
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

David Rohr

ALICE TPC Online Tracking on GPU
based on Kalman Filter

Diplomarbeit

HD-KIP-10-37

KIRCHHOFF-INSTITUT FÜR PHYSIK

Department of Physics and Astronomy

University of Heidelberg

Diploma thesis

in Physics

submitted by

David Rohr

born in Mannheim

2010

ALICE TPC Online Tracking

on GPU

based on Kalman Filter

This diploma thesis has been carried out by David Rohr

at the

Kirchhoff Institute of Physics

under the supervision of

Prof. Dr. Volker Lindenstruth

Abstract

ALICE TPC Online Tracking on GPU based on Kalman Filter

For online analysis in the ALICE HLT a new, fast TPC tracker was developed. This thesis
presents an adaptation of it to run on graphics cards using the NVIDIA CUDA framework.
As the former tracker was already well able to deal with proton-proton events, this work is
focused primarily on heavy-ion events the previous tracker was not able to handle efficiently.
The implementation of the algorithm had to be adjusted at many points to allow for an effi-
cient usage of the GPU. In particular, achieving a good overall workload for many processor
cores, efficient transfer to and from the GPU, as well as optimized utilization of the different
memories the GPU offers turned out to be critical. To cope with these problems a dynamic
scheduler was introduced, which redistributes the workload among the processor cores. Ad-
ditionally a pipeline was implemented so that the tracking on the GPU, the initialization
and the output processed by the CPU, as well as the DMA transfer can overlap. Besides
the algorithmic implementation, the integration within AliRoot and the HLT framework is
discussed, which are the standard analysis and trigger frameworks for the ALICE experiment.

ALICE TPC Online-Spurrekonstruktion auf Grafikkarten basierend auf dem Kalman
Filter

Ein neuer, schneller TPC Tracker wurde für den ALICE HLT entwickelt. In dieser Ar-
beit wird eine Portierung jenes Trackers auf das NVIDIA CUDA Framework vorgestellt.
Der bisherige Tracker war sehr wohl in der Lage, das Tracking für Proton-Proton Kolli-
sionen effizient durchzuführen, weshalb im folgenden der Schwerpunkt auf Schwerionenkol-
lisionen liegt, die zu Begin der Arbeit ein Problem darstellten. Die Implementierung des
Tracking-Algorithmuses wurde in vielerlei Hinsicht angepasst, um eine effiziente Nutzung
der Grafikkarte zu gewährleisten. Die größten Herausforderungen bestanden insbesondere in
der vollständigen Auslastung der vielen unabhängigen Rechenkerne, einem effizienten Daten-
transfer von und zu der GPU sowie dem geeigneten Einsatz der verschiedenen heterogenen
Speichersysteme, welche die Grafikkarte bereitstellt. Um diesen Problemen Herr zu werden
wurde ein dynamischer Scheduler eingeführt, der die Last unter den vielen Prozessorkernen
umverteilen kann. Zusätzlich wurde der Tracker um eine Pipeline erweitert, so dass das
eigentliche Tracking auf der GPU, die Initialisierung sowie Weiterverarbeitung auf der CPU
und der DMA Transfer gleichzeitig ablaufen können. Neben dem Tracking Algorithmus selbst
wird die Integration in die AliRoot sowie HLT Frameworks erläutert, welche die Standarmittel
für Ereignisrekostruktion, Analyse sowie Trigger bereitstellen.

Contents

Table of contents 1

1 Introduction 5

1.1 The Experiment . 5

1.1.1 Large Hadron Collider (LHC) . 5

1.1.2 A Large Ion Collider Experiment (ALICE) 6

1.1.3 ALICE Time Projection Chamber (TPC) 6

1.1.4 ALICE High Level Trigger (HLT) . 7

1.1.5 Track Reconstruction . 7

1.2 Physical Background . 10

1.2.1 Standard Model of Particle Physics . 10

1.2.2 The Higgs-Particle . 10

1.2.3 Quark-Gluon-Plasma . 11

2 Tracking 12

2.1 CA Tracking Algorithm (Theory) . 12

2.1.1 Cellular Automaton . 12

2.1.2 Fitting with Least Squares Estimator 12

2.1.3 Kalman Filter . 13

2.1.4 Track Model . 17

2.1.5 Linearization . 18

2.1.6 The Algorithm . 18

2.2 Implementation and Data Structures . 19

2.2.1 Slice Trackers and Merger . 19

2.2.2 Slice Tracker . 19

2.2.3 Grid . 21

2.3 Slice Tracker Algorithm Steps . 23

2.3.1 Neighbors Finder [I] . 23

1

2.3.2 Neighbors Cleaner [II] . 24

2.3.3 Start Hits Finder [III] . 25

2.3.4 Tracklet Constructor [IV] . 25

2.3.5 Tracklet Selector [V] . 27

2.4 Initialization and Output . 28

2.4.1 Initialization . 28

2.4.2 Track Output . 28

2.5 Data Structures . 28

2.5.1 Data Types . 29

3 Hardware Accelerators 30

3.1 Overview . 30

3.2 NVIDIA GT200b GPU and CUDA Framework 31

3.2.1 Multiprocessors . 31

3.2.2 Execution Configuration . 32

3.2.3 Registers . 32

3.2.4 Memory . 33

3.3 C extensions . 34

3.4 Synchronization . 35

3.5 Compilation . 35

3.6 Compatibility . 35

3.7 Coalescing Rules . 35

3.7.1 Global Memory Coalescing . 36

3.7.2 Shared Memory Coalescing . 36

4 Implementations 39

4.1 Multithreading . 39

4.2 Tracking on GPU . 40

4.2.1 Common Source . 40

4.2.2 Tracking Steps . 41

4.2.3 Row Synchronicity . 42

4.2.4 Memory . 43

4.2.5 Classes . 45

4.3 First Run . 45

5 Benchmarking 46

5.1 Raw Benchmarking Data . 46

2

5.2 Objectives . 47

5.3 Benchmark Hardware . 47

5.4 Code Evolution . 47

5.5 CPU Cache Issues . 48

5.6 Statistics . 49

5.6.1 Statistics for Small Events . 52

6 Optimizations for GPU 53

6.1 General Optimizations . 53

6.1.1 Shared Memory Transfer Performance 53

6.1.2 Parallel Threads / Register Usage . 55

6.2 Optimizations of Tracking Steps . 56

6.2.1 Neighbors Finder . 56

6.2.2 Tracklet Constructor . 62

6.2.3 Tracklet Selector . 80

6.3 Overall Optimizations . 81

6.3.1 Memory Optimizations . 81

6.3.2 CPU Multithreading . 84

6.3.3 Pipelining . 84

7 Optimizations for small events (pp) 91

7.1 PP Performance of Heavy-Ion Tracker . 91

7.2 Synchronization and Memory Transfer . 92

7.3 Performance of PP-Tracker . 93

8 Integration and Deployment in the HLT 94

8.1 ROOT . 94

8.2 AliRoot . 94

8.3 PubSub . 94

8.4 HLT Libraries . 95

8.5 Interface . 95

8.6 C++ . 95

8.7 Compilation . 96

8.8 Running in an HLT Chain . 96

8.9 Hardware . 96

9 Results 98

3

9.1 Tracking Quality . 98

9.1.1 Efficiency, Resolution, and Pull . 98

9.1.2 Bitwise Comparison . 101

9.2 Tracking Performance . 102

9.2.1 CPU Performance . 102

9.2.2 GPU / CPU Comparison . 103

9.2.3 CUDA Version . 104

9.2.4 Performance on Different Architectures 104

9.2.5 Conclusion (for Heavy-Ion Events) . 105

9.2.6 Performance for Different Event Sizes 105

10 Summary and Perspectives for the Future 108

10.1 Summary . 108

10.2 NVIDIA Fermi . 108

10.3 SIMDization . 109

10.4 Seed Merging . 109

10.5 Code Merge . 109

10.6 Vector Classes . 110

10.7 Track Merger . 110

A CUDA Assembler 111

B Atomic Operations 113

C Gathers / Scatters 114

Acknowledgements 115

Bibliography 116

4

Chapter 1

Introduction

1.1 The Experiment

1.1.1 Large Hadron Collider (LHC)

The Large Hadron Collider (Fig. 1.1) is a proton-proton (pp) and heavy-ion collider that
started operating in November 2009. It is located at CERN (Conseil Européen pour la
Recherche Nucléaire) in Geneva. The LHC is a ring collider placed in the tunnel of the former
LEP (Large Electron Positron Collider) 50 to 175 meters below the surface, with a length
of almost 27 km. Two beams of protons or heavy-ions (lead) are accelerated in opposing
directions to a total energy of up to 14 TeV for protons and about 1150 TeV for lead. Thus
the LHC supersedes Tevatron at Fermilab, which has been the most powerful collider yet with
a maximum energy of 1.96 TeV. Contrary to Tevatron, the LHC is a symmetric accelerator
colliding protons with protons instead of antiprotons. When fully operational, the proton
beams are supposed to consist of 2, 808 bunches of about 1.15 · 1011 protons circulating at
a frequency of 11 kHz. Compared to Tevatron one major advantage of the LHC is its high
luminosity of 1034 cm−2s−1. For more information see [Cer1] and [Cer2].

Figure 1.1: LHC Overview [Cer3]

5

There are four primary detectors (ALICE, ATLAS, CMS, LHCb) and some minor ones.
ATLAS and CMS are general purpose detectors. LHCb is aimed at analyzing CP-Violation
in the interaction of B-Mesons. ALICE’s main objective is the observation of lead-lead
collisions and the Quark-Gluon-Plasma, which is expected to be created in heavy-ion events.

1.1.2 A Large Ion Collider Experiment (ALICE)

ALICE (Fig. 1.2) is mainly aimed at the observation of lead-lead collisions. The ALICE
sub-detectors can be split into two parts: firstly, the L3 magnet with the detectors ITS,
TPC, TRD, TOF, PHOS, and HMPID, and secondly, the dipole magnet with the forward
detectors ZDC, FMD, and PMD (see [Ali1]). Even though lead-lead collisions will only occur
with reduced frequency, they will create many more particles. ALICE’s main detector for
tracking (see 1.1.5) is the TPC. Since the tracking algorithm described later is intended for
tracking TPC data, the TPC will be described in more detail.

Figure 1.2: The ALICE Detector [Ali2]

1.1.3 ALICE Time Projection Chamber (TPC)

In general, a TPC is a cylindrical chamber filled with gas and divided in two halves as
illustrated in Fig. 1.3. The z-axis (beam direction) is directed along the cylinder. A high
voltage electrode disc is located in the center, establishing an electric field to both endplates.
Charged particles passing through the TPC ionize gas molecules. The ions produced are
accelerated by the electric field towards the end plates. The x- and y-coordinates of the
ionized particles can be determined by measuring where the ions hit the plate, while the
z-coordinate can be calculated by analyzing the drift time. Both halves of the TPC are
further separated into 18 trapezoidal sectors, which will be referred to as slices hereafter.
On the endplates there are 159 detectors (called rows) in radial directions which measure
the angular position continuously. In each slice the local coordinate system is such that the
x-axis will be radial. (The coordinate system differs for different slices.) Thus the TPC will
deliver discrete x-coordinates (159 rows) and continuous y- and z-coordinates of the locations
where the gas molecules were ionized by a particle. These space-points are called clusters.
Since the TPC was designed to study heavy-ion collisions, it was not specifically built to

6

operate at very high frequencies. Currently its readout frequency is several hundred Hz and
is planed to rise to 1 kHz1 [Lar]. Instead, the TPC must be able to track the huge number
of particles produced in lead-lead collisions. See [Ali3] for more information on the TPC.

Figure 1.3: ALICE Time Projection Chamber [Ali3]

1.1.4 ALICE High Level Trigger (HLT)

The pp and even the heavy-ion interaction rates are much higher than the maximum TPC
readout frequency and in addition the data volume read out by the TPC is way too high
(more than a hundred megabytes per heavy-ion event) to be stored on any storage system.
For these reasons the TPC cannot be read out after every single collision. Thus hardware
triggers are present which analyze for every event whether a TPC readout is necessary or
not. These triggers are categorized in L0 to L2 triggers, with L0 triggers reacting after 1.2 µs
and L1 triggers after 6 µs. The longer the L1 trigger takes, the more active volume of the
TPC is lost due to the drift of the ions. 6 µs is defined as limit, whereupon the L1 triggers
such as the TRD [Ret] have to deliver the trigger decision whether a TPC readout should
be done. This ensures that the TPC is only read out after interesting events. To cope with
the excess amount of data, a software based High Level Trigger (in contrast to hardware L0
to L2 triggers) reduces the data volume further. This HLT currently consists of a compute
farm of 120 frontend and 60 compute nodes2 and is capable of performing an online event
reconstruction processing a 30 GB/s input data stream. A set of triggers can then be applied
to the result to decide whether to discard the event or to store the whole event or only parts of
it. In this way the physically relevant data can be extracted. See [Hlt] for an HLT overview.

1.1.5 Track Reconstruction

Online event reconstruction is required for a precise trigger decision and includes the re-
construction of the particle trajectories, which are called tracks. Tracking therefore is the

1Proton-proton collision rate is much higher, than heavy-ion rate. The Atlas experiment, for example, is
designed for a frequency of multiple kHz.

2The design allows for up to 1, 000 nodes to deal with increased luminosity later.

7

Figure 1.4: Illustration of the Working Principle of a Time Projection Chamber

process of retrieving the trajectories of particles that passed through the detector. ALICE’s
primary detector for this purpose is the TPC.

The TPC output is digitized and then processed by an FPGA-based hardware cluster finder
[Hlt] developed by Torsten Alt. The cluster finder creates a set of three-dimensional space-
points where gas molecules where ionized. It then remains a combinatorial challenge to relate
these space-points to particle trajectories. Fig. 1.5 shows the first pp event in ALICE which
was tracked online by the HLT and rendered by the online event display.

1.1.5.1 Event display

For the analysis of different track reconstruction algorithms many internal non-essential pa-
rameters and intermediate results have to be observed that are not needed for the official
ALICE online event display. Therefore, the official display does not offer support for vi-
sualizing them. An OpenGL based special event display, which can benefit from hardware
accelerated graphics cards, was thus developed for this thesis. The visualization of a pp event
can be seen in Fig. 1.6. Blue dots are ionization points measured by the TPC while green
lines are the tracks interconnecting them reconstructed by the tracking algorithm. Clearly
tracking gets extensively more complex for an increasing amount of clusters when switching
from pp to heavy-ion collisions. Figures 1.7 and 1.9 show the clusters for a peripheral and a
central heavy-ion collision respectively, Figures 1.8 and 1.10 show the tracks recovered from
the input clusters by the tracker.

8

Figure 1.5: Real TPC Event in ALICE
Online Event Display

Figure 1.6: Clusters and Tracks of
Simulated PP Event

Figure 1.7: Clusters of Simulated
Noncentral Pb-Pb Event

Figure 1.8: Tracks Found by GPU
Tracker in Event

Figure 1.9: Clusters of Simulated
Central Pb-Pb Event

Figure 1.10: Tracks Found by GPU
Tracker in Event

9

1.2 Physical Background

There are two aspects that greatly influenced the design of the LHC, namely the search for the
Higgs-Boson and the investigation of the so called Quark-Gluon-Plasma. These phenomena
will now be briefly described.

1.2.1 Standard Model of Particle Physics

The Standard Model of Particle Physics is a theory describing the elementary particles sepa-
rated in quarks and leptons, three out of four fundamental interactions (the electro-magnetic,
strong and weak interaction, but not gravitation) and their force meditating bosons. It ex-
plains the phenomena occurring in the world very well and also predicted new physics beyond
that level such as the existence of the W± and Z bosons, whose existence was later proven
in experiments.

The Standard Model is a very elastic theory, with 18 external parameters that need to be
measured in experiments. Unfortunately, it falls short of being complete, since it does not
include gravitation as well as dark matter and is unable to describe phenomena such as baryon
asymmetry or nonzero neutrino masses.

The Standard Model is a gauge theory based on continuous groups, so called Lie Groups,
where SU(3) is the symmetry group of the strong interaction, and SU(2) × U(1) the group
for the electroweak interaction. The mathematical framework is provided by quantum field
theory.

1.2.2 The Higgs-Particle

The Higgs-Mechanism describes how the particles acquire mass. Consider the Lagrangian

Lscalar = (∂µΦ†)(∂µΦ) + µ(Φ†Φ)− λ(Φ†Φ)2 (1.1)

whose potential can be seen in Fig. 1.11 in the complex one-dimensional case. The ground
state is degenerated. The vacuum expectation value (VEV) can be calculated to v = |〈Φ0〉| =√

µ
2λ , where Φ0 can be chosen real because of the gauge freedom (unitary gauge). As a result

only U(1) is left as symmetry group for the vacuum. This process is called spontaneous
symmetry breaking. After the insertion of the covariant derivative

∂µ → Dµ = ∂µ − igTaAaµ − ig′Y Bµ (1.2)

and the VEV into the kinetic term (∂µΦ†)(∂µΦ) of the Lagrangian (1.1) the masses of the
gauge fields can be obtained. By defining3

ϑ := arctan
(g′
g

)
W±µ :=

1√
2

(A1
µ ∓ iA2

µ) (1.3)

Zµ := cos(ϑ)A3
µ − sin(ϑ)Bµ

Aµ := sin(ϑ)A3
µ + cos(ϑ)Bµ

3ϑ is called the Weinberg angle.

10

the mass terms calculate to

−g2 v
2

4
W+µW−µ −

1

2

g2 + g′2

g′2
v2

4
ZµZµ = −M2

WW
+µW−µ −

1

2
M2
ZZ

µZµ. (1.4)

The masses of the W and Z bosons were measured to be 80.4 and 91.2 GeV4 respectively,
while the photon remains massless as no AµAµ term appears. Obviously, there is an unbroken
U(1) subgroup5 which is the gauge group of electromagnetism. Furthermore, a massive Spin 0
Higgs-Boson appears with the mass

mH =
√

2µ (1.5)

More elaborate introductions can be found in [Pes+], [Sre], and [Pen]. The value of µ is
not determined by the theory, and so the mass of the Higgs-Boson cannot be predicted.
Experiments yet can only give a lower bound. By additional theoretical considerations the
Higgs-Particles’s mass can be restricted to an interval which is completely covered by the
LHC center of mass energy by design.

1.2.3 Quark-Gluon-Plasma

The Quark-Gluon-Plasma is a state of matter without quark confinement where quarks and
gluons are rather completely dissolved and free (in analogy to conventional plasma, in which
the electrons are unbound). Both very high temperatures and very high baryon densities
can result in this state. It is expected that the baryon density in neutron stars is sufficient
as is the temperature of the universe about 1 µs after the Big Bang. Reaching such a state
in an experiment is a great challenge and can only be realized by colliding ultra relativistic
heavy-ions. It is assumed that a Quark-Gluon-Plasma will be created in lead-lead collisions
at CERN and ALICE has been built specifically to examine such events.

Fig. 1.12 shows a state diagram, with the transition point where the confinement is canceled,
and with the expected state for LHC lead-lead collisions.

Figure 1.11: V (Φ) = −µ(Φ†Φ) + λ(Φ†Φ)2 Figure 1.12: Quark-Gluon-Plasma [Cbm]

4W± and Z masses were precisely measured using the LHC predecessor LEP.
5This is not the projection to the U(1) component of SU(2) × U(1) but a subgroup that is isomorphic to

U(1).

11

Chapter 2

Tracking

2.1 CA Tracking Algorithm (Theory)

In this section the theory of a Cellular Automaton and the Kalman filter will be presented.
A combination of them will be used in the tracking algorithm.

2.1.1 Cellular Automaton

A Cellular Automaton is a model of a spatial and temporal discrete dynamic system, in which
the state of a cell at the time t + 1 depends only on the states of cells in a predetermined
neighborhood at the previous time t.1 Because of this locality, Cellular Automata are highly
suited for parallel approaches. Thinking of a computer program for such a model, every cell
can be calculated by an independent thread, and on top of that the data exchange between
the threads is restricted to those threads processing adjacent cells. The last aspect renders
these automata well suited for cluster computers. In our application, however, the first aspect
will be the more important one.2

2.1.2 Fitting with Least Squares Estimator

In the following XT denotes the transpose of the vector X, < X > the mathematical expecta-
tion value of X and cov(X) =< (X− < X >)(X− < X >)T > the covariance matrix. Let mk

be measurements that linearly depend on state vectors rtk. (Only k is an index here. The
symbol t will later distinguish between the state vector rtk and the estimator rk.) The state
vector is explicitly allowed to be different for distinct measurements, but it is required that
the state rtk+1 linearly depends on the previous state rtk. The measurement error is denoted
by ηk, the process noise by νk. All errors shall have a gaussian distribution. This yields the
formulas:

rtk = Akr
t
k−1 + νk (2.1)

mk = Hkr
t
k + ηk

Ak and Hk are matrices. The measurement errors are assumed to be unbiased with their
covariance matrices known. Errors of different measurements shall be uncorrelated. The

1The classical example is John Conway’s Game of Life.
2Tracker processes on different nodes in the cluster process distinct data sets. Therefore, communication

is not required.

12

same is assumed for the process noise:

< ηkη
T
l > = 0 < νkν

T
l > = 0

< ηk > = 0 < νk > = 0 (2.2)

cov(ηk) ≡ Vk cov(νk) ≡ Qk

An estimator rk is a set of estimates for the unknown real state vector rtk based on the
measurements ml (all measurements can be used for finding an estimator rk). The error εk
of an estimator is defined as the difference to the real state vector and its covariance matrix
is denoted by Ck.

εk = rtk − rk Ck = cov(εk) (2.3)

The estimator is called linear if it depends linearly on the measurement and unbiased if

< εk >= 0. (2.4)

The mean squared error σ2
k of an estimator rk is defined by

σ2
k =< ||εk||2 > . (2.5)

The fit problem can now be defined as determining a linear unbiased estimator rk for the last
state vector rtk with minimal mean squared error.

The solution of this fit problem will be used for the track fit later (track parameters will build
the state vector). It is very well possible that additional clusters will be added to a track a set
of fitted parameters already exists for. A method is required by which new measurements can
easily be integrated into the existing estimator without having to start the calculation all over
again. One general way to obtain an optimal estimator is the Least Squares Method described
in [Fru+]. Equations for this method are comparably simple. However, a new measurement
cannot be easily used to improve the current estimator, but the whole calculation must be
repeated, involving all previous measurements. Additionally multiple scattering cannot easily
be handled in this way. The Least Squares Method is therefore not suited. This leads to the
Kalman filter, which can be shown to find a best estimator, too.

2.1.3 Kalman Filter

The Kalman filter works iteratively. It processes the measurements subsequently, thereby
continuously improving the estimator that after the last step will be the best linear unbiased
estimator searched for. The Kalman filter contains the following steps:

• Initialization: The state vector r0 is initialized with a guessed or even arbitrary value
and the covariance matrix C0 filled with huge numbers corresponding to the uncertainty
of the initial state vector.

• Extrapolation: Before the measurement mk can be used to calculate the estimator
rk, the last estimator rk−1 and its covariance matrix are extrapolated to the current
state.

r̃k = Akrk−1 (2.6)

C̃k = AkCk−1A
T
k +Qk

13

• Filtering: In the filter step the measurement information is collected, which in com-
bination with the extrapolated estimator and the covariance matrix delivers the next
estimator.

Kk = C̃kH
T
k (Vk +HkC̃kH

T
k)−1

ζk = (mk −Hkr̃k)

rk = r̃k +Kkζk (2.7)

Ck = C̃k −KkHkC̃k

χ2
k = χ2

k−1 + ζTk (Vk +HkC̃kH
T
k)−1ζk

After the initialization, the extrapolation and filter steps are performed for every measure-
ment, eventually delivering the desired best estimator. In [Gor1], some extensions to the
Kalman filter are introduced which are also used in the tracking algorithm. (See also [Fru+]
and [Man] for more applications and examples.) Because the Kalman filter is the backbone
of the tracking algorithm, a proof is sketched. (A more comprehensive elaboration can be
found in [Kal].)

The notation is changed slightly for the proof and some simplifications are assumed. From
now on rtk is seen as a gaussian distributed random variable. It is assumed that ηk = 0, so 2.1
becomes mk = Hkr

t
k. The measurement error is assumed to be encoded in the gaussian

distributed random variable rtk. The objective is to find a linear estimator r∗k for the (k+1)th

step. εk is thus defined as εk = rtk+1 − r∗k and is to be minimized. This means one searches
the linear estimator r∗k such that < ε2k > is minimal. (r∗k is the best estimator for the current
state vector when setting Ak+1 = Id)

First some results from probability theory are needed.

Definition 1 The conditional expectation value < X|Y = Y0 > is the expectation value of
the random variable X, with the value of the random variable Y known to be Y0.

< X|Y = Y0 > is a function of Y0 and in that way it is a random variable itself (denoted
by < X|Y >). Remember that the objective is to find the random variable r∗k which is as a
function of m0, m1, ..., mk−1 such that the average error < rk − rtk >

2 is minimal.

Theorem 2 Assume the above situation. Then the random variable r∗k as function of mi

(with 1 ≤ i ≤ k) minimizing the average error is given by the conditional expectation value

r∗k =< rtk+1|m1,m2, ...,mk > (2.8)

Proof: See [Kal] and [She].

Definition 3 The vector space Yk is the closed subspace created by the components mj
i of the

random variables mi, (1 ≤ i ≤ k), as a subspace of the vector space of all random variables Y.

Yk =
{∑
i,j

ai,j ·mj
i ai,j ∈ R

}
(2.9)

On Y a symmetric bilinear form is given by b(x,y) =< xy >, which defines a scalar product
on the vector space of all random variables with nonzero variance, and thus also on Yk (as
physical measurements naturally have nonzero variance). As Yk is a closed subset of a Hilbert
space, the projection onto it exists. Let Πk denote the projection onto Yk.

14

Theorem 4 Let xk, yk be random processes with < x >=< y >= 0. The optimal linear
estimator in the above manner x∗k for xk+1 given y1, y2, ..., yk is given by the projection
onto Yk:

x∗k = Πk(xk+1) (2.10)

Proof: See [Kal].

For the remaining proof, it is assumed that theorem 2 holds also for xk = rtk and yk = mk.
At this point all the prerequisites for the proof are available.

Theorem 5 In the given situation the Kalman filter algorithm delivers the best linear esti-
mator.

Proof: Assume by induction that the best estimator r∗k−1 is known. Let Zk denote the
orthocomplement of Yk−1 in Yk such that:

Yk = Yk−1 ⊕Zk. (2.11)

Consider that for physically relevant measurements mk the dimension of Zk is positive,
otherwise the kth measurement would contain no information at all. Let now Φk denote the
projection onto Zk, i.e. Πk = Πk−1 + Φk. r∗k can be calculated to:

r∗k = Πk(r
t
k+1)

= Πk−1(rtk+1) + Φk(r
t
k+1) (2.12)

= Ak+1r
∗
k−1 + Πk−1(νk+1) + Φk(r

t
k+1)

Define m̃k = Φk(mk) and m̄k = Πk(mk). It follows that the last term in 2.12 is a linear
operation on m̃k

Φk(r
t
k+1) = 4∗km̃k (2.13)

with some matrix 4∗k. Because of

m̃k = mk − m̄k = mk −Hkr
∗
k−1 (2.14)

it follows that

r∗k = κ∗kr
∗
k−1 +4∗kmk (2.15)

with

κ∗k = Ak+1 −4∗kHk. (2.16)

Thus the best linear estimator linearly depends only on the best estimator for the previous
step and the last measurement. Now consider the error of the estimator:

εk = rtk+1 − r∗k

= Ak+1r
t
k + νk+1 − κ∗kr∗k−1 −4∗kHkr

t
k (2.17)

= κ∗kεk−1 + νk+1

15

Using this and stochastic independence of νk with rtk and therefore with εk, the covariance
matrix Pk of εk can be calculated.

Pk =< (εk− < εk >)(εk− < εk >)T >=< εkε
T
k >

= κ∗k < εk−1ε
T
k−1 > κ∗Tk + cov(νk+1) (2.18)

= κ∗kPk−1κ
∗T
k +Qk+1

= κ∗kPk−1A
T
k+1 +Qk+1

Now an explicit formula for 4∗k will be obtained: Using

Φk(mk) ⊥ rtk+1 − Φk(r
t
k+1) (2.19)

= rtk+1 −4∗kΦk(mk)

and 2.13 the following equation holds:

0 =< (rtk+1 −4∗kΦk(mk))Φk(mk)
T > (2.20)

=< (rtk+1Φk(mk)
T > −4∗k < Φk(mk)Φk(mk)

T >

=< Φk(r
t
k+1)Φk(mk)

T > −4∗kHkPkH
T
k ,as Πk(r

t
k+1) ⊥ Φk(mk)

=< (Ak+1Φk(r
t
k + νk+1)Φk(r

t
k)
THT

k > −4∗kHkPk−1H
T
k

= Ak+1Pk−1H
T
k −4∗kHkPk−1H

T
k ,as νk+1 and rtk are independent

This can be solved for 4∗k if Hk has full rank and Pk−1 is positive definite. The latter can
usually be assumed for a covariance matrix.

4∗k = Ak+1Pk−1H
T
k (HkPk−1H

T
k)−1 (2.21)

This directly delivers an exact formula for κ∗k as well. By plugging everything in, the formulas
in 2.6 and 2.7 can be deduced. This is done for the covariance matrix exemplary. It is
important to note that during the proof the best estimator for the next step is considered,
so the index is shifted compared to the formulas 2.6 and 2.7. For the covariance matrix this
means: Pk = C̃k+1

Equation for C̃k+1 in the Kalman filter:

C̃k+1 = Ak+1CkA
T
k+1 +Qk+1

= Ak+1(C̃k −KkHkCk)A
T
k+1 +Qk+1 (2.22)

= Ak+1(C̃k − C̃kHT
k (Vk +HkC̃kH

T
k)−1HkC̃k)A

T
k+1 +Qk+1

(2.23)

Equation in the proof for Pk:

Pk = κ∗kPk−1A
T
k+1 +Qk+1

= (Ak+1 −4∗kHk)Pk−1A
T
k+1 +Qk+1 (2.24)

= Ak+1Pk−1A
T
k+1 −Ak+1Pk−1H

T
k (HkPk−1H

T
k)−1HkPk−1A

T
k+1 +Qk+1

= Ak+1(Pk−1 − Pk−1H
T
k (HkPk−1H

T
k)−1HkPk−1)ATk+1 +Qk+1

Under the assumption that ηk = 0 and thus Vk = 0 this shows the equivalence. The calcula-
tion for rk+1 and r∗k is analogous. �

In fact, the basis for the induction was not handled during the proof. In order to actually
carry out the iterations an initial estimator r∗0 and the covariance matrix P0 must be known.
The algorithm solves this by choosing an arbitrary start value, and setting the covariance
entries to infinity. This resembles the fact that prior to the first measurement no information
is available at all.

