
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Sebastian Jeltsch

Computing with Transient States on a Neuromorphic Multi-Chip
Environment

Diplomarbeit

HD-KIP-10-54

KIRCHHOFF-INSTITUT FÜR PHYSIK



Department of Physics and Astronomy
Heidelberg University

Diploma thesis
in Physics

submitted by
Sebastian Jeltsch

born in Ludwigsburg, Germany

October 2010





Computing with Transient States on a
Neuromorphic Multi-Chip Environment

This diploma thesis has been carried out by Sebastian Jeltsch at the
Kirchhoff Institute for Physics

Ruprecht-Karls-Universität Heidelberg
under the supervision of

Prof. Dr. Karlheinz Meier





Computing with Transient States on a Neuromorphic Multi-Chip Environment

The work presented in this thesis establishes a complete framework for the exploration of
arbitrary neural architectures on an accelerated neuromorphic hardware device beyond single-
chip boundaries. By building upon the event distribution network of the system, the developed
methods close the gap between low-level functionality and the high-level neural network
description language PyNN. For this purpose, algorithms have been implemented which perform
three basic steps: A mapping of PyNN neurons to appropriate hardware circuits in the multi-
chip environment, a resource-optimized intra and inter-chip routing of synaptic connections as
well as a parameter translation between the biological and the hardware domain. The correct
functionality of the presented setup is demonstrated experimentally by the successful realization
of Synfire-Chains spanning multiple chips. Furthermore, an attractor-free computing paradigm
based on a self-stabilizing neural network architecture is investigated on the neuromorphic
system. A spike-based classifier adapted from the tempotron scheme is trained to evaluate
the emerging transient network dynamics. Although this training is performed in a pure
software environment merely mimicking hardware-specific constraints, a direct mapping of the
tempotron to actual hardware yields remarkable qualitative and quantitative matching with
the software prototype. The documented work provides a foundation for the fully hardware-
integrated realization of continuous computing and classification concepts like Liquid State
Machines.

Berechnungen mittels transienter Zustände in einer neuromorphen
Multi-Chip-Umgebung

Die vorliegende Arbeit schafft die methodischen Voraussetzungen, welche erstmals erlauben,
über die Grenzen einzelner Chips hinaus beliebig strukturierte neuronale Netzwerke auf einem
beschleunigten neuromorphen Hardwaresystem zu untersuchen. Dazu wird, aufbauend auf
einer Transportschicht zur Weiterleitung von Aktionspotentialen zwischen solchen Chips, eine
Verbindung geschaffen zwischen der hardware-spezifischen Ansteuerung dieser Funktionali-
tät und PyNN, einer abstrakten Beschreibungssprache für neuronale Netzwerke. Zu diesem
Zweck wurden Algorithmen entwickelt, die vornehmlich drei Aufgaben erfüllen: Das Abbilden
von PyNN-Neuronen auf entsprechende Schaltkreise der Multi-Chip-Plattform, die ressour-
cenoptimierte Verschaltung der synaptischen Verbindungen auf und zwischen den einzelnen
Chips, sowie die Übersetzung aller Parameterwerte von der biologischen Beschreibung ins
mikroelektronische Modell. Die korrekte Funktionsweise des kompletten Systems wird anhand
einer Synfire-Chain, die sich uebere mehrere Chips erstreckt, experimentell belegt. Außer-
dem wird die neuromorphe Implementierung eines attrakorfreien Berechnungsparadigmas
untersucht, das auf einer sich selbst stabilisierenden Netzwerkstruktur basiert. Dafür wird
ein von einem Tempotron abgeleiteter, nur mit Aktionspotentialen arbeitender Klassifizierer
für die Auswertung der instationären Netzwerkzustände trainiert. Obwohl das Training in
einer reinen Softwareumgebung stattfindet, in der bestimmte Hardwarebeschränkungen nach-
geahmt werden, zeigt eine direkte Übertragung des trainierten Klassifizierers auf Hardware
eine bemerkenswerte qualitative und quantitative Übereinstimmung mit der Softwarevorlage.
Damit schafft diese Arbeit die Grundlagen für eine vollständig hardware-integrierte Umsetzung
von kontinuierlich arbeitenden Berechnungs- und Klassifizierungskonzepten wie zum Beispiel
Liquid State Machines.





Contents

Introduction 1

1. Materials and Methods 3
1.1. The Neuromorphic Hardware System . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1. The Mixed-Signal Neural Network Chip Spikey . . . . . . . . . . . . . . 3
1.1.2. The Carrier Board Nathan . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3. Backplane and Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4. Inter-Chip Spike Distribution Network . . . . . . . . . . . . . . . . . . . 8
1.1.5. The FACETS Wafer-Scale Hardware System . . . . . . . . . . . . . . . 11

1.2. Software Framework for Single Chip Operation . . . . . . . . . . . . . . . . . . 12
1.2.1. The Modeling Language PyNN . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2. PyNN Backend for the Chip-Based System . . . . . . . . . . . . . . . . 13
1.2.3. Low-Level Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3. Software Framework for Wafer-Scale Operation . . . . . . . . . . . . . . . . . . 14
1.3.1. MappingTool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4. The Liquid Computing Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1. Concept of the Liquid State Machine . . . . . . . . . . . . . . . . . . . . 17
1.4.2. Motivation and Biological Relevance . . . . . . . . . . . . . . . . . . . . 19
1.4.3. Output Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2. Realization of a Multi-Chip Setup and On-Chip Classification 23
2.1. Concepts for Multi-Chip Operation . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1. Initial Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2. Specialized Graph Representation . . . . . . . . . . . . . . . . . . . . . 25
2.1.3. Neuron Placement Beyond Chip Boundaries . . . . . . . . . . . . . . . . 26
2.1.4. Routing of Synaptic Connections . . . . . . . . . . . . . . . . . . . . . . 26
2.1.5. Parameter Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.6. Further Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2. Implementing the Multi-Chip Environment . . . . . . . . . . . . . . . . . . . . 32
2.2.1. General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2. Multi-Chip Graph Structure . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3. Multi-Chip Neuron Placement . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4. Multi-Chip Routing of Synaptic Connections . . . . . . . . . . . . . . . 33
2.2.5. Multi-Chip Parameter Translation . . . . . . . . . . . . . . . . . . . . . 40
2.2.6. Experiment Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3. Liquid State Machines on the FACETS Chip-Based System . . . . . . . . . . . 43
2.3.1. Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2. Liquid Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.3. Readout Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III



3. Experimental Results 50
3.1. Verification and Performance Analysis of the Multi-Chip-System . . . . . . . . 50

3.1.1. Routing Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.2. Scalability of the System . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.3. Hardware Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.4. Verification of Accurate Hardware Configuration . . . . . . . . . . . . . 61

3.2. Neural Network Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1. Single-Chip Liquid Computing . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2. Feasibility Analysis: A Liquid State Machine on the Multi-Chip-Setup . 76

Conclusion and Outlook 82

A. Parameter List 87
A.1. Shared Chip Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2. Unique Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B. Program Code Listings 95
B.1. Dijkstra’s Algorithm Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C. Figures and Tables 96
C.1. Distribution of Dropped Network Events . . . . . . . . . . . . . . . . . . . . . . 96

D. Acronyms 97

Bibliography 104

IV



Introduction

Towards Neuromorphic Hardware

So that I may perceive whatever holds
The world together in its inmost folds.

(Faust, J. W. v. Goethe 1808)

Long before the cornerstone was laid for modern science, man tried to understand his sur-
rounding nature. It is not merely by chance that the protagonist of Goethe’s drama is a
scientist struggling to reason the basic principles holding the world together. Despite continu-
ously accelerating advances towards understanding our universe, to this day we still remain
remarkably nescient about the sapience of Homo Sapiens itself.

With the dawn of the early computer age in the late ’30s and early ’40s of the past century,
the answer to all these questions seemed within reach. Artificial “thinking machines” were
envisioned in the endeavor of understanding the original thinking machine, the human brain.
Pioneers like John von Neumann, Alan Turing or John McCarthy, encouraged by this ambitious
goal, led the field evolving at a tearing pace. By building on the constant developments in
technology, enormous progress was made in various fields like game solving, map navigation
or speech recognition. However, when it comes to real world tasks like object recognition or
complex body movement, even the most sophisticated machines fall behind their biological
rivals. While software and algorithms are continuously improving, the miniaturization of
hardware, described impressively by Moore’s law, is expected to reach a natural barrier soon.
With the individual in-silico layers of transistors reaching thicknesses of only a few atoms,
the production of reliable components becomes increasingly difficult. While the search for
alternative architectures and manufacturing processes is ongoing, evolution has found an
extremely efficient solution to this problem long ago: the brain. If we were able to re-engineer
the structure of the biological template, this would certainly revolutionize our contemporary
concept of computing devices. In any case, it would be a breakthrough in the way of testing
and implementing our hypotheses about neural algorithms.

Neuromorphic hardware development attempts a bottom-up approach at reverse-engineering
the brain. The basic biological building blocks are translated into real physical circuitry, leading
to a system of artificial neurons and synapses evolving simultaneously and asynchronously
in time. With the system computing itself, the time required for the emulation of a given
network does not scale with its size. Furthermore, due to the size of the components and the
intrinsic properties of silicon, neuromorphic hardware can offer a significant speed-up factor
with respect to biological real-time. This becomes particularly relevant when studying for
example long term plasticity phenomena. Last but not least, neuromorphic devices can easily
excel modern processors in a very brain-like fashion when it comes to power consumption.

1



The FACETS Project
With the neuromorphic concept in mind, the FACETS (Fast Analog Computing with Emergent
Transient States) project has united scientists from various fields of research in an effort to
create a foundation for the realization of novel computing paradigms inspired by observations
of biological neural systems. Enabled by a strong theoretical and experimental background
offered by the formulation of models on various scales, from individual neurons and synapses
up to large, cortically-inspired networks, based on in-vivo and in-vitro measurements, different
types of neuromorphic hardware have been developed within the FACETS community. While
one approach concentrates on a very accurate reproduction of biological structures, with the
possibility of interfacing the system to real, biological neural networks, the other approach
emphasizes versatility and scale. The neuromorphic hardware developed by the Electronic
Vision(s) group in Heidelberg together with the TU Dresden aims towards the wafer-scale
integration of multiple building blocks containing neurons and synapses, with a particular
focus on enabling almost arbitrary connection patterns between all the neurons across the
wafer. While this system is still in its development phase, individual chip prototypes are
currently available for experimentation.

The Problem of Scaling
Although neuromorphic hardware offers many advantages for the emulation of neural networks,
several drawbacks exist. Many of them relate to distortions caused by imperfections in
the hardware manufacturing process or by design-inherent limitations. However, one of the
strongest limiting factors is represented by the physical size of the hardware itself, which in
turn limits the number of available neural components. In order to overcome this barrier
and enable the emulation of arbitrarily large networks, realizable scaling solutions need to be
explored. The thesis at hand focuses primarily on resolving the scaling problem for a chip-
based FACETS prototype neuromorphic system by integrating multiple such chips in a single,
coherent, easy-to-use setup, while maintaining the versatility of individual chips at the level
of the entire setup. The realizability of the approach is validated by comparing results from
hardware emulations to equivalent runs on established software simulators. Additionally, as a
secondary focus, a particular type of network model, the Liquid State Machine, is implemented
– using exclusively spiking neurons for all components, including the output classifier – on a
single-chip environment. The feasibility of a multi-chip solution is analyzed, experimentally
tested and discussed.

Outline
Chapter 1 sketches the technological prerequisites for the realization of a multi-chip system.
Additionally, the theoretical foundations necessary for liquid computing are provided. In the
beginning of Chapter 2 the fundamental concepts and necessary steps for the realization of
the multi-chip framework are described. The following part, namely Section 2.2 and Section
2.3, explain the actual implementation of the mapping flow and the realization of the Liquid
State Machine. Results gathered from the framework analysis and the experiments performed
with the Liquid State Machine (LSM) on the hardware system are presented in Chapter 3.
This includes the realization of a spike-based classifier on the actual hardware system.

2



1. Materials and Methods

This chapter gives a brief introduction to the current state of the available software and
hardware components. It highlights the topics which are of special interest for the thesis at
hand.
The FACETS chip-based and FACETS wafer-scale system are introduced, which are both

general purpose neuromorphic hardware platforms for the exploration of neural networks.
Additionally, the available wafer-scale software framework is described. It provides functionality
to map arbitrary network descriptions onto large-scale neuromorphic hardware systems.
In the end the fundamental concepts for transient computation are outlined together with

the basic building blocks of the Liquid State Machine.

1.1. The Neuromorphic Hardware System

This section describes the FACETS chip-based hardware currently available for neuromorphic
experiments within the Electronic Vision(s) Group. Figure 1.1 shows the setup with its main
building blocks: the Spikey chips residing on carrier boards plugged into one backplane which
is connected to an operating host computer.

Backplane

15 11 10 9 6 4 1 0

SD-R
AM

FPGA
Spik

ey

Nath
an Host-

Computer

Figure 1.1.: The FACETS chip-based system consisting of several Spikey Artificial Neural Network
chips with Nathan carrier boards on the backplane. The whole setup is operated from a host computer.

1.1.1. The Mixed-Signal Neural Network Chip Spikey

The mixed-signal Application-Specific Integrated Circuit (ASIC) Spikey was developed in
the Electronic Visions(s) group and is available in its 4th version. The chip is fabricated
in a 180 nm Complementary Metal-Oxide-Semiconductor (CMOS) process and has an area
of 5 × 5 mm2. A photograph of the chip is shown in Figure 1.2. The behavior of the 384
implemented Leaky-Integrate-and-Fire (LIF) neurons is emulated by analog circuits, allowing
the neurons to operate in a continuous time regime. Their time evolution is accelerated by a
factor of a = 104 compared to biological real time due to their shorter intrinsic time constants.

3



1. Materials and Methods

The dynamics of the membrane are described by the following set of differential equations for
LIF neurons with conductance-based synapses:

−Cm
dV
dt = gl(V − El) +

∑
j

gj(t)(V − Ee) +
∑
k

gk(t)(V − Ei)

V = Vreset if V > Vthresh .

(1.1)

Cm represents the overall membrane capacitance, El the leakage reversal potential, Ee
the excitatory reversal potential and Ei the inhibitory reversal potential. The conductance
gl models a constant discharge that polarizes the membrane towards the leakage reversal
potential El. The two sums on the right hand side of the equation run over each afferent
synapse with its characteristic time course gj(t) for an excitatory synapse and gk(t) for an
inhibitory synapse respectively. In case the membrane potential crosses a threshold Vthresh
a spike is emitted and the membrane is set back to its reset potential. The membrane time
constant is given by τm = Cm/gl with τhwm · a ≈ τbiom .
Each of the 384 neurons can have up to 256 inputs, resulting in a total of 98304 synapses.

Each synapse implements a weight with a resolution of 4 bit and provides Spike-Timing-
Dependent Plasticity (STDP) functionality [Schemmel et al., 2007], [Schemmel et al., 2006].
They are aligned in two grids, splitting up the chip into two cores. The axonal inputs, the
so-called synapse drivers, occupy the space between the grids, while the neurons are aligned
alongside the bottom of each grid. Each row of synapses can be individually configured to
mimic facilitating or depressing efficacies by means of a shared Short-Term Plasticity (STP)
feature [Schemmel et al., 2007; Tsodyks and Markram, 1997]. Within a single core, neural
connections can be arbitrarily defined and flexibly programmed. However, since every synapse
driver is limited to receive input from the neuron on the same or adjacent core with the
corresponding address or from an external event memory (see Section 1.1.2) the overall
connection density is limited (see Brüderle [2009] for further detail).
The analog part is supported by a digital controller circuit residing on the lower part of

the chip (see Figure 1.2). It is clocked with twice the frequency provided by the support
infrastructure described in Section 1.1.2 and 1.1.3. In the following the clocks will be referred
to as the fast and the slow clock, respectively.

Threshold crossings of the membrane potentials in the analog neural circuits are registered
and recorded digitally. To offer a higher spike time resolution, the fast chip clock is subdivided
into 16 time bins by a ring buffer locked onto the rising edge of the clock signal. For a 100 Mhz
system clock (slow), this corresponds to a resolution of about ∆t = 3µs biological time.
However, the resolution may decrease for high event rates on the chip as only one spike can
occur per time bin, so that multiple almost coincident spikes are distributed over subsequent
time bins.
As a general purpose neuromorphic hardware device and due to its high configurability,

Spikey can be employed as a neuroscientific modeling tool. A Python-based backend for the
simulator-independent network description language PyNN, as described in Section 1.2.1, has
been implemented to simplify its operation.
A complete list of chip parameters can be found in the Appendix A. For further details

about the chip see Grübl [2007].

4



1.1. The Neuromorphic Hardware System

Figure 1.2.: A micro photograph of a Spikey (version 2) mixed-signal neural network chip. One can
see the two large synapse arrays in the upper left and right, and the neurons as a dark row below each
array. The irregular textured area underneath belongs to the digital support circuit.

1.1.2. The Carrier Board Nathan

The Nathan board is designed to support the Spikey chips with power, memory and connectivity.
It is responsible for the host communication and further enables the chips to communicate with
each other. The central units on the boards are Xilinx Virtex-II Pro Field Programmable Gate
Arrays (FPGAs) and an off-the-shelf memory module, also referred to as playback memory.
The memory module can stores program sequences to configure the Spikey chips and inject
external stimulation. Besides, the FPGA implements communication infrastructure to the
host PC and to other Nathan boards.

1.1.3. Backplane and Connectivity

The backplane is a custom Printed Circuit Board (PCB), which provides power, a global
clock signal and connectivity for up to 16 Nathan modules. It has been developed within
the Electronic Vision(s) group to host support infrastructure for chip-based neuromorphic
hardware systems [Schemmel et al., 2004]. Figure 1.3 shows a photograph of a backplane with
three Nathan boards. The design fits in a standard 19 inch rack and is powered by a standard
ATX power supply. Besides, an FPGA is provided to control the communication between
Nathans and host computer. Three different bus systems are implemented: SlowControl,
Gigabit Ethernet and Multi-Class Gigabit Network (MCGN), which are described in the
following.

The SlowControl Host Communication Protocol

The SlowControl (SC) protocol was developed in the Electronic Vision(s) group to inter-
connect backplane and Nathans. The prefix “Slow” in SlowControl indicates that the protocol

5



1. Materials and Methods

Figure 1.3.: A photograph of a backplane carrying three Nathan boards. On each Nathan board,
below the acrylic glass lid, a Spikey chip can be seen.

was never intended for live spike distribution between different Nathan units [Philipp, 2008,
Section 2.4]. This low-level protocol provides an interface to access FPGA registers and
memory segments directly.

The Gigabit Ethernet Host Communication and ARQ Protocol

The Gigabit Ethernet interface has been implemented to increase the host communication
throughput and to simplify the access to the system. The hardware was until then only
accessible via the custom Peripheral Component Interconnect (PCI) board in a dedicated host
computer. On top of the Ethernet link layer the system uses an optimized Automatic Repeat
reQuest (ARQ) protocol to ensure packet delivery and to provide low latency communication
[Schilling, 2010] with the backplane FPGA. Consequently, in the backplane FPGA the payload
is repacked in SC compliant packets. These packets are forwarded to their destination Nathan
modules. Thanks to the Gigabit Ethernet interface, the chip-based system can be connected
to any off-the-shelf computer or notebook equipped with a standard network interface adapter.
The ARQ protocol will also be used for the communication and live interaction with the
FACETS wafer-scale system (see Section 1.1.5).

The Multi-Class Gigabit Network

The MCGN was developed in the Electronic Vision(s) group to interconnect the Nathan modules
on the backplane. It is provided by means of the FPGA Multi-Gigabit Transceiver (MGT) links
and is a time multiplexed network with Quality of Service (QoS) [Philipp, 2008, Section 1.4
and Chapter 3] functionality:

6



1.1. The Neuromorphic Hardware System

Best-Effort Traffic Data ready for transmission is delivered as soon as possible. Depending
on the traffic load on the network nodes, this results in a variable bit rate. Features akin
to lost traffic recovery [Philipp, 2008, Sections 3.7.1, 3.7.2] are not implemented. Hence, the
network operates more efficiently and adding new nodes is inexpensive in terms of transmission
overhead. This leads to a general good scalability with increasing network size.

Priority Traffic Spike events require fixed transmission delays and bounded jitter. The
requirements are motivated by e.g. STDP neural network experiments, where reliable delays
with a precision of a few ms are considered to be more critical than actual spike loss [Morrison
et al., 2008]. This feature is achieved via offline resource reservation and time division
multiplexing. Thus the routing requires only simple table look-ups with a time complexity of
O(1).

These two QoS features are sufficient to ensure that the transport of neural events is reliable
and delays between chips are deterministic.
The fixed topology of the network on the backplane has a toroidal structure which is

illustrated in Figure 1.4. The link layer is realized by impedance controlled Low-Voltage
Differential Signaling (LVDS) transmission lines. Only four of the available eight MGT links
connect a Nathan to its nearest neighbors. Hence not every pair of nodes shares a point-to-
point connection, so that traffic between those nodes needs to be forwarded by intermediate
nodes. The effective delay is proportional to the number of hops necessary to reach the final
target node. This delay per hop has been found to be in the order of 180 ns [Friedmann, 2009].

The two sides, FPGA user logic and physical network, are accessed by means of the so-called
user ports and the MGT ports. In each time slot within the periodic transmission frame of
the time multiplexed network each input user port can be arbitrarily connected to any output
MGT port, and each input MGT port can be freely interconnected to any output user port.
On a fully occupied backplane any two Nathans have a maximum distance of four hops, while
this distance may increase for setups with sparsely distributed Nathans on a backplane. The
MCGN also provides the functionality necessary to synchronize each individual Nathan clock
to a global time, allowing for a coincident triggering of experiments. The corresponding trigger
signal is referred to as Global Start Signal (GSS) [Philipp, 2008].

6 9 8

4 5 10 11

3 2 13 12

0 1 14 15

7

Figure 1.4.: Illustration of the fixed MCGN topology with toroidal structure. The available Nathan
modules are represented as nodes and their MGT links as edges.

7



1. Materials and Methods

1.1.4. Inter-Chip Spike Distribution Network
The Event Network (EVNET) is implemented in the FPGA logic on top of the isochronous
MCGN Network, to route neural events with programmable delays digitally from one chip to
another [Friedmann, 2009]. The network provides the necessary low-level infrastructure and
functionality for the multi-chip operation of arbitrary network architectures described in the
work at hand.

Each digital event routed through the network consists of a reduced address to identify
the pre-synaptic sender neuron and a time stamp to mark its time of occurrence. Each logic
connection belongs to exactly one so-called connection bundle. The mentioned reduced address,
also referred to as subnr, identifies the pre-synaptic neuron within its connection bundle.
The assembly on the sender side and the interpretation of the event on the receiver side are
performed by two separate logic blocks, that are schematically illustrated in Figure 1.6 and
Figure 1.7. Each side requires several LookUp Tables (LUTs) for the operation. Due to their
complexity, the sender and receiver logic are discussed below in greater detail.

FPGA user logic has access to the MCGN via the user ports. Physical links are interfaced
through the MGT ports provided by the FPGA (see Figure 1.5). Every Nathan module
possesses eight MGT ports. Four of them are hard-wired on the backplane in the toroidal
shape described in Section 1.1.3. For every time slot within a transmission frame of the
MCGN, the ports can be freely inter-connected. Forwarding traffic necessary for multi-hop
connections requires routing from an MGT input port to an MGT output port, while start or
terminal connections require user port input or output routing, respectively.

routing table

time counter

0

1

0

1

2

3

0

1

0

1

2

3

Switch

User logic

MGT network

A B DS B C DS A B C S

A B DS B C DS A B C S

Figure 1.5.: Access to the MCGN network is provided via so-called user ports on the FPGA logic
side and via the available MGT ports on the network side. The switch table can be programmed for
every transmission slot individually. Figure by S. Friedmann [Friedmann, 2009].

8



1.1. The Neuromorphic Hardware System

Sender Logic Output events produced on Spikey are initially processed in an FPGA logic
block – the so-called source_gen – where local events are filtered. Events not determined for
transmission are dropped, while all the rest is translated into network events by providing the
so-called multi FIFO index (mfi) to identify the connection bundle and looking up the subnr
for the corresponding source neuron within the bundle. Furthermore, the event is provided
with the address of the sender user port and its time stamp is extended. This user port is
stored in a LUT called Send_lut. The subsequent switch block – referred to as Send_switch
– routes the events to the so-called Transmit_buffer, a First In, First Out (FIFO) buffer that
belongs to each user port on the sender side. Based on their priorly obtained mfi the events
are pushed into one of multiple queues in the buffer, where they are stored until a matching
MCGN time slot occurs. In each time slot, one of the queues is exposed to a sender user
port and events are transmitted over the network (see Section 1.1.3). To determine which
FIFO buffer has to be forwarded in which time slot, another LUT, the so-called Mfi_lut, is
provided. It stores the assignment of time slot to mfi for a specific user port. An overview of
the sender data path is illustrated in Figure 1.6.

Scheduler

S
p
ik

e
y
 P

a
ck

e
t

Mfi_lutTransmit_buffer Timing

Port

Event 0

Event 2 Mfi_lutTransmit_buffer Timing

PortSend_switch

Source_gen

Event 1 Source_gen

Source_gen

Figure 1.6.: An illustration of the sending FPGA logic with the pre-synaptic events flowing from
left to right. The Send_switch connects the Spikey interface to the network interface. Events are
inserted into one queue of the Transmit_buffer depending on their remote destination and periodically
inserted into the MCGN. Figure by S. Friedmann [Friedmann, 2009].

Receiver Logic Figure 1.7 shows a schematic of the logic on the receiving side of the network.
In the depicted configuration two receiver user ports are connected to the event input buffer,
but only one event stream from the playback memory is connected. Therefore the overall
bandwidth of input spikes from the playback memory is reduced by a factor of three compared
to single-chip operation. On the receiver side, the events are picked up from the MCGN and
mapped by the make_target onto a receiver-side connection bundles according to the so-called
Logical Virtual Connection (lvc) number. The make_target module further resolves the
target synapse driver and synaptic delay of the event by looking up the concatenation of lvc
and the transmitted subnr in the Recv_lut. At this point the interpretation and retranslation

9



1. Materials and Methods

of network events back to Spikey events is complete. The subsequent Recv_queue and Sorter
provide functionality to delay events from each sending Nathan by a global value and by
an additional individual time delay for each target synapse driver. Finally, depending on
their target synapse driver address, the Reduce_events module merges the event streams and
distributes them to their appropriate input buffer (see Friedmann [2009] for further detail on
the implementation of each module).

Port

Timing

make_target Sorter

Receive_line
P
B

M

Port

Timing

make_target

Receive_line R
e
d
u
ce

_e
v
e
n
ts

S
p
ik

e
y
 P

a
ck

e
t

Event 0

Event 2

Event 1Sorter

Sorter

Figure 1.7.: An illustration of the receiving FPGA logic with the incoming data propagating from
left to right. Events inserted from the MCGN and input from the playback memory (labeled “PBM”)
are merged to one stream. The stream is finally presented to the Spikey interface controller illustrated
on the right side. Figure by S. Friedmann [Friedmann, 2009].

The number of programmable connections is soft-bounded by the bandwidth constraints
given by the MCGN-network on the one hand and hard-bounded by the number of available
logic units in the FPGA for the realization of LUTs on the other. If event rates exceed the
limits of the MCGN, some events are randomly dropped, which results in an artificial network
distortion that is difficult to characterize.

