
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Andreas Hartel

Improving and Testing a Mixed-Signal VLSI
Neural Network Chip

Diplomarbeit

HD-KIP-10-18

KIRCHHOFF-INSTITUT FÜR PHYSIK

ii

Department of Physics and Astronomy

University of Heidelberg

Diploma thesis

in Physics

submitted by

Andreas Hartel

born in Mannheim, Germany

May 2010

ii

Improving and Testing a Mixed-Signal VLSI
Neural Network Chip

This diploma thesis has been carried out by
Andreas Hartel

at the

Kirchhoff Institute for Physics

University of Heidelberg

under the supervision of

Prof. Dr. Karlheinz Meier

ii

iii

Abstract

Improving and Testing a Mixed-Signal VLSI Neural Network Chip

This thesis presents improvements and testing of a neuromorphic mixed-signal VLSI ASIC.
These include changes in both, the digital part and the analog part. Improvements to the
former part that have been carried out by other group members are reported and partially
experimentally verfied. These changes are the exchange of the standard cell library, an increase
of the communication bandwidth and changes that account for the prerequisites of multi-chip
operation in an isochronous gigabit transport network. The analog part of the chip has been
extended by readout circuits to allow for calibration of parameter currents generated by the
on-chip digital-to-analog converter. By extending the verification scheme of the analog full-
custom circuits by an automatic parasitics extraction workflow, changes in the readout priority
encoder for neural events, that were crucial for realistic experiments on the chip, could be
verified in simulations. The improvements could also be successfully verified experimentally and
calibrations with the analog current readout circuits have been carried out and are presented.

Verbesserung und Test eines neuronalen Netzwerk-Chips in mixed-signal VLSI
Technologie

Die vorliegende Arbeit fasst Verbesserungen und Tests an einem hochintegrierten neuronalen
Netzwerk-Chip in analoger und digitaler Mikroelektronik zusammen. Die präsentierten Veränder-
ungen beziehen sich sowohl auf den analogen als auch auf den digitalen Teil des Chips. Änderungen
an letzterem, die von anderen Gruppenmitgliedern durchgeführt wurden, werden aufgeführt
und teilweise experimentell verifiziert. Dabei handelt es sich um den Austausch der verwende-
ten Standardzellen-Bibliothek, eine Erhöhung der Kommunikations-Bandbreite des Chips und
Änderungen am Event-Transport, die für den Multi-Chip-Betrieb in einem isochronen Gigabit-
Netzwerk nötig sind. Der Analog-Teil des Chips wurde um Auslese-Schaltkreise zur Kalibration
und Verifikation des auf dem Chip befindlichen Digital-Analog-Konverters erweitert. Durch die
Erweiterung der Verifikations-Methoden um eine automatische Berechnung der parasitären Ef-
fekte konnten Änderungen an den Prioitäts-Encodern der neuronalen Events durch Simulationen
bestätigt werden. Letztere waren von großer Bedeutung für die Durchführbarkeit von Experi-
menten auf dem Chip. Die durchgeführten Änderungen konnten auch experimentell bestätigt
werden und es wurden Kalibrationen mit den analogen Auslese-Schaltungen der konfigurierbaren
Ströme durchgeführt. Diese werden ebenfalls präsentiert.

iv

Contents

1 Introduction 1

2 The FACETS Stage1 Hardware System 3
2.1 Purpose . 3
2.2 Structure . 4

2.2.1 The Spikey chip . 4
2.2.2 Supporting hardware . 10
2.2.3 The Control PC and its software . 13

3 Improvements in the hardware design 15
3.1 The digital part of the Spikey chip . 16

3.1.1 Improvements in the Physical Layer . 16
3.1.2 Improvements in the Application Layer 16
3.1.3 Errors during changes in the design . 17

3.2 The analog part of the Spikey chip . 18
3.2.1 Improving the neuron readout priority encoder 18
3.2.2 Improving parameter voltage generation 20
3.2.3 Adding current monitoring devices . 20
3.2.4 Changes in the current parameter assignment 25

4 Experimental setup 27
4.1 Supporting hardware . 27
4.2 Measurement devices . 27

4.2.1 Measurements with LVDS lines . 27
4.2.2 Analog measurements . 28

4.3 The FACETS Stage 1 software framework . 29
4.3.1 PyNN and FHW-1 . 30

5 Experimental Verification 31
5.1 The Physical layer . 31
5.2 Parameter value generation . 36

5.2.1 Parameter currents . 36
5.2.2 Parameter voltages . 43

5.3 Event readout priority encoder . 47

6 Conclusion and Outlook 51

A A brief description of the Calibre xRC workflow 53
A.1 The different steps in parasitics extraction . 53
A.2 Example SVRF Rule File . 57

v

vi CONTENTS

Chapter 1

Introduction

One might call science and reason the skills that single out the human race from the multitude
of other living beings. It is the capability of the human brain to wonder about the world, how
it works, where it comes from and which role we play in it. The human brain has also brought
up the question about its very own nature, leading to an endeavor called neuroscience. But it
is not only for philosophical reasons that one is interested in the essence of the human brain, it
is also for more practical reasons, such as cures for neurological diseases and new paradigms for
information processing. Nowadays however, neuroscience is still far from providing a complete
understanding of the brain.

The FACETS project [24], in whose context the work presented in this thesis has been
carried out, is a European scientific collaboration that aims at finding answers to these questions.
FACETS stands for ”Fast Analog Computing with Emergent Transient States”. But what does
that mean? Emergence is a phenomenon that has already been known to philosophers of the
ancient world. It describes the fact that complex behaviour arises from a collection of simpler
building blocks, of which no single one has properties that would by itself explain such behaviour.
In the case of the brain it is the rather limited properties of its basic building blocks to exchange
electrical signals that, when connected to large nets containing billions of these units, result in
capabilities such as sensation, emotion and intelligence. It was around 1900 that the first pioneers
of neuroscience stated that these building blocks be neurons and their synaptic connections.

The principle of emergence can also be applied to larger scales, making individual intelligence
collective intelligence. The latter being responsible for important achievements in fields such as
mathematics, physics and neuroscience. And of course, to physicists emergence is well known
as the basic paradigm of statistical mechanics.

Nowadays, much of the endeavor in natural sciences involves the use of computational re-
sources. Even though computer science has seen vast improvements concerning computational
power in the last 40 years, many scientific calculations, especially simulations of complex systems
such as large collections of neurons and synapses, still require very much time. This is due to
the fact that general purpose computers obey the von-Neumann paradigm which involves serial
processing of instructions, contrary to the parallel nature of neural information processing.

A solution to this problem, that is proposed by the FACETS project, involves very-large-scale
integration (VLSI) of microcircuits that are designed to emulate the behaviour of biologically
inspired silicon neurons and synapses. Information processing takes place simultaneously in
every neuronal circuit, making it much faster than simulations of neuronal networks on general
purpose computers. The FACETS hardware systems that implement these circuits are designed
at TU Dresden1 and the University of Heidelberg2.

The FACETS hardware, parts of which will be described in this thesis, is a platform for neuro-
scientific experiments. It is built to supply a flexible and fast emulation tool for scientists that

1Highly-Parallel VLSI-Systems and Neuro-Microelectronics of TU Dresden, http://hpsn.et.tu-dresden.de/
2Electronic Vision(s) group of the Kirchoff Institute for Physics Heidelberg, http://www.kip.uni-heidelberg.

de/cms/groups/vision/home/

1

http://hpsn.et.tu-dresden.de/
http://www.kip.uni-heidelberg.de/cms/groups/vision/home/
http://www.kip.uni-heidelberg.de/cms/groups/vision/home/

2 CHAPTER 1. INTRODUCTION

intend to discover the computational paradigms that form the basis of information processing
in the brain. Since it is biologically inspired, such hardware is often referred to as neuromorphic
hardware. The development of neuromorphic hardware based on very-large-scale integration is a
process that takes time. From the preliminary design, in terms of circuit schematics, to the final
chip, built of silicon and metal, it may take months to years. A first prototype always has to be
improved in later revisions, which may again take several months to years. One reason for this
long-winded process is that the involved circuits are themselves outcome of scientific engineering
research. The second reason is that, as stated above, simulations of complex systems, in this
case systems of millions of active and passive electronic devices, are not feasible on normal
computers. Therefore, full-chip simulations can not be done with reasonable effort. The process
of the improvement of the VLSI ASIC3, that is the central building block of the FACETS Stage
1 Hardware System, is the content of the thesis at hand.

Outline

After this introduction, the second chapter will introduce the FACETS Stage 1 Hardware System
(FHW-1)4. Its core part is the Spikey ASIC which existed in its third revision in 2009. Chapter 2
will give an overview of the different parts of FHW-1, especially of the Spikey chip in this state.
Chapter 3 will then describe the most important improvements that have been made on the
Spikey chip. These resulted in the production of the fourth revision of the ASIC. Included
in these improvements was the introduction of improved current monitoring devices for the
parameter currents generated by the on-chip digital-to-analog converter by the author. However,
not all the changes that have been made will be presented in this thesis. The interested reader
may refer to [13] for a detailed listing of all the changes between Spikey’s third and fourth
revision. The fourth chapter outlines the experimental setup that was necessary to verify the
basic functionality of the newly produced chip and to check the impact of the implemented
improvements. The results of these measurements will then be presented in chapter 5.

3Application-specific Integrated Circuit
4FACETS Hardware Stage 1. This notation was introduced by Dr. Daniel Brüderle in his PhD thesis [4].

Chapter 2

The FACETS Stage1 Hardware
System

This chapter will introduce the reader to the FACETS Stage1 hardware system which has been
developed during the last six years within the FACETS project.

There is a popular computer book series called ”. . . in a Nutshell”, sending the reader on
a journey from outside a subject to the very core of it, i.e. the most important information
that defines the subject. Even though the core of a nut is mostly approached from outside the
nut, by first taking care of the shell, we will introduce FHW-1 the other way around in this
chapter. First of all, the purpose of the system will shortly be introduced, giving an idea of
the mathematical background of the used neuron model. Afterwards, the implementation of the
FACETS Stage1 Hardware System will be explained from inside to outside.

2.1 Purpose

The research in the field of neuroscience can be divided into two main branches. The first one
of these is the bottom-up approach, consisting of biological experiments on the cell and network
level. The output of this research serves as input to the second branch, the top-down approach,
which involves modelling neural networks on different scales, both in time and space, i.e. on
the cell and network level. The success of this latter task depends strongly on the choice and
capabilities of the computational tools that are used because of its mathematical complexity.
It is one aim of the FACETS project to supply the international neuroscientific community
with such tools. These are implemented as neuromorphic hardware devices, i.e. electronic
circuits that emulate the behaviour of biological neural nets. The FACETS hardware systems
are implemented in terms of VLSI1 circuits. Therefore, the size of the implemented circuits is
measured in scales of µm. Two of the most important advantages of neuromorphic hardware of
this type over software-based simulators, that are executed on general-purpose computers, are
less power consumption and higher simulation speed.

The framework of which structure and recent improvements will be discussed in this thesis
is called the FACETS Stage 1 Hardware System. Its structure will be explained in detail in the
following section. Its core elements are highly accelerated (compared to biological timescales)
and configurable neuronal and synaptic circuits which have been implemented as leaky integrate-
and-fire neurons with synaptic circuits that feature two different types of plasticity. Schematics
of the neuronal and synaptic circuits of the system are depicted in figure 2.1. The correlation
between the parameters that are shown in this figure can also be described in terms of the
differential equation 2.1. It describes the change of a neuron membrane potential with time,
dependent, on the membrane capacitance Cm, the leakage Potential El, the inhibitory and
excitatory potentials Ei and Ex and the conductances that control the current flowing from and

1Very-large-scale integration

3

4 CHAPTER 2. THE FACETS STAGE1 HARDWARE SYSTEM

Figure 2.1: Operating principle of the spiking neural network (taken from [25]). The boxes
contain schematics of the synapse drivers, the synapses and the neurons of the FHW-1.

to membrane potential.

− Cm
dV

dt
= gl (V − El) +

∑
k

pk(t)gk(t) (V − Ex) +
∑

j

pj(t)gj(t) (V − Ei) (2.1)

This conductance-based leaky integrate and fire model allows for the inclusion of plasticity
mechanisms, i.e. changing synaptic behaviour with time, by varying the values of the inhibitory
and excitatory conductances gj and gk with time. The values of the conductances gj,k are given
by equation 2.2.

gj,k(t) = wj,k(t) · gmax
j,k (t) (2.2)

There are two implemented synaptic plasticity mechanisms on the chip: Spike Timing De-
pendent Plasticity (STDP), also referred to as Long Term Plasticity, and Short Term Plasticity,
consisting of synaptic depression and facilitation.

2.2 Structure

2.2.1 The Spikey chip

In the following, the FACETS Stage 1 Hardware System will be referred to as FHW-1.x, where
x labels the revision of the Spikey chip which is the core element of the system.

This main building block of FHW-1 is a mixed-signal VLSI neural network ASIC that is
fabricated in a 180nm CMOS2 process by UMC 3. It has been developed by Schemmel4 et al.

2Complementary Metal-Oxide-Semiconductor
3United Microelectronics Corporation, Taiwan
4Member of the Electronic Vision(s) group

2.2. STRUCTURE 5

correlation readout

o
u

tp
u

t
b

u
ff
e

rs

3
8
4

m
e
m

b
ra

n
e

v
o
lt
a
g
e

b
u
ff
e
rs

synapse ram control

2 x 192 x 256 synapses

le
ft

s
y
n
a
p
s
e

d
ri
v
e
rs

ri
g
h
t
s
y
n
a
p
s
e

d
ri
v
e
rs

384 neurons

asynchronous priority encoder

time-to-digital converter

d
ig

it
a
l-
to

-t
im

e
c
o
n
v.

LVDS external interface

2
9

6
7

b
ia

s
cu

rr
e

n
t
m

e
m

o
ri
e

s
a

n
d

6
4

b
ia

s
vo

lta
g

e
g

e
n

e
ra

to
rs

1
0

B
it

D
A

C

weight
RAM

DAC

controlled
conductance

correlation
measurement

synchronous digital control

p
re

-p
o
s
t

p
o
s
t-

p
re

48 to 1 mux

DLL

digital part

d
ig

it
a
l-
to

-t
im

e
c
o
n
v.

Figure 2.2: Spikey chip with focus on the analog part (taken from [14])

([27], [26], [25]) and Grübl4 ([14]) from 2003 on and had been available in its third revision as
of April 2008. During this thesis it has been improved by the aforementioned individuals and
the author.

Spikey contains 384 leaky integrate-and-fire neurons and 512 synapse drivers, split into two
blocks of equal size. A synapse driver is a circuit that generates action potentials, also called
”spikes”, which can then be redirected to the neuronal circuits via a synapse array. As can be
seen in figure 2.1, the neurons are located at the bottom of a synaptic array, i.e. one neuron is
placed at the end of every row of synapses. On the other hand, every row of synapses gets its
input from a synapse driver. Every neuron of one block can thus be connected to every synapse
driver in the same block via synapses with a digitally adjustable weight with a resolution of 4
bits.The conductance based synapses feature two plasticity mechanisms: Synaptic depression
and facilitation and Spike Timing Dependent Plasticity (STDP), which will not be described in
more detail.

Block diagrams of the complete chip are depicted in figures 2.2 and 2.3. Both figures show the
same chip, only differing in that they emphasize different parts of it. The first one concentrates
on the analog part which is a full custom design unit, while the second figure shows the details
of the digital part.

