
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Moritz Schilling

A Highly Efficient Transport Layer for the
Connection of Neuromorphic Hardware Systems

Diplomarbeit

HD-KIP-10-09

KIRCHHOFF-INSTITUT FÜR PHYSIK

Faculty of Physics and Astronomy
University of Heidelberg

Diploma thesis
in Physics

submitted by
Moritz Schilling

born in Marsberg, Germany

January 2010

A Highly Efficient Transport Layer
for the Connection of Neuromorphic

Hardware Systems

This diploma thesis has been carried out by Moritz Schilling at the
Kirchhoff Institute for Physics

University of Heidelberg
under the supervision of
Prof. Dr. Karlheinz Meier

A Highly Efficient Transport Layer for the Connection of Neuromorphic
Hardware Systems

Neuromorphic hardware is a highly innovative and very promising tool in the ongoing neu-
roscientific endeavour of understanding and replicating the extremely complex information
processing device known as the human brain. The highly accelerated neuromorphic system
used throughout this thesis can produce a multitude of neuronal events during periods of
high activity, which can easily fully load or even exceed the bandwidth of modern computer
networks. This work delves into the efficient connection of such a system to the controlling
software layers. The developed software includes state of the art principles of software engi-
neering, such as concurrent threads and communication mechanisms without copy processes.
These methods have been used to develop an essential, novel software component which has
been successfully integrated into the already existing framework. Several experiments have
been performed to prove the functionality of the implemented software, which is shown to be
able to provide a significant speed-up for future neuronal experiments.

Eine hocheffiziente Transportschicht zur Anbindung neuromorpher Hardware

Neuromorphe Hardware ist ein hoch innovatives und vielversprechendes Werkzeug im Be-
streben der Neurowissenschaft ein hochkomplexes Rechenwerk wie das menschliche Gehirn
zu verstehen und nachzubilden. Bereits existierende, stark beschleunigte neuromorphe Sys-
teme können große Mengen neuronaler Ereignisse produzieren, welche die Bandbreite auch
moderner Rechnernetze schnell aus- oder überlasten können. Die vorliegende Arbeit befasst
sich eingehend mit der möglichst effizienten Anbindung eines solchen Systems an die kontrol-
lierenden Softwareschichten. Die entwickelte Software macht dabei Gebrauch von aktuellen
Prinzipien der Softwareentwicklung, wie nebenläufige Threads oder Kommunikationsmecha-
nismen, die ohne Kopiervorgänge auskommen. Diese Prinzipien wurden benutzt, um einen
neuen, essenziellen Softwarebaustein zu entwickeln, der sich perfekt in die bereits bestehende
Struktur einfügt. Verschiedenste Experimente wurden durchgeführt um zu zeigen, dass die
entwickelte Software in der Lage ist, zukünftige neuronale Experimente erheblich zu beschle-
unigen.

Contents

1 Introduction 1

2 FACETS Neuromorphic Hardware Device & Software Framework 3
2.1 Stage 1 . 3

2.1.1 Spikey – the Neuromorphic Chip . 3
2.1.2 Software Framework . 4
2.1.3 Former Data Flow . 5

2.2 Stage 2 . 6

3 Development of a New Transportation Layer 7
3.1 Operating System Issues . 7

3.1.1 Sockets . 7
3.1.2 Network Stack . 8
3.1.3 TCP/IP . 8

3.2 Functional Requirements . 9
3.2.1 Routing Traffic . 9
3.2.2 Conservation of Data Flow . 9
3.2.3 Conservation of Equilibrium . 12

3.3 SCtrlTP – an Efficient Transport Protocol Implementation 12
3.3.1 Kernel Space vs. User Space . 13
3.3.2 Interface Definition . 14
3.3.3 Synchronisation Mechanisms . 15
3.3.4 Performance Optimisation . 20
3.3.5 Resulting Protocol Implementation . 22

4 Measurements 24
4.1 Software Tools . 24
4.2 Measurements in a Simulated Environment 26

4.2.1 Performance of Shared-Memory-Based FIFO Queues 26
4.2.2 Throughput of the Slow Control Transport Protocol 27

4.3 Measurements on the Hardware System . 31
4.3.1 RAM Tests on the Backplane . 31
4.3.2 Neuronal Experiment with PyNN . 32
4.3.3 Previous Performance . 33

4.4 Known Bugs and Workarounds . 33

5 Discussion & Outlook 36
5.1 Achievements . 36
5.2 Open Issues . 37

III

A Source Code 39
A.1 Locking Mechanisms . 39
A.2 Berkeley Packet Filter . 41
A.3 Payload Formats . 42

Bibliography 46

IV

1 Introduction

Neuroscientists explore the structure, development and working principles of nervous systems.
These complex structures consist of a huge number of interconnected processing elements, the
neurons, which operate in parallel. Neurons communicate via action potentials, the so-called
spikes. Once emitted by a pre-synaptic neuron, these quasi-digital pulses travel along organic
cables, the axons, which end in synaptic connections to other neurons. Via synapses the
spikes affect the state of post-synaptic cells. Thus, the output of each neuron contributes to
the input of many other neurons. While the communication is based on simple-structured
pulses, neurons process and integrate their input in a much more complex manner. When a
cell is being sufficiently excited by its input, it broadcasts this information to other neurons
by emitting a spike itself.
Today, the dynamics of individual building blocks of biological nervous systems are quite

well understood. Already in 1952, Hodgkin and Huxley [1952] developed a detailed model
describing membrane dynamics. More recent research addressed a more abstract formulation
of essential properties of neurons and synapses [Brette and Gerstner , 2005; Markram et al.,
1998]. Nevertheless, the impressing computational power and adaptability of highly developed
nervous systems originates from network effects which arise from the complex interplay of
their components. Since the versatile interaction of large networks is difficult to monitor and
decipher, less knowledge on this important topic has been extracted so far. Accordingly, the
study of network phenomena is subject to intensive research.
Instead of gaining insight into network dynamics directly through measurements, an al-

ternative approach is to calculate the behaviour of networks and to compare the predicted
properties with experimental results on a higher level. This is achieved in different ways.
One way is to use mathematical models based on the analytical treatment of equations

representing components of neural networks. While elegant, the involved equations make
calculations difficult due to the time-continuous nature of membrane dynamics in contrast to
the binary communication via spikes. In order to overcome this obstacle, software simula-
tors allow to numerically calculate the time-development of the system. Common tools like
NEURON [Hines and Carnevale, 2003] or NEST [Gewaltig and Diesmann, 2007a] offer com-
plete control over all parameters and tracking of the entire network state. This way, network
experiments in the order of seconds can be performed.
Nevertheless, many important features of self-organisation in neural networks occur on

much longer time-scales. Examples are long-term learning and the formation of memory.
Furthermore, large networks exhibit a huge amount of parameters which define the system.
In order to establish a comprehensive understanding of the network dynamics, it is necessary
to explore high-dimensional parameter spaces. This requires the repetitive execution of almost
identical experiments. Both of the above described types of experiments are limited by the
computational power of present computers in case of large network models.
Due to these obstacles a fundamentally different approach for modelling neural networks

emerged in the 1980s [Mead and Mahowald, 1988; Mead, 1989]. Neuromorphic hardware de-
vices physically implement neuron and synapse models which follow similar dynamics as their

1

1 Introduction

biological counterparts. Consequently, neuronal systems on such hardware devices evolve
both in parallel and time-continuously. Therefore, the simulation of neural networks via
neuromorphic hardware devices is called emulation. Additionally, the dimensioning of the
circuitry allows a highly accelerated operation compared to biology. Due to the inherent
parallelism, the high emulation speed remains widely unaffected when increasing the net-
work size. Today, an active community develops analogue or mixed-signal VLSI1 models of
neural systems [Vogelstein et al., 2007; Merolla and Boahen, 2006; Häfliger , 2007; Serrano-
Gotarredona et al., 2006; Renaud et al., 2007; Schemmel et al., 2007, 2008; Ehrlich et al.,
2007].
All of the above described types of neuroscientific research are addressed within the FACETS2

[FACETS , 2009] research project. The goal of this project with members across Europe is to
find novel computing paradigms inspired by biological neural systems. The hardware system
utilised throughout this thesis is being developed within the FACETS project.
In order to make neuromorphic hardware devices valuable research tools, the technical

challenges coming along with this technology have to be faced. One of the major obstacles
imposed by the speed-up factor in highly accelerated hardware systems is to handle the huge
amounts of data generated during experiments and for configuration. Ideally, the commu-
nication framework is able to transport all information to and from the hardware system.
In contrast to that, the bandwidth of links in the communication framework is limited in
practice. Consequently, either the network size or the event rate has to be constrained in
order to prevent the loss of information. Hence, the communication software has to maximize
the data throughput.
An additional requirement to the communication software is the minimisation of latency,

i.e. the processing or routing delay occurring during information transmission. This will be
important for an interaction between the neural network emulated by the hardware and a
virtual environment. Another application where low latency is desired is the routing process
for internet backbones.
For these reasons, the optimisation of both, throughput and latency, is essential for exploit-

ing the advantages of neuromorphic hardware devices. The development of a highly efficient
transport software layer between a neuromorphic hardware device and other software layers,
is the goal of this thesis.

Outline
In advance to the presentation of the new transport layer in chapter 3 and the results of
various measurements with it in chapter 4, the current software and hardware environment of
the FACETS stage 1 system will be described. To what extent the developed software fulfils
the requirements of being an efficient transport layer for the connection of a neuromorphic
hardware device is discussed afterwards in chapter 5.

1Very Large Scale Integration
2Fast Analog Computing with Emergent Transient States

2

2 FACETS Neuromorphic Hardware Device &
Software Framework

In this chapter, a short overview of the currently available software framework and the utilized
neuromorphic hardware device is given. First the neuromorphic chip Spikey containing the
analogue neuron circuits is described, followed by the controlling software stack, starting from
the highest and down to the lowest layer. Afterwards the previously used connection between
software framework and neuromorphic device is presented. Its shortcomings are outlined to
motivate the implementation of the new transport protocol. For the sake of completeness, the
planned successor of the stage 1 hardware system, the FACETS stage 2 wafer-scale integration
system, is briefly described in the last section.

2.1 Stage 1

The FACETS stage 1 hardware environment consists of a printed circuit board, the so-called
backplane [Philipp et al., 2007] which hosts up to 16 Nathan-Cards [Grübl, 2007] via a 40−80
MBit/s serial bus1. Each card is equipped with an additional FPGA, the Nathan, which
controls a buffer memory and Spikey, the neuromorphic chip.

2.1.1 Spikey – the Neuromorphic Chip

The neuromorphic chip implements 384 leaky integrate and fire neurons with conductance
based synapses [Destexhe et al., 1998]. The neuron membrane is emulated by a capacitance.
Charge from incoming spikes flows onto the capacitor, changing its voltage. If a certain
threshold is reached, an outgoing spike is detected and the voltage is set to a reset potential
for a short period of time. The spike of the pre-synaptic neuron is first routed through
synapse drivers and then through the corresponding synapse circuits to its targets – the post-
synaptic neurons. The change in the membrane potential of the target depends on the type
(excitatory or inhibitory) and the weight of the synapse involved. For an excitatory synapse,
the membrane potential temporarily increases and for an inhibitory synapse, it temporarily
decreases. The weight parameters are implemented in the synapse circuit and control the
impact of a spike on its target. In most biological neural networks, synaptic weights may
vary over time. In order to achieve such behaviour, various biologically inspired plasticity
mechanisms have been implemented onto the hardware (Schemmel et al. [2006]; Schemmel
et al. [2007]). For example, STDP is realized by changing the weight of a synapse depending
on the causal or acausal correlation between a pre- and a post-synaptic spike.
A generated spike can also be routed off-chip to the corresponding Nathan. This inter-

Spikey communication is realised via a MGT2-based network implementing isochronous con-
1the uncertainty results from slightly different clock rates across the backplanes
2Multi-Gigabit Transceiver

3

2 FACETS Neuromorphic Hardware Device & Software Framework

nections [Philipp et al., 2007]. Data dedicated to the host computer is buffered in local
SDRAM and, upon request, is transferred via backplane to the host computer.

2.1.2 Software Framework

PyNN

PyNN.hardware

PyHAL

Spike Train In

Communication Spike Train Out

Chip Model

C++ (Boost.Python wrapper)

PyScope

C++

Chip Config

PyNN.neuron

HOC

NEURON

PyNN.nest

SLI

NEST

Socket Comm

Trace Manager

PyN

SLI

N

Figure 2.1: Software stack which includes PyNN, PyHAL and the wrapper functions to SpikeyHAL.
The transport layer is not explicitly shown but indicated by the box Communication. Figure based
on Brüderle et al. [2009], with friendly permission from Eric Müller.