For the FPGA design used in the thesis at hand, two user ports are implemented, limited by
the capacity of the FPGA. Furthermore, in the employed setup, the number of pre-synaptic
neurons per connection bundle is limited to 64 due to the 6 bit wide subnr. The number of
connection bundles on the sender side, is limited to eight per user port because of the 3 bit
wide mfi. On the receiver side the number of connection bundles per user port is limited to 16
due to the 4 bit wide lvc.

10



1.1. The Neuromorphic Hardware System

1.1.5. The FACETS Wafer-Scale Hardware System

Beyond the hardware realization, the FACETS wafer-scale system provides a software tool-kit
for the mapping of arbitrary neural architectures. Since the work of the thesis at hand
is embedded into the wafer-scale software the hardware system is introduces shortly. The
corresponding software is described in greater detail in Section 1.3.
The FACETS wafer-scale hardware is the next-generation neuromorphic hardware system

developed within the FACETS project. Neuromorphic chips on an intact wafer are connected
by a post-processing step instead of cutting the wafer into individual chips. The goal is to
realize significant larger connection densities than one could achieve by conventional network
technologies. One wafer fabricated in a 180 nm process will host 384 so-called High Input Count
Analog Neuronal Network (HICANN) chips with a total of 200.000 Adaptive Exponential
Integrate-and-Fire (AdEx) [Brette and Gerstner , 2005] neurons and up to 50 million synapses
[Millner et al., 2010; Schemmel et al., 2010]. Each HICANN provides up to 512 single neurons
and offers the functionality to combine adjacent neurons. Such a merged circuit can receive
stimuli from up to 16.000 inputs. The asynchronous on-wafer spike communication is provided
by the so-called Layer1 bus. The off-wafer communication to a host computer or other wafers
is established by the embedded Digital Network Chips (DNCs) over the so-called Layer2 bus.
Each DNC connects eight HICANNs to an external DNC FPGA module. Furthermore, each
of the external DNC FPGA modules interconnects four DNCs. Hence, the system requires
12 external DNC FPGA modules in total to support all HICANN chips. An exploded view
drawing of the complete wafer-scale system is shown in Figure 1.8.

To cope the complex task of mapping arbitrary neural architectures on such large systems a
framework – the so-called MappingTool – has been developed. Section 1.3.1 provides more
details concerning its basic building blocks.

Figure 1.8.: An exploded view of the FACETS wafer-scale system. The lowermost module represents
the actual wafer resting in its cooling plate. On top of it, one can see the wafer-scale system PCB
and its mechanical support frame with FPGA communication modules below and above. Figure by
D. Husmann.

11



1. Materials and Methods

1.2. Software Framework for Single Chip Operation

This section provides insight into the layers of currently available software used to operate
the chip-based system described in Section 1.1. In the following, they are described from top
(user interface) to bottom (Hardware Abstraction Layer).

1.2.1. The Modeling Language PyNN

The PyNN -language is aimed at modelers offering them a python-based Application Pro-
gramming Interface (API) for simulator-independent network description. Network models
described in PyNN can be ported to a large variety of software simulator backends only
by changing a single line of code (Davison et al. [2010], Brüderle et al. [2009]). For a list
of supported backends see Figure 1.9. PyNN also offers neuron models with standardized
parameter sets and units.
By issuing different simulators to produce and reproduce experimental data one can more

easily verify results and identify distortions produced by the software itself. Having the ability
to choose the simulator freely can be beneficial. Each simulator has its individual strengths
and weaknesses. Hence different parts of the same task can be solved by means of different
simulators, according to their suitability. Besides the flexibility it offers PyNN is free, open
source and well documented. By providing the necessary interfaces to operate the FACETS
chip-based system and the FACETS executable wafer-scale system specification [Vogginger ,
2010], it allows these systems to emulate nearly arbitrary neural network architectures. In
this context, PyNN enables the hardware developers to analyze their system and the modelers
to use the hardware with a simulator-like interface. Having thus rendered the knowledge of
hardware-specific detail obsolete, from a modeler’s perspective, the systems can be used as a
general-purpose neuroscientific modeling tool.

PyNN
Simulator-specific 

PyNN module

Python interpreter

Native interpreter

Simulator kernel

Direct communication Code generation

pyNN.neuroml

NeuroML

pyNN.brian

Brian

pyNN.neuron

nrnpy

NEURON

HOC

pyNN.nest

PyNEST

NEST

SLI

pyNN.pcsim

PyPCSIM

PCSIM

pyNN.
hardware.stage1

Chip-Based
Backend

FACETS
Chip-Based
Hardware

pyNN.
hardware.facets

FACETS
Wafer-Scale
Hardware

PyHAL (WS)PyHAL (CB)

MappingTool

Figure 1.9.: The simulator-independent network description language PyNN adds an abstraction
layer on top of established neuro-simulators to unify their operation. A specific translation backend for
every supported simulator is necessary. The FACETS chip-based system and the FACETS wafer-scale
system can both be accessed via PyNN, but require different backends despite their similarities.

12



1.2. Software Framework for Single Chip Operation

1.2.2. PyNN Backend for the Chip-Based System

The translation of the abstract network description onto the single-chip hardware backend
requires the software to distribute the neurons to their hardware counterparts and to configure
the hardware parameters appropriately with respect to the model parameters. Therefore, a
framework completely implemented in Python has been established by Brüderle et al. [2009].
The software maps the neurons sequentially by their internal PyNN ID with a configurable offset
onto the available hardware neurons while checking for conflicting configurations. Parameters
are translated from the biological domain to the corresponding electric hardware values. The
translation is subdivided into two steps: a base transformation, which is identical for every
hardware entity on chips of the same revision, and an individual calibration step. Calibration
data needs to be determined and archived into an Extensible Markup Language (XML) file
once for every chip and is from then on available for an experiment (for more information
see Brüderle [2009]). Alongside the parameters, the input spike trains are converted into a
hardware compatible format in terms of time stamps and hardware neuron addresses. Finally,
the prepared data is transmitted and written into the chip and into the playback memory.
Subsequently, the stimulation – and thus the experiment – is triggered (Section 1.1.2). After
the last input spike, which determines the end of experiment, the results are collected and
delivered to the PyNN interface.

In its current state the software does not provide optimization functionality for the mapping
of architectures exceeding single-chip capacity. It simply checks for violating configurations
and, in case it finds such, it stops. However, in a multi-chip system with e.g. limited input
counts per neuron, it becomes less obvious when and why a certain configuration exceeds the
hardware capacity. Therefore, it is fundamental to perform an optimization step in terms of
realizing intelligently as many requested neurons and synapses as possible. The goal of the
thesis at hand is to provide this very optimization by trying to reflect the original network
structure as close as possible.

Language Adaption Wrapper The so-called PyHAL is a thin layer closing the gap between
the low- and the high-level API. It is designed to add as little complexity as possible to the
software flow but mediate between the two worlds of Python or PyNN and the low level C++
API of the so-called SpikeyHAL (see below, Section 1.2.3). The software module described
above builds upon these classes exposed to Python.

1.2.3. Low-Level Hardware Interface

The software layer called SpikeyHAL is responsible for interfacing the hardware. It provides
classes and methods representing the configuration of the Spikey chip, the communication
structures and the Synchronous Dynamic Random Access Memory (SDRAM) module close
to the FPGA. All configuration data and input spike trains can technically be understood
as a sequence of commands carrying the respective data. There is no difference between
commands responsible for the configuration and those driving the experiment. Functionality
provided to the user by the SpikeyHAL is internally translated into correctly ordered and
scheduled command sequences. The actual experiment starts when the dynamics of the neural
architecture come to life driven by the input played from playback memory.

13



1. Materials and Methods

1.3. Software Framework for Wafer-Scale Operation
The highly complex wafer-scale system offers a significantly larger configuration space as
described in Section 1.1.5. Although the new system shall also be interfaced via a convenient
PyNN interface, the idea of extending the pure Python backend was dropped due to performance
considerations. The estimated mean event rates [FACETS D7-13 , 2010; FACETS M7-5 , 2010]
require parallelized data structures and a strict zero-copy policy from top to bottom of the
software. Furthermore, the software needs to be more versatile to handle the increased
complexity. This led to the development of a new framework completely written in C++, the
so-called MappingTool.

1.3.1. MappingTool
The operation of a neuromorphic hardware system requires several algorithmic tasks to be
solved in advance. The MappingTool, as a software framework, provides all the necessary tools.
It provides data structures and algorithms to place biological neurons onto hardware neurons,
to route synaptic connections, to translate parameters from the biological to the hardware
domain and vice versa as well as to configure hardware functionality. It has been developed to
operate the FACETS wafer-scale system in one consistent flow [Ehrlich et al., 2010]. More
details on each step are given further below. The goal was to establish a framework that
is as flexible and as modular as possible, so that it is easily adaptable to the still evolving
hardware platform. Because performance was another major concern, the MappingTool has
been developed to be scalably operated on parallelized unified memory machines [Savage and
Zubair , 2009] as well as on distributed cluster architectures [Pacheco, 1996]. Its modularity
further enables the system to swap single algorithms depending on the available computational
power and the type or level of complexity for a certain problem.
The procedure of mapping arbitrary network descriptions to the hardware substrate is

a highly complex algorithmic task. Therefore the design of the MappingTool intends to
approximate the solution of the task by dividing it into three less complex steps which are
assumed to be mostly independent. These conceptual steps are: the placing of neurons, the
routing of synaptic connections and the translation of parameters into the hardware domain.
They are further illustrated in Figure 1.10. The multi-chip environment in focus of the work
at hand was embedded into the MappingTool due to its flexibility and availability. Hence, the
next sections will give a short introduction to the components and basic concepts require to
perform the mapping of neural network descriptions onto a neuromorphic hardware system.

The GraphModel Data Structure

The underlying data structure of the MappingTool is the so-called GraphModel, a container
class dedicated to store all relevant biological and hardware information in a hierarchical
graph structure. The fundamental concept behind the GraphModel is to have a complete rep-
resentation of the topological information from network description to hardware configuration.
This model is necessary and sufficient to store and restore an experiment for the purpose of
reproducibility.
The basic building blocks of the graph structure are basic node entities and several types

of edges. Each node carries a label that can be employed in a key-value manner to archive
arbitrary data. The edges can provide additional information depending on their type, which
is one of the following:

14



1.3. Software Framework for Wafer-Scale Operation

Figure 1.10.: Illustration of the complete mapping flow and the conceptual split of the network
mapping task into three less complex problems to obtain an optimized solution.

Hierarchical Edges: The basic hierarchical tree structure builds upon the hierarchical edges.
Each node has a parent and may carry an arbitrary number of related child nodes. The
root node is characterized by being its own hierarchical parent.

Named Edges: The named edges enable the GraphModel to carry cycles, so that the tree
structure is extended to a more general graph structure. Named Edges posses a tag
member chosen from a finite set. The tag is intended to express the respective purpose
of the edge (e.g. MAPPING edges from biological to hardware neurons). Named edges
can be created between any two nodes, even between otherwise distinct trees like the
representations of the biological and hardware model.

Hyper Edges: Named edges themselves can have a connecting edge to an extra node realized
via the so-called hyper edges. These edges from edges to nodes can be used – similarly to
the tag member – to provide additional information but in a more generic fashion. For
example, synaptic connections represented as NEURO_NEURO named edges can therefore
carry information about whether they have excitatory or inhibitory character.

15



1. Materials and Methods

The Graph Navigational Language GMPath To simplify navigation through the large
GraphModel structures, the GMPath query language has been developed by Wendt et al.
[2010]. Based on so-called navigational steps one can reach arbitrary nodes and edges inside
the graph. Wildcards support the acquisition of recursive sets of nodes. Single queries can be
combined to form more complex requests obtaining intersections of query sets. Furthermore the
available hardware in a given experimental setup is described via a path language description,
that needs to be supplied by the user.

Specialized GraphModel Containers

Beside the basic GraphModel container, there exist further specialized containers with assisting
functionality to hold and process context-specific data consistently.

Biological Model The so-called BioModel is derived from the GraphModel and enriches
it with methods to consistently build, modify or remove neurons, synapses and biological
parameter sets. It is created at runtime from the PyNN network description to hold all
hardware-independent data. Stimulus data is carried by the corresponding neuron representa-
tions.

Hardware Model The hardware model is another specialization of the basic GraphModel.
Compared to the biological graph, which is dynamically created from the network description,
the structure of the corresponding hardware graph is known a priori. The idea is, that the
complete structure of nodes and hierarchical edges is determined by the available hardware
setup and represents the complete configuration space. Therefore the mapping only adds
connections via named edges or modifies values of parameter nodes. The additional functionality
provided by the hardware graph mainly consists of methods to build sub-tree structures fixed
by the hardware design, e.g. hardware neurons with their corresponding electrical parameters.
Consequently, by merging the single sub-components, the unfolded hardware representation is
created.

Assignment of Biological Cells to Hardware Neurons

In the given context, placing describes the procedure of mapping neurons from the biological
graph onto neuronal nodes in the hardware graph. A good placing is crucial for the performance
of subsequent algorithms and the routing process in particular. For example neurons with a
high local connection density need to be grouped together on one HICANN chip for an efficient
routing that avoids massive bus allocation. The most mature placing algorithm developed for
the wafer-scale system so far is the so-called N-Force-Cluster (NFC) algorithm implemented
by [Ehrlich et al., 2008]. Depending on their similarity, the algorithm applies virtual forces
onto the neurons. Neurons with similar afferent and efferent connections attract each other in
a high-dimensional property space. The exact shape of the forces strongly depends on the
objectives taken into consideration for the optimization process. After convergence into a
stable state, the neurons are clustered via a k-means clustering algorithm [Kanungo et al.,
2002] and then distributed by drawing named edges to their hardware counterparts.

16



1.4. The Liquid Computing Paradigm

Routing of Synaptic Connections

The neural network architecture combined with the placing determines the desired synaptic
hardware connections. Therefore the routing procedure needs to allocate hardware resources
for their realization. In case the amount of connections exceeds the capacity of the available
hardware, the routing ultimately needs to decide which connections to drop with respect to a
set of objectives, like for example minimal synaptic loss [Fieres et al., 2008].

Hardware Parameter Translation

Finding a suitable translation from biological to hardware parameters is not in all cases trivial.
Not every parameter in the biological model of a neuron or a synapse has a corresponding
hardware counterpart and the other way round. A single parameter may be emulated by a set
of hardware parameters and some parameters are shared by multiple entities. Additionally,
the output of the experiment needs to be translated back into the biological domain to close
the loop of hardware abstraction necessary for the PyNN layer.
In the most simple case, a single parameter from one domain is translated to one value in

the other by means of a simple translation function that possibly involves some calibration
data. For hardware parameters shared by multiple entities on the substrate the translation
process needs to find a compromise in terms of minimizing the overall distortion of the neural
architecture. The potential quality of a parameter translation heavily relies on the placement
performance. A compromise for a set of mapped hardware entities with shared parameters,
where the required target translation values differ significantly, yields a higher distortion. In
some cases, like for example the translation of continuous biological weights into the discrete
hardware weight space, such compromises are inevitable.
For both chip-based and wafer-scale systems, the effective synaptic efficacy is given by:

geffhw(t) = gmax · w · βstdf(t) ,

where gmax is a base efficacy shared by all synapses in the same row, w is the discrete 4 bit
hardware weight and βstdf(t) is the impact of the STP mechanism and is also shared for one
row of synapses. For the initial configuration, βstdf has no impact and can therefore be treated
as a scaling factor to be set to 1. The parameter translation needs to find suitable values for
the complete set of parameters for all synapses with respect to a minimal distortion of the
general synaptic efficacy. This distortion originates from several causes. The most obvious
one is the discretization of the weights, but it is additionally amplified by tuning the synapse
driver parameter gmax shared a row of synapses.

1.4. The Liquid Computing Paradigm
Computation on continuous input is still a problem. The concept of the LSM offers a particular
but generic ansatz to such problems by projecting the input into a high dimensional space
before presenting it to a classifier, a trick well known from machine learning. It empowers
neuromimetic classifiers to perform beyond their common characteristics.

1.4.1. Concept of the Liquid State Machine
In traditional computer science Finite State Machines (FSMs) have emerged as a useful generic
tool to build algorithms based on transitions between stable states [Hopcroft and Ullman,

17



1. Materials and Methods

1969]. A similarly unifying concept, but fundamentally different in its architecture, is realized
by the Liquid State Machine, as proposed by Maass et al. [2004] and by Jaeger [2001] in a very
similar form. It offers a generic method for the approximation of arbitrary, time-continuous
filters which operate on continuous input streams. In contrast to the FSM the LSM does not
require convergence into stable states but is inherently designed to work with transient states.

The mathematical model of the LSM, illustrated in Figure 1.11, acts as a filter that maps
an input function ~u(t) onto an output function ~y(t) continuously in time. Maass et al. [2002]
have shown that such LSMs have universal power in computation with fading memory on
functions in time and can therefore approximate any suitable filter with arbitrary precision.
An LSM consists of: the liquid, which translates the input stream into the so-called liquid
state, and a memoryless readout. The liquid state is a non-stable but transient state which
reflects not only the current input but also a decaying representation of its past. This fading
memory enables the memoryless readout to make a decision based on the recent input history
by looking only at the current state of the liquid. To achieve that, the LSM is required to
satisfy two properties:

Separation Property The underlying liquid does not necessarily need to be constructed as
a neural network but it needs to be sufficiently complex that at any point it can provide
a mapping of two different input functions ~u(t) and ~v(t) to two different liquid states ~xu(t)
and ~xv(t) that are significantly different while staying in a non-chaotic regime in terms of
conserving the relative distance of two different input streams. An illustration of the separation
property can be found in Maass et al. [2002] in Figure 2).

input u(t)

liquid

liquid state x(t)

output y(t)

readout f

Figure 1.11.: The mathematical model of the Liquid State Machine transforms the input ~u(t) into
the liquid state ~x(t) which is then mapped by the readout function ~f onto the output ~y(t)

18



1.4. The Liquid Computing Paradigm

Approximation Property The readout needs to have a sufficient resolution to extract the
required target output for a given task from the arising internal liquid states. Still it does not
need to provide a memory as this is provided by the liquid itself.

1.4.2. Motivation and Biological Relevance

In machine learning the projection of data into a high dimensional space is known as the kernel
trick e.g. in support vector machines [Meyer et al., 2003] or support vector networks [Cortes
and Vapnik, 1995]. In biological neural networks this concept is believed to be exploited as
well. For example the olfactory system of insects is assumed to first decorrelate the sensory
input in the so-called glomeruli and to then project this pre-processed information stream it
on a highly interconnected network of neurons to ease the subsequent classification [Schmuker
et al., 2008].
Although it is not yet perfectly clear how the wiring of the mammalian brain emerges on

different scales, it is reasonable to assume the wiring in very local volumes of the cortex to be
statistical [Braitenberg and Schüz, 1991]. Consequently also such structures could be suitable
for computation similar to the liquid computing paradigm.

1.4.3. Output Classification

A common task is to divide a set of input patterns into different groups, based on a small set
of characteristic features. Finding the proper feature set to perform the separation is often a
difficult task on its own. One ansatz is to provide a training set consisting of input and desired
output, where the classifier tunes itself to a proper feature set during an initial learning period.
Over the years a large variety of algorithms has been developed to perform the task of trained
classification [Alpaydin, 2004]. Often they obtain their inspiration from neural circuits found
in natural systems.

The Perceptron: A Linear Readout

The perceptron is a binary classifier developed in 1957 by Rosenblatt [1958]. It consists of a
simple feed-forward network architecture that is able to perform linear separation tasks. Linear
separation refers to the fact that the classification decision is based upon a linear combination
of the input characteristics. An illustration of such a separation on a two dimensional input
space can be found in Figure 1.12. Multiple layers of perceptrons can overcome the limitation
of linear separation and can consequently separate arbitrary convex sets in the input space.

The output of the perceptron is the result of the weighted sum over the input compared to
an arbitrary threshold and is given by Equation 1.2.

f(~x) =
{

1 if ~w · ~x+ cthresh > 0
0 else

. (1.2)

The weights can for example be tuned via the so-called delta learning rule. This rule has
been shown in Novikoff [1963] to converge to the correct classification if the input is linearly
separable.

ωn+1
ij = ωnij + ∆ωnij (1.3)

19



1. Materials and Methods

−1.0 −0.5 0.0 0.5 1.0

Input 0

−1.0

−0.5

0.0

0.5

1.0

In
pu

t1

Class 1
Class 2
ω Vector

Figure 1.12.: The input space is divided by a hyperplane which is orthogonal to the weight vector ~w
and passes through the origin of the coordinate system (since cthresh = 0). For any point ~xp in class 1,
it holds that ~w · ~xp > 0 and for any point in class 2 it holds that ~w · ~xp < 0, respectively.

∆ωnij = α(n) · (tj − oj) · xi . (1.4)

ωnij represents the weight for the connection of the ith neuron to the jth perceptron after
the nth learning step. α(n) is the learning rate and can decay for an increasing number of
learning steps. The input of the ith afferent neuron xi presented to the jth perceptron yields
the output oj . For correct classifications oj equals the target output tj .

Since the original perceptron design was not based on spiking neurons it can not directly be
implemented on the FACETS chip-based system. All results presented within this work that
are based on perceptrons have been obtained by means of software implementations. This
limitation may be overcome by the tempotron described in the following.

The Tempotron: A Spike-Based Non-Linear Readout

In contrast to the perceptron the spike-based tempotron accounts for the spatio-temporal
structure of the input. Hence it is offered richer information to perform its tasks. The basic
integrative element is a common leaky integrate and fire neuron. Therefore the tempotron
is a candidate for implementation on the FACETS chip-based hardware. Although the
hardware provides synaptic plasticity in terms of STP and STDP (see Section 1.1.1), the
originally proposed learning rule given by Equation 1.8 cannot be applied to the hardware
directly. Consequently the learning logic needs to be run offline on the host computer for the
modification of weights according to the output of the classifier. Directly implementing the
classifier on the hardware is useful beyond merely having replicated the entire LSM architecture
on neuromorphic hardware. Processing the output directly on chip and reading out only the
result of the classifier would be beneficial at least in two ways: the acceleration factor of the
neuromorphic hardware system (see Section 1.1.1) and the reduction of required host PC
communication bandwidth.

20



1.4. The Liquid Computing Paradigm

In the original tempotron proposed by Gütig and Sompolinsky [2006], the afferent synaptic
weights are trained in a way that the tempotron neuron emits no spike within a certain time
window while being exposed to one class of input and exactly one spike while being exposed
to the other. The latter is enforced by blocking all incoming spikes after the first output spike
has been emitted within the time window. However it is stated that the learning rule is still
quite stable without this addition. Since this is neither very biologically plausible nor possible
on the neuromorphic system this feature is explicitly neglected in the following considerations.

The originally proposed tempotron employs a LIF neuron with current-based synapses. The
voltage course of its membrane given by the respective differential equation can be solved
analytically and can be written as the weighted sum over the afferent synapses and spikes
biased by the resting potential El:

V (t) =
∑
i

ωi
∑
ti

K(t− ti) + El . (1.5)

The contribution K(t − ti) to the post-synaptic potential for current-based exponential
synapses is:

K(t− ti) = V0

(
exp

(
− t− ti

τ

)
− exp

(
− t− ti

τs

))
·Θ(t− ti) . (1.6)

τ and τs denote the time constants related to membrane integration and synaptic currents
respectively. The index ti of the inner sum runs over each spike of the ith input while the
outer sum runs over all inputs.
To deduce a weight update rule for the training process, consider a cost function E± =
±(Vthresh − V (tmax) ·Θ (±(Vthresh − V (tmax))). tmax denotes the time where V (t) is maximal
during the classification window and the Heaviside step function ensures that only false
classifications are affected. This cost function measures the distance between V (tmax) and the
threshold voltage for erroneous patterns or by how far the classification missed the correct
output. While (+) applies for patterns which should elicit a spike but did not, (−) applies for
patterns which erroneously emitted a spike. Now, we want to minimize the overall cost to
maximize the correct classification. In a first-order approximation, this requires shifting the
ith weight by ωi into the opposite direction of the respective gradient component of E:

− dE±
dωi

= ±
∑

ti<tmax

K(tmax − ti)±
∂V (tmax)
∂tmax

d tmax
dωi

. (1.7)

Where ∂V (tmax)/∂tmax = 0 holds by definition. Furthermore, the maximum voltage V (tmax)
always corresponds – by design – to the first erroneous threshold crossing. To ensure this, all
further spikes are blocked, as previously described.

Consequently, we have deduced a learning rule by implementing a gradient-descent method
with ∆ω ∼ −dE±/dωi:

∆ωni = α(n)
∑

ti<tmax

K(tmax − ti) . (1.8)

Where ∆ωni is the change in weight corresponding to the ith afferent neuron after the nth
learning step and α(n) represents a learning rate, which may decrease over the learning period.
For patterns which erroneously did not elicit a spike in in the nth iteration the ith weight is
increased by ∆ωni and decrease respectively if the spike was erroneously emitted.

21



1. Materials and Methods

Decay of Learning Rates

Constant learning rates over time can lead to significant variations in classification performance
from learning step to learning step even after long periods. To make the readout more robust
against these variations, a decaying learning rate proves to be useful and can further improve
the general readout performance. Training with constantly high learning rates – especially
when close to the optimal weight configuration – can yield oscillations in the order of the
applied learning rate.

Different decay functions α(n) (see Equation 1.4 and Equation 1.8) with different character-
istics and parameters can be applied depending on the classifier and the input sets. Too short
decay time constants can make achieving a close-to-optimal result impossible, while too large
time constants can make achieving the same performance last arbitrarily long. Hence it is the
experimentalist’s responsibility to choose the function and parameters carefully.
The employed decay function for this thesis are:

• constant learning rate:
α̇ = 0

• linear decay:
α̇ = c

• exponential decay:
α̇ = −α

τ

Clipping Continuous Weights to Discrete Values

Since synaptic weights on the hardware are limited to a 4 bit resolution it is desirable to
analyze the performance of a given readout depending on a discrete weight clipping. In case
of the perceptron this has already been performed by Rosen-Zvi and Kanter [2001], whereby
the tempotron still needs to be investigated with respect to hardware-specific constraints.
To finally obtain discrete weights different clipping strategies can be applied. The first

strategy is to train the weights in a continuously in a software simulation and finally clip them
to discrete hardware values. Another strategy, which would keep the weights discrete over
the complete training period, could be to incrementing or decrementing the synaptic weights
only by factors of the weight resolution. However, Rosen-Zvi and Kanter [2001] tuned the
weights continuously during the learning period and ultimately clipped them to a discrete set
of values for their perceptron analysis. The analysis for the tempotron will focus on the same
continuous strategy since the original learning rule is optimized to perform on continuous
weights and implements a gradient descent (see Section 1.4.3).

The variant of the readout in continuous weight space is referred to as teacher while the
one in discrete weight space is referred to as student.

22



2. Realization of a Multi-Chip Setup and
On-Chip Classification

The theoretical and technical prerequisites for the multi-chip operation and the analysis of
Liquid State Machines have been outlined in Chapter 1. This chapter presents the conceptional
considerations and concrete steps taken to achieve the realization of both the multi-chip system
and the environment for the analysis of the LSM. The fundamental concepts for the operation
of the multi-chip system in Section 2.1 are presented on a higher level of abstraction, to focus
on the more general aspects. The subsequent two section will give a detailed insight into the
actual software realization for the hardware system and the LSM.