16

2.1.4 Track Model

As in most collider experiments, the solenoid magnetic field in ALICE is oriented along
the z-axis. At first, in this situation, the trajectory of a particle of charge q, mass m and
momentum p will be described. Only the magnetic field will be considered, but not energy
loss or scattering. In the algorithm these effects are handled by treating noise in the Kalman

filter. Clearly the z-component of the momentum will be constant. Let Pt =
√
p2
x + p2

y be

the transversal momentum. Considering only the magnetic field and ignoring energy loss and
scattering by equating the Lorentz and centripetal force

f = ma = qB× p

m
= −mω2r (2.25)

it can bee seen that the trajectory projected to the x,y plane is a circle of radius R = Pt
q ·

1
Bz

.
With r0 the center of the circle the trajectory can be described as

r(t) = r0 +

R · cosω(t− t0) + ϑ0

R · sinω(t− t0) + ϑ0

λ(t− t0)

 (2.26)

Such a trajectory is called a helix. The above description is well suited for visualization.
However, the parameters are redundant and not well applicable for the track fit. A set of
parameters that directly includes the measured values is desirable. From now on a different
set of parameters is used:

1. Y = r0,y +R · sin(ω(t− t0) + ϑ0)

2. Z = r0,z + λ(t− t0)

3. sin(ϕ) = cos(ϑ)

4. λ = dz
ds = pz

|p|

5. κ = q
Pt

= Bz
R

Obviously X (the x-coordinate) is not a track parameter in this model, but the X position
is part of the model itself (instead of t). For every X position this set of parameters can
describe the trajectory, with different sets of parameters describing the same trajectory at
different X. As the measurements are taken at different X-positions, the possible to propagate
the track parameters (state vector) to a new X-coordinate is desirable.3 This is also called
extrapolation. Clearly parameters 3 and 4 are not affected by this. The transformation of
a state vector rt = (Y,Z, sin(ϕ), λ, κ)T at x0 to the state vector r̃t = (Ỹ , Z̃, sin(ϕ̃), λ̃, κ̃)T at
x = x0 +4x is the following:

sin(ϕ̃) = sin(ϕ) +4x ·Bz · κ

Ỹ = Y + cos(ϕ̃)− cos(ϕ) = Y +4x · tan
(ϕ+ ϕ̃

2

)
= Y +4x · sin(ϕ) + sin(ϕ̃)

cos(ϕ) + cos(ϕ̃)
(2.27)

Z̃ = Z + λ · 2
(
κBz

)−1
arcsin

(1

2
κBz

4x
cos(ϕ+ ϕ̃)

)
︸ ︷︷ ︸

ds

Different equivalent formulas can be obtained using trigonometric addition theorems. Unfor-
tunately, the extrapolation for Y and Z is nonetheless not linear, as it would be required for
the Kalman filter. Fig. 2.1 shows the helix and all relevant parameters.

3Transporting the track parameters is not necessarily required. Alternatively the measurement can be
transported. However, the propagation of the track parameters is also used in other parts of the algorithm.

17

Figure 2.1: Illustration of Track Helix and Track Model

2.1.5 Linearization

Nonlinear propagation can be handled by linearizing the extrapolation function denoted by
Fx hereafter, with r̃ = Fx(r). It has to be noted that Fx is considered as function of r
where for every x a different function exists. The linearization is done in terms of the track
parameters but not x, which is part of the model. Applying the linearization the linear
extrapolation looks like

r̃ ≈ Flin(r) = Fx(r0) + ∂Fx

∣∣∣
r0

(r− r0) (2.28)

with ∂Fx|r0 the Jacobian matrix of Fx at r0. An appropriate linearization point r0 must be
chosen. In fact, for the exact point the linearized function matches the exact extrapolation.
Usually the currently best estimator is used as linearization point. The algorithm then must
be iterated where the best estimators from the previous iterations are subsequently used as
linearization points. This is described in more detail in [Gor1].

2.1.6 The Algorithm

The tracking algorithm works as follows: Using the Cellular Automaton principle, seeds are
created which are sets of connected clusters locally forming straight lines. The clusters in
such a seed are then fitted with the Kalman filter. For the extrapolation step the functions
in 2.27 are linearized. In the filter step it is assumed that there is no correlation between Y
and Z. Then the following equations4 hold, with y and z the measurement values and σy, σz
the errors respectively.

4Ci,j
k denotes the i, jth entry of the covariance matrix, which is the covariance between the track parameters

i and j.

18

Yk = Ỹk +
C0,0
k

σ2
y + C0,0

k

(y − Ỹk)

Zk = Z̃k +
C1,1
k

σ2
z + C1,1

k

(z − Z̃k)

sin(φk) = s̃in(φk) +
C2,0
k

σ2
y + C0,0

k

(y − Ỹk) (2.29)

λk = λ̃k +
C3,1
k

σ2
z + C1,1

k

(z − Z̃k)

κk = κ̃k +
C4,0
k

σ2
y + C0,0

k

(y − Ỹk)

After the clusters in the initial seed are fitted, the formulas from the extrapolation step are
used to propagate the trajectory to adjacent rows (defined by a different X) and finding new
clusters close to the extrapolated position. These clusters will then be added to the track in
additional Kalman filter steps. The procedure is described in the next section in detail.

2.2 Implementation and Data Structures

2.2.1 Slice Trackers and Merger

The TPC is separated into 36 slices which are further split into 6 readout chambers. Readout
and cluster5 finding is done separately for every chamber. To allow for a more parallel design
and to avoid network bottlenecks, the clusters for each slice are tracked separately using a
slice tracker. The track segments for all slices are later combined in the track merger. In
this way it is not necessary to centralize all cluster data onto one compute node possibly
exceeding its network bandwidth or computing capabilities. Fig. 2.2 shows a heavy-ion event
split in slices.

2.2.2 Slice Tracker

The slice tracker algorithm is implemented in five sequential steps. Steps one to three repre-
sent the combinatorial part that searches for seeds. Step four does the track fit and extrapo-
lation by means of the Kalman filter. Step five assigns clusters to the final tracks, resolving
collisions where two tracks cross and a cluster could be interpreted to belong to both of
them. This last task has to be an independent step succeeding the Kalman filter to allow for
a parallel implementation.

In a conventional tracker algorithm the track fit would be a sequential algorithm not allowing
for a parallel processing of multiple tracks. The algorithm would start with the longest
seed e.g. as it contains most information about the track. This seed would then be fitted
and extended by additional clusters using extrapolation. The clusters would be marked as
used and would not be available for other tracks anymore. Only afterwards the tracker

5In the TPC tracker the words “cluster” and “hit” are used synonymously. This document is restricted to
the word cluster, but the reader should be aware of this when reading other references.

19

Figure 2.2: Heavy-Ion Event Split into 36 Slices

would process the next seed. The problem where a cluster could belong to different tracks
is excluded. Obviously this algorithm does not allow for parallelization. The GPU tracker
processes all seeds in parallel, and so the final cluster assignment can only be done after the
track fit and extrapolation.

Most particles passing through the chamber can be expected to originate from the interaction
point or secondary vertices in the center of the TPC. Recall that the coordinate system was
chosen in a way that the z-axis points along the beam, the x-axis points along the radial
direction and the interaction point is in the origin (see Fig. 2.3). This makes the x-axis
distinct, since most particles can be assumed to have a trajectory alongside it. Hence it is
convenient to start searching for trajectories along this axis.

Figure 2.3: Geometry of a Single Slice [Gor1]

20

For this reason each tracking step is organized in a way that it processes data row by row in
increasing order, which is possible as the x position is measured discretely (The x-coordinate is
exactly the position of one of the rows). Therefore, it is reasonable to store all the cluster data
for one row packed together. Data locality is increased and thus cache efficiency improved.
This also justifies again why the x-position was chosen to be part of the track model but not
as track parameter in section 2.1.4, as in this setup track parameters must be propagated to
different X positions.

2.2.3 Grid

Since the algorithm works row by row it is obvious to sort the clusters according to rows and
to store clusters packed for each row. Within one row two dimensions remain, therefore, the
clusters cannot easily be sorted for fast access. To account for this a grid is introduced that
splits the row (which is in fact a plane) into rectangular bins. Bins are counted according to
their y- and z-position and clusters are sorted by their bin number. A list of FirstCluster-
InBin - entries is maintained which, for every bin, points to the first cluster in the sorted
array belonging to that particular bin. (See Fig. 2.6 for an illustration how clusters can be
searched) Using this indirection a fast search for clusters in confined areas within one row is
possible.

The bin size does not need to be constant for every row and is selected in such a way that
the number of bins approximately matches the number of hits in one row. This ensures
that neither too many clusters are contained within one bin nor many empty bins occur.6

Furthermore, if the clusters are restricted to one area of the row, the grid will also be restricted
to that area and not span the whole plane. (See Fig. 2.4 and 2.5)

Figure 2.4: Grid of Four Rows in One Slice for a
Peripheral Heavy-Ion Event

Figure 2.5: Grid of One Slice for
a PP Event7

6For example, if the bin size was so small, that there were more bins than clusters in a row, some bins
would necessarily be empty.

7The grid size is not constant.

21

row r - 2

row r - 1

row r

Y-Coordinate Z-Coordinate

Grid Data

Y-Bin = 5 Z-Bin = 4

Bin = 4 * 8 + 5 = 37

FirstClusterInBin
Bin 35 36 37 38 39 40 41

87...ClusterID 10

Cluster Coordinates
ClusterID 4 5 6 7 8 9 10

.........Position ... (y , z)1 1 (y , z)2 2 ...

C++ code for cluster search

binSizeX = rows[r].binSizeX;
binSizeY = rows[r].binSizeY;
firstClusterInBin = rows[r].fCIB;
clusters = rows[r].clusters;

zBin = (z - zMin) / binSizeZ;
yBin = (y - yMin) / binSizeY;

bin = zBin * binCountY + yBin;

firstCluster = firstClusterInBin[bin];
lastCluster = firstClusterInBin[bin + 1];

for (i = firstCluster;i < lastCluster;i++)
{
 x = rows[r].x;
 y = clusters[i].y;
 z = clusters[i].z;

 //......

}

Figure 2.6: Illustration of Search for Clusters near a Given Location in the Grid

22

2.3 Slice Tracker Algorithm Steps

A detailed description of the five tracking steps follows. Several numerical parameters will
appear which have been tuned by Sergey Gorbunov for optimal tracking efficiency.8

2.3.1 Neighbors Finder [I]

The Neighbors Finder algorithm is executed for every cluster. Given a cluster C0 in row r it
searches for the two clusters C− and C+ in row r − 2 and r + 2 (with discrete x-coordinates
rx− / rx+), so that the three clusters compose the closest approximation to a straight line.
The reason for which rows are skipped is explained later. To approximate straight lines the
difference of the slopes between C0/C+ and C0/C− is minimized. Let (rxi , ryi , tzi) denote the
coordinates of the cluster Ci (i ∈ {0,+,−}). Define:

4j
i := rji − r

j
0

(
i ∈ {0,+,−}, j ∈ {x, y, z}

)
Sji :=

4j
i

4x
i

(
i ∈ {+,−}, j ∈ {y, z}

)
Sj := Sj+ − S

j
−

(
j ∈ {y, z}

)
S := (Sy)2 + (Sz)2

The objective now is to minimize S. Fig. 2.7 visualizes the calculation. Clearly the calculation
for different clusters C0 is totally independent, and can therefore be done in parallel using
multithreading or vectorization. However, the coordinates for the clusters C− and C+ cannot
be streamed from memory but have to be fetched using gather operations (see Appendix C).

Figure 2.7: Neighbors Finder Slope Calculation

To reduce the complexity, hit-areas are defined in the upper and lower row, and only clusters
within these areas are tested. Since the particle trajectory is supposed to start in the origin,

8For more information on the tracking steps see also [Gor+2], [Gor1], and [Hlt].

23

the hit-areas are not centered around the y- and z-coordinate of C0 but rather around the
intersection point of the straight line connecting C0 with the origin and the planes defined
by x = rx− / x = rx+ as can be seen in Fig. 2.8. The size of the hit-areas is defined by a
restriction of the angle between the line through C0 and the x-axis. All clusters belonging to
the hit-areas can easily be identified and accessed using the grid.

Figure 2.8: Illustration of Hit-Areas of Neighbors Finder9

The slope is then calculated for every pair of clusters in the upper and lower search area.
Unfortunately, this still results in quadratic complexity in relation to the number of input
clusters. However, even for central lead-lead events, this number regularly stays below 20,
leaving little room for improvement. There is a more thorough discussion in section 6.2.1.2.
Indeed the algorithm would work as well using rows r − 1 and r + 1 instead of r − 2 and
r+ 2, but skipping one row results in better seeds, especially for lead-lead events. There are
two reasons for this: First, the amount of clusters lying within the restricted angle is higher
opening up more possibilities for combination. Secondly the cluster positions have absolute
errors that result in the smaller relative errors for the slope the wider the distance is. The
connection to the clusters in the lower and upper row will hereafter be called a link. Fig. 2.9
shows a simplified two-dimensional illustration, while Fig. 2.11 shows an example of clusters
and the links constructed by the Neighbors Finder using the event display.

2.3.2 Neighbors Cleaner [II]

The Neighbors Cleaner is again executed for every cluster independently. In the case that
cluster C0 links up to cluster C+, it checks whether cluster C+ has its downward link point
to cluster C0 and deletes the upward link of C0 if they do not coincide. The same is done

9Red clusters are possible links for the green cluster C0 in the Neighbors Finder algorithm.

24

for the downward links. This is illustrated in Fig. 2.10. In the event display (Fig. 2.11) links
removed by the Neighbors Finder are colored grey.

dx-

row r dy+

dy-

C+

C0

C-

row r + 2

row r - 2

Figure 2.9: Best Links for Cluster C0

Found by Neighbors Finder

row r

row r - 2

row r + 2

row r + 4

Figure 2.10: Links removed by Neighbors
Cleaner10

2.3.3 Start Hits Finder [III]

The Start Hits Finder creates the seeds for the Kalman filter step. Every seed starts with
a start hit which is a cluster with an upward link, but without a downward link (after
the Neighbors Cleaner step). The seed is then defined by the sequence of upward links, for
instance the start hit cluster C0 in row r has its upward link set to the cluster C1 in row
r + 2 whilst C1 has its downward link set to C0 and its upward link set to another cluster
C2 in row r + 4. C2 shall have no upward link and its downward link shall point to C1.
Then (C0, C1, C2) would form a seed. The Start Hits Finder simply checks each cluster if it
represents a start hit and arranges a list of start hits. Fig. 2.13 shows an illustration while
the seeds created from the neighbors in Fig. 2.11 are shown in Fig.2.12.

Figure 2.11: Links after Neighbors
Finder / Cleaner in Event Display11

Figure 2.12: Seeds Created by Start Hits
Finder in Event Display12

2.3.4 Tracklet Constructor [IV]

A tracklet is a candidate for a track and consists of clusters. Every seed found by the
Start Hits Finder is now turned into a tracklet which initially consists of the clusters in the

10Green links are kept, red ones are removed by the Neighbors Cleaner.
11Links removed by Neighbors Cleaner are grey.
12The track clearly continues to the lower right which is not covered by the seeds. However, this is not even

necessary because the remaining clusters will be found during the Tracklet Construction phase.

25

row r

row r - 2

row r + 2

row r + 4

row r - 1

row r + 1

row r + 3

Figure 2.13: Illustration of Start Hits and Seeds13

seed defined by the sequence of links. The Tracklet Constructor fits track parameters to the
tracklet and then tries to extend the tracklet using extrapolation. It then passes the tracklet
to the next step or it may discard it, depending on several criteria. The Tracklet Constructor
itself is divided into three sub-steps:

Track Fit [IV (a)] The Kalman filter is iteratively applied to the clusters in the initial
seed creating a set of track parameters and a covariance matrix. The tracklet is dropped if
the χ2-value of the fit exceeds a defined bound or if the tracklet length is below three clusters.

Forward Extrapolation [IV (b)] For a seed ranging from row r to row r+2n, the process
starts at row r + 2n + 1. First the tracklet parameters are extrapolated to this row. The
cluster closest to the extrapolated position is determined by checking every cluster in the four
grid bins next to it. If a match is found the following Kalman filter iteration is calculated for
this cluster and the χ2-value checked, which determines whether the cluster is added to the
tracklet or not. The algorithm then continues with the next row, either until the last row is
reached or until no cluster was found for more than four consecutive rows. Fig. 2.14 shows
one extrapolation step.

Backward Extrapolation [IV (c)] In the same manner as above the tracklet is extrapo-
lated to the lower rows. Since in the original seed every second row misses, the first row the
tracklet is extrapolated to is r+2n−1. The rows are decremented in steps of 2 down to r−1
and then decremented in steps of one row while the same break criteria apply as above.

If, after both extrapolation steps, the tracklet consists of at least 10 clusters, it is stored
and passed on to the Tracklet Selector, otherwise it is dropped. Clearly, after the Tracklet
Constructor step, it is probable that two tracklets were extrapolated towards the same cluster,
and thus they now share this cluster. Therefore, a criterion for selecting tracklets when

13The seeds are green, the start hits orange. One problem of the algorithm is apparent. The middle track
is represented by two seeds, from which one contains the odd numbered rows and another the even numbered
ones. They will have to be merged later. The right seed already ends in row r, but the cluster in row r + 4
might belong to the same track and thus has to be added in the Tracklet Constructor phase afterwards.

26

assigning clusters to final tracks is required. The longer tracklet is always preferred. Hence,
when storing a tracklet, for each cluster a cluster weight is defined as the length of the
longest tracklet the cluster belongs to. This is determined using an atomic max operation.14

The cluster is then considered to belong to the tracklet whose length matches the cluster’s
weight. Because two tracklets might have the same length, the cluster weight is shifted to
the left by 16-bits and the tracklet ID is added. This makes the algorithm deterministic, as
long as tracklet IDs are persistent. The tracklets reconstructed for the previous example are
shown in Fig. 2.15.

Figure 2.14: Illustration of Tracklet Constructor Extrapolation Step15 from row r to row r+1

Figure 2.15: Tracklets Created by Tracklet
Constructor16

Figure 2.16: Final Tracks Produced by
Tracklet Selector

2.3.5 Tracklet Selector [V]

This step elevates tracklets to final tracks and does the final cluster assignment. Since the
clusters’ weights are required to proceed, this task depends on the results of the Tracklet
Construction phase. The Tracklet Selector processes every tracklet starting at the lowest

14Atomic operations read from and write to a memory location in one instruction that cannot be interrupted.
See Appendix B for more information.

15The four bins next to the extrapolated position are highlighted.
16Apparently some tracklets share clusters.

27

row. Given that a cluster for the particular row was found during Tracklet Construction, it
is verified whether the cluster weight is either equal to the tracklet’s length or if the cluster
possibly meets sharing conditions. A cluster may to be shared as long as the total number of
shared clusters does not exceed the number of clusters that passed the check up to this point.
This procedure continues until five sequential rows occurred without compatible cluster. If
the set of clusters thereafter consists of 10 or more, it assembles a track. A final track ID is
determined using an atomic add operation (see the example in Appendix B) and the track is
stored. The procedure then starts again at the next row. The result of the Tracklet Selection
on the previous example is shown in Fig. 2.16.

2.4 Initialization and Output

Though the algorithm itself consists of the five steps mentioned earlier, two additional ones
are needed for the implementation. These steps are not considered a part of the algorithm
itself, since their task is solely data reorganization.

2.4.1 Initialization

In an initialization step the grid is created and the clusters are sorted accordingly. Moreover,
in order to save memory, and even more importantly, memory bandwidth, the cluster coordi-
nates are converted from floats into short integers17, linearly interpolating the range between
the minimum and maximum value occurring in each row with the values 0 to 65535.

2.4.2 Track Output

In this final output step, the tracks are packed together in memory, and the local slice
coordinates are transformed into global experiment coordinates.

2.5 Data Structures

It is now possible to define most of the data structures in the tracker. The seeds need no
extra structure, as they are unambiguously defined by the start hit. The structures for start
hits and tracklets are very simple because they are merely arrays of start hits and tracklets.
This is slightly more complicated for the tracks. It is desirable to store the tracks as compact
as possible. Unfortunately, since a track can consist of any number of clusters from 10 to 159,
arrays are ill-suitable due to that dynamic nature. Therefore, the track data is divided into
two parts, an array of the track parameters without clusters (the parameter size is constant)
and a memory segment with clusters. The parameter structure contains a pointer to the first
cluster belonging to the track and the number of clusters.

The situation gets even more complicated for the slice data which embraces the cluster
coordinates, grid content, links, and cluster weights. Each of them is stored in one memory
segment. Within a segment the data is sorted according to rows. The clusters themselves are
further sorted by their grid bin.

For every row a set of pointers is maintained, pointing to the corresponding row data within
each of these segments. Fig. 2.17 shows an overview of the data structures used.

17A short integer denotes a 16-bit integer.

28

2.5.1 Data Types

For performance reasons the whole slice tracker algorithm is solely processing single precision
floating point numbers. As shown in [Gor+3] and [Gor1], the Kalman filter had to be adapted
to guarantee for numerical stability. To spare some memory, most integers are restricted to
16-bit, and floats are interpolated using 16-bit integers wherever possible. This leads to the
following data stored as 16-bit integers: row IDs, cluster indices within one row, cluster y-
and z-coordinates, upward and downward links, FirstClusterInBin entries.

cluster
coordinates

links up links down
first cluster

in bin
hit weights

row 0 row 1 row 2 row 3 row 4 row 5 row 158 row 159

row 0 row 1 row 2 row 3 row 4 row 5 row 158 row 159

o
i

s
t

P
n

te
r

o

 r
o

w
 d

a
ta

row 0

row 1

row 2

row 3

row 4

row 5

row 159

cluster coordinates

links up

links down

first cluster in bin

hit weights

row 5

tracklets start hits
nr 1
nr 2
nr 3
nr 4
nr 5
nr 6
nr 7
nr 8
nr 9

nr 10
nr 11
nr 12
nr 13
nr 14
.....

nr 1
nr 2
nr 3
nr 4
nr 5
nr 6
nr 7
nr 8
nr 9

nr 10
nr 11
nr 12
nr 13
nr 14
.....

slice data

tracks track clusters

nr 1
nr 2
nr 3
nr 4
nr 5
nr 6
nr 7
nr 8
nr 9

nr 10
nr 11
nr 12
nr 13
nr 14
.....

first
cluster

number of
clusters

track
parameters

first cluster first cluster + number of clusters

parameters:
x-coordinate
grid size, etc

Figure 2.17: Data Structures in CA Tracker

29

Chapter 3

Hardware Accelerators

3.1 Overview

Since the tracking represents one of the most time consuming tasks in event reconstruction, it
is evident that the tracker is a target for optimizations. While the clock speed of state of the
art CPUs has stagnated in the last years, processor designers have improved the efficiency and
integrated more parallel approaches instead. Graphics cards, however, have been designed
with parallelism in mind for many years now. They have become more and more powerful,
undergoing a higher and faster performance increase than CPUs. In addition, just recently
the GPU support for high level languages greatly improved making it comparatively easy to
run general purpose code on GPUs.1

For these reasons it is evident to parallelize the algorithm as much as possible and to attempt
to fully exploit multithreading and SIMD2 capabilities. Current CPUs all implement at least
a basic set of vector instructions. Modern compilers can take profit from this by autovec-
torizing the code. Still, manually vectorized code generally performs much better. [Kre]
introduces an abstraction for vectorization. Programs using this abstraction can benefit from
extended hardware support for vector operations just by recompilation. Besides standard
CPUs, graphics processors from both NVIDIA and AMD3 provide an excellent platform to
experiment with and to port the tracker code to. Moreover, Intel is currently working on the
Larrabee (see [Int3]) which was long delayed, and it is still uncertain if or when a final product
will be released. The Larrabee is a graphics processor with a different design in comparison
to current chips from NVIDIA and AMD. It is capable of executing x86 general purpose code
extended with enhanced vectorization instructions and might become an alternative in the
future.

A vectorized version of the tracker code was written by Matthias Kretz for his diploma thesis
[Kre]. It uses special Vector Classes (also introduced in [Kre]) allowing for an abstraction
of the vector instructions and thus facilitating one single common source code optimized to
benefit from SSE and LRBni.4

1This is often called GPGPU.
2SIMD stands for Single Instruction Multiple Data and is a low-level form of parallelism. As the name

implies the operation is performed on a data vector instead of a scalar.
3Radeon graphics cards and the Stream framework were formerly released by ATI which now belongs to

AMD.
4SSE is a vector extension introduced with the Pentium III. SSE was updated multiple times. The current

version is SSE 4.2. LRBni is the set of new vector instructions of the Larrabee.

30

In this thesis, a port of the tracker code to the NVIDIA CUDA framework will be presented
in detail. The CUDA framework has limited support for C++, in contrast to the AMD
framework, which currently does not support C++ at all. Thus NVIDIA was favored over
AMD. To avoid the creation of two unrelated tracker codes it was imperative to stick with
C++, as the original tracker code is integrated in AliRoot (see 8.2 and [Ali4]) and relies
on AliRoot classes, thus enforcing the usage of C++. Unfortunately, the new OpenCL
framework, which supports various platforms, is also restricted to plain C making a future
adaption difficult, to say the least.

3.2 NVIDIA GT200b GPU and CUDA Framework

In order to comprehend the optimizations applied later a basic understanding of the deployed
GPU as well as the CUDA framework is necessary. With new graphics processors entering the
market, NVIDIA integrated additional features and provided new framework versions. An
increasing compute capability value is assigned to each GPU generation defining which
features are available. To be more accurate, for the tracking algorithm described later to
compile and execute, a framework version of at least 2.0 and a GT200 chip or newer is
required, which has the compute capability 1.2. Most benchmarks presented were done using
a GT200b and framework version 2.3, therefore these versions are described here. In the
following the notations device and host identify the GPU board and the CPU / main
memory respectively. A more comprehensive description of CUDA is available in [Nvi].

3.2.1 Multiprocessors

The GT200b chip possesses 30 independent multiprocessors that can be compared to cores
in modern CPUs. Each multiprocessor has eight single precision floating point ALUs5 and
one double precision ALU. However, the single and double precision ALUs share components,
so in each cycle either eight single precision float operations or one double precision float
operation can be executed. Therefore the user is advised to use single precision wherever
possible. (Fortunately, even before this work was started, the tracker code did not use double
precision at all.) There are no special ALUs present for integer calculations. The ALUs
can add and subtract 32-bit integers. Two 24-bit integers can be packed into two floats
for multiplication. Multiplication of 32-bit integers, however, is not supported and has to
be emulated using several floating point multiplications resulting in low performance. It is
therefore convenient to stick with floating point values whenever possible. For a schematic
of the chip see Fig. 3.1.

3.2.1.1 Warps

Every multiprocessor can run multiple threads in parallel. These threads are organized in
warps of 32 threads each. The multiprocessor can uphold up to 512 concurrent threads. Each
instruction issue cycle it selects one warp ready to execute without any scheduling overhead
and issues the next instruction to the active threads of that warp. Since only one instruction
decoder is present, threads of one warp are restricted to execute a common instruction. If
in conditional code, different threads within a single warp take different branches, execution

5ALU stands for Arithmetic Logic Unit. A processor with n ALUs can calculate n arithmetical operations
in parallel.

31

for every branch is serialized (warp-serialization). Different warps can nevertheless clearly
execute distinct instruction independently.

All warps are further split into two half-warps, the higher and the lower numbered 16 threads
of one warp. Simultaneous memory accesses by every thread in one half-warp can be coa-
lesced, resulting in only one single memory transaction (see 3.7).

From this perspective the chip looks very similar to a vector processor.6 Contrary to instruc-
tion sets like SSE the programmer does not have to write explicit vector code, but from the
programmer’s view each thread is independent. This makes an adoption of CUDA compa-
rably easy. However, the drawback is, if a program is written without the warp concept in
mind, only one sole ALU is used in the worst case resulting in greatly decreased performance.
(The same is true for vector processors when scalar instructions are executed.)

3.2.2 Execution Configuration

Kernels C++ functions to be executed on the GPU which can be started from the host
are called kernels. When a kernel is called, it is started many times in parallel on every
multiprocessor according to the execution configuration. Such a configuration is an arrange-
ment of blocks in a grid. Kernels are generally small functions. Their execution time has
to stay below one second or they will timeout. Every function call within the kernel is in-
lined. Big, complex functions easily exhaust the register pool available (see below) leading
to kernels of poor performance. Only one single shared kernel can be executed in parallel on
all multiprocessors.7

Blocks A block is a set of threads which will be executed on the same multiprocessor having
access to the same shared memory space. Therefore, data exchange within one block is easily
possible, while there is limited functionality to do so between different blocks. A block can
contain up to 512 threads organized in a one-, two- or three-dimensional way. Threads can
access their thread ID within a block and the block dimensions by the variables threadIdx
(resp. threadIdx.x etc.) and blockDim respectively.

Grid The grid is an arrangement of blocks. The blocks can be executed on different or even
the same multiprocessor if there are enough resources available on it to start more than one
block in parallel. Block execution order is not well defined, so one cannot assume two blocks
to run in parallel or sequentially. Therefore, within one kernel, blocks should work on distinct
data sets. Data exchange must be done afterwards, when execution of all blocks is known to
be finished. The grid is organized in one or two dimensions, block IDs and grid dimension
can be queried by the threads in the same way as thread IDs and block dimensions.

3.2.3 Registers

There is a pool of 16, 384 32-bit registers available on every multiprocessor. These registers
are assigned to the threads running on it. Each kernel has a fixed requirement of registers
further limiting the maximum number of threads that can be executed concurrently on one
multiprocessor. Registers are the only fast storage for temporary variables available. Thus
it is wise not to store too many intermediate results. During compilation an upper limit for

6A vector processor operates with shared instructions on vectors instead of scalars.
7This is going to change with the next NVIDIA GPU generation called Fermi.

32

registers can be set for each kernel. Local memory (see below) will then be used in lieu of
registers.

Another case where usage of local memory is obligatory occurs when arrays are dynami-
cally accessed, since registers cannot be used in this way. This problem along with ways to
circumvent it will be illustrated in section 6.2.1.3.

3.2.4 Memory

The GT200b boards have different types of memory. Some of them physically share the same
memory chip, but are accessed in different ways.

Global Memory The GPU’s global memory usually consists of 1 GB of GDDR3 for the
GTX285 cards and 4 GB for the Tesla boards. The maximum achievable memory bandwidth
is slightly above 100 GB/s. The global memory is neither cached in any way nor is it coherent.8

Thus, within one kernel, reading from a memory position that was written to earlier yields
unpredictable results as does writing to the same location twice.9

Constant Memory Constant memory is an isolated part of 64 kB of the global memory,
which is readonly (in the sense that only the host can write to it) but cached.

Texture Memory Texture memory also is a part of global memory. Areas of global
memory can dynamically be declared as textures and then be read through the texture cache.
This inhibits direct access by pointers; instead texture fetches must be used (see 6.3.1.2). The
texture memory is readonly. When reading data from texture memory through the texture
unit, some conversions or even bilinear filtering can be done at no extra cost.

Shared Memory Shared memory is not part of global memory. Instead, every multipro-
cessor has its own 16 kB of fast shared memory. Threads within one block access the same
shared memory space. If more than one block is concurrently executed on the same multipro-
cessor shared memory must be partitioned among the blocks. For a read after write access
pattern to shared memory, the threads must be synchronized in between as explained later.
When following the coalescing rules (see 3.7.2), shared memory is exactly as fast as registers
are.