The highest level of the software environment is represented by PyNN [Davison et al.,
2008], a meta language for an unified description of neuronal network experiments based
upon the scripting language Python [Rossum, 2000]. The main aim of PyNN is to provide a
unified interface for accessing various neuronal simulation tools (e.g. NEST [Diesmann and
Gewaltig, 2002; Gewaltig and Diesmann, 2007b; Eppler et al., 2008], NEURON [Hines and
Carnevale, 2006; Hines et al., 2009]) as well as neuromorphic hardware devices. The model-
specific parameter set is translated by corresponding PyNN modules to the intrinsic parameter
space of the chosen simulator or neuromorphic hardware device. Thus, the portability and
comparability of experiments across multiple back-ends is achieved. This is necessary to
identify behaviour which is generated by the simulator itself and to have access to the various
feature sets (e.g. different neuron models or parameter values) when checking the model for
its universality.
When using PyNN to access the FACETS stage 1 hardware device, the PyNN.hardware.-

stage1 [Brüderle et al., 2009] module first needs to be imported. This module links the unified
interface to the specific interface of PyHAL. PyHAL provides functions to place and inter-
connect neurons of a neural network on a Spikey. Furthermore, all biological parameters
are translated into the hardware-specific domain and vice versa. The configuration param-
eters and spike-patterns are send to SpikeyHAL [Grübl, 2007] where they are implemented
into hardware-specific commands or Slow Control3 commands [Fieres et al., 2004]. Every
command is transmitted to the neuromorphic device where it is executed and a response, de-

3Slow control means in this context that such commands are executed more slowly than neuronal events
occur within the neuromorphic device

4

2.1 Stage 1

pending on whether its execution was successful or not, is generated. Aside from this response
read commands provide the value stored at the requested location in the memory.

2.1.3 Former Data Flow

The software framework which accesses the backplane and its neuromorphic chips utilizes a
low-level program called dwserver, which provides the connection via a PCI card installed
in the hosting computer, the so called Darkwing PCI card [Schürmann et al., 2002]. The
dwserver program polls incoming messages from a user program out of its message queues.
Once a message is received, the included Slow Control commands are passed to the Darkwing
PCI card, which is handled by a proprietary driver called WinDriver. The Darkwing PCI
card hosts the connection with the backplane via a Low-Voltage-Differential SCSI4. After the
execution of the command by the hardware system, dwserver passes the answer back to the
dedicated user program.
Originally, the Darwing PCI card was intended to be a test environment for newly developed

mixed-signal chips. Now it is mainly used to provide a connection to a backplane. It works well
with the software framework. Experiments with neural networks were successfully set up and
performed [Kaplan, 2008; Bill, 2008; Müller , 2008]. However, there are some disadvantages.
The most important is the proprietary driver WinDriver developed by Jungo Ltd., 2007.
Although the driver supports enhancements like DMA5 to relieve the computer’s processing
units and to speed up communication, it is not possible to use them without malfunctions. For
example, if theWinDriver kernel module is loaded on multi-core architectures, the proprietary
kernel module deadlocks frequently. Another disadvantage is the fact that for every backplane
which shall be accessed, a separate Darkwing PCI card plus SCSI cable are necessary and
have to be installed. Throughput measurements performed in this thesis will show that the
bus between the Darkwing PCI card and the Nathan FPGAs is not fully saturated. While
the bus bandwidth theoretically allows a throughput of about 5-10 MB/s, in reality only a
small fraction of this is achieved (see section 4.3.3). This unnecessarily increases the time for
setting up an experiment and the retrieval of the buffered results.
There are several possibilities to increase the bandwidth and throughput of the link between

the neuromorphic hardware system and the controlling and processing software. For example,
the existing Token-Ring-based connection could be replaced with a different bus system e.g.
HyperTransport. But this would need extra hardware components on the backplane and on the
computer system. Another potential solution would be an USB6 link; All modern computers
are equipped with such ports. However, a disadvantage of USB is the complex control of the
software drivers which exacerbates the development of higher software layers.
Therefore and because of the already existing Ethernet connectors for the FPGA on the

backplane, a 1 GBit/s Ethernet link was selected to replace the SCSI link as the communica-
tion channel between the software framework and hardware environment. A properly installed
1 GBit/s link is more than sufficient to saturate the bus on the backplane. It is not sufficient
for the bus between Spikey and Nathan which has a bandwidth of ' 3− 4 GBit/s, but Eth-
ernet standards already exist with much higher bandwidths. Obstacles, like the mentioned
driver problems, rarely exist in modern networking drivers.

4Small Computer System Interface
5Direct Memory Access
6Universal Serial Bus

5

2 FACETS Neuromorphic Hardware Device & Software Framework

2.2 Stage 2
The FACETS stage 1 hardware system supports 384 neurons and 105 synaptic connections
per Spikey and up to 16 Spikeys per backplane. A simulation of the human brain’s neocortex
needs about 1010 neurons [Pakkenberg and Gundersen, 1997]. It would need thousands of
interconnected backplanes in order to just reach the number of neurons not to mention the
required communication bandwidth, which is impracticable. Even for the emulation of a single
hyper-column in the cortex, which consists of about 104 neurons, more than one backplane
would be necessary [Johansson and Lansner , 2007]. In addition to that, the FACETS stage
1 hardware system can not be used in an interactive mode. The results or output spikes
are recorded and saved in the memory on the backplane and can be read out only after the
experimental run is finished. But neuronal experiments in an interactive operation mode need
to exchange neuronal event data with the processing layers instantaneously.
In order to move a significant step towards the emulation of larger neuronal network ex-

periments, the FACETS stage 2 wafer-scale system is under development [Schemmel et al.,
2008]. Instead of cutting a wafer into single chips all circuits are left as a single wafer and
become connectable by adding additional buses afterwards. A single system is designed to
support up to 1.63 · 105 neurons and 4 · 107 synapses, while the acceleration factor of 104

compared to biological real-time is retained. Even bigger neural networks can be set up by
interconnecting multiple of those neuromorphic systems. Such large numbers of neurons and
synapses together with the speed-up factor of the system can lead to a comparatively large
neuronal event traffic of about 102 GEvents/s, which eventually have to be routed off the chip
to the controlling computer(s). The connection will be established via 12× or 24× 1 GBit/s
Ethernet links, providing theoretically a maximum bandwidth per wafer-scale system of about
12-24 GBit/s. How to handle such large event rates or data packet rates will be discussed in
this thesis (see chapter 5).

6

3 Development of a New Transportation Layer

This chapter describes the development of the new transportation protocol for the interface
between the FACETS stage 1 hardware system and the attached host computers. At first, a
short overview of operating systems and their interface for networking applications is given.
The decision to develop a new protocol instead of using existing ones will be motivated
thereafter. Finally, the requirements on the protocol are introduced and, considering these,
the implemented software is discussed.

3.1 Operating System Issues
Before delving into more profound issues of software engineering, the environment has to be
selected in which the software framework will operate in. Several possibilities exist, such as the
Microsoft Windows operating system (OS), Apple MacOS X and different Unix derivatives.
For the following reasons Linux, an Unix derivative, has been selected:

• compatibility: PyNN, the neuronal modelling language, including the module PyNN.-
hardware.stage1 is interfacing lower software layers all of which were developed for Linux
(see chapter 2).

• open OS: The source code of this OS is available for everyone to look at and modify
it. This is especially useful when writing low-level code.

• OS for free: Linux is free of charge because it is released under the GNU GPL1 [GPL
2009].

• standardized API2: Linux supports most of the POSIX standard3. This ensures
portability across different platforms [IEEE , 2004].

When porting user space code to kernel space or writing a new device driver, this selection
becomes even more obvious. How to develop a Linux device driver is very well understood
and documented [Corbet et al., 2005]. More details about this will be revealed in section 3.3.1.

3.1.1 Sockets
Sockets [Stevens et al., 2003] are the interface between an application and the operating
system when accessing networking devices, on Unix and non Unix-like operating systems.
Although they have been developed by Berkeley University as early as 1983, they still are
widely used. Like regular files, sockets are first opened, then accessed and finally closed with
the standard system API. If opened, the system allocates buffer space, sets up all necessary
administrative structures and prepares the network stack for the transmission and retrieval

1GNU General Public License
2Application Programming Interface
3Portable Operating System Interface (for Unix)

7

3 Development of a New Transportation Layer

Layer Protocol types
Application HTTP SpikeyHAL
Transport TCP Slow Control
Network IP Transport Protocol
Physical Ethernet

Table 3.1: Position of the Slow Control Transport Protocol (SCtrlTP) in a simplified networking
layer model. For comparison the positions of HTTP, TCP, IP are also given.

of data. In general, this data is not transmitted and received contiguously, but in chunks of
a maximum size that depends on the capabilities of the networking device.

3.1.2 Network Stack
When data chunks arrive at the networking device or are going to be sent to a remote host
they traverse the so-called network stack. At the different layers of the stack (as shown in
table 3.1), different protocol handlers process them according to options set in an incoming
chunk or the assigned socket. For example, if a TCP/IP-over-Ethernet4 packet arrives at
the networking device the system first calls the Ethernet protocol handler [Enck, 1994]. This
handler checks the destination MAC address5 and discards the packet – the so called Ethernet
frame – if it is not addressed to the host. The same happens if the checksum of the frame
is not equal to the checksum computed by the handler (although nowadays this is already
done by the networking device itself). Last but not least, the Ethernet handler determines
the next protocol handler by the type entry of the Ethernet frame and passes the payload
to the corresponding handler; in this example to the IP protocol handler. The IP handler
itself performs other tests and routes the encapsulated TCP packet to the TCP handler. All
these handlers strip off some amount of data which should be of no further interest to the
higher layers. Finally, the encapsulated data will be read by single or multiple applications.
Analogously, data which is going to be sent traverses from the highest layer to the lower layers
and is ultimately transmitted by the physical networking device.

3.1.3 TCP/IP
TCP/IP [Braden, 1989] is a combination of two protocols which are working very closely
together. In the following, the main focus lies on the TCP protocol, as it is similar to
the developed protocol. TCP is a connection oriented and lossless protocol. Connection
oriented means that before any transmission/retrieval can be started, the sending part and
the receiving part synchronize themselves including a parameter exchange and ubiquity test.
Only if the connection was successfully established data transfer is allowed. Lossless means
that any amount of data which is going to be sent will be received from the other part without
loss and reordering. This is also known as the conservation of data principle which is a general
feature of ARQ protocols6 including TCP.
Despite the fact that TCP is widely used and very well implemented in every modern

operating system available, it is not an option for the tasks within the scope of this thesis.
4Transmission Control Protocol/Internet Protocol
5Media-Access-Control address
6Automatic Repeat reQuest protocols

8

3.2 Functional Requirements

Several limitations do not allow the usage of TCP and/or IP:
First of all, the most important limiting factor is the size of the utilized FPGA in the

FACETS hardware systems. An FPGA-Chip consists of many unified block units called
slices – but of course the amount of slices is limited. The currently used FPGA, a Virtex4,
is too small to implement a full TCP design in addition to the other logic units. The current
occupancy of this FPGA is above 90% of the available slices. Besides that, most of the features
of TCP are designed to deal with large and unknown networks. These features consume space
in packets and – more crucially – need significant execution time which increases overall
latency. Two different checksums have to be calculated, one for the IP header and one for
the encapsulated TCP packet. Even if the resulting latencies could be neglected, a custom
header has to be transmitted to the hardware device to reset it, define payload etc. in any
case. But the overhead resulting from TCP/IP is not necessary for the developed protocol,
as discussed in the following.

3.2 Functional Requirements
In this section an introduction of the most important aspects of information theory with
respect to information exchange over unreliable communication channels will be given. The
previously mentioned TCP-protocol embodies all aspects which ensures reliable information
exchange while the IP-protocol assures the routing of packets to their destinations in large
networks. To what extent SCtrlTP, the developed protocol, has to incorporate those aspects,
is discussed throughout this section.

3.2.1 Routing Traffic
At first, it is necessary to establish the routing capabilities required from the new protocol.
The network topology is very simple. It consists of two nodes (or endpoints): the host PC and
the FACETS stage 1 hardware system. A third node may be added in between, representing
an interconnected switch which routes traffic from the source to its destination. Therefore,
the advanced routing capabilities of IP, which are useful if operating in larger networks, are
of no need. The fact that IP is not required has two advantages:

• Space is saved in the resulting frame, since there is no IP header.