2.1. Concepts for Multi-Chip Operation

The FACETS chip-based system is an evolving platform with a growing number of features.
Thanks to the event distribution network, as described in Section 1.1.4, the system has been
extended to provide inter-chip routing of neural events beyond chip boundaries. One of the
main objectives of this thesis is to establish a framework to enable users to access and exploit
this multi-chip functionality from PyNN (Section 1.2.1), while meeting the PyNN philosophy
to require minimal knowledge by the user about the simulation or emulation backend.

2.1.1. Initial Considerations

The mapping of arbitrary neural network descriptions onto multi-chip setups raises some
questions concerning the increasing complexity. These questions arise from new network-related
constraints as well as from algorithmic complexity issues.

Hardware Inhomogeneities and Limitations

The neural network substrate provides a well defined but finite set of resources. Beyond its
limitations it is inhomogeneous for on-chip- compared to off-chip-connections in terms of
available connection densities and event transmission delays. Thus, a mapping process needs
to distribute the resources intelligently. On the one hand available resources need to be used
efficiently to realize as many synapses as possible and on the other hand the distortions due
to delays and shared parameters need to be kept as low as possible.
Assuming a sufficiently large hardware system to host all desired biological neurons the

effective loss of synapses by the limited mutual connection densities is supposed to stay as
low as possible. However the actual connections to be routed in hardware depend on the
desired synaptic connections in the neural architecture and the given neuron placement. Hence
the routing task itself strongly depends on the placement. To ultimately achieve an optimal
mapping in terms of minimal network distortion one would have to neglect the task division,
which is explained in Section 1.3.1. This is not desirable with respect to mapping runtime

23



2. Realization of a Multi-Chip Setup and On-Chip Classification

performance, but at least the routing and placement should be tuned to support each other.
For example inhomogeneities in connectivity should already been taken into consideration
during the placement step and therefore be represented as an appropriate coast function. The
available N-Force-Cluster algorithm described in Section 1.3.1 could be modified to carry out
the task.

Scalability and Performance

The operation of a highly accelerated neuromorphic hardware device may be significantly slowed
down by the communication with a host computer, the retranslation and the reprogramming of
parameters. This is in particular critical for repetitive experiments to explore large parameter
spaces. Therefore, the implementation of the controlling software should perform at least on a
similar, but desirably on a faster time scale compared to the neuromorphic computation itself.
While the Artificial Neural Network (ANN) does not slow down when scaling up the network
size the software does due to the increasing complexity of the task to map architectures of
such size. Hence, the algorithms considered for the implementation need to be chosen with
respect to their efficiency. Solutions computed by heuristic algorithms might be preferable
over purely quality optimized solutions if they can provide a better runtime performance.

PyNN

Direct communication Code generation

pyNN.brian

Brian

pyNN.neuron

nrnpy

NEURON

HOC

pyNN.pcsim

PyPCSIM

PCSIM
FACETS

Chip-Based
Hardware

pyNN.hardware.facets

FACETS
Wafer-Scale
Hardware

MappingTool

PyHAL (unified)

Simulator-specific 
PyNN module

Python interpreter

Native interpreter

Simulator kernel

Figure 2.1.: The unification of the PyNN backends for the FACETS hardware as implemented and
described in this thesis. In comparison the previous software state is illustrated in Figure 1.9. With
this new structure less redundant code needs to be maintained and new features are instantaneously
available to both systems.

Modularity and Flexibility

With the GraphModel-based mapping flow (see Section 1.3.1) – developed for the wafer-scale
system – a flexible and extensible tool is already at hand. Therefore, the multi-Spikey operation
should integrate with the existing framework to demonstrate its generality and more important
to minimize code redundancy. This conceptual unification in the mapping layer is illustrated
in Figure 2.1 in comparison to the software for the single-chip system depicted in Figure 1.9.
Furthermore, it is desirable that experimentalists can choose from a variety of different

algorithms and chain them together in a way suitable for their workflows. On that score generic
algorithms should be accessible for both hardware generations. To meet the requirements

24



2.1. Concepts for Multi-Chip Operation

of the following step, the subsequent execution of selectable algorithms requires consistent
task definitions in terms of specified modifications to the GraphModel structure. Some of
the conventions are implicitly enforced by the definition of the specific hardware model itself,
but some are more subtle, especially the named edges between nodes that need to be drawn.
Changes to the model by preceding algorithms can have a severe impact on the outcome of
subsequent operations. Therefore consistent documentation and verification is essential.

2.1.2. Specialized Graph Representation

The integration of the mapping flow into the MappingTool as considered in Section 2.1.1
requires a new individual GraphModel container to represent specifically the multi-chip system.

The new derivative of the hardware model container is developed in the style of the hardware
container, that is available for the wafer-scale system described in Section 1.3.1. By keeping
major concepts similar, established algorithms can be reused more easily. Obviously the
graph representation needs to provide structures for: backplanes, communication structures,
FPGAs and the Spikey chips. Those are hierarchically ordered in the shape of a tree. Since
the configuration is only modular up to a certain level in terms of removing components
and extending the system, the tree can be constructed by attaching smaller sub-trees with a
predefined structure to higher-level nodes. For example the structure of the chip is determined
a priori but not the number of chips on one backplane or the number of inter-connected
backplanes. An additional hierarchy level is inserted in precaution of a future extensions to
the system to operate multiple chips by a single, more modern FPGA. Figure 2.2 shows a
sketch of the hardware container structure.

SystemNode

HWElement
Container

Algorithm
Sequence

Global
Parameters

Backplanes

ParametersFPGAsHWElement
Container

UserPorts

MGTBus

Spikey Chip

SpikeyCores

Neurons SynDriver

HWElement
Container

HWElement
Container

0000
0000

Spikey Core

Nathan Board

SpikeyChipsHWElement
Container

Parameters

TimeSlots

0000
0000

TimeSlots

MGTPorts

Hierarchical Edge

Named Edge

Backplane

Figure 2.2.: A template hardware graph illustrating the basic components of an unfolded
HWModelStage1 definition.

25



2. Realization of a Multi-Chip Setup and On-Chip Classification

2.1.3. Neuron Placement Beyond Chip Boundaries

The placing described in Section 1.3.1 refers to the abstract mapping of biological neuron
representations onto their hardware counterparts. The available recursive placing requires no
specific implementation details. Thus the existing algorithms can be reused for multi-chip
operations. Refining or extending the cost functions for the N-Force-Cluster algorithm [Ehrlich
et al., 2008] can increase the performance for the multi-chip system in future implementations.
The impact of an intelligent placement on the overall mapping distortion is discussed in Section
2.1.1. At the time of submission of this thesis the N-Force-Cluster carries out some wafer-scale
system-specific placement decisions which degrades its placement performance in terms of
subsequently realizable synaptic connections. The drawback is described in more detail for
the performed experiments in Section 3.1.1.
Besides, the fully automated placing of neurons it can be beneficial to provide a more

customizable placing. Often neural architectures build upon smaller local structures with
higher internal connection densities like for example columns. Consequently, a certain neuron
distribution on the hardware is suggested by the connectivity of the original network. Under
other conditions it might be necessary to distribute or cluster neurons to achieve a specific
timing via the programmable delays. A way to carry out such a manual placing from within
PyNN should be offered to modelers. Section 2.2.3 introduces the semi-automatic population
placement algorithm, which is controllable via labels set for neuron populations in PyNN.

2.1.4. Routing of Synaptic Connections

The routing of synaptic connections is less abstract than the placing of neurons, since specific
structures of the available communication infrastructure need to be taken into account. All
desired synaptic connections between neurons are determined by the neural network description
and the preceding placing. The routing decides which connections to realize with respect
to hardware and bandwidth limitations. While the individual importance of single synapses
within the neural architecture is not known, the main objective is to keep the synapse loss as
low as possible and to keep the amount of inter-chip connections within bandwidth limitations.
The dropping of arbitrary events within the network due to exceeding bandwidth limitations
introduces artificial network distortions, which are difficult to track and analyze.

The realized routing consists of three consecutive steps. Initially the available routes between
a given set of Spikey chips need to be discovered. These depend on the actual placement of
Nathan modules on the backplanes and may vary from setup to setup. An illustration of this
issue can be found in Figure 2.3. By considering the MCGN topology as a common graph
structure the discovery can be treated as a shortest-path problem to find routes of minimal
length between any two Nathans. In the following algorithmic step it is decided which synaptic
connections to realize on each chip and over the network. The connection density is mainly
limited by the number of available synapse drivers and the network bandwidth. Therefore,
the algorithm needs to allocate synapse drivers appropriately for chip internal and external
connections. The third and last routing step distributes the network resources according to
the just realized synaptic connections and the previously discovered paths. It tries to fit the
routes tightly together to minimize the waste of resources and to maximize the bus saturation.
In the following all requirements for the mentioned three steps are successively considered.

26



2.1. Concepts for Multi-Chip Operation

6 8

10 11

3 2 13

0 1

7

Figure 2.3.: A graph illustration of a sparsely occupied backplane, where the faded nodes represent
missing Nathan modules and the solid ones represent available Nathans respectively. The edges
represent the available links between the present modules. One can see that the paths and number
of necessary hops between to Nathans modules depend on the exact configuration of the backplane.
In this example the number of network hops to connect module 3 and 11 increases from two to four
because the events need to be routed around the missing Nathans 4 and 13. The two shortest paths of
length 4 are marked in red

Network Discovery The Nathan modules and their MGT links span a graph with edges that
could be weighted to prioritize certain connections during the routing process. Transmission
delays caused by the physical length of the link are irrelevant, since the isochronous network
guarantees the delivery of events after a fixed period of time [Philipp, 2008]. Hence the weight
of all edges can be considered equal and are set to 1.

For a given setup with a couple of Nathan modules on one backplane the network discovery
needs to find the shortest paths between them. The acquired data is prerequisite for both
the MCGN resource allocation and the synapse driver allocation, which are both described in
more detail below. The former requires the precise topological structure of the routes with
minimal length to configure the network accordingly. The latter only needs the distances to
prioritize connections that require fewer hops to reach the target, taking into account that
shorter routes have a higher effective bandwidth. This is due to the way the MCGN resource
allocation distributes the network resources. It fills up empty transmission slots with multiple
instances of requested routes until no requested route fits anymore. Since short routes fit more
easily, those get assigned more frequently.
The shortest path problem is solved by means of a modified Dijkstra algorithm [Dijkstra,

1959]. Instead of only returning a shortest path between two Nathan modules, it returns all
shortest paths of equal minimal length. By providing the MCGN resource allocation multiple
realizations of potential routes with equal source and target, the algorithm can saturate the
bus more efficiently. Dijkstra’s algorithm provides deterministic runtime performance and
is suitable for the desired extension concerning the multiple route realizations. An upper
bound for its time complexity can be expressed as O(|V |2 + |E|). Where |V | and |E| denote
the cardinality of the sets representing the Nathan modules and the MCGN connections,
respectively. Due to the fixed network topology it applies |E| ≤ 1

2 · 4 |V | for experimental
setups without additional extern MGT links, while the equality is true for the fully occupied
backplane. Consequently, the upper bound for the complexity can be expressed more easily as
O(|V |2).

27



2. Realization of a Multi-Chip Setup and On-Chip Classification

Synapse Driver Allocation For the distribution of synapse driver resources one could sort
the axonal connections and thus the synapse drivers by their number of associated synaptic
terminals and then realize as many of them as possible in a descending order. However,
considering an optimized placing that clusters neurons with high mutual connection counts
onto a single chip, this sorting could lead to a muting of chips to the outside world and therefore
induce large artificial distortions. Hence other objectives beside synapse loss need to be taken
into account to convey fairness in terms of giving each synapse a certain chance to become
realized. Additionally, it is desirable to control the relative importance of synaptic connections
depending on whether they are realized chip-internally or via the network. This enables the
user to for example emphasize objectives expressed by the preceding neuron placement.

Another ansatz one could think of for distributing the synapse driver resources is using brute
force for finding the optimal solution with respect to a given set of objectives. To estimate the
runtime performance we consider the emulation of a homogeneously connected neural network
with the mean connection probability p and a random placing. Then the probability P for
each synaptic source not to be connected to at least one of the 192 target neurons per Spikey
core is given by: P = (1 − p)192. For local parts of cortical volume with mean connection
probabilities of about p = 0.1 [Thomson and Lamy, 2007] one can assume P to be 0, which
means that any synaptic source wants to be connected to at least one of the neurons on each
core. Now, if one wants to try out all possible configurations N one has to check any potential
distribution of the 256 available synapse drivers onto all synaptic sources on each core which
conforms to:

N = ncores ·
(
nsources

256

)
.

Where ncores and nsources denote the numbers of cores and synaptic sources in the setup. Since
N rapidly increases with nsource the number of brute force possibilities is strongly affected by
the network scale. Consequently the brute force approach has been neglected.

Algorithms which employ gradient descents for finding suitable solutions in a configuration
space can not be applied, since the configuration space is non-continuous: the decision to turn
on a synapse driver for a certain connection is binary. However, the problem can be considered
similar to finding the energy minimum for spin-spin interaction in solid-states [Landau and
Binder , 2005]. To perform the actual multi-objective optimization the so-called simulated
annealing [Kirkpatrick et al., 1983], an adaption of the Metropolis-Hasting Algorithm [Hastings,
1970], has been chosen. The most important reasons for this decision are its applicability for
parallel approaches and its successional trajectory through configuration space via neighboring
states which allows for the efficient generation of new non-conflicting configurations. The
problem of minimizing the synapse loss with additional constraints is translated into an energy
minimization problem by expressing the optimization constraints as adequate energy functions.
A detailed description of the actual algorithmic realization and energy functions can be found
in Section 2.2.4.

MCGN Resource Allocation So far available network pathways are identified and the synapse
driver resources are distributed among the desired connections. Now the network resources,
which provide a limited volume of transmission slots, need to be packed as tightly as possible
with routes between terminal Nathan modules. This matches the bin packing or knapsack
problem which belongs to the class of NP-hard problems in computational complexity theory
[Garey and Johnson, 1979]. After a successful packing, remaining space within already

28



2.1. Concepts for Multi-Chip Operation

allocated resources can be filled up with multiple representations of requested routes. An
alternative to reduce the number of unused transmission slots is the reduction of slots per
transmission frame. The latter would increase the relative overhead on the bus caused by the
synchronization signal between any two frames and has therefore been neglected.

From several possible strategies to solve the knapsack problem the so-called first-fit decreasing
is realized in favor over e.g. the best-fit [Yue, 1990] bin packing algorithm, since it requires only
the computational time of O(n logn) compared to O(n2), where n refers to the number of
MCGN routes. At the same time the first-fit decreasing algorithm consumes less than 11/9 + 1
times more of the resources the best-fit algorithm would use [Yue, 1990]. Effectively, the
disadvantage of less optimal packing turns out to be even smaller as gaps within the network
resource allocation are filled up with multiple instances of requested routes. The number of
MCGN routes n in the network increases with ∼ 8 ·NNathans. However, n affects the runtime
performance of both the MCGN resource allocation and the network discovery (described
in the text above). The runtime performance of the complete routing process and all other
mapping steps is benchmarked in Section 3.1.2.

2.1.5. Parameter Translation

In Section 1.3.1 the parameter translation as one step within the mapping from biological
networks to the wafer-scale system was described. Problems arising from limited and discrete
parameter ranges have been exemplarily discussed for the synaptic weight translation.

In a multi-chip environment the parameters of separate chips can be handled independently,
except those concerning the inter-chip communication. Hence the optimization problem mostly
can be treated locally and processed in parallel. A combined parameter translation that
comprises both the transformation from biological values to idealized hardware parameters
and the hardware calibration is desirable in terms of runtime performance and to satisfy the
concept of the hardware model holding the final parameters.
The multi-chip system is further used to introduce a new concept for the storage and

management of calibration, which will most likely be applied for the wafer-scale system, as
well.

Application of Translation Data

One advantage of having a highly configurable hardware system is that the deviation of
a physical implementation from its ideal due to production process imperfections can be
attenuated by using specifically tuned calibrations. The necessary translation data sets need
to be managed and require fast any-time access. The data sets necessary for the operation
of the wafer-scale system are even larger than for the chip-based system. A calibration data
set for the Spikey chip requires 40 kB, while a calibration data set for the wafer system is
expected to consume about 20− 30MB 1

Consequently, it was decided to move away from a file oriented calibration data management
towards a central database backend. This approach innately allows for concurrent access hence
allows for parallel operation and scaling to multiple host PCs as well as multiple database
host computers. MongoDB has been chosen for the realization as a free and open-source

1Rough estimate: 100,000 membrane build blocks per wafer. One membrane building block requires 10 gauging
data points consisting each of four 32 bit float values plus approximately half this memory amount for all
synapse drivers.

29



2. Realization of a Multi-Chip Setup and On-Chip Classification

database [MongoDB, 2010]. Compared to traditional relational databases which store data
internally in fixed table structures and therefore require a certain data formatting, mongoDB
can store arbitrary heaps of data in so-called collections. Such databases are often referred to
as scheme-free. MongoDB is also considered to be used for the FACETS wafer-scale system
parameter translation. Thus, The application of the database is useful beyond merely having
an archive for multi-chip parameter translation data. Using the database in an every day
scenario provides helpful experience for its application in the large-scale system.
Furthermore, mongoDB is inherently designed for horizontal performance scaling: By

distributing the load on multiple PCs, so-called shards, the bandwidth of the system can be
increased almost linearly. Modified data is kept autonomously in sync on all involved shards
with a copy-on-write policy. In a FACETS wafer-scale setup one could think of setting up each
host computer as a shard to improve the data access latencies and throughput. Access latency
can be further improved by making use of the mongoDB’s indexing feature for arbitrary fields
of data. It enables the system to query and retrieve data more efficiently from the database.
Figure 2.4 shows a schematic of the provided workflow.

Figure 2.4.: Illustration of the parameter translation data distribution scheme. The required data is
stored in a central mongoDB database, which can be concurrently accessed by multiple host PCs.

A Spikey chip dataset provides consistent gauging values to perform the parameter transla-

30



2.1. Concepts for Multi-Chip Operation

tion. The gauged data implicitly accounts for chip-to-chip variations. For more insight into
the protocols and methods to obtain the gauging datasets for the qualitative and quantitative
behavioral matching with reference simulations consider Brüderle [2009].

2.1.6. Further Concepts

So far concepts for the neuron placement, synapse routing and parameter translation have been
outlined. Although the mapping framework and the operation of the hardware in particular
require additional components, their explicit description omitted for reasons of clarity and
comprehensibility. Nevertheless, this subsection will briefly introduce some of them in case
they require some conceptual ideas or they are designed in some fundamental way which is
critical for the mapping flow.

PyNN Integration

By design only the initial hardware setup description given in terms of a path language file
(see Section 1.3.1) and a biological graph representing the neural architecture are necessary
inputs for the MappingTool. Hence a translation from the PyNN description into the hardware
independent biological graph is necessary. The corresponding translation is already available
for the wafer-scale system and is utilized for operating the FACETS Executable System
Specification [Vogginger , 2010]. It can be reused for the multi-chip system. Thus, unnecessary
code redundancy is avoided and the biological graph is implicitly standardized for both systems.

Low-Level Software Integration

The Spikey chips as described in Section 1.2.3 are configured by playing back a command
sequence to the chip, which is stored in the FPGA memory. For input stimuli, the precise
time of the first occurring event depends on the preceding commands in the memory. Such
commands may result from the initial configuration or previously performed tasks. Therefore,
the synchronous start of the experiment relies not only on a synchronous global time but
also on the history of every individual chip. In most occasions this scenario would lead to
asynchrony. Hence, in contrast to the single-chip operation, the memory of an FPGA needs
to be erased after the chip configuration and before the transmission of the input stimuli to
swipe their history. Thereby, after setting all Nathan clocks to a global time and triggering the
experiment via the GSS (see Section 1.1.3), coincident events on different chips also physically
occur coincidentally.

Experiment Controller

After the preparative algorithmic tasks have been successfully performed the experiment needs
to be configured on the hardware and is consequently triggered. In a multi-chip setup some
more things need to be taken into consideration than for the single-chip operation. After the
extraction of parameters from the graph model, the low-level API representations of Spikey
chips and spike trains need to be configured appropriately. Furthermore, the network needs to
be configured and the clocks need to be synchronized to provide a global time.
Finally the experiment is triggered by the GSS which is emitted by one of the involved

Nathans. This way the playback of the input stimuli starts synchronously. Hereby the duration
of the experiment is determined by the occurrence of the last input spike. As each Nathan has

31



2. Realization of a Multi-Chip Setup and On-Chip Classification

its own input an identical dummy end-of-experiment event is inserted into the input sequences.
Otherwise some of the chips might disable their output buffers too early and network dynamics
driven over the network by events from adjacent chips would be ignored.
After the experiment has been carried out the software needs to collect all output spike

trains emitted by each participating chip and insert them back into the GraphModel. This is
necessary to be compliant with the concept of holding all experiment related data within the
graph representation.
Depending on the setup it should now be possible to either rerun the same experiment,

thereby performing a differential remapping and carrying out the modified experiment, or
return to the PyNN layer.

2.2. Implementing the Multi-Chip Environment
Section 1.1 introduces the state of development in the established software frameworks for single-
chip operation and the FACETS wafer-scale system. This section presents the implementation
of the multi-chip system based on the fundamental concepts presented in Section 2.1.

2.2.1. General Framework

Some of the tools developed for this thesis contribute to the general toolkit used for the
operation of both the chip-based and the wafer-scale system. For the sake of completeness
they are introduced briefly in the following subsections.

Message Logging Interface

Information management in extensive software frameworks is a severe problem that becomes
even more critical with concurrent execution. Hence it is desirable to control the information
flow in a centralized manner depending on the level of information required for the current
operation. Resolving misbehavior in software often requires a more detailed output, which in
turn can generate an overwhelming amount of information or even slow down the program
execution.

The implemented C++ logger class enables the user to decide the level of output information
granularity for any module within the MappingTool and multi-chip operation. By casting the
implementation into a singleton pattern [Gamma et al., 1994], the instantiation is restricted
to a single entity to guarantee the unified information filtering. The first initialization
determines the logging threshold regulating the subsequent output verbosity. Any further
alleged instantiation will just return a reference to the same instance and therefore the same
operational properties. Only messages at least matching the threshold are printed to their
destination (e.g. file and/or screen).
The logger class provides bindings for the programming languages C, C++ and Python.

Consequently, it integrates seamlessly into most existing software used in the Electronic
Vision(s) group. To simplify the usage in its primary C++ domain the message logging interface
mimics the common Standard Template Library (STL) stream interface and is compatible
to any STL compliant stream formatting. The correct operation in concurrent execution
is achieved by internal locking mechanisms e.g. the singleton is protected against multiple
concurrent initialization. Besides, boost thread local storage [Kempf , 2001] protects the
STL-mimic stream interface, used for sequential message construction, from race conditions.

32



2.2. Implementing the Multi-Chip Environment

Unified Multi-Class Gigabit Network Configuration Tool

The available software to configure and manage the MCGN is completely written in the
programming language C. In order to simplify the building process and to integrate the
interface in the automated mapping and operation workflow, so that it is suitable for C++,
an additional wrapping layer is introduced. Furthermore, a unified tool for the stand-alone
management of the MCGN has been implemented utilizing the wrapped interface. It can
be used to directly access common tasks like the programming of the routing tables and the
synchronization of Nathan modules.

2.2.2. Multi-Chip Graph Structure

A specialized graph model structure representing the multi-chip system is the foundation
which allows all other presented algorithms to perform the arbitrary neural network mapping.
It also holds all parameters consistently so that repetitions of former experiments based on
a stored graph representation can be performed. The starting point for the creation of the
model is a user supplied GMPath language file describing the current setup. It lists the
available FPGAs and Spikey chips with the corresponding chip id necessary for the parameter
calibration (see Section 2.1.5). Based on the provided data the graph is unfolded by building
representations of all configurable hardware entities in the setup. Sub-graphs for the MCGN
and chips are attached to each FPGA node. Each chip node consistently supplies parameters
e.g. for neurons and synapses. A template representation simplified for clarity is illustrated in
Figure 2.2.

2.2.3. Multi-Chip Neuron Placement

The placement algorithms of the wafer-scale system can be reused for the multi-chip system as
described in Section 2.1.3. From the modeler’s point of view operating the device, the quantity
of hardware-specific information required for its use should be reduced to a minimum. Therefore
the currently available algorithms cluster and place the neuron populations autonomously. For
the verification of the system it is crucial to have more manual control over the precise neuron
placement. Consequently, to verify the correct operation of multi-chip software framework a
more configurable placing algorithm has been implemented.

Semi-Automated Population Placement The population clustering placement algorithm
enables the user to place populations of neurons via the PyNN high level API with match-
ing labels on the same physical chip, while the exact placing of each neuron within each
population remains random. Any neuron on the chip provides the same configurability and
connectivity, thus in theory none of the random chip intern placements is preferable over
another. Nevertheless, existing transistor-level variations are averaged out over multiple runs
due to the random nature of the placement.

2.2.4. Multi-Chip Routing of Synaptic Connections

The routing step determines for every synaptic connection whether it should be realized or
rejected. Connections which are desired for a given neural architecture and not yet ultimately
realized are referred to as requested, while requested connections which have been granted during
an intermediate step are referred to as realized for that specific step. Different connections

33



2. Realization of a Multi-Chip Setup and On-Chip Classification

may require different amounts of hardware resources. In case the resources necessary to realize
each requested connection exceed the hardware capacity, a suitable subset of connections is
granted which maximizes the overall number of realized synapses. Finding this suitable subset
is the actual task which has to be performed in the routing step.

For the single chip operation only the assignment of synapse drivers needs to be performed,
while the distribution of network resources must be determined for the multi-chip operation.
In the realized routing process this is achieved in three steps. Initially a network discovery is
performed to determine available paths between any two configured Nathan nodes by means
of a modified Dijkstra algorithm. Afterwards the synapse driver resources are shared among
the requested intra- and inter-chip connections. Finally the acquired information is used to
allocate the MCGN resources for the transmission of spikes over the network.

Network Discovery

In the beginning of the routing step, the network topology for a given set of Nathan modules
on one backplane needs to be determined. The topological structure of the MCGN network
itself has been outlined in Section 1.1.3. Requisites for the network discovery are considered
in Section 2.1.4.

The shortest path problem is solved by means of the Dijkstra algorithm, which is described
in the following.

Dijkstra’s Algorithm The implemented Dijkstra algorithm is a prominent representative in
the class of algorithms designed to solve the shortest path problem. Thus, it can find the
shortest path between any two nodes in a graph with non-negative weighted edges. The
implemented variant of the algorithm is modified in the way that it does not only return a
single shortest path, but all shortest paths with equal minimal length. Hence a wider range of
equidistant routes are available to choose from. As a result the MCGN resource allocation
described in Section 2.2.4 can utilize the network resources more efficiently in terms of leaving
less unused transmission slots.

