions for signal events
for both MCs are displayed. It can be seen that the f distributions of the two MCs differ above
f > 0.1. Therefore a cut value below 0.1 is preferable.
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Figure 7.6: Signal and background behavior due to the cut on the kaon dE/dx-likelihood and
the cut value for f , fcut. For MC N is N(D∗) and for data N = NBackground.

Now with the cut on the specific energy loss described before it is possible to lower the
f cut. The lowest possible cut value is investigated in figure 7.6. The signal and background
behavior is studied in bins of cut values of the quantity f with and without the cut on the kaon
dE/dx-likelihood. The number of D∗ mesons in the signal is taken from the signal MC and
number of background events is taken from the data background. The number of D∗ mesons
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in the signal shows above f = 0.1 a dependence on the f cut which was applied. For the data
it can be observed that a similar amount of background reduction can be achieved by applying
the likelihood cut together with a cut of f > 0.1 as without using the likelihood cut but a cut of
f > 0.13. Thus within this analysis it is possible to lower the cut value to f > 0.1.

In addition to the selection criteria described so far, further selection cuts are applied on the
transverse momenta, pseudo–rapidity and invariant masses, see table 7.1.

Selection cuts
transverse momentum of the D∗ pT (D∗) > 1.8 GeV
pseudorapidity of the D∗ | η(D∗)| < 1.5
transverse momentum of the kaon pT (K) > 0.5 GeV
transverse momentum of the pion pT (π) > 0.3 GeV
transverse momentum of the slow pion pT (πslow) > 0.12 GeV
sum of the transverse momenta of kaon and pion pT (K) + pT (π) > 2.2 GeV
pseudorapidity of decay particles |η(K, π, πslow)| < 1.73
f cut f > 0.1
mass window of D0 |M(Kπ)−M(D0)| < 0.08 GeV
mass difference ∆M < 0.170 GeV
Likelihood of kaon candidates LHKaon > 0.02

Table 7.1: Definition of the selection cuts on transverse momenta and pseudorapidity of the
D∗ and the decay particlesand on the invariant masses of the heavy mesons. In addition the cut
on the quantity f and the likelihood of the kaon candidates are shown.

The cut on the transverse momenta of the decay particles of the D∗ meson ensures that the
track was properly reconstructed. The tracks of the decay particles of the D∗ mesons are re-
stricted to the central region with the cut in the pseudorapidity. The D∗ meson is required to be
in the central region too.
Other cuts on the D0 mass window, the f cut and the cut on the likelihood of the kaon reduce
the combinatorial background.
In addition, a reduction of the background size can be achieved by cutting on the sum of the
transverse momenta of the kaon and pion from the D0 decay. It is expected that the production
rate of light quarks rises steeper towards low momenta than the production rate of heavy flavors.
This is observable in the background size of the ∆M distribution, which increases towards low
momenta and in the forward region of the H1 detector. Because the slow pion has a small trans-
verse momentum, for the region pT (D∗) > 1.8 GeV the transverse momentum of the D∗ is
carried by the pion and the kaon. In [120] it was found that the cut pT (K) + pT (π) > 2.2 GeV
on the sum of the transverse momenta of pion and kaon is a suitable compromise between the
reduction of the background size and the signal.

7.4 Trigger Selection

The H1 trigger system provides 128 subtriggers for the selection of the different physics chan-
nels. For selecting D∗ events in photoproduction three D∗ triggers s55, s53 and s122 have been
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used. The so called high pT trigger s122 was active during the whole data taking range of this
analysis corresponding to the run numbers 477240–500611. The other two triggers have been
commissioned after the run number 482535 and 489125 for s53 and s55, respectively. This cor-
responds to a prescale corrected luminosity of Ls55 = 30.68 pb−1 for s55, Ls53 = 68.23 pb−1

for s53 and Ls122 = 93.39 pb−1 for subtrigger s122. The main components of the subtriggers
are FTT triggers, but they have additionally CIP trigger conditions. In table 7.2 the trigger con-
ditions are summarized.

All used subtriggers have the same level 1 conditions of FTT and CIP triggers. The CIP
trigger elements are used to select D∗ events which have a high track multiplicity in the central
region of the detector. For example the trigger condition CIP sig > 2 requires that two times
more tracks are in the central than in backward and forward regions together. The other CIP
trigger element CIP mul fires above a certain number of central tracks in the CIP.
The FTT level 1 trigger elements used here select only events which have a certain track mul-
tiplicity above a threshold in transverse momentum. All trigger conditions are connected by a
logical AND operation.
On the second trigger level the three subtrigger have the FTT zvtx hist ≥ 2 and
FTT mul Te ≥ 2 conditions in common. The trigger condition FTT zvtx hist ≥ n requires
that the vertex was determined from tracks and segments with a sufficient good quality [121].
A higher n value corresponds to a better quality of the vertex. In addition it is ensured that
only events with at least two tracks above pT > 800MeV are selected with FTT mul Te ≥ 2.
Because of the rise of the data rate of photoproduction events towards lower pT (D∗ ), the low
and medium pT subtriggers reduce the input rate for level 3 with further conditions on the total
transverse energy of all tracks. Also here all trigger conditions are connected by a logical AND
operation.
On the third trigger level the selection algorithm for D∗ mesons is performed. The subtriggers
s53, s55 and s122 use different trigger elements with constraints on the transverse momentum
of the D∗ meson and the ∆M range which is acceptable.
Even after the trigger selection the rate is too high, such that prescale factors have to be as-
signed. The high rate includes for example beam–gas background which can have high track
multiplicities so that the selection is sensitive to it. The prescale factors depends on the magni-
tude of the output rate. The low pT subtrigger s55 had a mean prescale factor of P (s55) = 2.01,
s53 of P (s53) = 1.33 and s122 of P (s122) = 1.21.

For the analysis of the data seen by the three subtriggers one has to combine the subtriggers.
Two methods are used by the H1 collaboration for the combination of independent subtriggers.
A detailed discussion of the combination of triggers in data analysis can be found in [122] and
in [2].
The first method assigns priorities to the subtriggers according to their prescale factors with the
highest priority for the subtrigger with the lowest prescale factor. Each of the level one subtrig-
gers is implemented as a raw and as an actual bit. The raw trigger bit of the subtrigger is set to
1 if the event fulfills the level 1 condition. For a subtrigger with prescale n the actual bit is set
to 1 only for every nth event where the raw bit was set. For the selection of an event it is now
checked gradually if the actual bit is set beginning with the highest priority subtrigger. If the
actual bit was not set at the first subtrigger the next highest priority subtrigger is regarded until
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CHAPTER 7. EVENT SELECTION

a subtrigger has set the actual bit. The event is then weighted with the prescale factor of the
subtrigger where the actual bit was set. If the actual bit was not set at all the event is rejected.
In the second method all subtriggers have the same priority and an averaged weight is applied
to the events. For both methods it is required that the subtriggers are statistically independent.
The subtriggers s53, s55, s122 used in this analysis have identical level 1 conditions. Hence
they are not independent and none of the two methods can be applied. Therefore a different
strategy is used for combining the subtriggers in this analysis.
A combination of the subtriggers is possible if their event samples are separated in different
regions of phase space with no overlap regions. This can be reached with a restriction of the
transverse momenta of the D∗ mesons to a certain range for each subtrigger. Although this re-
striction to phase space regions leads to the exclusion of events, it is expected that these losses
are marginal because of the original high event overlap of the subtriggers.
The selection of appropriate phase space regions for each subtrigger was done with respect to
the best possible statistics of the D∗ mesons and a good trigger efficiency.

Subtrigger pT (D∗) range [GeV] run range Luminosity [pb−1]
s55 1.8–2.5 489125–500611 30.68
s53 2.5–4.5 482535–500611 68.23
s122 4.5–12.5 477240–500611 93.39

Table 7.3: Phase space regions, active run ranges and prescale corrected luminosity for s55,s53
and s122.

It was found in [120] that the following phase space regions are an appropriate choice: The
subtrigger s55 is used in the low transverse momentum range and is restricted to the range of
1.8 < pT (D∗) < 2.5 GeV.
The lower border of the transverse momentum range of s55 is defined by the s55 pT threshold
and the signal to background ratio. The upper border is set by the transverse momentum thresh-
old of s53. In principle it would be possible to extend the transverse momentum range of s55
because the subtrigger has no intrinsic upper cut on pT .
But the prescale corrected luminosity of s55 is a factor two lower than the luminosity of s53,
because s53 was commissioned earlier and thus has seen a larger run range. Thus higher statis-
tics is reached by choosing s53 at the lowest possible transverse momentum.
The pT (D∗) range of the medium transverse momentum subtrigger s53 is selected to be 2.5 <
pT (D∗) < 4.5 GeV. The upper border is defined with respect to the transverse momentum
threshold of subtrigger s122. In the same manner as for s55 it would be possible to extend the
pT range, but s122 was active over the full analysis run range and has a higher prescale corrected
luminosity than the medium pT subtrigger.
The transverse momentum range, the prescaled corrected luminosity and the active run range
for the three used subtriggers are summarized in table 7.3. More details of the individual trigger
elements can be found in [95, 123, 124].
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7.5. DATA STABILITY

7.5 Data Stability

A good estimate for the stability of the data selection is the flatness of the production yield
for each subtrigger which was used in the analysis. The production rate N(D∗ )/L in bins of
integrated luminosity is studied separately for each subtrigger for the selected data sample. The
number of D∗ mesons is extracted by fitting simultaneously the Crystal Ball signal and Granet
background functions as described in section 7.3. For this purpose the luminosity intervals have
to be defined such that the signal in each bin is sufficiently large.
The low and medium pT subtriggers are studied in intervals of 6 pb−1 and the high pT subtrigger
in intervals of 8 pb−1.

The production rates as a function of the run number are displayed in figures 7.7. The differ-
ent run intervals correspond to intervals of equal integrated luminosity. The distributions start
at different run numbers which is due to the different commissioning times for the subtriggers.
As expected the low pT subtrigger s55 has the highest production rate because of the rise of the
photoproduction cross section towards lower transverse momenta.
The distributions are flat within statistical fluctuations for all subtriggers.
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Figure 7.7: Production yield ofD∗ mesons as function of constant luminosity for the subtriggers
s55, s53 and s122. All selection cuts are applied. The signal is fitted.
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Chapter 8

Control Distributions

Two MC generators are used in this analysis to generate events. The resulting PYTHIA and
CASCADE events are passed through the complete H1 detector simulation. Hence the good-
ness of the data description by the simulated detector response can be studied with control
distributions. The final H1 detector simulation and final reconstruction version, DST7, is used
for comparison with the data.
A good agreement between data and simulation is required because the measured data cross
section is corrected for detector effects with PYTHIA MC and the best possible agreement be-
tween data and PYTHIA control distributions must be reached. The cross section is corrected
with the bin by bin correction method, see section 10.2, which demands a good discription of
the data by the MC simulation.
Discrepances can occur because either the MC distribution can be generated not appropriately
or the detector response may be simulated wrongly. If the generated events disagree with the
measured distribution, the MC has to be adjusted to give a good data description, or the not
sufficient described phase space regions have to be excluded.
In this chapter control distributions for zvertex, pT (D∗), η(D∗), z(D∗), andWγp are studied. The
control distributions of pT (D∗), η(D∗), z(D∗) reveal that a correction of the MC is needed. For
this a reweighting of the MC in pT (D∗), η(D∗), z(D∗) one after another was performed. The
trigger efficiency was studied and corrected before.

CASCADE was not used for the data correction but to study the model dependence of the
measurement. The reweighting was done in the same variables as for PYTHIA but the reweight-
ing functions have been determined separately.
In each analysis bin in data and MC a simultaneous Crystal Ball signal Granet background fit
was performed to extract the number of D∗ mesons.