Local Memory Local memory is part of global memory. It is used if the register pool is
insufficient. Local memory is not cached and thus usage should be used as a last resort. As
the name indicates, different threads have disjoint areas of local memory in global memory.

8Fermi cards will have a global memory cache.
9There are possibilities for memory fences, eliminating this problem for threads within one block but not

for the whole grid. However, there is no global flush instruction, that forces every thread to wait until all
memory accesses are finished.

33

GPU GDDR3

Multiprocessor 1

Multiprocessor 2

Multiprocessor 30

......

Instruction
Decoder

Shared
Memory

ALU 1
Registers

ALU 2
Registers

ALU 3
Registers

ALU 8
Registers

......

Constant
Cache

Tetxture
Cache

NVIDIA Graphics Card

Figure 3.1: Schematic of Current NVIDIA GPU

3.3 C extensions

The following specifiers for functions (and class methods) exist:

• global : Functions declared as global represent CUDA kernels.

• device : Functions declared as device can be called from global functions or other
device functions on the GPU.

• host : This declares regular host functions. Therefore, the keyword host can be
omitted. However, a function can be specified as both host and device in what case the
function is compiled twice, as host and as device function.

A kernel can now simply be executed by calling a global function from host code. The desired
parameters are passed to the kernel and some further special parameters define the block and
grid size. A kernel call has the following format:

�
cudaKernel<<<gr id d imens ion , b lock dimens ion>>>(arg1 , arg2 , . . . , argn) ;
cudaKernel<<<30, 256>>>(a , b) ;
� �

Listing 3.2: CUDA Kernel call

The latter line will execute the kernel cudaKernel starting 30 blocks of 256 threads each,
passing the parameters a and b to the kernel. See List. 4.4 for a real example.

34

3.4 Synchronization

As already indicated the execution is organized in terms of warps processing threads within
one warp simultaneously. Different warps and especially different multiprocessors are inde-
pendent (even though they have to execute an identical kernel). It is possible to synchronize
all threads of one block with the syncthreads intrinsic.10 A call to syncthreads requires
only four clock cycles, afterwards all shared memory access is ensured to be complete and
every thread in the block has arrived at the same position in the code.11

3.5 Compilation

When compiling a CUDA file (“.cu” extension), the CUDA compiler will process all functions
defined as global and create kernels out of them. It will inline all calls to device
functions. Afterwards functions marked as global or as device are removed and the
compiled CUDA kernels are integrated in the C++ source code as constant hexadecimal
arrays. The calls to CUDA kernels are exchanged with calls to the CUDA runtime library,
which loads the correct kernel to the GPU and executes it. The preprocessed C++ source
code is then processed by the host compiler, which is GCC12 for a Linux based system. The
CUDA compiler can either directly call the host compiler or it can write the preprocessed
CPU code to a file. In the latter case the host compiler must be called manually.

3.6 Compatibility

Throughout this work some incompatibilities between the CUDA and the host compiler ap-
peared. Under certain conditions the CUDA compiler produces C++ code the host compiler
is unable to process. Most of the errors were related to the iostream library and to templates.
To cope with these problems the second compilation method producing a preprocessed in-
termediate file can be used. A patch is then applied to this file before it is processed by the
host compiler.

3.7 Coalescing Rules

There are several restrictions on memory access patterns, which should be considered to
achieve good memory performance. These rules are called coalescing rules. Coalescing rules
affect threads within one half-warp only. The different rules for global and shared memory
will now be explained.

10Intrinsic functions (or intrinsics) are often used to implement vectorization or parallelization. They are
usually used to execute low level hardware instructions from high level languages. Typically Intrinsic functions
are, similar to inline functions, substituted by a sequence of automatically-generated assembler instructions.
Contrary to inline assembler code the compiler has an intimate knowledge of the intrinsic allowing for better
optimization.

11Clearly the synchronization process itself can take more than four cycles if there are memory transactions
pending. Also the first warp in the block executing syncthreads has to wait for the remaining warps to arrive
at the same code position. However, the instruction itself requires only four cycles.

12GCC is an abbreviation for the GNU Compiler Collection.

35

3.7.1 Global Memory Coalescing

Global memory coalescing policies greatly improved with the introduction of the GT200 chip.
The rules as explained now are only valid for device with a compute capability of 1.2 and
higher. Parallel memory access by all threads of a half-warp is coalesced into a single memory
transaction, as soon as the overall access is restricted to one memory segment.13 The segment
size is:

• 32 bytes for a byte access (8-bit)

• 64 bytes for a word access (16-bit)

• 128 bytes for double word (dword) and quad word accesses (32/64-bit)

• 128 bytes for an access with data types bigger than 64-bit. This will always result in
at least two memory transactions

The coalescing is independent of the access order within one segment. If the memory access
range spans across n segments, then n memory transactions will be issued. Every transaction
will read an entire segment regardless of the access pattern. Since unused data is still read,
wasting memory bandwidth, the smallest possible segment size is usually used. A segment
of size s must be aligned to s bytes.14 Examples of ordered and unordered as well as aligned
and unaligned accesses are provided in Fig. 3.3.

3.7.2 Shared Memory Coalescing

The shared memory for each multiprocessor is divided into 16 equally-sized banks, which can
be accessed in parallel. To achieve optimal performance each of the 16 threads of a half-warp
should access a different memory bank. The banks are organized such that successive 32-bit
double-words are assigned to successive banks. Access of 16 threads to an array using a
stride of s (i.e. thread i accesses address [BaseAddress+s · i]) is fully coalesced if s and 16
are coprime, which is the case if and only if 2 does not divide s. As an exception to this
coalescing rule, data from one single memory bank can be distributed to multiple threads
accessing the same address. If different threads access identical banks, collisions occur, and
multiple memory requests are issued as necessary. Examples for both cases are provided in
Fig. 3.4.

13Earlier devices could only coalesce memory access if consecutive threads accessed consecutive memory
addresses.

14Aligning to s bytes means that the first address must be divisible by s.

36

Address 252

Address 248

Address 244

Address 240

Address 236

Address 232

Address 228

Address 224

Address 540

Address 536

Address 532

Address 528

Address 524

Address 520

Address 516

Address 512

Address 220

Address 216

Address 212

Address 208

Address 204

Address 200

Address 196

Address 192

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 188

Address 184

Address 180

Address 176

Address 172

Address 168

Address 164

Address 160

Address 156

Address 152

Address 148

Address 144

Address 140

Address 136

Address 132

Address 128

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 188

Address 184

Address 180

Address 176

Address 172

Address 168

Address 164

Address 160

Address 156

Address 152

Address 148

Address 144

Address 140

Address 136

Address 132

Address 128

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 188

Address 184

Address 180

Address 176

Address 172

Address 168

Address 164

Address 160

Address 156

Address 152

Address 148

Address 144

Address 140

Address 136

Address 132

Address 128

Address 124

Address 120

Address 116

Address 112

Address 108

Address 104

Address 100

Address 96
......

6
4

 b
y

e
 s

m
e

n
t

t
e

g

1
2

8
 b

yte
 se

g
m

e
n

t

6
4

 b
y

e
 s

g
m

e
n

t
t

e
Example a) Example b) Example c)

e

n

t
3

2
b

yt
se

g
m

e
2

 b
y

e
 s

m
e

n
t

3
t

e
g

Application of coalescing rules:

a) Results in one 64-byte access

 (Random access can still be coalesced if it
 is restricted to one segment. Cards with
 compute capability below 1.2 would issue
 16 memory requests.)

b) Results in one 128-byte access

 (The whole 128-byte segment is read even
 though only 64 byte of the data is used.)

c) Results in one 64-byte
 and two 32-byte accesses

 (The upper two segments are within 128 bytes
 but cannot be coalesced as they are misaligned)

Figure 3.3: Examples of Global Memory Coalescing

37

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 173

Address 170

Address 167

Address 164

Address 161

Address 158

Address 155

Address 152

Address 149

Address 146

Address 143

Address 140

Address 137

Address 134

Address 131

Address 128

Bank 15

Bank 14

Bank 13

Bank 12

Bank 11

Bank 10

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Example a)
(3 byte stride)

Example b)
(4 byte stride)

.. .
...

...
...

...
...

...
...

...
...

...
.. .

...
.. .

...

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Address 188

Address 184

Address 180

Address 176

Address 172

Address 168

Address 164

Address 160

Address 156

Address 152

Address 148

Address 144

Address 140

Address 136

Address 132

Address 128

Bank 15

Bank 14

Bank 13

Bank 12

Bank 11

Bank 10

Bank 9

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

...
.. .

.. .
.. .

.. .
.. .

.. .
...

.. .
.. .

.. .
...

...
...

.. .

Shared memory coalescing:

a) 3 byte stride results in no bank conflict and one memory request.

b) 4 byte stride results in a four-way bank conflict and four
 memory requests.

(Addresses are dword addresses)

Figure 3.4: Examples of Shared Memory Coalescing

38

Chapter 4

Implementations

4.1 Multithreading

To allow for a performance comparison later, a multithreaded CPU version is needed. The
question arises which parallelization approach to choose. For not too many CPU cores the
most trivial approach is also the most efficient one. As the slice trackers are totally inde-
pendent, a trivial parallelization over the slices can easily be implemented and should scale
almost perfectly. Clearly it could be attempted to use multithreading within one slice, too.
However, this would be much more complicated and it is unclear how that approach would
scale with more cores. Additionally this would only be needed if the number of processor
cores exceeded the slice count.

A simple multithreaded version employing OpenMP was created which will be used through-
out this work to allow for a fair comparison. However, this variant will not run on the HLT
farm. There the cluster framework itself starts multiple tracker instances on one node to
utilize all its processor cores. This is explained in section 8.3 in more detail. Fig. 4.1 shows
how the multithreaded CPU performance scales with the number of CPU cores.

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

Sp
ee

du
p

Threads

Measured Speedup

1

1.898

2.849

3.725

Maximal Speedup

Figure 4.1: Multithreaded CPU Speedup1

1A quad core Nehalem was used for the benchmark. To avoid parasitic effects Hyperthreading was deacti-
vated. As each number in the interval divides the slice count 36, every case could be parallelized optimally.

39

4.2 Tracking on GPU

This section describes what was done to make the tracker run on the GPU in the first place,
especially how tracking is distributed among threads and blocks, and how slice data is stored
on GPU memory.

4.2.1 Common Source

Obviously for maintenance reasons it is preferable to have only one single source code for
GPU and CPU. As CUDA is in fact C code, this aim does not seem completely out of reach.
Of course there has to be specialized wrapper code for both GPU and CPU. Sergey Gorbunov
experimented with a GPU tracker code before research for this work was even started. Macros
were introduced which made it possible to have one single tracker source code that can then
be compiled by the C++ and the CUDA compiler. This realization was conserved, and thus it
was easy to implement the GPU tracker on a common source principle. The modus operandi
will now be briefly demonstrated.

The following macros are defined:

�
#i f d e f GPUCODE
#d e f i n e GPUd() d e v i c e
#d e f i n e GPUh() h o s t i n l i n e
#d e f i n e GPUg() g l o b a l
#e l s e
#d e f i n e GPUd()
#d e f i n e GPUh()
#d e f i n e GPUg()
#e n d i f
� �

Listing 4.2: definitions.h

For every tracking step there is one main processing function that either processes a cluster
(steps I to III) or a tracklet (steps IV and V). For example, in the Tracklet Constructor
case, there is the function UpdateTracklet which takes the tracklet ID as argument. These
functions are defined as GPUd(). They can be compiled in a C++ file for the CPU tracker,
but can be included in a CUDA file, to be compiled for the GPU tracker.

Functions that have to be executed on the host are defined as GPUh(). The clue is, that
the host function will be an inline function when compiling the CUDA source code. The
host compiler processing the CUDA file after the preprocessing step will not export the host
function as a symbol in the object file. This is necessary, because the symbol for the host
function is already exported when the code is processed by the C++ compiler for the CPU
tracker code. If the CUDA compiler would also export the symbol, a collision would occur
when linking the object files. It follows a simplified example, illustrating how this works for
the Tracklet Constructor:

40

�
#inc lude ” d e f i n i t i o n s . h”

GPUd() void UpdateTracklet (i n t dwTrackletId)
{

//Code to update the t r a c k l e t
}

GPUh() void TrackletConstructorCPU (i n t dwNumberOfTracklets)
{

f o r (i n t i = 0 ; i < dwNumberOfTracklets ; i++)
{

UpdateTracklet (i) ;
}

}
� �
Listing 4.3: TrackletConstructor.cpp�

#d e f i n e GPUCODE
#inc lude ” Track le tConstructor . cpp”

GPUg() void TrackletConstructorGPU (i n t dwNumberOfTracklets)
{

i n t i = threadIdx . x + blockIdx . x ∗ blockDim . x ;

i f (i < dwNumberOfTracklets)
{

UpdateTracklet (i) ;
}

}

void RunGPUTracker (. . .)
{

i n t dwNumberOfTracklets ;
// Tracking s t ep s I to I I I

//Run the Track le t Constructor with s u f f i c i e n t b locks
// o f 256 threads each
Track letConstructor<<<(dwNumberOfThreads / 256) + 1 , 256>>>

(dwNumberOfTracklets) ;

// Step V
}
� �

Listing 4.4: GPUTracker.cu

4.2.2 Tracking Steps

The actual tracking steps I to V were adapted for the GPU. The initialization and Tracklet
Output tasks stay on the CPU for the time being. The main reason for this is that initial-
ization and Tracklet Output require additional input data in comparison to steps I - V. This
additional input data is accessed exactly once in the process rendering a transfer to the GPU
inappropriate. The GPU tracker works as follows:

41

• Initialization is done on the CPU (creating the grid etc.).

• All relevant data is transferred to the GPU.

• Tracking steps I to V are executed on the GPU.

• The final tracks are transferred back to the host.

• Tracklet Output is performed by the CPU.

The execution configuration is the following: Every block will consist of 256 threads. In
steps IV and V every tracklet is processed by a different thread. Enough blocks are started
to ensure the creation of sufficient threads. There might be more threads than tracklets
(because each block consists of 256 threads). The remaining threads are inactive. This is
exactly the situation in List. 4.4. For steps I to III one block per row is started, where thread
i within block b processes all clusters of index n in row b with i ≡ n (mod 256).

4.2.3 Row Synchronicity

Since it was integrated in the first GPU tracker implementation and will be used regularly,
the principle of a row synchronous Tracklet Constructor will be explained here. Row
synchronicity means, that the Kalman filter and the extrapolation for all tracklets within one
warp or block respectively is always performed for a common row. A distinction is drawn
between warp based and block based row synchronicity. Row Synchronicity is illustrated
in Fig. 4.5.

As every tracklet has a start row, defined by the start hit of its seed, the corresponding
thread must wait until the row iteration has reached that row. Although some threads will
idle, row synchronicity can result in better locality because all threads access data in one
single row. Furthermore, it allows for more optimizations discussed later. After a row is
completely processed, the threads are synchronized by the syncthreads intrinsic. List. 4.6
shows the above example extended with block based row synchronicity.2

Block

Warp 1 Warp 2

Thread 1
(Tracklet 1,

Start Row 3)

Thread 2
(Tracklet 2,

Start Row 1)

Thread 3
(Tracklet 3,

Start Row 2)

Thread 4
(Tracklet 4,

Start Row 4)

Block

Warp 1 Warp 2

Thread 1
(Tracklet 1,

Start Row 3)

Thread 2
(Tracklet 2,

Start Row 1)

Thread 3
(Tracklet 3,

Start Row 2)

Thread 4
(Tracklet 4,

Start Row 4)

Block

Warp 1 Warp 2

Thread 1
(Tracklet 1,

Start Row 3)

Thread 2
(Tracklet 2,

Start Row 1)

Thread 3
(Tracklet 3,

Start Row 2)

Thread 4
(Tracklet 4,

Start Row 4)

No Synchronicity Warp Based Syncronicity Block Based Synchronicity

Process
Row 4

Process
Row 3

Process
Row 5

Process
Row 6

Process
Row 7

Process
Row 2

Process
Row 1

Process
Row 3

Process
Row 4

Process
Row 5

Process
Row 3

Process
Row 2

Process
Row 4

Process
Row 5

Process
Row 6

Process
Row 5

Process
Row 4

Process
Row 6

Process
Row 7

Process
Row 8

Idle

Idle

Process
Row 3

Process
Row 4

Process
Row 5

Process
Row 2

Process
Row 1

Process
Row 3

Process
Row 4

Process
Row 5

Process
Row 3

Process
Row 2

Process
Row 4

Process
Row 5

Process
Row 6

Idle

Idle

Process
Row 4

Process
Row 5

Process
Row 6

Idle

Idle

Process
Row 3

Process
Row 4

Process
Row 5

Process
Row 2

Process
Row 1

Process
Row 3

Process
Row 4

Process
Row 5

Process
Row 2

Idle

Process
Row 3

Process
Row 4

Process
Row 5

Idle

Idle

Idle

Process
Row 4

Process
Row 5

Figure 4.5: Illustration of Row Synchronicity

2A warp wide row synchronicity could be realized by omitting the syncthreads intrinsic. The existence of
only one single instruction decoder then implicitly enforces warp base row synchronicity.

42

�
GPUd() void UpdateTracklet (i n t dwTrackletId , i n t dwRow)
{

i f (dwRow < t r a c k l e t s [dwTrackletId] . f i r s tRow) return ;

//Code to update the t r a c k l e t
}

GPUg() void TrackletConstructorGPU (i n t dwNumberOfTracklets)
{

i n t i = threadIdx . x + blockIdx . x ∗ blockDim . x ;

f o r (i n t j = 0 ; j < dwRowCount ; j++)
{

i f (i < dwNumberOfTracklets)
{

UpdateTracklet (i , j) ;
}

sync th r ead s () ;
}
� �

Listing 4.6: Block based row synchronous UpdateTracklet function3

4.2.4 Memory

4.2.4.1 Memory Structure

Before getting to a memory layout, one has to recapitulate the memory requirements of the
tracker. The memory allocated by the tracker can be categorized as follows:

• Geometry and Parameters: Constant parameters describing the geometry, etc., of the
slice, independent of the event.

• Constant Pointers: As the data size for one row, etc., is not constant, and the data
is sorted according to rows in memory, constant pointers point to the suitable data
structures for every row. The same holds for other data. As the data sizes vary, these
pointers depend on the event.

• Slice Data: This contains all actual data related to one slice of the events. This cluster
coordinates and the grid. Slice Data is stored in just one memory segment with the
constant pointers required for accessing it.

• Tracklet Memory: Temporary memory for the Tracklet Constructor and Tracklet Se-
lector. It contains parameters and clusters for the tracklets.

• Track Memory: Area where the Tracklet Selector stores the final tracks. This memory
area must later be transferred to the host.

Tab. 4.7 shows average values for central lead-lead events per slice. For a simplified compar-
ison, the memory available on the GPU is listed again in Tab. 4.8.

3The check for the tracklet ID must be inside the loop. Otherwise the thread would never execute the
syncthread instructions resulting in a synchronization failure.

43

Data Memory needed

Slice Data 6 MB
Tracklet Memory 12 MB
Track Memory 2 MB
Cluster Coordinates and Grid per Row (central event) 30 kB
Cluster Coordinates and Grid per Row (noncentral event) 6 kB
Geometry, Parameters and Constant Slice Pointers (slice) 2 kB
Constant Row Pointers (All Rows of One Slice) 13 kB

Table 4.7: Tracker Memory Requirements

Memory Type Memory Available

Constant Memory (Cached) 64 kB
Shared Memory (Fast) 16 kB (per Multiprocessor)
Global Memory 1 GB

Table 4.8: GPU Memory Types

It is definitely preferable to store as much data as possible in shared and constant memory.
Matching the memory requirements to the memory offered by the NVIDIA cards suggest the
following assignment.

• Slice Data, tracklets, and tracks have to be stored in global memory as they do not fit
anywhere else.

• Constant pointers for the slice itself and for all rows fit perfectly in constant memory.

• For noncentral event, cluster coordinates and the grid content could be stored in shared
memory for faster access.

• The constant pointers could also be stored in shared memory.

4.2.4.2 Alignment and Field Map

Given that the start address of slice data memory (base address) is different for CPU and
GPU, the pointers to the slice data in the host’s main memory are invalid for the GPU.
Therefore, the pointers have to be calculated twice, for the base addresses in host and in
device memory. For a faster access the addresses of structures in the slice data memory are
aligned. For different base addresses, this alignment could result in a different amount of
bytes padded.4 To ensure an equal padding, base addresses in host and device memory must
have an alignment, greater than or equal to the largest alignment of the structures inside the
slice data. Therefore, the base addresses are aligned to 64 kB.

As the magnetic field is not homogenous throughout the whole detector, tracking algorithms
conventionally used a field map for the B-field. In general, this is a big lookup-table, and
thus not suited for a GPU tracker at all. In [Gor+3], it was shown that the magnetic field
can be adequately approximated by a polynomial, making the field map obsolete. The work
presented here could greatly benefit from the fact that the polynomial approximation was
already implemented in the CPU tracker.

4Padded bytes are fake bytes appended to a data structure allowing the next structure to be aligned.

44

4.2.5 Classes

On CUDA versions 2.x, NVIDIA supports plain C with some extensions, e.g. templates.
The compiler processes C++ source code with classes, but is not fully C++ compliant. One
general problem arises with constructors. For the CPU tracker all the parameters in the
tracker class are initialized by the constructor. But it is impossible to create a GPU tracker
instance in global device memory (or constant memory) in such a way, that the constructor
is automatically called and initializes the parameters. To solve this a trick is applied.

The tracker object is created in the host’s main memory twice, one CPU tracker object
and one GPU tracker object. The CPU instance is required for the CPU steps such as
initialization. The constant pointers of the GPU tracker object (still in host memory) are
set, to point to the correct location in device memory (making them currently invalid). Now
the whole tracker object is copied bitwise5 into constant device memory (where the pointers
become valid). In this way, no changes to the CPU tracker code are required and classes can
be used as usual.

4.3 First Run

Finally Fig. 4.9 shows the performance (for a peripheral lead-lead event) of the first working
GPU implementation, compared to the CPU version. The results might look disappointing
at a first glance, but admittedly a high end CPU was used and additionally, this was the very
first attempt. Still, the plot shows that there is potential in the GPU tracker and suggests to
optimize primarily the Tracklet Constructor. Before doing more benchmarks, the procedural
methods for the measurements will be developed during the next chapter. This version is the
basis for all the optimizations that will be applied later.

 0

 5000

 10000

 15000

 20000

 25000

Neighbours Finder

Neighbours Cleaner

Start Hits Finder

Tracklet Constructor

Tracklet Selector

Total Time

0

250

500

750

1000

1250

Tr
ac

ke
r C

om
po

ne
nt

 T
im

e
[µ

s]

C
om

pl
et

e
Ti

m
e

[m
s]

Tracker Component

CPU (1 Thread)

32
02

17
2

10
4

23
69

8

50
6

10
16

71
8

CPU (8 Threads)

53
1

26 15

46
81

96

26
39

28

GPU

39
4

53 81

43
39

11
62

25
80

22

Figure 4.9: Performance of Initial GPU Implementation (Nehalem 3.8 GHz)

5The memory is simply copied, no copy constructor is called.

45

Chapter 5

Benchmarking

This chapter is intended to give an overview of the problems that appeared during the bench-
marks and of ways to avoid them. Furthermore, some general information will be given, which
might be interesting for an interpretation of the performance plots in the next chapters.

5.1 Raw Benchmarking Data

All benchmarks of tracking performance in this work were done using simulated data. This
data was gathered using the AliRoot simulation framework. The framework can do Monte
Carlo simulations of events in the ALICE experiment and outputs data in the same form as
it is expected from the detectors such as the TPC. In addition it delivers the Monte Carlo
source data of the simulation. Therefore, the track parameters of the Monte Carlo tracks are
present, from which the simulated trajectories and TPC clusters are calculated. It is thus
possible to compare the track parameters regained by the tracker to the initial ones to check
the quality of the algorithm.

Since the GPU tracker is mainly aimed at tracking central heavy-ion events, most input
data for the following benchmarks will use simulated central lead-lead collisions. To keep
the results as comparable as possible, it was attempted to stick to one single central event
of about 24, 000 tracks. This is the absolute worst case simulation with 100% centrality,
resulting in the biggest event expected. In the experiment the most central events will be the
most interesting ones and a tracker capable of tracking such events will be able to process
less central events with sufficient performance anyway.

In some tests of different algorithms memory limitations on the GPU (usually the restriction
to 16 kB of shared memory) prohibited tracking such big events. In such cases, a common
heavy-ion event with reduced centrality and only 4, 000 tracks was used to benchmark an
algorithm. If the algorithm turned out to be an improvement, it has to be considered how it
could be applied on larger events. Otherwise it will be discontinued anyway. For an analysis
of the dependency of tracking performance on event size a full range of events starting from
pp events with and without pile up and going to peripheral and central heavy-ion collisions
was used. The author would like to thank Sergey Gorbunov for the supply with a considerable
amount of simulation data, which took several months to generate.

46

Because of changes in the tracking code and simulation framework, staying with the initial
raw data was not always possible.1 Updated events using the same simulation parameters
resulted in different input clusters for the tracker. The event size was kept at 24, 000 tracks,
but the events themselves used during this work were not identical.

5.2 Objectives

The GPU tracker algorithm is aimed at central heavy-ion collisions. The primary objective
thus was the best performing GPU code on large events. In several cases GPU optimizations
had a negative effect on CPU performance. Then two different codes were maintained to
still allow for best CPU performance. To ensure a fair comparison also the CPU code was
optimized as much as possible during this work. The thesis is intended to end with a CPU
to GPU performance comparison on the newest and fastest hardware available at the time of
its completion.

5.3 Benchmark Hardware

During development a wide range of machines was used, among others several Intel Core2
and Nehalem CPUs of different clock speeds. The GPUs employed were GTX280 / GTX285
/ GTX295 cards as well as Tesla C1060 boards and Tesla S1070 computing systems. The
final benchmarks for the most current tracker code were done on an Intel Nehalem i7-965
clocked at 3.8 GHz, 12 GB of DDR3-1600 memory and an EVGA GeForce GTX285 SSC.

5.4 Code Evolution

During this work the tracker code evolved. Updates improved the tracking efficiency, some-
times at the cost of some performance. (However, overall performance of the CPU code was
improved dramatically during this work (see 9.2.1).) This makes it nearly impossible to com-
pare benchmark results taken at different points in time. Many features were implemented for
testing purpose only and were removed in code cleanups after the benchmarks were finished.
Recapitulatory, regarding the following list, it would have been extremely difficult to do all
the benchmarks on a common code base.

• Input data had to be restricted to small events for some measurements.

• Input data was resimulated several times.

• Updates to the tracker algorithm itself were included.

• No code base with all features implemented simultaneously exists.2

• Different features might affect each other.

• Different benchmarks were done on different hardware.
1In fact, the track parameters themselves should not have changed, but parameters like the magnetic field

etc. changed its format. Also changes were made to the cluster finder, resulting in different clusters.
2E.g. the benchmarks testing feature A were done before the benchmarks for feature B, which in the

meantime other optimizations were applied. In the code version containing feature B, feature A was already
removed, as it hat turned out not to perform as expected.

47

• New CUDA versions were released.

For the above-mentioned reasons, every benchmark must be regarded standalone: Perfor-
mance of the algorithms is compared within one plot, but different plots are not related to
each other. For example, the absolute times between two plots can differ, since the bench-
marks for one of them were done on a GPU with lower clock speed. Clearly all results
within one figure were always collected on identical hardware (if not stated otherwise). Some
plots compare CPU and GPU performance. These measurements were all performed on the
same machine as the final benchmark, so the relation between CPU and GPU performance
is kept constant. However, as different code versions were employed, the plots are still not
comparable against each other.

5.5 CPU Cache Issues

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

1 2 3 4 5 6 7 8 9 10

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Tracking Run in Series

Figure 5.1: CPU Tracking Performance for Consecutive Reconstructions3

To allow for an unimpaired measurement, CPU cache effects must be considered. Fig. 5.1
shows the CPU tracking time for 5 measurement series of 10 consecutive tracking runs, each
on identical input data sets.3 Unrelated tasks were started in between the series to clear the
CPU cache. It is obvious that the first run in each series is generally slower than the following
ones, when the data is already in the cache. Tab. 5.2 shows the average times.

Every following benchmark was created by taking the average of a series of consecutive
measurements. To account for the caching issue observed, the first tracking run in every
series of measurements was discarded and not taken into account for building the average
value.

3Each color corresponds to one series. For each series, the 10 runs were performed one immediately after
another. The first (leftmost) runs of each series are in average slower than the following ones.

48

Run Time [µs] σTime [µs]

First 842860 8097
Cached 806476 3361

Table 5.2: Average CPU Reconstruction Time

5.6 Statistics

Before starting with the real benchmarks, in this section some statistical data about the
distribution of tracking time is collected. It is known that by taking the average of n mea-
surements, the statistical error is proportional to 1√

n
if the measurements are uncorrelated.

Definitely, this cannot be assumed here. Therefore, systematic errors will be analyzed and
it will be attempted to eliminate their origins as far as possible. Anticipatory, this seems to
work quite well for the GPU tracker, whose time distribution will resemble a gaussian, but
not for the CPU tracker. In the end, to obtain the errors, the measurements will just be
considered independent. Although this is not correct, the result can be used as an estimate,
at least for the order of magnitude of the real errors. By averaging enough results both the
estimated and the real error will become irrelevant.

Clearly the results will depend on the input data. Big events probably result in a lower
relative error because the total tracking time increases. However, this work is targeted at
central heavy-ion events and therefore, such an event will be principally analyzed here. As
some smaller events will be regarded at a later stage, section 5.6.1 gives a summary on them.

Now the statistical measurements will be presented. The CPU and GPU tracking time
for one identical event (central heavy-ion with 24.000 tracks) will be measured over and
over again. According to this data it can then be decided how many measurements are
needed for the statistical errors to become negligible. Figures 5.3 and 5.7 show a histogram
of the distribution of tracking times on CPU and GPU respectively. All the data for the
histograms in this section was exclusively collected on the Nehalem machine on which the
final benchmarks were done (except for one figure showing a Core2 as comparison).

 0

 2

 4

 6

 8

 10

 12

 14

 820000 840000 860000 880000 900000 920000 940000 960000 980000 1e+06

Tracklet Constructor Time [µs]

Figure 5.3: Distribution of CPU Tracking Time Using 8 Threads (Nehalem)

CPU Benchmarks One can see a strong variation in CPU reconstruction time distributed
around 850 ms. The deviation results from scheduling inconsistencies between the runs. The
plot was created from tracking runs with 8 threads in parallel. The distribution is much
smaller for a single threaded run (see Figures 5.4 and 5.5), but this would not reflect the
real application domain of the tracker. One can roughly see two peaks in the Core2 Quad
plot, corresponding to the two different dies on the CPU, resulting in two pairs of cores

49

with slightly different performance.4 Employing the realtime FIFO scheduler and pinning
the process to a single core yields a more precise measurement (Fig. 5.6).