• There is no need of an additional underlying protocol named ARP7 which maps MAC
addresses to IP addresses by sending/receiving request/response frames.

For SCtrlTP presented in the next section, only MAC addresses are needed to ensure a correct
routing of frames through the network. In order to route traffic to the distinct chips on the
backplane, an extra "address" (this corresponds to the DEST_NAT entry in tab. 3.2) in the
protocol is used, which is unique per backplane. Uniqueness of these addresses over multiple
backplanes has to be ensured in a layer different from the transport protocol itself.

3.2.2 Conservation of Data Flow
As mentioned before, lossless transmission of data over a generally unknown and unreliable
network requires a suitable protocol implementation. It should be capable to fulfil the follow-
ing minimum requirements:

7Address Resolution Protocol

9

3 Development of a New Transportation Layer

• Data has to be kept in buffer space until it is successfully transmitted to the other side.
This is only possible if there is a return path via which the other side acknowledges a
successful transmission.

• If packets got lost - even acknowledgement packets - the sending side has to retransmit
them.

• Contiguous data has to be transferred in correct order, although it is sent in form of
chunks. An underlying transport protocol must not modify the data itself. That means,
it has to be transparent for the utilizing software.

A protocol class which meets at least these three requirements is the class of ARQ protocols
[Fairhurst, 2002]. This protocol class is divided into several subclasses of which two will be
described. Every protocol in this class uses an enumeration system to keep ordering of data
chunks - the so called sequence number. The same number is used in return to acknowledge
the corresponding frame(s) if received successfully. On the other hand, no return packet or a
negative acknowledgement is sent if a chunk was not received successfully. The sending side
has to retransmit all frames at the time when it must be assumed that frames have been lost
or after a negative acknowledgement has been received. In the most simple realisation of this
protocol class, the Stop-and-Wait algorithm, the sending side transmits one frame and waits
until an acknowledgement is received or retransmits this frame after a certain time. Only
then it proceeds in transmitting other frames.
This is not very efficient if it is unlikely to loose a frame by physical transmission errors. In

the following, η denotes the efficiency of an ARQ protocol compared to a simple transmission
of all frames in the absence of acknowledgements. This efficiency depends on the bandwidth
β, the amount of packets N , the size of one data packet P as well as on the minimum size
of an acknowledge frame A. The following equations define a rough efficiency estimate of a
Stop-and-Wait protocol:

η = ∆tmin

∆tsnw
(3.1)

∆tmin = NP

β
(3.2)

∆tsnw = N

(
P

β
+ A

β

)
(3.3)

=⇒ ηsnw = P

P +A
(3.4)

The minimum delay ∆tmin is the time it takes to physically transmit the data of size N×P
with the bandwidth β. The efficiency results from the comparison of the minimum delay with
the delay ∆tsnw of the Stop-and-Wait algorithm which results from waiting for every single ac-
knowledgement. The time it takes for any software to process an incoming frame and prepare
the transmission of an acknowledging frame as well as the length of the cable are neglected.
When taking all delays into account, such as the time for the transmitting/waiting/receiving-
cycle on the sending side and the receiving/processing/transmitting-cycle on the recipient,
ηsnw becomes worse for Stop-and-Wait.

An optimal protocol implementation tries to keep the link saturated and does not wait for
an acknowledgement of every single frame. Such an algorithm, known as the Sliding Window

10

3.2 Functional Requirements

Sender

Recipient

window

window

acknowledge
ti
m
e

t0

t1

t2

Figure 3.1: Example of unidirectional
transmission of data packets from one
buffer to another by using the sliding win-
dow algorithm. The sender window repre-
sents the packets a sender is allowed to
send without receiving an acknowledge-
ment from the receiver. The receiver win-
dow is defined by the number of packets
coming out of order the receiver is able to
buffer without overflow.
The current states of the sender window,
the receiving window and the connect-
ing link are shown at some intermediate
timesteps t0, t1, t2. At time t0 the
transmission of four of eight packets is in
progress but none was received by the re-
cipient yet. After two packets have been
received, the window is moved ahead and
an acknowledgement is send at time t1. If
the acknowledgement arrives at the sender
its window will also be moved forward and
new packets transmitted. Meanwhile, at
time t2, the other two packets of the ini-
tial window have been received by the re-
cipient. The window position was not yet
changed.

algorithm8 exists and can reach the upper throughput limit [Peterson and Davie, 2003]. This
algorithm preserves a certain amount of data units in buffer and transmits only a fraction of
it in one burst of packets. Only then an acknowledgement has to be received which results in
discarding those packets acknowledged and fetching new data into the buffer. The number
of packets or amount of data being transferred in a burst is defined by the so called sliding
window (see figure 3.1).

ηgbN := 1 (3.5)

=⇒ ηsnw

ηgbN
= 1

1 + A
P

(3.6)

The efficiency estimate of the sliding window or Go-Back-N in comparison to the Stop-
and-Wait algorithm is given in equation 3.6. In the case that no packet loss occurs and
all acknowledgements arrive during active transmission, the efficiency ηgbN of that algorithm
reaches the theoretical maximum of 100% efficiency. That means, that the window size has to
match the overall capacity9 of the link. The overall capacity is the sum of all available buffer
sizes and the product of bandwidth and minimum signal propagation delay. Furthermore,

8the corresponding protocol subclass is known as the Go-Back-N class
9the overall capacity is known as the bandwidth-delay-product

11

3 Development of a New Transportation Layer

both, sending and receiving side, have to handle the packets at the same speed or else the
drop rate increases significantly. Hence, in reality much more effort has to be put into the
design of software to avoid the mentioned insufficiencies.

3.2.3 Conservation of Equilibrium

Although the mentioned algorithms ensure a reliable data transmission, they are not sufficient
to keep the throughput constant in non-ideal systems. In general, the transmitting or receiving
side has no knowledge about bandwidth, Round Trip Time, buffer spaces and state of the
remote side, not to mention the topology of the underlying network. The Round Trip Time
(RTT) is the delay between the transmission of a packet and the retrieval of the corresponding
acknowledgement. Retransmitting eventually lost packets too early or too late results in
an unnecessary waste of bandwidth. If a packet is retransmitted too late, the recipient
waits on a lost packet too long. If a packet is retransmitted too early (before the arrival of
the acknowledgement), this packet is dropped because the initial one was, in fact, not lost.
Adjusting the time-out of packets already sent by measuring the RTT is necessary to predict
a real packet loss.
In general, the window size has to match the overall capacity of a link. Otherwise, the overall

latency or RTT increases due to waiting delays while the overall throughput decreases. Time
in which new packets could be transmitted is wasted. Even if an algorithm keeps track of
the current RTT and the window size is properly chosen, there are cases where data gets lost
because the recipient itself is not fast enough to handle those bursts of packets. The internal
buffers of the recipient would fill up if it handles packets systematically slower. In such a
worst case situation in which these buffers can not be emptied, this leads to an oscillating
behaviour of the system with high packet loss due to constantly congested buffers. Without
adapting the transmission rate or the window size to systematic packet loss, throughput could
suffer significantly10. For detailed information of utilized congestion control algorithms see
Nagle [1984] and Jacobson and Karels [1988].

In the case of the stage 1 system, the network topology and the buffer space sizes are
well-known. Therefore a fixed maximum window size and a quite stable Round Trip Time
are assumed because there are no different routes for our packets to take. Hence, SCtrlTP
has to support the following minimum requirements:

• Simple measurement of the Round Trip Time to assess a necessary retransmission of a
packet.

• Counting to a maximum number of retransmission attempts to inform the user(s) that
a backplane might not be accessible.

3.3 SCtrlTP – an Efficient Transport Protocol Implementation
Keeping in mind the discussed requirements, the format of the protocol defined by Dr. Stephan
Philipp and the author is presented in table 3.2. All of the features provided by the hardware
device are adjustable by certain protocol entries. First of all, the entries are at least byte
aligned to ensure fast processing by software. Byte alignment means that every offset of a
distinct entry in the protocol is a multiple of one byte. Otherwise, all bitwise operations
10those prevention mechanisms in actual TCP implementations are known as congestion avoidance algorithms

12

3.3 SCtrlTP – an Efficient Transport Protocol Implementation

Byte offset Size Name Description
0 6 DEST_MAC MAC address of the destination
6 6 SRC_MAC MAC address of the source of the packet
12 2 TYPE A number which identifies the encapsulated protocol

SCtrlTP: 0x07ff
14 1 ARQ_FLAGS Bit #0: Reset the whole FPGA

Bit #1: Reset protocol handler
Bit #2: Reset the Ethernet handler & PHY
Bit #1: Reset statistics

15 1 PL_TYPE Defines the type of payload
Slow Control: 0

16 1 SEQ Bit #0-6: Sequence number of packet
Bit #7: sequence number is valid

17 1 ACK Bit #0-6: Acknowledgement number
Bit #7: unused
equals to the last valid sequence number
received from DEST_MAC

18 1 PL_FLAGS Bit #0-3: type of payload entries
Slow control commands: 0
Configuration data: 1
Slow control response: 2
Bit #4-7: Configuration flags

19 1 #ENTRIES Amount of entries in payload
20 2 DEST_NAT Defines destined Nathan(s)
22 ... PAYLOAD Begin of entry #1

Table 3.2: Header of a SCtrlTP packet with a short description of the entries.

in software would be much more expensive in matters of CPU load. The first 14 Bytes of
a SCtrlTP packet define the Ethernet header which defines where the packet comes from,
where it has to be transmitted to and what protocol handler has to process it. The next
4 Bytes control the bidirectional data flow (sequence number and a piggyback accumulative
acknowledge number), define what payload is transmitted and contain flags to reset distinct
parts of the SW/HW protocol handler. Depending on the type field, there is an additional
Slow Control specific header, also 4 Bytes long, which defines payload type, configuration
flags, number of entries in payload and, most importantly, tells the protocol handler with
whom to communicate with. The format of all currently valid payload entries is shown in the
appendix in section A.3.

3.3.1 Kernel Space vs. User Space

As mentioned before, the protocol handlers which are integrated in Linux reside at the sys-
tem’s heart – the kernel. In kernel space the protocol handlers are processed as fast as possible
if properly programmed. Moreover, they can make use of the full instruction set the CPU
and the kernel provide. On the other hand, any software residing in user space has a lower
priority than kernel code and is therefore slower in execution. Nevertheless, there are certain

13

3 Development of a New Transportation Layer

advantages for software in user space. In user space the software does not have to deal with
memory management in its entire complexity. Errors generated by user space code are less
drastic, whereas flaws in kernel software have far-reaching consequences even leading to a
crash of the operating system itself.
For that reasons, the protocol software was programmed in user space while allowing the

option of implementing this code as a kernel module11 in the future. Kernel space variable
definitions12 and as few system calls as possible were inserted. For the FACETS stage 1
hardware this approach is more than sufficient because modern computer systems are fast
enough to saturate even a 1 Gbit Ethernet link from user space. For the FACETS stage
2 wafer-scale hardware as presented in chapter 2 though, the transport protocol has to be
ported to kernel space. This will be further discussed in chapter 5.

3.3.2 Interface Definition
In chapter 2, the whole software framework operating with the FACETS stage 1 neuromorphic
hardware has been presented. The existing interface to the low-level communication code via
the Darkwing PCI card is reused to provide back-ward compatibility with former software.
However, there is no need to still use message queues as the communication channel between
higher software layers and SCtrlTP. Every access to a message queue is a system call which
is followed by a context switch13 and significant kernel work until switching back. A more
efficient IPC-mechanism14, POSIX shared memory [IEEE , 2004] with synchronisation and
protection mechanisms in user space, is used. Shared memory is a piece of system memory
which can be mapped into the address space of multiple related or unrelated processes. When
writing to it, the changes can be instantaneously visible to the other processes without copying
data from process A to process B (this requires further effort though). Of course, memory
corruption has to be prevented in case of multiple processes trying to access the same location
in memory at the same time.
The main interface to the software protocol handler is realized by shared memory based

FIFO queues15. Everything pushed into it is read from it again in the order of arrival. This
ordering is desired as it should be a property of the protocol itself (see section 3.2.2).
The interface to shared memory based FIFO queues is designed to be generic as possible and

safe with regard to multiple, concurrent accesses. This interface preventing data corruption
has to be

• correct: Situations must not occur in which two processes could access the same data.
Even multiple read accesses have to be prevented since the shared queues have no
knowledge about the content of the entries. For example, if the content of an entry is
a pointer and two processes acquire that pointer this will probably corrupt the data
which is referenced by it. Therefore, a single read operation on a queue destroys the
validity of one element. Also, any suspended processes which are waiting for a queue to
contain valid data or free space have to be notified16.