Distribution of the event vertex

A distribution which benefits from the new detector simulation is the distribution of the z posi-
tion of the event vertex zvertex. It is well described by the latest run dependend vertex simulation



and no reweighting is needed as in earlier analyses, see figure 8.1. PYTHIA and the data points
are both fitted with Gaussian functions. Both fits are well in agreement and the resulting fit pa-
rameters of the data are displayed. The position is close to zero (0.17cm) and the width amounts
to 9.07± 0.01cm.
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Figure 8.1: zvertex control distribution for data (black circles) and PYTHIA MC (short blue
dotted line) together with the gaussian fit functions for data (full black line) and for MC (full
blue line). Since both fit functions are nearly the same only the data fit result parameters are
displayed.

Control distributions of D∗ meson and decay particle quanti-
ties

In other variables some disagreement between data and the MC distributions have been found.
In figure 8.2 a), c) and e) the data, PYTHIA and CASCADE MC distributions for pT (D∗),
η(D∗) and z(D∗) are shown and disagreement between data and both MC predictions is visible.

The inelasticity z(D∗) is defined according to [4] by z(D∗) = P · p(D∗)/(P · q) with
P , p(D∗) and q being the four–momentum of the incoming proton, the D∗ meson and the ex-
changed photon. With this quantity it is possible to measure the fraction of the photon energy
transferred to the D∗ meson in the proton rest frame and it is expected that it is sensitive to the
production mechanism and to the c → D∗ fragmentation function [4]. The inelasticity can be
reconstructed as z(D∗) = (E − pz)D∗/(2yEe).
Since the trigger efficiency is corrected and the reconstruction efficiency is understood, see sec-
tion 10.2, disagreement is attributed to the generated distributions. Therefore a reweighting
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Figure 8.2: Control distributions for data, PYTHIA MC (blue line) and CASCADE MC (red line)
in variables of the D∗ meson pT (D∗), η(D∗) and z(D∗). In the left column the distributions
before and in the right column after the reweighting in all variables are shown.
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can be applied to improve the agreement. To determine the function and parameters for the
reweighting of the MC distribution the ratio of Data to MC is studied in figure 8.3 for PYTHIA
and CASCADE separately. The reweighting is done successively. First the pT (D∗ ) ratio of
data and MC is fitted and the reweighting function is determined, see figure 8.3 a) and b). Then
this weight is applied to the MC and the control distributions are studied again. In a second step
the η(D∗) reweighting is performed and at last the z(D∗) reweighting was done. The ratios and
fit functions for the η(D∗) and z(D∗) reweighting are illustrated in figure 8.3 c) to f).
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Figure 8.3: Ratio of data and MC in variables of pT (D∗), η(D∗) and z(D∗) for PYTHIA left
column and for CASCADE in the right column. In addition the fit function is shown.
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The distribution of the D∗ variables pT (D∗), η(D∗) and z(D∗) after the reweighting proce-
dure can be seen in the right column of figure 8.2. A good agreement is observed between data
and the generated distributions.

The control distribution of the center of mass energy of the photon proton system before the
reweighting in the other variables is depicted in figure 8.4 a). For this quantity no reweighting
was applied. Moreover it is tested that the reweighting in the other variables does not spoil the
Wγp control distribution. The Wγp control plot after the reweighting procedure is presented in
figure 8.4 b).
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Figure 8.4: Control distribution for the center of mass energy of the photon proton system for
data and PYTHIA before the reweighting procedure in a) and after it in b).

In addition the polar angle and the transverse momentum of the tracks of the decay parti-
cles of the D∗ meson decay have been studied. The distribution of the transverse momentum
of the kaon and pions are used to test the implementation of the central jet chambers and the
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Figure 8.5: Control distributions for the polar angle and the pT of the tracks for the decay
particles for data and PYTHIA after the reweighting.
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dead material. With the polar angle it is possible to localize inefficiencies. Again the number
of D∗ mesons in each bin is extracted by fitting the signal and background simultaneously. The
control distributions for data and PYTHIA after the reweighting in pT (D∗), η(D∗) and z(D∗)
are illustrated in figure 8.5 and show a reasonable good agreement.
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Chapter 9

Trigger Efficiency

The measured number of D∗ mesons includes detector effects like acceptance, efficiencies and
resolutions for which one has to correct the data. One of this detector corrections needed is due
to the efficiency of triggers which have been used in the analysis.
The distribution of the amount of events per run in MC is the same as in data. It is possible
to perform the same run selection as for the data sample. The prescaling of the subtriggers in
MC is done by down weighting the events with mean prescales corresponding to the pT region.
The trigger efficiency is taken fully from the photoproduction MC by requiring that the recon-
structed MC events have been excepted by the subtriggers s55, s53 and s122. For this strategy
a good agreement between the data trigger efficiency and the simulated trigger efficiency is de-
manded.

In photoproduction it is only possible to trigger on the hadronic final state, since the elec-
tron is scattered in the beam pipe. Typically D∗ events have a too low energy deposite in the
calorimeter to be used for triggering. Therefore all triggers for D∗ events in photoproduction
have FTT conditions.

For the determination of the trigger efficiency independent monitor triggers are required
which do not contain FTT trigger elements. In DIS independent monitor triggers are available
due to the scattered electron which is detected with the SpaCal. Therefore the trigger efficiency
is determined using deep inelastic scattering events with a virtuality of Q2 > 5 GeV2. Here the
monitor triggers s0 and s3 have been used. The MC trigger efficiency which was simulated with
FTTemu is compared to the data trigger efficiency and corrected to reach a good description of
the data. In the analysis the photoproduction MC trigger efficiency is used which was simulated
with the corrected simulation.

The available amount of statistics of events which have been triggered with s55 and s53 is
low, because of the late commissioning time. However, already before s55 and s53 were com-
missioned the information needed to determine the FTT trigger elements have been stored in
data. Since run number 477240, which is the begin of the s122 subtrigger run range, the infor-
mation is available. Therefore it is possible to increase the statistics for the determination of the
trigger efficiency by extending the active run range of the subtriggers s55 and s53 to begin at
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run number 477240. Tracks from the FTT were used and the trigger elements of s53 and s55
were rebuilt. The rebuilding was tested with events where s55 and s53 were active. The trigger
decision was found to be identical.

First it was studied in data if the trigger efficiency is the same for real D∗ mesons as on
the combinatorial background, which was assumed in [120]. In figure 9.1 the trigger efficiency
dependence on η(D∗) is displayed for the whole ∆M region and for the signal region. In data
the trigger efficiency in the whole ∆M histogram is different from the trigger efficiency in the
signal region only. This is due to the combinatorial background. Since for the data correction
only the trigger efficiency of the signal is relevant, fits are used to determine the number of
D∗ mesons. To make the fits in data and MC similar, inclusive charm RAPGAP MC is used.
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Figure 9.1: Trigger efficiency for data for the whole ∆M region (full circles) and only the signal
region (open triangles).

To study the dependence of the trigger efficiency on pT (D∗), η(D∗), Wγp and z(D∗), in
each bin the ∆M histogram of MC and data is fitted with a simultaneous Crystal Ball signal
and Granet background fit. Further the ∆M distributions of the rejected and accepted events of
the trigger are fitted simultaneously with only one additional fit parameter ε which is the trigger
efficiency. All other fit parameters like the D∗ peak position and width are forced to agree
between the accepted and rejected sample. It is required that the number of accepted events,
Naccepted, fulfills the condition Naccepted = Ntotal · ε and that the number of rejected events
satisfies Nrejected = Ntotal · (1− ε) with Ntotal = Nrejected +Naccepted. Because of the decrease
of statistics with each of the trigger levels of the accepted histogram it is a major advantage
to fit the histograms of the accepted and rejected events simultaneously. Thus always the full
statistics is used to determine the shape of the fit functions.
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Figure 9.2: Trigger efficiency dependence for subtriggers s55, s53 and s122 on the transverse
momentum of the D∗ meson. The error bars show the statistical uncertainty of the fit result.

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 / ndf 2χ  1.656 / 1
Prob   0.1982
p0        0.0929± 0.7735 

5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 / ndf 2χ  0.1491 / 2
Prob   0.9282
p0        0.1922± 0.3663 
p1        0.03122± 0.08335 

pT (D∗)[GeV] pT (D∗)[GeV]

Tr
ig

ge
re

ffi
ci

en
cy

D
at

a/
M

C

Tr
ig

ge
re

ffi
ci

en
cy

D
at

a/
M

C

a) b)
s122s55

Figure 9.3: The ratio of data to MC trigger efficiency together with the fit result are displayed.
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The dependence of the trigger efficiency separately for the subtriggers s55, s53 and s122 on the
transverse momentum of the D∗ meson is shown in figure 9.2.

The MC trigger efficiency of the medium pT trigger s53 is in good agreement with the data.
But the trigger efficiency of the low pT and the high pT trigger of data and the simulation show
some discrepancies.
In order to correct the simulation the ratio of the data trigger efficiency to the MC trigger ef-
ficiency is calculated for each bin and fitted. The ratio for s55 is fitted with a constant and
the ratio for s122 with a polynomial of first order. The data to MC ratio together with the fit
result can be regarded in figure 9.3. Then the trigger efficiency in MC events is reweighted with
respect to the D∗ transverse momentum and the corresponding subtrigger phase space.

The resulting trigger efficiency for data and the reweighted MC as a function of pT (D∗),
η(D∗), Wγp and z(D∗) are displayed in figures 9.4 and 9.5.
The efficiency is around 40− 30% in all D∗ variables and is not flat in the pseudorapidity of the
D∗ as assumed in [120] but has a η(D∗) dependence.
After the reweighting procedure a reasonable agreement is observed. Thus the trigger efficiency
can be taken from simulation of the photoproduction MC, in which the same correction as a
function of pT (D∗) is applied.
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Figure 9.4: Trigger efficiency for subtriggers s55, s53 and s122 for data and reweighted MC
in dependence of pT (D∗) and η(D∗). The error bars show the statistical uncertainty of the fit
result.
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Figure 9.5: Trigger efficiency for subtriggers s55, s53 ans s122 for data and reweighted MC in
dependence of z(D∗) and Wγp. The error bars show the statistical uncertainty of the fit result.
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Chapter 10

Cross Section Determination and
Systematic Errors

In general the cross section σ is defined as the number of events N per luminosity L to σ = N
L .

But the measured number of events is too low because of detector inefficiencies. Thus the
number of events has to be corrected with a factor ε which includes all the detector effects. In
addition the uncertainty of the measurement has to be taken into account. The uncertainties are
divided into statistical and systematic uncertainties. In the next chapter the sources of uncer-
tainties will be studied in detail.

10.1 Calculation of the Cross Section

In this analysis the cross section for D∗ mesons in the golden decay channel
D∗ ± → D0π± → K±π∓π±slow will be measured. The extraction of the number of D∗ mesons
N(D∗) is described in section 7.3. The correction factor ε includes corrections for acceptance,
reconstruction efficiency and trigger efficiency and can be separated to ε = A · εrec · εtrig where
A represents the acceptance, εrec the reconstruction efficiency and εtrig the trigger efficiency.
The acceptance and reconstruction efficiency will be studied in the next sections.
The cross section in the visible range for the D* meson production is calculated with the fol-
lowing formula

σvis(ep→ eD∗ X) =
N(D∗)(1− r)

L · BR(D∗ → Kππslow) · ε (10.1)

where BR(D∗ → ππslow) is the branching ratio of the analysed decay chain.

The number of D∗ mesons must be further corrected for reflections from other D0 decays
with the correction factor (1 − r). The contribution of D∗ mesons from b–quark decays is ex-
pected to be small and is included in the cross section.