 0

 10

 20

 30

 40

 50

 60

 70

 3.98e+06 3.99e+06 4e+06 4.01e+06 4.02e+06

Total Tracking Time [µs]

Figure 5.4: Distribution of CPU Tracking
Time using One Thread (Nehalem)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 6.8e+06 6.9e+06 7e+06 7.1e+06 7.2e+06 7.3e+06

Total Tracking Time [µs]

Figure 5.5: Distribution of CPU Tracking
Time using One Thread (Core2 Quad)

 0

 10

 20

 30

 40

 50

 60

 70

 3.99e+06 3.992e+06 3.994e+06 3.996e+06

Total Tracking Time [µs]

Figure 5.6: Time Distribution of CPU
Tracker using FIFO-Scheduler with Pinned

CPU-Core (Nehalem)

 1

 10

 100

 1000

 10000

 300000 350000 400000 450000 500000 550000

Total Tracking Time [µs]

Figure 5.7: Distribution of GPU Tracking
Time (Nehalem, GTX285)

Coming back to 8 threads, calculations show (Tab. 5.8) that for 50 runs the statistical error
is below 1%. Therefore, for all intermediate benchmarks used to determine which of multiple
variants of the algorithm was the fastest, doing statistics for 50 CPU runs is considered
sufficient. It is evident that for the final benchmark a higher precision is desired. Benchmarks
are run using the realtime FIFO scheduler. Obviously the tracker cannot be pinned to a single
CPU core for more accurate results.

Measurements Time [µs] σTime [µs] σTime
Time [%]

150 842, 860 2, 851 0.324
50 4, 939 0.561
1 34, 922 3.967

Table 5.8: Statistical Errors for CPU Tracking Time

GPU Benchmarks The GPU plot (Fig. 5.7) is scaled logarithmically to show a wider
range. A series of 150 measurements was used for the histogram. The peaks between
500, 000 µs and 550, 000 µs are produced by hard scheduling collisions (see 6.2.2.7). Since
they only occur sporadically, produce unpredictable errors and render a detailed analysis of

4A Core2 Quad CPU consists of two dies. The two CPU cores within one die perform identically, but two
cores from two different dies can have varying performance.

50

single steps of the tracking algorithm impossible, runs with hard collisions will be repeated
for the benchmarks in the optimization chapters. Of course the final benchmarks include all
runs, also those with hard collisions.

The main peak occurs at about 320, 000 µs and a smaller peak is visible at 350, 000 µs, though
the second is suppressed by two orders of magnitude. To exclude the possibility that this
is caused by the NVIDIA card being occupied by the operating system displaying graphics
content, the test was rerun on a Tesla card, which has no video interface. The results are
even more dramatic (Fig. 5.9). The smaller second peak does not occur when only measuring
CUDA kernel execution times for a single tracking step (Fig. 5.10). Hence the delay must
arise between the kernel launches or during the CPU parts of the algorithm. When running
the tracker with the FIFO realtime scheduler and pinned to a fixed CPU core the small
second peak does not appear (Fig. 5.11).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 500000 520000 540000 560000 580000 600000

Total Tracking Time [µs]

Figure 5.9: Distribution of GPU
Tracking Time on a Tesla Card5

(Core2 Quad, Tesla C1060)

 0

 50

 100

 150

 200

 250

 300

 3840 3850 3860 3870 3880 3890 3900

Tracklet Constructor Time [µs]

Figure 5.10: Distribution of Time Required
by GPU Tracklet Constructor Step (Ne-

halem, GTX285)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 316000 317000 318000 319000 320000 321000 322000 323000

Total Tracking Time [µs]

Figure 5.11: Time Distribution of GPU Tracker using FIFO-Scheduler with Pinned CPU-Core
(Nehalem, GTX285)

For benchmarking the realtime FIFO scheduler is used, and contrary to the CPU case the
GPU tracker is pinned to a CPU core (except for the multithreaded benchmark in sec-
tion 6.3.2). This way both parasitic effects that were responsible for the additional peaks in
Fig. 5.7 could be removed and the GPU tracking time distribution resembles a gaussian very

5The difference to the performance in Fig. 5.7 is slightly based on the different GPU clock speed but mostly
on the Host performance, which is relevant for the CPU tracking steps.

51

well. Table 5.12 shows the statistical errors calculated for a full GPU tracking run, and for
the Tracklet Constructor / Selector steps.

Type Measurements Time [µs] σTime [µs] σTime
Time [%]

Full Run 48.287 322, 702 2 0.000
50 66 0.021
5 210 0.066

Tracklet Constructor 3, 601 3, 857 0.833 0.002
50 0.707 0.018
5 2.236 0.058

Tracklet Selector 3, 631 1, 480 0.1907 0.013
50 1.625 0.110
5 5.139 0.347

Table 5.12: Statistical Errors for GPU Tracking Time

One can see that the statistical error stays well below 1%, already for only 5 measurements.
Every GPU result hereafter will be the average of at least 5 measurements, in most cases 10
or more. In fact, this means 5 / 10 runs over 36 slices, so at the least a total of 180 slices
are processed. The error margin always remains below 1% and error bars are not included in
diagrams if the are not necessary for facility of inspection.

5.6.1 Statistics for Small Events

For completeness it will be analyzed how the statistical error behaves for different track
counts. Figures 5.13 to 5.15 show the distributions of tracking times for smaller events.
As above the statistical error is calculated under the assumption that the measurements
are independent. Tab. 5.16 shows the expected relative errors of the average values of 50
measurements in different cases. The measurements have a bigger error for a smaller track
count. However, the order of magnitude of the errors does not change.

 0

 5

 10

 15

 20

 115000 120000 125000 130000 135000 140000 145000 150000

Total Tracking Time [µs]

Figure 5.13: Time Distribu-
tion of CPU tracker (Periph-

eral lead-lead)

 0

 5

 10

 15

 20

 25

 107000 107500 108000 108500

Total Tracking Time [µs]

Figure 5.14: Time Distribu-
tion of GPU Tracker (Periph-

eral lead-lead)

 0

 100

 200

 300

 400

 500

 600

 700

 6500 7000 7500 8000 8500 9000 9500 10000

Total Tracking Time [µs]

Figure 5.15: Time Distribu-
tion of CPU tracker (PP)

Track Count σTime
Time for CPU Tracker [%] σTime

Time for GPU Tracker [%]

24.000 0.561 0.021
4.000 0.731 0.042

223 1.100

Table 5.16: Statistical Errors for GPU Tracking Time

52

Chapter 6

Optimizations for GPU

6.1 General Optimizations

This section examines two general aspects of GPU optimization which are, although applied
in the tracker, of general concern. Another somewhat general tool is the texture cache, which
is used in a very practical way and therefore discussed in section 6.3.1.2.

6.1.1 Shared Memory Transfer Performance

Shared Memory Caching Algorithms Since the global memory on the GPU is not
cached, access to it is extremely expensive, even if the access is of streaming type or restricted
to a small area. One general approach to overcoming this is to introduce a cache in shared
memory. The shared memory cache will not be transparent, instead the data must be cached
explicitly. This restricts the usage of a shared memory cache to cases where it can be predicted
which data will be required in the near future, e.g. when processing a stream, or where access
is restricted to a small range that fits into shared memory. Furthermore, the cache will be
read only, since also the shared memory is not coherent when it is not synchronized. In
general, there are two common approaches to implement a shared memory cache:

• a) In frequent intervals the algorithm is paused, and the shared memory cache is updated
with new data from global memory.

• b) The shared memory cache is split into halves that are alternately and concurrently
updated. The update is done by a small set of threads (usually one warp) while all
the remaining threads (worker threads) process the actual algorithm, always using the
cache halve which is not currently getting updated.

Both cases are illustrated in Fig. 6.1. As the shared memory is very small anyway, different
cache sizes were not analyzed but only the biggest cache size possible.

Shared Memory Transfer Performance In the first case, it is easy to achieve the full
global memory bandwidth during the caching step, when the algorithm is paused, since the
full GPU is available. In the second case, on the one hand, using only a reasonably small
amount of threads leaves more processing power available for the algorithm itself. On the
other hand sufficient threads have to be used for the caching to be fast, so the worker threads

53

Threads 0-255
Threads

0-31
Threads 32-255

Cache data
for iteration
n + 1 into

segment A

Process iteration n using
cache segment B

Cache data
for iteration
n + 2 into

segment B

Process iteration n + 1 using
cache segment A

Cache data
for iteration
n + 3 into

segment A

Process iteration n + 2 using
cache segment B

Cache data
for iteration
n + 4 into

segment B

Process iteration n + 3 using
cache segment A

Process iteration n

Cache data for iteration n + 1

Process iteration n + 1

Cache data for iteration n + 2

Process iteration n + 2

Cache data for iteration n + 3

Process iteration n + 3

Figure 6.1: Illustration of Different Caching Algorithms

do not have to wait for the cache to be filled. Figures 6.2 and 6.3 show the time required for
caching and the number of memory requests issued respectively, for different data types and
thread counts.1 The “short” data type is only present in this diagram, as short integers are
widely used in the tracker, and at some points it might make sense not to cache a sequential
area of global memory, but to gather2 short integer values distributed in global memory. To
copy a contiguous memory segment short integers should be unqualified, since the NVIDIA
GPU cannot access data smaller than 32-bit.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

short int uint4

Ti
m

e
[µ

s]

Data Type

32 Threads1680
1420

1110

64 Threads

1200 1125
1100

96 Threads

1020
1050

1120

128 Threads

940

1050
1050

Figure 6.2: Time Required for Data
Prefetching into Shared Memory Cache

 0

 2000

 4000

 6000

 8000

 10000

 12000

short int uint4

Lo
ad

s

Data Type

32 Bit Loads10780

2864
1247

64 Bit Loads

2600

3058

1062

128 Bit Loads

3

2000

3037

Figure 6.3: Load Operations Performed
while Prefetching Data

Fig. 6.2 shows that for a high thread count the data type is irrelevant. This is evident since
the usage of the entire GPU must provide the full memory bandwidth. For a big data type
however the thread count gets irrelevant. Since employing less then 32 threads (≡ 1 warp)
would unavoidably result in branching within one warp, it does not make any sense to drop
below this number. Therefore, using 32 threads and the uint4 data type is optimal. The

1The memory accesses can be counted using the NVIDIA CUDA profiler.
2The process of gathering is the transfer of data, distributed with a common stride or even randomly into

a consecutive memory segment. It is the inverse process of scattering. Both of them are avoided wherever
possible, since they to not reflect the architecture of DRAM well. Gather and scatter operations produce lots
of short memory accesses whereas DRAM is optimized for the transfer of large continuous memory segments.
See Appendix C for more information.

54

performance for this constellation is close to the maximum performance measured, while still
most of the GPU is available for data processing.

Fig. 6.3 shows the number of 32-bit, 64-bit, and 128-bit load operations performed by the GPU
for different data types. These numbers do not depend on the thread count. It goes without
saying that the usage of bigger data types results in fewer but larger memory transactions.
(Even though the number of 128-bit accesses increases, the sum decreases.) Considering this,
it appears appropriate to use large data types.

Shared Memory Cache Alignment In general, CUDA assumes a memory access to a
data structure of n bytes as being aligned to 2k bytes, with k minimal such that 2k ≥ n. When
filling the shared memory cache using the uint4 data type, all accesses must be aligned to 16
bytes, especially the source address in global memory. In fact, tests revealed that the cache
contains corrupted data if one does not comply with this. For these and some other general
performance reasons (the memory controller is optimized for 16 byte alignment), all data
structures within the whole tracker are aligned to at least 16 bytes (Actually, benchmarks
show a performance benefit of only about 0.5%, which is negligible. However, it comes at no
cost and simplifies the remaining code, as alignment must no longer be considered).

6.1.2 Parallel Threads / Register Usage

Since each multiprocessor has a limited pool of registers, the number of threads it can execute
in parallel is determined by the number of registers required by each thread. With 16, 384
registers in the GT200 chip this allows for the configurations in Tab. 6.4, limited by the
product of the register requirement and the thread count which has to stay below 16, 384.

Registers 32 50 64 80 128

Threads 512 320 256 192 128

Table 6.4: Possible Register and Thread Configurations

If performance is not capped by other effects such as saturated memory bandwidth it is
self-evident to run as many threads as possible. In contrast to that, restricting the register
count limits the possibilities for compiler optimizations. It will possibly even lead to local
variables being stored in local memory instead of registers. Therefore, it is always a trade-off:
a register count that is too high will result in only few threads, while a low register count
can result in excessive local memory usage.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 100 150 200 250 300 350

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

Threads

Figure 6.5: Tracklet Constructor Perfor-
mance for Different Block Configurations

 0

 50

 100

 150

 200

 250

 300

128 Threads 160 Threads 256 Threads 320 Threads

Lo
ca

l M
em

or
y

4 4

60

292

Figure 6.6: Local Memory Required by
Tracklet Constructor

55

It can be seen from Fig. 6.6 that for 320 threads the amount of local memory increases
tremendously. Simultaneously tracking time rises dramatically. However, when comparing
thread counts of 256 and 160, local memory size is higher for the bigger thread count, but
performance is superior. Therefore, 256 threads will be used throughout the Tracklet Con-
structor.

6.2 Optimizations of Tracking Steps

Contrary to the above examples, which are related to the tracker code but are very general,
in this section, optimizations directly related to the tracker algorithm are analyzed. Out of
the five tracking steps, three have non negligible runtime. These three steps are now subject
to optimizations. Most effort was put into the Tracklet Constructor, which is the most
complex and time consuming part, especially when starting the work (see Fig. 4.9). Some
optimizations could be applied to the Neighbors Finder and the Tracklet Selector, while it
would not make much sense to invest time in accelerating the remaining steps.

6.2.1 Neighbors Finder

As is clear from the design of the algorithm (see 2.3.1), the critical part of the Neighbors
Finder is the calculation and the comparison of the slopes for the clusters in the rows above
and below (Row above and below respectively refers to the rows r + 2 and r − 2, for the
reasons stated in section 2.3.1). It is preferable not to calculate the slope for the same cluster
twice, and especially not to read the data from global memory multiple times. Therefore, the
algorithm works according to the following scheme:

• Calculate the slope for every cluster in row r − 2 and store the values in temporary
memory.

• Iterate over all clusters in row r+ 2, start with calculating the slope for one cluster C+.

• Compare the slope for cluster C+ with the slopes for all clusters in row r − 2.

• Proceed with the next cluster C+.

In this way, the slopes are calculated only once, and even more importantly, cluster coor-
dinates in global memory are accessed only once. Naturally the temporary data has to be
stored in temporary memory. According to simulations the number of clusters in row r − 2
remains below 5 for pp as well as for peripheral lead-lead events, but can reach about 20 for
central heavy-ion events. For each cluster, 10 bytes are needed. (Two single precision floats
for the slope in y- and z-direction and one short integer for the cluster index in the row).
It follows that a temporary storage for 20 clusters would require 60 registers (since registers
can only save 32-bit values). For two reasons registers cannot be used as temporary storage:

• The storage requirement exceeds the register space.

• The data is organized as an array with dynamic access (which is incompatible with the
register file).

The second point results from the design of the GPU register file. It is not possible to use
one register as an index for an array of registers. This will be dealt with later (see 6.2.1.3).

56

6.2.1.1 Shared Memory

For a temporary storage this leaves only local memory and shared memory as alternatives. For
performance reasons it is desirable to use as much shared memory as possible. A disadvantage
is that every thread needs its own temporary storage leaving 16384

256 = 64 bytes per thread.
This allows for storing slopes of 10 clusters in shared memory, leaving 1 kB left, which is
required by the Neighbors Finder for other purposes.

As seen above, 6 clusters are insufficient for heavy-ion events, which are the main field of
application of the GPU tracker. The Neighbors Finder will thus store the first 6 clusters
in shared memory, and the remaining ones, if any, in local memory. Unfortunately, this
complicates the implementation but is well worth the effort (see Fig. 6.8).

To measure the actual impact of the local memory on performance a trick is used. A shared
memory only storage is implemented, allowing for a larger address space by taking the index
modulo six before doing the actual memory access. In this way, cluster 6 will overwrite cluster
0, cluster 7 will overwrite cluster 1, etc. Of course the result will be wrong, but this overflow
will not change the algorithm’s (the Neighbors Finder part of it) runtime. Fig. 6.8 shows the
performance for the three versions discussed here.

It can be deduced that the mixed storage performs well. As assumed the shared memory
only version is even faster. Since the next NVIDIA GPU generation will offer three times the
amount of shared memory, it will then be possible to implement a working Neighbors Finder
using only shared memory.

One last interesting fact to note is that the number of tracks found by the tracker is only very
slightly affected when using the overflow variant. The reason is that it is merely necessary
to find one part of a track in the Neighbors Finder. This is obviously already fulfilled in
the overflow variant when roughly every third cluster is taken into account. Still, tracking
quality is more important than performance, but it would very well be possible to restrict
to a part of the clusters when performance was an imminent issue. This would even speed
up the Neighbors Finder further, since the overflow implementation used still processes every
cluster but then neglects 2 out of 3 clusters afterwards. Also the tracklet constructor could
perform faster when fewer seeds exist.

6.2.1.2 Alternative Approach

When comparing the runtimes to the tasks for the Tracklet Constructor and Neighbors Finder
(final result on Fig. 9.20), it is noticed that the Neighbors Finder takes more than half of the
time the Tracklet Constructor requires, even though it performs only a simple combinatorial
task. Therefore, the Neighbors Finding algorithm seems suboptimal. On top of that all steps
in the whole tracking algorithm have linear runtime, except for the Neighbors Finder, which
does an all to all comparison resulting in quadratic runtime. It would be desirable to come
up with an entirely linear algorithm.

In a first simplification, a two-dimensional Neighbors Finding algorithm is discussed. The
y-axis is ignored, but only the row (x-coordinate) and the z-coordinate within the row is
taken into account. In this case an algorithm with a perfectly linear runtime is possible,
delivering the optimal result. Let the clusters be sorted according to z-coordinates within
the rows, with n clusters C1 to Cn in row r − 2 and m clusters D1 to Dm in row r + 2, and
C0 the reference cluster in row r. The algorithm starts calculating the slopes for C1 and Dm.
Now, given the current position is (Ci, Dj) slopes for Ci+1 and Dj−1 are calculated. Now

57

the position is changed to (Ci+1, Dj) or (Ci, Dj−1), namely the pair that forms the better
straight line with C0. The algorithm is continued until the position (Cn, D1) is reached.
Clearly all pairs of clusters (Ci, Dj) not regarded during the algorithm have a greater slope
difference than a pair of clusters that was considered, and so this algorithm will find the
optimal pair. For completeness a proof is given. The problem is clearly equivalent to the one
solved in the following

Lemma 6 Let M , N be sets of sorted real numbers, M = {a1, a2, ..., am}, N = {b1, b2, ..., bn},
ai ≤ ai+1, bi ≤ bi+1. Consider the sequences of numbers defined by:

i1 = 1

j1 = 1

ik+1 =

{
ik + 1 if |aik+1 − bjk | ≤ |aik − bjk+1| ∧ ik < m

ik otherwise

jk+1 =

{
jk if |aik+1 − bjk | ≤ |aik − bjk+1| ∧ ik < m

jk + 1 otherwise

It then follows that
∃k s.t. |aik − bjk | = min

0≤i≤m,0≤j≤n
(|ai − bj |)

Proof: Let |ai − bj | be minimal for i = i0, j = j0. Clearly ∃k s.t. ik = i0. W.l.o.g.
assume jk < j0, otherwise swap M and N . It follows bjk ≤ bj0 but also bjk ≤ a0, otherwise
a0 < bjk ≤ bj0 but then |ai0 − bj0 | would not be minimal.
Now assume first bjk < bjk+1 ≤ aik : ⇒ |aik−bjk+1| < |aik+1−bjk | ⇒ ik+1 = ik∧jk+1 = jk+1.
Alternatively bjk ≤ aik ≤ bjk+1, but then clearly jk = j0 ∨ jk + 1 = j0.
Per induction it follows after finitely many steps that: ik+l = ik = i0 ∧ jk+l = j0, which
completes the proof. �

The algorithm is illustrated in Fig. 6.7.

row r C0

row r + 2

row r - 2

D1 D2 D3 D4

C1 C2 C3

C0

D1 D2 D3 D4

C1 C2 C3

C0

D1 D2 D3 D4

C1 C2 C3

row r C0

row r + 2

row r - 2

D1 D2 D3 D4

C1 C2 C3

C0

D1 D2 D3 D4

C1 C2 C3

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5
Current pair of clusters

Next possible pairs of
clusters, the better one
marked green

Figure 6.7: Illustration of Fast 2D Neighbors Finder Algorithm

58

Clearly this is not so simple for three dimensions. Due to the magnetic field, however, the
trajectory in y-direction is not even a straight line, while it is very well in z-direction. This
makes a straight line fit in z-direction more urgent than in y-direction. As a first fast variant,
the clusters are therefore sorted only according to their z direction, and the algorithm above
is applied as in the two-dimensional case. Naturally for the actual slope calculation the y-
and z-coordinates are used. Clearly it is not ensured that this algorithm will find the best
pair of clusters, in fact it is not even probable that it will. Fig. 6.9 shows the performance
of the algorithm. As it will be needed for comparison, the algorithm with shared memory
overflow is included, too.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

No Shared Memory Mixed Memory Shared Memory
with Overflow

10
20
30
40
50
60
70
80
90
100

N
ei

gh
bo

ur
s

Fi
nd

er
 T

im
e

[µ
s]

Tr
ac

ks
 fo

un
d

[%
]

Time

3509

2700

1770

Tracks

23984 23985 23863

Figure 6.8: Performance of Neighbors
Finder for Different Shared Memory Con-

figurations

 0

 500

 1000

 1500

 2000

 2500

 3000

Reference Fast (Memory Overflow)Fast (Linear Algorithm)

N
ei

gh
bo

ur
s

Fi
nd

er
 T

im
e

[µ
s]

2700

1727

2190

Figure 6.9: Performance of Neighbors
Finder Algorithms

Unfortunately, but understandably this algorithm misses a lot of tracks. Tests result in a
tracking efficiency3 of 50% or less, which is infeasible. Since the test algorithm producing
memory overflow is even faster than this naive linear implementation, but still delivers a com-
parably good efficiency, it renders the newly developed linear algorithm useless. It is highly
improbable that the algorithm can be improved to beat the efficiency of the overflow imple-
mentation. In addition, any improvement to the combinatorics would increase the complexity
and decrease the performance. The discussion shows, that the current implementation is not
as bad as initially assumed. Therefore, no further attempt to create a different algorithm
was started, but instead the existent algorithm was optimized.

There is one additional fact to consider. As stated above, the straight line fit in z direction
should theoretically be more important than for the y coordinate. Thus it is imaginable that
tracking efficiency could be improved by weighting the y- and z-slopes in the minimization.
This was attempted by Sergey Gorbunov already and it turned out that tracking efficiency
did not depend on this weights. Hence, for the remaining section, more optimizations to the
original Neighbors Finder algorithm will be discussed.

6.2.1.3 Dynamic Register Access

Using registers as temporary storage would require three registers per cluster, one to store the
cluster ID, one to store the slope in y-direction and one for the slope in z-direction. Storage
for 20 clusters hence would require 60 registers, using registers 0 to 19 for cluster indices, 20
to 39 for y-slopes and 40 to 59 for z-slopes. When initially filling the temporary storage a
loop is iterated writing to the ith (and (20 + i)th, (40 + i)th) register until no more clusters
are found in the hit-area. Now the index i is a variable itself, stored in a register. It is not
possible to use a register as index for an access to the register file. In other words: The ith

3Percentage of reference tracks in the Monte Carlo data found by the tracker.

59

register cannot be accessed dynamically. Instead, the index of the register to be accessed
must be known at compile time. There are two possibilities to realize a dynamic access:

Branching Dynamic register access can be emulated using a binary branching tree. For
every possible index a different instruction is needed in the code, and by branching according
to the desired index the correct instruction is chosen and executed. Of course this produces
much overhead and results in warp serializations.

Unrolling A loop with a fixed number of iterations can be unrolled4. In this way, no
branching is required. Naturally the overhead introduced hereby is even bigger.

Listings 6.10, 6.11 and 6.12 show examples in C++.�
f o r (i = 0 ; i < 4 ; i++)
{

r e g i s t e r [i] = FetchCluster (i) ;
}
� �

Listing 6.10: Real dynamic access

�
#pragma u n r o l l loop
f o r (i = 0 ; i < 4 ; i++)
{

r e g i s t e r [i] = FetchCluster (i) ;
}
� �

Listing 6.11: Access by unrolling�
f o r (i = 0 ; i < 4 ; i++) {

tmp = FetchCluster (i) ;
i f (i < 2) {

i f (i == 0) {
r e g i s t e r [0] = tmp ;

} e l s e {
r e g i s t e r [1] = tmp ;

}
} e l s e {

i f (i == 2) {
r e g i s t e r [2] = tmp ;

} e l s e {
r e g i s t e r [3] = tmp ;

}
}

}
� �
Listing 6.12: Access by branching

In theory, List. 6.11 differs from List. 6.12 in the following way: The unrolling variant will
unroll the loop and inline the FetchCluster function, which will be present four times. This
greatly increases the complexity. If branching is used, the function is only present ones, but
the binary tree increases the complexity.

Finally, out of these examples only List. 6.12 resulted in register usage for the temporary
memory by the compiler. The problem with the loop in List. 6.11 is that it cannot easily be
unrolled. This is due to the fact that, in contrast to the example presented here, the number
of clusters is not known ahead of time. Running the loop up to a maximum number and
branching out using a break statement does not work because the compiler will not unroll
such loops. Moreover, the compiler will always unroll the innermost loop first. But since

4Unrolling means the loop is replaced by n times the loop body, with the loop variable i replaced by the
fixed value for the ith iteration

60

all function calls are inlined, the compiler will attempt to unroll loops in the FetchCluster
function, which is difficult as those loops are more complex. The only possible solution here
is manual loop unrolling.

Both manual unrolling and branching were realized for the Neighbors Finder. However, both
turned out to perform worse than the shared memory implementation. In a final attempt
a mixed implementation was tested, storing clusters in shared memory, registers and local
memory (using branching for the register access). But again the shared memory only version
was faster. One reason for this might be the small number of registers left. The Neighbors
Finder in reference implementation uses 51 registers. When restricting the kernel to 64
registers (resulting in 256 threads), this leaves 13 registers for temporary storage, which is
sufficient for only 4 clusters.

Given that the amount of shared memory available will increase undoubtedly with the next
GPU generation, this approach was not pursued any further.

6.2.1.4 Shared Memory Data Types

The current implementation reads the cluster coordinates represented by short integers, cal-
culates the slopes represented by single precision floats and stores the result in temporary
memory. For a better memory utilization it is imaginable to store 16-bit short integer cluster
coordinates in shared memory instead of 32-bit floating point slopes. That would double the
capacity with the drawback that the slope would have to be calculated multiple times. This
would reflect the modern programming paradigm to rather recalculate expressions instead
of using lookup tables. An adequate version of the Neighbors Finder was implemented, but
was again slower than the original version. To understand the problems, it is necessary to
inspect the assembler code of both versions in Listings 6.13 and 6.14. (See Appendix A for
an introduction to CUDA assembler code)�
//Load c l u s t e r coo rd ina t e s
ld . g l o b a l . v2 . u16 {%r1 ,%r2 } , [%rd1] ;
cvt . rn . f32 . u32 %f1 , %r1 ;
cvt . rn . f32 . u32 %f2 , %r2 ;

. // Ca l cu la te the s l ope

// Store s l ope in shared memory
s t . shared . f32 [%rd2 +48] , %f3 ;
s t . shared . f32 [%rd2 +52] , %f4 ;

.

//Load s l ope from shared memory
ld . shared . f32 [%rd3 +48] , %f5
ld . shared . f32 [%rd3 +52] , %f6
� �
Listing 6.13: Disassembly for float storage

�
//Copy c l u s t e r coo rd ina t e s
// to shared memory
ld . g l o b a l . u32 %r1 , [%rd1] ;
s t . shared . u32 [%rd2] , %r1 ;

.

//Load coo rd ina t e s
// from shared memory
ld . shared . u32 %r2 , [%rd3] ;
s t . l o c a l . u32 [%rd4] , %r2 ;
ld . l o c a l . v2 . u16 {%r3 ,%r4 } , [%rd4]

. // Ca l cu la t e the s l ope
� �
Listing 6.14: Disassembly for short storage

The problem stems from the way in which the two short integers are read from shared memory.
The GPU has special instructions to read vectors of up to four entries from global memory.
Instead of using two short integer fetches from shared memory, the compiler copies the data

61

to local memory and uses a vector fetch. Obviously this causes a read-after-write delay to
the local memory, which is very slow even without that.

This is clearly a compiler problem. Using explicit bit shift operations to access the desired
parts of the 32-bit dword would be a solution. However, this issue might be solved with
new compiler versions and the changes would make the code more complex and reduce its
readability. For the moment the tracker sticks with the storage of floating point values.

6.2.2 Tracklet Constructor

A first canonical GPU version of the Tracklet Constructor processed the tracklets in parallel
in a way that a separate thread was started for every tracklet. Within one block only one
single row was processed at a time (block based row synchronicity). Threads processing
tracklets without clusters in the current row therefore had to wait for the remaining threads.
The first analysis will regard this naive implementation.

6.2.2.1 GPU Utilization

In the end the most critical design issue for the Tracklet Constructor turned out to be a good
overall GPU Utilization. Canonical implementations resulted in lots of warp serialization
and dead threads. For easy analysis of this issue, a tool to visualize the GPU utilization was
developed. The output for the first canonical implementation is shown in Fig. 6.15. For a
more comprehensive view, an augmented output is shown in Fig 6.16.

Figure 6.15: GPU Utilization during Tracklet Construction for Unsorted Start Hits

Figure 6.16: GPU Utilization during Tracklet Construction for Unsorted Start Hits

The GPU utilizations plots (Figures 6.15 and 6.16) show the different threads on the x-axis,
where each thread is represented by one pixel. The warps of 32 threads are separated by
white vertical lines. The y axis corresponds to iteration steps, where each step corresponds
to the treatment of one row. This can roughly be seen as the time axis. However, different
blocks do not even have to be executed in the same time. Since threads within one warp have
a common instruction decoder in between of two white lines the y-axis perfectly corresponds
to the time.

The diagram is created in the following way: A pixmap is allocated in GPU memory. Each
thread has a register counting the iteration steps. For each step the thread writes its current

62

task to the pixmap. The y-coordinate equals the counter while the x-coordinate can be
calculated from threadIdx, blockDim, and blockIdx. This procedure is minimal invasive, as the
register was not used before and the number of memory accesses is insignificant. Tracklet
Construction time with and without the visualization feature differ by less than 1%.

A particular tracklet is unlikely to pass through each row within one slice. It is more likely
it possesses clusters in a fairly consecutive sequence of rows, say from row n to row m, but
none outside that interval. Tracklets are called inactive outside the rows between n and m.

In the current version each tracklet is processed both up- and downwards through all rows,
regardless whether it is active or not. Therefore, in Fig. Figures 6.15, the y axis corresponds
directly to the row. (This will change when a scheduler is introduced later.)

The color codes represent different steps during track reconstruction. The color codes stand
for:

• Black: Thread Idling

• Blue: Track Fit [IV (a)]

• Green: Forward Extrapolation [IV (b)]

• Red: Backward Extrapolation[IV (c)]

In the first implementation, every thread processed a tracklet for the entire row interval.
Therefore, the starting point of the actual processing, indicated by the blue color, is different
for the threads.