11a kernel module is a system driver loadable at runtime when needed
12a variable in kernel space has a well defined bit width while user space variable definitions could vary on

different architectures
13a context switch means, that one process is suspended with all states being saved and another process is

executed afterwards
14Inter Process Communication mechanisms
15first-in-first-out queue
16otherwise this could result in a classical deadlock situation

14

3.3 SCtrlTP – an Efficient Transport Protocol Implementation

• fair: Every process which wants to access a queue must eventually be allowed to do
so.17

• flexible: There shall be methods to initialize, destroy, read and write data to/from a
queue in many customized ways.

• fast: Any access to the queue shall be as fast as possible.

• capable of suspending/waking user processes: If a process waits for data to arrive
on an empty queue and has nothing else to do, it shall not consume CPU time. The
same shall be true for waiting for a full queue.

To support routing data by Nathan-ID, there is the possibility to supply multiple queues
assigned with each available Nathan. Every data stream to a certain Nathan becomes inde-
pendent of the other ones. Prevention of interleaving streams to one Nathan from different
users is also ensured by the interface functions excluding each other by flipping bits in a
shared mask.

3.3.3 Synchronisation Mechanisms
Three processes are assumed some of which, process A and C, want to insert data into a shared
buffer and one process which wants to remove data from it simultaneously. In that case,
many undesired effects could happen in an environment which lacks the implied mechanism.
Process A writes to the same location as process C without knowing about each other; this
corrupts both information units, as seen in figure 3.2a. Process B removes data before any
valid information has been inserted into the buffer. This would also happen if process B
is removing data before a write access has been completed. Preventing those simultaneous
accesses in space and/or time is ensured by:

• having two distinct indices to removable and writeable parts in buffer. As mentioned
before, a read access consumes an element while a write access produces a new element.
So, the indices must not overtake each other.

• designing access operations to be atomic18 with respect to each other.

Distinct indices solve the issue on reading/writing to the same location while atomicity of
the operations itself solves the problems occurring when reading/writing at the same time.
Excluding two possibly parallel operations from accessing shared informations is called mutual
exclusion (see figures 3.2b and 3.2c). Hence, additional information is needed for process A,
B, C to decide whether or not they can read or write data to/from the buffer.
Let N be the total number of independent information units, W an index to the next write-

able element and R an index to the next consumable element containing useful information.
Read accesses take the value of R, reading the content of the buffer at that position and
finally modifying R to point to the next valid element. Write accesses analogously treat the
W value. To prevent the possibility of concurrent accesses to that indices they have to be
read and modified atomically. Otherwise, process A and C may write to the same location or
the increment of W would become inconsistent. This is also true for the data read or written
at those locations.
17this property is commonly known as starvation freedom
18in this context an atomic operation is a code section which can not be executed concurrently with another

15

3 Development of a New Transportation Layer

User A

User C

Hello
World

Wello

(a) without mutual exclusion

User A

User C

Hello

Hello
World

(b) with mutual exclusion in time

User A

User C

Hello

Hello
World

World

(c) with mutual exclusion in time and
space

Figure 3.2: Effects on a shared bounded buffer in case two user processes attempt to insert data
simultaneously. In 3.2a access to the buffer is mutually exclusive, so the information of both processes
will be corrupted.In 3.2b a locking mechanism is used to prevent simultaneous accesses to an element.
The final content of the element is either from A or from C. In 3.2c the loss of information is prevented
if both processes insert their informations at different locations as well.

The Producer-Consumer-Problem Obviously, R must not overtake W and vice versa be-
cause nothing must be consumed that has not been inserted before and must not be over-
written in case it has not been consumed before. One possible solution to this so-called
producer-consumer-problem [Herlihy and Shavit, 2008] is to define R and W to be absolute
indices instead of relative ones and to check if R is less than or equal to W . But this ap-
proach would need expensive extra care when those indices are about to overflow. When
using relative indices to refer to the different types of elements, a check if R < W is not
sufficient to determine the state of the elements in the buffer (which is motivated in fig. 3.3).
Relative indices operating on a bounded buffer are modular arithmetic integers, so R can
become greater than W without validating the prohibition of overtaking. This can be solved
by additional shared counters, E the amount of empty elements and F the amount of full
elements, to distinguish whether or not R could overrun W and vice versa19.

Shared Memory Based FIFO Queues The shared memory based FIFO queue operations
push and pop incorporate the mentioned solutions by excluding each other via so-called spin-
19one counter would be sufficient though, but for the sake of better understandability two counters were used

16

3.3 SCtrlTP – an Efficient Transport Protocol Implementation

Writer

Reader
empty

empty

empty full 1

2

3

4

Buffer

empty

empty

empty

empty

full

full

full

full

full

full full

full

0441

time

Figure 3.3: The producer-consumer problem with relative indices: The blue arrows denote
the relative index R, the red arrow W . Below the indicated buffer states the value of an additional
shared counter indicating the number of valid/full elements. At state 1 the writer starts to insert valid
data into an empty queue until the queue is full (state 2). Without extra counters the reading process
would have no information whether the first entry is full or not. If there is at least one counter the
reader knows the state of all elements. Therefore, it can proceed and consume three valid elements
(states 3 and 4)

locks20 which protects the indices W and R, the shared counters as well as the buffer entries
itself. Forestalling the explanation of the functionality of the queue operations, the presenta-
tion of spinlocks and possible implementations of such will be explained later.

1: spin_lock()
2: while E ≤ 0 do
3: spin_unlock()
4: wait_for_signal() . uses the FUTEX system call
5: spin_lock()
6: end while
7: E ← E − 1
8: Element[W]← NewElement . Buffer access
9: W ← (W + 1) mod N

10: F ← F + 1
11: spin_unlock()
12: dispatch_signal() . uses the FUTEX system call

Algorithm 1: Push operation of shared memory based FIFO queue.

A call to push has the following effects: First of all, the spinlock is acquired which protects
access to E and F , W and the corresponding buffer location. If successful, E is checked
whether it is zero and the user has to wait or not. Waiting due to a full or empty queue is
performed by exploiting the FUTEX-syscall21 available in Linux [Drepper , 2009]. A FUTEX-
syscall allows code being executed in user space to bypass normal blocking synchronisation
mechanisms of the OS which would be much slower. When space for writing becomes available
the buffer is accessed, E is decreased by 1 and the entry pointed to by W is overwritten with
a new element. Before releasing the lock and returning to the caller, W is updated and a
signal to possibly suspended pop-calls has to be dispatched. This is done by increasing F by
20similarly to quantum particles with spin 1/2 a spinlock has two possible states
21Fast User space muTual EXclusion system call

17

3 Development of a New Transportation Layer

one and by waking possibly suspended processes by another FUTEX-syscall (see algorithm
1).
Besides the normal push and pop operations there exist two other operations called try

push and try pop. If a check on E or F has revealed that the buffer is currently empty or
full, these operations immediately release the lock and return the check result. This makes
non-blocking or non-waiting I/O possible so processes could perform other useful work in the
meantime.

Simple Spinlock Implementations A spinlock is a shared memory variable which has two
states: locked and unlocked [Herlihy and Shavit, 2008]. The value of a spinlock is only
modified by a single atomic instruction provided by the CPU.

1: while exchangeatomic(lock, 0) 6= 1 do
2: wait()
3: end while
4: <critical code section> . lock ≡ 0
5: lock ← 1

Algorithm 2: Simple spinlock. 1 ≡ unlocked, 0 ≡ locked

Ensure: atomicity
1: result← lock
2: lock ← x
3: return result

Algorithm 3: The exchangeatomic(lock, x) function.

Once a lock operation is performed, the state of a previously unlocked spinlock changes
to the locked state in an atomic fashion. Any other later lock operation waits (spins) on
the locked state until it changes to the unlocked again. Algorithm 2 shows a possible imple-
mentation of a spinlock protecting a critical code section in which shared resources could be
accessed simultaneously22. The presented implementation however would suffer from great
performance loss in reality. If a spinlock is under heavy usage and the locked state becomes
highly probable, there would be many atomic exchange operations performed unnecessarily.
So, before trying to atomically exchange two values the algorithm should first check whether
this exchange would result in leaving the loop (see algorithm 4) [Herlihy and Shavit, 2008].

Furthermore, one has to take care when thinking about where a shared variable for locking
purposes should be placed in memory [Drepper , 2007]. Modern computer architectures posses
fast memory called cache to decrease latency when accessing frequently used data. These
cache memories are split up in so called cache lines with a certain size. Every time a program
currently executed wants to access data in the memory the processor looks in the cache
memory first. If the desired data is present and valid in the cache the processor reads from or
writes to the corresponding cache line instead of reading/writing from/to the corresponding
location in the main memory. A cache controller then frequently updates the main memory,
and if more than one cache memory unit exists, all locations in the system referring to the
22in reality a so called compiler barrier has to be inserted before changing lock to the unlocked state; otherwise

compiler optimizations could corrupt protection by instruction reordering

18

3.3 SCtrlTP – an Efficient Transport Protocol Implementation

1: repeat
2: while lock 6= 1 do
3: wait()
4: end while
5: until exchangeatomic(lock, 0) = 1
6: <critical code section>
7: lock ← 1

Algorithm 4: Enhanced spinlock.

same location in main memory are kept coherent. Hence, every frequently-used shared object,
such as the mentioned spinlock, has to reside in its own cache line (how shared objects are
arranged in memory is shown in listing A.3). Otherwise, modifications to data in the same
cache line would cause the cache being invalidated and re-read from main memory, which
would result in a vast performance decrease of the above spinlock code.

A More Sophisticated Spinlock Implementation Although algorithm 4 is correct, the com-
petition of entering the critical section is not fair. It suffers from a possible starvation of
processes which are never allowed to proceed. If fairness is desired and critical sections are
not short compared to lock acquiring and releasing, other spinlock designs have to be used
e.g. ticket based spinlocks or queue based spinlocks [Herlihy and Shavit, 2008].

1: myplace← increaseatomic(lastplace) . Get the place in the queue of waiting processes
2: while queue[myplace] 6= 1 do . Wait myplace’s turn
3: wait()
4: end while
5: <critical code section>
6: queue[myplace]← 0 . Re-lock the current place
7: myplace← (myplace+ 1) mod MAX . Pass access to the next spinning process
8: queue[myplace]← 1

Algorithm 5: Queue based spinlock.

A queue based spinlock as shown in algorithm 5 has an additional advantage compared to
other solutions: There remains no single location on which concurrent spinlock code spins on.
There is only one counter increased once by all processes to calculate their place in queue.
Therefore, the traffic of the cache controllers to ensure cache coherence is reduced and mutual
cache line invalidations23 are avoided. In modern computer architectures these invalidations
are avoided by default because a smart cache coherence protocol like MESI24 is used [Drepper ,
2007]. In SCtrlTP, only the enhanced spinlock (algorithm 4) is used because it is faster than
queue based spinlocks if the critical sections are short. Almost every critical section is tried
to be entered by two threads maximum, which means that the starvation probability is very
low. For more details of the software implementation of spinlocks, see appendix A.1.

23this is known as cache line ping pong
24Modified Exclusive Shared Invalid

19

3 Development of a New Transportation Layer

3.3.4 Performance Optimisation

A big part in software engineering is the optimisation of algorithms and their efficient imple-
mentation. In the following, the most important aspects which were considered during the
transport layer development are explained.

Multi-threading

As already mentioned before, SCtrlTP is capable of getting data from multiple users in
parallel. SCtrlTP should therefore make use of multiple concurrent code blocks to handle
that parallel data effectively. The operating system provides so-called POSIX-threads-code
areas which are executed in parallel [Drepper and Molnar , 2005]. Such threads are most useful
if they are related to (almost) independent code and the computer system is equipped with
more than one processing unit. Nowadays, most personal computers are, in fact, equipped
with so-called multi-core processors.
Obviously, a bidirectional protocol implementation, as the developed SCtrlTP, has two

nearly independent parts: the part which handles the transmission (TX) and the part which
handles the retrieval (RX) of data. The only informations being passed from RX to TX
are a) the last valid sequence number received and b) the last acknowledgement number
corresponding to TX’s sliding window. If RX has recently updated any of those values it
sends a wake-up-signal to TX which transmits an acknowledging packet or slides its window
forward resulting in new packets being sent. These two parts have been designed in such a
way that they can be executed concurrently.
Theoretically, more code sections could be executed in parallel, but there is a trade-off

between the overhead which results from context switches and the performance gain from
parallelisation. In general, there should be as many threads as there are processing units and
each thread should perform as much work as they can without waiting. For example, if an
almost independent code section of a thread is too short regarding to execution time such
thread will spend most of the time waiting for events to occur.