The visible region, in which the D∗ cross section is measured, is restricted to pT > 1.8 GeV
and |η| < 1.5. A summary of the visible kinematic range of the measurement is presented in
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Visible kinematic range
pT (D∗) > 1.8 GeV
|η(D∗)| < 1.5
Q2 < 2 GeV2

Wγp (100− 285) GeV

Table 10.1: Definition of the visible kinematic range

table 10.1. The transverse momentum of the D∗ mesons is required to be greater 1.8 GeV due
to the trigger selection and a sufficient ratio of signal to background, which gets worse towards
lower transverse momenta. In addition the D∗ meson has to be in the pseudorapidity range of
|η(D∗)| < 1.5 to ensure that it is in the central region and that the tracks of the decay particles
are in the acceptance of the CJC and the FTT. To select photoproduction events by requiring a
veto for the scattered electron in the SpaCal the Q2 range is restricted to be lower than 2 GeV2.
The limited range of the center of mass energy of the photon-proton system suppresses DIS
background and excludes events from the very forward region of the detector in order to guar-
antee good event reconstruction.

The differential cross section for the measured quantity Y is calculated as

dσvis(ep→ eD∗ X)

dY
=

N(D∗)(1− r)

∆Y · L · BR(D∗ → Kππslow) · ε (10.2)

but here the number of D∗ mesons N(D∗) and the efficiency ε are determined in the interval
∆Y .

10.2 Detector Effects

In the present analysis it is assumed that the migration between bins are so small that the bin-
by-bin method can be used. As described in the last section correction factors are needed to
correct the extracted number of D∗ mesons for detector effects. In the bin-by-bin method these
correction factors are applied bin wise. The corrections are determined with MC simulation,
here PYTHIA is used. The initially generated events are compared to the events which have
passed through the simulated detector response and correction factors for the acceptance and
the reconstruction efficiency are determined. The migrations between the bins are quantified by
the quantity called purity. In the following paragraph the purity, acceptance and reconstruction
efficiency are studied.

Purity

First it must be checked if it is feasible to apply bin wise corrections to the cross section mea-
surement. This is the case if the migrations between the bins are small. In the H1 collaboration
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two definitions of the purity are common [125]. The first definition of the purity includes migra-
tion from outside into the visible range: Here the purity P is defined as the ratio of the number
of events, N vis

gen&rec, which have been generated and reconstructed in the same bin in the visible
range to the number of reconstructed events in this certain bin, Nrec,

P =
N vis

gen&rec

Nrec

∣∣∣∣
bin
. (10.3)

The migration from outside into the visible range are taken into account by not requiring any of
the visibility range conditions for Nrec. For using the bin–by–bin method only small migrations
are allowed. and a purity above ∼ 70% is demanded commonly in the H1 collaboration. Below
this value too many migrations occur and the uncertainties would be significantly underesti-
mated by the bin–by–bin method. Then other methods like unfolding have to be adopted.
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Figure 10.1: Purity as a function of pT (D∗), η(D∗), Wγp and z(D∗) for the leading order MC
PYTHIA (blue line) and CASCADE (red line).

The migrations are studied for the PYTHIA and CASCADE MC simulations in all the
quantities in which the cross section measurement is performed. The purity as a function of
the transverse momentum, the pseudorapidity and the inelasticity of the D∗ meson and the γp
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centre–of–mass energy Wγp are presented in figure 10.1. In pT (D∗), figure 10.1 a), and η(D∗),
figure 10.1 b), the averaged purity lies above 80%. For Wγp and z(D∗) the purity is around
10% lower , between 75% and 70%. A very similar behavior for PYTHIA and CASCADE
distributions can be observed.

The second way to define the purity includes only migrations between the bins inside the
visible range [125] and can be used to study if the binning was properly chosen: In this case the
purity P ′ is the ratio of the number of events which have been generated and reconstructed in
the same bin in the visible range to the number of reconstructed events in this certain bin in the
visible range, N vis

rec :

P ′ =
N vis

gen&rec

N vis
rec

∣∣∣∣
bin
. (10.4)

The purity P ′ as a function of pT (D∗), η(D∗), Wγp and z(D∗) is shown in figure 10.2. In
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Figure 10.2: Purity P ′ as a function of pT (D∗), η(D∗), Wγp and z(D∗) for the leading order
MC PYTHIA (blue line) and CASCADE (red line).

pT (D∗) and η(D∗) almost no migrations between the bins are observed. In these variables the
purity P is lower as the purity P ′. This can be explained with the phase space cut in Wγp. The
Wγp bins from 140− 240GeV show nearly no changes in comparison to the purity P , because
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of the bad resolution. In contrast the purity in the border bins is now much higher. The purity P ′

is calculated after the phase space cuts and so no migration inside the phase space are possible
which leads to a higher purity in the border bins. z(D∗) has again a bad resolution and the
higher purity can be explained similar to the rise of the purity P ′ in comparison to the purity P
in Wγp.

Acceptance

The ratio of the number Nacc
gen of generated D∗ events in the visible range which have passed the

acceptance cuts to the initial number Ngen of generated D∗ mesons in the visible range is an
estimate for the fraction of event losses due to the detector geometry. pT (D∗) and η(D∗) are re-
constructed from D∗ decay particles only, while for Wγp and z(D∗) all particles of the hadronic
final state have to be reconstructed, and losses out of the detector play a larger role. It is expected
that differences between models (e.g. used in PYTHIA and CASCADE MC simulations) have
an influence on the acceptance, while for events within the acceptance range the reconstruction
efficiency should be very similar for all models. But the reconstruction efficiency, which is
studied in the next section of this thesis, reveals differences between the models, although only
events in the acceptance range have been regarded. The acceptance A is defined as

A =
Nacc

gen

Ngen

∣∣∣∣
vis
. (10.5)

The acceptance cuts applied to the generated events are summarized in table 10.2. The limited

Acceptance cuts
pT (K) > 0.5 GeV
pT (π) > 0.3 GeV
pT (πslow) > 0.12 GeV
pT (K) + pT (π) > 2.2 GeV
|η(K,π, πslow)| < 1.73
f > 0.1

Table 10.2: Definition of the acceptance cuts on transverse momenta and pseudorapidity of the
tracks of the decay particles are shown.

range in pseudorapidity ensures that the tracks can be detected with the central tracking devices
and the cuts in the transverse momenta of the decay particles ensure proper track reconstruc-
tion. The cuts on the sum of kaon and pion transverse momenta and on the quantity f reduce
the combinatorial background.
The distribution of the acceptance in dependence of the D∗ quantities pT (D∗), η(D∗), z(D∗)
and of Wγp for PYHTIA and CASCADE MC predictions are presented in figure 10.3. The
PYTHIA MC is used for data correction and the histogram bins here correspond to the analysis
bins for the cross section measurements. The acceptance correction factor is applied bin by bin
to the cross section calculation. In addition the CASCADE MC is shown because it is used for
the determination of the model uncertainty.
The acceptance decreases rapidly towards low pT (D∗). The cut pT (πslow) > 0.12 GeV ensures
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Figure 10.3: Acceptance as a function of pT (D∗), η(D∗), Wγp and z(D∗) for the leading order
MC PYTHIA (blue dashed line) and CASCADE (red continous line).

a good track measurement in the central jet chambers but is relatively high and leads to particle
losses in the low pT regime. The acceptance in the forward and backward regions in the pseu-
dorapidity distribution are around 10% lower than in the central region because the D∗ decay
particles may leave the CJC. Although the quantities Wγp and η(D∗) are correlated, the accep-
tance in Wγp is nearly flat whereas the acceptance in η(D∗) shows a dependency. The absence
of such a dependence is due to the coarse binning used in Wγp.
The inelasticity z(D∗) reveals a decreasing acceptance to low inelasticities. The less energy
transfer to the D∗ correspond to low transverse momenta of the D∗ where the acceptance is low.
At low z(D∗) less energy from the photon is transferred to the D∗ mesons, which means that
in the hard process or in the fragmentation many additional particles are produced.
When comparing the distributions of the two MC simulation small differences are observed
which are taken into account in the model uncertainty.

Reconstruction Efficiency

The cross section formula 10.1 includes the reconstruction efficiency which is defined as the
ratio of the number of reconstructedD∗ mesons to the number of generated acceptedD∗ mesons
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in the visible range

εrec =
Nrec

Nacc
gen

∣∣∣∣
vis

. (10.6)

The number of reconstructedD∗ mesonsNrec after the full detector response is determined with
a simultaneous signal and background fit, see section 7.3.
The reconstruction efficiency is depicted for PYTHIA and CASCADE for all measured quanti-
ties in which the cross section is extracted in figure 10.4.
The reconstruction efficiency as a function of the transverse momentum of the D∗ meson re-
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Figure 10.4: Reconstruction efficiency as a function of pT (D∗), η(D∗), Wγp and z(D∗) for the
leading order MC PYTHIA (blue line) and CASCADE (red line).

veals lower efficiencies towards small and high pT (D∗). Low pT (D∗) corresponds to very low
transverse momenta of the slow pion at which the limit of track measurement with the CJCs
is reached. Hence in the low pT (D∗) bins the efficiency worsens. At high momenta the track
resolution deteriorates and the track separation worsens because the tracks are close together.
This leads to a lower reconstruction efficiency. Overall the reconstruction effiency is around
70%.
The pseudorapidity of the D∗ shows in the central region a reconstruction efficiency of 75%.
In the forward and backward regions a decrease to an efficiency of 50% is observed. In this
regions particle traverse only small parts of the CJC which leads to worse track reconstruction
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than for particles which cross the CJC in the central region.
The reconstruction efficiency as a function of z(D∗) increases from 50% at lowD∗ inelasticities
up to 80% in the last bin which corresponds to a high energy transfer. The increase of the ef-
ficiency is due to the decrease of the number of additional tracks towards higher z(D∗) . Less
particles are in the CJC which results in a simpler track reconstruction than for events with
many tracks.
Further the dependence on Wγp is studied. The reconstruction efficiency falls towards high Wγp

from 75% to 50%. This is a similar effect as in z(D∗) , large Wγp correspond to higher track
multiplicities. Like in the acceptance distributions the two MC simulations from PYTHIA and
CASCADE have overall a similar reconstruction efficiency and the minor differences which are
visible are considered in the model uncertainty.
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10.3 Systematic Uncertainties

The major sources of systematic uncertainty in this measurement are the luminosity measure-
ment, the trigger efficiency and the track finding efficiency. All sources of systematic errors are
added in quadrature which results to 10.3% systematic error in total. The effects of the individ-
ual uncertainties are summerized in table 10.3.
In general the systematic uncertainties are grouped to bin-to-bin uncorrelated, bin-to-bin corre-
lated uncertainties and to uncertainties which only have influence on the pure normalization of
the cross section.

The uncertainties due to the signal extraction, the D0 meson mass cut, the reflections, the
DIS background and the dE/dx cut are assumed to be bin-to-bin uncorrelated. For example,
with the uncertainty of the D0 meson mass cut the possible dependence on other, so far not con-
sidered, kinematic variables is taken into account. The track finding efficiency has a correlated
and an uncorrelated part. In data and MC the track finding efficiency can be slightly different,
because in data the determination of the track finding efficiency is difficult due to the statistical
limitation. This leads to a correlated part of the uncertainty of the track finding efficiency, which
only effects the normalization. In addition, the simulation of the dependence on the momentum,
the transverse momentum and on the angle θ is not properly, which leads to an uncorrelated part
of the uncertainty. It is assumed that the track finding efficiency is half bin-to-bin correlated and
half uncorrelated.
The uncertainties of the trigger efficiency, the model, the fragmentation and the hadronic energy
scale are expected to be bin-to-bin correlated. The trigger efficiency is assumed as bin-to-bin
correlated for the following reason. The dependence on all studied kinematic variables in data
and MC agree after the correction of trigger simulation. Therefore it is assumed that the trigger
efficiency uncertainty is mainly related to the total trigger efficiency and effects different bins
in a correlated way. The uncertainty due to the fragmentation arises due to the statistical un-
certainty of the H1 measurement [60]. The ’true’ value is expected to be within the statistical
uncertainty of this measurement and a change of the true value has a correlated effect on each
distribution.