The analog part comprises the neuronal and synaptic circuits which build a configurable
spiking neural network. Most of the parameters that control the behaviour of the individual
neurons and synapses are analog voltages between 0 and 1.8 volts or currents between 0 and
2.5 µA (one exception is the synaptic weight, that is encoded as a 4 bit digital value). These
currents and analog voltages are digitally stored in a parameter RAM in the digital part of
the chip. The current range of 0 A to 2.5 µA had been chosen as a result of a multi-objective
trade-off between low power consumption and good accuracy amongst others. There are also
circuits to monitor the adjustable parameterized voltages and currents contained in the analog
part of the chip, some of which have been developed during this thesis. It was the main goal
of this thesis to improve both, the current readout facilities of the Spikey chip and the voltage

6 CHAPTER 2. THE FACETS STAGE1 HARDWARE SYSTEM

lo
o
p
b
a
c
k

s
ta

tu
s
,

c
o
n
tro

l

s
y
n
ra

m
c
o
n
tro

l

e
v
e
n
t

lo
o
p
b
a
c
k

a
n
a
lo

g
re

a
d
o
u
t

p
a
ra

m
.

ra
m

DAC
bias, param.
generation

h
t_

d
e
fra

m
e
r0

h
t_

d
e
fra

m
e
r1

d
e
la

y
lin

e
s

d
e
la

y
lin

e
s

c
o

m
m

a
n

d
_

re
g

re
s
u

lt_
re

g

e
v
e

n
t_

re
g

d
a

ta
_

o
u

t_
re

g

h
t_

fra
m

e
r0

h
t_

fra
m

e
r1

d
e
la

y
lin

e
s

d
e
la

y
lin

e
s

event_buffer_in

event_buffer_in

event_buffer_in

event_buffer_in

event_buffer_out

event_buffer_out

e
v
e

n
t_

b
u

ffe
r_

in
_

m
u

x

e
v
e

n
t_

b
u

ffe
r_

o
u

t_
m

u
x

M
U

X

M
U

X

1
6

D
T

C
s

6
T

D
C

s

2 network_blocks
2 x 256 x 192 synapses

400MHz 200MHz400MHz200MHz 400MHz

command decode

6 x req 6 x ackrwb

analog part

phys. layer

link layer
application layer phys. layer

link layer

PLL
PLL_RESET PLL_BYPASS RESET CI_MODE C_DELAY

time base

clocks

sync

clock_gen

200/400 MHz L
V

D
S

in
te

rfa
c
e

L
V

D
S

in
te

rfa
c
e

EXT_CLK

core
modules

CHIP_ID<3:0>

Figure 2.3: Spikey chip with focus on the digital part (taken from [14])

generating cells in the analog part of the chip.
In order to individually program the analog voltages and current parameters of the 384

neurons and 98304 synapses with minimal die area usage, an approach with only one current
DAC (digital-to-analog-converter) and multiple analog current memories has been chosen. Most
of the programmable parameter voltages and currents are used to adjust the behaviour of the
individual neurons and synapses and the way the spikes are generated. Some of the parameters
that are stored in the parameter RAM will be described in more detail in chapter 3.

When a neuron spikes, it generates a digital event, consisting of a timestamp and the neuron’s
number. These events can afterwards be transported off chip or fed back into the synaptic input
circuits of the same chip. The digital part of the chip performs this task of spike transportation
as well as all duty that has to do with chip control and configuration. It can be split up into
the three following layers, of which the functional blocks are shown in figure 2.3.

The Physical layer converts the incoming data from the Low Voltage Differential Signal
(LVDS) lines to the CMOS levels of the chip and vice versa. The differential signal
transmission is implemented according to the HyperTransport[5] Standard which requires
source-synchronous data transmission. Therefore, a clock signal is transmitted by every
transmission unit along with the data signals. The Physical Layer also comprises config-
urable delay lines, both at the receive and at the transmit side of the chip, that allow the
user to adjust the phases of the input lines of one bus relative to each other.

The signal transmission on the lines of a data bus between a sender and its receiving
counterpart is subject to signal skew5. This is because of the different lengths of the
connecting lines on the boards between the Nathan module and the network chip. To
compensate for this effect in the Spikey chip, delay lines had been implemented on every
signal line of the receive and the transmit side of the Physical layer. The delay of one line
is adjustable in 8 steps. A schematic of such a delay circuit is shown in figure 2.4. Via a
3-bit delay selection line, one can activate one of seven tri-state buffers or deactivate all of
them. In the diagram, they are denoted by numbers from 0 to 7. The 3-bit address decoder

5Time difference between to signal events that would ideally happen simultaneously.

2.2. STRUCTURE 7

0 3 7

delayline

buf

HDINVD1 HDINVD2

HDBUFTD2

HDBUFD4

C

D Q

R

C

D Q

R

C

D Q

R

in

del<2:0>

load_del

rst

out

d
e
c
o
d
e

3
->

8

Figure 2.4: Schematic of a delay line as implemented in the physical layer (taken from [14])

is depicted in the lower left corner. The outputs of the buffers are connected to a common
output net. Between two of such buffers are two inverters, which have been selected to
have a summed delay of approximately 80ps in the typical process corner. The reason for
using two identical inverters is to have the same delay for the rising and falling edge of
the signal, which would not be given for a single inverter. These delay lines have been
improved during the development of FHW-1.4, as will be explained in detail in chapter 3.

To maximize the data valid window6 of the two input buses of the Spikey chip, the delay
lines can be used to adjust the arrival time of the signal edges such that they arrive at the
same time at the DDR input registers of the link layer. The clock phase relative to the
signal phase at the output of the controlling programmable logic device can be adjusted
additionally. This mechanism will be described in detail in section 5.1.

After the delay lines the double data rate (DDR) signals are split up to two registers of a
width of nine bits each. Afterwards, the content of these registers can be read by the Link
Layer with single data rate.

The Link layer decodes the packet information from the clock domain of the physical layer,
operating at twice the clock speed, to the clock domain of the chip, operating at up to 200
Mhz, and vice versa. This process is called (de-)framing. To de-frame an incoming packet,
the signal width is doubled while dividing the clock frequency by two. The Link Layer will
then transmit the received data to the Application Layer. Analogously, the Link Layer
converts data that is intended to be sent off chip in a process called framing. However, in
order to be able to test the validity of the links that connect the chip and configure the
delay elements of the Physical Layer, it also implements a bypass mode, called CI MODE. In
this mode the Link Layer bypasses the Application Layer while still de-framing the packet
information received from the Physical Layer and forwarding it directly to the transmission
unit.

The Application layer distinguishes between event packets and control interface packets. The
former contain spike timing information that can be sent to the analog part, the latter
control and configuration information. The Application Layer is connected to the analog
network block that contains the actual neuronal and synaptic circuits and a DAC that
generates the parametrized currents and voltages.

The functionality of the parameter RAM module of the digital part of the chip and the
DAC in the analog part will be explained in the following because it is crucial for the
understanding of some of the improvements in FHW-1.4 that were carried out by the

6Time during which a signal (bus) is in a stable logical state and can be sampled by a receive unit upon
occurrence of a clock edge.

8 CHAPTER 2. THE FACETS STAGE1 HARDWARE SYSTEM

author and that will be explained in chapter 3. A schematic of the mentioned modules is
depicted in figure 2.5. The main task of the parameter RAM module is to refresh every
programmed current value in a periodic way, such that the chip can work with only one
DAC while keeping the current values in the current memory cells constant over time.
These current memory cells are used to allow different parameters for every synapse driver
and neuron circuit.

Another important task of the Application Layer is readout and packing of spike event
data. After a spike has been digitized by the Time-to-digital-converter (TDC) it is buffered
in the event buffer out module acting as a FIFO that stores digital spike events. Up
to three of these events can be combined to a 64-bit event packet by the subsequent
event buffer out mux module. These event packets will then be sent off the chip to the
controlling programmable logic device, that will be explained in the next subsection.

The following paragraphs will introduce the details of the parameter voltage and current
generation on the chip. This is an important feature because it makes the chip configurable
and versatile and allows to implement neurons and synapses with different behaviours with one
hardware system. The core part of the parameter voltage and current generation block is a
10-bit DAC that receives its reference current Irefdac from outside the chip and its digital input
signal from the parameter RAM controller. The reference current is generated on the Recha
board (as explained in the next subsection). The parameter RAM is shown in the core modules
block of figure 2.3. This digital module controls the DAC input and determines which one of
the 2967 current memory cells on the chip will be activated and act as a sink (or source) to the
current controlled by the DAC. To this end, the parameter RAM module has a 12-bit address
output. Since there exist both, current memory sources and sinks on the chip, the DAC has
two current output terminals, one for each type of current memory. Beyond these two normal
current outputs, there is one current output that is able to source up to the decouple of the
input current Irefdac. For simplicity, on the schematic shown in figure 2.5 only this output and
the current source output is shown, the current sink terminal is omitted.

There are also two arrays of additional current memories. One containing nine current
memory sources and one containing nine sinks. Both arrays are connected to the according
current output terminals of the DAC, and can be activated by the parameter RAM module in
order to be able to apply the tenfold value at the DAC input, resulting in the normal current
value (before multiplication) from a point of view of the target current memory cell. The
configuration can also be seen in figure 2.5. This feature has been implemented to avoid large
steps at the DAC output. When a large input value was applied to the DAC’s input and a very
small value shall be output by the DAC afterwards, this change in the output current would
take several tens of microseconds. To prevent the DAC from having to switch the capacitive
load at its output from a large current value (during the write process of n-th parameter value)
to a very small value (during the write period of the (n+1)-th parameter value), the additional
current memories can be activated so that the DAC input can be kept at a large value that is
scaled down afterwards. This feature is called boost.

The parameter RAM module can make use of 16 look-up-table (LUT) entries. These contain
the current write timing information and can be referred to by the parameter information. Each
of the LUT entries holds 4 pieces of information:

1. Number of clock cycles during which the programmed current value is applied, stored as
exponent of two.

2. Number of clock cycles during which the boost switch is activated, stored as exponent of
two.

3. Number of repetitions of the write times in this LUT with the same DAC input value.

4. Step size of current memory address increment between two successive repetitions.

2.2. STRUCTURE 9

DAC

Parameter RAM module

value

9x

boost

Vout

bias

curmem

adress

decoder

cadr cin10cin

curmem

curmem

curmem
cin

cin

cin

Figure 2.5: Digital-to-analog converter with controlling digital block and example target param-
eter voltage cell

With these LUT entries the user can control which current value will be applied for how long
to the according current memory cell. If in the same LUT entry the normal write time and
the boost write time value are greater than zero, the programmed DAC input value will be
multiplied by a factor of ten during the boost period and afterwards the normal 10-bit value
will be setup during the normal write time.

If, however, the normal write time exponent is set to zero, while the boost write time exponent
is greater than zero, the digital control module applies the programmed current value to the
DAC without multiplying it by a factor of ten while activating the nine supplementary current
memory cells, thus effectively dividing the current value applied at the DAC input by a factor
of ten.

After the chip has been configured by the controlling host PC, the voltages and currents are
stored in a single ported static memory cell by the parameter RAM module. For the reasons
just mentioned, one programmable current actually involves three pieces of information: a 10-
bit value applied to the DAC, a 12-bit address value determining which current memory cell to
enable and a 4-bit Look-up-table address.

Apart from the current memory cells, there are also two voltage generating blocks, called
curmem vout block, containing 24 vout cells each. Their functionality will be explained in the
following paragraph and can be seen in figures 2.5 and 2.6. Theses cells can be programmed by
the parameter RAM module, too. The cin input pin is connected to the normal current source
output of the DAC. The current applied to this terminal will be saved in the current memory
cell included in each vout cell. This current serves as bias current for the operational amplifier
(op-amp) buffering the output voltage. The other current input terminal, called cin10 generates
a voltage via a 10kΩ resistor, which is then saved on a capacitance. This is the actual voltage
that serves as a parameter to the neuronal and synaptic circuits. Switch S1 is controlled by
an address decoder that is controlled by the address bus of the parameter RAM module. This
implies that only one vout cell at a time is enabled. During one write procedure to a vout cell,
switch S2 will be closed first. After the write time is finished, switches S1 and S2 will be closed
while S1 will be opened, such that the voltages on C3 and C2 can adjust.

For monitoring purposes, a separate analog output pin, called IBTEST, is available in the
Spikey chip up to FHW-1.3. Internally, it is connected to the so called analog readout chains of
each curmem vout block and to one of the current memories in the so called outamp block. An

10 CHAPTER 2. THE FACETS STAGE1 HARDWARE SYSTEM

cin

+

-

curmem

cin10

S
1

S
2

S
3

10kΩ

vout

C
1

C
2

C
3

50Ω

Figure 2.6: Schematic of the configurable, voltage generating cells in FHW-1.4

R
Q

QD

R
Q

QD

R
Q

QD
IN OUT

A

A

...IN OUT

A

A

clk vin_0 vin_1

aro_in aro_out

IBTEST

Figure 2.7: Schematic of the analog readout chain

analog readout chain consists of a set of flip-flops connected to build a 1-bit shift register, while
each one of these flip-flops is connected to a transmission gate that controls the connection of
one vout cell to the output pin IBTEST. This way, only one cell at a time can be connected to
the output pin if the digital analog readout chain controller feeds the chain input accordingly.
A schematic of this shift register can be seen in figure 2.7.

The digital module controlling the analog readout chain consists of a 24 bit register that can
be accessed by the controlling software. After having set this register to a value containing only
one single logic high value and having set which of the two analog readout chains to program
the module consecutively applies the bits stored in its register to the input of the analog readout
chain.

The other cell that is connected to the IBTEST output net in FHW-1.3 is a current mem-
ory that belongs to the outamp block. This block contains nine separately addressable current
memory cells, eight of which supply the bias currents for the operational amplifiers that buffer
neuron membrane voltages of a neuron, which can be selected by the user.

The ninth current memory cell had been implemented for testing purposes only. The changes
that have been performed in this block will also be described in chapter 3.

2.2.2 Supporting hardware

The Recha Board is a printed circuit board (PCB) on which the Spikey chip is directly
bonded. It serves as a carrier board for the chip and supplies voltages and currents
that are necessary for its operation. The current version of this board is a conjoint work
of Dr. Andreas Grübl and Boris Ostendorf7 [20]. It also features the following support
circuits:

• A four-channel 10 bit serial DAC that generates the reference voltage Vcasdac for the
DAC inside the Spikey chip, as well as the parameter voltages Vm, VREST and VSTART .
It is controlled by the FPGA on the Nathan module which will be introduced in the
next subsection.

7Former member of the Electronic Vision(s) group

2.2. STRUCTURE 11

Figure 2.8: Photograph of the experimental setup, showing Backplane, Nathan module with
mounted Recha PCB, Spikey chip and oscilloscope in background.

12 CHAPTER 2. THE FACETS STAGE1 HARDWARE SYSTEM

• A current source that generates the reference current for the DAC inside the Spikey
chip Irefdac. It receives its control voltage from a DAC on the Nathan PCB.

• Nine lemo jacks that can be connected to an oscilloscope. Eight of these are hard-
wired to the eight neuron membrane potential pins of the Spikey chip.

• A multiplexer that selects which one of the 9 analog voltage output pins of Spikey
will be multiplexed to the first of these lemo jacks, that is mounted in one corner of
the Recha board. Since this multiplexer can easily be controlled by the FPGA on
the Nathan board, and thus by the host PC, all the analog output pins of the Spikey
chip can be monitored by using only one single oscilloscope channel.

• A four-channel 10 bit serial analog-to-digital-converter ADC, to enable the software
framework to directly read back the voltage that has been selected by the multiplexer.
This way, one can read parameter voltages and currents both, digitally via the ADC
and the software framework and directly via an oscilloscope connected to the test pin.