Zero-Copy Policy

The space which was reserved for the frames to be transmitted or received is passed to those
threads via pointers. Performance of software is greatly increased when all possible copy
processes are kept at a minimum25. In the current solution, data is only copied by the kernel
when socket system calls are performed – all other accesses to packet space are carried out
by dereferencing the corresponding pointer. If a user process wants to send multiple packets
or RX has received more than one valid packets in a row, a further software improvement
allows them to collect packet pointers before inserting them in a single queue entry. This
reduces blocking probability and the amount of expensive atomic exchange operations per
packet when performing those queue operations.

25commonly referred to as zero-copy policy

20

3.3 SCtrlTP – an Efficient Transport Protocol Implementation

Round Trip Time Estimation

An estimation of the mean RTT is calculated by TX if the transmission window has been
slid.

ErrorRT T,i = RTTmeasured,i −RTTaverage,i (3.7)
RTTaverage,i+1 ← RTTaverage,i + αErrorRT T,i (3.8)

eRT T,i+1 ← eRT T,i + β (|ErrorRT T,i| − eRT T,i) (3.9)

First, an error value ErrorRT T between the current RTT measurement and the predicted
average is calculated. After that RTTaverage is updated by the addition of a fraction α of
the error value. This recursive prediction value converges to the real average of RTT after a
certain number of updates [Ljung and Soderstrom, 1983].

RTTaverage,i+1 = (1− α)RTTaverage,i + αRTTmeasured,i (3.10)
=⇒ w (RTTmeasured,i−n) = (1− α)nα (3.11)

The weighting of a single measurement w (RTTmeasured,i−n) gets smaller for every new update
of the average estimate. So, new measurements are more conductive to that prediction of
the average than previous measurements. Instead of calculating the standard deviation σ
of RTT , the mean deviation e is estimated which is an upper bound of σ. Otherwise, an
expensive squaring of (|ErrorRT T | − σRT T) would be necessary. The time-out, after which a
retransmission of a packet is initiated, is the sum of RTTaverage and a multiple of eRT T . The
probability of unnecessary retransmissions is thereby decreased.

Window Corruption Prevention

Retransmissions are performed by a thread different from the TX thread. If two threads
are about to send packets independently, the data flow can be corrupted without any pro-
tection. For example, if TX is about to send an acknowledgement and is suspended by the
operating system and a retransmission with a recently updated acknowledgement number is
performed the window of the recipient will slide forward. The continued transmission of the
acknowledgement by TX afterwards will be out-dated and possibly corrupt the window of the
recipient. Therefore, every packet transmission is protected by mutual exclusion provided by
an additional spinlock.

Acknowledgement Strategy

Currently, the acknowledgement strategy is quite simple: All incoming packets are acknowl-
edged either by sending an acknowledging packet or by back-packing the current acknowledge-
ment number in a normal data packet. This can be optimized though: Instead of transmitting
an acknowledging packet instantaneously (assumed that there are no data packets to be trans-
mitted) this transmission can be delayed to keep the fraction of throughput for acknowledging
overhead constant. Another strategy could be to transmit acknowledgement packets only if
the remote station expects such a packet [Landström and Larzon, 2007]. However, this is not
supported by the current hardware design.

21

3 Development of a New Transportation Layer

Socket API

TX RX
Time &

Retransmission

Shared

queues

Figure 3.4: Functional structure of the Slow Control Transport Protocol software implementation.
The data and signal flow is denoted by the thin arrows. The circles stand for the three concurrent
threads. The user processes which insert or remove data from the shared memory based queues are
not shown explicitly.

Packet Filtering

If there are other data flows, those frames which are not destined to the flow of interest have
to be dropped. This can be achieved in two ways: RX could filter those frames by itself which
would be very slow since every frame to be dropped is first copied from kernel space to user
space and would consume RX’s processing time. On the other hand, there is the possibility
to tell the operating system which frames have to be dropped. A so called Berkeley Packet
Filter program can be passed to the kernel which allows RX to never receive uninteresting
frames [Mccanne and Jacobson, 1993]. Such a program which is used by SCtrlTP is shown
in listing A.4.

3.3.5 Resulting Protocol Implementation

If a user process wants to send data to the backplane, it first acquires a pointer to an empty
frame buffer space. After that, it puts all necessary information in it and places that pointer
in a shared FIFO queue. The TX-thread is then woken up and eventually fetches that pointer
off the queue and tries to register it in its sliding window buffer, thus assigning it a unique
sequence number. If the assignment was successful, the current acknowledgement number and
other information (e.g. the Ethernet header) are also assigned before the frame is physically
transmitted by the system. On the remote side, the backplane (or another transport protocol
instance) receives the frame and processes its content. Meanwhile, a third thread updates a

22

3.3 SCtrlTP – an Efficient Transport Protocol Implementation

time variable and keeps track of how long an unacknowledged packet that has already been
sent was kept.
Time is measured by sleeping26 a certain time (imprecise but maybe the only option on older

architectures) or by setting up a HPET27 and increasing a time-stamp variable accordingly.
Any delay is therefore the difference between two timestamps, for example one taken before
transmitting the packet and one after receiving an acknowledgement for it. If a packet is
unacknowledged after about RTT milliseconds, the same thread assumes that this packet
was lost and will retransmit it.
The RX-thread eventually receives one or more packets e.g. one acknowledgement packet

and one data packet filled with responses. If the packets fits into the retrieval window it
might be slid forward and the pointer to all valid packets received in order will be passed to
another shared FIFO queue. Furthermore, if the acknowledgement and/or the data packet
have transported a new acknowledgement number this number is passed to TX. All valid
data packets received by RX will be acknowledged by TX either by backpacking the last valid
sequence number received or by transmitting a corresponding acknowledgement packet.
Figure 3.4 shows the structure of the final protocol implementation. All of the requirements

and features discussed in this chapter are incorporated into the software. Almost every
feature can be enabled or disabled before compiling for better flexibility. In the next chapter,
measurements with this protocol implementation will be presented. Afterwards, in chapter
5, some open issues of the software regarding performance increase will be discussed.

26a process inactively waits for a condition to become fulfilled
27High Precision Event Timer

23

4 Measurements

The developed code was tested by establishing and examining communication with both
a simulated and a real hardware device. The simulated environment consists of a simple
program that operates on local memory and provides the functionality necessary for all applied
tests. Read and write commands are supported, hence simple RAM test can be performed.
The hardware environment consists of multiple Nathan cards, some of which are equipped
with Spikey chips (see chapter 2). Therefore, all possible functions that are supported by
both the protocol and the hardware device can be and have been utilized and tested.

4.1 Software Tools

Prior to the actual measurement results, the software tools which were used shall be briefly
introduced. During development, the programs tcpdump (command line interface, Fuentes
and Kar [2005]) and Wireshark (graphical user interface, Orebaugh et al. [2006]) were utilized
to test the basic protocol functionality and to unravel most of the hardware and software flaws.
These tools detect both incoming and outgoing packets on a network interface and display
their contents. Additionally, Wireshark provides a graphical user interface, many protocol
dissectors and other functions assisting in protocol analysis. For the ease of debugging, a
Wireshark plug-in which dissects the Slow Control Transport Protocol was implemented in
cooperation with Eric Müller (an exemplary dump can be seen in fig. 4.1).
Tests of the correctness and performance of the underlying synchronization mechanisms

discussed in chapter 3 were accomplished with dedicated benchmarking software written by
the author. The software locktest spawns a customizable number of threads which compete
with each other for increasing a shared counter. During the test the consistency of the counter
value and the preservation of mutual exclusions are checked. After a predefined number of
increases, the threads shut down and the results are presented. Another tool, fifotest, measures
the throughput of the shared memory based queues as a function of the size of one single
element.
Basic functionality of both the hardware device and the simulated software device was tested

with already existing software tools. For example, there are tools for reading and writing
to various registers or memory locations on different parts of the hardware environment.
Especially important is the dconfig tool which configures the different Nathan cards to become
operational and accessible. Besides that, the ramtest [Philipp, 2008] tool was heavily utilized
which performs a consistency test of the installed memory of a Nathan card. This tool works
in both the simulated and the real hardware environment.
Performance measurements were carried out with another system tool. The ifstat program

reads out the statistics of a certain networking device over time and calculates the correspond-
ing throughput. All throughput measurements were done with this tool. However, this tool
dumps the gross throughput only, so every measurement had to be executed in the absence
of any other data flow.

24

4.1 Software Tools

Figure 4.1: Wireshark shows a dump of traffic on a link between a host computer and the hardware
system. The contents of single packets can be seen in the bottom panel. An overview of the packet flow
is displayed in the top panel. For the Slow Control Transport Protocol a special Wireshark plug-in
was developed in cooperation with Eric Müller which dissects the packets. The dissection is shown in
the centre panel.

25

4 Measurements

20 22 24 26 28 210 212 214 216 218 220 222

Size per entry[Bytes]

106

107

108

109

1010

M
e
a
n
 t

h
ro

u
g
h
p
u
t[

B
y
te

s/
s]

pipe
msq queue
shmem queue

Figure 4.2: For three different IPC-mechanisms, the mean throughput is plotted as a function of the
size of one element being sent at a time.

4.2 Measurements in a Simulated Environment
The simulated environment consists of two computers equipped with multi-core processors.
A 1 Gbit/s Ethernet link connects both hosts. During the measurements no other data flow
was active on that link.

4.2.1 Performance of Shared-Memory-Based FIFO Queues
In section 3.3.2, message-queue-based communication was considered not recommendable be-
cause of the amount of system function calls and copy processes between kernel- and user space
it would need. Comparing different IPC-mechanisms, figure 4.2 shows the mean throughput
over chunks of exchanged data. All measurements were performed with the same premises.

• Every element which is about to be transferred is filled with data in a non-temporal
fashion. Non-temporal write accesses are bypassing the internal cache. This prevents
the influence of cache effects on the measurement results.

• The element size is increased in the same way. It is doubled before a new measurement
is carried out.

• Attention was paid to distribute the producing and the consuming threads over the
system’s processing units; otherwise, throughput decreases due to expensive context
switches.

All data passed to the so-called named FIFOs or pipes will be copied into kernel space,
buffered and copied again to the receiving process afterwards. Multiple writers and readers

26

4.2 Measurements in a Simulated Environment

0 10 20 30 40 50 60 70
Time[s]

0

20000

40000

60000

80000

100000
T
h
ro

u
g
h
p
u
t[

K
ilo

b
y
te

s/
s]

incoming
outgoing

Figure 4.3: Throughput measurement with the simulated device and hardware constraints applied.
A similar mean throughput is expected to be achieved in the FACETS stage 1 environment. Among
the current hardware constraints are a window size of 32 packets and a maximum payload size of 1010
bytes or 101 slow control commands. The horizontal straight lines denote the mean throughput. The
mean throughput for incoming packets is 78 ± 10 MB/s while the mean throughput for transmitted
packets is 62 ± 8 MB/s. During the period of time 50 − 60s the throughput has broken in due to
temporarily congested buffers.

have to use separate pipes because accesses to a pipe are not guaranteed to be atomic based
on a certain size. Message queue system calls trigger the same amount of context switches
and copy processes, but the messages can not interleave. Therefore, the performance of
both message queues and pipes is similar, although message queues outperform the pipes
slightly in most areas. On the contrary, the performance of shared-memory-based queues is
unmatched. Instead of copying the elements, only the pointer to an element is exchanged and
context switches between kernel- and user space are reduced to a minimum. In summary, the
measurements indicate that shared-memory-based FIFO queues with zero-copy policy have
to be utilized to maximize the overall performance of the interface between SCtrlTP and the
other software layers.