The uncertainty of the luminosity and the branching ratio do purely effect the normalization
of the cross section measurement.

In the following the sources and size of each uncertainty is studied and the numbers for the
uncertainties are given in per cent of the cross section values. First the bin-to-bin uncorrelated
uncertainties will be discussed, then the ones which are correlated between the bins and at last
the normalization uncertainties.

Uncorrelated uncertainties

Signal Extraction

The number of D∗ mesons is determined with a fit of the sum of signal and background func-
tions. For the signal fit a Crystal Ball function and for the background a Granet parametrization
was used. To estimate the uncertainty due to the choice of the fit parametrization, the number of
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Uncorrelated errors:
Signal extraction 1.5%
Track efficiency 4.1%
D0 meson mass cut 2.0%
Reflections 1.0%
DIS background 0.3%
dE/dx cut 0.5%
Correlated errors:
Trigger efficiency 6.6%
Model uncertainty 2.0%
Fragmentation 2.5%
Hadronic energy scale 0.6%
Normalization
Luminosity 5.0%
Branching ratio 1.5%
Sum 10.3%

Table 10.3: Summary of the systematic uncertainties of the cross section measurement and the
typical uncertainty value for each source. The uncertainty sources are grouped into bin-to-bin
uncorrelated and bin-to-bin correlated sources.

D∗ mesons is obtained with two different parametrizations for the signal function and the back-
ground function. The resulting numbers of D∗ mesons have been compared. For the signal the
Crystall Ball and the Bukin parametrization [118] have been used. The Bukin parametrization
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Figure 10.5: Distribution of ∆M for D∗ candidates. The signal and background are fitted with
the sum of a Crystal Ball signal function with a Granet background function in a) and the sum
of a Bukin signal function with a polynomial background function in b).
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is defined according to [118]

fBukin(x) = A · exp


−(ln2) ·


 ln(1 + 2ξ

√
ξ2 + 1 m−mp

σp

√
2ln2

)

ln(1 + 2ξ2 − 2ξ
√
ξ2 + 1




2
, (10.7)

with the peak position mp, the width of the peak σp and the peak asymmetry parameter ξ. A
further description of this parametrization is given in [116].
The background is fitted with the Granet parametrization and with a polynomial function

f(x) =

{
(m−mπ)a · (1− b ·m2) for m ≥ mπ

0 for m < mπ
(10.8)

with m = ∆M , the fit parameters a and b and the pion mass mπ. The ∆M distribution of
the full data sample is fitted with both signal function in combination with both background
parametrizations. The resulting number of D∗ mesons for each combination is summarized in
table 10.4.

Signal + Background function N(D∗ )
Crystal Ball + Granet 8232± 164
Crystal Ball + polyn. 8265± 151
Bukin + Granet 8243± 140
Bukin + polyn. 8363± 136

Table 10.4: Fit results of fits with different parametrizations for the ∆M distribution.

The combinations of the Crystal Ball signal function with the Granet background parametriza-
tion and of the Bukin signal function with a polynomial background parametrization reveal the
largest differences. Therefore the relative difference of this combinations which amounts to
1.5% is assigned as uncertainty. The fit results of this two parameterizations is presented in
figure 10.5.

Track finding efficiency

Another dominant error source of the cross section measurement originates from the track find-
ing. This uncertainty arises from two contributions:
First the number of measured D∗ mesons has to be corrected for detector effects with MC sim-
ulations. Hence an uncertainty occurs from possible differences in the track finding efficiency
between data and MC simulation. Three effects have to be considered for not finding a track.
First, no tracks are found because the particle is absorbed in the dead material. Another effect
is that not enough hits were detected to find a non–vertex fitted track. In addition, the algorithm
may not find a track although hits are there. The track finding efficiency for low momentum
tracks was studied with pion tracks from the decay K0 → ππ which curl inside the Central
Jet Chambers [126, 127]. The reconstruction of these tracks has to deal with parts of the track
inside the CJC1 and parts of the tracks inside the CJC2 after passing the dead material between
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the two jet chambers under shallow angles. It was found that data and MC have differences in
the track finding efficiency which have to be taken into account as systematic uncertainty on
the track finding. More precisely an error of 2% for the slow pion track and 1% for the kaon
and pions [127] from the D0 decay are assigned. To be conservative the uncertainty is treated
as fully correlated between the decay particles of a D∗ meson, leading to a total uncertainty of
4% per D∗ .
Secondly there is a systematic error originating from the efficiency of fitting a track to the event
vertex. This cannot be determined with the method described before due to the long lifetime
of the K0 which results in a secondary vertex. In general the determination of the systematic
uncertainty can be done with the following method described in detail in [116]. The ∆M distri-
butions of vertex fitted and non–vertex fitted tracks have been fitted separately and the primary
vertex fit efficiency is calculated with the ratio of the number of D∗ mesons of the vertex fitted
tracks to the number of D∗ mesons of the non–vertex fitted tracks. The uncertainty found in
[116] amounts to 2.5%. Due to the highly statistical limitation of this method the primary ver-
tex fit efficiency was newly determined for the D∗ meson production in deep inelastic scattering
with a different method, see [128]. The distribution of the distance of closest approach is the
crucial factor if a track is vertex fitted or not. Within a certain range corresponding to 4.47σ
around the vertex position of the distribution the tracks are fitted to the vertex, whereas they are
not fitted if they are located outside this range. The uncertainty is estimated by comparing tails
of the distributions in data and MC simulation. In general a good agreement is observed and
the systematic uncertainty is quoted to be approximately 1% [128]. This is added in quadrature.
Hence the total systematic uncertainty on the track finding to the cross section measurement
amounts to 4.1%.

D0 mass cut

The cut on the D0 mass window of ±80 MeV around the nominal D0 mass can reduce signifi-
cantly the huge combinatorial background present in this analysis but has to be regarded as an
additional source of systematic error to the cross section measurement. The track resolution in
data is observed to be slightly worse than in the MC simulation so that the peak position and
width of the D0 mass peak can be different. This results in a different fraction of D∗ mesons
which are lost for the further analysis, because they are, due to the tightness of the D0 mass
window, reconstructed outside the allowed D0 mass window.
The uncertainty on the D0 mass window is determined by estimating the amount of D∗ meson
losses for data and MC. First the M(Kπ) distribution in bins of the transverse momentum of
theD∗ meson is fitted with a Gaussian function for events passing all other selection cuts except
the M(Kπ) cut and the peak position and the width of the peak for data and MC are compared.

The upper part of figure 10.6 shows the peak position and width for data and MC simulation
in bins of the transverse momentum of the D∗ meson. The two outer solid lines represent the
D0 mass window of±80 MeV around the nominalD0 mass and the inner solid line the nominal
D0 mass value. The peak position of the D0 peak is displayed as data point and the error bars
represent the peak width. Overall it is observed that the peak position in data is slightly lower
than for the MC simulation. A broadening of the peak width towards higher transverse momen-
tum, which is due to the worsening of the track resolution towards higher pT , is found in data
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Figure 10.6: The peak position and width of the D0 signal are presented for data and PYTHIA
MC in the upper part of the figure. The D∗ loss due to the D0 cut is estimated in the lower part
with using a fit method for data and MC and by counting the MC events inside and outside the
cut.

and MC simulation. In the former photoproduction analysis of [120] it was observed that the
peak width for data increases towards low transverse momentum of the D∗ but for MC remains
constant towards low pT . This is not the case in the present analysis and can be explained with
the use of the final detector simulation, which includes a new description of dead material which
ensures that multiple interaction which dominate in the low transverse momentum regime are
properly simulated.
In the lower part of figure 10.6 the amount of D∗ meson losses due to the D0 mass cut are pre-
sented for data and MC simulation. The fraction of D∗ mesons which have been reconstructed
outside the allowed D0 mass window has been determined with the integral of the Gaussian
fit in each pT bin. In the low transverse momentum region a good agreement is found between
data and MC simulation, whereas in the high momentum region difference up to 2% occur. This
method assumes that the Gaussian fit gives a good description of the M(Kπ) distribution. Due
to large background this assumption cannot be tested in data, but only for MC. A further study
was performed using the M(Kπ) distribution of the MC simulation only for events where the
kaon and the pion originate from a D0 decay. The number of D∗ mesons reconstructed inside
and outside the allowed D0 mass window is determined by counting events and not with apply-
ing a Gaussian fit. The counting result is shown as pink solid line and reveals an agreement with
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the data within 2%. The 2% difference was assigned as error to the cross section measurement.

Reflections

The cross section formula 10.1 includes a correction due to reflections. The reflections are
other decays of the D0 than D0 → K+π− in the golden decay channel. They are summarized
in table 10.5. Other decay channels of the D∗ meson do not contribute, because they would
not lead to a peak in the ∆M distribution at the correct value. But other decays of the D0 can
produce a peak in the ∆M histogram and contribute to the signal.

The amount of reflections r was determined in [89] by fitting the ∆M distribution only for

decay channel Branching ratio
D0 → K±K∓ (3.94± 0.07) · 10−3

D0 → K∓π±π0 (13.9± 0.05)%
D0 → π∓π± (1.397± 0.026) · 10−3

D0 → π∓π±π∓π± (7.44± 0.21) · 10−3

D0 → π∓π±π0 (1.44± 0.06)%
D0 → K∓e±(ν̄e) (3.55± 0.05)%
D0 → K∓µ±(ν̄µ) (3.31± 0.13)%
D0 → π∓e±(ν̄e) (2.89± 0.08) · 10−3

D0 → π∓µ±(ν̄µ) (2.37± 0.24) · 10−3

Table 10.5: Summary of decay channels of the D0 meson taken into account for the correction
of the reflection and the corresponding branching ratios [16]. These decays lead to two or more
charged decay particles in the detector.

events which have been identified as reflections on generator level and comparing the extracted
number of D∗ mesons with the fit result of the ∆M distribution with all events. The correction
factor due to reflections is found to be 3.8% with a constant dependence on kinematic quantities
within 1% in the DIS regime [89]. Since the phase space for the D∗ meson and the selection
cuts for the D∗ decay particles are very similar, the values can be used for this analysis. The
cross section is corrected for the amount of reflections and 1% is assigned as uncertainty.

Deep inelastic scattering background

The background which originates from deep inelastic scattering events was estimated by study-
ing the fraction of DIS events in the total data sample.
The photoproduction regime in this analysis is defined by demanding Q2 < 2 GeV2. The pho-
toproduction MC from PYTHIA, which is used for the cross section correction, was generated
with an upper cut of Q2 < 5 GeV2. The fraction of DIS events in the Q2 range from 2−5 GeV2

is taken into account by the reconstruction efficiency using the PYTHIA MC.
It is known that the RAPGAP MC describes the DIS regime properly [89]. To study if the
PYTHIA MC gives a sufficient discription of the Q2 range from 2− 5 GeV2 the generated Q2

gen
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Figure 10.7: The generated Q2
gen distribution for PYTHIA and RAPGAP.

distributions of RAPGAP and PYTHIA MC in the range from 2 < Q2 < 5 GeV2 are compared.
In figure 10.7 the number of events normalized to the luminosity as a function of Q2

gen is de-
picted. A good agreement between the two MC simulations is observed.
The migration from outside the Q2 < 5 GeV2 range was investigated with an DIS RAPGAP
MC which has a lower cut on Q2 > 5 GeV2 and a luminosity of Lrap = 2647, 49 pb−1. After
passing all selection and kinematic cuts the number of D∗ events is determined with a signal fit,
see section 7.3, to Nrap(D

∗ ) = 643.44 which corresponds to a yield of Nrap(D∗ )

Lrap
= 0.24 pb.