The Nathan Module was designed as controller of the Analog Neural Network (ANN) ASIC
that can be hosted on the Nathan board and as a connector module for the distributed
operation of mixed-signal Analog Neural Network ASICs. The main building blocks of
a Nathan module are a printed circuit board with an FPGA module and a connection
socket for an ANN ASIC. In the case of FHW-1 a Recha board containing a Spikey chip is
mounted on this socket. It is possible to setup large scale neural networks consisting of up
to 16 Spikey chips per backplane (c.f. following paragraphs). These chips communicate
via the FPGA on the Nathan module by exchanging digital events over high-speed serial
links. The main tasks of the programmable logic device on the Nathan module are:

Slow-Control This module allows for real-time access to the chip via the modules spikey-
sei and spikey control and for access to the DDR-SDRAM attached to the FPGA,
as can be seen in figure 2.9. If the user wants to send packets to the chip with a
specified timing, i.e. with a controlled delay between the packets, this can only be
realized with the so called Playback memory feature.

Playback memory Packets that have been saved in the FPGA’s RAM modules can be
sent to the chip in the programmed order and with specified delay values. Therefore,
this mode of operation can guarantee a well-defined spike input rate to the Spikey
chip.

Other tasks of this module are:

• The operation of the digital-to-analog-converters that generate some of the control
voltages for the chip.

• The readout of the analog-to-digital-converter on the Recha board.

• A temperature control mechanism

The Backplane serves as connection device and physical support. It establishes physical con-
nections between up to 16 Nathan Modules, that can be plugged onto the backplane. A
controlling host PC can be connected via an SCSI cable and a PCI card or, based on
work lately accomplished in the Electronic Vision(s) group, via a Gigabit Ethernet link.
A programmable logic device on the backplane controls the communication between the
host PC and the Nathan modules. A Multi-Class Gigabit network architecture (c.f. [21])
that connects the Nathan Modules, implemented using the multi-gigabit transceivers of
the FPGAs, is used for the exchange of spike events (c.f. [8]). For the work that has
been carried out during this thesis, the SCSI connection via the PCI card in the host PC
was used exclusively because the Ethernet link software and hardware implementation had
not been available with sufficient stability at the beginning of the thesis. The connection

2.2. STRUCTURE 13

Neural
Network

ASIC

DAC
ADC
Ctrl.

Slow-Control manager

spikey
control

spikey_sei

ramclient
read

ramclient
write

ramclient
read/write

RAM manager & control unit

DDR-SDRAM

Slow-Control
memory
access

neural network ASIC access

DAC/ADC

Nathan

Recha

interface to backplane & control PC

S
lo

w
-C

o
n
tro

l
m

a
s
te

r

Figure 2.9: Block diagram of the functional modules of the Nathan and the Recha modules
(taken from [14]) as used for single-chip networks.

between the individual Nathan modules and the controlling host PC is established via a
token ring protocol.

Apart from its role as mere physical support and power supply, the backplane also provides
the clock signals for the Nathan and Recha boards, i.e. for the Nathan FPGA and the
Spikey ASIC and hosts a programmable logic device for connection purposes. The clock
signals can be chosen to originate from either two different internal clock sources or an
external clock source, that can be inserted via a LEMO jack or an S-ATA cable. The
latter could also be used to supply two backplanes with identical clock signals. Because
the internal clock sources operate at fixed clock frequencies of 100 MHz and 156.25 MHz
respectively, these frequencies will be investigated in more detail in chapter 5. Since the
Physical Layer of the Spikey chip operates at double data rate, these clock frequencies
result in a clock frequency of the link layer of 200 MHz and 312.5 MHz respectively.

2.2.3 The Control PC and its software

The controlling host PC is connected to the backplane via an SCSI cable and a PCI card. The
hardware access is encapsulated in the Darkwing server (dwserver) software framework that
allows simultaneous access of multiple software clients to the same backplane.

Using the dwserver interface to the hardware, a software framework allows for control of
the Nathan FPGA and the Spikey chip on different levels of abstraction. Enabling the user on
the one hand to configure the Spikey chip completely, i.e. all of the 2967 current and voltage
parameters and all synaptic weights, with one single configuration file while on the other hand
giving register level access to the chip. Analogously, it gives the user the choice to send single
spike event packets or to send complete sequences of spikes (spiketrains). The software structure
and improvements that have been performed in the past 12 months will be explained in more
detail in chapter 4.

14 CHAPTER 2. THE FACETS STAGE1 HARDWARE SYSTEM

Chapter 3

Improvements in the hardware
design

As mentioned earlier, the first revision of
the Spikey chip (FHW-1.1) has been finished
in 2003. Since then, many improvements had
to be made, which is common practice in the
development process of a mixed-signal ASIC,
as can be seen in figure 3.1 ([9]). It shows the
typical steps of an Integrated Circuit (IC) de-
sign process. The work that has been done for
this thesis in the past year has been a walk
along this line of IC development. Before the
design of FHW-1.4 the Spikey chip was in the
state of ”Test & Evaluation”. Because of the
shortcomings of the chip that have been found
in the past years, changes had to be made both,
to the ”Preliminary Design” and the ”Layout”.
”Preliminary Design” means circuit schematics
in the case of analog devices or source code in
a Hardware Description language in the case of
digital devices. The ”Layout” step is the ac-
tual implementation of these devices in terms
of MOS transistors or passive electrical compo-
nents.

For example, the modifications that needed
to be done to add better current monitoring
devices to the analog part of the chip however,
also involved changes in the circuit schematics
and simulations thereof. Not all the changes
between FHW-1.3 and the current version of
the hardware system have been done by the
author, therefore the responsible person(s) will
always be named together with the changes
themselves.

In this chapter, the improvements in chip
design are grouped by logical design units on
the chip. Some of the changes not carried out
by the author will be mentioned for complete-
ness and for reference to give an overview of the
improvements between FHW-1.3 and FHW-1.4.

Figure 3.1: VLSI chip design workflow, as
shown in [9], page 14

15

16 CHAPTER 3. IMPROVEMENTS IN THE HARDWARE DESIGN

Some of the shortcomings of a mixed-signal VLSI ASIC are discovered only when the chip
has been produced and can be tested in the lab. This is grounded in the fact that, due to the
high integration density, the chip’s design cannot be simulated in reasonable time. A simulation
of that kind would only make sens when it would include a complete netlist of parasitic1 circuit
elements, making the netlist to be simulated too large for the available simulation software and
hardware. This problem will be discussed in detail in appendix A.

3.1 The digital part of the Spikey chip

The changes to the hardware that are described in this section have been carried out by Dr.
Andreas Grübl. The most important and fundamental improvement was the conversion of the
standard cells library provided by Virtual Silicon Technologies (VST) to a standard cell library
provided by Faraday. This change was necessary because UMC had cut the support for the
VST library. Only due to a special permission, it was possible to keep the IO ring cells of the
VST library, because the according Faraday cells are not compatible.

Furthermore, the Verilog2 description of the digital part has been improved to shorten the
data paths on the chip, which was also done by changes in the chip’s floorplan.

Another improvement concerns the power distribution in the digital part. The voltage drop
of the power lines has been analyzed and improved with a tool called VoltageStorm by Cadence
Design Systems that can be included in the SoC Encounter workflow. The procedure is called
IR-drop analysis, and makes use of the power consumption information that is supplied together
with the standard cell library. It involves the following steps: At first a simulation of the digital
part is done that has to simulate a realistic worst-case scenario. From this simulation, an activity
profile is generated containing information about the usage of the different states of each standard
cell. From this activity information and the power consumption values for different states of a
cell, a voltage drop profile for the chip’s floorplan can be generated, which is then symbolized in
terms of a color map across the chip’s floorplan. As a result of this analysis, some of the power
distribution nets could be widened selectively, thus guaranteeing a reliable power distribution
across the digital part of Spikey.

3.1.1 Improvements in the Physical Layer

As an improvement for FHW-1.4, the delay lines have been placed manually on the chip such
that the time delay of a signal line has a linear dependence on the number of activated delay
elements. To this end, the signal lines between two subsequent delay elements of one delay
line have been implemented equidistant. This placement had been done automatically by the
Cadence Encounter software for FHW-1.3 and has not yielded such linear dependence due to
the random nature of the auto-placement algorithm. The improvements can be seen in figure 3.2
which was exported from the digital implementation and analysis tool Cadence SoC Encounter.
Furthermore, the two different inverters that made up a delay step on FHW-1.3 have been
substituted by two instances of one single inverter from the standard cell library to make sure
that the rising and falling edges of the delayed signal experience the same amount of delay.

3.1.2 Improvements in the Application Layer

The depth of the event buffer out FIFO3s in the Application layer (c.f. figure 2.3), which
buffer the outgoing events from the network block, has been made configurable to range from 0
to 127. In FHW-1.3 this FIFO had a depth of 127 events, but, as Simon Friedmann has shown
in his diploma thesis [8], this value is too large for multi-chip operation. The time it takes for

1Circuit elements that are not required for proper functionality and who’s existence is not intended by the
designer

2Hardware description language by Cadence Design Systems
3First in first out

3.1. THE DIGITAL PART OF THE SPIKEY CHIP 17

Figure 3.2: Placement of input delay line #8 of the CAD1 input bus. The cells that belong to
this delay line are shown in darker tones. Distances in µm. a) Placement of delay line elements
in FHW-1.4 is identical and compact for every delay line, b) Placement of delay line elements in
FHW-1.3 was done with the automatic placement algorithm of the Cadence Encounter software
suite.

an event to travel through a FIFO of that depth would unnecessarily increase the latency of the
event packets. To this end the so called control register on the Spikey chip had to be augmented
by 7 bits, thereby making necessary some minor changes to the controlling software, which have
been carried out by the author.

3.1.3 Errors during changes in the design

As will be explained in section 3.2.3, the curmem vout block had to be augmented by one cell.
Thus, the analog readout chain, consisting of the serial interconnection of the flip-flops in the
vout cells, has also been incremented by one. Unfortunately, the size of the input register
of the analog readout controller in the digital part was not incremented by one. Therefore a
workaround had to be figured out by the author, to be able to set all values in the analog readout
chain correctly. This workaround will be presented in the next chapter.

Also, a mis-assignment of the current memory addresses of the left block by the parameter
RAM controller has accidentally been introduced in FHW-1.4. To provide a sufficient signal
slew rate between the parameter RAM module and the current memory cell’s address inputs,
the number of the address registers was doubled. This has become necessary because the driver
strengths of the used standard cells of the VST library were more than a factor of two stronger
than those of the Faraday library.

In FHW-1.3, only 12 drivers where used to set the 12-bit address bus that was connected
to all the current memory cells in both chip blocks. In FHW-1.4, the current memory address
register was doubled in order to supply each half of the chip with its own 12-bit current memory
address bus. In Verilog, this was implemented using the concatenation operator provided by
the language. It allows to duplicate a single bit vector by appending its value to its end, thus
yielding a register of twice the size containing the same string of bits twice. However, the bit
string that results from the address calculation by a simple subtraction of a 32-bit integer has
a width of 32 bits, of which only the lower 12 bits contain valid information. In the previous
version of the Spikey chip this has not been a problem, since it was assigned to a 12-bit bus

18 CHAPTER 3. IMPROVEMENTS IN THE HARDWARE DESIGN

which simply didn’t take care of the upper 20 bits. Thus, the concatenation resulted in a 64 bit
wide address register that, in the current revision of the chip, is assigned to a 24 bit wide bus.
This means that only 12 bits of this bus obtain a valid address information while the other half
of the bus reads nothing but zeros. As mentioned in the introduction of this chapter, a mixed-
signal simulation, i.e. a simulation of the digital part and the complete analog part, was not
possible due to insufficient computational resources. Therefore the above described problem was
not discovered during simulations. It can also be considered a shortcoming of the Verilog HDL
that registers of different sizes can be connected to each other without resulting in a warning by
the compiler.

This problem has already been fixed in the code, so that a potential fifth revision of the
Spikey chip will not suffer from this problem anymore. For the current work with FHW-1.4
(including the thesis at hand) the left block of the chip cannot be used for experiments because
its voltage and current parameters can’t be controlled at all.

3.2 The analog part of the Spikey chip

3.2.1 Improving the neuron readout priority encoder

FHW-1.3 has imperfections which are partially based on parasitic effects. One of these was a
malfunction in the neuron readout priority encoder. This problem has already been located by
Dr. Daniel Brüderle [4] and Johannes Bill [1].

• “The current version of the FACETS Stage 1 Hardware (Spikey III) reveals errors, when
multiple neurons of the same block of 64 neurons are recorded and emit spikes simultane-
ously: The priority encoder can enter a locking state and stops further spike output.”

From: [1], page 23

• “When recording from more than the last nrec neurons of a neuron block, output spikes
from different neurons that are generated temporally close can result in a total spike
readout deadlock, i.e. no spike is recorded from this block anymore. [...] For all FHW-1
systems, the critical number nrec has been observed to vary from 5 to 9 [...]”

From: [4], page 9

The spike readout deadlock problem is also illustrated in figure 3.3. It shows that, when
two neurons from the critical block of neurons are chosen and a deadlock occurs, the observed
neuron continues to emit spikes, but the event readout priority encoder prevents the neuron
from sending spike information to a Time-To-Digital Converter (TDC).

The digital spike readout is a crucial feature of the chip. Since the digitization of the
neuronal spikes is done by one single TDC per 64 neurons it has to be assured that only one
spike at a time activates the TDC input, because otherwise one would not be able to distinguish
two or more successive spikes from different neurons of the same block. Therefore, a neuron
readout priority encoder has been implemented by Dr. Johannes Schemmel in order to process
simultaneous action potentials in direct succession. This circuit sends an inhibition signal to
each neuron’s output circuit, telling it to hold its last spike if the action potential of a neuron
of higher priority is still being processed. The readout priority is determined reciprocal to the
neuron number which is arranged in ascending order from inside to outside in both blocks of
the chip.

The ”hold” signal is implemented as a latch, i.e. a circuit similar to a flip-flop that has
no clock signal and is only input-driven, in each neuron’s readout circuitry. When a spike is
triggered the latch output is set to a logical high value and it will only be reset when the
inhibition signal has become low, i.e. no neurons of higher priority are being processed, and
when the TDC has affirmed the processing of the held action potential by raising a clear signal.

3.2. THE ANALOG PART OF THE SPIKEY CHIP 19

Figure 3.3: Rasterplot and membrane potential showing the deadlock in the digital event readout
priority encoder. The lower graph shows the membrane potential of Neuron 0, indicating that
this neuron should still emit spike events at times larger than 170 ms biological time. Taken
from [4], page 98.

After the neuron readout latch has been cleared, another action potential can be received and
held by this particular neuron’s readout circuit.

The clear signal could be identified as the source of the problem described above. Because of
the large capacitive load that has to be driven by an inverter inside the TDCs, the signal does
not reach the logical high value threshold during the time of the digital pulse at the input of
the neuron readout circuits. Therefore, the circuits are not cleared and thus locked after having
held an action potential until the next chip reset. Only the first 5 to 9 neurons4 of each block
can be used without invoking a readout deadlock, because the signal lines of the clear signal to
these neurons has a lower capacitance compared to the neurons with higher indices. The only
workaround that exists to bypass this problem in FHW-1.3 is to send a neuron reset signal every
time a neuron deadlock occurs. This signal resets the neuron readout circuitry of every neuron,
forcing it to reset the event holding latch. The problem has now been solved by adding a signal
buffer for every block of 8 neurons.