Obviously black pixels in the diagram are not desirable. However, the interpretation is not
that easy. If all threads of one warp are idling, this means that none of the tracklets processed
by these threads is active. This does not lead to a problem since all threads will just skip
the row in common so no warp serialization will occur. The absolute worst case scenario
occurs when one single tracklet within one warp is active while the remaining 31 tracklets are
inactive. In that case 31 threads will branch and skip the row, hence waiting for the one single
thread processing the row. The inherent problem here is that tracklets have different lengths.
The best solution would be to sort tracklets by length, which is obviously not possible in
advance, since tracking must have happened prior to this.

The Start Hits Finder does not guarantee that the seeds are ordered by their start row.
Warp 4 in Fig. 6.16 contains threads with start hits in different rows. Threads with a high
numbered start row (start row of start hit) have to wait for the threads with low numbered
ones, until the latter processed their tracklets up to the high start row. This can be avoided
by sorting the start hits according to rows.

6.2.2.2 Start Hit Sorting

Simple Sorting As an advancement to the first naive implementation a new tracking step
was introduced between the Start Hits Finder and the Tracklet Constructor: The Start Hits
Sorter (This step cannot easily be integrated in the Start Hits Finder, as for efficient sorting all
start hits must be known in advance). The GPU Utilization for the improved implementation
is shown in Fig. 6.17.

It is obvious that the problem described above no longer occurs in Fig. 6.17. The performance
for both implementations is shown in Fig. 6.18.

63

Figure 6.17: GPU Utilization during Tracklet Construction for Sorted Start Hits

Advanced Sorting An inspection of the utilization plot 6.16 reveals that each tracklet is
only processed within every other row during the track fit stage (IV (a)). In fact, this is clear
from the algorithm, as the Neighbors Finder skips one row. As a result, as long as tracklets
are in this first stage, either tracklets with even start row or those with odd start rows are
processed, with the other threads idling. An advanced sorting algorithm was implemented
which accounted for this by grouping tracklets with odd and even start rows respectively. In
the end the Tracklet Constructor performance increased by only 1%, which was nullified by
the more complex Start Hits Sorter. Having no effect on total tracking time, this type of
sorting is not used anymore.

6.2.2.3 Shared Cache

In the extrapolation step the Tracklet Constructor performs a more or less random search in
global memory. An obvious solution is the introduction of a shared memory cache. Variant b)
from section 6.1.1 was used for this purpose. While threads 32 to 256 process the tracklets in
row n, threads 0 to 31 prefetch the cluster coordinates and grid content for row n+1. Due to
the limited shared memory, this is only possible for heavy-ion events with reduced centrality.

 0

 200

 400

 600

 800

 1000

No Sorting,

No Prefetching

With Sorting,

No Prefetching

No Sorting,

With Prefetching

With Sorting

and Prefetching

Ti
m

e
[m

s]

Pb-Pb

268 267 258 255

Central Pb-Pb890 878

Figure 6.18: Performance Comparison for Shared Memory Cache and Sorted Start Hits

Fig. 6.18 shows that the optimizations result in only a small speedup. Variants with and
without shared cache and sorting respectively are shown. For those without a shared cache
a 100% central event is included, too. The highest possible speed gain by a shared memory
cache can be determined in the following way: The algorithm was changed so that the worker
threads 32 to 255 idle while the cache threads 0 to 31 cache data for the next iteration and
vice versa. Using GPU internal counters the accumulated time required by the worker threads
is measured. In this way, the pure calculation time can be determined. Measurements by
Sergey Gorbunov showed that the accumulated calculation time does not depend on whether
the caching is done simultaneously or not. It can therefore be concluded that the caching
itself works optimal.

64

Regarding the shared memory cache, there is one factor yet unconsidered. Each block pro-
cesses a fixed amount of tracklets, so only a restricted amount of clusters belong to tracklets
handled by one block. With an increasing overall cluster count for more central events, the
size of the data to be transferred into the shared memory cache increases, while the number
of cluster coordinates actually accessed remains constant. This results from the fact that the
bin size of the grid scales with the number of clusters. Therefore, the shared memory cache
should perform better for small events, whereas the GPU tracker is developed for the biggest
events possible. For the time being, because of limited memory the shared memory cache
feature will not be used. In contrast to that the Start Hit Sorting feature is maintained. It
improves the performance only slightly but comes at zero penalty and will even be required
for upcoming improvements.

6.2.2.4 Scheduling

As a matter of fact Tracklet Constructor performance stands or falls with the GPU utilization.
Therefore, an implementation where most threads are dead waiting for the one processing
the longest tracklet is not acceptable. Moreover, in the first version every block acts on a
precisely defined set of tracklets. Thus it can happen that multiprocessors are idling until
other multiprocessors finished their remaining blocks. The only possible solution for this is
to drop the fixed assignment of tracklets to threads. Only the active tracklets should be
processed and redistributed among multiprocessors and threads.

With this final goal in mind, dynamic scheduling was integrated in the Tracklet Constructor
step by step. Since for the CPU Tracklet Constructor no rescheduling is needed it seems
better to maintain two different versions: one for CPU and one for GPU. The main Tracklet
Constructor algorithm (contained in the UpdateTracklet function) with the extrapolation and
track fit should still remain in shared source code and then be called by the two wrappers
for CPU and GPU. Since two versions have to be maintained anyway, the CPU code can
easily be optimized, too. Compared to the other steps I to III and V, the GPU adaptation
of the Tracklet Constructor produced more overhead because of the shared memory caching
and the row synchronous processing of tracklets within one block. Removing all this in a
specialized CPU version resulted in a speedup of about 5%.

As a first step towards integrating a scheduling algorithm into the Tracklet Constructor,
the execution configuration must be changed. Until now the number of blocks has been
proportional to the number of tracklets to be processed and the GPU internal scheduler has
distributed them among the multiprocessors. For the new configuration a fixed block count
equal to the amount of multiprocessors is desired. Then all blocks in the configuration should
run in parallel and can schedule the work by themselves. For the remaining scheduling section
a block corresponds exactly to one multiprocessor.

Naive Scheduling In a first naive implementation a configuration with 30 blocks is exe-
cuted, with 30 · 256 = 7680 threads. Scheduling is fixed in the way that thread i processes all
tracklets n with i ≡ n (mod 7680). This is clearly the simplest scheduling imaginable, but it
delivers a basis to implement scheduling algorithms. The tracking time increased by a factor
of 1.234 in comparison to the initial version (see Fig. 6.41).

Improved Scheduling As a first improved algorithm a tracklet pool is integrated. A
counter is initialized to zero. Every multiprocessor (or every block, precisely the first thread
in it) issues an atomic add instruction, increasing the counter by 256 (the number of threads

65

running on this multiprocessor). The instruction returns the counter value n before the
addition, after which thread i processes tracklet n + i (of course only as long as n + i is
smaller than the number of tracklets. Synchronization within the block is done using shared
memory). When all threads have finished their tracklet, the procedure is repeated until the
value returned by the counter exceeds the number of tracklets. Fig. 6.41 shows that this first
improved scheduling algorithm already performs faster than the initial implementation.

Three more optimizations can be applied to this algorithm. It turns out that a warp based row
synchronous processing of the tracklets performs better than no row synchronicity. (Block
based row synchronicity would be required if a shared row data cache should be reintegrated
at a later stage.) Furthermore, the initial tracklet for each thread does not have to be
determined by the scheduling algorithm, but a thread i in block b can start with tracklet
256 · b + i, with the counter initialized to 7, 680. In this way, each thread has a fixed start
tracklet, and only the remaining tracklets are scheduled. Fig. 6.19 shows a simplified example
with reduced multiprocessor and tracklet count. Finally, when including Start Hit Sorting as
described in section 6.2.2.2 the tracking time is reduced to only 85.7% of the initial tracking
time with GPU integrated scheduling.

Multiprocessor 1

Processing
Tracklets 0 - 255

Processing
Tracklets 512 - 767

Multiprocessor 2

Processing
Tracklets 256 - 511

Processing
Tracklets 768 - 1023

Processing
Tracklets 1024 - 1279

Processing
Tracklets 1280 - 1535

Processing
Tracklets 1536 - 1791

Counter

512

768

1024

1280

1536

1792

T
ra

kl
e

t
P

o
l

c
o

Figure 6.19: Illustration of Tracklet Pool Principle

There are clearly still threads idle after they have finished their tracklet before other threads
on the same multiprocessor. This would not happen if every thread would issue its own
atomic add instruction, but then the warps would serialize frequently. Supplementary atomic
add instructions are in principle slow, and this variant would require 256 times as many of
them. As a second variant every warp could issue an atomic add. This would preclude warp
serializations, but then another problem arises: The one thread within the warp that accessed
the tracklet pool must share the information with other threads. This could be done using
shared memory. However, to ensure consistency a syncthread instruction must be issued,
but that would sync the whole block. An algorithm following this principle will be presented
in section 6.2.2.13.

6.2.2.5 Dynamic Scheduling

Until now, the problem with dead threads waiting for other threads to finish a tracklet has
not even been approached. The only possibility to accomplish this is to interrupt the row
synchronous processing in between. Tracklets whose extrapolation is finished are replaced by

66

new ones. In this way, dead threads do not have to wait for the last tracklet, but only for
the next interrupt. The procedure will now be described in detail.

The rows are split in rowblocks of constant size. The former tracklet pool is divided into
multiple pools, precisely two pools per rowblock where one pool stores tracklets in the upward
extrapolation stage and the second one those in the downward stage. A temporary storage
space in global memory is reserved, containing an array that will store track parameters for
each tracklet. An algorithm step for one block works as follows:

First a rowblock is chosen and it is decided whether to extrapolate up or downwards. Thread
0 fetches 256 tracklets n to n + 255 from the corresponding tracklet pool. Threads are syn-
chronized via shared memory so thread i processes tracklet n+ i. Now each thread initializes
its local track parameters. If the tracklet was processed within another rowblock before,
track parameters are copied from global memory, otherwise they are initialized with default
values. Then the Tracklet Constructor algorithm iterates over all rows within that rowblock.
Tracklets that are still active afterwards must be inserted into the following rowblock and
the track parameters stored to global memory. If the tracklet went inactive, the next step
depends on whether it was extrapolated up or downwards. In the first case, it must still
be extrapolated downwards and is inserted in the appropriate pool, in the second case the
tracklet has been completely processed and can thus be stored if it fulfills the criteria in
section 2.3.4. Effects of incoherent memory will be discussed later in section 6.2.2.7.

The criteria for which rowblock to choose are the following. During the Start Hit Sorting
up to 256 start tracklets, starting within the same rowblock are assigned to each block. In
this way, as for the improved scheduler above, for the first iteration no scheduling is needed.
When a block has finished its rowblock, it tries to fetch more tracklets from the pool of the
rowblock it just finished. If the pool is empty it takes the next rowblock. After the last pool
for upward extrapolation is empty, it starts with downwards extrapolation from the same
block, then with the previous block and so on (since downward extrapolation processes the
rows in the other way around).

Several points that led to the algorithm being implemented in the above described way have
to be considered:

• Implementing multiple thread pools reduces the load on them.

• The pools are further relieved since only one thread per multiprocessor accesses the
pool while others are synchronized via shared memory.

• The global memory is not coherent leading to schedule collisions (see 6.2.2.7).

• It is preferable to stay in the same rowblock first, in this way the next block will be
filled better, reducing the possibility that less then 256 tracklets are fetched from one
block.

• The optimal rowblock size is a parameter which has to be experimentally determined
(see Fig. 6.22). Clearly rowblock sizes dividing the number of rows are optimal, other-
wise the last rowblock would be of different size.

Fig. 6.20 shows an illustration of the dynamic scheduler. There is one suboptimal point in
the current implementation. It regularly happens that a block stores tracklets to a pool, and
immediately rereads them. In the future this should be avoided. However, it should be noted
that in reality more tracklets are processed than in Fig. 6.20, hence this does not happen so
often.

67

Multiprocessor 1

Processing
Tracklets 0,1,2,3

(Rows 1-80, Forward)

Processing
Tracklets 8,9

(Rows 1-80, Forward)

Multiprocessor 2

Processing
Tracklets 10,11,1,3

(Rows 81-160, Forward)

Processing
Tracklets 5,6,9

(Rows 81-160, Forward)

Processing
Tracklets 8, 10,1,3

(Rows 81-168, Backward)

Processing
Tracklets 0, 8, 3

(Rows 1-80, Backward)

Pool D

Empty

R
o

w
s
 1

 -
 8

0
,
B

a
ck

w
a

rd
 S

ta
e

g

Pool C

Empty

o
w

s
 8

1
 -

 1
6

0
,
B

a
ck

w
a

d
 S

t
g

e
R

r
a

Pool B

10,11

s
-

6
0

,
F

w
d

a
g

e
R

o
w

8
1

 1

o

r
a

r
 S

t

Pool A

8,9
o

s

-
0

,
F

w
d

a

g
e

R
w

1

 8

o
r

a
r

S
t

Processing
Tracklets 4,5,6,7

(Rows 1-80, Forward)

Empty

10,11,1,3

5,6

Empty

8 0

Empty

Empty
Processing

Tracklets 5,6,9
(Rows 81-160, Forward)

Empty

a)
b)

c)

d)

e)
f)

g)
h)

a) Tracklets 0 stored to pool D, tracklets 1,3 stored to pool B, tracklet 2 dropped, tracklets 8,9 read from pool A
b) Tracklets 5,6 stored to pool B, tracklets 4,7 dropped, no tracklets found in pool A, tracklets 10,11,1,3 read from pool B
c) Tracklet 8 stored to pool C, tracklet 9 stored to pool B, no tracklets found in pool A, tracklets 5,6,9 read from pool B
d) Tracklet 10,1,3 stored to pool C, tracklet 11 dropped, no tracklets found in pool B, tracklet 8,10,1,3 read from pool C
e) Tracklets 8,3 stored to pool D, tracklets 10,1 dropped, no tracklets found in pool C, tracklets 0,8,3 read from pool D
f) Tracklets 5,6,9 stored to pool C, no tracklets in pool B, tracklets 5,6,9 read from pool C
g) Tracklets 5,6,9 dropped, no tracklets found in pool C, no tracklets found in pool D
h) Tracklets 0,8,3 dropped, no tracklets found in pool D

Figure 6.20: Illustration of Dynamic Scheduling Behavior

6.2.2.6 Dynamic Scheduling Analysis

Fig. 6.21 shows the GPU utilization using the Dynamic Scheduling algorithm with the optimal
rowblock size which turned out to be 40. Clearly, on the one hand, the GPU utilization has
increased as compared to Fig. 6.17. On the other hand it is obvious that during most of the
time only a reduced number of warps within one multiprocessor are active. This results from
the fact that simply not enough tracklets are available for scheduling.

Figure 6.21: GPU Utilization during Tracklet Construction with Dynamic Scheduling

The problem that too few tracklets are available will now be addressed in detail. A simple
way to extrapolate the GPU performance at an even better GPU utilization, is to reduce the
number of blocks in the configuration. This reduces the number of multiprocessors used on
the GPU. Hence the number of tracklets per multiprocessor increases. The optimal rowblock
size of 40 is not necessarily optimal for lower GPU utilizations. Fig. 6.22 shows tracking
times for reduced block counts and various rowblock sizes. In this way, the optimal rowblock
parameter is found for each block count. Fig. 6.23 shows the results for full GPU utilization
in more detail.

Fig. 6.24 shows a comparison of the dynamic and non-dynamic schedulers employing different
block counts. As expected, the speedup of the dynamic scheduler is higher for lower block
counts.

68

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 4 6 8 10 12 16 20 32 40 48 64 80

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

Rowblock Size

30 Blocks
15 Blocks
10 Blocks
7 Blocks
5 Blocks
4 Blocks
3 Blocks
2 Blocks

Figure 6.22: Tracklet Constructor Performance for Different Rowblock and Block Configura-
tions

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

Rowblock Size

Figure 6.23: Tracklet Constructor Perfor-
mance for Different Rowblock Sizes and

Full GPU Utilization

 0

 50000

 100000

 150000

 5 10 20 50 100

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

GPU Block Utilization [%]

Fixed Schedule
Dynamic Schedule

Figure 6.24: Performance of Dynamic
Scheduler in Contrast to Fixed Scheduler

In the next step, the optimal block count or the optimal GPU block utilization respectively is
determined. Theoretically the tracker performance should linearly scale with the number of
blocks used. As one can see in Fig. 6.25, the performance rises almost linearly up to a GPU
utilization of about 25%. As a consequence, the summarized execution time for all active
blocks remain almost constant up to this point (see Fig. 6.26). By using only 25% of the
GPU already 50% of the maximum performance can be achieved. The saturation effect can
be explained by examining Fig. 6.21: After the first interrupt, many multiprocessors contain
only up to two warps with active tracklets. Fig. 6.27 shows the same plot with only 25%
of the GPU utilized. Obviously, the utilization of the reduced number of multiprocessors
is greatly improved. Naturally there are other aspects, such as limited memory bandwidth,
which contribute to the saturation that is observed.

As was noticed, up to 25% of the GPU can be well utilized by the given number of tracklets.
Neglecting other effects as bounded memory bandwidth, an increase of the thread count by
a factor of four should result in a good overall GPU utilization.

69

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

 0 20 40 60 80 100

Tr
ac

kl
et

 C
on

st
ru

ct
or

 P
er

fo
rm

an
ce

 in
C

om
pa

ris
on

 to
 F

ul
l G

PU
 U

til
iz

at
io

n
[%

]

GPU Block Utilization [%]

Full GPU Utilization Time / Time [%]

Figure 6.25: Relative Tracklet Construc-
tor Performance for Different Multiproces-

sor Counts

 0

 50000

 100000

 150000

 200000

 250000

 5 10 20 50 100

Ac
cu

m
ul

at
ed

 T
ra

ck
le

t C
on

st
ru

ct
or

 T
im

e
[µ

s]

GPU Block Utilization [%]

Time * Blocks

Figure 6.26: Accumulated Tracklet Con-
structor Time of All Multiprocessors

Figure 6.27: GPU Utilization during Tracklet Construction with Dynamic Scheduling using
only 25% of the GPU multiprocessors

This enables several opportunities to proceed. Either multiple threads must process the
same tracklet. For example, the search for clusters near the extrapolation point could be
parallelized. Unfortunately, this would result in far too much parallelization overhead, when
realized within the CUDA framework. This procedure would be better suited for parallelism
of finer granularity, such as explicit vectorization, and, in fact, such a realization can be found
in [Kre]. Another possibility to increase the number of threads virtually would be to run the
up- and downward extrapolations in parallel doubling the active thread count. Here it would
be difficult to merge the two sets of track parameters afterwards. Additionally this would
result in a total increase of extrapolation steps, since during upward extrapolation tracklets
with a too high χ2-value of the covariance matrix can be dropped and not extrapolated
downwards in the first place. In the end this could only result in a factor of two, not four
anyway.

The last possibility, which is easy to implement, is the processing of multiple slices in par-
allel. According to the measurements four slices should be enough. Having analyzed the
performance and performance bottlenecks for the dynamic scheduler, before proceeding to a
multi-slice implementation, the problems resulting from the incoherent global memory will
be examined.

6.2.2.7 Scheduling Collisions

A scheduling error provoked by memory inconsistency due to the incoherent memory design
will be called a scheduling collision. For creating a dynamic tracklet pool the question aris-
ing is: How to maintain a list, with only incoherent memory available. In a usual thread-safe
list, the operation to add items, would at first increase a counter using an atomic operation
and then write the items to a buffer. The position inside the buffer is defined by the initial
counter value returned by the atomic operation. Up to this point, this is not thread-safe,
since another thread could attempt to access the items in the buffer before they have been

70

completely stored.5 For a thread-safe implementation, the new items are marked invalid un-
til they are completely stored in the buffer.6 For fetching the items from the list a second
counter is maintained, pointing at the next element in the buffer. To read from the list, a
thread has to increase this read counter using an atomic add instruction.

Soft Collisions However, for incoherent memory the above algorithm for a thread save
list still does not work correctly. It requires the memory to be written in the order it issued
the requests. This is not ensured on the GPU. An error occurs when the memory operation
marking the data as valid finishes prior to the operation actually storing the data. A thinkable
solution is to read the data from memory first and check whether it is valid before unlocking
it. However this does not work for the GPU. Even if one thread already reads the new data
it is possible that another thread would still read the old data. Memory consistency between
different blocks is never ensured until the kernel has finished. The problem just described
is called a soft collision. Fig. 6.28 shows the principle of a thread-safe list, including the
example just mentioned.

Memory

Counter

DATABuffer

Valid Yes No

C

Processor

Issue atomic add by n

Atomic add returned C

XXXXXXXXXXX...

Counter

DATABuffer

Valid Yes No

C + n

XXXXX...XXXXXX
No

Counter

DATABuffer

Valid Yes Yes

C + n

XXXXX...XXXXXX
No

Counter

DATABuffer

Valid Yes Yes

C + n

XXXXX...Data
No

Write data at address C to C + n

Mark data valid

Corrupt Data is
marked valid

Figure 6.28: Thread-safe List not Working with Incoherent Memory

To account for the incoherent memory the algorithm is altered in the following way: The
buffer is initialized with a value that will never be stored within it, in the tracker case −1.
Every position in the buffer can only be used once.7 No extra flag for valid and invalid data
is needed. Instead, data in the buffer is valid as soon as it does not contain a −1 dword. A
thread fetching tracklets from the pool will check the buffer data for −1 values, and keeps
polling the buffer until no such value is detected anymore. In this way, soft collisions can be
prevented.

Hard Collisions The solution presented above made the scheduler stable in most cases. In
theory collisions should be precluded completely, but because of the GPU design they are still
possible. The problem is that there is no guarantee, when the −1 dword marking data invalid
will be overwritten by the correct content. A case can occur, when the polling thread keeps
reading −1 values until the kernel is terminated by the driver after a timeout of about one

5Flipping the counter increase and the store operation would not work either. In that case a problem would
arise if two threads would try to simultaneously add items resulting in a collision as both would write to the
same location.

6Marking items valid can either be realized by another counter, or by mutual exclusion.
7Lists are usually implemented using ring buffers, which is impossible here.

71

second.8 Such an event is called a hard collision. The occurrence of this phenomenon could
be greatly relieved by introducing wait cycles for the thread polling between the attempts. In
doing so the load of the corresponding memory address is greatly reduced, yet, hard collisions
cannot be completely excluded.

To ensure that the kernel is not terminated because of the timeout, the number of attempts is
limited, and 30 was determined to be a good limit. Afterwards the thread will start fetching
other tracklets, whereby the tracklets that could not be retrieved from the buffer are lost.
Experiments demonstrated that hard collisions regularly occur for a sequential memory area
of 10 to 30 values simultaneously. It is questionable whether it can be accepted to loose
up to 30 tracklets. Since this only affects parts located in one slice of the total track, the
track itself should still be found in the majority of cases. Nonetheless, the handling chosen
for hard scheduling collisions is to simply reinitialize and rerun the Tracklet Constructor.
An implementation in which only the tracklets lost during the collision are processed is
imaginable and would clearly be faster. But since hard collisions are very rare this is not
done for the time being. To provide some numbers: In a series of 48550 runs (36 slices each)
226 collisions occurred. Therefore, the probability for a hard collision during a full tracking
run is (0.47± 0.03) %. See 6.29 for an illustration of the handling of scheduling collisions.

Memory

Write pos.

Buffer

C
Processor 1

Issue atomic add by n

Atomic add returned C Write pos.

Buffer

C + n

Write pos.

Buffer

C + n

Write pos.

Buffer

C + n

Write data at address C to C + n

Processor 2

Issue atomic add by m to Read pos.

Atomic add returned C

Read data at address C to C + m

Reread data at address C + 1

-1-1 -1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1

-1 -1-1-1-1

-1-1-1-1

a b c

a b c

a b c

a b c

d f g h

d f g he

Read pos. C

Read pos. C

Read pos. C

Read pos. C Data read at address C + 1 is -1

Figure 6.29: Schedule Collision Handling

Data Inconsistencies Obviously not only the scheduler suffers from the incoherent mem-
ory. One other particular problem that came up during the tests is the following: In the
initial fitting phase of the Tracklet Constructor (IV (a)) every other row is skipped. In the
array storing the indices of the clusters assigned to the tracklet for each row, every second
index in the seed’s interval must be initialized to −1 (no cluster). Afterwards during back-
ward extrapolation (IV (c)) the tracker might find clusters in these rows, and overwrite the
−1 with the correct cluster index. Now it might happen that the memory is written in the
order opposed to the sequence, the writes were issued. In that case the correct cluster index
would be overwritten by −1.

The Tracklet Constructor writes a −1 in the extrapolation phase when no cluster is found,
which could lead to the assumption that the preinitialization is not necessary at all. Unfortu-
nately, this is wrong, as the extrapolation might stop before it wrote all the −1 values, when
the χ2-value of the covariance matrix rose too high. The algorithm was therefore altered to
respect this GPU behavior.

8This does not implicate a bug in the NVIDIA memory controller but is in accordance with the specifications
stating that memory consistency is ensured only after the kernel is finished. And in fact, in situations where
a kernel terminated because of the timeout, reading the corresponding memory address in the next kernel
results in the correct data.

72

There is one other part in the algorithm which could be influenced by inconsistent memory.
The track parameters are written to and reread from global memory by the scheduler. Un-
fortunately, there is no way to circumvent the problem, except for the variant explained in
section 6.2.2.10, which was found not to deliver the estimated performance. In the end the
tracking quality analysis in section 9.1 shows that the final tracking results are obviously not
influenced that much, if at all. One possibility for the future would be a check similar to
the one used for the tracklet pool. However, this is not implemented for the time being as
experiments show that the tracker is in fact working as is.

6.2.2.8 Multi-Slice Scheduling

The dynamic scheduler can easily be extended to support multiple slices in parallel. More
tracklet pools for all the slices simply have to be added. The number of slices is restricted
only by the available memory.

As stated in 4.2.4 the constant row data requires about 13 kB per slice, giving a limit of four
slices for 64 kB of constant memory available. When storing constant row data in global
memory more concurrent slices are possible. This course of action is called “global row
data”. An analysis of the performance impact, when the constant cache is not available for
row data, is done in section 6.2.2.12 later.

Obviously concurrent slice counts dividing the total slice count should be given preference,
as long as slices from different events are not mixed up. Otherwise when processing 11 slices
in parallel for example, a full tracking run would process three times 11 slices and one time
3 slices only. Figures 6.30 and 6.31 show GPU utilization for 4 and 9 slices. One can see
that the overall utilization has greatly improved. Still, in some places of the diagram inactive
warps appear. This happens, when a tracklet pool contains less than 256 tracklets.

Figure 6.30: GPU Utilization during Stage IV with Dynamic Scheduling of 4 Slices

Figure 6.31: GPU Utilization during Stage IV with Dynamic Scheduling of 9 Slices
(Using Global Row Data)

73

6.2.2.9 Start Hit Filtering

When looking closely at the utilization plots, it becomes apparent that many tracklets are
dropped directly after a track fit stage over 3 clusters. This follows from the Tracklet Con-
structor criterion to demand a seed of at least 4 clusters.

A filter was integrated in the Start Hits Finder, dropping seeds with less than 4 clusters
immediately. This decreased the number of tracklets significantly, speeding up the Track-
let Constructor and Tracklet Selector. Even though the Start Hits Finder itself gets more
complex, it performs better with the filter active, since it has to store fewer start hits. See
Fig. 6.32 for a comparison and Fig. 6.33 for the resulting GPU utilization.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Number
of Seeds

Start Hits
Finder

Tracklet
Constructor

Tracklet
Selector

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Se
ed

s

Ti
m

e
[µ

s]

All Seeds15368

167

5592

2726

Filtered Seeds

7711

137

4840

2578

Figure 6.32: Results of Start Hit Filtering

Figure 6.33: GPU Utilization during Tracklet Construction with Dynamic Multi-Slice
Scheduling and Filtered Start Hits

6.2.2.10 Other Dynamic Scheduling Variants

Several variants and parameters of the scheduling algorithm are conceivable. Two attempts
are presented here.

Fixed or Dynamic Slice Using the multi-slice scheduler it is possible to fix every multi-
processor to a particular slice or to give the multiprocessors freedom to fetch tracklets from
any slice. The first variant reduces the load of the tracklet pools, while the latter delivers a
better load balance. Figure 6.34 shows a clear advantage for the second one.

74

Host Synched Scheduling To exclude completely the possibility of scheduling collisions,
host synchronization points can be used. After a kernel execution is finished, the global
memory is in a coherent state. An implementation was realized, in which the Tracklet Con-
structor kernel stopped after storing the tracklets to the pools. Afterwards the kernel must
be called again, reading the tracklets from the pools which are now in a coherent state. This
is repeated until all pools are empty. As illustrated in Fig. 6.35 the host synchronization
generates an unacceptable delay, and for that reason only device synchronized scheduling is
used.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

Fixed Slice Dynamic Slice

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

5264

4411

Figure 6.34: Performance for Fixed and
Dynamic Slice Scheduling

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Sync by Global Memory Sync by Host

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

1 Slice

9505

14120
4 Slices

6950

9778

Figure 6.35: Comparison of Host- and
Device-Synched Scheduling

6.2.2.11 Dynamic Scheduling Performance Analysis

Figures 6.36 and 6.37 show the initial and final GPU utilization for direct comparison. In
these figures the full Tracklet Constructor run is included, while the previous figures were
restricted to only a part of the Tracklet Constructor run for easier inspection.

Figure 6.36: Initial GPU Utilization

Figure 6.37: Best GPU Utilization

To evaluate how well the GPU is utilized, the measurement from Fig. 6.25 is repeated.
Fig. 6.38 shows the Performance of both scheduling algorithms when using only a restricted
number of multiprocessors normalized to the maximum performance. Contrary to Fig. 6.25
the performance of the multislice scheduler still scales well for a GPU utilization above 25%.
Fig. 6.38 also illustrates, that when using only 25% of the GPU, or even less, the multi-slice
scheduler is even slightly slower because of the increased complexity.

75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 20 40 60 80 100

Tr
ac

kl
et

 C
on

st
ru

ct
or

 P
er

fo
rm

an
ce

 in
C

om
pa

ris
on

 to
 F

ul
l G

PU
 U

til
iz

at
io

n
[%

]

GPU Block Utilization [%]

Old Scheduler normalized to Old Scheduler Maximum Performance
Dynamic Scheduler normalized to Dynamic Scheduler Maximum Performance

Old Scheduler normalized to Dynamic Scheduler Maximum Performance

Figure 6.38: Relative Tracklet Constructor Performance for Different Multiprocessor Counts

Fig. 6.39 shows the efficiency of the scheduler, which is the average percentage of active
threads. Efficiency rose from a poor 19% to 62%.