This result is compared to total production yield of the photoproduction data integrated over
the full phase space Ndata(D∗ )

Ldata
= 72.76 pb. Hence the uncertainty arising from DIS background

events amounts to 0.3%.

dE/dx cut

The huge combinatorial background is suppressed with a cut on the likelihood of the specific
energy loss of kaon candidates of LHkaon > 0.02. The uncertainty introduced by this cut is
estimated with studying the cut efficiency in data and MC simulation.
The cut efficiency in bins of the transverse momentum of theD∗ mesons is determined by fitting
simultaneously the ∆M distributions of the rejected and accepted events with an additional fit
parameter ε which is the cut efficiency. This fit procedure was earlier described in section 9.
In figure 10.8 a) the cut efficiency as a function of the transverse momentum of the D∗ mesons

for data and MC simulation is presented, which is slightly lower for data then for MC. The ratio
of the data over MC efficiencies is shown in figure 10.8 b). It is fitted with a polynomial of first
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order to 0.985±0.005. Hence the cross section measurement is corrected with a correction factor
of 1.015. The fit uncertainty of 0.5% is assigned as systematic uncertainty of the measurement.

Correlated Uncertainties

In the following paragraphs the correlated error sources of the trigger efficiency, the model
uncertainty, the fragmentation and the hadronic energy are discussed:

Trigger Efficiency

The source of one of the major uncertainties in this analysis is the trigger efficiency. The trigger
efficiency is taken from the MC simulation and was reweighted to the data. The reweight-
ing functions are shown in section 9. For subtriggers s55 and s122 the fit uncertainty of the
reweighting function is used to estimate the systematic uncertainty of the trigger efficiency in
the corresponding transverse momentum range. Subtrigger s53 was not reweighted because a
good agreement between data and MC was observed. For the estimation of the uncertainty for
the pT region of subtrigger s53 the ratio of the trigger efficiency in data and MC is calculated
and fitted with a first order polynomial (see figure 10.9), so that the fit uncertainty can be used
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data and PYTHIA MC is displayed in a). The resulting ratio of the data to the MC simulation
with the fit result is illustrated in b).
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too.

The relative uncertainty of the cross section measurement due to the trigger efficiency
δtriggeff. is determined by varying the trigger efficiency up- and downwards by the fit uncer-
tainty of the reweighting function and comparing the nominal cross section value σnom with the
cross section value of the variations σ±var:

δ±triggeff. =
σ±var − σnom

σnom

. (10.9)

In figure 10.10 the relative error of the cross section measurement due to the trigger ef-
ficiency as a function of pT (D∗), η(D∗), Wγp and z(D∗) is presented. For comparison the
relative statistical error of the cross section in data is shown too. For most parts the systematic
uncertainty dominates the statistical uncertainty. The uncertainty is nearly independent of pseu-
dorapidity, inelasticity and Wγp with an overall uncertainty of around 6.6%.
The uncertainty as a function of the transverse momentum of the D∗ meson reveals clear struc-
tures corresponding to the subtriggers. The first two bins at low pT (D∗) correspond to subtrigger
s55. The fit of the ratio data to MC trigger efficiency has an uncertainty of more than 10% which
leads to a large uncertainty of the trigger efficiency. In the medium pT (D∗) range in general
a smaller uncertainty of around 6% is observed. The uncertainty in the last bin of subtrigger
s122 is again increasing to a value of around 10%. The increase of the uncertainty towards low
and high transverse momenta is observed in the systematic and statistical error, also in the DIS
monitor sample used to determine and correct the trigger efficiency, the statistics is smaller at
low and high pT (D∗). The trigger efficiency uncertainty is assigned binwise to the cross section
measurement. In table 10.3 the average value of the trigger efficiency to the cross section value
of 6.6% is listed.

Model

The cross section measurement is corrected for detector effects and limited detector acceptance
by applying correction factors which have been earlier introduced as reconstruction efficiency
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Figure 10.10: The trigger efficiency uncertainty as a function of pT (D∗), η(D∗), Wγp and
z(D∗). The colors denote the up- (red) and downward (blue) variation by the fit uncertainty
of the reweighting function. The relative statistical uncertainty of the data cross section is
depicted too.
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and acceptance. The reconstruction efficiency and acceptance in each analysis bin are taken
from the PYTHIA MC simulation. To estimate the uncertainty of the cross section extraction
due to the MC model which was used, another MC model, CASCADE, has been studied in addi-
tion to the PYTHIA MC simulation. These two MC simulations use for example different evo-
lution schemes (DGLAP and CCFM). The relative model uncertainty is estimated by compar-
ing the product of reconstruction efficiency and acceptance for CASCADE MC UCASCADE =
εrec,CASCADE · ACASCADE and PYTHIA MC simulations UPY THIA = εrec,PY THIA · APY THIA

in all quantities in which a cross section measurement has been performed.
The relative difference of ±δU = ±(UCASCADE −UPY THIA)/UPY THIA is assigned as relative
model uncertainty to the cross section measurement. In figure 10.11 the relative model uncer-
tainty on the cross section measurement for pT (D∗), η(D∗), Wγp and z(D∗) distributions are
depicted. Positive values denote an increase of the measured cross section value whereas neg-
ative values lead to a decrease. In addition to the systematic uncertainty the relative statistical
uncertainty of the data is given for each analysis bin.
The pT (D∗) dependence reveals the largest uncertainty in the small transverse momentum re-

gion. A rather flat distribution is found for η(D∗) with an overall uncertainty around 2%. The
Wγp dependence is small except for the last bin. In the last bin the differences in the recon-
struction efficiency and the acceptance between the two MC models cancel out, see figure 10.4
and 10.3, which leads to a smaller model uncertainty. The inelasticity distribution has clear
structures. The smallest uncertainties are at medium z(D∗), whereas the largest uncertainty of
around 4% occurs at low inelasticities. The determined model uncertainty is assigned binwise
to each analysis bin of the cross section measurement. The overall value given in table 10.3
amounts to 2%.

Fragmentation

Two sources of uncertainty are introduced by the reweighting procedure described in sec-
tion 3.2. On the one hand the position of the ŝ threshold is uncertain. For the error estimation
the position of the threshold is varied within ±20 GeV2. For each of the up and down variation
the PYTHIA MC events have been grouped with respect to the threshold once again and have
been reweighted to the Kartvelishvili parametrization with the α parameters given in table 3.1.
The influence to the cross section measurement is studied with the ratio of reconstructed to gen-
erated events in the visible region. The difference from the nominal value with the threshold at
ŝ = 70 GeV2 to the variations is assigned as systematic uncertainty to each analysis bin of the
cross section measurement. The relative error of the fragmentation due to the threshold varia-
tion as a function of pT (D∗), η(D∗), Wγp and z(D∗) is depicted in figure 10.12. In all measured
variables it is observed that the uncertainty is smaller than 1%.

On the other hand the measured α parameters of the H1 publication [60] have uncertainties.
To study the impact on the cross section measurement the ŝ threshold is set to the central value
and the generated z distributions are reweighted to the Kartvelishvili parametrization but now
with varying the α parameter within the uncertainties listed in table 3.1. The systematic uncer-
tainty of the cross section due to the uncertainty of the α parameter is estimated by studying
again the ratio of reconstructed to generated events in the visible region of the nominal α value
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Figure 10.11: The model uncertainty of the leading order MC simulations PYTHIA and CAS-
CADE as a function of pT (D∗), η(D∗), Wγp and z(D∗). The relative statistical uncertainty of
the data is depicted too.
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Figure 10.12: Systematic uncertainty due to the variation of the ŝ threshold in the
D∗ fragmentation as a function of pT (D∗), η(D∗), Wγp and z(D∗).

and of the α variations. The distribution of this relative fragmentation uncertainty as a function
of pT (D∗), η(D∗), Wγp and z(D∗) is presented in figure 10.13. The overall systematic error, as
a consequence of the α variation, is lower than 2%. The full uncertainty of the α and the thresh-
old variation are added in quadrature. Hence the average value for this uncertainty is around
2.5%.

Hadronic energy

At small to moderate energies of the hadronic final state particles as in this analysis, the energy
measurement of the HFS has a scale uncertainty of 2% [129]. The effect on the cross section
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Figure 10.13: Systematic uncertainty due to the variation of the fragmentation parameter α in
the Kartvelishvili function as a function of pT (D∗), η(D∗), Wγp and z(D∗).

measurement is investigated with a variation of the energy of the HFS particles. In this analysis
two cuts in the variables f and yhad have been applied which are directly dependent on the HFS
energy. Hence the variation of the HFS energy corresponds to a variation of f by

f± =
pT (D∗)∑θ>10

i (Ei + Ei · (±2%)) · sin θi

(10.10)

and
y±had = yhad + yhad · (±2%). (10.11)

Moreover a cross section measurement in the inelasticity z(D∗) was performed which depends
directly on the HFS energy because it is reconstructed as z(D∗) = (E − pz)D∗/(2yEe). The
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systematic uncertainty to the cross section measurement is determined by studying the differ-
ence of nominal value with no variation to the up- and downward variations.
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Figure 10.14: The hadronic energy uncertainty as a function of pT (D∗), η(D∗),Wγp and z(D∗).
The relative statistical uncertainty of the data is depicted too.

In figure 10.14 the relative error due to the HFS uncertainty as a function of pT (D∗), η(D∗),
Wγp and z(D∗) is displayed. Again positive values connote an increase of the measured cross
section value whereas negative values result in a decrease. The statistical error for each bin is
illustrated too.
Since Wγp is proportional to yhad it is expected that the variation of the HFS energy in yhad

influences directly the Wγp distribution. In the low and medium bins of the photon proton
energy Wγp the uncertainty is around 2% and shows an increase towards high Wγp with an error
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of around 4% in the highest bin. In the case of the inelasticity z(D∗) the direct dependence
on the HFS leads to a higher uncertainty as for the other variables. The uncertainty in the
highest z(D∗) bin amounts to ∼ 6% and is a factor two larger than the statistical error. For
medium z(D∗) the uncertainty is around 3% with a slightly increase towards small inelasticities.
The effect of the HFS energy variation for the variables pT (D∗), η(D∗) which do not depend
directly on the HFS energy is not sizeable. For these variables the statistical error dominates
the systematic uncertainty. Overall the uncertainty due to the HFS energy scale variation is
observed to be a small uncertainty and the influence is on average on the total cross section
0.6%.
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Normalization Uncertainty

The uncertainty of the luminosity measurement and of the branching ratio would only influence
the normalization of the measurement:

Luminosity measurement

Although in previous analysis the luminosity measurement was a minor source of uncertainty
(of around 1.5%), this does not hold for the current analysis. In figure 10.15 the event yield
for events with a scattered electron measured in the SpaCal as a function of the run number is
shown. Around run number 477000 a jump in the event yield was observed. Until now this
feature cannot be explained. Until run number 477000 the overall uncertainty of the luminos-
ity measurement is 2.5%, whereas for later runs it increases to 5%. The photoproduction data
which is analyzed in this thesis was recorded in the years 2006 and 2007 in the runs 477240–
500611. Therefore an uncertainty of 5% is assigned to the cross section. It is an normalization
uncertainty which would shift all measurements in the same direction. The luminosity uncer-
tainty is one of the dominant systematic errors of this analysis.
However the luminosity measurement of the HERAII running period is currently under in-
vestigation with a measurement of the QED Compton process, for which the cross section is
precisely known and which has a sufficient rate, but the determination of the luminosity correc-
tion factors is not final yet [130].
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Figure 10.15: The Luminosity uncertainty is illustrated with shaded bands in the event yield
which was measured with the SpaCal for the whole HERAII analysis. The increase of the
uncertainty above the run number 477000 is visible. The figure is adopted from [131].
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Branching Ratio

In this analysis D∗ mesons which decay in the golden decay channel
D∗±→ D0π± → K±π∓π±slow are studied . The uncertainty on the cross section measurement of
the branching ratio of the golden decay channel is taken from [16] and amounts to 1.5%. This
uncertainty is a normalization uncertainty like the luminosity.
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Cross Section Results

The total visible D∗ photoproduction cross section is measured to be

σvis(p→ eD∗X) = 38.71± 0.76(stat.)± 4.16(sys.) nb.