The reason why this effect has not been discovered in simulations after the ”Preliminary
Design” step, is that it is caused by parasitic effects. These parasitics are circuit elements
that are not required for the circuits proper functionality nor is their existence intended by the
designer. Their presence however, is unavoidable and it does affect the proper functionality of
the circuit. Parasitics can appear as capacitances, resistances, inductors and even as unwanted
bipolar transistors in a CMOS process, when n-wells or p-wells are involved. In the above
mentioned case, the capacitances and resistances of the signal lines had to be taken into account
to determine the signal levels at the neuron readout circuit’s input to proof the changes that
have been done to solve the problem. For the extraction of the resistive and capacitive parasitics,
the Calibre IC verification software by Mentor Graphics was used by the author. The extracted
parasitic values have then been inserted into a testbench that was created by the designer.

The work-flow of this software is described in Appendix A. It explains how the parasitic
circuit elements are extracted out of a GDS II5 file by the software. These parasitic elements are
not contained in the simulation models that are supplied by the foundries, because they depend
on the actual spacial relations of the devices to each other.

4According to [4], page 96
5A standard file format for IC layouts that is supported by many IC design software suites and IC foundries.

20 CHAPTER 3. IMPROVEMENTS IN THE HARDWARE DESIGN

After the parasitics extraction had been carried out successfully, the testbench circuit was
simulated using the Cadence UltraSim Full-Chip simulator, to verify the proper functionality of
the improved priority encoder in all process corners.

3.2.2 Improving parameter voltage generation

The parameter voltage generation in FHW-1 has always been a problem for many experiments,
especially those involving synaptic plasticity.In his diploma thesis, Johannes Bill showed that
for a decent operation of the STP mechanism on Spikey, it is crucial to be able to configure the
necessary voltages to values below approximately 0.6 V ([1]):

”More restricted are the internally generated voltages vouts: The current revision
(Spikey III) allows for a vout-range from 0.6 V to 1.6 V. The exact interval is de-
termined by the individual vout. Especially, the lower bound prevents reasonable
STP-parameters as revealed in section IV.5.”

The reason for this behaviour was that the dynamic range of the operational amplifier in
the voltage generating cells (called curmem vout cells) of FHW-1.1 to FHW-1.3 was limited to
approximately 0.6V to 1.6V. However, Sebastian Millner6 had designed an op-amp with ”rail-
to-rail input and output voltage range, low quiescent current, 1.8 V power, a high bandwidth
and unlimited stability” in his diploma thesis [18] for the FACETS stage 2 hardware.

During this thesis this improved operational amplifier was inserted into the curmem vout
cells of the Spikey chip, by including the layout of the op-amp into in the layout of the voltage
generating cells. Afterwards, simulations had to be done to verify the behaviour of the new
cells. Because the operational amplifier had to be simulated in a realistic context, a circuit of a
capacitor in parallel to a series of a resistor and another capacitor was used. The capacitances
have been chosen to 1 pF and the resistance has been chosen to 200 Ω. These were connected
between the output of the op-amp and a pulsed voltage source, acting as a load. The results
can be seen in figures 3.4, 3.5 and 3.6. The figures show an AC simulation of the new op-amp
in a unity gain buffer configuration, for different common mode voltages. It can be seen that
the old amplifier has a dynamic range of 0.7V to 1.6V. At 0.6V and 1.7V the amplifier is not
capable anymore of supplying a unity gain over a sufficient frequency range. The new op-amp
however, is able to buffer voltages ranging from 0.1V to 1.7V with a frequency of up to 10MHz.
The experimental verification of this improvement will be discussed in section 5.2.

3.2.3 Adding current monitoring devices

In FHW-1.3 and its predecessors, the only possibility to directly monitor the parameter current
generation was given by measuring the current flowing out of a current memory cell at the top
of the chip. Since the measured currents were in the order of magnitude of 10−3µA to 2.5µA,
especially low currents could not be measured with sufficient accuracy. This is due to the fact
that 0.01µA result in a voltage drop of merely 5 mV with the included measurement resistance
of 500 kΩ on the Recha board (c.f. section 2.2.2). Voltages in this order of magnitude cannot
be measured with sufficient accuracy considering the existing noise background. Besides, the
currents that need to be measured are biased by the input bias current of the op-amp on the
Reach PCB that buffers the output voltage at the 500 kΩ resistance and by the current flowing
through the ESD7 diodes. This current however, lies between -10pA and 10pA in all possible
process corners as obtained from simulations of the analog output pad used in the Spikey chip
and is therefore 2 orders of magnitude smaller than the currents that were to be measured.

More reliable current monitoring devices have thus been developed by the author. To this
end, two different implementations have been realized, they are shown in figure 3.7. The first

6Member of the Electronic Vision(s) group
7Electrostatic discharge

3.2. THE ANALOG PART OF THE SPIKEY CHIP 21

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

vo
lt

ag
e

[V
]

frequency [Hz]

vdc = 1.7V
vdc = 1.6V
vdc = 1.5V
vdc = 1.4V
vdc = 0.9V
vdc = 0.8V
vdc = 0.7V
vdc = 0.6V

Figure 3.4: AC analysis of op-amp in FHW-1.3 for different common mode voltages from 0.7V
to 1.7V. The common mode voltages from 1.0 V to 1.3 V are not shown because their shape is
very similar to that of the 0.9 V line. It can be seen that a unity gain can only be supplied for
frequencies up to 10 MHz for common mode voltages between 0.7 V and 1.5 V.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

vo
lt

ag
e

[V
]

frequency [Hz]

vdc = 0.5V
vdc = 0.4V
vdc = 0.3V
vdc = 0.2V
vdc = 0.1V
vdc = 0.0V

Figure 3.5: AC analysis of op-amp in FHW-1.3 for different common mode voltages from 0.1V
to 0.6V. For these common mode voltages a gain of one cannot be supplied, independent of the
frequency.

22 CHAPTER 3. IMPROVEMENTS IN THE HARDWARE DESIGN

Figure 3.6: AC analysis of op-amp in FHW-1.4’s parameter voltage cells for different common
mode voltages from 0.0V to 1.8V in steps of 0.05V. It can be seen, that a unity gain can be
supplied for frequencies up to 10 MHz for common mode voltages from 0.05 V to 1.75 V.

implementation is a current mirror connected to a current memory cell at the top of the die, it
is sketched in the left part of the schematic. A second implementation that allows to measure
the current indirectly via a measurement resistance and a curmem vout cell, is shown in the
right part of the schematic. The objective of this improvement was to be able to measure the
currents generated by the on-chip DAC (introduced in section 2.2.1). The following paragraphs
will describe these implementations in more detail.

As mentioned above, in FHW-1.3 there was only one possibility to measure the currents
generated by the DAC via a dedicated current memory cell, located in the outamp block at the
top of the die area. Since currents between a few nA and 2.5µA are to small to be directly
measured, a current mirror with an amplification factor of 64 was designed by the author. This
current mirror was then connected to the output of the current memory cell, thus sourcing a
much larger current to the IBTEST pin of the Spikey chip. A schematic can be seen in the upper
left corner of figure 3.7. It consists of an NMOS current mirror and a PMOS current mirror,
both multiplying the input current by a factor of 8. This multiplication factor was chosen
because it could best be implemented using the common-centroid layout. This layout technique
compensates for mismatch due to gradients in the doping concentration, because it arranges
devices symmetrically. Actually, every other type of inhomogenities, like for example thermal
or stress induced gradients, that is linear in distance can in principle be compensated for with
this layout, even non-linear gradients can be counterbalanced if the size of the layout is small
compared to the distances affected by the gradient, a principle well known as linearization. The
book ”The art of analog layout” by A. Hastings [15] was very helpful on this subject during the
design phase of this current mirror.

The device can further be divided into two parts, an NMOS input stage that serves as a
current sink controlling the current flowing through a PMOS output stage, which, on his part,
sources a current to the IBTEST pin. In the layout, both stages consist of two identical transistor
devices with a length of 400nm and a width of 1µm. The two compound transistors of one stage
have 6 and 48 fingers, respectively, which results in a current amplification by a factor of eight.
Furthermore, both stages have two axes of symmetry, due to the common-centroid configuration.

Simulations have been carried out to verify the functionality of the current mirror. Figure
3.8 shows a corner analysis that has been carried out with the designed current mirror. The

3.2. THE ANALOG PART OF THE SPIKEY CHIP 23

Vout

Vout

Vout

5
0
0
k

1:8

1:8

current mirror

VDD

IBTEST

Vout

bias
curmem

address
decoder

cadr cin10cin

Analog readout chain
IBTEST

curmem
outamp

cadr cin

DAC /
parameter

RAM

Vout

bias
curmem

address
decoder

cadr cin10cin

24 x

Figure 3.7: Block diagram of the current readout mechanisms of FHW-1.4. On the left side the
newly implemented current mirror can be seen which is connected to the ninth outamp current
memory cell. The right side of the schematic emphasizes another method to indirectly measure
the currents that are generated by the DAC via a supplementary curmem vout cell.

24 CHAPTER 3. IMPROVEMENTS IN THE HARDWARE DESIGN

Figure 3.8: Corner analysis of the current mirror, showing an AC analysis on the left side and
a DC analysis on the right side. The lines represent the fast, typical and slow corners from top
to bottom. The lines for the corners slow-n-fast-p and fast-n-slow-p have been omitted because
they are similar to the typical corner. The x-axis shows the frequency and the DC input current,
respectively. On the y-axis the voltage at a resistance of 3 kΩ, that is connected between the
current mirror output and ground, is shown.

left graph shows an AC analysis of the circuit with an input current of 0.5µA. The resulting
output value (shown in mV along the y-axis) is the voltage drop from the output of the current
mirror to ground over a 3 kΩ resistor. It can be seen that the current mirror is operable up
to a frequency of 1 MHz. The right part of figure 3.8 shows a DC analysis of the circuit with
an input current ranging from 0 to 2.5 µA for different process corners. Along the y-axis the
current flowing out of the current mirror through a 3 kΩ resistance to ground is plotted. This
resistance has also been used on the Recha board for the measurements presented in chapter 5.

The second method that was introduced to measure the current in an indirect fashion can be
seen on the right side of figure 3.7. It makes use of the curmem vout block which was introduced
in section 2.2.1. This block consisted up to FHW-1.3 of 24 current memory cells, of which four
were not used for parameter generation in the network block. Three of these were used to buffer
internal chip voltages making use of the unity gain op-amp inside the voltage generating cell
and its analog readout chain. For this task the input circuits connected to the cin10 pin were
not used. The last curmem vout cell in each block was not used at al in Spikey’s third revision.
Every voltage cell has two analog current input terminals, one for the op-amp bias current and
one for the current controlling the programmed voltage. The former current is saved in a current
memory cell. By adding another curmem vout cell to each block it was possible to measure the
current saved in the current memory of the 25th vout cell by feeding its voltage drop over a 500
kΩ high resistance poly silicon resistor into the positive input of the op-amp of the 24th cell.

After having added another vout cell the address decoder block had to be redesigned. The
address decoder consists of a series of transistors that implement a so called dynamic logic8

block. Therefore, the 6 bit input address bus, going from the parameter RAM controller to each
vout block, both, as positive and inverted signal, has to be connected to the address decoder
transistors of each vout cell such that the current input terminals only get activated when the
correct address is applied. The connection of the address bus to the cell block has already
been implemented in former revisions of the chip by Dr. Andreas Grübl in terms of a cell view
containing metal vias, which can be instantiated in the curmem vout block with the Cadence

8also known as clocked logic, as opposite to static logic

3.2. THE ANALOG PART OF THE SPIKEY CHIP 25

design software. This software makes use of a scripting language called Skill. By using a Skill
script to place the necessary vias in a cell view, this rather tedious task was easier to carry
out and enabled the author to place the connection vias relatively easy by only modifying the
generating Skill script.

3.2.4 Changes in the current parameter assignment

For reasons of documentation, this section will name a change in the network block parameter
assignment. The upper four parameters shown in table 3.1 are stored for every synapse whilst
the lower two parameters can be adjusted for each neuron. In FHW-1.4 the neuron threshold
comparator bias current has now been set to a fixed value. Instead, the same current memory
address can now be used to adjust a particular neuron’s refractory time, i.e. the time during
which the neuron’s membrane potential is pulled to the reset voltage.

Address Parameter
0x0 synapse output driver
0x1 delay element before synapse driver
0x2 pulse shape rise time
0x3 pulse shape fall time
0x0 neuron membrane leakage (gleak)
0x1 neuron Vth comparator speed

Table 3.1: List of analog parameters available in each column and row circuit in FHW-1.3. All
parameters are bias currents supplied by a current memory. The actual physical addressing is
given in Appendix A of [14].

26 CHAPTER 3. IMPROVEMENTS IN THE HARDWARE DESIGN

Chapter 4

Experimental setup

This chapter outlines the experimental setup that was for the measurements presented in this
thesis. At first, the measurement devices that are supplied by the supporting hardware that
belongs to the FACETS Stage 1 Hardware System are introduced. This description will be
followed by a listing of the additional measurement devices that have been used. The last
section of this chapter will describe the software framework that supports the FHW-1.

4.1 Supporting hardware

The Recha PCB, serving as carrier board for the Spikey chip, contains an analog-to-digital
converter (ADC) and multiplexer (MUX) since the second revision of the board that was designed
as a conjoint work of Dr. Andreas Grübl and Boris Ostendorf. These enable the user to measure
the voltages of the 8 neuron membrane potential readout pins and of the IBTEST measurement pin
via the Stage 1 software framework to which the aforementioned current and voltage parameter
monitoring devices are connected. A schematic of this readout circuitry is depicted in figure 4.1.
It shows that the eight neuron membrane potential pins can be switched to a net called TESTPIN
to which the net IBTEST is also connected using a unity gain buffer. The latter net was of
special interest for the work presented in this thesis, since it is used for the output of the analog
monitoring devices that have been designed by the author. The multiplexer is controlled by the
Nathan FPGA via so called sideband data packets, i.e. data packets sent to the FPGA by the
software of the controlling host PC that do not affect the direct communication with the Spikey
chip. Other packages of this type include the control of the digital-to-analog converters that
generate some external voltages necessary for a proper operation of the chip and information
that is read from the on-board temperature sensor or the ADC. This analog-to-digital converter
can also be seen in figure 4.1. It is used to measure the parameter voltages on the chip to allow
for automatic calibration of the voltage parameter cells.

The 50 Ω resistance that is connected to the LEMO jack has to be kept in mind, as well. It
causes a voltage division by a factor of two together with the 50 Ω input resistance of the oscillo-
scope. The resistance at the input of the unity gain buffer has been selected to a value of 500 kΩ
by the designer, but had to be exchange in order to allow for accurate current measurements,
as will be explained in more detail in section 5.2.

4.2 Measurement devices

4.2.1 Measurements with LVDS lines

The Tektronix TDS 725 oscilloscope was used to perform the measurements of the Physical
layer of the Spikey chip. It has an analog bandwidth of 2.5 GHz and a maximum sam-
ple rate of 20 GS/s. It was used with the P7330 active differential probes which have a
bandwidth of 3.5 GHz to measure LVDS signals.

27

28 CHAPTER 4. EXPERIMENTAL SETUP

Nathan PCB

Recha PCB

Spikey

ad8063

M
U

X

50Ω

ADC
ad7924

IBTEST

T
E
S
T
P
IN

outamp<0:7>

Lemo
jack

Nathan FPGA

3kΩ

Figure 4.1: Block diagram of the readout circuitry on the Recha PCB. The nets outamp<0:7>
can also be directly accessed via separate LEMO jacks which are not depicted. The schematic
and the complete layout of the Recha board can be seen in appendices B and C of [20]

The LeCroy Serial Data Analyzer 6000A was also used to perform some of the measure-
ments of the digital part’s Physical Layer. The oscilloscope has an analog bandwidth of
6 GHz and has 4 input terminals with a sampling rate of 10 GS/s. The input resistance of
the terminals is 50 Ω. It was used with the WaveLink 600 6 GHz differential probes.