The algorithm iteratively visits each node within the graph and assigns the node its distance
relative to the starting node and a predecessor node. After termination the minimal distance
between any node and the starting node is known.
Initially the algorithm requires a node to start from. In our case every sending Nathan is

considered as the starting node once. The algorithm then assigns from the starting node a
distance value to any node in the graph: zero for itself and infinite for all other nodes. It
further marks all nodes except the starting node as unvisited. Within the process each node
can get a predecessor node assigned, which is not defined in the beginning.

After the initialization the starting node is considered as the current node, which refers to
the node currently visited during the iterative process.

Now, for the current node the algorithm considers all neighboring nodes that have not been
visited so far and calculates their relative distance to the starting node. The distance is given
by the sum of the distance from the starting node to the current node and the weight value of
the edge that connects considered and current node. In our case, with the weight equal one,
this conforms to the number of hops in the network. If the recently calculated weight is less
then the weight already assigned to the considered node then its distance value is updated and
the current node is set as its predecessor. After having considered all neighboring nodes the
current node is marked visited and will never be considered again. Its distance to the starting

34



2.2. Implementing the Multi-Chip Environment

node is already minimal. Of all considered neighboring nodes the node with the shortest
assigned distance is picked as the next current node. The consideration step continues until
all nodes have been visited exactly once.
The shortest path between any node in the graph and the starting node can now be

determined by picking the target node and iterating backwards along the predecessors through
the graph until one finally reaches the starting node.
In the modified version of the algorithm each node holds a list of equidistant predecessor

nodes. Hence the backward iteration runs recursively over all predecessors and returns a list
of equidistant shortest paths.

Two intermediate steps during the operation of Dijkstra’s algorithm are illustrated in Figure
2.5. Additionally, a pseudocode representation of the realized variant can be found in Appendix
B.1.

N5
∞

N0
0 N1

1

N4
5

N3
4

8

1

3

4

2

1

2

start

3N2
8

N0
0 N1

1

N4
5

N5
6

N3
4

8

1

3

4

2

1

2

start

3

Edge
Predecessor
Current Node
Visited Node
Unvisited Node
Weight

N2
7

Figure 2.5.: Two intermediate states of a graph processed by Dijkstra’s algorithm which finds the
shortest path between the starting node and any other node. The algorithm processes iteratively all
nodes in the graph. The shortest path is indicated by the dashed predecessor edges. For all nodes
already marked as visited the indicated path is already minimal. Additionally, each node holds its
current distance to the starting node, illustrated in the lower part of each node.

Synapse Driver Allocation

The synapse driver allocation ultimately decides which connections to realize and how to
distribute the synapse drivers among the realized connections. For the final routing only
the distribution of realized connections to the network resources is missing. This last task is
performed by the MCGN resource allocation as described in the next section.
The graph structure of the data model described in Section 1.3.1 is well suited for the

application of recursive algorithms but it is not suitable for the employed multi-objective
optimization algorithm. The algorithm requires a data container which allows for efficient
random access instead. Therefore data necessary for the process is extracted from the graph
and stored in a structure similar to connection matrices. In a common connection matrix
the number of rows and columns matches the number of neurons present in a given neural
architecture and non-zero entries represent synaptic connections. The realization of synapses
terminating an already realized axonal connection or allocated synapse driver respectively is

35



2. Realization of a Multi-Chip Setup and On-Chip Classification

cheap in terms of hardware resources compared to the new allocation of the synapse driver
itself. For an already allocated synapse driver all requested synaptic connections to neurons
on the corresponding core can be realized without any extra cost. Therefore we do not need
to represent each post-synaptic neuron in our matrix for the optimization step. Each column
of the underlying data structure represents a source neuron or external input from the FPGA
event memory and each row corresponds to a target Spikey core. Desired connections are
represented by the matrix entries. Each entry codes how many connections are requested
from the corresponding source to the corresponding target core. An ultimately realized matrix
entry corresponds to one allocated synapse driver with the appropriate synapse connections
turned on. Hence the synapse driver allocation process needs to ensure that the number of
realized entries per row stays below the number of available synapse drivers per Spikey core.
Due to construction the number of entries in the connection matrix is reduced, compared

to a common connection matrix, by nneurons/chip
ncores/chip

, which conforms to two orders of magnitude.
The runtime performance of the employed optimization algorithm is equally accelerated, since
the amount of performed computations per iteration is proportional to the number of matrix
entries as described in the text below.

As motivated in Section 2.1.4 the optimization is performed via a simulated annealing process.
In a nutshell, the algorithm is initialized with a random configuration of realized connections.
In each algorithmic step the state is changed into a neighboring state in configuration space,
with a preference for states with lower energy. Ultimately, the configuration state evolves
towards lower energies and therefore less synapse loss.

In the beginning, requested connections c are randomly established. The initialization routine
already avoids conflicting configurations of connections arising from topology restrictions and
bandwidth limitations. A configuration state s = {c0, · · · , cn} is represented by a corresponding
set of established axonal connections. Two configuration states s and s′ are called neighbors if
they can be translated into one another by flipping the realization state of two synapse drivers
cx and c′x:

s = {c0, · · · , cx, · · · , cn}
neighbors⇐⇒ s′ = {c0, · · · , c′x, · · · , cn} .

An energy E(s) can be assigned to any state s. The energy is the linear combination of
energies E(c) for each established connection c corresponding to the current state. Therefore
the energy difference between two neighboring states can be expressed as:

∆E(s, s′) = E(cx)− E(c′x) .

The energy function E(c) of a single established synapse driver can be tuned to match
special requirements. In our case the energy function is given by:

E(cijkl) =−AType(cijkl) · syn(cijkl)

−
adjacent cores∑

m

B · syn(cijml)

+D · mcgn_hops(i, j)2 · syn(cijkl)

− E · exp
(

lower_bound(i, j)− realized(i, j)
Text

)
. (2.1)

36



2.2. Implementing the Multi-Chip Environment

Where cijkl denotes the connection from chip i to the synapse driver with index l on chip j
and core k. syn(cijkl) represents the number of post-synaptic connections realizable via the
connection cijkl.

The first term on the right hand side adjusts the energy of a connection depending on the
connections type.

AType(cijkl) =


Aintern if i = j

Ainput if i = memory
Aextern if i 6= j

.

Each connection is either intern if it is a connection between neurons within the same or
adjacent cores, input it is a for stimuli injected from the FPGA memory or extern if it is a
multi-chip connection over the network. With AType different priorities can be assigned to
connections of a certain type.
The realization of connections stimulating targets on multiple adjacent cores should be

preferred, for external connections in particular. On the one hand it can be beneficial to
support the realization of connections between neurons clustered together on the same chip
by a preceding optimized placement with respect to its objective. On the other hand and
more importantly connections with multiple targets on adjacent cores require less lookup table
resources and bandwidth per synapse than the realization of multiple external connections
each connected only to a single Spikey core. This issue is taken into consideration by the
second term on the right hand side of Equation 2.1.
As mentioned before the MCGN resource allocation assigns short routes a higher effective

bandwidth. The function mcgn_hops(i, j) reflects the necessary number of intermediate hops
in the network between any two chips i, j. The necessary data has been acquired during the
network discovery phase. Internal connections and event memory input obviously have a
MCGN hop value equal to zero, which results in an active penalty of external connections
with long routes.

The last term represents a soft bound for the minimal number of network connections to
avoid the muting of chips, which is motivated in Section 2.1.4. It is further stated that one
can expect muting for an optimized placing, since local, more dense connections would be
prioritized by the routing to minimize synaptic loss. If during the annealing process the amount
of realized connections between two chips i and j – given by realized(i, j) – falls short of
the lower bound, the energy for the realization of such connections decreases exponentially.
The shape of the lower soft bound can be adjusted by a temperature parameter. Higher
temperatures yield a softening of the bound and the muting of single chips becomes more likely.
To avoid disproportionately strong bounds on connectivity for sparsely connected chips with
counts for requested connection below the lower bound the actual limit needs to be adapted
as follows:

lower_bound(i, j) = min {Fmin, requested(i, j)} .

Where requested(i, j) denotes the number of requested connections between chip i and j.
Fmin is a parameter which can be freely set to adjust the lower soft bound.
During the simulated annealing a configuration state st is derived from an initial state s0

by iteratively generating t random neighboring states. To distribute the flipping of synapse
drivers cx ⇒ c′x equally over all originating synapse drivers they are picked subsequently from
the connection matrix. One iteration step of the annealing process refers to a complete sweep
over the matrix. Any computed neighboring configuration can be either accepted or rejected,
with the acceptance probability:

37



2. Realization of a Multi-Chip Setup and On-Chip Classification

P (st, st+1, T (t)) = min
{

exp
(
−∆E(st, st+1)

T (t)

)
, 1
}

.

The time dependent temperature course T (t) controls the acceptance probability for states
with an effectively higher total energy. For T → −∞ only neighboring states with a lower
energy are accepted while for T →∞ any neighboring state is accepted.
Operating with an appropriate temperature is crucial for the optimization quality. By

choosing a too low temperature the annealing can get trapped in a local minimum without
ever reaching the global one, which would correspond to the optimal solution. For a too high
temperature the algorithm ends up in some random state, and never converges to a stable
solution. An illustration of the temperature problem can be found in Figure 2.6. To avoid
both extremes the temperature is reduced from an initial value T (0) to zero over the complete
annealing process. Different cooling strategies can be applied, but experiments (see Section
3.1.1) show that for the given task they have no significant influence. Hence the temperature
is reduced linearly, since it requires only two parameters from the user.

T (t) =
{
T (0) ·

(
1− t

tmax

)
for t < tmax

0 else
.

As a result the states evolve along a trajectory in configuration state space that tends
to configurations with a lower energy and converges ultimately for t → tmax and therefore
T (t)→ 0.

State

E
n
e
rg

y

too cold

too warm

Figure 2.6.: Illustration of the problem of finding an optimal solution by means of the simulated
annealing multi-objective optimization algorithm described in the text. If the temperature parameter
is chosen too low, the optimization process can be trapped in local energy minima, while choosing the
temperature to high yields random results.

As subsequent states are derived exclusively from the preceding state (st ⇒ st+1) the
algorithm belongs to the class of Markov-Chain Monte Carlo algorithms [Meyn and Tweedie,
1993].

38



2.2. Implementing the Multi-Chip Environment

A pseudo code representation illustrating the fundamental concept of simulated annealing
can be found in Listing Algorithm 1.

Algorithm 1 Simulated Annealing
st ← random_state( )
Et ← Energy(st)
t← 0
while t < tmax and Et > Ethresh do

st+1 ← neighbor(st)
Et+1 ← Energy(st+1)

. annealing acceptance probability
if P(Et, Et+1,T(t)) > random( ) then

st ← st+1

Et ← Et+1

t← t+ 1
return st

Multi-Class Gigabit Network Resource Allocation

Network resources need to be allocated for synaptic connections granted in the previous step.
The problem is treated as a bin-packing problem and solved by means of a first-fit decreasing
algorithm. It initially sorts the calculated routes in a decreasing order. It then tries to fit the
routes subsequently into the available resources starting with the longest route. The sorting of
available routes is possible as the topology of the network is fixed during the experiment and
the resources do not need to be allocated dynamically. Before the algorithm stacks a route
on top of already partially occupied resources it tries to fit one of the possible route variants
between the other already allocated resources. The insertion step itself requires only O(n)
computational complexity. The overall computational complexity of O(n logn) is caused by
the initial route sorting.

Post-Processing of Routing Data

So far the realization of synaptic connections and the distribution of the network resources
have been described. During the post-processing, each realized inter-chip connection needs to
be mapped to one of the allocated MCGN resources by choosing the user port and transmission
time slot. An optimized mapping would balance the load on the bus. Since the event rates for
the afferent neurons are not known a priori, the resources can be distributed either equally
or linearly. A linear distribution means that the three Spikey output buffers are mapped in
a linear manner to the available FPGA user ports. In that case, where the corresponding
user port has more than one transmission time slot allocated for a connection bundle, the
occurring events are transmitted automatically through any of the slots.
After all routing decisions have been made, the final configuration needs to be written

back to the hardware graph, from where the modules responsible for the configuration and
operation of the system can read it back as described in Section 2.2.6. The actual information
is encoded by means of named edges (see Section 1.3.1) in the way depicted in Figure 2.7.
Two different paths of edges provide a detailed mapping to the network, the remote synapse

39



2. Realization of a Multi-Chip Setup and On-Chip Classification

driver and ultimately the target neuron. This differentiation into two separate paths shortens
their effective lengths and speeds up subsequent computation, since the parameter translation
requires only the synapse driver path while the MCGN configuration requires both. Besides
the detailed description of a specific path running over all involved network port instances,
a shortcut connection between the in and out FPGA user ports is provided to reduce the
number of dereferencing steps during the network configuration. This reduces the number of
required computational expensive GMPath language steps by a factor of approximately 4 (for
general performance measurements see Section 3.1.2).

target
neuron

in-
user port

out- 
user port

in-
MGT port

in-
MGT port

ANALOG
CONNECTION

SYNAPSE

ABSTRACT_HWCOMM

FPGA_-
COMM

FPGA_-
COMM

C
O

N
FI

G

C
O

N
FI

G

FP
G

A
_-

C
O

M
M

FP
G

A
_-

C
O

M
M

out-
MGT port

SynDriver

out-
MGT port

MCGN multiple hops

source
neuron

source FPGA target FPGAs

L2_HWCOMM

Figure 2.7.: Graph representation of a connection from one neuron to several target neurons on
different FPGAs and chips. Note that beside the detailed route which runs over almost any involved
instances (the mapping of the target synapse driver is handled via another edge), a shortcut connection
(dashed) is provided to speed up the graph parsing process.

2.2.5. Multi-Chip Parameter Translation

After the successful placing of neurons, the routing of synaptic connections and before the actual
experiment execution, the hardware needs to be configured with a suitable set of parameters.
Finding an optimal set can be challenging as described in Section 1.3.1 and Section 2.1.5. For
each individual chip a custom translation is applied which accounts implicitly for imperfections
and transistor-level variations of the underlying substrate. Besides the translations from the
hardware into the biological domain a reverse translation is required to translate the output
obtained by an experiment back into the biological domain. The corresponding transformations
belong to the post-experiment processing and are described in Section 2.2.6. A complete list
of chip parameters that need to be configured can be found in Appendix A.

40



2.2. Implementing the Multi-Chip Environment

Database Access

In Section 2.1.5 the change from a file-based system to a central database for the storage and
management of calibration data is explained. The database system will be used in the wafer
scale system, too. Thus, the realized database access interface is designed to already provide
the required flexibility to be used for both hardware systems. It offers thread-safe caching
functionality to account for concurrent access by multiple threads to minimize expensive
database queries, while parallel access by multiple host computers is provided by the database
itself.

MongoDB can store arbitrary sets of data. Nevertheless, the parameter translation expects
the translation data to be in a certain format. Each entry provides the necessary data together
with a reference to the corresponding translation function. Hence each parameter can be
translated by means of an individual translation. The hitherto framework provides functions
for constant, linear, polynomial parameters translations as well as interpolation and clipping
to neighboring data points. Furthermore, each entry contains the respective parameter limits.
The realized framework automatically clips parameters exceeding the hardware specifications.
The same applies for discrete parameters. Each entry provides a resolution field so that each
non-continuous parameter can be rounded stochastically to one of its neighboring values. The
probability of a continuous value to be rounded to the floor or the ceiling is proportional to
its distance from the respective discrete neighbor.

Biology to Hardware-Domain Translation

The translation of parameters is an integral part in the mapping flow. The given large-
scale neuromorphic hardware systems provide extensive parameter spaces which need to be
configured conscientiously before any experiment.

Initially all necessary data is collected from both the biological and hardware graph. Refer-
ences to the collected data are stored in more suitable, continuous containers. Subsequently
the translation of parameters is started. It performs on a per-chip level in parallel, as the
multi-chip system derives from a single-chip system, parameters can be set individually for
each chip. Hence, the software does not need to account for conflicts arising from the interplay
of chips.

In the end the translation finds for every neuron, axon and synapse its correct parameters
by the translation provided by the central database. Aside from that the software module
provides default parameters for unused analog entities to avoid side effects which could arise
from operating parts of the system out of their specification.
Practice has shown that the time consumption of the parameter translation is critical for

the runtime performance of the complete mapping process, due to the fact that a significant
large amount of GraphModel nodes need to be read, processed and written back. For example
the weights of each synapse block consume 49152 · 4 bit = 192 kB of memory and thus fit in
the cache of a modern micro processor. Following the GraphModel approach, each synapse
would be represented by two nodes in a key-value manner. Storing this amount of data in a
non-continuous way would slow down the process tremendously. To circumvent the obstacle
the GraphModel has been extended by a template node. The so-called GMNodeData<> inherits
all basic behaviors from the common nodes but can additionally hold arbitrary sets of data
like memory aligned, continuous containers, such that computational intensive tasks can be

41



2. Realization of a Multi-Chip Setup and On-Chip Classification

processed more efficiently by making use of the new type of nodes. They have already been
adopted by the wafer-scale flow in many places.

2.2.6. Experiment Control
So far all preparative tasks have been finished. At this point, it is time to collect all necessary
data, configure the system and trigger the experiment.
The experiment control performs subsequently the following tasks: the configuration of

each chip, the transmission of input stimuli to the event memory, the configuration and
synchronization of the network, the synchronous triggering of the experiment start and the
retrieval of experiment results.

The experiment control module for the FACETS wafer-scale system and Executable System
Specification is MappingTool extern, while for the multi-chip system the module is part of
the MappingTool itself. It is thus more modular and allows for faster and simpler differential
remapping in future implementations. Differential remapping is not yet realized at the time of
thesis submission.

Chip Configuration The translated parameters are extracted from the GraphModel and
transfered to the hardware via the SpikeyHAL. The same applies for the input spike trains,
which have already been prepared and stored in a hardware compatible format attached to
template nodes in the hardware graph. This allows for efficient parsing and input processing
in a zero-copy fashion. Additionally a multiplexer, which is responsible for the mapping of
the membrane potential onto an output pin, is set appropriately. Likewise the parameter
translation the chip configuration is performed individually, making software parallelization
possible.

Network Configuration The precise route realizations, previously determined by the routing
procedure, are extracted from the graph structure. The routing tables for the MCGN are
programmed accordingly. The required low level software has been written in C [Philipp, 2008].
For a seamless integration into the new flow the according software module as well as the
module for the Nathan clock synchronization are wrapped with C++ classes, which can be
handled more easily by the linker during the build process.
On top of that the event distribution network is configured for the actual transmission of

event data via the priorly programmed MCGN. Thus, sender neuron and receiving synapse
driver are identified as well as the sender and receiver user port and the respective time slot
via which the network can be accessed. Based on this information connection bundles are
tied together and a mfi as well as a lvc are provided for each one (see Section 1.1.4). As mfi
identifies a connection bundle on the sender side, an internal lookup table for each sender
Nathan and user port combination is provided. If a certain combination is required but not
yet in use the next free value for mfi is picked. This applies in a very similar way for lvc, but
for combinations of receiver Nathan and receiver user port. The subnr, which identifies the
connection within its bundle, is looked up in a table that counts the connections realized so
far for combinations of sender and receiver Nathan. The valid combinations of sender, receiver
and lookup table indices are then submitted to the hardware internal lookup tables, which
provide the data necessary for the live event processing described in Section 1.1.4.

Finally after programming both network layers the clock of each individual Nathan is set to
a global time. The required functionality is also provided by the MCGN.

42



2.3. Liquid State Machines on the FACETS Chip-Based System

Experiment Execution

To trigger the experiment run the playback of the input stimuli needs to be started coincidentally
on each Nathan. Therefore the Nathan modules are put to listening mode, where they wait
for a so-called GSS to appear on the MGT links. One of the involved modules is destined to
provide the GSS, while waiting for an external start signal itself. If so far no major problems
have occurred the framework instructs the destined Nathan to trigger the experiment execution
and the synchronous spike train playback respectively. This happens in a blocking fashion,
that means that the execution of the program is paused until the block is released by the
hardware signaling the completion of the experimental run.

Post-Experiment Processing

The experiment is completed after the playback of the last input spike (see Section 2.2.6).
Consequently each Spikey disables its spike output buffer, hence no events are forwarded to
the network anymore. By contrast the chip internal dynamics continue unnoticed due to the
analog nature of the circuits. This has no impact on the performed experiment but needs to
be taken into consideration for subsequent experiments to avoid distortions driven by ongoing
activity.

The output spike trains are extracted from each Spikey. Each spike train is translated from
the hardware domain back into the respective biological domain in a single step. The spike
trains are then filtered for spikes which actually correspond to a configured hardware neuron.
This is necessary due to ghost events which irregularly occur as described in Section 3.1.3. The
result is attached to the corresponding neuron in the biological graph. This is performed by
means of a strict zero-copy policy. This strict zero-copy policy is essential, because unnecessary
memory accesses rapidly become the limiting bottleneck for the operation of highly accelerated
neuromorphic hardware systems [FACETS D7-13 , 2010]. Ultimately the output is provided
transparently via PyNN and the program execution returns to the python layer.

2.3. Liquid State Machines on the FACETS Chip-Based System

This section introduces a Liquid State Machine based on a self-stabilizing neural architecture
proposed by Sussillo et al. [2007], which will be implemented on the single-chip system and
investigated with a focus on the readout and classification part. The fundamental concepts
behind the LSM have been outlined in Section 1.4. Furthermore, the task is defined which
needs to be solved by the LSM. Finally the realization of a perceptron and an on-chip
tempotron classifiers are described.

2.3.1. Task Definition

To evaluate the quality of a liquid emulated on the hardware system, a task is being defined
and the corresponding input stream presented to the neural network. Its spike activity
response is presented to a readout and the classification result is compared against the readout
performance without a liquid. In our case, the applied task is to distinguish slices of two
shuffled spike trains. The classification is performed by multiple readouts, each trained to
classify the templates in a specific time slice in the recent past by considering only the latest
slice. A schematic illustrating the generation of the input stimuli can be found in Figure 2.8.

43



2. Realization of a Multi-Chip Setup and On-Chip Classification

Initially, two N dimensional Poisson process spike sequences vectors [Downarowicz , 2008] for
N spike sources are generated with a mean rate of 30 Hz and a total length of 1250 ms. Each
sequence vector is cut into ordered time slices of 50 ms. Now we have two sets of template
slices (A/B) for each of the 25 time slices to choose from. New spike trains are generated by
randomly picking one of the two template sets for each time slice. Additionally, a normally
distributed time jitter with a standard deviation of σ = 2 ms is added to each spike time.
After that, all picked template sets are concatenated, so that the respective position in time
of each slice is conserved.
A set of N target neurons are randomly picked from the liquid architecture. The readily

assembled spike train vectors are then projected onto those neurons, one distinct spike train
each. The response of the liquid to each input spiketrain is recorded. Each readout is trained
to classify the originating templates (A/B) for a specific time slice only by considering the
last 50 ms. The further their corresponding time slice is located in the past, the harder the
classification task gets. When using a memoryless readout a memory capacity of the liquid can
be defined by the maximum time for which a classification beyond chance level is observed.
Here the term chance level refers the percentage of correct classification one would achieve by
random guessing.

Te
m

p
la

te
S
p
ik

e
 T

ra
in

A
B

Stimulate
Look At

Classify

50ms 50ms 50ms50ms

Readout

LiquidABBA

Figure 2.8.: An illustration of the applied task. Spike trains are generated by picking 50 ms slices
randomly from two template spike sequences (A/B). The generated spike trains are projected into the
liquid and the last 50 ms of each response is presented to readouts. Each readout is trained to classify
the originating template (A/B) for one specific time slice in the recent past.

2.3.2. Liquid Architectures

The main functionality a liquid has to provide is the separation of presented inputs by
projecting them into a high dimensional space. A large variety of neural architectures are
potential candidates for a liquid, as long as they satisfy the separation property, which is
defined in Section 1.4.1. Often neural architectures are tuned to work properly on a certain
type and intensity of input. Too strong input for example can lead to chaotic behavior while
too weak input might not elicit spiking activity from the architecture.

44



2.3. Liquid State Machines on the FACETS Chip-Based System

Projection STP Mode
E → E depressing
E → I facilitating
I → I depressing
I → E facilitating

Table 2.1.: The Short-Term Plasticity configuration of the two population E (excitatory) and I
(inhibitory), as proposed by Sussillo et al. [2007] for the self-stabilizing architecture.

Self-Stabilizing Network

The self-stabilizing architecture, which in the following will serve as a liquid, consists of two
neuron populations, one excitatory and one inhibitory, each comprising recurrent connections
as well as connections onto each other. The architecture has been originally proposed by
Sussillo et al. [2007]. An adaption has already been proven to show good-natured properties
on the FACETS chip-based hardware system [Bill, 2008; Bill et al., 2010].

STP functionality is the key to the self-stabilizing properties of the network. The architecture
utilizes synapse dynamics as listed in Table 2.1. On the one hand, strong activity is attenuated
by the depressing recurrent connections and the indirect feedback over the inhibitory population
via stronger inhibition. Weak activity, on the other hand, is amplified by means of less
attenuated recurrent excitation and less feedback from the inhibitory population. As has
been shown by Sussillo et al. [2007], these self-stabilizing properties enable the architecture to
operate within a wide input range.

The original hardware implementation required both cores of the Spikey chip to provide all
desired STP functionality. Each synapse driver can only be either inhibitory or excitatory and
can only be connected to a specific neuron on each core. Therefore the inhibitory and excitatory
neurons needed to separated on the two different cores with non-overlapping neuron ids. In
the current revision only one core is available due to a chip design error. It is assumed that
the depressing STP functionality for the excitatory recurrent connections is most valuable for
the self-stabilizing properties. Thus, from the requested plasticity features, only the depressing
excitatory connections are realized in the current hardware implementation. Furthermore, the
projections onto the inhibitory population share the plasticity mechanism due to hardware
limitations. These limitations can be overcome in a future implementation by making use of
a hardware feature that allows to combine synapse drivers such that one driver can provide
depressing and the other one facilitating synapse dynamics. Nevertheless, this would cut the
network size by half due to the fixed synapse driver routing topology for local neurons.
Figure 2.9 shows the self-stabilizing architecture as currently realized on the chip-based

hardware system.

Column-Based Liquid Architecture

Beside the self-stabilizing liquid architecture presented above, an alternative architecture has
been utilized on the hardware system. It is being discussed only briefly, since no explicit
investigations have been made on basis of this architecture for this thesis. The liquid is based
on a column-shaped pool of neurons, of both inhibitory and excitatory type. The connection
probability between two neurons decreases exponentially with their distance. The structure

45



2. Realization of a Multi-Chip Setup and On-Chip Classification

Nexcitatory 144
Ninhibitory 48
pee/pei/pie/pii 0.05/0.1/0.1/0.2
gee/gei/gie/gii [µS] 0.002/0.001/0.0015/0.002

Table 2.2.: Specifications of the self-stabilizing network architecture. Where N represents the number
of neurons. pxy refers to the connection probabilities and ωxy to the synaptic efficacies for the connections
from population x to population y.

Inh

Exc

dep

dep

static

static

Input

Figure 2.9.: A self-stabilizing architecture comprising two populations of neurons, one excitatory
and one inhibitory. Each population has local recurrent connections and global connections to the
other population. STP synapse dynamics are utilized to stabilize network activity for a wide range of
input intensity. Weak activity is amplified, while strong activity is attenuated. It has been originally
proposed by Sussillo et al. [2007] and realized on the FACETS chip-based hardware system by Bill
et al. [2010].

has been originally proposed by Maass et al. [2002] and has been realized on the FACETS
chip-based system by Albert [2010].
Since the network does not comprise self-stabilizing functionality, except for a pool of

inhibitory neurons within each column, it is more sensitive to hardware and input fluctuations
compared to the previously described self-stabilizing architecture. Figure 2.10 illustrates the
basic structure of the column-based architecture.