4.2.2 Throughput of the Slow Control Transport Protocol

Figure 4.3 shows the throughput measured between two hosts. One host was executing a two-
threaded program which generated packets filled with commands and received the responses
without further processing. On the other host, the previous mentioned simulation program
and ifstat were running. The communication exhibits therefore an unidirectional behaviour
because the return path is not independent from the incoming path. This is visible in the
figure: The throughput of outgoing data follows the one of incoming data. Moreover, the

27

4 Measurements

0 10 20 30 40 50 60 70 80
Time[s]

0

50000

100000

150000

200000
T
h
ro

u
g
h
p
u
t[

K
ilo

b
y
te

s/
s]

incoming
outgoing

Figure 4.4: This measurement with the simulated device determines the throughput that could be
achieved if both window size and payload size were adjusted to higher values than the hardware
currently supports. The window size was doubled to 64 packets and the payload size was increased
to 1.6 Kbytes or 160 slow control commands. The mean throughput is 154± 16 for incoming packets
and 120± 12 MB/s for outgoing packets.

throughput of the received data is always greater than the other one, since the size of a result
entry is less than the size of the corresponding command entry: The size of a result entry is
8 bytes; the size of the corresponding command is 10 bytes. For every additional command
the asymmetry increases by 2 bytes per packet.
An interesting situation took place after 50 seconds: Congestion of internal buffers. During

this period, one or more queues filled up and therefore packets were dropped. Congestion
occurs for many reasons. For example, if the operating system preempts1 one or more threads
for a time which is greater or equal to the time it takes for another thread to fill up a queue,
this queue could get congested. The probability of congestion can be reduced by activating the
congestion avoidance algorithm (see section 3.2.3) and by increasing the queue sizes to filter
the latencies of context switches between the threads. During the following measurements,
congestion avoidance was activated, resulting in a decrease of overall throughput by the
processing overhead.
Figure 4.4 shows the throughput measured with increased window size and payload size of

SCtrlTP. Because the throughput becomes too high for a 1 GBit/s Ethernet link a 10 GBit/s
link was used to measure the maximum theoretical performance achievable under the new
conditions. The mean throughput of incoming packets is ∼ 150 MB/s. An 1 GBit/s link is
saturated if the throughput reaches the 125 MB/s barrier. Obviously the SCtrlTP is capable

1Within the context of operating systems, the term preemption means that a thread can be forced by the
kernel of the system to be suspended at any time.

28

4.2 Measurements in a Simulated Environment

0 5 10 15 20 25 30 35
Window size[1]

0

20000

40000

60000

80000

100000

120000

140000

M
e
a
n
 t

h
ro

u
g
h
p
u
t[

K
ilo

b
y
te

s/
s]

incoming
outgoing
incoming (ideal)

(a) Throughput over window size (payload size: 1010 Bytes)

0 200 400 600 800 1000 1200 1400 1600 1800
Payload[Bytes]

0

10000

20000

30000

40000

50000

60000

70000

80000

M
e
a
n
 t

h
ro

u
g
h
p
u
t[

K
ilo

b
y
te

s/
s]

incoming
outgoing
incoming (ideal)

(b) Throughput over payload size (window size: 8 packets)

Figure 4.5: The most important throughput dependencies are the window size and the payload size.
In an ideal system the throughput should be proportional to both variables.

29

4 Measurements

Gigabit
Ethernet

analog

Oscilloscope

Backplane

Carrier boards

RX

TX

rx_queue

tx_queue

resend

shared
memory

SpikeyHAL

PyHAL

PyNN

H
a
rd

w
a
re

S
o
ft

w
a
re

w
o
rk

e
r

th
re

a
d
s

testmodes

ramtest
dwrite

...

Switch

Figure 4.6: Experimental setup including the FACETS stage 1 hardware environment and SCtrlTP
software (in the grey box). Other software layers are also indicated, e.g. PyNN.

of saturating an 1 GBit/s Ethernet link if both window size and payload size are increased.
Therefore this protocol implementation satisfies the demands which have to be fulfilled to
saturate the link between the host PC and the backplane theoretically.

Figures 4.5a and 4.5b show the dependency of the mean throughput on window size and
payload size, respectively. The red dashed straight line in both figures represents a linear
estimate of the ideal throughput. It is extrapolated from the coordinate system origin and the
mean throughput at window size 1 or payload size 50 bytes, respectively. Due to the additional
processing overhead and non-deterministic preemption by the kernel, the red curve is never
crossed. Nevertheless, the mean throughput is, at a first glance, expected to be proportional
to both window size and payload size. While this is almost true for the payload size, it is not
the case for the window size. Increasing the payload size of a packet only increases the time
it takes for the kernel to copy the packet to and from user space. This has no or just a very
small effect on SCtrlTP itself. The increase of the window size, though, has numerous effects:

• The greater the window size gets, the more packets will be transmitted or received per
second. This increases the probability of congested queues.

• The more packets per second arrive or have to be transmitted, the larger the processing
overhead gets.

• The greater the total execution time for transmitting one window or receiving one
window gets, the higher the probability of preemption by the kernel gets, which results
in greater latency fluctuations.

Because of these non-deterministic dependencies, the mean throughput is not proportional to
the size of the window.

30

4.3 Measurements on the Hardware System

0 10 20 30 40 50 60 70
Time[s]

0

500

1000

1500

T
h
ro

u
g
h
p
u
t[

K
ilo

b
y
te

s/
s]

incoming
outgoing

Figure 4.7: Throughput achieved during RAM test with one configured Nathan. The window size
was reduced to one packet. A mean throughput of 1409 ± 2 KBytes/s for incoming and 1849 ± 3
KBytes/s for outgoing packages was measured.

4.3 Measurements on the Hardware System

As can be seen in figure 4.6, the hardware device or backplane is connected via a standard
Ethernet cable to a switch. All hosts which can be used for communication with the hardware
device also have to be connected to that switch. The switch receives incoming packets and
decides, depending on the destination address, where those packets have to be directed to.

4.3.1 RAM Tests on the Backplane

As mentioned in section 4.1, the ramtest tool is one of the most important tools for testing
the main functionality of the hardware device. Initially, the ETH-Core2 of the backplane is in
promiscuous mode, in which it answers any valid packet from any source. When SCtrlTP is
started, it sets some important registers of the functional parts of the main FPGA and changes
the mode of the ETH-Core to non-promiscuous (for a detailed description of the ETH-Core
see Gutmann [2007]). Now the backplane can be accessed by the host and communication is
possible.
First of all, the Nathan-FPGAs of the installed cards have to be configured. Afterwards,

unique identification numbers are assigned to all properly configured Nathans. A RAM test
can now be performed on any of the configured Nathans. Figure 4.7 shows the throughput
measured during such a RAM test. Although the measured values are not particularly im-
pressive, they remain remarkably stable. The protocol had to be reduced to a Stop-and-Wait

2refers to the functional part of the FPGA which is responsible for Ethernet packet handling

31

4 Measurements

Figure 4.8: Schematic to illustrate the membrane potential time course. The threshold voltage has
been lowered below resting potential. This setup is used to rapidly measure the membrane time
constant τmem of a hardware neuron (cf. [Brüderle, 2009, p. 90]). The axes are scaled in biological
units. With friendly permission of Daniel Brüderle.

protocol with a window size of 1 packet. The bandwidth between the main FPGA and one
Nathan card is about 40−80 MBit/s or 5−10 MB/s respectively. So, more throughput should
be possible if larger window sizes could be used. However, this measurement was possible
only by means of workarounds for some serious bugs of the hardware device, which will be
described in section 4.4.

4.3.2 Neuronal Experiment with PyNN

Before performing a simple neural experiment, the general operability of SCtrlTP and hard-
ware system was tested. SpikeyHAL provides a variety of so-called testmodes, some of which

0 50 100 150 200
Time [ms]

N
e
u
ro

n
 O

u
tp

u
t

Figure 4.9: Spike train recorded during the membrane time constant calibration routine. As expected,
the neuron fired with a constant frequency from which the value of τmem could be derived. The firing
rate of the neuron returned from PyNN is 486.5± 17.5 Hz.

32

4.4 Known Bugs and Workarounds

check if the prerequisites for a working experiment are fulfilled. For example there is a test-
mode designated to check the functioning of the connection between a configured Nathan and
the Spikey chip, that dispatches a neuronal event from the Nathan to the Spikey, where it
is returned to the former. Every testmode necessary for testing the capability of the whole
system was successfully accomplished.
Before any experiment can be set up on the neuromorphic device, the properties of the

neuron circuits, which differ due to the manufacturing process, have to be determined. As a
first step, the membrane time constant τmem of a hardware neuron can be measured. This
time constant is indirectly measurable by setting the spike threshold of the neuron to a special
voltage below its resting potential. This results in the neuron firing with a certain frequency
from which the value of τmem can be derived (cf. fig. 4.8). The frequency arises out of a record
of the output spikes and their incidence in time. The details of the measurement procedure
can be found at page 88ff. in Brüderle [2009].

As seen in figure 4.9, this calibration routine was successfully accomplished. The neuron
fired with a constant frequency of 486.5±17.5 Hz. A value of 1.06±0.32 ms for the membrane
time constant τmem was determined (τref , the absolute refractory period, is 1 ms). Therewith
the author showed that neuronal experiments can be successfully done with SCtrlTP as the
transport layer embedded in the whole software framework.

4.3.3 Previous Performance

Figure 4.10a shows the performance of the previous data flow via the Darkwing PCI card
compared to the data flow via SCtrlTP. Although two different experiments were performed,
it is possible to compare the maximum throughput achieved in both experiments. The first
experiment was set up such that the link between PyNN and the hardware device was under
heavy load. A comparison reveals that the maximum throughput currently achieved with
SCtrlTP is about 1.4 times the throughput achieved via the Darkwing link.

4.4 Known Bugs and Workarounds

During the testing and measurement procedures, many serious bugs of the hardware and
software implementations were revealed. Most of the software bugs were related to a lack of
protection of concurrently accessed variables. All of these bugs are now fixed and during all
of the tests presented in this chapter no corruption of data was encountered.
However, there are several remaining bugs in the hardware implementation. If a packet

which embodies slow control commands has no trailer of at least 8 zero-bytes the hardware
device will return packets containing invalid data in some of the response entries . In software,
all packets are currently padded with such a trailer of zero-bytes to prevent the occurrence
of this bug. A similar bug, which might be linked to the previous one, occurs if a packet
contains more than 200 double words3 of configuration data. In that case, every configuration
attempt fails.
The previously mentioned flaws have been worked around by software but there are two

major faults which are currently not understood. When performing, for example, a RAM
test with a window size larger than 1 and an amount of more than one packet per test,
the throughput decreases vastly. Vastly means that throughput suffers in three orders of

3a double word is equal to four bytes of data

33

4 Measurements

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

20 40 60 80 100 120 140

S
e

n
t/

R
e

c
v
’d

 B
y
te

s

Experiment Time [s]

send(x)
recv(x)

(a) Measurement of the total number of bytes sent or received by dwserver over time using a link
over the Darkwing PCI card. The slope of the fitted straight lines determines the mean throughput.
The maximum gross throughput for receiving data is 862 KBytes/s.

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

K
B

yt
es

/s
]

Experiment Time [s]

(b) Throughput measurement during an experiment with PyNN over SC-
trlTP. The maximum gross throughput for receiving is ∼ 1200 KBytes/s.
The down time of ∼ 1 second results from software delays between two single
experiment runs.

Figure 4.10: Comparison of the throughput measured during two different dummy-experiments with
PyNN utilizing the stage 1 hardware device with data flow via the Darkwind PCI card or via SCtrlTP.

34

4.4 Known Bugs and Workarounds

0 10 20 30 40 50 60 70
Time[s]

10-1

100

101

102

103

104

T
h
ro

u
g
h
p
u
t[

K
ilo

b
y
te

s/
s]

incoming
outgoing

Figure 4.11: Decrease of throughput which occurs if the window size is increased to more than one
packet.

magnitude as seen in figure 4.11. The source of that bug is unknown and needs further
investigation.
Furthermore, on rare occasions the FPGA resets itself, although no such request was sent.

If the FPGA resets itself the connection between host-PC and backplane is lost and the
whole procedure has to be restarted. Many of the placed and routed hardware designs were
unusable: They simply did not work or they reset themselves very often. The software used
to route and place the VHDL4 design shows many problems when the usage of the slices of
the FPGA exceeds a certain threshold. It is also very probable that some of the mentioned
malfunctions are related to this major problem.