The Tektronix AWG2041 arbitrary waveform generator was used to generate clock signals
with arbitrary frequency for the measurements in section 5.1. It was connected to the
external clock input of the backplane. The waveform generator features 1 GS/sec with 2 V
peak-to-peak output amplitude.

4.2.2 Analog measurements

The LeCroy waveRunner 44Xi oscilloscope has a bandwidth of 400 MHz and has 4 input
terminals with a sampling rate of 5 GS/s, resulting in a maximum time resolution of
200ps. The input resistance of the terminals was chosen to be 50 Ω. Therefore, the
measured voltages, have to be doubled to yield the correct results when the oscilloscope
is connected to the Recha PCB via the lemo jack, because the jack also has a termination
of 50 Ω.

The Keithley 2100 Multimeter is a 6 1/2 digit1 USB digital multimeter. It features stan-
dard measurement methods such as DC measurement, AC measurement and resistance
measurement. The most important reason why it was chosen for the measurements in this
thesis is its capability for USBTMC2 readout. This specification defines a communication
protocol as a vendor-independent standard for USB-based instruments, published in 2002.
For the readout of the instrument, a Linux Kernel driver by Agilent Technologies was
used, which is described in [28]. A C++ class for the readout of DC voltages, written
by Sebastian Millner, already existed and could easily be included into the Stage 1 test
software. According to the data-sheet [16], the multimeter has a resolution of 1µV in the
used voltage range of 1V. The accuracy is given by ±(0.0045% of reading +0.0008% of
range). This means the measured values are subject to an absolute error of 0.8mV and an
relative error of 0.0045%.

1Of the 7 available digits the most significant digit can only be 1 or 0
2USB Test and Measurement Class

4.3. THE FACETS STAGE 1 SOFTWARE FRAMEWORK 29

The AD7924 ADC was used for some of the measurements in section 5.2. It is depicted in
figure 4.1. The used component is an Analog Devices analog-to-digital converter, which has
a specified differential non-linearity3 (DNL) of -0.9/+1.5 in units of the maximum value
of the LSB4 [6]. Since the specified maximum reference voltage is 2.5 V and the resolution
of the ADC is 12 bit, the expected measurement error is approximately -0.55/+0.92 mV.

4.3 The FACETS Stage 1 software framework

The software framework of FHW-1 has originally been designed by Dr. Johannes Schemmel and
Dr. Andreas Grübl. It has since been improved and extended by many other people and has
become part of a much more comprehensive software suite that allows for automatic mapping
of neuro-scientific experiments (described in PyNN 5) to the multi-chip hardware system. The
core part of this software, which has also been used in this thesis, is written in C++. Around
this core software, an interfacing software layer, written in Python, acting as a translation layer
between PyNN and the C++ low-level software has been developed by Dr. Daniel Brüderle and
Eric Müller.

The Electronic Vision(s) group has lately seen increasing activity towards a unification of the
software development efforts of its members. This includes better communication, non-regular
meetings about software organization, the use of a software management system (called indefero
[17]) and the unification of the build process. The complete software framework also has been
integrated into the so called symap2ic software project which stands for ”Neural Architectures
with Synaptic Plasticity Mapped to ICs”. The changes in the used build process have also af-
fected the Stage 1 low-level software which now goes by the name SpikeyHAL (Spikey Hardware
Abstraction Layer) and is built with the waf 6 build system. This build system offers more flexi-
bility (because the build scripts are plain python scripts) and allows for automatic configuration
of the compilation prerequisites. It replaces the formerly used, rather static, make build system.
The transposition of the build system of SpikeyHAL has been realized by Eric Müller and the
author.

The Spikey test software itself consists of a program called createtb that allows for the exe-
cution of so called testmodes which are pieces of C++ code, each testing a certain functionality
of the Spikeychip. The output of the software are data packets that are sent to the Nathan
FPGA via a PCI card or a Gigabit Ethernet connection. These packets can either be event
or control interface packets, intended for the communication with the chip, or sideband data
packets that contain information about the periphery on the Nathan and Recha PCBs. The
control interface packets are necessary to configure the Spikey chip. They can be generated by
low-level interfaces, allowing the user to set every individual bit of the according registers on the
chip, but they can also be automatically generated by higher level functions that read so called
spikeyconfig files containing a complete chip configuration. These different levels of abstraction
are depicted in figure 4.2.

The readout functionality of FHW-1 is also controlled by the FACETS Stage 1 software
framework. Thus, before the parameter voltage cells on the Spikey chip could be verified, a
workaround for the control of the analog readout chain had to be implemented. As described
in section 3.1, the analog readout input register has not been incremented, although the analog
readout chain has been augmented by one. In FHW-1.3, it was possible to write the values of the
register in question with one single write statement. In the latest version of the chip however,
two write statements have to be issued to assure that only one parameter voltage cell’s analog
output is connected to the IBTEST net. This fact can be explained by the two exemplary use
cases that are shown in figure 4.3. In the diagram, the size of both elements has been reduced

3the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC
4Least significant bit
5A simulator-independent language for building neuronal network models.
6”Waf is a Python-based framework for configuring, compiling and installing applications.” C.f. [23]

30 CHAPTER 4. EXPERIMENTAL SETUP

hardware abstraction layer

control interface abstraction

hardware access,
transfer models

Slow-Control

calibration data configuration data

testmodes
command line interf.
control chip and
generate test vectors
for simulation

application
GUI or
command line interf.,
execute complex
experiments

h
a
rd

w
a
re

Figure 4.2: Different levels of abstraction of the FHW-1 software framework. Taken from [14],
page 131.

X X X X X X X

1 0 0 0 0 0 X

100000

0 0 0 0 0 0 1

000000

X X X X X X X

0 0 0 0 0 0 X

000000

0 0 1 0 0 0 0

001000

analog readout
input register

state of the analog
readout chain

a) b)

tim
e

Figure 4.3: Analog readout input register (in the digital part of the chip) and state of the analog
readout chain with time. The sizes of both registers have been reduced for better readability.
’1’ denotes an activated analog readout transmission gate, ’0’ a disabled one. ’X’ symbolizes
an unknown state. a) Shows the two bit strings that have to be written to the analog readout
input register in order to activate the last cell in the analog readout chain. b) Shows those for
the activation of the third cell.

for better readability, the crucial difference in size of one bit has been kept. On the chip the
analog readout input register has a size of 24, whilst the analog readout chain has a size of 25.

The schematic shows that, in order to activate only the last cell in the readout chain and
given the fact the state of the readout chain beforehand is unknown, one has to activate the first
voltage cell first and move the activation bit to the end of the chain afterwards. For the case in
which one intends to activate one of the first 24 cells, only zero values have to be written to the
chain followed by a high value at the correct position.

4.3.1 PyNN and FHW-1

PyNN is a simulator-independent language for building neuronal network models. It provides a
Python API that allows to describe neuronal networks for experiments with software simulators
or neuromorphic hardware. These descriptions can then easily be mapped to different software
simulators or the FACETS Stage 1 hardware system [3] and can be shared amongst neurosci-
entists. Since PyNN scripts are valid Python code, one can include every other Python module
to post-process the experimental data. This may also include visual presentation of data, using
rasterplots.

Chapter 5

Experimental Verification

5.1 The Physical layer

This section describes the characterization of the delay lines in the Physical layer.
First, the step size of the delay line of output signal CAD1 OUT<3> was measured. Therefore,

the falling edge of the signal was monitored on an oscilloscope while triggering on the rising
edge of its according clock signal CLK1 OUTi and recording both in infinite persistence mode. In
this mode the oscilloscope remembers every measured signal and continues displaying it on the
screen. The number of active delay elements was then stepwise incremented by one. The results
can be seen in figure 5.1. From this measurement, the delay step size was obtained, it can be
seen in figure 5.2. The resulting line, which was only drawn for better readability, has a slope
of 82 ps.

These measurements have only been carried out on a single chip which obviously imposes
a lack of sufficient statistical measures. This was mainly because most of the available Stage 1
hardware had to be prepared for external presentation of the group’s work in the last weeks
before this thesis was submitted. For the same reason, a sufficient analysis of the maximum
operating frequency of FHW-1.4 has not been carried out. However, tests of the link capacity
of a single sample chip have been carried out which have showed that it is possible to operate
the latest version of the chip with a clock frequency of 312.5 MHz.

There have also been implemented automatic methods into the software framework that can
adjust the optimum delay values for each data input link. The functionality of these will be
explained in the following paragraphs. However, there is up to now no functionality implemented
in the software framework that allows to save and load optimum delay values for a single chip
in a configuration file. This should be done in the near future.

The delay values of the input data buses of Spikey can be measured and adjusted to maximize
the data valid window with a testmode. It exploits the features of the Digital Clock Managers
that come with the Virtex II Pro XC2VP7 FPGA, the core unit of the Nathan module. These
clock managers allow for a phase shifting of the signal clock relative to the signal data lines
with an accuracy of ”clock period divided by 256” with a minimum step size of 30 ps1. In the
environment in question, the clock period varies between 5ns (200MHz) and 2.5ns (400 MHz),
resulting in a theoretical phase shift step size of approximately 20ps to 10ps. It turned out that
the actual phase shift was indeed 20ps (in the case of a 200MHz clock) instead of the minimum
step size of 30ps, as stated in [29]. The oscilloscope screenshot in figure 5.3 shows the clock
signal of the CAD1 input bus operating at 200 MHz (brown trace) and the CTL bit of the same
bus (blue trace) in infinite persistence mode. The oscilloscope has been adjusted to average
over 50 trigger events. In infinite persistence mode, different states oft the same input bit can
be seen and compared at the same time. Between two positions of the blue trace, the DCM
phase register has been increased by 20. The blue vertical cursors show a time difference of 400
ps, thus resulting in a phase shift step size of 20ps per DCM step. For a clock frequency of

1According to the Platform Handbook [29], page 48 (speed grade 6)

31

32 CHAPTER 5. EXPERIMENTAL VERIFICATION

Figure 5.1: Clock signal CLK1 OUT (blue, leftmost line) and data signal CAD1 OUT<3> (yellow,
right lines) in infinite persistence mode at 200 MHz clock frequency. Between two positions of
the yellow trace the number of active delay elements in the transmission unit of the Physical
Layer was incremented by one.

5.1. THE PHYSICAL LAYER 33

Figure 5.2: Delay values of data signal CAD1 OUT<3> and relation to time delay in ps relative to
according clock signal at 200 MHz. Values taken from measurement as described in figure 5.1.

34 CHAPTER 5. EXPERIMENTAL VERIFICATION

Figure 5.3: Clock signal of input bus CAD1 (blue) and CTL bit of CAD1 (brown) in infinite
persistence mode at 200 MHz. Between two positions of the brown trace the DCM phase shift
has been incremented by 20 steps. The oscilloscope averages over 50 trigger events. The fine
brown traces correspond to intermediate traces that have been recorded between two DCM
phase shift values and can still be seen because of operation in infinite persistence mode.

312 MHz the expected phase shift step size of approximately 13 ps could also be verified in the
measurements shown in figure 5.4. In this case the cursors indicate a time difference of 240 ps
per 20 steps in the DCM register which results in a step size of 12 ps per DCM increment.

This fact in mind, it was possible to measure the time shift of one delay line step via the
software framework. These values were obtained by shifting the input link clock relative to the
data lines until the chip was no longer able to sample each line at its input registers. After
all the input lines were no longer readable, the delay values were incremented simultaneously
for each input line and the clock shifting was repeated. It was then possible to measure the
difference between the maximum phase shift value at which one line was still readable for every
pair of two adjacent delay values. This argument implicitly rests on the assumption that the
transmission unit of the Spikey chip is working correctly and has itself correctly adjusted delay
elements that allow optimum sampling results by the FPGA.

After having determined the delay step size for each signal line pair of the input bus, the
software can measure the phase shift of every input line relative to the according clock signal.
It can then adjust the delay values accordingly, such that signals that would arrive earlier can
be adjusted to an arrival time closer to that of the other signals. Afterwards the clock phase
is adjusted to a value that maximizes the data valid window, i.e. to a phase shift value that
corresponds to the mean value of the signal that arrives latest and that arriving at first.

Of course it should be noted, that the time shift of the data bit relative to the clock signal is
only about one seventh of the expected time delay. Therefore a measurement with this method
is not very accurate, but the accuracy is sufficient to implement a software algorithm that can
automatically adjust the delay values of each input line by carrying out the above mentioned
steps.

5.1. THE PHYSICAL LAYER 35

Figure 5.4: Clock signal of input bus CAD1 (blue) and CTL bit of CAD1 (brown) in infinite
persistence mode at 312 MHz. Between two positions of the brown trace the DCM phase shift
has been incremented by 20 steps. The oscilloscope averages over 50 trigger events. The fine
brown traces correspond to intermediate traces that have been recorded between two DCM
phase shift values and can still be seen because of operation in infinite persistence mode.

36 CHAPTER 5. EXPERIMENTAL VERIFICATION

Figure 5.5: Indirect DAC current measurement via parameter voltage cell and 500 kΩ resistor.
Single measurement. a) without boost and Irefdac=25µA b) Same measurement but with boost
enabled

5.2 Parameter value generation

The investigation of the parameter current generation on the Spikey chip was a central objective
of this thesis. As stated in chapter 5, FHW-1.4 is the first revision of the hardware system that
supports reliable current readout mechanisms. These have been tested for correct functionality
and have been exploited to improve the parameter refresh timing in order to supply reliable
current and voltage values while keeping the parameter refresh cylce as short as possible. Strictly
speaking the latter criterion is a requirement for the validity of the former. The measurements
that have been carried out in this context will be explained in the first subsection.

The second subsection describes the experiments that have been carried out to verify the
(improved) functionality of the voltage generating cells.

5.2.1 Parameter currents

During the first measurements that have been carried out with the indirect current readout
functionality of FHW-1.4 (introduced in section 2.2.1) it has been found out that in a first naive
try the currents generated by the DAC were approximately tenfold larger than their expected
values. This can be seen from figure 5.5a. The graph shows the voltage resulting from the current
that is sourced by the DAC flowing through a 500kΩ resistor plotted against the programmed
current values as translated by the control software. The voltages were measured via the ADC
on the Recha board (as described in section 3.2.3). The current values are translated by the
software, resulting in 10-bit DAC values that are then sent to the parameter RAM controller.
One would expect a voltage range of 0 V to 1.25 V for a current range of 0 A to 2.5µA, however,
it turned out that a voltage of 1.25 V has already been reached at an intended current value of
0.2µA.

The translation between the current values the user wants to program onto the chip and
the actual 10-bit DAC input values takes place inside the software. The DAC input value is
calculated by dividing the current to be programmed by the maximum current that the DAC
can supply and multiplying the result by 1023 (of course, the result will have to be mapped to
the set of natural numbers).

DACin = Ip/(Irefdac/1024 · 1023) · 1023 (5.1)

The same behaviour could be reproduced using the current mirror output, as can be seen
in figure 5.6. Both lines show the voltages measured at a 3 kΩ resistor on the Recha PCB,

5.2. PARAMETER VALUE GENERATION 37

Figure 5.6: Direct DAC current measurement via on-chip current mirror. Previous parameter
RAM value was 0. The measurement was repeated 10 times, mean value is shown, error bars
have been omitted because the standard deviation is 2 to 3 orders of magnitude smaller than
the actual values. Upper line: without boost and Irefdac=25µA, Lower line: Same measurement
but with boost enabled

38 CHAPTER 5. EXPERIMENTAL VERIFICATION

caused by the current that is sourced by the current mirror on the Spikey chip. On the x-
axis, the programmed DAC input value can be seen. The upper line was measured without the
additional 9 current memories that can be activated via the boost signal. The lower lines was
measured with active boost signal. Depicted is the mean value of ten repeated measurements,
the standard deviation has been omitted because it is 2 to 3 orders of magnitude smaller then
each according mean value.