2.3.3. Readout Realization

The last component of a LSM when considering the flow of information is the classifier.
It is responsible for carrying out the actual task of distinguishing the input patterns. For
this purpose two classifiers are implemented and tested for the presented hardware setup, a
perceptron and a tempotron. Their fundamental concepts have been described in Section
1.4.3.

Perceptron Classifier

The implemented perceptron provides the functionality described in Section 1.4.3 and has
been written in Python.

The input as read from the spiking liquid needs to be converted first from a spike-based to
a rate-based representation in order to apply it to the perceptron. This can for instance be
achieved by performing a convolution of the spike sequence with an exponentially decaying
function:

46



2.3. Liquid State Machines on the FACETS Chip-Based System

Column

Readout
Input

Figure 2.10.: A LSM with a column-based liquid proposed by W. Maass [Maass et al., 2002]. Each
column comprises both excitatory and inhibitory cells aligned on a three dimensional grid. Connection
probabilities between any two cells within each column decrease exponentially with their mutual
distance. Input stimuli are projected onto the columns. The responses of the columns is ultimately
presented to a classifier that carries out the actual filter task.

xi(t) =
∑
ti<t

c · exp(− t− ti
τ

) .

Here xi(t0) denotes the ith input presented to the classifier at time t0. ti refers to the
spikes emitted by the ith afferent neuron. c is a free scaling factor and therefore set to
one in the following. The time constant τ characterizes the decay of the contribution per
spike to the input signal as time evolves. Note that this adds an exponentially decaying
memory with time constant τ to the input. This can be critical for the memory evaluation
of the investigated liquid. τ → ∞ yields an ever-lasting input memory, while for τ → 0
the input vector approaches ~0 and no information is provided to the perceptron. Hence the
experimentalist has to carefully choose a time constant which on the one hand does not
masquerade the memory capacity of the liquid and on the other hand yields classifiable input
for the perceptron. It is assumed that time constants τ on a time scale similar to the ones
found in the participating neurons is a good point to start further optimizations from.
Even though the perceptron is relatively simple, it has been proven to be a useful tool for

the rapid analysis of liquid responses. Because of its low computational complexity, the quality
of a certain liquid can be judged already after a few seconds real time.

Tempotron Classifier

The software tempotron is realized via PyNN, using the simulator backend NEURON [Hines
and Carnevale, 2006] to carry out the computation. Any supported spiking neuron type
can easily be employed as a building block for the tempotron. With respect to a potential
hardware realization, LIF neurons with conductance-based synapses are of particular interest.
In contrast, the originally proposed tempotron [Gütig and Sompolinsky, 2006] is based on LIF
neurons with current-based synapses. The deduction of the learning rule – presented in Section
1.4.3 – is in principle only valid for the current-based type. An according deduction for the

47



2. Realization of a Multi-Chip Setup and On-Chip Classification

voltage course of a LIF neuron with conductance-based synapses is non-trivial. Furthermore,
the original deduction required the smooth resetting after the first neural firing within the
classification time window, which is not feasible in hardware.
To simplify the transition from a software to a hardware readout the realized tempotron

accounts for additional hardware limitations. First of all, the PyNN neuron type specialized for
the FACETS hardware is used, which is in principle a standard LIF neuron with conductance-
based synapses, but also includes some modification like for example setting Cm to a fixed
value of 0.2 nF (compare Equation 1.1).

The major concern for the realization of a classifier on the hardware are the available
ranges for synaptic weights. Both their maximum strength and their resolution are limited.
Commonly classifier learning rules try to increase the contrast in the readout response between
applied input patterns of different classes by tuning the synaptic efficacies accordingly. If it is
allowed to, such learning processes may tune synaptic efficacies beyond biologically plausible
regimes, and in our case technically even more critical: beyond hardware limitations. The
same applies for the tempotron learning process. It continues until a defined maximum of
training iterations is reached or a stable state is approached where the classification is perfectly
correct.
Tests have further shown that the tempotron classification performs on chance level if the

synapses are allowed to flip from excitatory to inhibitory type and vice versa. The reason
of this lies in the already mentioned differences between the current-based synapses in the
original model and the conductance-based ones on the Spikey chip. The contribution of a
single conductance-based synapse to the neuron membrane is the solution of the equation

Cm
dV
dt = −gl(V − El) + Isyn

with
Isyn = ωig0 (V − E) exp

(
− t− ti

τs

)
for t ≥ ti ,

which can be can be written as:

V (t) = El exp
(
− t− ti

τm

)
+ 1
Cm

∫ t

ti

ωig0 (V − E) exp
(
− t
′ − ti
τs

)
dt′ .

Here V is the membrane potential, El the leakage potential, τm the membrane time constant,
Cm the membrane capacitance, ωi the synaptic weight, g0 the base synaptic conductance, ti
the time of the afferent spike which activates the synapse, E the reversal potential (either
excitatory or inhibitory, depending on the synapse type) and τs the synaptic time constant. In
the case of the current-based synapses, the voltage-dependent term in the integral disappears,
making an analytic solution straightforward, as described in Section 1.4.3. Even assuming
that the voltage term remains approximately constant during a Post-Synaptic Potential (PSP)
(which may be plausible if there are many, relatively weak synapses, but is definitely not true
for e.g. the triplet scenarios described in Gütig and Sompolinsky, 2006) and can thus be shifted
out of the integral, synaptic contributions remain voltage-dependent:

V (t) ≈ ωi · (E − V (ti)) ·K(t− ti) ,

with the kernel K as described in Equation 1.6.

48



2.3. Liquid State Machines on the FACETS Chip-Based System

As this voltage dependence is not taken into account in the learning process, this may
significantly alter learning dynamics, especially in cases where the weight update rule switches
synapse types from excitatory to inhibitory or vice versa. In such cases the leaning efficacy
might non-continuously change between two consecutive learning steps by a factor of ≈ 7 (for
typical values Ei = −80 mv, V ≈ −70 mV and Ee = 0 mV) for a single synapse. This may
impose drastic consequences for the convergence of the learning process.

Additionally, synaptic hardware weights have only a resolution of 4 bit each (see Section 1.1).
In case the learning rule requires fine granular tuning of weights, this could become a problem.
Such a requirement would be inept beyond merely hardware weight resolution, due to the
hardware variations and noise.

Consequently, it needs to be shown that a constrained tempotron can classify beyond chance
level despite all described limitations. The software tempotron replicates all discussed issues
as closely as possible. It accounts for the limited range of weights by setting each weight which
exceed hardware limits back to the maximum hardware weight after each learning step. The
precise maximum weight in hardware depends on the chosen calibration. The efficacy could
be increased in hardware by changing for example the shape of a PSP.
To compensate the flipping of weights, the software tempotron simply checks the value of

each weight after each learning step and sets negative weights to zero. Hence, weight flips
are banned and the synapse type remains constant. For the dynamic input range it would be
beneficial to have both excitatory and inhibitory synapses, but it is not a priori clear for which
distribution of synapse types the contrast between the input patterns is effectively increased.
Thus, all synapses are initialized excitatory. A potentially more sophisticated way to tackle
this issue in future implementations is discussed in the outlook of this thesis.
For the last issue – the weight discretization – the tempotron accounts by clipping the

weights already in software either after each learning step to discrete values or after the
complete training in a student-teacher manner (see Section 1.4.3). The clipping distributes
the 16 available weights linearly between zero and the maximum hardware weight.
The simulation results presented in Section 3.2.1 show that despite the constraints the

tempotron trained such and afterwards realized in hardware can classify significantly better
than chance level.

49



3. Experimental Results

In this chapter a variety of experiments is presented. The first set of experiments shows the
correctness of the biology-to-multi-Spikey mapping procedure and provides estimates for the
general performance and scalability of the novel multi-chip framework introduced in Section
2.1 and Section 2.2.

The second set of experiments focuses on Liquid State Machines on the FACETS chip-based
hardware system and in particular the associated readout. The major aim of these studies is
the realization of a spike-based classifier that can be directly run on the hardware system.

3.1. Verification and Performance Analysis of the
Multi-Chip-System

The experiments presented in this section are carried out to demonstrate the basic functionality
of the multi-chip system. First of all, the performance of the routing step (see Section 2.2.4) is
evaluated both in terms of routing result quality and algorithm convergence speed. Then the
general runtime performance of the complete mapping flow is analyzed to identify bottlenecks
and outline possible improvements for future implementations. In the end of the section, a
Synfire-Chain experiment (see Section 3.1.4) is performed to verify the correct configuration
of the hardware system.

3.1.1. Routing Performance Analysis

The goal of this analysis is to investigate the performance of the routing algorithm as
described in Section 2.2.4. To consider all objectives of the optimization process comprehensive
investigations are necessary. The first experiment evaluates the performance in terms of
routing quality. The second experiment analyzes the time necessary to reach a stable routing
configuration.
These performance measurements are based on the KTH attractor model by Lundqvist

et al. [2006]. It is part of the benchmark library, which is used to optimize the neuromorphic
mapping workflow for the FACETS wafer-scale system (see Section 1.1.5) and the executable
system specification [Vogginger , 2010].

Applied Benchmark Architecture The maximum number of realizable synapses heavily
depends on the utilized neural architecture. Consider an architecture with homogeneous
connectivity between all neurons, i.e. each neuron has the same probability to be connected to
any other neuron. Without any asymmetries in the original network, an optimizing placement
or routing algorithm has usually hardly any possibility to optimize by appropriately arranging
the cells or axonal connections. It would hardly matter which neuron is placed on which
chip. The same applies for the routing: the synapse loss would remain nearly the same
independent of the actually realized synapses. Consequently, the network that is used as a

50



3.1. Verification and Performance Analysis of the Multi-Chip-System

hhhhhhhhhhhhhhhhhBuilding Block
Network Size 384 768 1536

Hyper-Columns (HC) 6 8 12
Mini-Columns (MC) per HC 4 6 8
Pyramidal Cells per MC 12 12 12
RSNP Cells per MC 2 3 3
Basket Cells per HC 6 6 8

Table 3.1.: Different building block configurations of the employed KTH attractor models in three
sizes to test the routing performance.

routing benchmark requires structural inhomogeneities, e.g. clusters of neurons with higher
local than global connection densities. The synapse loss after a random initialization can then
be compared against the synapse loss after the optimization. Obviously, the achievable minimal
synapse loss depends on the placing of neurons. A placing that conserves the architecture
intrinsic clustering of neurons with high connection densities can reduce the final synapse loss.

From the benchmark model library the KTH attractor model has been chosen to carry out
the analysis. For details on the model characteristics refer to Lundqvist et al. [2006]. The
network specific dynamics are not of particular interest for the experiments presented here.
It merely serves as a benchmark model with neuroscientific relevance. Its implementation
as originally proposed might not be necessarily suitable for actual multi-chip experiments,
because the typical connection densities between neurons easily exceed the limits of the event
network. A future neuroscientifically relevant implementation of the model on the multi-chip
system would require a tuning of the model, which is beyond the scope of this work.
Consequently, the size of the KTH attractor model is reduced to fit onto three differently

sized setups. Figure 3.1 illustrates the fundamental structure of the KTH model. Three
different KTH setups with varying sizes of the KTH building blocks are mapped as listed in
Table 3.1.

The routing software can handle arbitrary numbers of Spikey cores per chip. Nevertheless, it
is assumed throughout the routing benchmark experiments, that only one core is available per
chip. The availability of multiple cores would reduce the overall synapse loss. The assumption
has been made with regard to network experiments on the current Spikey revision: For the
third revision of the chip only one of the two cores is available, as described in Section 3.1.3.
Therefore, results provided by the presented experiments offer a conservative estimate of
synapse loss.

Routing Quality Evaluation

The purpose of this experiment is to evaluate the routing quality in terms of synapse loss
reduction compared to a random routing configuration. Thus, the synapse loss of the optimized
configuration state is measured in dependence of the two free temperature parameters T
and Text, which are relevant for the configuration state acceptance of the annealing process
(see Section 2.2.4), and the shape of the soft bound, which controls the muting of inter-chip
connections.
For the free routing parameters listed in Section 2.2.4 it is assumed that the temperature

parameters express more general characteristics than the others. For example the individual

51



3. Experimental Results

L2/3

RSNP Cells

Minicolumns
(Pyramidal Cells)

Basket Columns

_

1 2 31 2 3

L4

HypercolumnHypercolumn

0.3

0.3

0.17

0.17

0.70.7

0.25

0.7

Figure 3.1.: The cortically inspired Layer-2/3 KTH attractor model. It combines a soft WTA within
each hypercolumn with a long-range strong WTA between the hypercolumns. At any time only one
minicolumn per hypercolumn can be active. The model is used to benchmark the routing quality and
the runtime performance of the mapping framework. Figure by Mihai Petrovici.

tuning of a certain connection type and the actual lower soft bound heavily rely on the applied
neural architecture and the experimentalist’s preferences. Consequently they have not been
analyzed selectively. In this setup the different types of connections are weighted equally with
1 and the lower bound is set to 10 (compare Section 2.2.4). The same applies for the constants
of proportionality in each energy term: They are set to a value of 1.
For every KTH test setup, the random initialization of the synapse driver configuration is

performed 100 times, the mean synapse loss and the standard deviation are determined to
reduce fluctuations due to the random nature. For the optimization process an initialization
with less than 0.1σ deviation from the mean synapse loss of the random series is picked as a
configuration to start from.

The temperatures T and Text controlling the state acceptance probability and the adherence
of the lower soft bound for external connections are sweeped systematically. Every sampling
point corresponds to 10 optimizations with 500 algorithmic iterations each. Considering the
analysis further below in the text, 500 iterations per run have been shown to be sufficient to
reach a stable configuration state.

Observables In a holistic evaluation of the routing quality it is not enough to look only at
the synapse loss, but one has to consider all routing optimization objectives (see Section 2.2.4).
In the previous considerations the connection type prioritization has been neglected due to its
particularity. This has been achieved by setting the respective weights to 1. Consequently,
only the synapse loss and the muting of inter-chip connections needed to be considered.

52



3.1. Verification and Performance Analysis of the Multi-Chip-System

synapse loss: The first and most obvious observable is the synapse loss. It reflects the number
of synapses that can not be realized for a specific configuration. The loss arises not
only from hardware limitations. It can also be caused or amplified by non-optimal
configurations. The latter suggests the use of the synapse loss as a primary measure for
the mapping quality evaluation.

muting: To quantify the degree of inter-chip connectivity distortion (also referred to as
muting) the observable m is introduced, which reflects the number of realized connections
realized(ij) from chip i to chip j that fall short of lower_bound(ij) as introduced in
Section 2.2.4. Thus, the bigger m gets, the more axonal connections between chips are
discarded.

m =
∑
i,j
i 6=j

max(0, lower_bound(ij)− realized(ij)) .

Parameters The impact of both temperature parameters is studied, which are considered to
have the most general impact on the routing performance, as previously described in the text.

T The temperature parameter controlling the acceptance probability for states with a lower
energy.

Text The temperature parameter controlling the shape of the lower soft bound. Smaller values
of Text enforce a stronger adherence of the bound.

Results The color maps in Figure 3.2 show the results of the performed experiment. Figure
3.2a, 3.2e and 3.2e illustrate the mean of the relative synapse loss as a function of T and
Text after the routing optimization has been performed. The first row corresponds to the
KTH system placed via a random mapping, the second row to the system placed via the
NFC algorithm, but with neuron type scaling1 on. The last column corresponds to the system
placed by means of the NFC algorithm without neuron type scaling. Note that the color
code for the relative synapse loss is different in all three figures. As expected, the general
synapse loss is high for the default version of the KTH attractor model due to the bandwidth
limitations and the limited number of synaptic connections. A complete realization of all
synaptic connections would require 99221 specific synapses. The standard deviations for all
sampling points have been determined and found to be below one percent, with a trend to
higher standard deviations – still below one percent – for higher temperatures, as one would
expect for the state propagation becoming more random. These low standard deviations
justify the initial assumption that 500 iterations are enough to reach a stable state even for
high-temperature runs.
Considering the randomly placed network, which has an initial synapse loss of 74% the

optimization achieved a synapse gain of 12.8 to 8 percent. The synapse loss increases
continuously for higher temperatures T , as one would expect. Similarly, the muting of inter-
chip connections increases for larger values of Text. For values of T above 1700 we can observe
a phase transition: the muting vanishes completely even for large values of Text. In the limit of
T →∞ we expect the system to achieve a synapse loss of about the size of the initial random
initialization.

1A feature of the NFC algorithm to enforce the placing of inhibitory neurons and excitatory neurons onto
different chips.

53



3. Experimental Results

For the system placed by the N-Force-Cluster algorithm with neuron type scaling enabled
the general appearance of the color map indicating the mean synapse loss looks similar. But
obviously the synapse loss is significantly higher, many standard deviations apart from the
results for the randomly placed system. This can be understood, since the neuron type scaling
forces excitatory and inhibitory neurons, which have the highest mutual connection densities
in the KTH model, on different chips. This might be beneficial for the wafer-scale system,
where higher connection densities between chips are available, but is inept for the chip-based
system. Still, the routing optimization is able to improve the overall synapse loss from initially
79.3 to 71 percent. The muting of inter-chip connections for the NFC system with neuron
type scaling shows the same phase transition as for the randomly placed system. It appears
at approximately the same temperature T , but the overall tendency to mute the chips is
lower. As previously described in this configuration the NFC places inhibitory and excitatory
cells on different chips. Since connection densities for inhibitory connections are higher than
for excitatory connections, more synapses can be realized per axonal inter-chip connection.
Consequently, their realization is energetically more favorable and the muting becomes less
likely.

The last system, the KTH model placed by means of the NFC algorithm with the neuron
scale disabled shows the significantly best results. From an initially 0.63% mean synapse loss
the system is improved to 0.44%, which corresponds to a gain of almost 20 percent. Beyond
that it performs 39 percent better than with the neuron scaling feature enabled. Even though
the synapse loss for this system is inevitably still high, the result emphasizes the necessity
of an optimized placement to achieve high numbers of synapses. The muting of this system
looks a little different. The tendency to mute is weak, because now inhibitory neurons are
distributed over the network, some onto each chip. Their high post-synaptic input count
makes the realization of such connections energetically favorable and therefore protects the
system from strong muting effects. Although the system approaches a similar phase transition
to a state where muting become impossible but for significant higher temperatures beyond
T = 4000.

Conclusions Drawn from this Experiment Series This experiment emphasizes the impor-
tance of a intelligent placing for a good routing performance. The analysis has been performed
for the NFC algorithm with and without neuron type scaling. The synapse loss differs by
almost 40% for between both system, which in the presented contest corresponds to an absolute
difference of about 40, 000 synapses.

Configuration State Convergence

The goal of this experiment is to evaluate how long it takes for the simulated annealing process
to converge into a stable optimized configuration state. As mentioned in Section 2.2.4, different
cooling strategies can be applied. Now, we want to see how these strategies may affect the
quality of the final state and the time necessary to reach it.

54



3.1. Verification and Performance Analysis of the Multi-Chip-System

0 500 1000 1500 2000 2500 3000 3500 4000
T

0

5

10

15

20

T
ex

t

0.612

0.618

0.624

0.630

0.636

0.642

0.648

0.654

0.660

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
T

0

5

10

15

20

T
ex

t

0

8

16

24

32

40

48

56

64

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
T

0

5

10

15

20

T
ex

t

0.710

0.715

0.720

0.725

0.730

0.735

0.740

0.745

0.750

(c)

0 500 1000 1500 2000 2500 3000 3500 4000
T

0

5

10

15

20

T
ex

t

0

8

16

24

32

40

48

56

64

(d)

0 500 1000 1500 2000 2500 3000 3500 4000
T

0

5

10

15

20

T
ex

t

0.440

0.442

0.444

0.446

0.448

0.450

0.452

(e)

0 500 1000 1500 2000 2500 3000 3500 4000
T

0

5

10

15

20

T
ex

t

0

2

4

6

8

10

12

14

16

(f)

Figure 3.2.: The mean synapse loss (left column) and muting (definition see test) quantification
(right column) for a 768 neuron KTH attractor model mapped to four chips with one core each. The
first row corresponds to the system placed by random, the second row to the system placed by the
NFC algorithm and neuron type scaling and the third row is the system placed by the NFC algorithm
without neuron type scaling. Figures (a), (c) and (e) show the actual synapse loss as a function of the
temperature parameters. (b), (d) and (f) illustrate the muting of inter-chip connections. A dedicated
discussion of the results can be found in the text.

55



3. Experimental Results

The following three basic cooling strategies are applied to the optimization process:

constant temperature T (t) =
{
T (0) for t < tmax

0 else
(3.1)

linear cooling T (t) =
{
T (0) ·

(
1− t

tmax

)
for t < tmax

0 else
(3.2)

exponential coolling T (t) =
{
T (0) · exp

(
− t
τ

)
for t < tmax

0 else
. (3.3)

This results in the free parameters T (0) for all strategies and τ for the exponential tem-
perature decay. tmax denotes the number of algorithmic iterations performed for the routing
optimization.

In accordance to the previous experiment the initial state is picked from within a range of
0.1σ away from the mean synapse loss for 100 random initializations. The gradient of the
linear cooling strategy depends on the number of overall performed iterations tmax, hence the
annealing process cannot be measured iteratively. Instead the optimization process starts over
again with an updated tmax value for each run, always starting from the same initialization.
Each data point corresponds to 10 individual runs.

Parameters The state convergence is analyzed as a function of the parameters as follows:

tmax The number of iterations for a complete run of the routing algorithm.

T (0) The initial temperature, which controls the configuration state acceptance for configura-
tions with a higher energy.

τ The time constant for the exponential cooling strategy.

Results Figure 3.3 shows the results for the KTH models scaled to 384, 768 and 1536 neurons
respectively. The networks are placed by means of the fully-automated random placement and
the initial temperature value is T (0) = 10 by default, except of one sweep explicitly marked in
Figure 3.3b.

Most obviously, the routing result is robust against parameter variation. Over a significant
range, the results match each other within their errors. For the model representation with 768
neurons a wider range has been exemplarily sweeped (see Figure 3.3b). The result is stable
until τ falls below 0.1. In the other limit for τ →∞, corresponding to a constant temperature,
the result remains stable in terms of achieving the same routing quality each time.

For initial temperature values below T (0) = 10, it is expected that the results remain about
the same. Otherwise, the results for exponential cooling strategies with a large τ or the
linear strategy for long iterations would further minimize the synapse loss. This behavior is
in accordance with the results presented in the previous experiment, where long iterations
have been performed over a wide range of temperature parameters. This does not hold for
the opposite direction. Very large temperatures worsen the overall synapse loss and increase
the error as expected, because the configuration state propagation becomes more and more
random.

56



3.1. Verification and Performance Analysis of the Multi-Chip-System

Most remarkably the number of iterations necessary to reach the stable configuration state
increases slowly and is only weakly dependent on the size of the neural architecture. If one
assumes that the convergence speed is almost independent of the network size, then the
complexity of the optimization problem is proportional to the area of the reduced connection
matrix. As described in Section 2.1.4, the respective growth in area is, by a factor of nneurons/chip

ncores/chip
,

slower than for standard connection matrices.

0 10 20 30 40 50
Algorithmic Iterations

0.35

0.40

0.45

0.50

0.55

0.60

R
el

at
iv

e
S

yn
ap

se
Lo

ss

Const
Linear
exp (−t/100)

(a)

0 10 20 30 40 50
Algorithmic Iterations

0.65

0.70

0.75

0.80

R
el

at
iv

e
S

yn
ap

se
Lo

ss

Const
Linear T(0)=1000
Linear
T ∼ exp (−t/100)

T ∼ exp (−t)
T ∼ exp (−t · 10)

T ∼ exp (−t · 100)

(b)

0 10 20 30 40 50
Algorithmic Iterations

0.79

0.80

0.81

0.82

0.83

R
el

at
iv

e
S

yn
ap

se
Lo

ss

Const
Linear
exp (−t/100)

(c)

Figure 3.3.: Evolution of synapse loss over al-
gorithmic iterations for the mapping of the KTH
attractor model. The speed of optimization con-
vergence is measured for three different sizes of
the model: (a) 384 neurons, (b) 768 neurons and
(c) 1536 neurons. Additionally different strategies
to cool the system have been used. One can see
that the speed of convergence does neither heav-
ily depend on the number of neurons nor on the
specific cooling strategy applied.

Conclusions Drawn from this Experiment Series The optimized result of the routing task
turns out to be similar for the applied cooling strategies within a wide parameter range.
However, the cooling process does make the process more robust against adverse choices of
parameters. Therefore, the linear cooling strategy is to be used in the default implementation,

57



3. Experimental Results

as it requires fewer parameters than the exponential cooling but performs equally in terms of
synapse loss.

3.1.2. Scalability of the System
The main purpose of interconnecting Spikey chips is to scale up the chip-based system to larger
neural network models. While the emulation time remains the same, the algorithmic task of
mapping the network becomes more complex. Thus, the software becomes the bottleneck in
operating a neuromorphic hardware system. The goal of the following analysis is to find these
bottlenecks and show up chances to enhance runtime performance in future implementations.
Simple duration measurement are commonly hardware dependent. Parallel program ex-

ecution and existing load on the computer can distort the results even more. To achieve
more general results the Processor instructions used are counted instead. The counting is
performed via Callgrind, a software compiler provided by the Valgrind software optimization
framework [Nethercote and Seward, 2007]. In addition to that, the mapping software is
compiled without any Processor specific optimizations. Many software compilers can optimize
the runtime performance by making use of hardware dependent features. While desirable in
normal operation, the optimization undermines the generality of our results.

Note that the results do not reflect performance gain by multiple CPUs. Most of the modules,
which have been developed for this thesis, are designed to work in parallel. Thus, many of
the measured instructions can be distributed on multiple processors. Another big player
for the overall runtime performance is the time spent waiting for input/output operations.
Unfortunately, this analysis can not account for such waiting cycles.
The software profiling slows down the mapping process tremendously, hence only a few

sample measurements have been performed. Nevertheless the analysis can provide valuable
information. For the same input and random seeds we can expect the software to operate
deterministically and therefore require the same amount of instructions for each run. The only
exception is the experiment control. Its runtime heavily depends on the amount of generated
spikes during an experiment.

Parameters and Strategies

N The number of neurons in the KTH attractor model

placing strategy The analysis is performed for both fully-automated placement algorithms:
the random and the NFC placement

Results Figure 3.4 and Figure 3.5 illustrate the results of the performance measurement.
Note that the figures share the same ranges for their coordinate systems.

The first thing to see is that the increase in complexity for the neuron placement is steeper
than for the other components. Initially it is surprising that the runtime of the random
placement increases that much. But investigations have shown that the main cause is not
the placing itself, but the extraction of subtrees from the biological graph for the recursively
operating algorithm. For one chip in the setup no subtree needs to be extracted, instead the
algorithm operates directly on the biological graph. This can explain why random placing for
the smallest model requires significantly fewer instructions compared to the runs for the larger
models. We expect the computational effort for the creation of sub-trees to grow linearly with
the number of chips.