A timebin is defined as one pixel in the GPU utilization plot. Clearly the number of timebins
does not directly reflect the performance, since warps can skip rows in common, resulting in
many timebins but hardly long delays. Still, more timebins lead to more overhead. Fig. 6.40
shows that the number of timebins could be tremendously reduced.9

Finally Fig. 6.41 shows a comparison of all the scheduling algorithms presented.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Unsorted

Sorted
1 Slice Dynamic

4 Slices Dynamic

9 Slices Dynamic

9 Slices Dynamic

Filtered Start Hits

[%
]

Idle Timebins
Working Timebins / Efficiency

Figure 6.39: Efficiency of Scheduling Vari-
ants

 0
 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

Unsorted

Sorted
1 Slice Dynamic

4 Slices Dynamic

9 Slices Dynamic

9 Slices Dynamic

Filtered Start Hits

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

eb
in

s

Figure 6.40: Timebins used by Scheduling
Variants

9The number of timebins for the multi-slice variants is higher, since the plot shows the count for one
Tracklet Constructor kernel. To get a comparable value it must be divided by the slice count.

76

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

GPU Internal Scheduler

Fixed Scheduler

Improved Scheduler

Improved Scheduler

with Sorting

Dynamic Scheduler

Dynamic Scheduler

with Multislice

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s] 13578

16759

12290
11643

7020

5282

Figure 6.41: Comparison of Scheduling Algorithms

6.2.2.12 Dynamic Scheduling with Caching

Having created a new Tracklet Constructor wrapper with a dynamic scheduling algorithm, a
second attempt was started to implement a shared memory cache. A shared cache is expected
to save a constant period of time, but not (to save) a relative factor. The number of memory
accesses should not have changed with the integration of the scheduling. Hence the relative
effect should now be larger, since the total Tracklet Constructor time has shortened. The
problem with the shared memory limitation remains, but shall be ignored for now.

One additional step needed to implement the shared cache is the integration of synchroniza-
tion points between the rows for all threads in one block. Up until now only the threads
within one warp were forced to process identical rows which is now extended to the entire
block (block based row synchronicity instead of warp based). To test the shared cache on
the most advanced implementation yet, the global row data variant will be used allowing for
more than 4 slices.

Adding the shared memory cache increased the complexity of the algorithm forcing the com-
piler to extend the local memory usage by a factor of 2. For comparison also benchmarks
with 128 registers but hence only 128 threads are included, as no local memory is required
then. Clearly this has a negative effect, since a fixed set of 32 threads is reserved for filling
the cache, leaving only three fourth of the threads available for tracking.

Fig. 6.42 shows the Tracklet Constructor performance for the additional steps just introduced,
and for the version with shared memory cache. Finally, it becomes clear that a shared memory
cache will not bring any benefit on the current hardware. For 64 registers the new version is
significantly slower and still for 128 registers, the cached and non-cached (with all features
required for caching enabled) versions are almost on a par.

77

 0

 2000

 4000

 6000

 8000

 10000

Reference

With Sync Points

Extern Row Data

With Sync Points,

Extern Row Data

With Sync Points,

Extern Row Data,

Prefetching

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s] 64 Registers

5294

5843
5656

6269

7218

128 Registers

6386

6814

8600
8588

Figure 6.42: Performance of Tracklet Con-
structor using Scheduling and Caching

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

Slices

64 Registers / Constand Row Data
64 Registers / Extern Row Data
64 Registers / With Prefetching

128 Registers / With Prefetching

Figure 6.43: Performance for Scheduling
and Caching for Different Multi-Slice Con-

figurations

Fig. 6.43 shows the performance for different slice counts. As predicted, a slice count of 4
seems optimal. The constant row data version is steadily faster than the global row data
version. Additionally the latter one is not accelerated any further when exceeding 4 slices.
So at the current point, using global row data does not make sense.

6.2.2.13 Simple Scheduling

It is clear now that no shared memory cache will be employed. This gives freedom to change
the algorithm and especially to think about row synchronicity again. In section 6.2.2.4 it
was already noted that it might be suboptimal to access the tracklet pool block-wise since
threads within one block still have to wait for the last one or the next interrupt. A simplified
scheduling algorithm without row synchronicity and rowblocks is conceivable as follows.

• All threads are assigned a start tracklet and process the first row for that tracklet (the
start row might and will be different among the threads)

• Tracklet Construction is iterated row by row until a tracklet becomes inactive.

• The warp is serialized into two branches where threads with an active tracklet will just
wait for the moment.

• All threads with inactive tracklets will access the thread pool and fetch a new tracklet
(Only one thread per multiprocessor will do the actual access, while the other threads
are synchronized via shared memory).

• Warp serialization ends and the threads process the next row.

This scheduling scheme has one characteristic that requires an adaptation of the Tracklet
Constructor algorithm itself. The threads will access different rows and can extrapolate up
and downwards within one warp. It has to be ensured that internally all these parameters
will be handled just by pointers to the correct data, but never by branching.

The first simple scheduler resulted in a disillusioning performance (see Constant Row Data
performance in Fig. 6.44). The constant memory cache turned out to be unable to handle
the simultaneous access to different memory locations when threads were accessing different
rows. With the decision not to use a shared memory cache in the former sense, almost 16 kB
of shared memory are available, enough to store the 13 kB of row data. The simple scheduler
was accelerated enormously using the new cache, whereas the former dynamic scheduler’s

78

performance remained unchanged. The dynamic scheduler is faster than the simple scheduler
for every row data configuration, so the new approach was dropped. Nevertheless, the result
shows the possibility of moving the row data from constant to shared memory without any
impact on performance. This makes it possible to use the multi-slice scheduler with more than
four slices. This might sound unreasonable, as four slices were found out to be the optimal
parameter. However, this number is related to the amount of tracklets. All benchmarks
were done using absolute worst case simulation setting. Therefore, it is probable that the
tracklet count will be less in the real experiment, and thus increasing this number is desirable.
Another reason for an increased slice count will appear in section 6.3.3.

Finally, it should be noted that the global row data variant is tremendously faster than the
constant row data version when using the simple scheduler. Obviously in this constellation
the cache slows the algorithm down. The only possible reason seems to be that the constant
memory cache in the current hardware is incapable of handling simultaneous random access
over the entire cached area.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

Shared Row Data Global Row Data Constant Row Data

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

Simple Scheduler

9991 11355

50513Dynamic Scheduler

7524 8038 7504

Figure 6.44: Performance of Simple Sched-
uler using Different Storage Types

 0

 2000

 4000

 6000

 8000

 0 2 4 6 8 10

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

Slices

Constant Row Data
Cached Row Data

Figure 6.45: Performance of Dynamic
Scheduler Using Constant Row Data Cache

Fig. 6.45 shows that performance of the constant row data and shared row data version is equal
for up to four slices, but again the algorithm does not profit from more slices. Nonetheless,
the dynamic multi-slice scheduler with shared row data is both the fastest and most flexible
version. Therefore, this the preferred configuration for the Tracklet Constructor.

The changes to the shared memory cache shall be summarized once more: Within the first
shared cache, stored cluster coordinates for one row were stored. The cache had to be updated
for every row that was processed. The new shared row cache only stores row parameters and
pointers to row data, but not the data itself. It must only be updated if a different slice is
processed.

One last aspect of the cache still has to be addressed:

Shared Memory Cache Size The dynamic scheduler always processes one rowblock at the
same time, and might even jump to another slice afterwards. This opens up the opportunity
to cache parameters and pointers for rows in the current rowblock only instead of the entire
slice. This reduces the time required to perform the caching itself. However, for the final
storage of the tracklets row parameters for all rows are required. Hence the reduced cache
could not be used during the storage but global memory would have to be accessed instead.
Fig. 6.46 shows that storing the entire row parameters for one slice is preferable.

79

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

All Rows Row Block Only

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

4462 4534

Figure 6.46: Analysis of Shared Cache Size

6.2.3 Tracklet Selector

In a comparison of the three most time consuming tracking steps the Tracklet Selector seems
to be the most insignificant one to optimize. It becomes even less relevant when considering
some aspects presented in section 6.3.3.5. Nonetheless, some optimization approaches will be
described briefly.

Shared Memory For the Neighbors Finder and the Tracklet Constructor, the shared mem-
ory proved to be a more or less valuable tool. The Tracklet Selector runs through the clusters
assigned to the tracklets, and, if they pass some checks, forms a track out of them. These
clusters, or at least some of them, should be stored temporarily in a fast memory, so when
actually creating the track they do not have to be reread from global memory. For the same
reason as for the Neighbors Finder, i.e., dynamic array access, registers cannot be used as
storage. Thus the shared memory is reserved for this, which comes at no cost, as it is not
used otherwise. As Fig. 6.47 shows, this results in a small improvement.

Multiple Slices The Tracklet Selector suffers from the same problems as the Tracklet
Constructor. The number of tracklets is small anyway, and those present strongly vary in
length. At least the first issue can be accounted for by processing multiple slices in parallel.
Fig. 6.48 shows how the performance scales with the slice count. It must be noted that slice
counts dividing 36 are favored, as otherwise the last run processes a reduced number of slices
only. This explains why in particular 7 and 8 parallel slices perform suboptimally. Again this
could be solved by intermixing slices of different events.

 1250

 1260

 1270

 1280

 1290

 1300

No Cache Shared Cache

Tr
ac

kl
et

 S
el

ec
to

r T
im

e
[µ

s]

1292.1

1278.5

Figure 6.47: Speedup for Shared Memory
Cluster Cache

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 0 2 4 6 8 10

Tr
ac

kl
et

 S
el

ec
to

r T
im

e
[µ

s]

Slices

Figure 6.48: Performance of Multi-Slice
Tracklet Selector

80

6.3 Overall Optimizations

The optimizations presented in this section do not apply to a single tracking step but rather
to the entire GPU tracker. Still, benchmarks may show the performance of single steps, when
the differences were most significant there.

6.3.1 Memory Optimizations

6.3.1.1 Memory Layout

Various optimizations to the memory layout were done but presenting them to the full extent
would be beyond the scope of this document. Most changes attacked data initialization steps
which were either unnecessary, done multiple times, or could be done concurrently during the
algorithm. In addition, by the removal of some obsolete content in the output data structure,
memory as well as both memory and network bandwidth could be economized on. The boost
of the CPU tracker performance resulted mainly from these changes. However, they are in
no way GPU specific and therefore do not belong here. Instead, two particular changes will
be illustrated as an example to show that the best implementation for GPU and CPU can
differ.

Row Hits In the original tracker code the data structure for the tracklets contained an
array of cluster indices where the ith entry was the index of the cluster in the ith row assigned
to the tracklet. For the CPU implementation this is clearly the best way to store the clusters.
When processing a tracklet row by row, the indices are needed one after another, which is
perfectly handled by the CPU cache. This is different for the GPU. There, 16 threads of
one half warp will access the cluster index for a common row simultaneously (because of row
synchronicity). Using the traditional layout (internal cluster indices), the addresses will be
distributed with literally no two belonging to one 128 byte segment. In fact, the distance
in memory is the size of the tracklet data structure. Therefore, the GPU cannot coalesce
the access at all. It would thus be better to store all indices for one row and adjacent
tracklets externally together, but not within the data structure for the tracklet (external
cluster indices).

Fig. 6.49 shows both variants for the GPU and CPU version. As predicted, the new version
performs better on the GPU, whereas the traditional one runs faster on a CPU. To achieve
maximum performance on both platforms, two versions are maintained using conditional
compilation directives.

Cluster Coordinates For the cluster coordinates, the situation is different. The x-coordinates
are already defined by the rows, hence only y- and z-coordinates must be stored. It is possible
to maintain two arrays of floats: one array for the x and the other for the y coordinates. An
array of float2 vectors can be used alternatively (packed coordinates). As usually y- and z-
coordinates are needed simultaneously for one cluster, the second variant seems preferable.
In fact, traditional CPU code would have been written like this, and as Fig. 6.50 shows this
is the right choice for the GPU as well. But here modern CPU code might follow a new
paradigm because the first variant is preferable when vectorization comes into play.10 Then
two vectors of y- and a vector of z-coordinates can be directly loaded into two vector-registers.
The vectorized tracker in [Kre] implements the storage in this way.

10The CPU code used in Fig. 6.50 was not using vector instructions.

81

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

Internal Cluster
Indices

External Cluster
Indices

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

GPU Time

4400 4267

CPU Time 15116
15990

Figure 6.49: Performance of Optimized
Storage of Row Hits

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

Coordinates not Packed Coordinates Packed

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

GPU

4993 4777

CPU16167 16094

Figure 6.50: Performance for Different
Storage Variants of Cluster Coordinates

6.3.1.2 Texture Fetches

The current NVIDIA GPU family does not possess a general global memory cache but has a
special cache for textures. It is a read only cache and dedicated to texture fetches. Therefore,
the obvious way to obtain a memory cache is to read the data via texture fetches. At this
point, some theory about textures on the NVIDIA GPU is needed. Textures are one- to three-
dimensional pixmaps stored in global memory. However, they are not necessarily present bit
by bit. For example, a three-dimensional pixmap is defined by the following data.

• Width and height of the pixmap (dwWidth, dwHeight)

• Start Address in memory (pAddress)

• Pitch between rows in bytes (dwPitch)

• Data type specifier (type)

The element at position (x, y) can then be accessed at the address x·sizeof(type)+y ·dwPitch.
Textures do not necessarily have to be addressed using integer coordinates but floating point
coordinates can be used as well. The adjacent pixels are then interpolated accordingly by
the texture unit with zero overhead (except that multiple pixels must be read). Furthermore,
integer data types can be seamlessly converted to floats by the texture unit. As textures are
usually used to store colors, data vectors are also possible (e.g. a vector of four floats for red,
green blue and an alpha value).

To access textures, a texture reference containing the texture descriptor must be created on
the host. These references cannot be altered, but accessed only, from within CUDA kernels.
For HPC applications the interpolation feature is usually not used and texture coordinates
are integral instead. The data conversion feature, however, can be helpful.

Two proceedings seem reasonable for the GPU tracker. One big one-dimensional texture
can span the entire memory. This is the easiest way, since then all addresses can simply be
transformed to positions inside the big texture. As another possibility small textures can be
used. A small texture approach has been implemented for the cluster coordinates for testing
in the following way:

Up to this point, cluster coordinates were stored sorted by row. The number of clusters
within one row is not constant. Thus there is no constant pitch between the first clusters of
consecutive rows. This can be changed by determining the maximum cluster count within
one row and then storing the clusters of each row with that maximum stride (see Fig. 6.51).

82

Packed cluster storage

Cluster storage with
constant pitch

Array access to cluster
coordinates

Coordinates for row r Coordinates for row r + 1 Coordinates for row r + 2

Coordinates for row r + 1 Coordinates for row r + 2Coordinates for row r Padding Padding

Coordinates for row r Padding

Coordinates for row r + 1

Coordinates for row r + 2 Padding

x

y

Figure 6.51: Cluster Storage with Constant Pith

Then the cluster coordinates can be accessed as a two-dimensional array, with y the row
index and x the cluster index within that row. Clearly the value is undefined if x is greater
than the cluster count of row y. Using a vector of two 16-bit integers as data type one texture
fetch can read x- and y-coordinate of a cluster and simultaneously convert them into floats.
As the texture cache is optimized for two-dimensional access, the second variant should bring
some benefit.

Fig. 6.52 shows an advantage of small two-dimensional textures fetches over fetches using one
big texture. However, small textures result in one problem: Since arrays of texture references
are not allowed, it is not possible to easily choose between different two-dimensional textures
when processing multiple slices. This can be solved by introducing three-dimensional textures
with the slice ID as the third coordinate. However, measurements show that the advantage
of the small texture is nullified by this. Therefore, in the end, one single big texture is used
in the tracker right now.11

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000

No Texture
Fetch

Small Texture
Fetch

Big Texture
Fetch

Tr
ac

kl
et

 C
on

st
ru

ct
or

 T
im

e
[µ

s]

6454
6085 6197

Figure 6.52: Performance Comparison of
Texture Fetch Algorithms

 0

 1000

 2000

 3000

 4000

 5000

 6000

No Texture
Fetch

Texture Fetch in
Tracklet Constructor

Full Texture
Fetch

Tr
ac

ke
r C

om
po

ne
nt

 T
im

e
[µ

s]

Tracklet Constructor Time (Windows)

46
49

42
70

42
70

Tracklet Constructor Time (Linux)

43
32

39
88

39
86

Neighbours Finder Time (Windows)

27
05

27
04

26
60

Neighbours Finder Time (Linux)

23
24

23
26

29
23

Figure 6.53: Texture Fetch Speedup for
Various Configurations

Performance for the texture fetch version is shown in Fig. 6.53. The figure shows a general
trend towards a faster tracking on Linux based systems. It is strange that on Linux the
use of texture fetches has a negative effect, while on Windows based systems the measured
performance coincides with the speculation that texture fetches should accelerate the tracker.
This behavior occurs for all CUDA versions, and cannot be explained yet.

Using texture fetches in the Neighbors Finder will fill the cache before the Tracklet Construc-
tor is even started. One theory was that the Tracklet Constructor time could be decreased
when using texture fetches in both tracking steps instead of the Tracklet Constructor only.
Fig. 6.53 shows, that this is not the case. Hence either the effect is negligible or the texture
cache is not conserved between kernel executions.

11This keeps the implementation simpler and additionally the texture cache will be replaced with a general
purpose cache in the next GPU generation.

83

6.3.2 CPU Multithreading

As explained in section 4.2.2, the initialization and Tracklet Output have not yet been adapted
to run on the GPU, but stayed on CPU. It is therefore evident to process these tasks for
multiple slices in parallel using multithreading. As the GPU tracker already processes multi-
ple slices, implementing multithreading is easy. Before the GPU Tracker itself processes the
slices, all the slice data structures are initialized, which is already realized in a loop over the
slice ID. As everything is thread-safe by now, for multithreading the GPU Tracker, only a
simple “#pragma omp parallel for” is needed. The same holds true for the Tracklet Output.

Fig. 6.54 shows the time required for initialization and Tracklet Output for one and for eight
threads.12 All measurements are done for the CPU and the GPU code. In the CPU code,
the OpenMP loop iterates over the entire slice tracking instead of the slice initialization only.
Thus, the overhead for starting and synchronizing threads is less important.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Grid Creation

GPU Tracker

Tracklet Output

GPU Tracker

Grid Creation

CPU Tracker

Tracklet Output

CPU Tracker

Ti
m

e
[µ

s]

1 Thread

2952
3312

3036

2337

8 Threads

1130 1112
723

476

Figure 6.54: Multithreaded Performance
for Tracking Steps of CPU- and GPU-

Tracker12

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

Reference Multithreaded Asynchronous

To
ta

l T
ra

ck
in

g
Ti

m
e

[µ
s]

628946

505103
460112

Figure 6.55: GPU Tracker Performance for
GPU Tracker Variants

Fig. 6.55 shows the total performance gain for the multithreaded version. Clearly the numbers
look good suggesting further analysis of multithreading. However, using an asynchronous,
single-threaded processing approach presented in the next section the performance even im-
proves. Though the approach is not explained yet, the performance numbers are integrated
in the diagram to explain why multithreading was discontinued.

6.3.3 Pipelining

When reflecting on the current GPU Tracker implementation it becomes clear that the CPU
idles during the GPU tracking wasting a lot of computational power. The GPU is also idling
when the CPU does the initialization and Tracklet Output. The workflow can be pipelined
in a way that CPU and GPU tasks overlap.

If different slices are to be processed asynchronously and concurrently, it seems evident to go
one step further and make the memory transfer to and from GPU asynchronous, too. This
means that three tasks can be performed in parallel:

• The CPU initializes slice n− 2.

• Data for slice n− 1 is asynchronously transferred to GPU.

• The GPU performs the tracking for slice n.

12The Nehalem CPU used possess 4 real but 8 virtual cores because of Hyperthreading. 4 threads therefore
can increase in a fourfold performance increase, whereas performance does not scale linearly to 8 threads.

84

It is obvious that multiple slices must be processed in parallel to maintain a pipeline in this
way. Especially the restriction to four slices, which was perfect for the Tracklet Construc-
tor in the special case of the worst case simulation, may be insufficient to achieve optimal
performance here. At this point the shared row cache comes into play, which permits going
beyond four parallel slices.

It is difficult to separate pipelining and asynchronous memory transfer. Particularly there is
no sense in doing all benchmarks twice, with and without asynchronous transfer. Therefore,
for the time being the asynchronous transfer will be assumed as given and well performing
when analyzing the pipeline. Section 6.3.3.3 will handle the actual asynchronous transfer.
Nevertheless, the requirements will be stated here, as they affect the design of the entire
asynchronous pipeline.

Requirements For the hardware to be able to perform a DMA memory transfer, source
and destination memory areas respectively must be page locked.13 To allow for an efficient
memory management, the amount of page locked memory should be limited.14 Most oper-
ating systems therefore only allow for a restricted amount of page locked memory. A first
attempt to allocate all host memory page locked failed due to this limit.

To handle this the host memory is split into several parts: DMA destination memory, DMA
source memory, and host only memory. The separation in destination and source memory is
based on the fact that source memory is only read during the DMA transfer but the CPU
will never read from that area but only write to it. Hence deactivating the CPU cache for
source memory can bring a performance boost about. With these changes the host side is
ready to perform asynchronous DMA transfers to the device.

The usage of streams is obligatory on the device side for DMA transfer and kernel execution
to overlap. Every memory transfer and kernel execution can be assigned to a stream. A
stream is a sequence of kernels calls and memory transfer instructions which are ordered
according to the FIFO15 principle. Multiple streams cannot execute kernels in parallel, nor
can two data transfers take place concurrently. However, kernel execution for one stream and
DMA transfer for another can overlap. The tracker creates one independent stream for every
slice.

Implementation The tracker now works in the following way: Slice by slice the initializa-
tion is performed on the CPU and then, before the initialization of the next slice starts, all
memory transfers and kernel calls up to the Tracklet Constructor are issued to the stream
pipeline. The stream ID always equals the number of the slice. Then the Tracklet Constructor
kernel is called without being attached to a stream. Kernels that are not assigned to a stream
will first wait for all streams to finish before they start execution. This ensures that tracking
steps I to III are finished for all slices, before the Tracklet Constructor is started. As the
Tracklet Constructor processes multiple slices in parallel, this is the only possible way. The
only other option is to set a manual synchronization point to wait for all streams to finish,
and not until then start the Tracklet Constructor. But then device to host synchronization
is required, whereas the first approach does all synchronization on the device.

13Page locked means that the mapping of physical to virtual pages must stay fixed for all pages involved
because the DMA transfer will work on physical, not virtual addresses.

14Page locked memory areas cannot be rearranged, but rearrangement is essential to avoid memory frag-
mentation. Furthermore, page locked memory must immediately be reserved when allocating.

15FIFO stands for first in first out. The tasks are processed exactly in the order, they were issued.

85

Next, the Tracklet Selector kernel calls are issued. It shall stay open for the moment whether
the multi-slice version is used or not. Pro and cons for this will be discussed in section 6.3.3.5.
Unfortunately, the memory transfer copying the tracks back to the CPU cannot be issued
instantly. The problem is that at this point it is still unknown how much data to transfer as
this depends on the number of tracks found in step V. Therefore, two transfers are needed:
The first will only fetch the number of tracks, while the second one will copy the actual
tracks. See Fig. 6.57 for an illustration.

The simplest realization is to issue n Tracklet Selector kernels for the n slices in n streams
again, then issue the small memory transfer copying the track count for every slice in the
corresponding stream. After the ith stream has finished (the last step in the pipeline up to
now was the transfer of the track count) the tracks for stream i are transferred to the host and
the Tracklet Output is performed on the CPU while the GPU is still executing the Tracklet
Selector for the remaining slices. Unfortunately, it does not work in that way. The GPU does
not reorder memory transfers even if they belong to different streams. If the above algorithm
were used, the memory transfer for the tracks of the first slice would be issued after the
memory transfer for the track count of the last slice. Therefore, both would only take place
when the Tracklet Selector for the last slice will have finished (see Fig. 6.56 as compared to
Fig. 6.57). Therefore, the transfers for the track counts and for the actual tracks have to be
issued alternately, with manual synchronization points in between.

CPU:
task processing,

kernel and memcopy starts

GPU:
kernel execution

Memory copy

Tracklet Constructor

Tracklet Selector

Tracklet Selector

Copy track count

Copy track count

Copy tracks

Synchronization

Tracklet Output

Synchronization

Copy tracks

Synchronization

Tracklet Output

Synchronization

Copy track count

Copy tracks

Copy track count

Copy tracks

1

1

1

1

1

1

1

2

2

1

2

2

2

2

2

2

-
Stream Stream

Tracklet Selector 3

Copy track count 3

Copy track count 2

Copy track count 2Copy track count 3

Copy tracks

Synchronization

Tracklet Output

Synchronization 2

2

2

2

Tracklet Constructor

Tracklet Selector

Tracklet Selector

1

2

-
Stream

Tracklet Selector

3

Copy tracks 2

Figure 6.56: Kernel and DMA Issue Diagram
for the Simple Algorithm

CPU:
task processing,

kernel and memcopy starts

GPU:
kernel execution

Memory copy

Tracklet Constructor

Tracklet Selector

Tracklet Selector

Copy track count

Copy track count

Copy tracks

Synchronization

Tracklet Output

Synchronization

Copy tracks

Synchronization

Tracklet Output

Synchronization

Copy track count

Copy track count

Copy tracks

Copy tracks

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

-
Stream Stream

Tracklet Constructor

Tracklet Selector

Tracklet Selector

1

2

-
Stream

Tracklet Selector
3

Copy track count 3

Copy tracks

Synchronization 3

3

Synchronization

Tracklet Output

3

3

Tracklet Selector 3

Copy track count 3

Copy tracks 3

Figure 6.57: Kernel and DMA Issue Diagram
for the Improved Algorithm

6.3.3.1 Workflow

In this and the following sections a new kind of diagram will be used regularly. To save
some space it will be exemplified and explained in Fig. 6.58. The legend will be omitted
afterwards. The x-axis represents the time within one run, and multiple tracking runs are
shown one below the other. For each run, three rows represent the DMA, the GPU, and the

86

CPU steps.16 Each step is assigned a different color. Fig. 6.58 illustrates a pipelined run
with asynchronous memory transfer of 15 simultaneous slices. As 15 does not divide the slice
count 36, the third and last run contains a reduced number of 6 slices.

Figure 6.58: Workflow for a Pipeline with 15 Slices and Asynchronous Data Transfer

6.3.3.2 Pipeline Performance and Pipeline Length

For the pipeline there is only one relevant parameter: the number of slices in the pipeline.
Clearly this should be pushed as far as possible. Figures 6.59, 6.60, 6.61, 6.62, and 6.63
show the workflow for 3, 6, 9, 12, and 18 slices respectively. As time for initialization and
for Neighbors Finding as well as the duration of Tracklet Selection and Tracklet Output are
similar, the CPU time of the algorithm is almost completely hidden by the GPU time, with
only the runtimes of initialization and Tracklet Output of few slices as overhead. As seen in
the figures this overhead is almost negligible for high slice counts.

Figure 6.59: Pipelining 3 Slices

Figure 6.60: Pipelining 6 Slices

Figure 6.61: Pipelining 9 Slices

Figure 6.62: Pipelining 12 Slices

Figure 6.63: Pipelining 18 Slices

Fig. 6.64 shows a performance plot for different slice counts. Of course one should take into
consideration that the Tracklet Constructor and Tracklet Selector also benefit from more slices
and thus the performance gain is not solely based on pipelining. Moreover, the total slice

16The NVIDIA CUDA profiler was used to obtain the kernel start times and durations.

87

count 36 should be a multiple of the concurrent slice count to achieve optimal performance.
Other slice counts will lead to the situation shown in Fig. 6.58. This explains why the optimal
slice counts are 12 and 18. Running 36 slices in parallel is not possible because of the limited
memory of the GPU used.17

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5 10 15 20

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Slices

52
70

17
,4

41
36

64
,8

38
86

93

36
55

95

35
80

69
,2

34
63

08
,4

34
70

62
,6

34
01

41
,8

33
43

82
,4

33
35

50
,2

33
34

25
,6

32
56

67
,6

33
68

02
,6

32
79

10
,4

33
73

29
,4

34
92

39
,2

34
94

86
,8

32
34

71
,6

Figure 6.64: Pipeline Performance for Different Slice Numbers

6.3.3.3 Performance of Asynchronous Transfer

Up until now the performance benefits of pipelining and asynchronous memory transfer have
been clearly illustrated. This section will deal with the effect of the asynchronous transfer
itself. Besides the fact that DMA transfer and kernel execution may overlap, there is another
major advantage of asynchronous memory transfers that has not even been mentioned yet.
The synchronization of the pipeline is in fact much easier and more efficient when the memory
transfer is asynchronous. For a synchronous transfer the GPU must not execute a kernel and
the transfer must be supervised by the CPU, which means that at least the current CPU
thread is also blocked by the transfer. CPU and GPU must be synchronized before the
transfers can take place. This synchronization takes time in which neither CPU nor GPU
can process data and especially where one has to wait for the other.

Figures 6.65 and 6.66 show workflow diagrams for synchronous memory transfer. Obviously
the synchronization is much more expensive on a Windows platform. In contrast, Fig. 6.67
shows the initialization part of the diagram for the asynchronous case in more detail. It is
clear, that besides the delay caused by the actual transfer, even more time is lost if not using
the asynchronous transfer. The third figure also clearly shows that all three tasks overlap.

Fig. 6.68 finally shows a performance comparison of synchronous and asynchronous transfer
for Windows and Linux platform. Clearly the asynchronous transfer is worth the effort for
both platforms. Especially the Windows versions with synchronous transfer falls far behind.

1736 slices would be possible on a Tesla card with more memory. However, there is no difference between
12 and 18 slices and thus 36 slices is also not expected to perform better.

88

Figure 6.65: Synchronous Data Transfer (Linux Platform)

Figure 6.66: Synchronous Data Transfer (Windows Platform)

Figure 6.67: Asynchronous Data Transfer

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

Asynchronous Copy
(Linux)

Asynchronous Copy
(Windows)

Synchronous Copy
(Linux)

Synchronous Copy
(Windows)

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

323471
355212 369040

538087

Figure 6.68: Asynchronous Transfer Performance

6.3.3.4 Zero Copy Memory

As of CUDA version 2.2, a new feature called Zero Copy was introduced. A virtual memory
area on the GPU can be directly mapped to an area of physical page locked memory inside the
host’s main memory. The NVIDIA memory controller is built in a way that accesses to host
and device memory are independent. Thus in theory the PCIe bandwidth of about 6 GB/s
can be added to the 100 GB/s of GPU global memory bandwidth to obtain the maximum
memory bandwidth. Clearly the delay for accessing host memory is much higher. The same
coalescing rules still apply. However, fulfilling them is much more critical as the relative PCIe
overhead is greatly reduced when transferring larger segments of memory instead of only 4
or 8 bytes.

To utilize this feature, the Tracklet Selector was changed to store the tracks directly in host
memory. Unfortunately, these stores are not coalesced at all. In fact, they cannot easily
be coalesced because all the threads process different tracks. The host access resulted in a
ten-fold increase of the Tracklet Selector time. It is thus clear, that the transfer must be
done blockwise, but then the current asynchronous transfer seems optimal. Therefore, the
Zero Copy feature is not used.

89

6.3.3.5 Tracklet Selector Slices

This section will focus on which Tracklet Selector configuration to use to achieve optimal
performance. When looking at the results for multi-slice performance (Fig. 6.48) it seems
obvious to use as many concurrent slices as possible. However, when taking the asynchronous
memory transfer into account, this is no longer clear, since Tracklet Output and Tracklet
Selection cannot overlap if only one Tracklet Selector kernel is executed processing all slices.
It has to be determined experimentally which slice count is optimal.