Further investigation of this problem showed that the reference current of the DAC had been
set to 25µA in the default setup that has always been used for experiments on FHW-1.3. As
described above this reference current can be divided on a 10-bit basis to control the current
supplied by the DAC resulting in a current range of 0 to 25µA. Thus, as the upper line in
figure 5.6 shows, the programmed DAC input values intended to control a current range of up
to 2.5µA actually resulted in a current range of up to 25µA. Probably, the value for the DAC
reference current has been chosen to yield optimal performance for the parameter voltage cells,
because they were the only measurable parameters on the chip up to FHW-1.3. Since these
voltages are generated with a 10 kΩ resistor, a current of at least 180µA is necessary to generate
a voltage drop as large as the positive supply rail. For the DAC to source a current of this size
with its tenfold output, a reference current of at least 18µA would be necessary. Of course, this
problem wouldn’t have appeared if the conversion method in the software had used a correct
reference current value for its calculations, but this, on the other hand, would have resulted in a
lower resolution of only 7 bit. In the documenting texts of previous work that has been done to
improve the calibration of the parameter voltage cells ([19] and [20]), no hint on why a reference
current of 25µA was chosen could be found. The erroneous usage of the on-chip DAC could
only be attributed to communication problems.

A solution to this problem could be found by making use of the boost mechanism in the DAC
block. Therefore, the look-up-tables of the parameter RAM controller were configured such that
always when writing current values to the analog part, the controller would activate the nine
supplementary current memories while not multiplying the intended 10-bit DAC input value by
ten. As described in section 2.2.1, using the boost mechanism in a LUT that also foresees some
write cycles without boost would lead to a multiplication of the DAC input value by a factor of
ten during the boost write time. This can be avoided by only setting the register corresponding
to boost write time to a non-zero value.

This workaround made it possible to operate the chip decently. Figure 5.5b shows a first try
of an indirect current measurement via the vout cell in the right block. These results are still not
optimal because one cannot tell whether small currents can simply not be generated by the DAC
or the according voltages are out of the dynamic range of the op-amp inside the vout cells (in
the case of figure 5.5). Besides, the accuracy of the DAC output depends on the preceding value
that has been output by the DAC and the time for which a new current value is applied to the
DAC input. In these first experiments these parameters were not controlled because they were
set up by reading a full configuration file into the software and sending a complete parameter
set to the chip. Because the software at this point only made use of one single look-up-table
(determining the write time) and sorted the values in ascending order before sending them to
the parameter RAM controller.

The following paragraphs describe the measurements that have been performed to optimize
the write timing of the current parameters. The aim was to find a configuration that would
result in reliable current values over the whole range of currents up to 2.5µA while keeping
the total time for one full parameter set refresh cycle as small as possible. The latter objective
resulted from the fact that for too large refresh cycle times the parameter voltages showed a
large drift, which will be discussed in detail in the next section. For the following measurements
the current mirror readout mechanism was used, because the dynamic range of the operational
amplifiers in the voltage generating cells is not sufficiently large to accurately buffer voltages in
the order of millivolts.

First of all, it has been found during the experiments, that in order to be able to measure

5.2. PARAMETER VALUE GENERATION 39

small currents, the on-board ADC is not a good choice, because the voltage measured by the
ADC is buffered by an operational amplifier of the type AD80632. As can be seen in the data
sheet [7], the input bias current has, in the typical corner, a value of 3.5µA, i.e. a current
of this magnitude flows into the input transistors of the operational amplifier. This makes
a measurement of currents in this order of magnitude impossible. Therefore the operational
amplifier had to be disconnected from its input net and the ADC could not be used in this case
(for further information about the readout circuitry on the Recha PCB, refer to section 4.1).
To avoid manual and cumbersome measurements that involve visual metering, the Keithley
2100 multimeter (c.f. section 4.2.2) has been used. This device features a USB connection
port that can be connected to the host PC with a Linux Kernel module supported by Agilent
Technologies. The USB functionality of the measurement device has already been made use of
by other group members while working with the prototype of the FACETS Stage 2 Hardware
System. Therefore, it was possible for the author to integrate the instrument into the software
framework with reasonable effort.

In order to yield reasonable results for measurements with the newly implemented current
mirror, the measurement resistance on the Recha board had to be exchanged. This was because
the current range at the current mirror input was 1 nA to 2.5µA, resulting in a current magnitude
ranging from approximately 0.1µA to 250µA. But, a voltage drop of 1.8V over a 500kΩ resistance
will already be generated by a current of 3.6µA flowing through the resistance. To give best
results over the whole voltage range, a resistance of 3 kΩ was chosen.

With a particularly implemented testmode, DAC input values from 0 to 1024 could now
be programmed to the current memory that is connected to the newly implemented current
mirror, while being in control of the value that has been set up by the DAC directly before this
one. Moreover, the write timing and whether to use the boost mechanism or not could also
be controlled for every value that was written to the chip, and without making use of higher
level software objects. This way, it could be assured that the user was in full control of all the
values that are written to the parameter RAM controller and their write timing in terms of
look-up-tables.

Figures 5.7, 5.8 and 5.9 show the resulting voltage measured at the 3 kΩ resistor on the Recha
board for the programmed DAC input values shown on the x-axis and different write timings.
The write timings are given as numbers of cycles in powers of two during which the intended
DAC value is applied. In the case of the upper graph the value that has been written before
the current value in question during a refresh cycle of the parameter RAM controller has always
been 0. The lower graph of figures 5.7, 5.8 and 5.9 show the according measurements with a
preceding value of 512. From figure 5.7, it can be seen that currents below 10/1024 of 2.5µA
can only be reliably written when the DAC is given a time of at least 211 cycles of the 100MHz
clock. This shows the strong dependence of the time the DAC needs to set up a new value from
the previously written DAC value.

The two graphs in figure 5.8 show the same measurements but for DAC input values from
50 to 1023. The graphs show that for a previous DAC input value of 0, only very large values
of at least 600 can be written without risking an error of about ten percent.

The graphs in figure 5.9 cover a range of input values from 600 to 800. They show that for
a previous value of 0 and an actual value of larger than 600, a write time of 27 cycles results in
an error of smaller than two percent compared to the result of a write time of 215 cycles. In the
case of a preceding value of 512 any value larger than this can be written in 25 cycles. This will
differ in an error of smaller than five percent compared to a write time of 215 cycles. An error
that can be accepted considering other sources of error on the chip and a write time that has
been reduced by a factor of 1024.

It is crucial to investigate the accuracy of the DAC in different contexts because in realistic
experiments the DAC will have to write currents ranging from 0 to 2.5µA, reliably. The software
will send the parameter RAM entries in a sorted fashion, but this sorted array of DAC input

2by Analog Devices

40 CHAPTER 5. EXPERIMENTAL VERIFICATION

Figure 5.7: Voltages measured with 3 kΩ resistance on the Recha board for different currents
sourced by the on-chip output current mirror for different DAC input values and different write
timings. In the upper image, the preceding parameter RAM value was 0. The lower graph shows
the same measurement but with a preceding value of 512. The measurements were repeated ten
times, the graphs show the mean value and the standard deviation.

5.2. PARAMETER VALUE GENERATION 41

Figure 5.8: Voltages measured with 3 kΩ resistance on Recha PCB for different currents sourced
by the on-chip output current mirror. X-axis shows DAC input values. Different lines belong
to different write timings. In the upper graph, the preceding current value in the parameter
RAM was chosen to 0, in the lower graph it was chosen to 512. The measurement was repeated
ten times, the graph shows the mean value. Standard deviation has been omitted for better
readability.

42 CHAPTER 5. EXPERIMENTAL VERIFICATION

Figure 5.9: Voltages measured with 3 kΩ resistance on the Recha board for different currents
sourced by the on-chip output current mirror for different DAC input values and different write
timings. In the upper image, the preceding parameter RAM value was 0. The lower graph shows
the same measurement but with a preceding value of 512. The measurements were repeated ten
times, the graphs show the mean value and the standard deviation.

5.2. PARAMETER VALUE GENERATION 43

values will still contain steps that have to be compensated by giving the DAC enough time to
reload the capacitive load at its output.

From the results of the above mentioned measurements, the parameter write timing as shown
in table 5.1 has been chosen. It lists the number of cycles a DAC input value has to be applied
at the DAC input depending on the preceding value in the parameter RAM refresh cycle.

actual value preceding value number of cycles
< 15 previous value 0 211

previous value greater than 0 213

15-100 all 29

100-300 all 27

300-600 step larger than 300 29

step smaller than 300 27

600-1023 greater than 512 25

else 211

Table 5.1: Write timing values depending on current value to be applied to the DAC input and
current value applied in the previous step of the parameter cycle

These write timing conditions have been implemented into the software framework by the
author. This resulted in the following parameter conversion flow:

1. Load parameters from configuration file. Current parameters are given in µA, voltage
parameters in volts.

2. Sort parameters by value. This is done by a stable sort algorithm after all parameters
have been converted to DAC input values.

3. Apply triangle sort, i.e. every second value (at position n) will be moved to position
size of array - n.

4. Change look-up-tables according to context (as shown in table 5.1)

5. Write parameter data to chip

To test the improved write timings, a modified version of the testmode described above was
used. It has been modified to write every DAC input value to the current memory connected to
the readout current mirror, while writing a random value with a gaussian distribution of a width
of 100 to the current memory that was written just before. A single run can be seen in figure
5.10. Here, the randomly chosen preceding value has been selected from a gaussian distribution
with a width of 100 around the value that is intended to be written. It can be seen that every
value can be written, forming a continuous line independent of the preceding value. Figure 5.11
shows the resulting graph for 10 runs with mean value and standard deviation.

As a final result it could be shown that with the above mentioned parameter RAM timing, the
cumulative time for one refresh cycle could be reduced by more than a factor of two, compared
to the default software configuration that had been used before this work has been carried out.
And as the measurements show, the currents from 0 A to 2.5µA can be written in a steady
fashion independent of the preceding parameter value.

5.2.2 Parameter voltages

As described in section 3.2.2, the voltage generating cells have been improved during this thesis
by integrating a new operational amplifier. Therefore, it has to be verified that theses changes
result in the expected larger dynamic range of the cells. These measurements will be described
in this section. But before the verification of the improvements, two figures concerning the drift

44 CHAPTER 5. EXPERIMENTAL VERIFICATION

Figure 5.10: Voltage measured on IBTEST plotted over programmed DAC input value for out-
amp[8]. Random preceding DAC input in parameter RAM refresh cycle. Green: resulting
voltage. Red: preceding DAC input value (can be compared to thin blue line showing a line
with unity slope going through the origin)

5.2. PARAMETER VALUE GENERATION 45

Figure 5.11: Voltage measured on IBTEST over programmed DAC input value for outamp[8].
Random preceding DAC input in parameter RAM refresh cycle. Ten repeated measurements,
mean value and standard deviation are shown.

of the voltage cells with time will be discussed. As can be seen from figures 5.12 and 5.13, the
peak-to-peak drift can be divided a factor of two by dividing the refresh period by four. The
figures show a measurement of the voltage output of the first vout cell of the right block, recorded
with an oscilloscope. The peaks result from the refresh of the voltage on the capacitance inside
the cell by the parameter RAM controller. The zero line of the grid is at an absolute voltage
value of approximately 860 mV in the first screenshot, whilst in the second screenshot it is at
approximately 870 mV. The actual voltages at the output of the chip are twice as large because
the 50 Ω resistances at the output of the Recha PCB and at the input of the oscilloscope result
in a voltage divider.

This rather qualitative analysis of the voltage drift intends to show that the overall refresh
time it takes the parameter RAM controller to refresh all its values once is an important criterion,
as has already been stated in the previous section.

To measure the voltages that are generated by the vout cells, the analog readout chain (as
described in section 2.2.1) and the analog-to-digital-converter on the Recha board (as described
in section 4.1) were used. In figure 5.14 the first vout cell of the right block of FHW-1.4 has
been programmed to different voltage values between 0.0 V and 1.8 V in steps of 50 mV. The
analog readout chain, controlling which vout cell’s output will be connected to the IBTEST pin
of the chip, was programmed accordingly. The voltages were programmed in increasing order
from 0.0 V to 1.8 V, while measuring the output voltage via the on-board ADC of the Recha
board every time a new voltage was set up. This was repeated 50 times. Afterwards the average
value and its standard deviation were calculated.

Moreover, a linear fit of the voltage ramp is also depicted in figure 5.14. Its slope has been
calculated to 1.04 and its offset to 0.05 V with the help of gnuplot, a free, interactive plot-
ting software which uses ”an implementation of the nonlinear least-squares (NLLS) Marquardt-

46 CHAPTER 5. EXPERIMENTAL VERIFICATION

Figure 5.12: Voltage drift on the first vout cell of the right block for a parameter refresh period
of approximately 16 ms. Programmed DAC value 620.

Figure 5.13: Voltage drift on the first vout cell of the right block for a parameter refresh period
of approximately 4 ms. Programmed DAC value 620.

5.3. EVENT READOUT PRIORITY ENCODER 47

Figure 5.14: Vout measurement with FHW-1.4, Vout cell 0 of right block, 50 loops, average
values and standard deviation

Levenberg algorithm”3 to fit a given function to an arbitrary data set.
It can be seen that values larger than 1.65 V show a plateau and thus a deviation from the

linear relation that should ideally be fulfilled by the voltage cells. The smallest value of 0.0 V is
also beyond the dynamic range of the operational amplifier inside the vout cells, as has already
been expected from simulations.

In comparison, figure 5.15 shows the same graph for FHW-1.3. Here, the dynamic range
of the op-amp is much narrower, a fact that has been expected from simulations and former
experiments by other members of the Electronic Vision(s) group. The slope of the linear fit has
been calculated to 0.89 and the offset is 0.18 V.

All in all, the results shown here represent a remarkable step from the previous revision of
the Spikey chip to the current. The linear fit has almost unity slope and a very small offset even
though it has not yet been calibrated. The software framework allows for automatic calibration
of the voltage generating cells by exploiting the same features of the supporting hardware that
have been used here. It was implemented by Boris Ostendorf and improved by Eric Müller
during their diploma theses.

5.3 Event readout priority encoder

A PyNN script that has been implemented by Daniel Brüderle was used to verify the function-
ality of the improved event readout priority encoder. It sets up a population of 192 neurons
that receive input from 208 excitatory and 48 inhibitory neurons sending poisson spike-trains.
Such a spike-train consists of a random number of neuronal events that are randomly and inde-
pendently distributed with a given mean rate. In this case, the spike-trains are generated with
a rate of 5 Hz in the biological time domain and the excitatory neurons are connected with a
threefold higher input weight. The duration of the experiment was chosen to 3 seconds. The
resulting raster plot is shown in figure 5.16 and is meant to qualitatively demonstrate that the
readout deadlock problem has successfully been overcome.

3gnuplot official documentation [22]

48 CHAPTER 5. EXPERIMENTAL VERIFICATION

Figure 5.15: Vout measurement with FHW-1.3, Vout cell 0 of right block, 50 loops, average
values and standard deviation

5.3. EVENT READOUT PRIORITY ENCODER 49

Figure 5.16: Raster plot of neuronal events in the right block of FHW-1.4. Recorded with
SpikeyDemo.py.