The cross section measurement is restricted to the visible range which is defined with
Q2 < 2 GeV2, 100 < Wγp < 285 GeV, |η(D∗)| < 1.5 and pT (D∗) > 1.8 GeV.
The cross section was determined with equation 10.1. The data sample was selected with the
definition of the selection cuts summarized in table 7.1. The total integrated luminosity of the
analyzed data sample amounts to 30.68 pb−1, 68.23 pb−1 and 93.39 pb−1 corresponding to the
three subtriggers which have been used in this analysis.
The number of D∗ mesons in the visible range which decay in the golden decay channel
D∗ ± → D0π±slow → K∓π±π±slow was extracted by fitting the ∆M distribution and is cor-
rected for detector effects including reconstruction efficiency and acceptance. The kinematic
cuts which have been used in this analysis are listed in table 10.1. Further the cross section is
corrected for reflections from other D0 decays. The small contributions of D∗ mesons from b
quarks have not been subtracted.

The total data cross section can be compared to leading order MC simulations from PYTHIA
and CASCADE and to next to leading order calculations from FMNR and GMFVNS provided
by [41, 42]. The total cross section prediction from PYTHIA amounts to 42.34 nb and that
from CASCADE to 31.90 nb. The NLO calculations predict 26.37+12.63

−7.47 nb for FMNR and
37.4+28.4

−13.8 nb for GMVFNS both where calculated with HERAPDF1.0 as proton PDF. The un-
certainties given for the NLO predictions have been determined with varying the charm mass
and the scales, within the values given in table 3.2.
In case of the FMNR prediction the size of the relative theoretical uncertainty of each scale vari-
ation was studied in detail. Since the behavior is identical in all variables, here only the scale
variation as a function of the transverse momentum of the D∗ meson is presented in figure 11.1.

In figure 11.1 a) the charm mass was varied within mc = 1.5 ± 0.2 GeV, in figure 11.1 b)
and c) the factorization and renormalization scaled have been varied by a factor of two up and
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Figure 11.1: The relative theoretical uncertainties due to the variation of the factorization and
the renormalization scale and the charm mass within the FMNR program. The relative size of
the variations is similar for all measured quantities, so that here as an example the uncertainties
are shown as a function of the transverse momentum of the D∗ meson.
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down. The charm mass and factorization sale variation are observed to be small, but the renor-
malization scale variation results in a very large uncertainty. Hence the size of the uncertainty
band of the FMNR predictions presented in the following are totally dominated by uncertainty
of the renormalization scale.

11.1 Single Differential Cross Sections

The measured single differential cross section as a function of pT (D∗) , η(D∗) , Wγp and
z(D∗) are shown in figures 11.2 and 11.3. The cross sections have been corrected with the
bin by bin method for detector effects, acceptance and reflections from other D0 decays. The
inner error bar of the data points depicts the statistical errors. The outer error bar is the sta-
tistical and systematic uncertainty added in quadrature. The single differential cross section as
a function of pT (D∗) and η(D∗) are summarized in table A.1 and as a function of Wγp and
z(D∗) in table A.2.
In figure 11.2 the data are compared to leading order MC simulations from PYTHIA and CAS-
CADE. The comparison with next to leading order calculations from FMNR and GMVFNS is
presented in figures 11.3. The NLO prediction and the band around the central value illustrates
the uncertainty band for the calculations which results from the charm mass and scale varia-
tions. Because of the huge uncertainty from the renormalization scale variation, see 11.1, the
precision of the cross section measurement in all measured quantities presented here is much
higher than the accuracy of the calculations from FMNR and GMVFNS. The agreement of the
predicted shape and the data shape is studied with the normalized ratio Rnorm of theory to data
which is depicted in the lower part of the figures 11.2 and 11.3. Rnorm is defined as

Rnorm =
1/σcalc

tot,vis · dσcalc

dY

1/σdata
tot,vis · dσdata

dY

(11.1)

where Y represents the measured variable. For the normalized ratio the value of each variation
is normalized with the corresponding total cross section of each variation. An advantage of
this normalized ratio is that the uncertainties which leads to change in normalization cancel like
the uncertainty of luminosity, the branching ratio and half of the tracking uncertainty of the data.

Cross Section as a Function of pT (D∗)

In figure 11.2 a) the measured single differential cross section in the transverse momentum
of the D∗ meson is presented in comparison to the leading order predictions. With increas-
ing pT (D∗) the cross sections falls steeply. A steep decrease towards higher pT (D∗) is pre-
dicted by the LO MCs and the NLO calculations. The leading order MCs PYTHIA and CAS-
CADE give different predictions for pT (D∗) but none of them predicts a good description of
the full pT (D∗) distribution of the data cross section. A sufficiently good description of the
steep increase towards low transverse momenta and the high pT (D∗) regions is observed for
the PYTHIA MC simulation. But here discrepancies to the data cross section occur in the

115



CHAPTER 11. CROSS SECTION RESULTS

2 4 6 8 10 12

[n
b/

G
eV

]
T

/d
p

σd

-110

1

10

210
Data
Pythia
Cascade

2 4 6 8 10 12

[n
b/

G
eV

]
T

/d
p

σd

-110

1

10

210

(D*)[GeV]
T

p
2 4 6 8 10 12

no
rm

R

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

[n
b]

η
/dσd

5

10

15

20

25

30
Data
Pythia
Cascade

-1.5 -1 -0.5 0 0.5 1 1.5

[n
b]

η
/dσd

5

10

15

20

25

30

(D*)η
-1.5 -1 -0.5 0 0.5 1 1.5

no
rm

R
0.5

1

1.5

100 150 200 250

 [
n

b
/G

eV
]

pγ
/d

W
σd

0.2

0.4

0.6

Data
Pythia
Cascade

100 150 200 250

 [
n

b
/G

eV
]

pγ
/d

W
σd

0.2

0.4

0.6

 [GeV]pγW
100 150 200 250

n
o

rm
R

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

/d
z(

D
*)

[n
b

]
σd

20

40

60

80

100
Data
Pythia

Cascade
Cascade 
non frag reweighted

0 0.2 0.4 0.6 0.8 1

/d
z(

D
*)

[n
b

]
σd

20

40

60

80

100

z(D*)
0 0.2 0.4 0.6 0.8 1

n
o

rm
R

0.5

1

1.5

Figure 11.2: The single differential inclusive D∗ cross section in photoproduction in the visible
range as a function of pT (D∗), η(D∗), Wγp, z(D∗). The measurement is compared to PYTHIA
and CASCADE MC predictions. The normalized ratio R is shown in the lower part of the figure,
too. The CASCADE predictions of the z(D∗) cross section of the CASCADE MC simulation
are shown with and without applied fragmentation reweighting. The inner error bar depicts
the statistical error and the outer shows the statistical and systematic uncertainty added in
quadrature.
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Figure 11.3: The single differential inclusive D∗ cross section in photoproduction as a function
of pT (D∗), η(D∗), Wγp, z(D∗) in the visible range. The measurement presented in comparison
to next to leading order calculations from FMNR and GMVFNS. The normalized ratio R is
shown in the lower part of the figure, too.
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medium transverse momentum region. The CASCADE MC simulation shows some discrep-
ancies most visible in the upper part of figure 11.2 a) in the low transverse momentum region
1.8 < pT (D∗) < 2.5 GeV, where the predicted cross section underestimates the data. The dif-
ferences of PYTHIA and CASCADE in normalization will reoccur in the measurement of the
double differential cross sections.
The normalized ratio as a function of pT (D∗) confirms that the two leading order MCs pre-
dict a different cross section behavior as a function of the transverse momentum of the D∗ .
PYTHIA describes the shape of the data well except in the medium pT (D∗) region whereas for
CASCADE discrepancies over the full distribution are observed.
In addition the cross section in bins of the transverse momentum of the D∗ is compared to the
next to leading order calculations in figure 11.3 a). The uncertainty band reveals that the un-
certainty of the NLO calculations is much larger than the data precision. This is valid for all
measured quantities. Within this large uncertainty the cross section measurement as a function
of the transverse momentum of the D∗ meson is described. The NLO calculation from FMNR
predicts at small transverse momenta a much lower cross section normalization than is mea-
sured. This has the effect that in all other distribution the normalization is too low. Furthermore
the normalized ratio displays that the shape of the cross section distribution has discrepancies to
the data shape, which is predicted flatter from FMNR than for data. The GMVFNS calculation
predicts the shape of the cross sections sufficiently well.

Cross Section as a Function of η(D∗)

The single differential cross section as a function of the pseudorapidity of the D∗ meson is
presented in figure 11.2 b) in comparison to leading order and 11.3 b) in comparison to NLO
predictions. The leading order MC simulation from PYTHIA describes the normalization well
in the central and forward η(D∗) region −0.5 < η(D∗ ) < 1.5, but the cross section prediction
overestimates the measured cross section in the backward region. In contrast the CASCADE
MC is in good agreement with the measurement in the backward region but underestimates the
cross section in the other regions.
The normalized ratio illustrates that the shape of the cross section distribution as a function of
η(D∗) is very similar for both the LO MCs, but different from the data.
Both NLO predictions give a sufficient prediction for the data shape. It is observed that the large
normalization uncertainty due to the variation of the renormalization scale leads in this quantity
only to small changes in shape. This is also visible for the normalized ratio as a function Wγp

and z(D∗) . The FMNR calculation underestimates the cross section over the full measured
η(D∗) range which is most visible in the forward region. The other NLO calculation GMVFNS
predicts in all bins a higher cross section than the FMNR calculation. In the backward region
the data cross section is slightly overestimated whereas it is underestimated in the forward re-
gion. The relative contributions in the forward region is too small in all predictions except for
the PYTHIA MC simulation.

118



11.2. DOUBLE DIFFERENTIAL CROSS SECTIONS

Cross Section as a Function of Wγp

In figure 11.2 c) and 11.3 c) the differential cross section as a function of the center of mass
energy in the photon proton system is presented. With increasing Wγp the distribution is falling.
This decrease is expected from the photon flux in the equivalent photon approximation [9–
11]. According to equation 2.7 the electron–proton cross section depends on the photon–proton
cross section and the photon flux, which is a function of the inelasticity y =

√
Wγp/s. With

increasingWγp the photon–proton cross section increases slightly, but the photon flux decreases
steeply with Wγp, see equation 2.8. Both leading order MC simulation are not able to describe
the normalization of the data. For PYTHIA a overestimation except for the highest Wγp bin and
for CASCADE an underestimation is observed. Excluding the highest Wγp bin the shape of the
cross section is in good agreement with the measured shape.
The next to leading order calculation from FMNR undershoots the cross section measurement
in the whole measured Wγp range but predicts the shape sufficiently well. The cross section
measurement is described within the large uncertainties of the GMVFNS prediction. Actually
the central value of the GMVFNS calculation depict a very good agreement with the measured
Wγp distribution and in addition the shape is described as well.