4Very High Speed Integrated Circuit Hardware Description Language

35

5 Discussion & Outlook

In this diploma thesis the implementation of the new FACETS stage 1 transport protocol was
presented. This Slow Control Transport Protocol was integrated into the existing software
stack. The stack comprises the meta-language PyNN developed within the FACETS project
which represents a neuronal simulator1-agnostic user-interface, the Python-based abstraction
layer PyHAL and the low level hardware abstraction layer SpikeyHAL. These layers form the
software stack above the implemented transport protocol.
The main goal was to thereby establish a reliable and efficient communication channel

with special attention to kernel space portability and parallel operability. In a high event
rate environment like a spiking neuronal network running on an accelerated neuromorphic
hardware system fast data transmission is crucial. In the following it is discussed to what
extent the developed software and hardware designs fulfil these demands and what is left to
be done.

5.1 Achievements

For the first time, the FACETS stage 1 neuromorphic hardware device has become accessible
over Gigabit-Ethernet. Compared to the previous connection via the proprietary Darkwing
PCI card (cf. chapter 2) this implies an improved usability. Connections can be established
with cheap and easy-to-use hardware components of the widely-used 1000Base-T Ethernet
standard. Multiple backplanes can be accessed via multiple instances of the transport protocol
handler and thus a single host can be connected to many backplanes.
Measurements based on software simulations have shown that SCtrlTP can saturate a

1 Gbit/s Ethernet link if payload size and window size are adjusted to higher values than the
hardware device currently supports (cf. chapter 4 and figure 4.3 on page 27).
Measurements between host computer and hardware system revealed that even with the

current hardware constraints a better throughput compared to the old Darkwing card-based
system can be achieved. The maximum throughput obtained with SCtrlTP is about 1.4 MB/s
while the one realized via Darkwing is about 0.9 MB/s. During those and all other measure-
ments, no concurrency flaws or other malfunctions of SCtrlTP were encountered. SCtrlTP
conserves the information which has to be exchanged and keeps the connection in a stable
regime. However, there remain critical bugs in the hardware FPGA design of which some
have been circumvented by changing software constraints and behaviour.
It has been shown, that neuronal experiments described in the top-level meta-language

PyNN are still executable. The new transport protocol is fully transparent to the upper
software layers and required no further changes to source code in other software layers. As
a first test, a calibration routine measuring the membrane time constant τmem of a single
hardware neuron was executed.

1and emulator

36

5.2 Open Issues

Provided that the stability and functionality of the FPGA source code will be improved in
the future, a significant decrease of the overall experiment’s runtime can be achieved.
Still there are many obstacles with respect to the user-friendliness, performance and flaw-

lessness of the whole system which have to be overcome. In particular, a simplification of the
software stack used in the operation of the hardware system, e.g. SpikeyHAL, will contribute
to an increased acceptance of neuromorphic hardware systems within the neuroscientific com-
munity.

5.2 Open Issues

The elimination of the current hardware FPGA design flaws (a description of them is given in
section 4.4) is of utmost importance. In particular, the problems with the place & route algo-
rithm which seem to be responsible for most of the detected malfunctions have to be solved.
The performance of SCtrlTP measured in software stands and falls with the correctness of
the FPGA source code. It would be possible to strip down the FPGA source code of the
ETH-Core since most of its functionality is obsolete. The only essential parts are controlling
the physical link layer, the calculation of the checksum and the processing of the Ethernet
header. Major components that implement memory mapped I/O and adapt the rate of gen-
erated interrupts are not used. These parts consume a large fraction of the ETH-Core and
are of no avail for the downstream protocol handler.
For example, the bandwidth between the backplane FPGA and the Nathan FPGA could

be increased by implementing double data rate [Hennessy and Patterson, 2007] transfers.
Currently, all Nathans are arranged in a single chain similar to a Token-Ring: commands to
one specific Nathan are passed through the ring until they arrive at the targeted Nathan. It
would be desirable for independent Nathans to be accessible in parallel without reducing the
bandwidth per Nathan.
In order to further improve the usability, more effort has to be put into the whole software

framework. This includes SpikeyHAL and SCtrlTP (as described in chapter 2). Especially
SpikeyHAL suffers from insufficiencies. For example, SpikeyHAL is currently unusable on 64-
bit architectures. Data corruption occurs if it is executed on 64-bit machines. The interface
between SpikeyHAL and SCtrlTP has to be redefined to fully support an explicit mapping of
multiple backplanes and Nathans. It is also desirable for all SCtrlTP instances, the dedicated
backplanes and Nathans to be automatically detected, configured and mapped.
Although SCtrlTP achieves a quite impressive performance in pure software to software

measurements there are some possibilities to further increase its performance. It is conceiv-
able to remove the remaining system calls to the socket functions by exchanging data with
the kernel via shared memory. There are mechanisms provided by recent Linux kernels,
namely PACKET_RX_RING and PACKET_TX_RING [Baudy, 2009], which can be used
to achieve a zero-copy policy which includes the kernel. A preliminary implementation on
the receiving side that utilizes PACKET_RX_RING to receive data has already been inte-
grated into the stack. The lack of the PACKET_TX_RING in previous kernel versions has
prevented its exploitation during the work of this diploma thesis. Every packet which shall
be sent or received passes through a memory region which is shared between kernel space and
user space. Data generated by the control software gets written to the shared memory region
where the kernel waits for data to be sent. On the way back, the kernel writes to the shared
memory region and sends an event to the user space handler. Thus, redundant system calls

37

5 Discussion & Outlook

can be avoided, too.
However, if SCtrlTP or a modified variant is intended to be utilized for the FACETS stage

2 hardware environment, some part of the software stack have to be ported to kernel space. If
20 Gbit/s of data arrive at the networking device, the correct and rapid handling of that data
is absolutely necessary. Additionally, high latency acknowledge handling requires large buffer
sizes in the hardware system. Last but not least, a minimised delay caused by communication
becomes important in interactive and closed-loop operation modes (cf. chapter 1).

38

A Source Code

A.1 Locking Mechanisms

__s32 xchg (volat i le __s32 ∗ var i ab l e , __s32 new_value) {
__s32 old ;

/∗ I n l i n e assembler i n s t r u c t i o n xchg
xchg [s rc] , [d e s t]
[s rc] i s the r e g i s t e r ax
[d e s t] i s a l o c a t i o n in memory ∗/

__asm__ __volatile__
(" xchgl ␣%1,␣%2; " ,
: "=a " (o ld)
: " a " (new_value) , "m" (∗ va r i ab l e)
: "memory") ;

/∗Return the prev ious va lue o f v a r i a b l e ∗/
return o ld ;

}

Listing A.1: Atomic function used by spinlock code

void spin_lock (volat i le __s32 ∗ lock) {

/∗Prevent doub le l o c k i n g ∗/

/∗Try to acqu i r e l o c k a t omi ca l l y ∗/
do {

/∗Wait u n t i l l o c k seems to be f r e e ∗/
while (∗ l ock == 0) ;

} while (xchg (lock , 0) == 0) ;

/∗We have acqu i red the l o c k and can enter a c r i t i c a l s e c t i on ∗/
/∗ Reg i s t e r me as the owner o f the l o c k ∗/

}

__s32 spin_try_lock (volat i le __s32 ∗ lock) {
__s32 old ;

/∗Prevent doub le l o c k i n g ∗/

/∗Try to acqu i r e l o c k once and re turn prev ious va lue ∗/
o ld = xchg (lock , 0) ;

/∗Check i f s u c c e s s f u l and r e g i s t e r me as new owner o f the l o c k ∗/

39

A Source Code

return o ld ;
}

void spin_unlock (volat i le __s32 ∗ lock) {

/∗Check i f i am the owner o f the l o c k ; i f not re turn ∗/

/∗Prevent i n s t r u c t i o n reorder ing above c r i t i c a l s e c t i on ∗/
compi l e r_barr i e r () ;

/∗Release the l o c k ∗/
∗ lock = 1 ;

}

Listing A.2: Spinlock code which is used by SCtrlTP (some parts are not shown)

struct s c t p_ f i f o {
/∗0−63∗/
/∗ Inc lude s p r o t e c t i n g s p i n l o c k and counter va lue ∗/
struct semaphore n r_fu l l ;

/∗64−127∗/
/∗ O f f s e t to element , which was l a s t consumed∗/
__u32 last_out ;
/∗Padding to s epe ra t e las t_out , l a s t_ in from same cache l i n e ∗/
__u8 pad0 [L1D_CLS−4] ;

/∗128−191∗/
/∗ O f f s e t to element , which was l a s t produced ∗/
__u32 la s t_ in ;
__u8 pad1 [L1D_CLS−4] ;

/∗192−255∗/
/∗Number o f t o t a l e lements ∗/
__u32 nr_elem ;
/∗ S i z e o f one element ∗/
__u32 elem_size ;
__u8 pad2 [L1D_CLS−8] ;

/∗256−4096∗/
/∗Pointer to b u f f e r o f e lements ∗/
__u8 ∗buf ;
/∗Keep page s i z e a l ignment ∗/
__u8 pad4 [PAGE_SIZE−4∗L1D_CLS−PTR_SIZE] ;

} __attribute__ ((packed)) ;

Listing A.3: Shared memory based FIFO structure with cache line size padding and page size align-
ment.

40

A.2 Berkeley Packet Filter

A.2 Berkeley Packet Filter

. . .
struct bpf_program f i l t e r ;
struct bpf_insn prog [] = {

/∗Check on p ro t o co l number∗/
BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 12) ,
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0 , 0 , 11) ,
/∗Check i f my MAC i s the d e s t i n a t i o n address ∗/
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 0) ,
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0 , 0 , 9) ,
BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 4) ,
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0 , 0 , 7) ,
/∗Check remote MAC∗/
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 6) ,
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0 , 0 , 5) ,
BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 10) ,
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0 , 0 , 3) ,
/∗Check on p ro t o co l type (shou ld be equa l to zero) ∗/
BPF_STMT(BPF_LD+BPF_B+BPF_ABS, 15) ,
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, SCTP_TYP_DEFAULT, 0 , 1) ,
/∗ accept packe t by re tu rn ing −1∗/
BPF_STMT(BPF_RET+BPF_K, −1) ,
/∗ ignore /drop packe t by re tu rn ing 0∗/
BPF_STMT(BPF_RET+BPF_K, 0) ,

} ;
/∗ Reg i s t e r i n s t r u c t i o n s in program s t r u c t u r e ∗/
f i l t e r . bf_insns = prog ;
/∗ In s e r t arguments to s e t up f i l t e r p rope r l y ∗/
prog [1] . k = proto ;

prog [3] . k =
txmac[0]<<24 + txmac[1]<<16 + txmac[2]<<8 +txmac [3] ;

prog [5] . k = txmac[4]<<8 + txmac [5] ;

prog [7] . k =
rxmac[0]<<24 + rxmac[1]<<16 + rxmac[2]<<8 + rxmac [3] ;

prog [9] . k = rxmac[4]<<8 + rxmac [5] ;
/∗ Ca l cu l a t e number o f i n s t r u c t i o n s in prog ∗/
f i l t e r . bf_len = s izeof (prog) / s izeof (struct bpf_insn) ;
. . .

Listing A.4: The Berkeley Packet Filter program for SCtrlTP.

41

A Source Code

A.3 Payload Formats

Byte offset Size Name Description
0 1 SC_COMMAND Identifier of the Slow Control command
1 1 MODULE Number of the module to access
2 4 ADDRESS Address of a certain location in the module
6 4 VALUE A value to be stored (e.g. for WRITE commands)

Table A.1: Format of a Slow Control command transmitted to the backplane.

Byte offset Size Name Description
0 4 STATUS Returned status value of the executed Slow Control command

1: Command was executed successfully
2: An error occurred during execution

4 4 VALUE A returned value (e.g. for READ commands)

Table A.2: Format of a response of the backplane to a Slow Control command.

Byte offset Size Name Description
0 4 CFG_DWORD A double word of configuration data

Table A.3: Format of a configuration entry. Such payload is only acknowledged.

42

Bibliography

Baudy, J., Linux Kernel 2.6.31 – net: TX_RING and packet mmap, Linux Kernel 2.6.31 –
commit 69e3c75f4d541a6eb151b3ef91f34033cb3ad6e1, 2009.

Bill, J., Self-stabilizing network architectures on a neuromorphic hardware system, Diploma
thesis (English), University of Heidelberg, HD-KIP-08-44, 2008.

Braden, R. T., RFC 1122: Requirements for Internet hosts — communication layers, 1989.

Brette, R., and W. Gerstner, Adaptive exponential integrate-and-fire model as an effective
description of neuronal activity, J. Neurophysiol., 94, 3637 – 3642, doi:NA, 2005.