50 CHAPTER 5. EXPERIMENTAL VERIFICATION

Chapter 6

Conclusion and Outlook

The goal of the work that has been presented in this thesis, was to contribute to the improvement
of a mixed-signal VLSI Network Chip and to verify the changes after the chip has been produced.
The focus of the presented work was on the enhancement of the parameter voltage and current
generation for the synaptic and neuronal analog circuits that have been designed by the author.
Other changes that have been carried out by Dr. Johannes Schemmel and Dr. Andreas Grübl
have been named and verified.

It is now possible to calibrate the parameter current generation via the TESTPIN of the Spikey
chip. To do so with sufficient accuracy required changes to the design of the readout circuits on
the Recha PCB. For more convenient measurements in the future, an ADC with a CMOS input
stage and a 3 kΩ resistor with a jumper will be included in a future carrier board that is worked
on at the moment.

In neuroscientific simulations at present, one has always to deal with a trade-off between
simulation speed and accuracy of the involved model. The main advantage of the FACETS
Stage 1 hardware is that it emulates neural nets with a high speed-up factor of 104 compared
to biological real-time. On the other hand, working with analog circuits in a 180µm CMOS
process always involves inaccuracies and mismatch between each and every neuron. It can be
said that the current revision of the Spikey chip was a step in the direction of a more accurately
operable emulation device, while keeping the advantage of high acceleration. With the event
readout deadlock problem solved and by extending the dynamic range of the parameter voltage
cells, real experiments have now become possible.

The different aspects of the work that has been carried out by the author are those typical
for the design of a VLSI ASIC, as can be seen in 3.1. This work gave a broad and in some aspects
deep introduction to the craft of microcircuit design to the author. Almost all the aspects of
this trade have been covered during the presented work, from the design of full-custom analog
circuits via the verification of larger units of circuits in simulations to the measurements on a
chip in the laboratory. Quite some work has also been carried out to improved and extend the
software that is necessary for the operation of a hardware device such as FHW-1. It turned
out that the existence and maintenance of a flexible and mature software framework must
not be underestimated. Therefore, a more extensive simulation and verification setup should
be elaborated in the future that includes a behavioural model of the controlling FPGA. This
should be implemented in an appropriate hardware description language. Modern simulation
environments, like for example UltraSim, support the simulation of analog circuits together with
digital model description in different hardware description languages and also C++.

It would also make sense to implement a fifth revision of the Spikey chip once the implemented
STDP mechanism has been sufficiently explore in experiments. The problem that emerged
during the exchange of the standard cell library, making the use of the left chip half impossible,
has already been fixed in the source code and will therefore allow full-chip operation in the
future.

51

52 CHAPTER 6. CONCLUSION AND OUTLOOK

Final remarks

Neuroscience has reached a point where a lack of sufficient computational power prevents the
scalability of the systems under investigation. The aim of understanding information process-
ing in biological systems involves the use of mathematical models of synaptic and neuronal
behaviour. These models can be very complicated and can involve the use of many numerical
parameters. As mentioned above, the simulation of such models, when carried out in larger net-
works of several hundreds or thousands of neurons and an even larger number of synapses takes
much time or lacks accuracy. It is a widely known fact that number of transistors of computers
obeying classical von-Neumann architectures has approximately doubled every two years in the
past four decades. There are however limits to applying the standard paradigm of a processor
that executes predefined instructions and operates on a separate memory when it comes to solv-
ing differential equations. Parallelization of numerical calculations on these architectures often
has to deal with a bottleneck in memory bandwidth.

It is a promising approach to try to solve this problem by using dedicated hardware devices
that implement neurons and synapses in an analog and parallel fashion. In these circuits every
neuron and most synapses operate independently and massively parallel. There are many models
of neural information processing units available that need to be tested and verified or falsified
against nature. Trying to understand nature one has to repeat its behaviour in a controlled
environment by doing experiments. Re-building the brain in silicon or in massively parallel
operating computer architectures is a bit like building cathedrals was in the middle ages. There
exists no blueprint, all there is are prototypes in form of living, thinking beings. Like it often
happened with cathedrals that imploded after having been build up for years, it can happen to
neuromorphic hardware projects that they fail in answering all questions about the nature of
the brain. However, one should invest the effort into building biologically realistic models of the
brain, be it in silicon or software.

Since dedicated hardware highly accelerates the process of building up a model and verifying
it against nature, it seems to be the most promising approach at present. With the FACETS
Stage 2 hardware system the FACETS project will show that it is possible to build a wafer-scale
systems containing more than 100,000 adaptive exponential integrate-and-fire [2] neurons that
operate at a speed-up factor of 103 to 104 compared to biological real-time. This system does
not yet exist as a whole but all parts of it and their interconnection have already been proto-
typed and are being tested. By coordinating international efforts in this field and developing
communication infrastructure, one can even speed up the development process of such hardware
systems in the far future.

Of course, such efforts require faith in science and the power of the human brain to finally
and completely understand itself. This may or may not succeed and it may or may not succeed
by means of neuromorphic hardware. But no single cathedral would be visible today if nobody
had believed in their fulfilling a higher purpose and the power of statical calculations in the first
place.

Appendix A

A brief description of the Calibre
xRC workflow

A.1 The different steps in parasitics extraction

The parasitics extraction toolchain used in this work is part of the Calibre IC verification software
by Mentor Graphics. This software implements a workflow that consists of the following steps
(c.f. figure A.1, which was taken from the Calibre R© xRC

TM
User’s Manual [11]):

1. During the first step a Persistent Hierarchical Database (PHDB) is created which contains
information about layout connectivity and devices.

2. In the second step, the Parasitics Database (PDB) is created, containing information about
the parasitic models of each net.

3. The third step generates a netlist containing the parasitic elements of each net and device.

A more detailed description of each of the above mentioned steps is given below.

The Persistent Hierarchical Database contains hierarchical geometries and the results of
connectivity extraction and device recognition. It stores the information in terms of a
hierarchical geometry (i.e. primitive device placements) and the so called hierarchical con-
nectivity model (i.e. the nets connecting the devices). The recognized devices determine
current flow and their placement determines where nets end.

As an input to the process of device and connectivity extraction the program requires an
SVRF1 rule file, a layout database and a source netlist. The latter is only required if the
user wishes that the nets and devices in the PHDB be named according to the source
netlist. These requirements are also depicted in figure A.1. An SVRF file is a set of
instructions that control the devices and nets extraction process, the parasitics extraction
and other verification tasks, such as Design Rule Checks (DRC) and Electrical Rule Checks
(ERC).

An exemplary rule file is given in the next section. The basic principles of device recognition
and connectivity extraction will be mentioned in the following paragraphs.

In a simple NMOS process, as it is assumed in the example rule file (c.f. listing A.1), a
transistor is made up of two n+ diffusion areas separated by an area of un-doped substrate
that is covered by a poly-silicon gate. To be able to recognize such a device, one has to
define first of all the layers that are used in the process and that are relevant for the design.
Theses layers are defined using the LAYER keyword, as can be seen in lines 9-13 of the
example rule file. Furthermore, the relevant polygons of a transistor are defined by boolean

1Standard Verification Rule Format

53

54 APPENDIX A. A BRIEF DESCRIPTION OF THE CALIBRE XRC WORKFLOW

Create the PHDB
Using Calibre LVS or xRC

Create the PDB
Using Clibre xRC

Format the Netlist
Using the Calibre xRC

Formatter

Layout Database

Persistent
Hierarchical

Database (PHDB)

Parasitic Database
(PDB)

Source
Netlist

(LVS only)

SVRF Rule
File

Xcell File

Parasitic
Netlist

Simulators
and

Timing Analyzers

Figure A.1: Calibre R© xRC
TM

workflow taken from [11]. It shows the three steps that are carried
out by the software to extract parasitics from a GDS II layout file and the necessary input files
for each step.

A.1. THE DIFFERENT STEPS IN PARASITICS EXTRACTION 55

operations on the shapes that belong to the relevant layers. In our case the n-channel gate
is defined as a diffusion shape that is covered by a poly-silicon area. The instructions, that
are used to define such composite polygons, are simple boolean operators, such as AND
or NOT. But there is also the possibility to use more complicated layer combinations such
as layer1 COINCIDENT EDGE layer2. In an SVRF rule file one has to assign a name to
such derived polygon layer that can be used as if it was a physical layer in the course of
the file.

Once the layers and the derived polygon layers have been recognized, the software continues
to apply connectivity instructions to extract the nets of the design. This is done by the
CONNECT statement. In our example we connect the metal layer to the derived drain,
source and gate polygons by a layer called contact. This way, the extraction software can
identify connections between different devices that have been interconnected by routing
on the metal layer.

After having prepared the derived polygon layers and having established the electrical
connections between them, one can proceed to recognizing devices in the layout. This is
done via the DEVICE statement which uses the (derived) layers, that are important for
the definition of the device and its pins as its arguments. In the case of the example rule file
in the next section, one would like to define an NMOS transistor that has its gate pin on
the poly-silicon layer, its drain and source pin on the corresponding derived polygon layers
and its bulk contact on the pwell layer. It is necessary to define a layer that contains the
shape which serves to recognize the device. In the exemplary case one would want to use
ngate shape. There is also the possibility to give so called auxiliary layers as a parameter
to the device statement. These can only be used to perform property calculations in the
statement block that follows the device statement line, as can be seen in lines 73 of the
example rule file. Such calculations include width and length of the active transistor and
area calculations.

The property calculation block, which is embraced by square brackets, is composed of
calculations (determining for example the width and length of the device) preceded by a
PROPERTY statement that defines which properties the device has. In our case we would
like to calculate the width and length of the transistor gate and the area, perimeter and
number of resistor sheets of the device’s drain and source. The example rule file contains
two different device descriptions.

The Parasitics Database will be described in the following paragraphs.

There are five types of parasitic capacitances that can be calculated by the Calibre xRC
tool. They can further be classified in two groups.

1. The intrinsic capacitance a layer has with respect to the substrate

• Capacitance Intrinsic Fringe
• Capacitance Intrinsic Plate

2. The crossover capacitances of a layer with respect to other layers next to or above it

• Capacitance Crossover Fringe
• Capacitance Crossover Plate
• Capacitance Nearbody

The first four of these parasitic capacitances are shown in figure A.1 together with an
illustration of the shielding effect, which is caused by crossing metal lines. The Nearbody
capacitance is calculated by taking into account two shapes that pass by each other on the
same height with a certain distance.

The parasitic capacitances and resistances are calculated from the PHDB by using the geo-
metrical properties that have been calculated by the inner block of the DEVICE statement.

56 APPENDIX A. A BRIEF DESCRIPTION OF THE CALIBRE XRC WORKFLOW

Metal1

Base1

Poly

Base2

C7 C9

C5 C6

C1 C2 C3 C4

C8
Crossover

Fringe
Crossover

Fringe

Intrinsic
Plate

Intrinsic
Fringe

Intrinsic
Fringe

Intrinsic
Plate

Intrinsic
Plate

Intrinsic
Fringe

Crossover
Plate

Figure A.2: Cross-Sectional view of an arbitrary semiconductor device showing to demonstrate
vertical shielding, taken from [10]. It shows four different types of parasitic capacitances that
can be extracted with the Calibre Parasitics Extraction tool.

Therefore, the widths and other physical properties like sheet resistance and permittivity
of the different layers have to be given, which is normally done in a separate SVRF rule
file by the foundry.

A parasitics netlist is created in the last step of the extraction tool chain. It contains a back-
annotated netlist of the circuit, i.e. a netlist into which all the parasitic capacitances,
inductances and resistances that have previously been extracted are included. The pins
of the circuit under consideration are kept as the circuit is processed by the parasitics ex-
traction software. Therefore, one can include the back-annotated netlist into a testbench
that has already been designed before and can simulate it with a circuit simulator. How-
ever, this procedure becomes practically impossible with full-chip back-annotated netlists.
The number of devices in such a file exceeds the memory resources of computers that are
normally available. This is the reason why the analog part of the Spikey chip has never
been simulated completely with parasitic devices and in conjunction with the digital part.
At the moment, it is only feasible to extract parasitics partially for particular circuits and
simulate these in a dedicated testbench.

A.2. EXAMPLE SVRF RULE FILE 57

A.2 Example SVRF Rule File

This example rule file was taken from [12] and is explained in more detail in section A.1. It is
used to demonstrate the basic steps of device recognition and characterization and connectivity
extraction.

Listing A.1: Example SVRF rule file

1 ///
2 // Example r u l e f i l e f o r Computing Device Parameters
3 // NRS, NRD, AS, AD, PD, PS , L , W
4 ///
5 //−−−
6 // This s e c t i o n conta in s example l a y e r d e f i n i t i o n s , l a y e r
7 // de r i va t i on s , and connect statements .
8 //−−−
9 l a y e r i p o l y 4 // The numbers r e f e r to the l a y e r numbers

10 l a y e r d i f f 5 // o f the GDS I I input f i l e .
11 l a y e r contact 6
12 l a y e r metal1 8
13 l a y e r pwel l 10
14 ngate = i p o l y AND d i f f
15 nsd = d i f f NOT ngate
16 connect metal1 nsd i p o l y by contact
17 connect pwe l l
18 nsd r s1 = nsd not contact
19 nsd r s2 = nsd r s1 c o i n c i d e n t edge ngate
20 nsd r s3 = nsd r s1 c o i n c i d e n t edge contact
21 nsd r s = i n t nsd r s2 nsd r s3 < 100 p a r a l l e l oppos i t e r eg i on
22 //Note , i n s t ead o f 100 , the above command should use the
23 // ac tua l l a r g e s t d i s t anc e a source / dra in contact would ever
24 //be from the edge o f a gate in your proce s s .
25 ///
26 //Note , the re are two dev i ce d e s c r i p t i o n s below . The f i r s t
27 // addre s s e s ord inary dev i c e c o n f i g u r a t i o n s . The second
28 // addre s s e s more e x o t i c dev i c e c o n f i g u r a t i o n s , p a r t i c u l a r l y :
29 // a . Devices in which both source and dra in r e g i o n s have no
30 // contac t s . (example : th ree or more d e v i c e s in s e r i e s)
31 // b . Devices in which no contact r e s i d e s with in 100u (or
32 // whatever d i s t anc e you s p e c i f y) from gate edge .
33 // c . Devices in which no contact has any edge f a c i n g the
34 // gate edge . I f you f i n d any computation wherein you
35 // r e q u i r e more accuracy , contact Mentor Graphics
36 // Customer Support .
37 ///
38 ///
39 // Device Desc r ip t i on Example 1
40 //
41 //Note , the a u x i l i a r y l a y e r s ” d i f f ” and ” nsd r s ” are added
42 // to t h i s f i r s t dev i c e d e s c r i p t i o n ; use d i f f
43 // in the AS, AD, PS , PD property computations below to
44 // account f o r shared source / dra in ; use n sd r s in the
45 //NRS, NRD property computations .
46 ///