58



3.1. Verification and Performance Analysis of the Multi-Chip-System

For the NFC placement the complexity for the smallest system is already higher. Additionally,
the increase in instructions is even steeper than for the random placement. The sampling
points are insufficient to extrapolate a general rule for the complexity course. But it is expected
that the computational effort grows quadratically with the network size since virtual forces
are applied between any two neurons (see Section 1.3.1).

All other modules show an almost linear behavior within the sampling range. This is what
one would expect for modules which operate on the configuration of chips which can mostly
be treated independently. For example the parameter translation and the experiment control
perform their respective tasks on each chip independently.

In Figure 3.5 we can observe an outlier for the experiment control which can be explained, as
previously described, by the occurrence of disproportionate large amount of spikes. Potential
causes for the increased amount of spikes are: an unfortunate mapping distortion for the
system, normal variation for a non-optimized architecture or the hardware issues described in
Section 3.1.3.

In a first-order approximation we can expect the system to require for all tasks except the
placing, about 7 · 1011 instructions for 16 chips with one core each. That are approximately
the amount of instructions the NFC algorithm requires to place the four chip setup.
Additionally, the consumption of CPU cycles necessary to process the GMPath language

invocations are measured (see Section 1.3.1). It has been found that its share of the overall
instructions is significant for the overall performance. Note that the path language is used
by the benchmarked modules, so that these instructions actually contribute twice. Once to
the major modules and once to the path language invocations. This heavy contribution had
already been found during an early software profiling. Consequently, path language usage has
been minimized throughout the development.

Conclusions Drawn from this Experiment Series The results deduced from this experiment
can be used to accelerate the mapping in future revisions of the mapping flow. It has
been shown that one can expect the most significant performance boost by speeding up the
placement. The required creation of subtrees causes the main overhead since it copies the
structure each time. One ansatz could be to work on the biological graph directly to minimize
copy operations.

Beyond the sheer number of instructions we expect a significant time overhead to be caused
by input/output operations. The GraphModel as a non-memory continuous data container
does not allow for efficient use of CPU caching features. A way out can be the template notes
established throughout this work and previously described in Section 2.2.5. But so far the
latter consideration remains a speculation that needs to be tested in further experiments.

3.1.3. Hardware Issues

Although the EVNET has been responsibly tested in Friedmann [2009], the setup suffers
from at least two superposed hardware issues. Both need to be discussed to understand the
following experiments.
The first issue concerns the occurrence of so-called ghost events. This phenomenon has

already been described in Brüderle [2009]. These events appear within the digital spike
recordings, although no activity can be observed on the neuron membrane. Commonly only
small numbers of such events appear and the ones originating from unused neurons can easily
be filtered out in software. Their cause is unknown at the time of thesis submission. The effect

59



3. Experimental Results

192 384 768

Neural Network Size

0

1

2

3

4

5

6

7

P
ro

ce
ss

or
In

st
ru

ct
io

ns

×1011

PyNN
Random Placing
Routing
Param. Transl.
Exp. Control
GMPath Language

Figure 3.4.: The number of CPU instructions consumed for the mapping process broken down to
individual steps as a function of the neural network size: One can see the complexity courses for the
different mapping steps, including: placing, routing, parameter translation, and experiment control.
Furthermore, the instructions caused exclusively by PyNN (see Section 1.2.1) and the GMPath Language
(see Section 1.3.1) are listed. Note, that the path language is used by the other modules, therefore the
corresponding instructions have counted twice. In this case the fully-automated random placement
algorithm provided by the MappingTool has been employed.

192 384 768

Neural Network Size

0

1

2

3

4

5

6

7

P
ro

ce
ss

or
In

st
ru

ct
io

ns

×1011

PyNN
NFC Placing
Routing
Param. Transl.
Exp. Control
GMPath Language

Figure 3.5.: The number of CPU instructions for the mapping process broken down to individual
steps (for explanation see Figure 3.4) as a function of the neural network size: The placing of neurons
has been performed by means of the NFC algorithm (see Section 1.3.1).

60



3.1. Verification and Performance Analysis of the Multi-Chip-System

was considered to have an insignificant impact on experiments, hence no further investigations
have been made on this issue. Unfortunately with the EVNET enabled FPGA configuration
the effect is amplified. The intensity varies by several orders of magnitude between experiments
and is characteristic for each Spikey-Nathan-combination. The configuration cycle of the chip
seems to have an severe impact on that issue. The current workaround is to reconfigure each
chip with the same configuration and subsequently measure the emitted spikes without input
applied, until the event count stays below a certain limit.
The second phenomenon affects the reliability of event transmission. For the 2nd revision

of the Spikey chip the EVNET has been proven to be perfectly reliable within bandwidth
limitations. This reliability is reduced for the 3rd revision. Most likely the issue is related
to a synchronization problem between the FPGA event sorting module and the chip clock
(the sorting module is described in Section 1.1.4). It is assumed that the problems arise from
altered chip timings in the latest chip revision. The reliability could already be improved by a
revised FPGA design, but fluctuations remain. Similar to the first issue, the reliability issue is
characteristic for each Spikey-Nathan-combination and shows non-deterministic properties.
Additionally, only one block per chip can be used to carry out the experiments due to an

design error in the current revision. Thus, the neuron capacity is cut by half. The design
error affects the scaling decisions, but does not interfere non-deterministically with actual
experiments.

3.1.4. Verification of Accurate Hardware Configuration

The goal of the first multi-chip experiment is to check whether the system works as intended.
Due to the size of the established software framework and the complexity of the general
mapping task, the correct operation needs to be verified. Attention has been payed to the
correctness of each individual module throughout the development process. E.g. high-level
software tests for the routing process are available which check the integrity of the routing
data before and after the operation. To demonstrate the working interplay between the
components on a system-level a basic Synfire-Chain neural network experiment is utilized.

From now on all experiments are performed from the PyNN-layer. In case any specific
modifications are applied to the underlying framework it is indicated in the text. The neuron
placement was achieved by means of the deterministic population placer described in Section
2.2.3. The deterministic placement is necessary for the conscientious verification of the system
to avoid distortions arising from a corrupt or unfortunate placement.

Basic Setup The hardware setup consists of four Nathan modules on one backplane. The
placing of the Nathan modules is depicted in Figure 3.6. The general functionality of the
MCGN lanes and the network functionality of the Nathans in question have been tested
beforehand via low-level communication tests. Note that this offers no protection against the
issues described in Section 3.1.3.

Furthermore, the event output buffer depth of the chips is reduced from 128 to 4 events as
proposed by Friedmann [2009]. Consequently, strong activity can not fill up the transmission
buffers, where the events would most likely expire their delivery time and consequently be
dropped.

61



3. Experimental Results

2

0 1 15

Figure 3.6.: The network configuration used for the multi-chip experiments. Four chips in a chain are
available. All Spikeys belong to the 3rd revision and therefore provide one analog core, which results in
a total count of 768 neurons in the setup.

Parameter Value
Nexc/Ninh 20/5
premote
ee /premote

ei /plocalie 0.6/0.99/0.99
gremote
ee /gremote

ei /glocalie [µS] 0.005/0.003/0.003

Table 3.2.: Network characteristics for the Synfire-Chain model with feed forward inhibition. Note
that the model does not comprise local excitatory connections. A schematic of the model can be found
in Figure 3.7

Synfire-Chain Demonstration

The aim of the experiment is to verify the multi-chip system by issuing a neural architecture,
that provides an easily interpretable response. The Synfire-Chain – part of the mapping
benchmark library – can offer such a response and beyond that, carries out an actual task.

A Synfire-Chain is basically a feed-forward network with layers of neuron populations. Each
population projects excitatory onto the next layer in a ring-like structure. Each population
comprises both excitatory and inhibitory neurons. While the excitatory neurons feed their
activity only onto neurons of the next population, the inhibitory neurons locally attenuate
their excitatory neighbors. Figure 3.7 illustrates the ring-like structure of the Synfire-Chain.
Activity in a thoughtful tuned network passes on from population to population and could
go on forever in a closed loop. The purpose of the inhibitory neurons is to ideally silence
the excitatory neurons after they fired once. Otherwise, high conductances could trigger
avalanches of spikes, where the first population emits one spike, the second population already
emits two spikes, and so on and so forth.
In our setup, each population resides on a dedicated chip projecting onto a population on

the next chip in a closed loop. Thus, activity reaching the last chip in the chain is fed back
to the first one. We therefore expect weaves of activity carrying on from chip to chip, each
time traversing a chip boundary. The cycle duration of the activity is a direct measure for the
delays between the chips in the network.

Results The rasterplot in Figure 3.8 clearly shows that activity passes on from chip to chip.
The activity is stable for at least 4 s of biological real-time. Although the local inhibition is

62



3.1. Verification and Performance Analysis of the Multi-Chip-System

not strong enough to limit the spikes to one per excitatory neuron, is is still strong enough
to avoid a broadening of the activity waves. The mean cycle time of the activity wave is
found to be 191.5± 1.3 ms. The programmable hardware delay is set to 2047 + 127 fast clock
cycles for the global delay plus the local delay, which corresponds to tdelay = 108.8 ms in
total for a speedup factor of 104. From the cycle duration of the four chip Synfire-Chain a
delay of t′delay = 47.9± 0.3 ms is deduced. The measured delay is significant smaller than the
programmed delay. This can not be explained by transmission jitter, but rather indicates
another problem with the event distribution network in combination with the 3rd revision
Spikey. Additional measurements have already confirmed this suspicion. The cause is unknown
at the time of thesis submissions, but might arise from the same cause as the other hardware
issues described in Section 3.1.3. For a properly working system one would expect delays
longer than the programmed values, due to the analog nature of the neurons. Incoming spikes
contribute to the post-synaptic membrane potential, but it takes a certain amount of time
until the threshold potential is finally reached.
Furthermore, multiple runs of the exact same experiment show that the Synfire-Chain

non-deterministically dies out from time to time. This can happen even for strong activity
in the preceding population. By using the deterministic population placer and keeping the
network connections below hardware limits it is ensured that the configuration of the hardware
is perfectly the same for each iteration. Thus, this behavior can not be caused by the software
itself. Figure 3.9 illustrates such behavior. This is caused most likely by the unreliable spike
transmission for the current revision of Spikey chips. The issue is described in Section 3.1.3.

exc

inhinh

exc

inh

exc

inh

60% 60% 60%exc

60%

99%

99%
99%

99%

Figure 3.7.: The Synfire-Chain with feed-forward inhibition comprises populations in a ring-like
structure. Each population – consisting of excitatory and inhibitory neurons – feeds its excitation to
the next population. The local inhibition silences its excitatory neighbors after a short delay to avoid a
broadening of the activity.

Conclusions Drawn from this Experiment The functional correct response of the synfire-
chain proves that the established mapping framework is able to configure the system, operate
the hardware and deliver the results back to PyNN appropriately. Despite all hardware issues,
the foundation is laid to repeat the multi-chip Synfire-Chain experiment in a deterministic
and neuroscientifically more relevant setup.

63



3. Experimental Results

0 500 1000 1500 2000 2500 3000 3500 4000

Time in ms

0

20

40

60

80

100

120

N
eu

ro
n

In
de

x

Chip 0
Chip 1
Chip 2
Chip 3

Figure 3.8.: Raster plot of an Synfire-Chain experiment on the multi-chip system. After an initial
stimulation – in our case the top most population – activity passes on from population to population.
Note that the loop is closed so that activity reaching the bottom of the figure continues on the initial
population.

100 200 300 400 500 600

Time in ms

0

10

20

30

40

50

60

70

80

N
eu

ro
n

In
de

x

Chip 0
Chip 1

Figure 3.9.: The propagating activity of the Synfire-Chain unpredictably dies out due to event
droppings caused by the hardware issues described in Section 3.1.3

64



3.2. Neural Network Experiments

3.2. Neural Network Experiments
This section presents neural network experiments performed on single and multi-chip setups.
The purpose of the first experiment is to optimize the constrained tempotron with regard to a
future hardware implementation. After that, the memory capacity of the self-stabilizing liquid
architecture is analyzed. Finally, initial experiments for a multi-chip self-stabilizing liquid
architecture are presented.

3.2.1. Single-Chip Liquid Computing

The self-stabilizing architecture as described in Section 2.3.2 has been realized on the FACETS
chip-based system. The applied task for the performance evaluation of the LSM is explained
in Section 2.3.1. The classification is performed by means of both the perceptron and the
tempotron as outlined in Section 2.3.3.

Basic Setup The next two experiments which use the self-stabilizing architecture, are carried
out on a single-chip setup. Consequently the issue concerning the ghost spikes, as described in
Section 3.1.3, is attenuated compared to the multi-chip operation.

Constrained Tempotron

The main subject of this analysis is the optimization of a tempotron (see Section 1.4.3)
with respect to a hardware realization and the resulting constraints. In addition to that,
the presented study offers valuable information about the suitability of the self-stabilizing
architecture as a substrate for LSMs. The spike response of such a substrate has been used to
train and test the readout. The selective parameter studies described in the following aim at
optimizing the classification results.

The tempotron requires significantly more parameters than the perceptron (see Section 1.4.3).
Thus, the investigated parameters have been limited to a manageable subset. For example the
proposed ratio of τmembrane/τsyn = 4 for the membrane and synaptic time constants has been
kept [Gütig and Sompolinsky, 2006]. The complete set of parameters that were actually studied
is listed below. Each of these has been varied individually in a dedicated experiment series.
Throughout these runs, all remaining parameter values have been taken from a common set of
default values: Each presented data point implies 1500 preceding training steps. The initial
weight values are normally distributed around a mean of ~ω0 = 0.0005µS with a standard
deviation of 0.0002µS. Those studies that employ an exponentially decaying learning rate
deploy a time constant of τ = 1000 training iterations. The initial learning rate α(0) was set
to 1 for constant learning rates and to 10 for exponentially and linearly decaying rates. The
utilized LIF neuron parameter values are listed in Table 3.3.

Parameters The following parameters have been selectively studied to optimize the classifi-
cation performance of the hardware-specifically constrained tempotron.

El The resting potential of the neuron

~ω0 The mean of the normal distributed initial weight vector

α(0) The initial learning rate

65



3. Experimental Results

Parameter Value
Vreset −63 mV
Vthresh −55 mV
EIrev −80 mV
El −58 mV
gl 20 nS
τEsyn/τ

I
syn 2.5 mS

Table 3.3.: The set of LIF neuron parameters which are used by default for the selective parameter
studies. Note that the studies will show that El is already close to optimal. This is no coincidence, the
set has been cherry-picked based on early studies and provides a frame for the studies with generally
good natured classification characteristics.

α(n) The learning rate decay strategy, which controls the impact of the weight updates over
the training period

τlearn The time constant for the exponential learning decay

Results In the beginning of this analysis description the studies will be presented, which
are used to optimize the constrained tempotron. Subsequently a typical learning curve of
a optimized software tempotron is presented, followed by a direct, i.e. not further modified
mapping of this software-trained tempotron to the actual hardware system. For the selective
parameter studies the labels Frame-N in each figure refer to the Frame-N tempotron classifying
the Nth spike segment in the past. For example the Frame-0 tempotron classifies the present
spike segment. For a complete task description refer to Section 2.3.1.
The first study investigates the impact of the learning strategy and the choice of the

initial learning rate α(0) on the classification performance. Figure 3.10, Figure 3.11 and
Figure 3.12 show the classification results for the constant, for the linearly decaying and for
the exponentially decaying learning rates, respectively. Each plot shows the classification
performance as a function of the initial learning rate.
The figures consistently indicate that after 1500 learning steps the Frame-2-tempotron

provides no significant correct classification, independent of the employed learning strategy and
the initial learning rate. Thus, the Frame-2-tempotron has been omitted in the following for
reasons of clarity. For the two easier tasks the tempotrons were trained for, namely the Frame-0
and the Frame-1 classification, the result for those tempotrons using the constant learning
rate and the linear decaying learning rate look very alike. However, the tempotrons with the
exponentially decaying learning rate show significantly better classification performances for
large initial learning rates. The tempotrons with the latter learning strategies decay down
to a learning performance close to chance level when the initial learning rate is increased
to approximately 8, while the tempotrons with the exponential decay show still correct
classification above 80% when starting at the same initial value. Consequently, the classification
with a exponential strategy can be considered to be the most robust and is generally preferable.

66



3.2. Neural Network Experiments

0 2 4 6 8 10

Initial Learning Rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

ne
ss

Frame 0
Frame 1
Frame 2

Figure 3.10.: The last 3 tempotrons carrying out the task described in Section 2.3.1. The label Frame
N refers to the classification on the Nth spike segment in the past. This parameter study focuses on
the initial learning rate. Different decaying leaning strategies have been test. In this case the learning
rate was constant over the complete 1500 training steps.

0 2 4 6 8 10

Initial Learning Rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

ne
ss

Frame 0
Frame 1
Frame 2

Figure 3.11.: Selective parameter study focusing on the initial learning rate in combination with a
linearly decaying learning rate (for explanation see Figure 3.10).

67



3. Experimental Results

0 2 4 6 8 10

Initial Learning Rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

ne
ss

Frame 0
Frame 1
Frame 2

Figure 3.12.: Influence of the initial learning rate on the tempotron classification for an exponentially
decaying learning rate. (for explanation see Figure 3.10)

The next parameter to be selectively studied is the mean initial weight. The standard
deviation of the normally distributed weights is constantly kept at σ = 0.0002µS. Figure 3.13
illustrates the results for a large range of initial weights, even exceeding the available hardware
range when applying the default chip calibration. Note that the learning rate influences the
impact of initial weights on the final classification result. For large learning rates one may
assume that the weights can reach basically arbitrary values within a few learning steps,
while for small learning rates it can take arbitrarily long to reach a specific target weight.
A constant learning rate of 1 has been used because for the chosen default time constant of
τ = 1000 and an initial learning rate of 10 the learning rate course remains above 1 over
the complete learning period of 1500 steps. Hence, the impact of the initial weights on the
final classification performance can be expected to be even less significant for the exponential
learning strategy. Aside from that, the constant learning rate of 1 has been proven (see
Figure 3.10) to yield good classification results. The results show that neither weak nor strong
initial weight values in the available hardware range have a strong impact on the generally
good classification performances for the Frame-0 and Frame-1-tempotron. Thus, the final
classification performance is considered to be basically independent of the choice of initial
weight values in the accessible hardware range.

Subsequently, the importance of the decay time constant τlearn for the exponential strategy
is investigated. The results are presented in Figure 3.14. It is important to note that a
good choice of τlearn for finite learning periods also depends on the maximum number of
training steps tmax. The reason for this is that both τlearn and tmax determine how far α(tmax)
approaches 0 during the learning phase. For short training periods and long time constants
the learning rate is almost constant, while in any case for short time constants the effective
learning can stop too early as α decreases rapidly, so that later weight updates in the training
have no significant impact on the weights anymore. In the results we can observe that for time
constants above ≈ 800 the classification performance starts to decrease for both the Frame-1
and the Frame-0 tempotron. This is within the range of what we expect, as for τlearn = 800 the
learning rate drops continuously to α(1500) = 1.35, but is above this value most of the time,

68



3.2. Neural Network Experiments

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Mean Inital Weight in µS

0.6

0.7

0.8

0.9

1.0

1.1

1.2

C
or

re
ct

ne
ss

Frame 0
Frame 1

Figure 3.13.: Selective parameter study of the impact of the initial weights on the classification
performance after 1500 training steps. A constant learning rate has been used for the training.

while the parameter study for the initial learning rate for the constant rate (see Figure 3.10)
indicated a performance decrease for 1500 learning steps starting from α ≈ 2 upwards.

0 500 1000 1500 2000

Exp. Learning Rate Time Constant

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
or

re
ct

ne
ss

Frame 0
Frame 1

Figure 3.14.: Tempotron classification performance for an exponentially decaying learning rate with
the time constant τlearn after 1500 training iterations. Note that values for τlearn which yield a good
classification always rely on a sufficient number of training steps, since the smallest applied learning
rate is given by exp (−tmax/τlearn).

For a fixed set of Vthresh, Vreset and limited weights, the resting potential El can have a severe

69



3. Experimental Results

impact on the ability of the tempotron to emit a spike or not fire at all. A good value for El
depends on the mean input rate. It is assumed that calibrating the resting potential such that
– for the untrained tempotron and the trainings input applied – the chance for firing equals the
chance for not firing is a good point to start from. In such a scenario both patterns (+) and (-)
have approximately the same contribution to erroneous classifications. Figure 3.15 shows the
classification correctness over El from a corresponding study with an exponentially decaying
learning rate applied. The observed classification correctness is relatively low, but within the
range of what can be expected when considering Figure 3.14. In this plot the classification
performance for τlearn = 1000 is already in the strongly varying region. Nevertheless, the
study indicates good classification results for El values in the range of −64 mV to −62 mV.
Considering the symmetry in the course of El, shifting El can in a first order approximation
be understood as a constant offset towards the (+) pattern or the (-) pattern respectively.

−70 −68 −66 −64 −62 −60 −58

Resting Potential

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

C
or

re
ct

ne
ss

Frame 0
Frame 1

Figure 3.15.: Selective parameter study illustrating the impact of the resting potential on the
classification performance. For each data point the Frame-0 and Frame-1-tempotrons have been trained
with an individual resting potential over 1500 learning steps with an exponentially decaying learning
rate.

Decisions based on the Preparative Studies We can now extract a suitable set of parameters
from our selective studies. This set is subsequently used to investigate how the classification
correctness evolves over the learning period. Figure 3.16 shows the learning curve of the
constrained tempotron as simulated in software. One can see that the classification correctness
of the Frame-0 and Frame-1 tempotron quickly approach a close-to-optimal classification
result, while the performance of the Frame-2 tempotron constantly remains on chance level.
The last data point for each tempotron shows the classification results after the weights have
been clipped to the 4 bit hardware-like weight values. However, the classification performance
remains high, so that no significant difference can be observed. Furthermore, a histogram
illustrating the distribution of weights after the training and subsequent clipping of weights
for the Frame-0 tempotron can be found in Figure 3.17.

70



3.2. Neural Network Experiments

100 101 102 103 104

Trainings Steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

ne
ss

Frame 0
Frame 1
Frame 2

Figure 3.16.: Development of the classification performance of constrained tempotrons in software
over a training period of 3000 leaning iterations. Note that the training steps are drawn on a logarithmic
scale to provide a sufficiently resolved depiction of the early learning phase. Each tempotron is trained
to classify one of the last three 50 ms spike sequences, i.e. the Frame-0, the Frame-1 and the Frame-2
tempotrons are plotted. The learning rate rate decays exponentially with a time constant of τ = 1000.
As a result, the performance fluctuations are attenuated for the Frame-0 and Frame-1 tempotrons
during late training iterations. The task is described in more detail in Section 2.3.1.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040

Synaptic Weight in µS

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

Frame 0
Frame 1
Frame 2

Figure 3.17.: Synaptic weight distribution of the hardware-specifically constrained tempotrons after
3000 training steps and the subsequent clipping of continuous to discrete weights. The corresponding
on-chip classification performances can be found in Figure 3.18, Figure 3.20 and Figure 3.21. The
respective evolution of the in-software classification performance over the training period is illustrated
in Figure 3.16.

71



3. Experimental Results

A direct, i.e. unmodified mapping of a software-trained Frame-0 tempotron to the actual
chip-based hardware system is shown in Figure 3.18. The weights have been trained in pure
software simulations and subsequently been clipped to the discrete hardware weights. The
experiment does not yet account for any hardware-specific compensation methods, except of
an experimental stretching of weight values ω′ = a · ω. The mapping has been carried out for
one neuron on four different chips to test the robustness of classification performance against
hardware variations. Obviously, the on-hardware classification is close to optimal for a weight
stretching of a = 1.3. The characteristic performance course over a is consistent for all utilized
neurons and can also be observed for the software tempotron with clipped weights. Most likely
the stretching compensates a distortion introduced by the clipping of the continuous weights
to discrete hardware values. Otherwise, one would expect the classification to be optimal for
a = 1 after the learning procedure.

The good quantitative matching between hardware and software emphasizes the potential of
the PyNN approach: A readout trained completely in software can be mapped to the FACETS
chip-based hardware system without obstacles.
In order to assert the validity of this statement, Figure 3.19 shows the classification

performance for a tempotron configured with the same weight values as for the runs shown
in Figure 3.18, but now being randomly distributed among the synapses. The results –
classification performance is always around chance level – clearly proof the differential and
individual training of each synapse, because as obviously applying the same weight distribution
is not sufficient to reach a significant classification performance.

1.0 1.1 1.2 1.3 1.4

Weight Stretch

0.75

0.80

0.85

0.90

0.95

1.00

C
or

re
ct

ne
ss

Chip 0
Chip 1
Chip 2
Chip 3
Software

Figure 3.18.: A direct mapping of a software-optimized Frame-0 tempotron – i.e. classifying the latest
spike segment only – onto actual hardware neurons. The illustration shows the readout performance
of four neurons located on different Spikey chips. After the weight discretization process, the weight
values have additionally been stretched by a factor close to 1, which is depicted on the x-axis. The
distortions caused by the discretization are best compensated with a weight stretch of ≈ 1.3.

72



3.2. Neural Network Experiments

1.0 1.1 1.2 1.3 1.4

Weight Stretch

0.40

0.45

0.50

0.55

C
or

re
ct

ne
ss

Chip 0
Chip 1
Chip 2
Chip 3

Figure 3.19.: Classification performance for the Frame-0 tempotron with the same weights as the
tempotron presented in Figure 3.18, but randomly shuffled. Obviously the classification remains on
chance-level. This illustrates the importance of an individual learning for each weight.

Figure 3.20 and Figure 3.21 show the results for the Frame-1 and Frame-2 tempotron on
hardware. For the 1st frame the general course of classification correctness versus weight
stretching matches the course in software. Although the hardware-software matching is not
within the error ranges, one can clearly see how all hardware classification results and the
software result decrease for stronger weight stretching. The classification correctness of the
Frame-2 tempotron remains on chance level, in accordance with the software prototype.

Conclusions Drawn from this Experiment Series The parameters of the tempotron LIF
neuron and the parameters responsible for the training have been optimized to solve the liquid
computing classification task defined in Section 2.3.1 in a purely spike-based manner and with
the goal to port the full setup to hardware. A typical learning curve has been measured, which
allows to estimate the minimum effort to be invested for a successful tempotron training.
For the first time a single-cell spike-based in-hardware classifier has been realized on the

highly accelerated FACETS system. The mapping of the software-trained tempotrons onto
the hardware substrate yield good classification performances close to the respective software
prototype. As one important possible application, host-communication bottlenecks can be
overcome by performing classification tasks directly on the hardware system and reading
back only the processed answer. The fact that a software-trained tempotron can be mapped
seamlessly to the FACETS hardware system underlines the potential of the PyNN approach
and the importance of a quantitative simulator-hardware matching as proposed e.g. in Brüderle
et al. [2009]. The results suggest the realization of a complete LSM on hardware including
both the liquid and the classifier.

73



3. Experimental Results

1.0 1.1 1.2 1.3 1.4

Weight Stretch

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

ne
ss

Chip 0
Chip 1
Chip 2
Chip 3
Software

Figure 3.20.: A direct mapping of a software-optimized Frame-1 tempotron – i.e. classifying one
spike segment before the latest one – onto actual hardware neurons. The illustration shows the readout
performance for four neurons located on different chips. After the weight discretization process, the
weights have additionally been stretched by a factor close to 1, which is depicted on the x-axis. The
distortions caused by the discretization can in this case not be fully compensated by the weight stretch.