Cross Section as a Function of z(D∗)

The measured single differential cross section as function of z(D∗) compared to the predictions
is displayed in figure 11.2 d) and figure 11.3 d). None of the leading order MCs gives a suffi-
ciently good description of the data. PYTHIA gives a slightly better prediction of the shape than
the CASCADE MC simulation. The biggest deviations are observed in the lowest z(D∗) region.
In the data a higher fraction of D∗ mesons is produced at small inelasticities than predicted by
the leading order MCs.
Further it was expected that the use of a ŝ dependent fragmentation leads to a better description
of the data but this is not observed.
The next to leading order calculations are able to give a sufficient description of the data within
their large uncertainties, although the central values of the predictions show discrepancies in
most of the z(D∗) bins. Only in the highest z(D∗) bin the FMNR and GMVFNS calculation
are compatible with the size of the extracted cross section. At all lower inelasticities the central
value of the FMNR calculation undershoots the measured cross section. The shape of the inelas-
ticity distribution is predicted reasonably well from the FMNR calculation except the highest
z(D∗) bin. The central value of the GMVFNS prediction has the largest discrepancy in shape
in the lowest z(D∗) bin where it overshoots the data by a lot. At medium z(D∗) overall a good
description of the shape is found.

11.2 Double Differential Cross Sections

The single differential cross section measurement as a function of the pseudorapidity of the
D∗ meson has provided the indication of underestimation of the cross section in the forward
region. The dependence between pseudorapidity and the transverse momentum of theD∗ meson
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is further investigated. A double differential measurement in pT (D∗) and η(D∗) is performed.
The distribution of the pseudorapidity is studied in three regions of the transverse momentum
of the D∗ meson. The pT (D∗) regions correspond to the three different subtriggers used in
the present analysis. Because of statistical reasons in the lowest pT (D∗) region less bins in
η(D∗) are possible than in the higher pT (D∗) regions.
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Figure 11.4: The double differential D∗ cross section in photoproduction as a function of
η(D∗) in three pT (D∗) regions. The measurement is compared to PYTHIA and CASCADE
predictions.

In figure 11.4 the double differential cross sections is presented together with predictions
from the leading order MCs PYTHIA and CASCADE. The different normalization of the MCs
PYHTIA and CASCADE in the three pT (D∗) regions reflect the different pT (D∗) dependences
seen in the single differential cross sections before. In the lowest pT (D∗) bin the data and the
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11.2. DOUBLE DIFFERENTIAL CROSS SECTIONS

leading order MCs have a falling distribution with rising η(D∗) . The CASCADE prediction
underestimated the measured cross section, whereas the normalization of PYTHIA is compati-
ble with the data. PYTHIA and CASCADE give a reasonable well description of the data shape
for the low and medium pT (D∗) region. Whereas the MCs predict in the highest pT (D∗) region
a too flat shape of the η(D∗) distribution and the data show a much more pronounced maxi-
mum in the central region. The measured double differential cross sections are summarized in
table A.3
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Figure 11.5: The double differential inclusive D∗ cross section in photoproduction as a func-
tion of η(D∗) in three bins of pT (D∗) . The measurement compared to next to leading order
predictions from FMNR and GMVFNS.

The next to leading order calculations in figure 11.5 show a similar behavior. The lowest
pT (D∗) region shows a falling distribution and the shape is well predicted by the NLO calcu-
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lations. In the low and medium transverse momentum range the uncertainties of the NLO cal-
culations are much higher than the data precision. The FMNR calculation underestimates over
the full η(D∗) range the cross section of the data in the lowest transverse momentum region. In
the medium pT (D∗) bin a hint of the underestimation of the cross section in the forward region
is found, but the data lies in most cases within the NLO uncertainty. In the low and medium
pT (D∗) regions the GMVFNS calculation agrees well with the data.
In the high pT (D∗) bin the uncertainties become comparable in size to the data precision. Here
all calculations from leading order and NLO predict a similar shape, but the predicted shape
does not agree with the shape of the data. The reason for the failure of all predictions in the
highest pTD

∗ region is not understood yet.
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11.3. COMPARISON WITH HERAI

11.3 Comparison with HeraI

The present results are compared to the previous H1 measurement of inclusive D∗ cross sec-
tions [7]. The analysis covers the data taking period of the years 1999-2000 with a correspond-
ing luminosity of L = 51.1 pb−1. The kinematic region was defined with Q2 < 0.01 GeV2 and
the inelasticity 0.29 < y < 0.65. Here the inelasticity was reconstructed as y = 1 − Ee′

Ee
using

the electron beam energy Ee and the positron energy Ee′ which was measured with the electron
tagger. The inelasticity range corresponds to 171 < Wγp < 256 GeV. The cut on the transverse
momentum of the D∗ amounts to pT (D∗) > 2 GeV.
Since the previous analysis was restricted to a tighter kinematic range, the present analysis must
be restricted to this phase space too for comparison. The HERAII cross section is corrected for
the different Q2 regions with the photon flux or with a MC with a Q2 cut of Q2 < 0.01 GeV2.
Both corrections give the same result. The cross section of both analyses have been compared,
but do not show sufficient agreement, see figure 11.6.
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Figure 11.6: Comparison of the single differential cross sections of the HERAI and HERAII
analysis as a function of η(D∗) .
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Because of that all selection cuts and the fit method of the HeraI analysis are applied to the
HERAII data: The background cut in the variable f was applied with the same cut value for
both analyses, but the cut on the specific energy loss has to be adjusted to the cut which has
been used in the previous publication. The kaon likelihood has to be above 0.002 if the kaon
momentum is greater 0.8 GeV and smaller 2.0 GeV. In all other momentum regions the kaon
and pion dE/dx likelihood has to be above 0.01. In addition the signal and background fit has
been performed with the same fit functions which have been used in previous measurement. A
Gaussian function was used to extract the number of D∗ mesons in the signal and a polynomial
function to fit the background.
Further the shift of the luminosity measurement which is present after run number 477000 has
to be taken into account by shifting up the luminosity of the present measurement by 5%

The comparison of the measured cross sections is presented in figure 11.7 as a function of
pT (D∗) and η(D∗) . The black points denote the present analysis and the green points the earlier
analysis. The error bars illustrate the full statistical and systematical uncertainties on the cross
section measurement. Both cross sections are compared to leading order MC predictions from
PYTHIA and CASCADE. The two CASCADE predictions shown here have been generated
with different fragmentation functions from Peterson and from Bowler.
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Figure 11.7: Comparison of the inclusive D∗ meson cross section of the present (black points)
and previous (green points) H1 analysis. The error bar denotes the systematical and statistical
uncertainty. In addition predictions from PYTHIA and CASCADE are presented. CASCADE
MC is shown with different fragmentation functions.

Overall a sufficient agreement is observed. The agreement between the two analyses is ob-
served to be better in the pseudorapidity distribution than in the transverse momentum of the
D∗ meson. The goodness of the agreement of the cross section value is determined with the
integration over the full pT (D∗) and η(D∗) range. The difference in η(D∗) between the two
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analyses amount to 14%, whereas the differences in pT (D∗) are around 28%.
However, this large discrepancy of the pT (D∗) distribution results from the lowest pT (D∗) bin,
where the largest discrepancy is visible. Here the Gaussian signal function fails to fit the
∆M distribution sufficiently. For comparison the statistical uncertainty of the HERAI anal-
ysis amounts to 7% and the largest uncertainty of this analysis, the electron tagger acceptance,
amounts to 5.8% [7].
The comparison of the total cross sections of the two analyses is depicted in figure 11.8 together
with predictions from PYTHIA and CASCADE MC simulations. The total cross section agree
within the uncertainties. It is assumed that the differences between the two analyses result from
the improper fit function used in the HERA I analysis.
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Figure 11.8: Total cross section of the inclusive D∗ cross section measurement of this analysis
and of the previous analysis. Predictions from the leading order MC simulations PYTHIA and
CASCADE are shown too. CASCADE is generated with two different fragmentation functions.
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Chapter 12

Conclusion

In this thesis the new simulation and calibration of the specific energy loss of particles travers-
ing through the central jet chambers of the H1 detector at HERA was presented. The imple-
mentation of the mean specific energy loss simulation in the H1 detector simulation H1SIM
was improved. The mean specific energy loss is implemented according to the Bethe–Bloch
equation, which depends on the velocity of the particles. The energy loss of particles in an
absorber material has a statistical nature and the energy straggling is considered with the usage
of four different energy straggling models each valid in a certain range of the thickness of the
absorber material. After passing through the full H1 detector response simulation, the specific
energy loss of a particle is reconstructed within the software H1REC. The H1 detector response
simulation includes several detector effects and the reconstructed specific energy loss needs to
be corrected as in data. The necessary corrections and calibrations have been determined in
this thesis. The corrected reconstructed energy loss of the MC simulation shows a reasonable
agreement with data. The new implementation and correction of the specific energy loss al-
lows particle identification with the specific energy loss measured within the CJC. The specific
energy loss distribution after reconstruction requires even after corrections on hit and on track
level a slightly different parametrisation as implemented in H1SIM and the resolution has a
different dependence on the number of hits in the CJC as determined for data.
The new simulation and calibration is included in the final H1 detector simulation and recon-
struction version and is used in particular in this thesis to improve the analysis of D∗ mesons in
photoproduction. The analysed data sample was recorded during the HERA II run period in the
years 2006 and 2007 and corresponds to an integrated luminosity of 30.68 pb−1, 68.23 pb−1,
93.30 pb−1 for the used three subtriggers. In comparison to the previous H1 publication [7] an
eight times larger data sample recorded with the H1 experiment was analysed. The D∗ mesons
have been selected in the golden decay channel D∗ → D0π±slow → K∓π±π±slow with a photon
virtuality of Q2 < 2 GeV2 and in the range of 100 < Wγp < 285 GeV of the photon–proton
center of mass energy. Further restrictions are on the transverse momentum of the D∗ meson
with pT > 1.8 GeV and on the pseudorapidity of the D∗ meson with η(D∗) < |1.5|. The events
have been selected with the Fast Track Trigger of the H1 experiment. The final simulation
of the FTT allows to consider the trigger efficiency dependence on different kinematic vari-
ables. In this thesis the results of the single and double differential cross section measurement
of inclusive D∗ mesons in photoproduction have been presented. The single differential cross
section have been measured as a function of pT (D∗), η(D∗), z(D∗) and Wγp. In addition, a



double differential cross section measurement was performed in the transverse momentum and
the pseudorapidity of the D∗ meson. The total D∗ meson cross section in the visible region
amounts to

σvis(p→ eD∗X) = 38.71± 0.76(stat.)± 4.16(sys.)nb.

The results of the single and double differential cross sections have been compared to lead-
ing order QCD models from MC simulation programs of PYTHIA and CASCADE and to next
to leading order predictions from FMNR and GMVFNS. In general the predictions describe the
data reasonably well. However, two main discrepancies are observed:
The measured single differential cross section as a function of the D∗ inelasticity z(D∗) is de-
scribed by none of the leading order or next to leading order predictions.
Moreover the excess in the highest pT (D∗) region which was observed by the latest publication
of D∗ mesons in photoproduction of the ZEUS collaboration [4] is confirmed. All calculations
predict a similar η(D∗) shape in the highest pT (D∗) region which differs from the measured
shape in the data.



Appendix A

Cross Section Tables

single differential D∗ cross section
pT (D∗) range dσ/dpT (D∗) stat. sys.