58 APPENDIX A. A BRIEF DESCRIPTION OF THE CALIBRE XRC WORKFLOW

47 dev i c e mn ngate i p o l y (G) nsd (S) nsd (D) pwel l (B) <d i f f>
48 <nsd rs>
49 [
50 property W, L , AD, AS, PD, PS , NRS, NRD
51 b e n d e f f e c t = 0 .5
52 //−−−
53 // This s e c t i o n o f the property computations measures gate
54 // l ength and width . The ” i f ” c l a u s e accounts f o r any bends
55 // that can e x i s t in the gate s .
56 //−−−
57 W = p e r i m e t e r c o i n c i d e (ngate , nsd) / 2
58 L = (perim (ngate) − p e r i m e t e r c o i n c i d e (ngate , nsd)) / 2
59 i f (bends (ngate) > 0)
60 {
61 i f (W > L)
62 W = W − b e n d e f f e c t ∗ bends (ngate) ∗ L
63 e l s e
64 L = L − b e n d e f f e c t ∗ bends (ngate) ∗ W
65 }
66 //−−−
67 // This s e c t i o n o f the property computations measures Area o f
68 // Source and Area o f Drain , even in ca s e s o f shared
69 // source / dra in . Note , because the capac i tance e f f e c t s o f AS
70 //and AD are a func t i on o f source / dra in area and per imeter , AS
71 //and AD are not a f f e c t e d by bends in the source / dra in r e g i o n s .
72 //−−−
73 AS = area (S) ∗ (W / p e r i m e t e r i n s i d e (S , d i f f))
74 AD = area (D) ∗ (W / p e r i m e t e r i n s i d e (D, d i f f))
75 //−−−
76 // This s e c t i o n o f the property computations measures
77 // Per imeter o f Source and Perimeter o f Drain , even in ca s e s
78 // o f shared source / dra in . Note , s i n c e the capac i tance e f f e c t s
79 // o f PS and PD are a func t i on o f source / dra in per imeter , PS
80 //and PD are not a f f e c t e d by bends in the source / dra in r e g i o n s .
81 //−−−
82 PS = per imeter (S) ∗ W / p e r i m e t e r i n s i d e (S , d i f f)
83 PD = per imeter (D) ∗ W / p e r i m e t e r i n s i d e (D, d i f f)
84 //−−−
85 // This s e c t i o n o f the property computations measures Number o f
86 // Res i s tance Squares in Source and Number o f Res i s tance
87 // Squares in Drain , in terms o f a f i r s t order approximation .
88 //Note :
89 //1 . The f o l l o w i n g c a l c u l a t i o n s use edges o f contac t s
90 // in s t ead o f c e n t e r s o f contac t s . That i s ,
91 // NRS = average d i s t anc e from gate to contact ’ s nea r e s t
92 // edges / width o f gate .
93 //2 . The f o l l o w i n g c a l c u l a t i o n s f u l l y account f o r r e l a t i v e
94 // placement o f contac t s to gate and to each other , with
95 // the s i n g l e except ion that contac t s that have no edges
96 // that f a c e the gate edge are not invo lved in the
97 // c a l c u l a t i o n .
98 //3 . C a l c u l a t i o n s assume a l l contac t s are equa l l y s i z e d .

A.2. EXAMPLE SVRF RULE FILE 59

99 SUM S LENGTH = p e r i m e t e r i n s i d e (nsd rs , S) − p e r i m e t e r c o i n c i d e (nsd rs , S)
100 COUNT S = trunc ((count (n sd r s) ∗ p e r i m e t e r c o i n c i d e (nsd rs , S)
101 / p e r i m e t e r c o i n c i d e (nsd rs , G)) + 0 . 5)
102 i f (count S != 0) {
103 NRS = SUM S LENGTH / COUNT S / W / 2
104 }
105 e l s e {
106 NRS = AS / (W ∗ W)
107 }
108 SUM D LENGTH = p e r i m e t e r i n s i d e (nsd rs , D) − p e r i m e t e r c o i n c i d e (nsd rs , D)
109 COUNT D = count (n sd r s) − COUNT S
110 i f (COUNT D != 0) {
111 NRD = SUM D LENGTH / COUNT D / W / 2 }
112 e l s e {
113 NRD = AD / (W ∗ W)
114 }
115]
116 ///
117 // Device Desc r ip t i on Example 2
118 //
119 // This second dev i ce d e s c r i p t i o n should be used along with
120 // the f i r s t i f your des ign has any o f the f o l l o w i n g dev i ce
121 // c o n f i g u r a t i o n s :
122 // a . Devices in which both source and dra in r e g i o n s have no
123 // contac t s (example : th ree or more d ev i c e s in s e r i e s) .
124 // b . Devices in which no contact r e s i d e s with in 100u (or
125 // whatever d i s t anc e you s p e c i f y) from gate edge .
126 // c . Devices in which no contact has any edge f a c i n g the
127 // gate edge example : contact r e s i d e s in source / dra in
128 // ”dog−l e g . ”
129 //Note , the a u x i l i a r y l a y e r d i f f i s added to t h i s
130 // dev i ce d e s c r i p t i o n ; use d i f f in the AS, AD, PS , PD
131 // property computations below to account f o r shared source / dra in .
132 ///
133 dev i ce mn ngate i p o l y (G) nsd (S) nsd (D) pwel l (B) <d i f f>
134 [
135 // property W, L , AD, AS, NRD, NRS, PD, PS
136 //The l i n e above i s commented out u n t i l NRD and NRS computations are added
137 // to prevent syntax e r r o r upon compi l ing r u l e f i l e .
138 property W, L , AD, AS, PD, PS , NRS, NRD
139 b e n d e f f e c t = 0 .5
140 //−−−
141 // This s e c t i o n o f the property computations measures gate
142 // l ength and width . The i f c l a u s e accounts f o r any bends
143 // which can e x i s t in the gate s .
144 //−−−
145 W = p e r i m e t e r c o i n c i d e (ngate , nsd) / 2
146 L = (perim (ngate) − p e r i m e t e r c o i n c i d e (ngate , nsd)) / 2
147 i f (bends (ngate) > 0)
148 {
149 i f (W > L)
150 W = W − b e n d e f f e c t ∗ bends (ngate) ∗ L

60 APPENDIX A. A BRIEF DESCRIPTION OF THE CALIBRE XRC WORKFLOW

151 e l s e
152 L = L − b e n d e f f e c t ∗ bends (ngate) ∗ W
153 }
154 //−−−
155 // This s e c t i o n o f the property computations measures area o f
156 // source and area o f drain , even in ca s e s o f shared
157 // source / dra in . Note , s i n c e the capac i tance e f f e c t s o f AS and
158 //AD are a func t i on o f source / dra in area and per imeter , AS
159 //and AD are not a f f e c t e d by bends in the source / dra in
160 // r e g i o n s .
161 //−−−
162 AS = area (S) ∗ (W / p e r i m e t e r i n s i d e (S , d i f f))
163 AD = area (D) ∗ (W / p e r i m e t e r i n s i d e (D, d i f f))
164
165 //−−−
166 // This s e c t i o n o f the property computations measures
167 // per imeter o f source and per imeter o f drain , even in ca s e s
168 // o f shared source / drain , Note , s i n c e the capac i tance e f f e c t s
169 // o f PS and PD are a func t i on o f source / dra in per imeter , PS
170 //and PD are not a f f e c t e d by bends in the source / dra in r e g i o n s .
171 //−−−
172 PS = per imeter (S) ∗ W / p e r i m e t e r i n s i d e (S , d i f f)
173 PD = per imeter (D) ∗ W / p e r i m e t e r i n s i d e (D, d i f f)
174 //−−−
175 // This s e c t i o n o f the property computations measures number o f
176 // r e s i s t a n c e squares in source and number o f r e s i s t a n c e
177 // squares in dra in . Note , in the case where n e i t h e r the source
178 // nor dra in has any contacts ,
179 //NRS = area o f source / width / width
180 //That i s , average l ength o f AS = AS / W
181 //number o f r e s i s t a n c e squares = average l ength o f AS / W
182 //−−−
183 NRS = AS / (W ∗ W)
184 NRD = AD / (W ∗ W)
185]

Bibliography

[1] Johannes Bill. Self-stabilizing network architectures on a neuromorphic hardware system.
Diplomarbeit, Universität Heidelberg, 2008.

[2] R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective
description of neuronal activity. Journal of Neurophysiology, 94:3637–3642, 2005.

[3] D. Brüderle, E. Müller, A. Davison, E. Muller, J. Schemmel, and K. Meier. Establishing a
novel modeling tool: a python-based interface for a neuromorphic hardware system. Front.
Neuroinform., 3, 2009.

[4] Daniel Brüderle. Neuroscientific modeling with a mixed-signal vlsi hardware system. Dis-
sertation, Universität Heidelberg, 2009.

[5] The Hypertransport Consortium. http://www.hypertransport.org, 2010.

[6] Analog Devices. AD7924 Data Sheet. 2009. http://www.analog.com/static/
imported-files/Data%5FSheets/AD7904%5F7914%5F7924.pdf.

[7] Analog Devices. AD8063 Data Sheet. 2010. http://www.analog.com/static/
imported-files/data%5Fsheets/AD8061%5F8062%5F8063.pdf.

[8] Simon Friedmann. Extending a hardware neural network beyond chip boundaries. Diplo-
marbeit, Universität Heidelberg, 2009.

[9] R. L. Geiger, P. E. Allen, and N. R. Strader. VLSI - Design techniques for analog and
digital circuits. McGraw-Hill, 1990.

[10] Mentor Graphics, 2007. SVRF Capacitance and Resistance Statements — Concepts and
Usage.

[11] Mentor Graphics, 2008. Calibre R© xRC
TM

User’s Manual.

[12] Mentor Graphics, 2008. Calibre R© Verification User’s Manual.

[13] Electronic Vision(s) group of the Kirchoff Institute for Physics Heidelberg. Listing of latest
changes made in the design of the spikey asic. http://www.kip.uni-heidelberg.de/
repos/VISION/project/spikey/revision.txt.

[14] Andreas Grübl. Vlsi implementation of a spiking neural network. Dissertation, Universität
Heidelberg, 2007.

[15] A. Hastings. The ART of ANALOG LAYOUT. Prentice Hall, 2001.

[16] Keithley Instruments. 2100, 6 1/2-Digit USB Digital Multimeter. 2010. http://www.
keithley.de/data?asset=50757.

[17] Céondo Ltd. Indefero code management system. http://www.indefero.net/.

61

http://www.hypertransport.org
http://www.analog.com/static/imported-files/Data%5FSheets/AD7904%5F7914%5F7924.pdf
http://www.analog.com/static/imported-files/Data%5FSheets/AD7904%5F7914%5F7924.pdf
http://www.analog.com/static/imported-files/data%5Fsheets/AD8061%5F8062%5F8063.pdf
http://www.analog.com/static/imported-files/data%5Fsheets/AD8061%5F8062%5F8063.pdf
http://www.kip.uni-heidelberg.de/repos/VISION/project/spikey/revision.txt
http://www.kip.uni-heidelberg.de/repos/VISION/project/spikey/revision.txt
http://www.keithley.de/data?asset=50757
http://www.keithley.de/data?asset=50757
http://www.indefero.net/

62 BIBLIOGRAPHY

[18] Sebastian Millner. An integrated operational amplifier for a large scale neuromorphic sys-
tem. Diplomarbeit, Universität Heidelberg, 2007.

[19] Eric Müller. Operation of an imperfect neuromorphic hardware device. Diplomarbeit,
Universität Heidelberg, 2008.

[20] Boris Ostendorf. Charakterisierung eines neuronalen netzwerk-chips. Diplomarbeit, Uni-
versität Heidelberg, 2007.

[21] Stefan Philipp. Design and implementation of a multi-class network architecture for hard-
ware neural networks. Dissertation, Universität Heidelberg, 2008.

[22] Gnuplot 4.4 An Interactive Plotting Program. http://www.gnuplot.info/docs%5F4.4/
gnuplot.pdf, 2010.

[23] The WAF project. Waf - the flexible build system. http://code.google.com/p/waf/.

[24] The FACETS project website. http://facets.kip.uni-heidelberg.de/public/, 2010.

[25] J. Schemmel, D. Brüderle, K. Meier, and Ostendorf B. Modeling synaptic plasticity within
networks of highly accelerated i&f neurons. In Proceedings of the 2007 IEEE International
Symposium on Circuits and Systems (ISCAS’07), page 3367–3370, 2007.

[26] J. Schemmel, A. Grübl, K. Meier, and E. Müller. Implementing synaptic plasticity in a vlsi
spiking neural network model. In Proceedings of the 2006 International Joint Conference
on Neural Networks (IJCNN’06), pages 1–6, 2006.

[27] J. Schemmel, K. Meier, and E. Müller. A new vlsi model of neural microcircuits including
spike time dependent plasticity. In Proceedings of the 2004 International Joint Conference
on Neural Networks (IJCNN’04), volume 3, pages 1711–1716, 2004.

[28] Agilent Technologies. Using Linux to Control USB Instruments. 2010. http:
//www.home.agilent.com/agilent/redirector.jspx?action=ref&cname=AGILENT%
5FEDITORIAL&ckey=1189335&lc=eng&cc=US&nfr=-33861.0.00.

[29] Xilinx. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet. 2007.

http://www.gnuplot.info/docs%5F4.4/gnuplot.pdf
http://www.gnuplot.info/docs%5F4.4/gnuplot.pdf
http://code.google.com/p/waf/
http://facets.kip.uni-heidelberg.de/public/
http://www.home.agilent.com/agilent/redirector.jspx?action=ref&cname=AGILENT%5FEDITORIAL&ckey=1189335&lc=eng&cc=US&nfr=-33861.0.00
http://www.home.agilent.com/agilent/redirector.jspx?action=ref&cname=AGILENT%5FEDITORIAL&ckey=1189335&lc=eng&cc=US&nfr=-33861.0.00
http://www.home.agilent.com/agilent/redirector.jspx?action=ref&cname=AGILENT%5FEDITORIAL&ckey=1189335&lc=eng&cc=US&nfr=-33861.0.00

Acknowledgements

I wish to express my appreciation and gratitude to all persons who contributed in any way to
this thesis.

All members of the Electronic Vision(s) group for an incredible work atmosphere, general support
and openness.

Prof. Dr. Karlheinz Meier for having given me the opportunity to work in this field of research
and his commitment to the FACETS project.

Dr. Johannes Schemmel for supervision and for his invaluable advice and knowledge.

Prof. Dr. Norbert Herrmann for providing a second opinion for this thesis.

Dr. Andreas Grübl for patient explanations, introducing me to the tricks of the trade and his
sense of humor.

Eric Müller and Markus Dorn for helping me on innumerable computer problems.

Ralf Achenbach for his support with lab facilities.

All Hardies and Softies for their patience and general support.

Kathrin Aguilar Ruiz-Hofacker and Simone Schumacher at INI Zürich for making it possbible
for me to submit this thesis on time.

Linn for her love and general support during the developpement of this thesis.

My family.

63

64 BIBLIOGRAPHY

Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of my own work. Any
ideas or quotations from the work of other people, published or otherwise, are fully acknowledged
in accordance with the standard referencing practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Heidelberg, 03.05.2010
.......................................

(signature)

	Introduction
	The FACETS Stage1 Hardware System
	Purpose
	Structure
	The Spikey chip
	Supporting hardware
	The Control PC and its software

	Improvements in the hardware design
	The digital part of the Spikey chip
	Improvements in the Physical Layer
	Improvements in the Application Layer
	Errors during changes in the design

	The analog part of the Spikey chip
	Improving the neuron readout priority encoder
	Improving parameter voltage generation
	Adding current monitoring devices
	Changes in the current parameter assignment

	Experimental setup
	Supporting hardware
	Measurement devices
	Measurements with LVDS lines
	Analog measurements

	The FACETS Stage 1 software framework
	PyNN and FHW-1

	Experimental Verification
	The Physical layer
	Parameter value generation
	Parameter currents
	Parameter voltages

	Event readout priority encoder

	Conclusion and Outlook
	A brief description of the Calibre xRC workflow
	The different steps in parasitics extraction
	Example SVRF Rule File