Memory Capacity

To estimate the memory capacity inherent to the liquid, the classification performance with
liquid is compared to the classification without liquid between input stream and classifier.
However, both the perceptron and the tempotron contribute their own memory. For the
perceptron the memory is caused by the spike convolution necessary to prepare the input and
for the tempotron the memory is inherent to the underlying LIF neuron with its time constant
τmembrane = Cmembrane/gl (see Section 1.1). Therefore, one needs to isolate the memory provided
by the liquid from the memory provided by the readout. In the case of the perceptron the
classification can be evaluated for different convolution time constants to get an estimate of the
memory provided by the liquid and the one provided by the perceptron. The memory analysis
is performed only by means of the perceptron due to the higher computational complexity of
the tempotron.
The first spike segment in the past has been used to carry out task, since the previous

experiment showed no significant classification success by the tempotron on the second segment
in the past.

Parameters Subject of the memory capacity analysis is the convolution time constant. A
sweep is performed for both a perceptron classifying the response of the liquid and a perceptron
classifying the input without a liquid-based pre-processing.

τ time constant for the convolution of the spike train with an exponentially decaying
function.

74



3.2. Neural Network Experiments

1.0 1.1 1.2 1.3 1.4

Weight Stretch

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

C
or

re
ct

ne
ss

Chip 0
Chip 1
Chip 2
Chip 3
Software

Figure 3.21.: A direct mapping of a software-optimized Frame-2 tempotron onto actual hardware
neurons. The illustration shows the readout performance for four neurons located on different chips.
After the weight discretization process, the weights have additionally been stretched by a factor close
to 1, which is depicted on the x-axis. Independent of the stretch factor, the classification result remains
on chance level.

Results Figure 3.22 shows the gathered results. Most obviously one can see that the
classification performance for the Perceptron strongly depends on the free parameter τ . For
τ → 0 the classification performance reaches chance level, in accordance to what we expect.
For small values of τ none of the spikes has a significant impact on the actual input presented
to the perceptron anymore.
The classification on the liquid outruns the one without liquid for small values of τ and

consequently for a small internal memory of the perceptron. For τ ∼ 12 ms to τ ∼ 15 ms
the classification with liquid reaches a level below the final plateau where the classification is
already above chance level. In this range the classification is strongly dependent on the specific
structure of the applied spike sequences. Consider simplified the cast that the perceptron
distinguishes the two patterns by the occurrence of their last spikes only. The distance in time
between those two spikes be ∆t, then their contribution to the input of the perceptron differs
by exp

(
−∆t

τ

)
− 1. This is an exponential dependency of the classification correctness on ∆t for

this feature. During the task generation we added a normal distributed jitter with σ = 2 ms
on each spike time. This could explain the 3 ms range of premature classification correctness.
This suspicion is supported by the fact, that the same analysis on the column-based liquid
shows the same behavior (see Figure 3.23).
The classification performance without any liquid exceeds the one with liquid for large

values of τ . The memory contribution of the liquid becomes unimportant for such τ . Without
the distortions from the neural architecture and without hardware variations and noise the
classification on the unfiltered, liquid-less input is more efficient.
Finally, we want to see how the memory of self-stabilized liquid compares against the

column-based liquid analysed by Albert [2010]. Figure 3.23 shows the corresponding result for

75



3. Experimental Results

the same analysis. We can see, that the general appearance of the curves is very similar to the
one illustrated in Figure 3.22. However, the classification correctness on the column-based
liquid is about 10% better than on the self-stabilizing architecture over the complete range.
This is not surprising, since the column-based liquid has been specifically tuned for this task,
due to its narrow working point. The self-stabilizing network, in contrast, did not require
a time intensive tuning. Although the liquid offers a broader working range, the separation
property (see Section 1.4) of the liquid is limited by the self-regulating behavior.

0 5 10 15 20

Convolution Time Constant in ms

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

ne
ss

w Liquid
w/o Liquid

Figure 3.22.: Correctness of the perceptron classifying the first spike segment in the past (from
−100 ms to −50 ms) in dependence of the convolution time constant τ . For each data point 1000
training steps have been performed and the correctness is measured over 200 test stimuli. The error is
given by the standard error of the mean. One can see that the classification beyond chance level sets in
significantly earlier for the classification with liquid compared to the classification without liquid.

Conclusions Drawn from this Experiment It has been shown, that the self-stabilizing
network architecture mapped to the Spikey chip can be utilized as a substrate for LSMs. It
enabled the perceptron to classify beyond its own memory capacity. Its memory capacity has
been found to be lower than for the column-based architecture [Albert, 2010] for the given
task and input intensity. However, due to the robustness of the self-stabilizing architecture, it
can be used in a more versatile. While the column-based architecture needs to be tuned to a
specific task, the self-stabilizing architecture can easily be applied to a multitude of tasks.

3.2.2. Feasibility Analysis: A Liquid State Machine on the Multi-Chip-Setup

In Section 3.2.1 the results of the liquid based on the self-stabilizing architecture realized
in a single-chip system have been presented. The same architecture has been extended to
multiple chips employing the multi-chip mapping framework introduced in this thesis. The
architecture-intrinsic ability to amplify weak activity should enable the network to reach its
working point already for very few inter-chip connections.

76



3.2. Neural Network Experiments

0 5 10 15 20 25

Convolution Time Constant in ms

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

ne
ss

w Liquid
w/o Liquid

Figure 3.23.: Memory capacity analysis performed by M. Albert. The readout performance of a
perceptron is measured against its convolution time constant. In accordance to the memory capacity
analysis for the self-stabilizing architecture, the first spike segment in the past has been classified.
The perceptron has been trained wit 60 samples in 5 iterations. Each data point corresponds to 40
classifications. Data by Albert [2010].

The necessary network descriptions have been implemented and a bandwidth analysis has
been performed, indicating sufficient throughput via the network. However, a final analysis of
the multi-chip liquid shows that the dynamics driven by the hardware issues (see Section 3.1.3)
have an impact that is too strong to achieve classification performances beyond chance level.

Basic Setup For the feasibility analysis the Nathan setup described in Section 3.1.4 and
depicted in Figure 3.6 has been used. The utilized neural architecture is depicted in Figure 3.24.
Each chip comprises an individual copy of the single-chip variant of the self-stabilizing network
as introduced in Section 2.3.2. Then a number of excitatory remote connections are drawn
from one single chip to all other chips. The goal was to initially occupy as little MCGN
network resources as possible in order to attenuate distortions induced by event drops as
efficiently as possible. The bandwidth analysis below benchmarks the event drops for an
increasing number of remote connections from the sending to the receiving Spikey chips.

Bandwidth Analysis

Initially a single chip, the sending one, is prepared with the self-stabilizing architecture, while
the other chips are set to loopback mode2 to simply receive the input events and output a
copy of each so they can be recorded for analysis. Hence, all events sent by the sending chip
and transmitted via the network should in principle appear on the receiving side, except for

2In loopback mode digital events are forwarded from the input buffers to the output and bypass the analog
part of the Spikey Chip, i.e. every received event will appear as a recorded spike in the output buffer of the
chip. See [Grübl, 2007, Section 4.3.6] for more details.

77



3. Experimental Results

SpikeySpikey Spikey

Spikey

Inh

Exc

Exc

Inh

Exc

Inh

Exc

Inh

Figure 3.24.: A simple proposal for a multi-chip liquid implementation, deduced from the single-chip
self-stabilizing architecture described in Section 2.3.2 and depicted in Figure 2.9. The dashed excitatory
connections are optional. The goal was do extend the dynamics of a single liquid onto multiple liquids,
while using as little MCGN network resources as possible. In case the connections prove to be sufficient
one could easily think of extending the proposed architecture to a more versatile one.

events dropped in the network. The difference between the sent and the recorded events on
the receiving side should equal the number of dropped events. In Friedmann [2009] a special
event drop counter had been implemented in the FPGA designs to perform corresponding
experiments. This counter was removed later for the final design. These designs diverged
from one another by multiple revisions, thereby making a reapplication of this original drop
counting feature impossible. The spikes on the sender side need to be filtered for their
respective target Nathan, while on the sending side, due to the lack of input stimuli (except of
the final end-of-experiment event, which has been described in Section 1.2.2) and the bypassing
of the analog part, all occurring spikes are considered to be generated by network neurons.
Nevertheless, all events which originate from non-allocated synapse drivers on the target chips
are additionally filtered out to attenuate the erroneous counting of ghost events.
In this setup the appearance of ghost events, caused by the hardware issues described in

Section 3.1.3, is a critical factor undermining the precision of the result. The measurement is
also affected by the fact, that the end-of-experiment event is recorded non-deterministically to
the output spike train. However, this distortion is rather small compared to the one induced
by the ghost events.

Parameters In this bandwidth analysis the network events are driven by the dynamics of
the liquid on the sender chip. We consider the parameters of the self-stabilizing architecture
as fixed. Hence, the mean network event rate is controlled by the mean liquid activity and the
number of remote network connections.

78



3.2. Neural Network Experiments

Next The number of inter-chip connections from the sending Nathan to each receiving Nathan

Results Figure 3.25 shows the gathered results from this experiment, plotting the number of
measured event drops for different values of Next and for different target chips. In addition to
that, a histogram illustrating the frequency of measured event drops for different numbers of
remote connections can be found in Appendix C.1. The histogram proves that the measured
event drops follow a continuous curve and are not randomly distributed due to the hardware
issues.
Most obviously, chip 0 and chip 1 respond very similar, while chip 2 is more prone to the

ghost event phenomenon. It is remarkable that the number of dropped events is negative
for a wide range of remote connections, which means that on the receiving side more events
have occurred than events have been sent. Between any two runs any possibly remaining
neural network dynamics in the network that might have been kept alive by self-excitation
was silenced by setting all hardware weights to 0 for a sufficient period of time. Consequently,
remaining activity from previous experiments can be ruled out as a reason for the observed
dynamics on the chips. Furthermore, in loopback mode, spikes occurring in the analog parts
of the chips are ignored. The mean spike frequency of the self-stabilizing architecture on
the sender side has been found to be ν̄ = 12.2± 9.5 Hz. If the large number of ghost events,
especially arriving on chip 2, would be caused by activity from the sender chip one could
expect stronger variations in the measured event drops. However, the continuous course of the
results and the trend to higher drop rates for an increasing number of remote connections
suggest that we nevertheless observe real event drops. Consequently, for the following it is
assumed that the ghost events can be considered as an almost constant offset originating from
the receiving side.
For an increasing number of remote connections more synapse drivers on the receiving

side are allocated. Thus, less ghost events can be filtered out since the events might be
actual network input. The number of dropped events decreases in the beginning, because the
additional allocated synapse drivers contribute more ghost events than actual network events.
This effect appears to be stronger for chip 0 and 1 than for chip 2. A reason for this effect could
be that the ghost event rates are characteristic for each Nathan/Spikey combination and each
synapse driver. If so, the similar behavior for both chip 0 and chip 1 is suspicious. This could
indicate that there is a systematic problem causing the ghost events. However, this remains
speculation, since the problem is not understood at the time of thesis submission. Starting
from approximately 20 remote connections a positive slope can be observed in the number of
event drops. One can speculate that from that point the actual event loss surpasses the gain
in ghost events. The linear increase in the event drops is in accordance to what one would
expect based on the experiments performed in Friedmann [2009]. The experiments showed
that for too high transmission rates the delivery rate quickly approached a constant value.
Hence, the observed linear increase can be understood as a fully saturated network, which
simply delivers a constant rate of events, such that the number of dropped events necessarily
increases linearly with the number of remote connections.
For more than 36 network connections the dropped events for chip 0 and chip 1 approach

a plateau. This can not be explained by actual network drops, as the total event delivery
rates are expected to be constant based on the experiments performed in Friedmann [2009].
However, the effect might result from strong additionally allocated synapse drivers, which can
be responsible for a huge increase in ghost spikes. Since the effect appears equally on two

79



3. Experimental Results

chips, which also show a very similar course of dropped events for the whole range of remote
connections, this might point at a systematic source for this phenomenon.
Assuming an event loss which is zero for little network connections, we can consider the

initial decrease as the range where only very few or even no events are dropped. In this case the
decrease is caused by a “background” ghost event rate proportional to the number of allocated
synapse drivers. Consequently, the range from 15 to 25 remote connections would indicate the
regime within which the first events are getting lost, resulting in the curve exhibiting a trend
change towards more dropped events. Hence we conclude that for the chosen network the
multi-chip setup is expected to reliably realize up to approximately 20 remote connections.

5 10 15 20 25 30 35 40 45 50

Remote Connections Next

−1000

−800

−600

−400

−200

0

200

D
ro

pp
ed

E
ve

nt
s

Target Chip 0
Target Chip 1
Target Chip 2

Figure 3.25.: Measured event drops caused by the network for different numbers of remote connections.
The spikes are provided by a self-stabilizing architecture (see Section 2.3.2) on the sender Nathan.
Subsequently, the events from a individual subsets of neurons are transmitted to each of three receiving
Nathans. The self-stabilizing network mean spike activity has been found to be 12.2± 9.5 Hz. Please
note: Negative event drops indicate that more spikes have been measured on the receiving side than
spikes have actually been sent. These spikes are caused by the ghost event issue described in Section
3.1.3.

Conclusions Drawn from this Experiment Despite the reported hardware issues the pre-
sented analysis experiment indicates that the bandwidth of the MCGN is high enough to
sustain reliable spike transmission for approximately 15 to 25 remote connections for the given
self-stabilizing architecture. Event though, the results are strongly distorted by the ghost event
issue, the number of sustainable connections in a working setup can be expected to be higher,
because therein no more ghost events need to be transmitted. The method for measuring the
network drop rates presented in this section is generic enough to provide valuable information
about the expectable network distortions for a large variety of experiments.

80



3.2. Neural Network Experiments

The Multi-Chip Self-Stabilizing Network on Hardware

All prerequisites necessary for the mapping of arbitrary neural networks to the multi-chip
system have been developed. Section 2.2 described the actual implementation of the individual
algorithms responsible for carrying out the placement of neurons, the routing of intra and
inter-chip connections, the parameter translation as well as the operation of the hardware.
The correct individual functionality and the correct interplay of those components have been
demonstrated via the Synfire-Chain experiment in Section 3.1.4.
Furthermore, very similar to the bandwidth analysis experiment in the multi-chip envi-

ronment presented in Section 3.2.2, a test experiment based on the self-stabilizing liquid
architectures has been performed on the multi-chip hardware system. But in contrast to
the bandwidth analysis runs, the loopback mode has been deactivated, i.e. this time a real
multi-chip liquid was set up. As suggested by the bandwidth studies, 20 remote connections
have been used. However, the network dynamics in this test experiment were fully dominated
by the activity induced by the ghost event issues described in Section 3.1.3. Consequently, the
classification yielded results on chance level for all spike segments. The presentation of the
gathered experimental results has been omitted in this work, because the measured dynamics
are driven by technical artefacts and not by the self-stabilizing architecture at all. This points
out that due to the hardware issues the multi-chip system is not yet ready for neuroscientific
experiments. But as soon as these issues are resolved the experiment can and will be repeated.

81



Conclusion and Outlook
The goal of this thesis was to develop and experimentally verify a fully functional framework
for the mapping of arbitrary neural architectures onto inter-connected FACETS neuromorphic
chips. For this purpose, algorithms to place neurons onto the hardware substrate, to route
synaptic connections locally and globally, to translate parameters and support infrastructure to
operate the hardware have been implemented. A synfire chain experiment has been performed
to verify the correct mapping. Furthermore, a variety of benchmark and analysis results have
been presented to study various technical issues and corresponding solutions.
Additionally, a Liquid State Machine based on a self-stabilizing neural architecture and

a spike-based classifier have been implemented. This spike-based classifier has further been
investigated for an in-hardware realization. With this in mind, a software environment has
been realized, in which the readout can be trained under conditions that mimic specific
hardware constraints. Porting the software-trained readout to actual hardware - which is
possible due to the integration of the FACETS hardware into the PyNN concept - has yielded
good classification performances comparable to those of the pure software prototype.

Achievements
The most important result of this thesis is that a fully functional software framework is now
available for the mapping of arbitrary networks onto multiple inter-connected Spikey chips
by utilizing the event distribution network. Now, for the first time, non-hardware-experts
can utilize the simulator-independent modeling language PyNN to set up and execute their
experiments in such a multi-chip environment. For the accomplishment of this goal, various
contributions have been made to the FACETS biology-to-hardware MappingTool in general. A
new class of template nodes within the versatile graph-based data container of the MappingTool,
for example, can improve the runtime performance of the mapping in future software revisions.
The novel database-oriented strategy for the organization of parameter translation data serves
as a test case for a future adoption into the mapping flow of the wafer-scale system.

For the routing of synaptic signals within the now available multi-chip setup, an optimization
process involving simulated annealing was developed. The parameter values controlling this
algorithm were studied and optimized on the basis of benchmark models. The routing analysis
based on the KTH attractor model showed that the optimization process can have a significant
positive impact on the overall synapse loss. The results further indicate a strong dependence of
the potential synapse gain on the preceding placing. The NFC algorithm has shown to allow a
routing outcome which realizes approximately 20 percent more synapses in the given network
compared to a random placement. The precise value depends strongly on the neural network
architecture to be mapped. However, one can expect the beneficial impact to increase with
the amount of inhomogeneities in mutual connection densities and the size of the network.

Nevertheless, the overall synapse loss will constantly grow for increasing network sizes. This
is unavoidable due to the hardware constraints, mainly the limited input count per neuron and
the limited network bandwidths. Furthermore, it has been demonstrated that the optimization

82



3.2. Neural Network Experiments

rapidly converges to a stable synapse loss. Therefore, modelers can expect robustness against
variations in the synapse count from run to run.

Beyond the scope of implementing the system, a Synfire-Chain network model has been
realized to demonstrate and verify the functionality of the full PyNN-to-multi-chip system.
Thereby, various hardware problems with the event distribution network in combination with
Spikey chips of the 3rd revision have been identified. Most of these issues, which are described
in more detail in Section 3.1.3, still need to be solved by the developers of the corresponding
modules before the system can be beneficially exploited as a neuroscientific modeling tool.
To prepare and study such a neuroscientific application of the system, the foundation for

a multi-chip liquid state machine has been laid out. Independent from the utilized neural
architecture, a protocol for the general analysis of mean event drops by the network has been
developed and tested on the liquid. Due to the mentioned hardware issues, the results are not
expressive from a scientific point of view. However, when the hardware issues will be resolved,
everything is prepared for the experiment. In another experiment using a single-chip scale
variant of the liquid, the general suitability of the self-stabilizing network architecture to be
used as a liquid has been shown by investigating its memory capacity. The perceptron showed
significantly better classification results for an input previously separated by the network than
directly fed-in input without liquid-based pre-processing.
Furthermore, concepts for the realization of a spike-based classifier directly on hardware

have been investigated. For this purpose, a tool set for the in-software training of a tempotron
with respect to hardware constraints has been developed. It has been demonstrated that
the weight update rule can be applied to a LIF neuron with conductance-based synapses
with certain restraints, although it has been originally deduced for current-based synapses.
Selective parameter studies have been performed in software only to optimize the classification
results. An early mapping of an in-software optimized tempotron to actual hardware showed
good classification performances close to the results of the corresponding software prototype.
The tempotron has been mapped to four different chips to show that the training provides
sufficient robustness against variations between chips.

Discussion and Outlook

This thesis has set the foundation for the Spikey-based neuromorphic exploration of neural
architectures beyond single-chip boundaries, which allows for a whole new spectrum of realizable
network models for future studies. However, the a priori available event distribution network,
upon which the presented work builds, has been proven to be still occasionally unreliable and
malfunctioning at the time of thesis submission. Therefore, the most critical improvement
necessary for future work with the multi-chip system is to locate and solve these issues. The
corresponding problem descriptions given in Section 3.1.3 provide a basis for this endeavor.
In the following potential feature extensions for the software framework as well as require-

ments of the neural network candidates imposed by the multi-chip hardware constraints will
be discussed.

Technical Aspects The multi-chip framework realization provides, in its current state, access
to most hardware features, but still leaves room for improvements. It would be desirable to
provide multi-cast connections over the MCGN network. Due to a conceptual design decision
to save FPGA resources, neurons can only be forwarded to a single transmit buffer queue (see

83



3. Experimental Results

Section 1.1.4). To nevertheless enable spikes of a neuron to be transmitted to multiple targets
one needs to employ the multi-cast functionality offered by the underlying MCGN network.
Thus, intersections in the requested virtual connection sets need to be found using appropriate
software methods, and those connections need to be put in separate connection bundles. The
bundles could then be transmitted to multiple receivers by programming the MCGN routing
tables accordingly. Another possible approach would be to extend the lookup tables, which
would require a more modern FPGA, but enable neurons to be part of more than a single
connection bundle. Further desirable features are the access to the programmable event
transmission delays via PyNN and a differential experiment remapping, i.e. the automated
biology-to-hardware translation of only a subset of the full already mapped model due to
minor changes in the PyNN description. The latter could be used for selective parameter space
explorations with a minimal software overhead. All proposed features can be implemented by
extending the existing software, no conceptual problems are to be expected.

Scalability Considerations When it comes to scaling up the network to larger sizes, the
software performance becomes a major concern. It is inept for the operation of a highly
accelerated neuromorphic hardware device to be held back from efficient operation by its
software backend. The results of the runtime analysis of the complete mapping flow suggest
that for a fully automated workflow, the most significant performance gain is achievable by
optimizing the placement step. If no fully-automated placing is required, one can use the
semi-automated population placement instead, as has been implemented for and presented in
this thesis (see Section 2.2.3). It has not been benchmarked because it requires appropriately
sized local network structures for the manual distribution, which the unoptimized KTH model
could not offer. From experience, it requires less computational steps than the fully automated
version, since a big part of the mapping task is carried out by the user and it has also been
optimized particularly for the chip-based system. Future contributions to any part of the
MappingTool should consider using the GMPath language cautiously (see Section 1.3.1): It
offers great flexibility but may have a significant contribution to the over all runtime when
used in frequent loop iterations.

As introduced before, the multi-chip hardware system imposes some requirements on the
realizable neural architectures, which are discussed in the following.

Limited Network Bandwidth and Neuron Input Counts If a mapping of an architecture
onto the multi-chip system is to be poor of distortions it requires the original network to exhibit
strong inhomogeneities in the mutual connection densities. Such characteristics allow for an
effective clustering of local structures with higher connection densities and global structures
with only sparse interconnectivity. In case such local structures exceed the capacity of a single
chip, they will become heavily distorted due to the limited network bandwidth and the limited
input count per neuron. Apart from the sheer number of connections within the network,
the deliverable rates also need to be taken into consideration. For example, if the neurons
sending via long distance connections tend to burst, events can get dropped randomly by the
network infrastructure and would consequently induce a distortion. This distortion is difficult
to analyze or compensate due to its random and highly dynamics-dependent nature.

A theoretical upper limit for an acceptable event rate with an effective event drop below 5%
has been found to be at approximately 0.17 events/timestamp in experiments performed by

84



3.2. Neural Network Experiments

Friedmann [2009]. This corresponds to a chip-to-chip throughput of events with a maximum
rate of 3.4 kHz in biological time. The given rate has been extrapolated from measurements
from the previous chip generation and could not yet be verified for the current revision due
to the hardware issues described in Section 3.1.3. However, the effective rate is expected to
be lower if the MCGN topology becomes more complex, since then more local and global
network resources need to be shared by multiple participants. Here, local resources refer to
the buffers implemented in the sender and receiver logic on each FPGA and global resources
to the limited MCGN network resources.
Furthermore, the maximum input count of each neuron remains constant while scaling up

the network. The available 256 axonal connections, which can independently project onto the
post-synaptic neuron are shared among local neurons and network event sources. Hence, for
larger networks, it can be a useful technique to introduce a distance-dependent connection
probability into the network architecture. Often, this does not impose any significant restraint
from the biological point of view, since biological neural networks commonly exhibit high local
connection densities and sparse projections onto distant regions in the nervous system. For
example, activity found in thalamus has a significant impact onto the network dynamics in
the cortex, despite their sparse connectivity [Bruno and Sakmann, 2006].

Synaptic Delays Another restraint for the realizable network models is given by the inho-
mogeneous hardware event delays. While local synaptic delays are unrealistically short, they
enter a biological regime for the inter-chip communication. The minimum network delay for
the current hardware revision was predicted by Friedmann [2009] to be 9.1 ms. During the
Synfire-Chain experiment presented in Section 3.1.4, the programmable delays have been found
to be non-functional for the current revision of the Spikey chip. In theory, these programmable
synaptic delays offer a chance to realize a wider variety of network architectures, when used
wisely by the experimentalist (see e.g. Kremkow et al., 2010). If the local neural structures, as
discussed above, start to exceed the single chip capacity, the difference in delays can induce
distortions with significant impact on the dynamics. For example, the realization of networks
with WTA elements could run into problems due to the delay inhomogeneities, since in most
spike-based WTA architectures the timing of lateral inhibition is crucial.

Multi-Chip Realization of Computationally Powerful Architectures In conclusion, it is
architectures with local connection inhomogeneities that exhibit the least distortions in
their multi-chip realization. The embedded local network structures with high connectivity
should not exceed single-chip capacity. The introduction of distance-dependent connection
probabilities based on the topological structure of the MCGN might be useful. If these
conditions are met, the multi-chip system can offer access to a large variety of interesting new
network models and dynamics. The requirements concerning the network inhomogeneities and
delays can be attenuated in future experiments by using higher FPGA clock frequencies and
analog calibrations to smaller intrinsic time constants. Both will yield an effectively higher
network bandwidth. By utilizing more of the available MGT links, the throughput can further
be increased. In the default configuration only four of eight MGT links per Nathan board are
connected via the backplane topology. Note that this can only improve the throughput if the
limiting bottleneck is not already determined by the hierarchically higher event network.
The KTH attractor model, so far only utilized for the routing analysis, might be a good

candidate for a multi-chip implementation. Each hypercolumn works as a WTA network mostly

85



3. Experimental Results

independent from other hypercolumns. The long range connections between hypercolumns
provide additional robustness for the attractor network. One could think of realizing one
or more complete hypercolumns per chip, which are connected over the MCGN to locally
identical attractor networks on different chips. The long-range connections then induce the
additional robustness typical for the KTH attractor model.
A self-stabilizing network architecture based on short-term synaptic plasticity, which has

already been realized on the single-chip system, has been translated to a multi-chip network
description. Even though this setup could not yet be neuroscientifically investigated due to
the hardware issues described in Section 3.1.3, one can expect it to be suitable for a multi-chip
realization. The event drop analysis presented in this thesis indicates that the connection
bandwidth should be sufficient, despite the occurring ghost events. The experiment is ready
to be performed as soon as the event distribution network works reliably. It can be exploited
e.g. in liquid state machine experiments.