Brüderle, D., Neuroscientific modeling with a mixed-signal vlsi hardware system, Ph.D. thesis,
2009.

Brüderle, D., E. Müller, A. Davison, E. Muller, J. Schemmel, and K. Meier, Establishing a
novel modeling tool: A python-based interface for a neuromorphic hardware system, Front.
Neuroinform., 3 (17), 2009.

Corbet, J., A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, 3rd ed., O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2005.

Davison, A. P., D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet, and
P. Yger, PyNN: a common interface for neuronal network simulators, Front. Neuroinform.,
2 (11), 2008.

Destexhe, A., D. Contreras, and M. Steriade, Mechanisms underlying the synchronizing action
of corticothalamic feedback through inhibition of thalamic relay cells, Journal of Neuro-
physiology, 79, 999–1016, 1998.

Diesmann, M., and M.-O. Gewaltig, NEST: An environment for neural systems simulations,
in Forschung und wisschenschaftliches Rechnen, Beiträge zum Heinz-Billing-Preis 2001,
GWDG-Bericht, vol. 58, edited by T. Plesser and V. Macho, pp. 43–70, Ges. für Wiss.
Datenverarbeitung, Göttingen, 2002.

Drepper, U., What Every Programmer Should Know About Memory, Red Hat, Inc., 2007.

Drepper, U., Futexes Are Tricky, Red Hat, Inc., 2009.

Drepper, U., and I. Molnar, The Native POSIX Thread Library for Linux, Red Hat, Inc.,
2005.

Ehrlich, M., C. Mayr, H. Eisenreich, S. Henker, A. Srowig, A. Grübl, J. Schemmel, and
R. Schüffny, Wafer-scale VLSI implementations of pulse coupled neural networks, in Pro-
ceedings of the International Conference on Sensors, Circuits and Instrumentation Systems
(SSD-07), 2007.

43

Bibliography

Enck, J., Ethernet/802.3 and token ring/802.5, pp. 265–295, 1994.

Eppler, J. M., M. Helias, E. Muller, M. Diesmann, and M.-O. Gewaltig, PyNEST: a convenient
interface to the NEST simulator, Front. Neuroinform., 2 (12), 2008.

FACETS, Fast Analog Computing with Emergent Transient States – project website, http:
//www.facets-project.org, 2009.

Fairhurst, G., RFC 3366: Advice to link designers on link Automatic Repeat reQuest (ARQ),
2002.

Fieres, J., A. Grübl, S. Philipp, K. Meier, J. Schemmel, and F. Schürmann, A platform for
parallel operation of VLSI neural networks, in Proc. of the 2004 Brain Inspired Cognitive
Systems Conference (BICS2004), University of Stirling, Scotland, UK, 2004.

Fuentes, F., and D. C. Kar, Ethereal vs. tcpdump: a comparative study on packet sniffing
tools for educational purpose, J. Comput. Small Coll., 20 (4), 169–176, 2005.

Gewaltig, M.-O., and M. Diesmann, Nest (neural simulation tool), Scholarpedia, 2 (4), 1430,
2007a.

Gewaltig, M.-O., and M. Diesmann, NEST (NEural Simulation Tool), Scholarpedia, 2 (4),
1430, 2007b.

GPL 2009, GNU General Public License 2.0, http://www.gnu.org/licenses/gpl-2.0.
html.

Grübl, A., VLSI implementation of a spiking neural network, Ph.D. thesis, Ruprecht-Karls-
University, Heidelberg, document No. HD-KIP 07-10, 2007.

Gutmann, C., Implementation einer Gigabit-Ethernet-Schnittstelle zum Betrieb eines Kün-
stlichen Neuronalen Netzwerkes, Diploma thesis (German), University of Heidelberg, HD-
KIP-07-08, 2007.

Häfliger, P., Adaptive WTA with an analog VLSI neuromorphic learning chip, IEEE Trans-
actions on Neural Networks, 18 (2), 551–72, 2007.

Hennessy, J. L., and D. A. Patterson, Computer architecture: a quantitative approach, Morgan
Kaufmann, Amsterdam, 2007.

Herlihy, M., and N. Shavit, The Art of Multiprocessor Programming, Morgan Kaufmann,
2008.

Hines, M., and N. Carnevale, The NEURON simulation environment., pp. 769–773, M.A.
Arbib, 2003.

Hines, M. L., and N. T. Carnevale, The NEURON Book, Cambridge University Press, Cam-
bridge, UK, 2006.

Hines, M. L., A. P. Davison, and E. Muller, NEURON and Python, Front. Neuroinform.,
2009.

44

http://www.facets-project.org
http://www.facets-project.org
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html

Bibliography

Hodgkin, A. L., and A. F. Huxley, A quantitative description of membrane current and its
application to conduction and excitation in nerve., J Physiol, 117 (4), 500–544, 1952.

IEEE, Standard for information technology - portable operating system interface (POSIX).
shell and utilities, Tech. rep., IEEE, 2004.

Jacobson, V., and M. J. Karels, Congestion avoidance and control, 1988.

Johansson, C., and A. Lansner, Towards cortex sized artificial neural systems., Neural Net-
works, 20 (1), 48–61, 2007.

Kaplan, B., Self-organization experiments for a neuromorphic hardware device, Diploma the-
sis (English), University of Heidelberg, HD-KIP-08-42, 2008.

Landström, S., and L.-A. Larzon, Reducing the tcp acknowledgment frequency, SIGCOMM
Comput. Commun. Rev., 37 (3), 5–16, 2007.

Ljung, L., and T. Soderstrom, Theory and Practice of Recursive Identification (Signal Pro-
cessing, Optimization, and Control), The MIT Press, 1983.

Markram, H., Y. Wang, and M. Tsodyks, Differential signaling via the same axon of neocor-
tical pyramidal neurons., Proceedings of the National Academy of Sciences of the United
States of America, 95 (9), 5323–5328, 1998.

Mccanne, S., and V. Jacobson, The bsd packet filter: A new architecture for user-level packet
capture, 1993.

Mead, C. A., Analog VLSI and Neural Systems, Addison Wesley, Reading, MA, 1989.

Mead, C. A., and M. A. Mahowald, A silicon model of early visual processing, Neural Net-
works, 1 (1), 91–97, 1988.

Merolla, P. A., and K. Boahen, Dynamic computation in a recurrent network of heterogeneous
silicon neurons, in Proceedings of the 2006 IEEE International Symposium on Circuits and
Systems (ISCAS 2006), 2006.

Müller, E., Operation of an imperfect neuromorphic hardware device, Diploma thesis (En-
glish), University of Heidelberg, HD-KIP-08-43, 2008.

Nagle, J., RFC 896: Congestion control in IP/TCP internetworks, 1984.

Orebaugh, A., G. Ramirez, J. Burke, and L. Pesce, Wireshark & Ethereal Network Protocol
Analyzer Toolkit (Jay Beale’s Open Source Security), Syngress Publishing, 2006.

Pakkenberg, B., and H. Gundersen, Neocortical Neuron Number in Humans: Effect of Age
and Sex, J Comp Neurol., 384 (2), 312–320, 1997.

Peterson, L. L., and B. S. Davie, Computer Networks: A Systems Approach, 3rd Edition,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

Philipp, S., Design and implementation of a multi-class network architecture for hardware
neural networks, Ph.D. thesis, Ruprecht-Karls Universität Heidelberg, 2008.

45

Philipp, S., A. Grübl, K. Meier, and J. Schemmel, Interconnecting VLSI spiking neural
networks using isochronous connections, in Proceedings of the 9th International Work-
Conference on Artificial Neural Networks (IWANN’2007), vol. LNCS 4507, pp. 471–478,
Springer Verlag, 2007.

Renaud, S., J. Tomas, Y. Bornat, A. Daouzli, and S. Saighi, Neuromimetic ICs with analog
cores: an alternative for simulating spiking neural networks, in Proceedings of the 2007
IEEE Symposium on Circuits and Systems (ISCAS2007), 2007.

Rossum, G. V., Python Reference Manual: February 19, 1999, Release 1.5.2, iUniverse, In-
corporated, 2000.

Schemmel, J., A. Grübl, K. Meier, and E. Muller, Implementing synaptic plasticity in a VLSI
spiking neural network model, in Proceedings of the 2006 International Joint Conference
on Neural Networks (IJCNN’06), IEEE Press, 2006.

Schemmel, J., D. Brüderle, K. Meier, and B. Ostendorf, Modeling synaptic plasticity within
networks of highly accelerated I&F neurons, in Proceedings of the 2007 IEEE International
Symposium on Circuits and Systems (ISCAS’07), IEEE Press, 2007.

Schemmel, J., J. Fieres, and K. Meier, Wafer-scale integration of analog neural networks,
in Proceedings of the 2008 International Joint Conference on Neural Networks (IJCNN),
2008.

Schürmann, F., S. Hohmann, J. Schemmel, and K. Meier, Towards an Artificial Neural Net-
work Framework, in Proceedings of the 2002 NASA/DoD Conference on Evolvable Hard-
ware, edited by A. Stoica, J. Lohn, R. Katz, D. Keymeulen, and R. Zebulum, pp. 266–273,
IEEE Computer Society, 2002.

Serrano-Gotarredona, R., et al., AER building blocks for multi-layer multi-chip neuromor-
phic vision systems, in Advances in Neural Information Processing Systems 18, edited by
Y. Weiss, B. Schölkopf, and J. Platt, pp. 1217–1224, MIT Press, Cambridge, MA, 2006.

Stevens, W. R., B. Fenner, and A. M. Rudoff, UNIX Network Programming, Vol. 1, Pearson
Education, 2003.

Vogelstein, R. J., U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, Dynamically reconfig-
urable silicon array of spiking neuron with conductance-based synapses, IEEE Transactions
on Neural Networks, 18, 253–265, 2007.

46

Acknowledgments
(Danksagungen)

Ich möchte mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. Dies
sind insbesondere:

Herrn Prof. Dr. Karlheinz Meier für die freundliche Aufnahme in die Arbeitsgruppe.

Dem Zweitkorrektor meiner Arbeit.

Herrn Dr. Johannes Schemmel, der immer ein offenes Ohr für die vielen Fragen seines Diplo-
manden hatte.

Herrn Dr. Stephan Philipp für die gute Zusammenarbeit und Kommunikation. Er ist maßge-
blich am Erfolg dieser Arbeit beteiligt.

Meinem Betreuer Eric Müller für die sehr fundierte und schnelle Hilfe in allen Fragen zur
Softwareentwicklung.

Herrn Dr. Daniel Brüderle und Herrn Mihai Petrovici für die hilfreichen Einblicke in die
Neurowissenschaften und die Hilfe bei der sprachlichen Korrektur dieser Arbeit.

Dres. Grübl, Millner für die Antworten auf meine vielen Fragen zur Hardware.

Allen Visionären für ihre außerordentliche Hilfsbereitschaft und die stets angenehme und
freundschaftliche Arbeitsatmosphäre.

Vim

Dem M. C. für zackige Mittagessen.

Des weiteren möchte ich mich in besonderem Maße bei folgenden Personen bedanken, die
mich während meiner Diplomarbeit außerordentlich unterstützt haben:

Meiner Freundin Gabi, ohne deren Liebe und Halt viele schwierige Stunden kaum zu meistern
gewesen wären.
Meinen Eltern für ihre Hilfe bei der Überwindung aller Hürden während des Studiums.

47

	Introduction
	FACETS Neuromorphic Hardware Device & Software Framework
	Stage 1
	Spikey – the Neuromorphic Chip
	Software Framework
	Former Data Flow

	Stage 2

	Development of a New Transportation Layer
	Operating System Issues
	Sockets
	Network Stack
	TCP/IP

	Functional Requirements
	Routing Traffic
	Conservation of Data Flow
	Conservation of Equilibrium

	SCtrlTP – an Efficient Transport Protocol Implementation
	Kernel Space vs. User Space
	Interface Definition
	Synchronisation Mechanisms
	Performance Optimisation
	Resulting Protocol Implementation

	Measurements
	Software Tools
	Measurements in a Simulated Environment
	Performance of Shared-Memory-Based FIFO Queues
	Throughput of the Slow Control Transport Protocol

	Measurements on the Hardware System
	RAM Tests on the Backplane
	Neuronal Experiment with PyNN
	Previous Performance

	Known Bugs and Workarounds

	Discussion & Outlook
	Achievements
	Open Issues

	Source Code
	Locking Mechanisms
	Berkeley Packet Filter
	Payload Formats

	Bibliography