One additional optimization can be included. The slice count can be increased for every
kernel execution. If starting with a slice count of one, the CPU can almost immediately start
the Tracklet Output. Since the CPU is already occupied then the slice count can be increased
speeding up the GPU execution. Figures 6.69, 6.70 and 6.71 show the rightmost parts of the
workflow diagrams for all three versions.

Figure 6.69: Pipelining with Increasing Tracklet Selector Slice Count

Figure 6.70: Pipelining using Single-Slice Tracklet Selector

Figure 6.71: Pipelining using Fixed Three-Slice Tracklet Selector

Fig. 6.72 shows performance numbers for all configurations. It turns out that in the end the
performance is only marginally affected by the choice with the single slice variant being the
fastest. The explanation is that the time for one-slice Tracklet Selection and Tracklet Output
match closely. Speeding up the Tracklet Selection does not decrease the total time, as the
total time is simply given by the accumulated Tracklet Output time plus the delay produced
by one Tracklet Selector kernel call. But the absolute time for one kernel execution is clearly
minimal for a single slice. The experiment should be repeated if the Tracklet Output part
could get accelerated.

 310000

 315000

 320000

 325000

 330000

 335000

 340000

3 Slices 1 Slice 1 to 3 Slices Incrementing

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Tracklet Selector Slice Count

323579
321942 322604

Figure 6.72: Performance for Tracklet Selector Operation Modes

90

Chapter 7

Optimizations for small events (pp)

Up until now all optimizations applied were targeted at huge events. Of course many as-
sumptions taken in that case do not apply for pp events. As a GPU is designed for massive
parallelism, big events seem appropriate for a GPU tracker. Additionally, small events can
already easily be handled by the CPU tracker in the HLT compute farm. Nonetheless, some
ideas how the GPU tracker could be changed for a fast processing of small scale events will
be presented here.

First some preliminary considerations will be made. In [Kre] it was shown that the vectorized
tracker could accelerate heavy-ion events, but was even slower for pp events. The overhead
for the trivial parallelization over the slices increases with shorter execution times. As the
CPU tracker performance is already affected by small event sizes, it is expected that there
will be a large influence on GPU tracking time.

7.1 PP Performance of Heavy-Ion Tracker

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

CPU
(1 Thread)

CPU
(2 Thread)

CPU
(4 Thread)

CPU
(8 Thread)

GPU

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

32300

17352

11471
7633

64941

Figure 7.1: Performance for PP Event of Heavy-Ion Tracker

This chapter starts with a comparison of pp performance. Fig. 7.1 shows the result for
the GPU tracker including all optimizations from the last chapter and results for the CPU
tracker using different thread counts. The event contains 48, 189 clusters in which the CPU
tracker found 223 tracks. Going to even smaller events really does not make any sense, as

91

then the GPU’s parallelism clearly cannot be exploited. The CPU multithreading performs
surprisingly well (speedup by a factor of 4.2 for pp compared to 4.8 for heavy-ion when going
from 1 to 8 threads running on 8 virtual Nehalem cores), while the GPU performance drops
far below single threaded CPU speed. The scalability of the CPU tracker is clearly limited
by the overhead for thread management. This does not apply to the HLT farm however, as
there the tracker threads process data for one fixed slice. No threads have to be created.

7.2 Synchronization and Memory Transfer

For small scale events, kernel times and especially memory transfer times are extremely short.
The delays for synchronization and kernel calls are constant. Furthermore, it seems reasonable
not to launch too many kernels and especially not to have many synchronization points. The
latter aspect refers primarily to the Tracklet Selector, which has one synchronization point
per slice for obtaining the track count.

As a second fact for good utilization, it might also be interesting to process multiple slices in
parallel for the Neighbors Finder. Since there is not much to schedule, the dynamic scheduling
within the Tracklet Constructor should be deactivated. A look at the Tracklet Constructor
in particular shows that for pp events there are less than 256 tracklets per slice present. To
account for this the small scale tracker follows one particular paradigm: one multiprocessor
per slice. This is realized for the whole tracker, so all tracking steps always process 30 slices in
parallel (because of 30 multiprocessors). The pipeline is not included. All slices are initialized
on the CPU. (One might think about parallelization here, but probably the overhead would
be too big.) Then the slice data is transferred. The kernel for each tracking step is executed
exactly once. Only one memory transfer is done for the track counts. However, transfers for
the slice data and the tracks themselves are still separated and combined in a single transfer
because they do not transfer consecutive memory segments.

The problem arising at this point is that there are 30 multiprocessors available on the GPU
which does not match well to 36 slices. For efficient processing slices, of different events have
to be intermixed. So the first run will process slice 0 to 29 from event 0, the second run
slices 30 to 35 of event 0 and slices 0 to 23 of event 1, and so on. The process is shown in
Fig. 7.5. However, this will be difficult to realize for the HLT farm in the real experiment
because firstly, much data would have to be transferred to a single node, and secondly, the
assignment of slices to nodes would be dynamic.

In the end the pp-tracker is a rather theoretical analysis. If it turned out that the GPU
tracker also performed very well for pp events, further analysis could be interesting. But
for the moment this shall just be a proof of concept approach to examine the possibilities.
Fig. 7.2 demonstrates the simplifications for the pp-tracker using a workflow diagram.

Figure 7.2: Workflow Comparison for Heavy-Ion- (Top) and PP-Tracker (Bottom) processing
30 Slices of a PP Event

92

7.3 Performance of PP-Tracker

Performance for PP Events Fig. 7.3 shows the performance gain that was achieved by
the changes described above. CPU Tracking time is included for comparison. The adapted
tracker can beat a single Nehalem core, but cannot compete with all four cores with Hyper-
threading enabled. However, the pp performance of the pp-tracker is much better than of
the heavy-ion-tracker.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

CPU
(1 Thread)

CPU
(8 Thread)

GPU
(Heavy-Ion-Mode)

GPU
(PP-Mode)

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

32300

7633

64941

19569

Figure 7.3: Performance for PP Event

Performance for Heavy-Ion Events Although not designed for lead-lead evens, the
tracking time will still be analyzed to measure the performance loss. The difference for pp
events is bigger than for heavy-ion events, where for lead-lead most time is lost because of a
disabled pipelining. Clearly the tracking steps themselves perform well when running on 30
slices in parallel (although dynamic scheduling is disabled).

 0

 100000

 200000

 300000

 400000

 500000

Heavy-Ion-Tracker PP-Tracker

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

318931

482165

Figure 7.4: Performance for Lead-Lead
Event

Run 1

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Event 1
Slices 0-29

Event 1
Slices 30-35

Event 2
Slices 0-23

Event 2
Slices 24-35

Event 3
Slices 0-17

Event 3
Slices 18-35

Event 4
Slices 0-11

Event 4
Slices 12-35

Event 5
Slices 0-5

Event 5
Slices 6-35

Event 6
Slices 0-29

Event 6
Slices 30-35

Event 7
Slices 0-23

Figure 7.5: Slices Processed by PP-Tracker

Finally it can be concluded that the modus operandi of the heavy-ion tracker is anything but
optimal for pp events. By some simple changes the pp performance could be improved dra-
matically, whereas the heavy-ion performance did not suffer in the same order of magnitude.
However, the multithreaded CPU tracker still outperforms even the optimized GPU tracker
for pp events. Additionally the changes required to improve the pp performance resulted in a
negative effect on the applicability in the HLT farm. Especially running 30 slices in parallel
is infeasible. For these reasons no plans exist to employ a GPU based pp-tracker in the High
Level Trigger.

93

Chapter 8

Integration and Deployment in the
HLT

8.1 ROOT

ROOT is an open source general purpose framework for data analysis with its focus originally
set on particle physics. It is organized as a layered class hierarchy grouped in libraries with
most classes inheriting from a common base class TObject. ROOT is developed at CERN
and was initially developed to build a framework capable of handling the enormous amount
of data produced at the LHC. See [Roo] for details.

ROOT offers a C++ interpreter (CINT) and third party programs employing ROOT can
either run natively if compiled and linked against the libraries or use the interpreter.

8.2 AliRoot

AliRoot is the ALICE Offline framework for data analysis, event reconstruction, and simula-
tion. As the name suggests, it is based on ROOT and some other third party libraries such
as Geant and Fluka. AliRoot can simulate data as expected to be delivered by the ALICE
detectors, and can also include detector inefficiencies. Furthermore, AliRoot has the ability
to perform a full event reconstruction. Reconstruction algorithms are divided in online and
offline algorithms. In general, Online algorithms are fast and will be executed while the ex-
periment is running for triggering and online analysis. Offline algorithms are generally slower
but in many cases more accurate and are used for further data analysis.

8.3 PubSub

The PubSub framework based on the publisher / subscriber principle was designed for fast
data transport and controls the components of the High Level Trigger. Components can be
data processing components, data sources, or data sinks. Sources normally are the detector
outputs but they can also be raw files for simulation and debugging. Sinks are components
that receive data but do not process the data nor pass the data to further components
(within the framework). An example for a sink is a file in which the output of a data
processing component is stored. Every data processing component can subscribe to other data

94

processing components or to sources. So for the case of the tracker there are sources, either
216 FilePublishers or 216 RORCPublisher (for the TPC readout) delivering the input data for
the 216 TPC pads. 216 cluster finder components subscribe to these sources. Furthermore,
36 slice trackers are instantiated, each subscribing to the 6 Cluster Finders responsible for its
slice. Finally, one merger subscribes to the 36 slice trackers and possibly writes its output to
a file sink afterwards. Obviously, the HLT structure resembles a tree where the data of many
sources is combined on the way towards a sink. For more detailed information see [Ste].

8.4 HLT Libraries

All components responsible for event reconstruction are stored in libraries. These libraries
have a common ANSI C interface and can be used in the PubSub framework as well as in
AliRoot. In fact, AliRoot has an HLT simulation mode, in which it uses the HLT libraries
and simulates an online reconstruction. All these HLT libraries rely on ROOT.

8.5 Interface

The question arises where to place the GPU tracker in all these frameworks. Clearly the
GPU tracker has to run as a component in the PubSub framework and should therefore be
placed in an HLT library. Furthermore, it should be possible to run the GPU tracker also
from within AliRoot, which is already possible when present in the HLT library.

The user should be able to transparently run both the CPU and GPU tracker (if a GPU
is available) without any changes to the calling procedure. Therefore, a generic tracker
framework was developed, providing a common interface and being able to process multiple
slices in parallel (as needed for the GPU tracker). The framework is capable of running
the GPU and the CPU tracker. It could be extended in the near future to support both a
multithreaded CPU tracker and a vectorized tracker version.

This new framework can be used as a component in the HLT. Furthermore, AliRoot imple-
ments its own procedure for tracking, which was adapted to use the new framework instead of
the CPU tracker itself. As a third variant, mainly for debugging purposes, a standalone ver-
sion of the tracker was created containing the newly developed event display. The standalone
tracker does not rely on AliRoot at all but can still use the tracker framework.

The framework has the ability to detect the availability of GPUs. Then it runs the GPU
tracker automatically or falls back to the CPU version if no GPU present. Of course, one
can also define explicitly which tracker version to run.

8.6 C++

The HLT libraries rely on ROOT and most of them inherit from TObject, as did the CPU
version of the tracker. CUDA does not offer full C++ support yet. For this and other reasons,
it is not possible to use ROOT on the GPU. All functionality that relied on ROOT was
replaced by inline wrapper functions. Using conditional compilation, they can be directed
to the ROOT functions or to a replacement for the GPU and the standalone case. The
inheritance of ROOT objects could be removed from the tracker classes. However, this does
not mean that the tracker is plain C code but only direct references to ROOT were removed.

95

8.7 Compilation

The HLT libraries are usually compiled within AliRoot. However, there is also the possibility
to build them standalone. Both make scripts had to be changed to allow for compilation of
CUDA files. Another problem is that the debug message system relies on ROOT. Special
ROOT macros have to be present in the header files for the debug message macro to identify
the class and method name in which a debug message is produced. For this the source files
must be interpreted by CINT, but this is not possible for CUDA sources. This is solved by
letting CINT interpret a fake file with all CUDA content removed and build its internal lists
accordingly.

8.8 Running in an HLT Chain

A configuration with sources, data processing components, and sinks is called an HLT chain.
The first attempt to run the GPU tracker inside an HLT chain failed because the CUDA
context is thread local. But within the HLT chain there is no guarantee that the component’s
methods are called from one single thread consistently. Therefore, a check for the thread ID
had to be included, which forces a GPU reinitialization if the thread has changed.

Naturally the GPU tracker requires the CUDA runtime library. This is a C++ library
that has to be bound when starting the tracker and when loading the HLT tracking library
respectively, and does not support late binding. On the HLT farm all libraries are stored on
a shared file system (AFS). A problem arises now, as the CUDA library is not present on
each node. If the HLT tracking library is linked against the CUDA runtime library, it cannot
be loaded on nodes without CUDA library installed. However, it is not desired to install the
CUDA library on every node.

Therefore, the GPU tracker class is realized as an abstract class. There are two derived
classes: the actual GPU tracker class and a dummy class. The GPU tracker class is stored in
an additional library which exports plain C functions to create and destroy a GPU tracker
instance. The tracker framework in the HLT library will check the availability of the CUDA
runtime library. If it finds the runtime, it loads the GPU library with “dlopen” and use the
plain C interface to create an instance of the GPU tracker class. Otherwise, it creates an
instance of the GPU tracker dummy class. This instance with the abstract GPU tracker class
interface can now be used inside the HLT library. The hierarchy of classes and interfaces is
shown in Fig. 8.1.

8.9 Hardware

The GPU tracker is supposed to run on GeForce GTX295 dual GPU cards in Super Micro
servers with Intel Nehalem CPUs. The GTX295 boards have slightly reduced clock speeds
compared to the GTX285 cards used for the benchmarks, but instead offer two independent
GPU chips with independent memory on a single card. The power connectors of the servers
had to be adapted in order to plug in the NVIDIA cards. Because the CUDA context is thread
local, a direct multi GPU implementation would be at least difficult to realize. Instead, it
was decided to run multiple instances of the GPU tracker component on one node. During
the initialization, the GPU tracker class queries all available GPUs for available memory,
selects the GPU with the most memory available, and reserves the memory it requires. In

96

ROOT

AliRoot

AliRoot Tracking HLT Simulation

HLT TPC Library

Tracker Framework

Tracker Component

CA Tracker Class

GPU Tracker Abstract

GPU Tracker Dummy

GPU Library

GPU Tracker Class

Standalone
Benchmark
and Debug
Framework

PubSub
Framework

CUDA
Runtime
Library

Classes for Tracking Steps
and Data Structures

Inherits
Instantiates
Plain C Interface

Figure 8.1: Diagram of Libraries and Class Hierarchy

this way, it is ensured that two components will use different GPU chips.1 It is even possible
to instantiate more than two GPU trackers (per one GTX295 card). As long as the GPU
memory is sufficient, multiple components can share one physical chip. This can be used to
hide latencies produced by data transfer in the PubSub framework.

One node with a dual GPU card has been installed in the HLT farm. It was tested with
six GPU tracker components, of which the first four were automatically placed on the GPU
board (two per chip), while the remaining two automatically fell back to the CPU since GPU
memory was insufficient. The GPU tracker was running successfully for several hours in ERP
test runs. Unfortunately, due to network problems with the node, the GPU has not yet taken
part in physics runs.

1Mutual exclusion based on system wide named semaphores is used to ensure synchronization of the threads
when querying the GPUs. There is also a method to lock the GPU on the driver side for controlling access to
it. But this would restrict GPU access to a single component.

97

Chapter 9

Results

The tracker was benchmarked according to two criteria: the tracking quality and the tracking
performance. The tracking quality is measured in terms of efficiency, clone and fake rates,
and resolution which will be described in detail in the next section. Tracking performance is
simply proportional to the reciprocal of the tracking time. A tracking efficiency of 100% is
unrealistic. Therefore, a lower bound should be set for the quality and then the performance
maximized according to this quality assurance demand.

It is evident that the GPU tracker is not able to beat the CPU tracker in tracking quality,
since the algorithm is essentially the same except for some drawbacks for the GPU such as
incoherent memory and a non 100% compliance with the IEEE floating point standard. The
goal is to maintain the CPU tracking quality, at best to achieve a bitwise match of the result.

9.1 Tracking Quality

9.1.1 Efficiency, Resolution, and Pull

The tracking quality is measured for several categories:

• Efficiency (the percentage of Monte Carlo reference tracks found by the tracker)

• Clone Rate (the ratio of two tracks found by the tracker representing identical Monte
Carlo tracks)

• Fake Rate (the ratio of tracks not even corresponding to a Monte Carlo track)

• Resolution (resolution of the fitted track parameters)

• Pull (for simulated data the pull is the difference between the parameters from the
Monte Carlo tracks and the parameters found by the trackers normalized by the error
expected according to the covariance matrix)

Clearly a low clone rate is wanted, but this is not as important as an efficiency of almost
100% and a fake rate close to 0%. A framework for measuring tracking quality was developed
by Sergey Gorbunov. The results for the CPU and GPU tracker are shown in Tab. 9.1. Only
a very tiny advantage for the CPU variant can be seen.

98

In a more detailed analysis, the efficiency and fake rate can be compared for different Pt
(transversal momentum, see 2.1.4) values (Figures 9.4 and 9.7). Furthermore, the resolution
(Figures 9.5 and 9.8) and the pull (Figures 9.6 and 9.9) for the track parameter Z are analyzed
for the GPU and CPU version exemplary. Figures 9.10 to 9.15 show the same plots in the pp
case. As can be seen, all diagrams for GPU and CPU resemble each other. The resolutions
and pull for the other track parameters are equal for both the CPU and the GPU version,
too. Resolutions for heavy-ion events are shown exemplary in Figures 9.2 and 9.3.1 Finally
it can be concluded that the tracking quality for the CPU and GPU version is comparable
for both heavy-ion and pp events.

Processor Event Efficiency [%] Fake rate [%] Clone Rate [%]

CPU pp 100.000 0.138 6.061
GPU pp 99.853 0.138 6.069

CPU heavy-ion 99.028 1.063 10.897
GPU heavy-ion 98.954 1.130 10.897

CPU central heavy-ion 89.962 6.814 14.825
GPU central heavy-ion 89.962 6.804 14.816

Table 9.1: Tracking Quality

Entries 5494
Mean 0.05815
RMS 6.269
Underflow 529
Overflow 532

 / ndf 2χ 183.9 / 47
Constant 3.8± 173.1
Mean 0.10166± 0.06174
Sigma 0.109± 6.341

(mrad)
-15 -10 -5 0 5 10 15

50

100

150

200

250

Entries 5494
Mean 0.05815
RMS 6.269
Underflow 529
Overflow 532

 / ndf 2χ 183.9 / 47
Constant 3.8± 173.1
Mean 0.10166± 0.06174
Sigma 0.109± 6.341

PHI resolution Entries 5494
Mean -0.02906
RMS 2.969
Underflow 71
Overflow 82

 / ndf 2χ 143.5 / 47
Constant 5.6± 294.8
Mean 0.03915± 0.01653
Sigma 0.037± 2.815

(mrad)
-10 -8 -6 -4 -2 0 2 4 6 8 100

50

100

150

200

250

300

350

Entries 5494
Mean -0.02906
RMS 2.969
Underflow 71
Overflow 82

 / ndf 2χ 143.5 / 47
Constant 5.6± 294.8
Mean 0.03915± 0.01653
Sigma 0.037± 2.815

LAMBDA resolution

Entries 5494
Mean 0.158
RMS 2.564
Underflow 310
Overflow 348

 / ndf 2χ 345.8 / 27
Constant 9.8± 419.7
Mean 0.0342± 0.2195
Sigma 0.041± 2.278

(%)
-8 -6 -4 -2 0 2 4 6 80

100

200

300

400

500

600

Entries 5494
Mean 0.158
RMS 2.564
Underflow 310
Overflow 348

 / ndf 2χ 345.8 / 27
Constant 9.8± 419.7
Mean 0.0342± 0.2195
Sigma 0.041± 2.278

Relative Pt resolution Entries 5494
Mean 0.02029
RMS 2.001
Underflow 744
Overflow 709

 / ndf 2χ 141.4 / 27
Constant 5.8± 256.4
Mean 0.03468± 0.03516
Sigma 0.037± 2.053

(mm)
-5 -4 -3 -2 -1 0 1 2 3 4 5

50

100

150

200

250

300

350

Entries 5494
Mean 0.02029
RMS 2.001
Underflow 744
Overflow 709

 / ndf 2χ 141.4 / 27
Constant 5.8± 256.4
Mean 0.03468± 0.03516
Sigma 0.037± 2.053

Y resolution

Figure 9.2: φ, λ, Pt and Y Resolutions of CPU tracker (Central Heavy-Ion)

Entries 5495
Mean 0.06206
RMS 6.271
Underflow 531
Overflow 533

 / ndf 2χ 184.4 / 47
Constant 3.8± 172.9
Mean 0.10179± 0.05733
Sigma 0.109± 6.345

(mrad)
-15 -10 -5 0 5 10 15

50

100

150

200

250

Entries 5495
Mean 0.06206
RMS 6.271
Underflow 531
Overflow 533

 / ndf 2χ 184.4 / 47
Constant 3.8± 172.9
Mean 0.10179± 0.05733
Sigma 0.109± 6.345

PHI resolution Entries 5495
Mean -0.03223
RMS 2.972
Underflow 71
Overflow 81

 / ndf 2χ 140.6 / 47
Constant 5.6± 294.7
Mean 0.03918± 0.01341
Sigma 0.037± 2.819

(mrad)
-10 -8 -6 -4 -2 0 2 4 6 8 100

50

100

150

200

250

300

350

Entries 5495
Mean -0.03223
RMS 2.972
Underflow 71
Overflow 81

 / ndf 2χ 140.6 / 47
Constant 5.6± 294.7
Mean 0.03918± 0.01341
Sigma 0.037± 2.819

LAMBDA resolution

Entries 5495
Mean 0.1547
RMS 2.565
Underflow 310
Overflow 349

 / ndf 2χ 345.8 / 27
Constant 9.8± 419.1
Mean 0.0342± 0.2128
Sigma 0.041± 2.281

(%)
-8 -6 -4 -2 0 2 4 6 80

100

200

300

400

500

600

Entries 5495
Mean 0.1547
RMS 2.565
Underflow 310
Overflow 349

 / ndf 2χ 345.8 / 27
Constant 9.8± 419.1
Mean 0.0342± 0.2128
Sigma 0.041± 2.281

Relative Pt resolution Entries 5495
Mean 0.02271
RMS 2.003
Underflow 747
Overflow 711

 / ndf 2χ 141.7 / 27
Constant 5.8± 255.4
Mean 0.03484± 0.03785
Sigma 0.04± 2.06

(mm)
-5 -4 -3 -2 -1 0 1 2 3 4 5

50

100

150

200

250

300

350

Entries 5495
Mean 0.02271
RMS 2.003
Underflow 747
Overflow 711

 / ndf 2χ 141.7 / 27
Constant 5.8± 255.4
Mean 0.03484± 0.03785
Sigma 0.04± 2.06

Y resolution

Figure 9.3: φ, λ, Pt and Y Resolutions of GPU tracker (Central Heavy-Ion)

1All the Figures are arranged in a way, such that CPU and GPU results for the same data are one upon
the other.

99

Entries 7133

Mean 2.479

RMS 1.494

Underflow 0

Overflow 0

Pt (GeV/c)
1 2 3 4 5 6

T
ra

c
k
in

g
 e

ff
ic

ie
n

c
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Entries 7133

Mean 2.479

RMS 1.494

Underflow 0

Overflow 0

Fake tracks

Clone tracks

Good tracks

Efficiency for good tracks

Figure 9.4: CPU Tracker Ef-
ficiency and Fake Rate (Cen-

tral Heavy-Ion)

Entries 5494

Mean -0.01464

RMS 1.995

Underflow 493

Overflow 447
 / ndf 2χ 82.94 / 27

Constant 6.0± 292.1

Mean 0.032694± -0.006472
Sigma 0.033± 2.068

(mm)
-5 -4 -3 -2 -1 0 1 2 3 4 5

50

100

150

200

250

300

350

Entries 5494

Mean -0.01464

RMS 1.995

Underflow 493

Overflow 447
 / ndf 2χ 82.94 / 27

Constant 6.0± 292.1

Mean 0.032694± -0.006472
Sigma 0.033± 2.068

Z resolution

Figure 9.5: CPU Tracker Z
Resolution (Central Heavy-

Ion)

Entries 5494
Mean -0.02558
RMS 3.202
Underflow 82
Overflow 65

 / ndf 2χ 125.7 / 27
Constant 8.6± 447.3
Mean 0.04335± -0.02587
Sigma 0.042± 3.108

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

Entries 5494
Mean -0.02558
RMS 3.202
Underflow 82
Overflow 65

 / ndf 2χ 125.7 / 27
Constant 8.6± 447.3
Mean 0.04335± -0.02587
Sigma 0.042± 3.108

Z pull

Figure 9.6: CPU Tracker Z
Pull (Central Heavy-Ion)

Entries 7133

Mean 2.479

RMS 1.494

Underflow 0

Overflow 0

Pt (GeV/c)
1 2 3 4 5 6

T
ra

c
k
in

g
 e

ff
ic

ie
n

c
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Entries 7133

Mean 2.479

RMS 1.494

Underflow 0

Overflow 0

Fake tracks

Clone tracks

Good tracks

Efficiency for good tracks

Figure 9.7: GPU Tracker Ef-
ficiency and Fake Rate (Cen-

tral Heavy-Ion)

Entries 5495
Mean -0.01503
RMS 2.002
Underflow 494
Overflow 447

 / ndf 2χ 83.44 / 27
Constant 6.0± 290.4
Mean 0.032960± -0.008382
Sigma 0.033± 2.081

(mm)
-5 -4 -3 -2 -1 0 1 2 3 4 5

50

100

150

200

250

300

350

Entries 5495
Mean -0.01503
RMS 2.002
Underflow 494
Overflow 447

 / ndf 2χ 83.44 / 27
Constant 6.0± 290.4
Mean 0.032960± -0.008382
Sigma 0.033± 2.081

Z resolution

Figure 9.8: GPU Tracker Z
Resolution (Central Heavy-

Ion)

Entries 5495
Mean -0.02477
RMS 3.202
Underflow 82
Overflow 65

 / ndf 2χ 124.7 / 27
Constant 8.6± 447.5
Mean 0.04334± -0.02537
Sigma 0.042± 3.108

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

Entries 5495
Mean -0.02477
RMS 3.202
Underflow 82
Overflow 65

 / ndf 2χ 124.7 / 27
Constant 8.6± 447.5
Mean 0.04334± -0.02537
Sigma 0.042± 3.108

Z pull

Figure 9.9: GPU Tracker Z
Pull (Central Heavy-Ion)

Entries 681

Mean 1.929

RMS 1.21

Underflow 0

Overflow 0

Pt (GeV/c)
1 2 3 4 5 6

T
ra

c
k
in

g
 e

ff
ic

ie
n

c
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Entries 681

Mean 1.929

RMS 1.21

Underflow 0

Overflow 0

Fake tracks

Clone tracks

Good tracks

Efficiency for good tracks

Figure 9.10: CPU Tracker Ef-
ficiency and Fake Rate (PP)

Entries 651
Mean -0.01425
RMS 0.8199
Underflow 0
Overflow 0

 / ndf 2χ 14.01 / 13
Constant 5.3± 105.3
Mean 0.032649± -0.007734
Sigma 0.0262± 0.8061

(mm)
-5 -4 -3 -2 -1 0 1 2 3 4 50

20

40

60

80

100

Entries 651
Mean -0.01425
RMS 0.8199
Underflow 0
Overflow 0

 / ndf 2χ 14.01 / 13
Constant 5.3± 105.3
Mean 0.032649± -0.007734
Sigma 0.0262± 0.8061

Z resolution

Figure 9.11: CPU Tracker Z
Resolution (PP)

Entries 651
Mean 0.02817
RMS 1.594
Underflow 0
Overflow 0

 / ndf 2χ 17.78 / 12
Constant 5.1± 108.7
Mean 0.06382± -0.03461
Sigma 0.041± 1.552

-10 -8 -6 -4 -2 0 2 4 6 8 100

20

40

60

80

100

Entries 651
Mean 0.02817
RMS 1.594
Underflow 0
Overflow 0

 / ndf 2χ 17.78 / 12
Constant 5.1± 108.7
Mean 0.06382± -0.03461
Sigma 0.041± 1.552

Z pull

Figure 9.12: CPU Tracker Z
Pull (PP)

Entries 681

Mean 1.931
RMS 1.21
Underflow 0

Overflow 0

Pt (GeV/c)
1 2 3 4 5 6

T
ra

ck
in

g
 e

ff
ic

ie
n

cy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Entries 681

Mean 1.931
RMS 1.21
Underflow 0

Overflow 0

Fake tracks

Clone tracks

Good tracks

Efficiency for good tracks

Figure 9.13: GPU Tracker Ef-
ficiency and Fake Rate (PP)

Entries 650
Mean -0.01745
RMS 0.8247
Underflow 1
Overflow 0

 / ndf 2χ 12.58 / 13
Constant 5.3± 104.3
Mean 0.03280± -0.01198
Sigma 0.0261± 0.8132

(mm)
-5 -4 -3 -2 -1 0 1 2 3 4 50

20

40

60

80

100

Entries 650
Mean -0.01745
RMS 0.8247
Underflow 1
Overflow 0

 / ndf 2χ 12.58 / 13
Constant 5.3± 104.3
Mean 0.03280± -0.01198
Sigma 0.0261± 0.8132

Z resolution

Figure 9.14: GPU Tracker Z
Resolution (PP)

Entries 650
Mean 0.01283

RMS 1.605
Underflow 0

Overflow 0
 / ndf 2χ 17.43 / 13

Constant 5.2± 108.7

Mean 0.06348± -0.04213
Sigma 0.04± 1.55

-10 -8 -6 -4 -2 0 2 4 6 8 100

20

40

60

80

100

Entries 650
Mean 0.01283

RMS 1.605
Underflow 0

Overflow 0
 / ndf 2χ 17.43 / 13

Constant 5.2± 108.7

Mean 0.06348± -0.04213
Sigma 0.04± 1.55

Z pull

Figure 9.15: GPU Tracker Z
Pull (PP)

100

9.1.2 Bitwise Comparison

Having shown that the GPU tracker quality is already satisfactory, in a second step the tracks
found by the GPU and CPU tracker are compared directly. The problem is that the GPU
tracker is not 100% deterministic due to parallelization: Clusters are assigned to the longest
tracklet possible. But if two tracklets share the same length clusters they are assigned by
the first come first serve principle. Since the tracklet order is not deterministic neither is
the cluster assignment.2 Additionally the floating point arithmetic is not completely IEEE
conform.

For the CPU version, however, there is a well defined result as parallelization is done over
the slices only. Fig. 9.16 shows the number of tracks found by the GPU tracker for multiple
runs over one set of input data.