On-Chip Classification The early mapping of a software-trained tempotron to the actual
hardware system has shown good classification results. However, the dynamic input range has
been artificially constrained to excitatory synapses only (see Section 2.3.3). The algorithmic
flipping of synapse types from excitatory to inhibitory or vice versa could otherwise induce
irreparable discontinuities in the learning process. One approach to increase the available
spectrum of input efficacies could be a random initialization of synapses to either excitatory or
inhibitory type. This idea had previously been neglected, since the trend whether a synapse
would become more likely excitatory or inhibitory during the training process is a priori
unknown. A more sophisticated training process could implement an initial training of an
unconstrained tempotron with current-based synapses on the same input. The determined
weight distribution could subsequently be used to initialize the synapses of the constrained and
conductance-based tempotron to either inhibitory or excitatory type. Furthermore, assuming
a rather constant mean membrane potential, one could try to compensate the weight update
distortions by rescaling synaptic efficacies for excitatory and inhibitory synapses by a constant
factor. This approach might be constrained severely by the limited synaptic weights, though.
So far the processing of input by the liquid and the subsequent classification have been

treated independently. However, the results from the hardware tempotron suggest a bundling
of both the liquid and the classifier on a single chip. Beyond merely overcoming bandwidth
limitations, one would get a Liquid State Machine with any-time computing properties realized
completely on a neuromorphic-hardware substrate.

86



A. Parameter List

A.1. Shared Chip Parameters
The following parameters are shared within a set of entities. Changing a single parameter can even effect another one considered
independend.

Table A.1.: Timing Parameters
Name default range description annotation
tsense 150 time until the output of synapse sram bit-

line reading is valid (in units of external
chip clock periods)

does only affect the read back of the
synapse array, e.g. for reading the weights
after a STDP experiment

tpcsec 30 pre-charge time for secondary read when
processing correlations (given in external
chip clock periods)

STDP controller time constant

tpcorperiod 360 minimum time used for correlation process-
ing on a single row (given in external chip
clock periods)

STDP controller time constant

Table A.2.: External Analog Parameters
Name default range description annotation
irefdac 1.6 0.02 - 1.7 DAC reference current. Determines possi-

ble hardware currents
min. prog. current = irefdac · 1/(10·1024)
max. prog. current = irefdac · 1023/1087



A
.
Param

eter
List

vcasdac 1.6 0.02 - 1.7 cascode DAC voltage (given in V) Never touch this value
vm 0.0 0.02 - 0.3 pre-charge amplitude for STDP correlation

measurement.
the larger vm, the smaller the charge stored
per measured pre-/post-synaptic correla-
tion

vrest 0.0 0.0 - 1.7 end value of falling voltage ramp (given in
V)

efficacy is high due to huge impact on inte-
gral over EPSP amplitude (shallow curve)

vstart 0.25 0.02 - 1.7 start value of rising voltage ramp (given in
V)

efficacy is low due to small impact on inte-
gral over EPSP amplitude (steep curve)

Table A.3.: Programmable Current
Name default range description annotation
outamp[0..7] 0.3 bias current for 50Ω membrane voltage

monitors
should be equal to avoid confusion. Nor-
mally only the muxed membrane voltage
monitor is soldered.

outamp[8] 0.0 0.0 current memory for ibtest_pin should be 0.0

Table A.4.: Programmable BiasB Currents
Name default range description annotation
vdtc[0..3] 0.7 0.02 - 2.0 adjusts the STP time constant (spike his-

tory)
higher current yields shorter averaging win-
dow time

vcb[0..3] 1.25 0.02 - 2.0 spike driver comparator bias, compares ris-
ing ramp against drviout

default value well tested and should be set
to a high value to limit overshoot of steep
rising voltage ramp

vplb[0..3] 0.15 0.02 - 2.0 spike driver pulse length bias higher currents yield shorter internal
pulses. Important for STP

88



A
.1.

Shared
C
hip

Param
eters

Ibnoutampba 0.1 0.02 - 2.0 add to the neuron out amp bias for the
membrane monitor

does not influence the experiment

Ibnoutampbb 0.4 0.02 - 2.0 add to the neuron out amp bias for the
membrane monitor

does not influence the experiment

Ibcorreadb 0.6 0.02 - 2.0 correlation read out bias STDP parameter

89



A
.
Param

eter
List

Wherever two Voltages e.g.: EiX appear they represent the parameter for an entity with address mod 2 = X.

Table A.5.: Programmable Vout-Parameters
Name default range description annotation
vout[0] = Ei0
vout[1] = Ei1

1.0 0.02 - 1.7 inhibitory reversal potentials

vout[2] = El0
vout[3] = El1

1.0 0.5 - 1.7 leakage reversal potentials

vout[4] = Er0
vout[5] = Er1

1.0 0.02 - 1.7 reset potentials

vout[6] = Ex0
vout[7] = Ex1

1.3 0.02 - 1.7 excitatory reversal potentials

vout[8] = Vclra 1.0 0.8 - 1.15 acausal storage voltage clear bias (capaci-
tor in synapse array)

Higher voltage bias yields less charge
stored on capacitor

vout[9] = Vclrc 1.0 0.02 - 1.7 causal storage clear voltage bias (capacitor
in synapse array)

Higher voltage bias yields less charge
stored on capacitor

vout[10] =
Vcthigh

1.0 0.9 - 1.6 ! STDP correlation threshold high (step up
in LUT)

must stay below 1.0V

vout[11] = Vctlow 1.0 0.5 - 0.8 ! STDP correlation threshold low (step down
in LUT)

must stay below 1.0V

vout[12] = Vfac0
vout[13] = Vfac1

0.02 0.02 - 1.7 STF reference voltage responsible for facilitation and should be
set to a low value

vout[14] = Vstdf0
vout[15] = Vstdf1

1.1 0.02 - 1.7 STP capacitor high potential

vout[16] = Vt0
vout[17] = Vt1

1.1 0.02 - 1.1 neuron spike threshold voltage

90



A
.1.

Shared
C
hip

Param
eters

vout[18] =
Vcasneuron

1.6 0.02 - 1.7 neuron input gate cascode voltage never touch this value

vout[19] =
Vresetdll

1.1 0.02 - 1.7 delay locked loop(dll) reset voltage. Is
internally adjusted starting from the reset
voltage

If not properly adjusted the 16 time bins
doesn’t get treated equally and some may
stay empty

vout[20] =
aro_dllvctrl

– 0.02 - 1.7 delay locked loop readout control readout
voltage

only relevant for spikey v2 & and only bias
important

vout[21] =
aro_pre1b

– 0.02 - 1.7 spike input buf 1 presyn only relevant for spikey v2 & and only bias
important

vout[22] =
aro_selout1hb

– 0.02 - 1.7 spike input buf 1 selout only relevant for spikey v2 & and only bias
important

The vouts are used to generate currents via a Operational Transconductance Amplifier (OTA) and therefore need corresponding bias
currents which are listed below.

Table A.6.: Programmable Voutbias-Parameters
Name default range description annotation
voutbias[0] =
IbEi0
voutbias[1] =
IbEi1

2.5 0.02 - 2.5 inhibitory reversal potential biases

voutbias[2] =
IbEl0
voutbias[3] =
IbEl1

2.5 0.02 - 2.5 leakage reversal potential biases

voutbias[4] =
IbEr0
voutbias[5] =
IbEr1

2.5 0.02 - 2.5 reset potential biases

91



A
.
Param

eter
List

voutbias[6] =
IbEx0
voutbias[7] =
IbEx1

2.5 0.02 - 2.5 excitatory reversal potential biases

voutbias[8] =
IbVclra

2.5 0.02 - 2.5 bias of the acausal storage clear voltage
bias

voutbias[9] =
IbVclrc

2.5 0.02 - 2.5 bias of the causal storage clear voltage bias

voutbias[10] =
IbVcthigh

2.5 0.02 - 2.5 STDP correlation threshold high bias

voutbias[11] =
IbVctlow

2.5 0.02 - 2.5 STDP correlation threshold low bias

voutbias[12] =
IbVfac0
voutbias[13] =
IbVfac1

2.5 0.02 - 2.5 STP reference voltage bias responsible for facilitation

voutbias[14] =
IbVstdf0
voutbias[15] =
IbVstdf1

2.5 0.02 - 2.5 STP capacitor high potential bias

voutbias[16] =
IbVt0
voutbias[17] =
IbVt1

2.5 0.02 - 2.5 neuron threshold voltage bias

voutbias[18] =
IbVcasneuron

2.5 0.02 - 2.5 neuron input cascode gate bias current

voutbias[19] =
IbVresetdll

2.5 0.02 - 2.5 dll reset bias

92



A
.2.

U
nique

Param
eters

voutbias[20] =
IbAro_dllvctrl

– 0.02 - 2.5 delay locked loop readout control readout
voltage bias

only relevant for spikey v2

voutbias[21] =
IbAro_pre1b

– 0.02 - 2.5 spike input buf 1 presyn bias only relevant for spikey v2

voutbias[22] =
IbAro_selout1hb

– 0.02 - 2.5 spike input buf 1 selout bias only relevant for spikey v2

A.2. Unique Parameters
These parameters are unique for every entity on the chip. Apart from that they still might suffer from parasitic effects.

Table A.7.: Neuron Parameters
Name default range description annotation
ileak 0.1 0.05-2.00 membrane leakage conductance used for membrane time constant calibra-

tion
icb 0.2 0.05-2.00 threshold comparator bias current the larger the current gets the faster the

operational amplifier responds but the nar-
rower the dynamic range gets.

config[0] false true/false not implemented binary configuration flag
config[1] false true/false record membrane voltage binary configuration flag
config[2] true true/false record spikes binary configuration flag
config[3] false true/false not implemented binary configuration flag

Table A.8.: Synapse Driver Parameters
Name default range description annotation

93



A
.
Param

eter
List

drviout 1.0 0.02 - 2.0 upper threshold for the voltage ramp
adjdel 0.5 0.02 - 2.0 delay for digital spike signal compared to

analog voltage ramp for STDP correlation
processing.

drvifall 1.0 0.02 - 2.0 current to control falling ramp gradient
drvirise 1.0 0.02 - 2.0 current to control rising ramp gradient
config[0..1] 0 [0,1,2,3] interpreation:

0 = source is playback memory
1 = input from adjacent block
2 = input equals input from previous row
(feature to increase dynamic range for
weights)
3 = input from same block

source configuration of synapse driver

config[2] true true/false synapse driver is excitatory1 binary configuration flag
config[3] false true/false synapse driver is inhibitory1 binary configuration flag
config[4] false true/false STP enable binary configuration flag
config[5] false true/false facilitating synapse(false)/depressing

synapse(true)
binary configuration flag. The STP imple-
mentation is exclusive facilitating or de-
pressing for every syn driver

config[6] false true/false use C2. Conductance parallel to active
partition base conductance

binary configuration flag. Increases STP
impact

config[7] false true/false use C4. Conductance parallel to active
partition base conductance

binary configuration flag. Increases STP
impact

1if either inhibitory and excitatory flag are set, then the inhibitory effect outbalances. If neither is set, then the syn driver is switched off

94



B. Program Code Listings

B.1. Dijkstra’s Algorithm Listing

Algorithm 2 Modified Dijkstra’s Algorithm
function Dijkstra(Graph, source)

for v in Graph do . Initialization
dist[v] ←∞
previous[v] ← ∅

dist[source] ← 0 . Distance from source to source
Q← Graph . set Q of not yet optimized nodes
while Q do . The main loop

u← min(Qcapdist[])
if dist[u] =∞ then . all remaining vertices are inaccessible from source

break
Q← Q \ {u}
for v in neighbor(u,Q) do . neighbor of node u in set Q

alt← dist[u] + 1
if alt < dist[v] then

dist[v] ← alt; previous[v] ← u

if alt = dist[v] then
previous[v] ← previous[v] + [u]

routes[ ][ ]
for targetinGraph do

GetRoute(previous[ ], target, source, routes[ ][ ], ∅) . recursive path extraction
return routes[ ][ ]

function GetRoute(previous[ ], u, source, route[ ], routes[ ][ ])
if route[0] 6= source then

while previous[u] 6= ∅ do
new_route[ ]← [u] + route[ ]
GetRoute(previous[ ], previous[u], source, new_route[ ], routes[ ][ ])

else
routes[u][ ] ← routes[u][ ] + route[ ]

95



C. Figures and Tables

C.1. Distribution of Dropped Network Events

0

10

20

30

40

50

Fr
eq

ue
nc

y

15 Remote Connections 18 Remote Connections 21 Remote Connections

Chip 0
Chip 1
Chip 2

0

10

20

30

40

50

Fr
eq

ue
nc

y

24 Remote Connections 27 Remote Connections 30 Remote Connections

0

10

20

30

40

50

Fr
eq

ue
nc

y

33 Remote Connections 36 Remote Connections 39 Remote Connections

−800−600−400−200 0

Dropped Events

0

10

20

30

40

50

Fr
eq

ue
nc

y

42 Remote Connections

−800−600−400−200 0

Dropped Events

45 Remote Connections

−800−600−400−200 0

Dropped Events

48 Remote Connections

Figure C.1.: The distribution of event drops caused by the network for different numbers of remote
connections. The spikes are provided by a self-stabilizing architecture (see Section 2.3.2) on the sender
Nathan. Subsequently, the events from a individual subsets of neurons are transmitted to each of three
receiving Nathans. The self-stabilizing network mean spike activity has been found to be 12.2± 9.5 Hz.
The negative event rates indicate, that more spikes have been received than have been actually sent
The extra events are cause by the ghost event issue described in Section 3.1.3.

96



D. Acronyms

AdEx Adaptive Exponential Integrate-and-Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

ANN Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ARQ Automatic Repeat reQuest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ASIC Application-Specific Integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CMOS Complementary Metal-Oxide-Semiconductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

DNC Digital Network Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

EVNET Event Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

FACETS Fast Analog Computing with Emergent Transient States

FIFO First In, First Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

FPGA Field Programmable Gate Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

FSM Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

GSS Global Start Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

HAL Hardware Abstraction Layer

HICANN High Input Count Analog Neuronal Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

97



D. Acronyms

LIF Leaky-Integrate-and-Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

LSM Liquid State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

LUT LookUp Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

lvc Logical Virtual Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

LVDS Low-Voltage Differential Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

MCGN Multi-Class Gigabit Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

mfi multi FIFO index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

MGT Multi-Gigabit Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

NFC N-Force-Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

OTA Operational Transconductance Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

PCB Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

PCI Peripheral Component Interconnect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

PSP Post-Synaptic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

QoS Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

RSNP Regular Spiking Non Pyramidal

SC SlowControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

SDRAM Synchronous Dynamic Random Access Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

STDP Spike-Timing-Dependent Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

98



STL Standard Template Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

STP Short-Term Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

WTA Winner Take All

XML Extensible Markup Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

99





Bibliography

Albert, M., Liquid Computing mit Neuromorpher Hardware, Bachelor thesis (German),
Ruprecht-Karls-Universität, Heidelberg, HD-KIP-10-43, http://www.kip.uni-heidelberg.
de/Veroeffentlichungen/details.php?id=2042, 2010.

Alpaydin, E., 2004.

Bill, J., Self-stabilizing network architectures on a neuromorphic hardware system, Diploma
thesis (English), Ruprecht-Karls-Universität, Heidelberg, HD-KIP-08-44, http://www.kip.
uni-heidelberg.de/Veroeffentlichungen/details.php?id=1893, 2008.

Bill, J., K. Schuch, D. Brüderle, J. Schemmel, W. Maass, and K. Meier, Compensating
inhomogeneities of neuromorphic VLSI devices via short-term synaptic plasticity, Front.
Comp. Neurosci., 4 , 2010.

Braitenberg, V., and A. Schüz, Anatomy of the Cortex: Statistics and Geometry, Springer
Verlag, Berlin, Heidelberg, New York, 1991.

Brette, R., and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective
description of neuronal activity, J. Neurophysiol., 94 , 3637 – 3642, 2005.

Brüderle, D., Neuroscientific modeling with a mixed-signal VLSI hardware system, Ph.D.
thesis, Ruprecht-Karls-Universität, Heidelberg, 2009, document no. HD-KIP-09-30.

Brüderle, D., E. Müller, A. Davison, E. Muller, J. Schemmel, and K. Meier, Establishing a
novel modeling tool: A python-based interface for a neuromorphic hardware system, Front.
Neuroinform., 3 , 2009.

Bruno, R. M., and B. Sakmann, Cortex Is Driven by Weak but Synchronously Active Thalam-
ocortical Synapses, Science, 312 , 1622–1627, 2006.

Cortes, C., and V. Vapnik, Support-vector networks, Machine Learning, 20 , 273–297, 1995.

Davison, A., E. Muller, D. Brüderle, and J. Kremkow, A common language for neuronal
networks in software and hardware, The Neuromorphic Engineer , 2010.

Dijkstra, E. W., A note on two problems in connexion with graphs, Numerische Mathematik,
1 , 269–271, 1959.

Downarowicz, T., Law of series/poisson process, Scholarpedia, 3 , 3922, 2008.

Ehrlich, M., K. Wendt, and R. Schüffny, Parallel mapping algorithms for a novel mapping &
configuration software for the FACETS project, in CEA’08: Proceedings of the 2nd WSEAS
International Conference on Computer Engineering and Applications, pp. 152–157, World
Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA,
2008.

101

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2042
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2042
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1893
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1893


Bibliography

Ehrlich, M., K. Wendt, L. Zühl, R. Schüffny, D. Brüderle, E. Müller, and B. Vogginger,
A software framework for mapping neural networks to a wafer-scale neuromorphic hard-
ware system, in Proceedings of the Artificial Neural Networks and Intelligent Information
Processing Conference (ANNIIP) 2010 , pp. 43–52, 2010.

FACETS D7-13, Demonstrate the operation of the FACETS stage 2 software system, FACETS
Deliverable D7-13, 2010, UHEI and TUD.

FACETS M7-5, Verify that the layer-2 communication reaches the bandwidth requirements
for a multi-wafer system, including the host communication via GBit-Ethernet, FACETS
Deliverable M7-5, 2010, UHEI and TUD.

Fieres, J., J. Schemmel, and K. Meier, Realizing biological spiking network models in a
configurable wafer-scale hardware system, in Proceedings of the 2008 International Joint
Conference on Neural Networks (IJCNN’08), IEEE Press, 2008.

Friedmann, S., Extending a hardware neural network beyond chip boundaries, Diploma
thesis (English), Ruprecht-Karls-Universität, Heidelberg, HD-KIP-09-41, http://www.kip.
uni-heidelberg.de/Veroeffentlichungen/details.php?id=1938, 2009.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Longman, 1994.

Garey, M., and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company, 1979.

Grübl, A., VLSI implementation of a spiking neural network, Ph.D. thesis, Ruprecht-Karls-
Universität, Heidelberg, 2007, document no. HD-KIP 07-10.

Gütig, R., and H. Sompolinsky, The tempotron: a neuron that learns spike timing-based
decisions, Nat Neurosci, 9 , 420–428, 2006.

Hastings, W. K., Monte carlo sampling methods using markov chains and their applications,
Biometrika, 57 , 1970.

Hines, M. L., and N. T. Carnevale, The NEURON Book, Cambridge University Press, Cam-
bridge, UK, 2006.

Hopcroft, J. E., and J. D. Ullman, Formal languages and their relation to automata, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1969.

Jaeger, H., The “echo state” approach to analysing and training recurrent neural networks,
Tech. Rep. GMD Report 148 , German National Research Center for Information Technology,
2001.

Kanungo, T., D. Mount, N. Netanyahu, R. S. Christine Piatko, and A. Wu, An efficient
k-means clustering algorithm: Analysis and implementation, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24 , 881, 2002.

Kempf, B., The boost.threads library, Dr. Dobb’s, 2001.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science,
220 , 671–680, 1983.

102

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1938
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1938


Bibliography

Kremkow, J., L. Perrinet, G. Masson, and A. Aertsen, Functional consequences of correlated
excitatory and inhibitory conductances in cortical networks., J Comput Neurosci, 28 ,
579–594, 2010.

Landau, D. P., and K. Binder, A guide to Monte Carlo simulations in statistical physics, 2005.

Lundqvist, M., M. Rehn, M. Djurfeldt, and A. Lansner, Attractor dynamics in a modular
network model of neocortex, Computation in Neural Systems, 2006.

Maass, W., T. Natschläger, and H. Markram, Real-time computing without stable states: A
new framework for neural computation based on perturbations, Neural Computation, 14 ,
2531–2560, 2002.

Maass, W., T. Natschläger, and H. Markram, Computational models for generic cortical
microcircuits, chap. 18, pp. 575–605, J. Feng, Boca Raton, 2004.

Meyer, D., F. Leisch, and K. Hornik, The support vector machine under test, Neurocomputing,
55 , 169 – 186, 2003.

Meyn, S., and R. Tweedie, Markov chains and stochastic stability, Springer Verlag, Berlin,
Heidelberg, New York, 1993.

Millner, S., Andreas, Grubl, K. Meier, J. Schemmel, and M.-O. Schwartz, A VLSI implemen-
tation of the adaptive exponential integrate-and-fire neuron model, in Advances in Neural
Information Processing Systems (NIPS), accepted, 2010.

MongoDB, A scalable, high-performance, open source, document-oriented database written in
C++, http://www.mongodb.org/, 2010.

Morrison, A., M. Diesmann, and W. Gerstner, Phenomenological models of synaptic plasticity
based on spike timing, Biological Cybernetics, 98 , 459–478, 2008.

Nethercote, N., and J. Seward, Valgrind: A framework for heavyweight dynamic binary
instrumentation, in ACM SIGPLAN , 2007.

Novikoff, A. B., On convergence proofs for perceptrons, in Proceedings of the Symposium on
the Mathematical Theory of Automata, vol. 12, pp. 615–622, 1963.

Pacheco, P. S., Parallel programming with MPI , Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

Philipp, S., Design and implementation of a multi-class network architecture for hardware
neural networks, Ph.D. thesis, Ruprecht-Karls-Universität, Heidelberg, 2008.

Rosen-Zvi, M., and I. Kanter, Training a perceptron in a discrete weight space, Physical
Review E , 64 , 2001.

Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization
in the brain, Psychological Review, 65 , 386–408, 1958.

Savage, J. E., and M. Zubair, Evaluating multicore algorithms on the unified memory model,
Scientific Programming, 2009.

103

http://www.mongodb.org/


Schemmel, J., S. Hohmann, K. Meier, and F. Schürmann, A mixed-mode analog neural
network using current-steering synapses, Analog Integrated Circuits and Signal Processing,
38 , 233–244, 2004.

Schemmel, J., A. Grübl, K. Meier, and E. Muller, Implementing synaptic plasticity in a VLSI
spiking neural network model, in Proceedings of the 2006 International Joint Conference on
Neural Networks (IJCNN’06), IEEE Press, 2006.

Schemmel, J., D. Brüderle, K. Meier, and B. Ostendorf, Modeling synaptic plasticity within
networks of highly accelerated I&F neurons, in Proceedings of the 2007 IEEE International
Symposium on Circuits and Systems (ISCAS’07), IEEE Press, 2007.

Schemmel, J., D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner, A wafer-scale
neuromorphic hardware system for large-scale neural modeling, in Proceedings of the 2010
IEEE International Symposium on Circuits and Systems (ISCAS’10), IEEE Press, 2010.

Schilling, M., A highly efficient transport layer for the connection of neuromorphic hardware
systems, Diploma thesis, Ruprecht-Karls-Universität, Heidelberg, HD-KIP-10-09, http:
//www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2000, 2010.

Schmuker, M., M. Weidert, and R. Menzel, A network model for learing-induced changes in
odor representation in the antennal lobe, in Proceedings of the second french conference on
Computational Neuroscience, edited by L. U. Perrinet and E. Daucé, Marseille, 2008.

Sussillo, D., T. Toyoizumi, and W. Maass, Self-Tuning of Neural Circuits Through Short-Term
Synaptic Plasticity, J Neurophysiol, 97 , 4079–4095, 2007.

Thomson, A. M., and C. Lamy, Functional maps of neocortical local circuitry, Frontiers in
neuroscience, 1 , 19–42, 2007.

Tsodyks, M., and H. Markram, The neural code between neocortical pyramidal neurons
depends on neurotransmitter release probability, Proceedings of the national academy of
science USA, 94 , 719–723, 1997.

Vogginger, B., Testing the operation workflow of a neuromorphic hardware system with a
functionally accurate model, Diploma thesis, Ruprecht-Karls-Universität, Heidelberg, HD-
KIP-10-12, http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?
id=2003, 2010.

Wendt, K., M. Ehrlich, and R. Schüffny, Gmpath - a path language for navigation, information
query and modification of data graphs, in Proceedings of the Artificial Neural Networks and
Intelligent Information Processing Conference (ANNIIP) 2010 , pp. 31–42, 2010.

Yue, M., A simple proof of the inequality for the ffd bin-packing algorithm, Acta Mathematicae
Applicatae Sinica, Volume 7, Number 4 , 321–331, 1990.

104

http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2000
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2000
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2003
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=2003


Acknowledgments
(Danksagungen)

Herrn Prof. Dr. Karlheinz Meier für die freundliche Aufnahme in die Arbeitsgruppe.

Prof. Sylvie Renaud for being referee for this thesis.

Daniel for being Daniel. Die nächste Diplomarbeit auf jeden fall wieder bei ihm.

Bernie, Eric, Mihai, Paul und Tom für die Unterstützung und das tägliche Kickerzeremoniell.

Simon und Andi für das amüsante Fehlersuchen.

Allen anderen Visionären für die super Atmosphere.

Bärbel für das Bewältigen des temporären Freizeitzuwachses und lecker Kuchen.

My family.

105





Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of my own
work. Any ideas or quotations from the work of other people, published or otherwise, are fully
acknowledged in accordance with the standard referencing practices of the discipline.

Ich versichere, daß ich diese Arbeit selbständig verfaßt und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Heidelberg, June 20, 2011
.......................................

(signature)


	Introduction
	Materials and Methods
	The Neuromorphic Hardware System
	The Mixed-Signal Neural Network Chip Spikey
	The Carrier Board Nathan
	Backplane and Connectivity
	Inter-Chip Spike Distribution Network
	The FACETS Wafer-Scale Hardware System

	Software Framework for Single Chip Operation
	The Modeling Language PyNN
	PyNN Backend for the Chip-Based System
	Low-Level Hardware Interface

	Software Framework for Wafer-Scale Operation
	MappingTool

	The Liquid Computing Paradigm
	Concept of the Liquid State Machine
	Motivation and Biological Relevance
	Output Classification


	Realization of a Multi-Chip Setup and On-Chip Classification
	Concepts for Multi-Chip Operation
	Initial Considerations
	Specialized Graph Representation
	Neuron Placement Beyond Chip Boundaries
	Routing of Synaptic Connections
	Parameter Translation
	Further Concepts

	Implementing the Multi-Chip Environment
	General Framework
	Multi-Chip Graph Structure
	Multi-Chip Neuron Placement
	Multi-Chip Routing of Synaptic Connections
	Multi-Chip Parameter Translation
	Experiment Control

	Liquid State Machines on the FACETS Chip-Based System
	Task Definition
	Liquid Architectures
	Readout Realization


	Experimental Results
	Verification and Performance Analysis of the Multi-Chip-System
	Routing Performance Analysis
	Scalability of the System
	Hardware Issues
	Verification of Accurate Hardware Configuration

	Neural Network Experiments
	Single-Chip Liquid Computing
	Feasibility Analysis: A Liquid State Machine on the Multi-Chip-Setup


	Conclusion and Outlook
	Parameter List
	Shared Chip Parameters
	Unique Parameters

	Program Code Listings
	Dijkstra's Algorithm Listing

	Figures and Tables
	Distribution of Dropped Network Events

	Acronyms
	Bibliography