[GeV] [nb/GeV] [%] [%]
1.80− 2.10 35.41 ±11.6 +18.8

−18.8

2.10− 2.50 28.92 ±8.0 +16.6
−16.6

2.50− 3.00 15.21 ±5.2 +11.6
−11.6

3.00− 3.50 8.59 ±5.6 +10.3
−10.3

3.50− 4.50 4.35 ±3.3 +10.4
−10.4

4.50− 5.50 2.28 ±3.8 +11.3
−11.3

5.50− 6.50 0.89 ±5.2 +11.0
−11.0

6.50− 9.00 0.25 ±5.7 +11.9
−12.1

9.00− 12.50 0.05 ±11.8 +20.1
−17.2

η(D∗) range dσ/dη(D∗) stat. sys.
[nb] [%] [%]

−1.50−−1.00 12.51 ±5.0 +12.0
−12.0

−1.00−−0.50 15.09 ±3.6 +11.3
−11.3

−0.50− 0.00 16.86 ±3.7 +11.2
−11.2

0.00− 0.50 14.10 ±4.3 +11.5
−11.5

0.50− 1.00 11.38 ±4.9 +11.8
−11.8

1.00− 1.50 7.48 ±9.8 +14.6
−14.7

Table A.1: Summary of the differential cross sections for inclusive D∗ production. The central
value of the cross section measured in bins of pT (D∗) and η(D∗) with their statistical and
systematical uncertainties is shown.



single differential D∗ cross section
Wγp range dσ/d(Wγp ) stat. sys.

[GeV] [nb/GeV] [%] [%]
100− 140 0.32 ±3.3 +11.3

−11.3

140− 180 0.27 ±3.2 +11.1
−11.1

180− 230 0.18 ±3.9 +11.5
−11.5

230− 285 0.11 ±5.9 +12.6
−12.5

z(D∗) range dσ/d(z(D∗) ) stat. sys.
[nb] [%] [%]

0.00− 0.10 41.69 ±14.0 +18.1
−18.2

0.10− 0.20 83.27 ±5.4 +12.6
−12.6

0.20− 0.35 71.72 ±3.3 +11.1
−11.2

0.35− 0.55 52.44 ±2.6 +10.7
−10.7

0.55− 1.00 11.90 ±3.6 +12.8
−12.7

Table A.2: Summary of the differential cross sections for inclusive D∗ production. The central
value of the cross section in bins of Wγp and z(D∗) with their statistical and systematical
uncertainties are shown.



double differential D∗ cross section
1.8 ≤ pT (D∗) < 2.5 GeV

η(D∗) range d2σ/dηdpT stat. sys.
[nb/GeV] [%] [%]

−1.50−−1.00 12.95 ±11.73 +18.99
−18.97

−1.00−−0.50 11.89 ±12.09 +19.23
−19.24

−0.50− 0.00 13.33 ±11.01 +18.66
−18.60

0.00− 0.50 10.12 ±16.39 +22.37
−22.43

0.50− 1.50 7.49 ±18.14 +23.77
−23.80

2.5 ≤ pT (D∗) < 4.5 GeV
η(D∗) range d2σ/dηdpT stat. sys.

[nb/GeV] [%] [%]
−1.50−−1.00 2.23 ±6.28 +11.73

−11.71

−1.00−−0.50 3.01 ±4.43 +10.69
−10.73

−0.50− 0.00 3.62 ±4.61 +10.83
−10.81

0.00− 0.50 2.97 ±5.32 +11.30
−11.29

0.50− 1.00 2.34 ±6.64 +12.07
−12.07

1.00− 1.50 1.83 ±13.76 +17.35
−17.33

4.5 ≤ pT (D∗) < 12.5 GeV
η(D∗) range d2σ/dηdpT stat. sys.

[nb/GeV] [%] [%]
−1.50−−1.00 0.07 ±10.26 +15.39

−15.16

−1.00−−0.50 0.14 ±6.02 +12.36
−12.31

−0.50− 0.00 0.22 ±5.66 +12.14
−12.18

0.00− 0.50 0.24 ±5.36 +12.12
−12.12

0.50− 1.00 0.18 ±5.55 +12.17
−12.11

1.00− 1.50 0.11 ±9.70 +14.73
−14.79

Table A.3: Summary of the double differential cross sections for inclusive D∗ production. The
cross section is determined in bins of η(D∗) for three ranges in pT (D∗) with their statistical
and systematical uncertainties



Appendix B

Database changes due to new H1SIM &
H1REC

The new simulation and calibration of the specific energy loss in the CJCs includes changes
at the H1 data base. The hit corrections for MC are stored in the data base bank CJQM, see
table B.1. The first two parameter are due to the CJC calibration and are taken from the bank
CJQC from data. Parameter 5 is due to the CJC staggering. For the correction of the tanβ
dependence of CJC hits the values of parameter 6 to 9 are needed.

CJQM needed in H1SIM for HERAII
0.044244 0.187218 0. 0. 0.06
0.1474 0.1834 0.1123 0.1591 0.
0. 0. 0.

Table B.1: Hit correction parameters of CJQM bank. See text for description.

The track level corrections for MC simulations of the threshold effect, the cosθ dependence
and the dE/dx resolution are stored in the bank CJDD. A description of the data base bank
is presented in table B.2. This correction depend on the CJC gain and the parameters for one
constant gain period is shown in table B.3. In total 10 CJDD banks exists on the data base each
corresponding to a constant gain period.



TABLE: CJDD, CJC dE/dx Corrections for MC
Column no. Parameter name Format Min. Max. Comments

1 IPAR1 I -INF +INF Parametrization (0: resolutions)
2 IPAR2 I -INF +INF IPAR1=0: 0: Resolution par 1

1: Resolution par 2
IPAR1=3: 0: threshold, gain parameters

1: cos-theta parameters
3 PAR1 F -INF +INF Par 1 (IPAR=0: p resol)
4 PAR2 F -INF +INF Par 2 (IPAR=0: K resol)
5 PAR3 F -INF +INF Par 3 (IPAR=0: pi reso)
6 PAR4 F -INF +INF Par 4 (IPAR=0: mu reso)
7 PAR5 F -INF +INF Par 5 (IPAR=0: e resol)
8 PAR6 F -INF +INF Par 6 (IPAR=0: d resol)
9 PAR7 F -INF +INF Par 7 (IPAR=0: alpha resol)

10 PAR8 F -INF +INF Par 8

Table B.2: Data base description of the table CJDD.

CJDD for run range 465088
IPAR1 = 0 IPAR2 = 0 :
0.4684 0.4684 0.4684 0.4684 0.4684 0.4684 0.4684 0.
IPAR1 = 0 IPAR2 = 1 :
0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.
IPAR1 = 3 IPAR2 = 0 :
0. 0. 0. 0.213 -1.228 0. 0. 1.395
IPAR1 = 3 IPAR2 = 1 :
0.9247 -0.0603 0.061 0.137 0.9321 -0.0868 0.1563 0.051

Table B.3: Example of CJDD parameters.
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mentation of ŝ fragmentation”, https://www-h1.desy.de/icgi-
h1wiki/moin.cgi/HeavyFlavourWorkingGroup/F2cc from D*?action=
AttachFile&do=get&target=lipka-080701.pdf, (2008).

[62] W. Marciano, “ Flavour thresholds and Lamda in the modified minimal-substraction
scheme”, Phys. Rev., Volume 29, No. 3.

[63] private communication with Stefano Frixione.

[64] B. A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, “Inclusive photoproduction
of D*+- mesons at next-to-leading order in the General-Mass Variable-Flavor-Number
Scheme,” Eur. Phys. J. C, 62, (2009), 365, [arXiv:0902.3166].

[65] T. Kneesch, B. A. Kniehl, G. Kramer and I. Schienbein, “Charmed-Meson Frag-
mentation Functions with Finite-Mass Corrections,” Nucl. Phys. B, 799, (2008), 34,
[arXiv:0712.0481].

[66] P. Aurenche, M. Fontannaz and J. P. Guillet, “New NLO parametrizations of the parton
distributions in real photons,” EPJC 44, (2005), 395 [hep-ph/0503259].

[67] H1 et al. (H1 Collaboration), H1 Fast Navigator, [http://www-
h1.desy.de/general/home/intra home.html], (2007).

[68] F. D. Aaron et al. (H1 Collaboration), “Measurement of the Proton Structure Function FL

at Low x”, Phys. Lett. B, 665, (2008), 139-146.

[69] I. Abt et al. (H1 Collaboration], “The H1 Detector at HERA”, Nucl. Instrum. Methods A,
386, (1997), 310,
Nucl. Instrum. Methods A386, (1997), 348.

[70] R.-D. Appuhn et al. (H1 SpaCal Group], “The H1 Lead/Scintillating-Fibre Calorimeter”,
Nucl. Instrum. Methods A386, (1997), 397.

[71] D. Pitzl et al., “The H1 silicon vertex detector”, Nucl. Instrum. Methods A454, (2000),
334,
B. List, “The H1 central silicon tracker”, Nucl. Instrum. Methods A, 501, (2001), 49.

[72] J. Becker et al., “A Vertex trigger based on cylindrical multiwire proportional chambers”,
Nucl. Instrum. Methods A, 586, (2008), 190.

[73] Th. Wolff et al., “A drift chamber track finder for the first level trigger of the H1 experi-
ment,” Nucl. Instrum. Methods A, 323, (1992), 537.

[74] A. Baird et al.,“A fast high resolution track trigger for the H1 experiment”, IEEE Trans.
Nucl. Sci., 48, (2001), 1276, [hep-ex/0104010].

[75] D. Meer et al., “A multifunctional processing board for the fast track trigger of the H1
experiment”, IEEE Trans. Nucl. Sci. , 49, (2002), 357, [hep-ex/0107010].

137



BIBLIOGRAPHY

[76] V. Blobel, “New developements in track finding and fitting”, [https://www-
h1.desy.de/idet/itracker/TrackingGroup/AgnMin/Meet050824/blobel050824.pdf],
(2005).

[77] D. Pitzl, H1 Cross Talks 2008, https://www-h1.desy.de/h1/iww/ipublications/crosstalk
/2008/talks/xtalk-DPitzl.pdf.

[78] B. Andrieu et al. (H1 Calorimeter Group), “Electron / pion separation with the H1 LAr
calorimeters”, Nucl. Instrum. Methods A, 344, (1994), 492.

[79] B. Andrieu et al. (H1 Calorimeter Group), “Beam tests and calibration of the H1 liquid
argon calorimeter with electrons”, Nucl. Instrum. Methods A, 350, (1994), 57.

[80] T. Nicholls et al. (H1 SpaCal Group), “Performance of an electromagnetic lead / scin-
tillating fiber calorimeter for the H1 detector”, Nucl. Instrum. Methods A, 374, (1996),
149.

[81] H1 et al. (H1 Collaboration)., H1 Luminosity system, https://www-
h1.desy.de/h1/www/h1det/lumi/figures/lumi hera2 setup.html.

[82] F. Sefkow et al., 1994 Nuclear Science Symposium, Norfolk, Virginia, USA, October
1994, IEEE Trans. Nucl. Sci., Vol 42, No. 4, (1994), 900.

[83] J. Naumann, ”Entwicklung und Test der dritten H1-Triggerstufe”, Ph.D. thesis, Universität
Dortmund, Germany, (2003), https://www-h1.desy.de/psfiles/theses/h1th-305.ps.

[84] T. Nicholls et al., “Concept, Design and Performance of the Second Level Trigger of the
H1 Detector”, IEEE Transactions on Nuclear Science, vol. 45, (1998), 810.

[85] J. C. Bizot et al., ”Strategy studies for the H1 topological L2 trigger (L2TT)”, (1997).
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bining Triggers in HEP data Analysis”, Nucl. Instrum. Methods A, 604, (2009), 707,
[arXiv:0901.4118v1].
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