 0

 100

 200

 300

 400

 500

 600

 700

 23965 23970 23975 23980 23985 23990 23995 24000

Tracks Found in Event

Track Count
Gaussian Fit

CPU Reference

Figure 9.16: Histogram of Number of Tracks Found by GPU
(23979 Tracks Found by CPU Tracker)

Obviously, there is some distribution of the track count, resulting from the indeterministic
processing. The distribution has a gaussian like shape, and the reference count of the CPU
tracker lies slightly outside a one-σ deviation. It is clear that the tracks cannot be compared
directly to the tracks found by the CPU tracker. To enable a meaningful comparison, the
following method was used. Tracking steps I to III were run on the CPU and GPU in parallel.
Start hits of the GPU and CPU tracker were found to be identical, but arranged in different
orders. Now the CPU start hits were rearranged so the sequence of start hits was identical.
Afterwards steps IV and V were executed. The final tracks were then compared bitwise, and
were found to be close to perfect matches. The advantage is that even though the floating
point arithmetic is not completely consistent, the Tracklet Constructor searches for the cluster
next to the extrapolation point. As long as the GPU and CPU extrapolation points do not
differ too much, the same cluster will be found. Tests show that in only about one out of
10, 000 cases, the cluster index differs. The distribution of the track count therefore results
from differences of the start hit arrangement.

2Also the CPU trackers output changes, if the start hits are rearranged.

101

9.2 Tracking Performance

9.2.1 CPU Performance

For obtaining the reference performance, first some CPU-only benchmarks will be shown to
determine the optimal CPU tracker configuration. The parameters to find are: thread count,
compiler, and operating system. Fig. 9.17 shows a plot using different thread counts. The
Nehalem CPU employed offers 4 physical cores but 8 virtual cores (because of Hyperthread-
ing). As expected, the performance increases strongly up to 4 threads, while the increase
when going to 8 threads is still not negligible. Fig. 9.18 shows a more detailed plot for the
high thread counts only. It can be seen, that 8 threads are still not optimal. This is probably
related to the fact that 36 is not a multiple of 8. When distributing the slices among the
threads, 4 threads will have to process 4 slices, while the remaining 4 threads will have to
process 5 slices. This distribution works better for 12 threads. (Benchmarks up to here were
run using GCC on a Linux system)

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 2 4 6 8 10 12 14 16

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Threads

40
02

52
4

20
72

75
3

13
93

89
7

10
58

49
2

10
42

01
2

94
19

11

94
43

81

88
01

46

85
46

01

84
90

05

85
23

71

84
54

34

84
74

25

84
52

17

84
71

18

84
44

20

Figure 9.17: CPU Tracker Performance using Different Thread Counts

 800000

 850000

 900000

 950000

 1e+06

 6 8 10 12 14 16

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Threads

94
19

11

94
43

81

88
01

46

85
46

01

84
90

05
85

23
71

84
54

34

84
74

25

84
52

17

84
71

18

84
44

20

Figure 9.18: CPU Tracker Performance for
Big Thread Counts

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

Windows ICC Linux GCC Linux ICC

To
ta

l T
ra

ck
in

g
Ti

m
e

[µ
s]

8 Threads1043660
840602

809899

12 Threads
1045473

807450

863218

Figure 9.19: CPU Tracker Performance us-
ing Different Compilers

In a second step, the compiler and the operating system is analyzed. Fig. 9.19 shows the
relevant data. The Linux platform is clearly faster than the Windows platform. This is good
news as the HLT farm is based on Linux. An interesting fact is that 8 threads are optimal for
ICC, in contrast to the GNU compiler. A possible reason is a more sophisticated OpenMP
implementation within ICC, as the Intel OpenMP and TBB3 multithread libraries (see [Int1]

3TBB stands for Intel Threading Building Blocks.

102

and [Int2]) offer a load balancing for the threads, but do not assign the slices to fixed threads.
In this way, the ICC can already achieve optimal performance for 8 threads. In the end, it
turned out that ICC and GCC performance are on a par (with a 0.3% margin for GCC). As
GCC is also the compiler used in the HLT farm, the CPU benchmarks will be executed on a
Linux system employing GCC (version 4.3.4) running with 12 threads.

9.2.2 GPU / CPU Comparison

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Initialization

Neighbours Finder

Neighbours Cleaner

Start Hits Finder

Tracklet Constructor

Tracklet Selector

Tracklet Output

Full Run

0

250

500

750

1000

1250

1500

1750

2000

Tr
ac

ke
r C

om
po

ne
nt

 T
im

e
[µ

s]

C
om

pl
et

e
Ti

m
e

[m
s]

Tracker Component

CPU Tracker (Old Code)

11
00

59
60

31
1

10
2

35
02

5

73
5

65
0

17
54

00
0

CPU Tracker (New Code)

15
2

54
78

29
2

87

11
42

7

45
4

33
2

80
74

70

GPU Tracker

28
25

23
87

54 87
39

54

14
80 17

58
31

79
82

Figure 9.20: GPU Tracker Speedup

Fig. 9.20 shows the final speedup for the most recent GPU tracker version compared to the
fastest CPU version available. The benchmark is done using the reference heavy-ion event
with 23979 tracks. Because of the pipeline employed, the results for the single tracking
steps do not sum up to the full tracking time. The result for the initial CPU code at the
beginning of this work is also included. To get a fair comparison, the initial version was at
least multithreaded over the slices. For the CPU code an almost twofold increase can be seen,
originating from memory improvements. Tab. 9.21 shows the final GPU speedup.

CPU tracking time 807470 ±359 [µs]

GPU tracking time 317982 ±23 [µs]

Speedup 2.5394 ±0.0011 %

Table 9.21: Final GPU Tracker Performance

The performance will be analyzed for a couple of different platforms and event sizes in the
following section.

103

9.2.3 CUDA Version

Fig. 9.22 shows that performance for different CUDA versions is almost identical. Surprisingly
the older version (2.2) is even slightly faster than the current version.

 346000

 348000

 350000

 352000

 354000

2.2 2.3 3.0 (beta)

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

CUDA Version

348809

351863
351358

Figure 9.22: Performance for Different CUDA Versions

9.2.4 Performance on Different Architectures

Fig. 9.23 shows CPU and GPU performances for different clock speeds. It is not surprising
that the GPU tracker is affected by the CPU clock speed, as the initialization and Tracklet
Output steps are processed by the CPU and not the GPU.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

Nehalem 2,0 GHz

Nehalem 2,4 GHz

Nehalem 2,8 GHz

Nehalem 3,2 GHz

Nehalem 3,8 GHz

To
ta

l T
ra

ck
in

g
Ti

m
e

[µ
s]

CPU Tracker (1 Thread)

72
22

26
1

60
57

22
9

52
35

47
5

45
99

77
4

39
21

88
0

CPU Tracker (4 Threads)

19
00

92
4

15
86

11
5

13
73

51
9

12
20

25
6

10
39

33
0

CPU Tracker (8 Threads)

15
06

57
0

12
77

13
9

11
15

92
8

98
59

82

83
90

70

CPU Tracker (12 Threads)

14
31

35
2

12
16

46
4

10
59

01
2

92
97

84

81
63

60

GPU Tracker

40
86

91

37
34

49

34
78

44

33
07

73

31
87

62

Figure 9.23: Performance Dependency on CPU Clock Speed

Fig. 9.24 shows a variety of benchmarks on different host systems, operating systems, and
GPU chips. It can be seen that in every combination the GPU tracker is significantly faster.
The fastest CPU version is running on 12 CPU cores which is very much in contrast to a
single GPU chip.

104

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

Nehalem 3,8 GHz

Linux GTX 285

Nehalem 3,8 GHz

Windows GTX 285

Core 2 Quad

2,4 GHz Tesla T10

Dual Intel Nehalem

E5520 GTX 295

AMD Dual Opteron

2427, 12 * 2,2 GHz Linux

Nehalem 4 * 3,8 GHz

Linux CPU GCC

Nehalem 4 * 3,8 GHz

Linux CPU ICC

Dual Intel Nehalem

E5520, 8 * 2,27 GHZ Linux

Nehalem 4 * 3,8 GHz

Windows CPU ICC

Core 2 Quad

4 * 2,4 GHz Linux GCC

To
ta

l T
ra

ck
in

g
Ti

m
e

[µ
s]

318762 354504
504777 509401

744050
807450 809899

1006218 1043660

1843458

Figure 9.24: Performance on Different Architectures

9.2.5 Conclusion (for Heavy-Ion Events)

It was shown that the GPU easily outperforms every CPU available today. When doing a
performance per price comparison, the GPU’s advance even grows. The CPU version ran on
a 12 Opteron cores and a Nehalem overclocked to 3.8 GHz, which is faster than any processor
on the market today. The closest CPU is the 3.33 GHz Nehalem which costs about $1000.4

A more realistic CPU for clusters would run at 2.0 GHz or eventually 2.4 GHz costing about
$200. Then the GPU tracker advantage is even greater.

The compute nodes in the cluster possess two quad core CPUs each offering 16 CPU cores
with Hyperthreading included. This is a problem as it was already stated that running too
many slices in parallel on one node is undesirable because of the limited network bandwidth.
In contrast, it was seen that the GPU tracker already shows good performance for 4 slices.

It can be argued that naturally a host is required in order to plug in the GPU. However, the
cluster nodes are present anyway, and performance can be increased dramatically by plugging
in a $400 graphics card. Furthermore, the GPU tracker only causes a small load on the CPU
which can therefore handle other tasks as well.

9.2.6 Performance for Different Event Sizes

Finally the dependency on the input cluster count will be analyzed. Here the pp-tracker
which was specifically optimized for small cluster counts is again relevant. Fig. 9.25 shows
the performance for the CPU tracker as well as both the pp and the heavy-ion version of the
GPU tracker as a function of input cluster count. All three versions show a linear runtime
with an offset. As expected the heavy-ion GPU tracker’s offset is the highest one, since this
tracker has many kernel calls and synchronization points. A further analysis will be done

4Cluster nodes usually use the server variant, which is even more expensive.

105

soon, but first it will be verified whether the cluster count really represents the right reference,
or whether the track count would be more appropriate.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Clusters

CPU Time
GPU Time

GPU Time (PP Mode)

Figure 9.25: Tracker Performance compared to Number of Clusters

Fig. 9.27 shows the relation between cluster and track count. This relation appears to be
almost linear, and in fact it is, as long as the data is produced using one particular AliRoot
simulator version4. In different versions, parameters for the cluster finder were changed,
resulting in more clusters but the same number of tracks. The data shown in the plot was
created in two major and two minor simulation runs. Therefore, different linear regions exist.
Fig. 9.26 shows the same figure as Fig. 9.25, but as a function of the track count. It also
looks mostly linear with the same exceptions as Fig. 9.27 displays. It becomes apparent, that
neither cluster nor track count are a perfect reference, but the tracking time seems to depend
on input cluster count rather than on track count.

This may sound confusing at first because the Tracklet Constructor time would usually be
assumed to be proportional to the track count. However, this is not the case. More clusters
will obviously result in more start hits and thus in more tracklets. In the end the number of
tracklets representing one identical track will only be higher, but as they are combined in the
merger (merging the track segments of the different slices but also tracks within one slice)
the final track count is not influenced and thus the track count is no good reference.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5000 10000 15000 20000 25000 30000

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Tracks

CPU Time
GPU Time

GPU Time (PP Mode)

Figure 9.26: Tracker Performance com-
pared to Number of Tracks

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Tr
ac

ks

Clusters

Figure 9.27: Clusters / Tracks Relation4

106

For a closer look on small cluster counts, Figures 9.28 and 9.29 show the same diagrams again
with logarithmically scaled axes. There is a small range in which the pp-tracker is the fastest
version which is the interval between 2000 and 5000 tracks.

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000 1e+06

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Clusters

CPU Time
GPU Time

GPU Time (PP Mode)

Figure 9.28: Tracker Performance com-
pared to Number of Clusters (Logarithmic)

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Tracks

CPU Time
GPU Time

GPU Time (PP Mode)

Figure 9.29: Tracker Performance com-
pared to Number of Tracks (Logarithmic)

As all versions show a linear behavior, for each variant the performance is proportional to
the reciprocal of the slope when looking at the limit for the cluster count going to infinity.
Fig. 9.30 shows linear fits where only events with 500000 clusters or more are regarded as
they represent the linear region. Interestingly the CPU fit has a negative offset. This can be
deduced to cache effects slowing down big input data sets slightly. The fit results are shown
in Tab. 9.31. By taking the ratio of the slopes, the theoretical speedup in the limit for a high
cluster count is 3.3993± 0.0098.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

Fu
ll

Tr
ac

ki
ng

 T
im

e
[µ

s]

Clusters

CPU Time
GPU Time

GPU Time (PP Mode)
CPU Time Fit
GPU Time Fit

GPU Time (PP Mode) Fit

Figure 9.30: Linear Fit to Tracker Performance

- Slope [µs / cluster] σSlope Offset [µs] σOffset

CPU tracking time 0.210021 0.000397 −28589.8 868.1
GPU tracking time 0.061783 0.000134 73597.0 293.7
GPU tracking time (pp mode) 0.118078 0.000253 13219.4] 552.0

Table 9.31: Fit Parameters

107

Chapter 10

Summary and Perspectives for the
Future

10.1 Summary

An adaptation of the GPU tracker algorithm was presented in this thesis. Many kinds of
optimizations were discussed, some of rather general concern, while others are closely related
to the GPU tracking algorithm. The critical parts turned out to be a good GPU utilization
inside single kernels as well as a good overall utilization. The first aspect could by reached
by the introduction of dynamic scheduling while the latter could benefit tremendously from
the pipeline introduced. The tracking quality and efficiency were demonstrated to be in no
way inferior to the CPU version.

A twofold speed increase for the CPU tracker was reached as a side effect and originated from
memory optimizations. A new framework was developed to run both CPU and GPU tracker.
Except for some wrapper functions, the CPU and GPU tracker share a common source code,
greatly improving the maintainability. In most cases, changes to the original CPU code could
be avoided.

The tracker has been integrated in the AliRoot and HLT framework with one machine cur-
rently installed at CERN for testing purposes. The GPU tracker will play to its strength
when heavy-ions will start colliding in the LHC. Up to that time, the GPU node will be
maintained in the farm for testing and validation so that when the time has come the cluster
can be upgraded with the best performing cards then available.

10.2 NVIDIA Fermi

The next generation of NVIDIA GPUs is supposed to be presented to the public in March
2010. The number of shaders (ALUs) will be changed from 240 to 512 and memory bandwidth
will also increase. At a first glance an increased ALU count seems ill-suitable for the GPU
tracker, as was very difficult to keep all the ALUs in operation even for the current generation.
However, NVIDIA announced an improved scheduling, so that only half the number of threads
per ALU as before will be needed for fully exploiting the GPU potential.

108

Even more important than mere computing power is the fact that the architecture was up-
dated with HPC applications in mind. The memory now supports ECC1 and the double
precision capabilities were greatly improved (which is a great step in general, but does not
affect the tracker). The new CUDA framework officially supports C++. Finally, a general
purpose L2 cache of 768 kB is introduced together with 64 kB of a mixed memory, which can
be configured as shared memory or L1 cache.

This increased amount of shared memory will directly address issues in the tracker, especially
for the Neighbors Finder, for which benchmarks already showed a significant improvement if
more shared memory was available. Clearly the tracker will benefit from the L2 cache, too.

10.3 SIMDization

With the introduction of the Pipeline it turned out that CPU performance is not negligible
for the GPU tracker either. At the moment the initialization and Tracklet Output times on
the CPU correspond to the tracking steps processed on the GPU in parallel. With further
improvements on the GPU side, e.g., with an improved Neighbors Finder on the next GPU
generation, these CPU steps will become time critical. As these CPU tasks principally only
do data reformating and rearrangement they should be well suited for vector instructions.
Unfortunately, at the moment only a vector implementation for the actual tracking steps I
to V (see [Kre]) exists which are processed on the GPU already. Vectorization should be
extended to the initialization and output step, especially since both CPU and GPU versions
could benefit from this update.

10.4 Seed Merging

One idea that emerged but has not yet been analyzed is the possibility to merge seeds
even before they are processed by the Tracklet Constructor. Because the Neighbors Finder
skips one row, most tracks result in two seeds, with clusters in even and odd numbered
rows respectively. A merge is clearly non trivial, but could halve the effort during Tracklet
Construction, and even improve the fit as more information would be available.

10.5 Code Merge

During this work the code for the most recent version in AliRoot SVN and the GPU test
version produced by Sergey Gorbunov earlier were merged. Especially since vectorization
also should be added to the GPU tracker, a code merge of the CPU, GPU, and vectorized
tracker seems reasonable. Bugs in the vector routines of the GCC compiler are a problem,
which causes incorrect code before GCC version 4.1 (see [Kre]). On the other hand AliRoot
is a framework widely distributed, therefore there is no way to integrate code which does not
compile correctly on earlier compiler versions.

1Up to now, bit flips in memory were assumed tolerable for displaying graphics content.

109

10.6 Vector Classes

As noted in the GPU hardware chapter, and as can be seen in Appendix C, the GPU resembles
a vector processor under some aspects. Vector classes were introduced in [Kre] as a general
abstraction layer with SSE and Larrabee implementations currently available as well as a
scalar fall back. When doing a code merge of the vectorized tracker and the GPU tracker,
one should consider whether it is possible to write the GPU code as explicit vector-code.
Two different vector types must at least be introduced then: the usual global vector for
vectors in global memory, and a local vector which coincides with the global vector for real
vector processors. On the GPU, however, the local vector would be implemented using scalar
thread-local types.

10.7 Track Merger

During this whole work the track merger was not considered at all. The reason is that the
slice tracker was not optimized well and not even multithreaded when the work was started.
In benchmarks from that time, the slice trackers took up to 15 seconds, and thus merger
performance was not relevant. Fig. 10.1 shows tracker and merger times.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

Initial Single Threaded
Slice Tracker

GPU Tracker Merger

Ti
m

e
[µ

s]

8143769

317982

1959932

Figure 10.1: Tracker versus Merger Performance

After the tracker performance has been improved significantly, the merger is left as the most
time consuming part that definitely is in need of improvement. The question is whether the
track merging could also be done on a GPU. Then some other aspects should be considered.
It would not make much sense to transfer tracks from GPU memory to the host if the data
will be transferred back for the GPU merger afterwards. A scenario is imaginable where all
slice trackers run on one GPU and the slice tracks are kept in the GPU memory. Then a
GPU merger could directly process the tracks and only the final result would be transferred
to the host.

Unfortunately, at least for now, this cannot be realized, as this would concentrate too much
data from the HLT farm on one host. As the cluster was recently upgraded with QDR
Infiniband, benchmarks will first have to show the practically available network bandwidth.

110

Appendix A

CUDA Assembler

This appendix provides a short introduction into the NVIDIA PTX code. PTX code is not
the final assembler code executed by the device but intermediate code which is generated
during the compilation process. More information about the PTX code can be found in
[Nvi]. Unfortunately, there is no real reference for the final assembler code.

Assembler PTX code instructions look like:
(instruction).[memory specifier].[vector specifier].[data type 1].[data type 2]

(operand 1),(operand 2),[operant 3],[operand 4]
Square brackets are not obligatory.

Here instruction stands for the instruction itself like ld and st for memory loads and stores,
cvt for type conversions or add and mul for arithmetic operations. The supported options
in squared brackets above differ from instruction to instruction.

The memory specifier is available for memory operations in order to determine the memory
type. Supported values are global, local, shared, and const for the corresponding memory
types.

Memory load operations can be altered by a vector specifier. In such a case, up to 4
values of the corresponding data type can be read into 4 distinct registers. The destination
operand must then be a list of registers.

Most instructions involve at least one data type. For arithmetic operations there is a
common data type for the result and all source data values involved. For memory operations
it defines the size of the memory access. Type conversions naturally involve two data type
specifiers. Valid data types are u16, s16, u32, s32, u64 and s64 for signed and unsigned
integer types of different bitwidth and f32 and f64 for single and double precision floats.
Pointers are represented by the u64 type.

The result of an instruction is always stored in operand 1, which is the destination operand.
Arithmetic instructions can have up to three source operands in the case of a multiply add.
The operands can be constants, registers, and memory addresses. For a memory access the
operand defines the memory address and must be enclosed in square brackets.

This appendix refers to PTX code only, in which case register assignment was not carried out
before. All registers are virtual and might be merged in a later optimization step. They can
also be swapped to local memory if the register file is insufficient. Registers are distinguished
by the type (r for 32-bit integer, rd for 64-bit register, f for 32-bit and fd for 64-bit floats),
and by an increasing number that is appended to the register type. Registers are prefixed by
a %.

111

Some examples follow:

Instruction Explanation

ld.shared.f32 %f1 ,[10]; Load a 32-bit float from shared
memory address 10 into floating
point register 1

st.local.s32 [%r1] ,%r2; Store the 32-bit signed integer
value in %r2 to the address
pointed to by %r1 in local mem-
ory

ld.global.v2.u16 {%r1, %r2} , [%rd1]; Load two 16-bit integers from
global memory, pointed to by
the register %rd1 to the regis-
ters %r1 and %r2

cvt.u32.f32 %r1 ,%f1; Convert the 32-bit float in reg-
ister %f1 to a 32-bit integer and
store to register %r1

madd.f32 %f1 ,%f2 ,%f3 ,%f4; Multiply add example with four
operands

Table 1.1: Assembler Instruction Examples

112

Appendix B

Atomic Operations

When creating a programm in which multiple threads work in parallel, it is often difficult to
regulate access of the worker threads to a shared resource. An atomic operation is a special
instruction for such situations. For example two threads shall increment a variable by one,
so finally the result should be an increment of two. From the software side the C++ code
might look like:
var = var + 1;
However, this neither defines what assembler instructions are created from this by the com-
piler nor how they are processed by the hardware. An abstract realization could be:

• Load the value of the variable from memory into a register.

• Increment the register by one.

• Store the updated content in the register back to memory.

For concurrent threads this leads to a problem. In the case where both parallel threads have
the variable already read into the register but not stored back, they will both increment the
initial value by one and store it back, resulting in a total increase of just one, not two.

This can be solved by introducing atomic operations, which are by definition instructions
executed by the hardware in one single step, without the possibility that another thread
accesses the resource at the same time. By construction, atomic instructions require special
hardware support, which is available for NVIDIA CPU as of compute capability 1.2. Gen-
erally an atomic instruction works on a memory address, and its return value is usually the
data located at that address before the instruction was executed.

As a more complex example, it will be illustrated how the Tracklet Selector determines the
final track ID. Every thread processes a well defined set of tracklets and forms a number of
tracks. The tracks are stored in memory as an array. Enough memory to store all the tracks
is allocated earlier. The challenge is to assign non overlapping memory segments to each
thread to store its tracks.

A counter is initialized by zero. Every thread issues an atomic add instruction adding the
number of tracks it would like to store to the counter. Given the case thread i created n
tracks. The atomic add instructions issued by thread i returns with the value b (thus after
the instruction the counter value is b+ n). Thread i can now store its tracklets to the array
elements b to b+n− 1. As the addition was atomic, no other thread will attempt to store its
tracklet to that position in the array. When all threads are done, the counter contains the
number of tracks actually stored.

113

Appendix C

Gathers / Scatters

For scalar code, memory access is not very complex. In fact, accessing the memory means
storing or reading one value from a register to memory and vice versa respectively. This gets
more complex for vector computers with vector registers. Only the reading case will be dealt
with, which will lead to a gather operation. The scatter operation in the write case is entirely
analogous.

Let the vector width be n. In the simplest case the data read to the vector register is stored
in memory consecutively. Loading data from address p to the register, will read the values
at addresses p, p + t, p + 2 · t, ..., p + n · t, with t the size of the data type. In this case
only a single start address p is used. For efficient implementation most processors require the
address p to be aligned to n · t bytes.

This gets considerably more complex, when the addresses are not consecutive. In that case
the address is not stored in a scalar register but many addresses are stored in another vector
register itself. In an even more complex case it might not be desired to update the entire
vector with data from memory but only a part of it. As a solution a mask register comes into
play. A masked vector gather operation will update the value in the ith component of the
register r if the ith component of the mask register m is set to 1 with the value at the address
pointed to by the ith component of the address register a. Fig. 3.1 shows an example.

The NVIDIA GPU is no real vector processor but it is very similar. The corresponding
access to the vector gather above is a conditional scalar memory fetch from different memory
locations for all threads in one warp. The coalescing rules describe almost exactly the case,
which was found out to be the simplest possible gather, where with consecutive addresses.
In that way writing CUDA code can be seen as implicit vectorization.

Mask Register

Address Register

Target Register

Memory a b c d e f g h j k l m n o pi

4 8 6 12

1 0 1 0

d x f zd x f z
before after

Figure 3.1: Example of Masked Vector Gather

114

Acknowledgements

I would like to thank all who contributed directly or indirectly to this thesis.

At first Prof. Dr. Volker Lindenstruth, who offered me many alternatives from which I chose
the current topic and who always placed confidence in me. He gave me all the freedom I
could have wanted and always had time for discussions and to answer my questions.

I also want to thank Prof. Dr. Thomas Ludwig, who offered to supervise the work as second
reader.

Special thanks to Sergey Gorbunov, who already built a great basis that I could start from.
He was always full of ideas and suggestions regarding a GPU tracker, and also introduced me
to the tracking business, especially the theoretical parts, the Kalman filter, and the track fit.

I could learn a lot from Matthias Kretz, who was working on a similar subject and so we had
lots of productive discussions on new algorithms. He helped me a lot by introducing me to
all the people and computers. I could benefit a lot from his Linux knowledge and I especially
thank him and his wife Flora for proofreading this document.

Furthermore, I thank Ivan Kisel, who was not directly working on the ALICE tracker but
nevertheless helped me to find into the world of tracking.

I want to thank Katharina Hübner and Hans Hettmansperger for refreshing my knowledge
of the Standard Model.

Matthias Bach already collected much experience with the NVIDIA cards. He was always
there to help me, when I got stuck in my implementation and he also proofread this document.

Additionally I want to thank Dr. Timm Steinbeck, Jochen Thäder, Kenneth Aamodt, Oystein
Haaland, Jan Buchholz and Timo Breitner who were a great help for integrating the tracker
into the framework and doing the first tests at CERN.

Special thanks I owe to Collette Van Kerckvoorde, Andreas Ertelt, Oliver Thomas, Hamed
Ali, Daniel Pfefferkorn, and my parents Angelika and Günther who invested a lot of time
proofreading my thesis.

I want to thank Jörg and Nadine Körner, for helping me with many plots and with the 3D
models.

In the end I would like to thank all my other friends who were always supporting me in my
work.

115

Bibliography

[Ali1] ALICE Collaboration, “Technical proposal for A Large Ion Collider Experiment at the
CERN LHC”, Technical report, CERN, December 1995.
http://cdsweb.cern.ch/record/293391/files/cer-000214817.pdf.

[Ali2] ALICE Collaboration, “ALICE Home Page”,
http://aliceinfo.cern.ch/.

[Ali3] ALICE Collaboration, “ALICE Time Projection Chamber. The homepage of the AL-
ICE TPC”
http://aliceinfo.cern.ch/TPC/index.html.

[Ali4] ALICE Collaboration, “Alice Experiment Offline Project”,
http://aliceinfo.cern.ch/Offline/AliRoot/Manual.html.

[Cbm] CBM Collaboration, “The CBM Experiment Introduction”,
http://www.gsi.de/fair/experiments/CBM/1intro.html.

[Cer1] O. S. Brüning, P. Collier, P. Lebrun, S. Myers, R. Ostojic, J. Poole, P. Proudlock,
“LHC Design Report”, CERN, Geneva, 2004,
http://lhc.web.cern.ch/LHC/LHC-DesignReport.html.

[Cer2] Carlo Wyss, “LEP Design Report”, CERN, Geneva, LEP2 Team, 1996.

[Cer3] CERN, “Overall view of LHC experiments”,
http://cdsweb.cern.ch/record/841555.

[Fru+] R. Früuhwirth et al., “Data analysis techniques for high-energy physics. Second edi-
tion”, Cambridge Univ. Press (2000).

[Gor1] S. Gorbunov, “On-line reconstruction algorithms for the CBM and ALICE experi-
ments”, Dissertation Thesis, Frankfurth Institute for Advanced Studies, in preparation.

[Gor+2] S. Gorbunov, Matthias Kretz, David Rohr “Fast Cellular Automaton tracker for the
ALICE High Level Trigger”, GSI Scientific Report 2009.

[Gor+3] S. Gorbunov, U. Kebschull, I. Kisel, V. Lindenstruth, and W.F.J. Müller, “Fast
SIMDized Kalman Filter based track Fit”, Computer Physics Communications, 178:374
- 383, 2008.

[Hlt] Alice HLT, “Quarks and Bytes”, submitted to Nature.

[Int1] Intel Corporation, “Intel C++ Compiler Professional Edition 11.1 for Linux -
In-Depth”,
http://software.intel.com/sites/products/collateral/hpc/compilers/clin\

_indepth.pdf.

116

[Int2] Intel Corporation, “Intel Threading Building Blocks Reference Manual , July 2009“,
http://www.threadingbuildingblocks.org/uploads/81/91/

LatestOpenSourceDocumentation/Reference.pdf.

[Int3] Intel Corporation, “Larrabee: A Many-Core x86 Architecture for Visual Computing”,
URL: http://software.intel.com/file/18198/.

[Kal] R.E. Kalman, “A new approach to linear Filtering and prediction problems”, Trans.
ASME-Journal of Basic Engineering, 82 (Series D) (1960) 35-45.

[Kre] M. Kretz, “Efficient Use of Multi- and Many-Core Systems With Vectorization and
Multithreading”, Diploma Thesis, University of Heidelberg.

[Lar] D.T.Larsen, “ALICE TPC control and read-out system”, TWEPP-09: Topical Work-
shop on Electronics for Particle Physics, Paris, France, 21 - 25 Sep 2009, pp.586-588.

[Man] R. Mankel, “Pattern recognition and event reconstruction in particle physics experi-
ments”, Rep. Prog. Phys. 67 (2004) 553-622.

[Nvi] NVIDIA, “NVIDIA CUDA Reference Manual”,
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/

CUDA_Reference_Manual_2.3.pdf.

[Pen] F. Plentinger, “Discrete Flavor Symmetries”, Master Thesis, Technische Universität
München.

[Pes+] Peskin, Schroeder, “An Introduction to Quantum Field Theory ”, 1997.

[Ret] F. Rettig, “Entwicklung der optischen Auslesekette für den ALICE-
Übergangsstrahlungsdetektor am LHC (CERN)”, Diploma Thesis, University of
Heidelberg.

[Roh+] David Rohr , S. Gorbunov, Matthias Kretz“, Alice TPC Online Tracking on GPU”,
GSI Scientific Report 2009.

[Roo] “ROOT - Architectural Overview”,
http://root.cern.ch/drupal/content/architectural-overview.

[She] S. Sherman, “Non-Mean-Square Error Criteria“, Trans. IRE Prof. Group on Informa-
tion Theory, IT-4, 1958.

[Sre] Mark Srednicki, “Quantum Field Theory”, 2009.

[Ste] T. Steinbeck, “A Modular and Fault-Tolerant Data Transport Framework”, Dissertation
Thesis, University of Heidelberg, 2004.

117

118

Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 16.3.2010 ..

