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Testing the Operation Workflow of a Neuromorphic Hardware System with a
Functionally Accurate Model

Neuromorphic hardware represents a promising approach for the investigation and reverse-
engineering of biological neural networks. This thesis has been carried out as part of an
ongoing effort to develop a large-scale highly-accelerated neuromorphic system. By providing
a large and diverse configuration space the system offers the possibility of emulating nearly
arbitrary neural network architectures. This, however, sets demanding requirements on the
operation of the system. In order to test the associated operation workflow and to improve
the responsible software layers, a previously developed executable system simulation of the
neuromorphic hardware device was significantly enhanced. The focus lied on the develop-
ment of functionally accurate models of the hardware neurons and synapses for the system
simulation, which is intended to reflect the behavior of the physical hardware as precisely
as possible. The operational workflow was successfully tested with the system simulation.
The enhanced system simulation was a key ingredient in testing and optimizing the operation
workflow. Finally, the functionality of the neurmorphic hardware was demonstrated through
the successful emulation of three biologically relevant benchmark models.

Test des Arbeitsablaufs der Ansteuerung einer Neuromorphen Hardware mit
Hilfe eines Funktionell Korrekten Modells

Neuromorphe Hardware ist ein vielversprechender Ansatz zur Untersuchung und zum Nach-
bau von biologischen neuronalen Netzen. Diese Arbeit wurde im Rahmen eines Projektes
vollzogen, welches die Entwicklung eines großskaligen hochbeschleunigten neuromorphen Sys-
tems zum Ziel hat. Zur Emulation neuronaler Netzwerke verschiedenster Art bietet dieses
System einen großen Spielraum an möglichen Konfigurationen. Das wiederum stellt hohe An-
forderungen an die Ansteuerung des Systems. Um den zugehörigen Arbeitsablauf zu testen
und die dafür zuständige Software zu erweitern, wurde eine ausführbare Systemsimulation
der neuromorphen Hardware weiterentwickelt. Der Schwerpunkt lag in der Übertragung von
Hardware-Neuronen und -Synapsen in funktionelle Modelle für die Systemsimulation, welche
das Verhalten der echten Hardware möglichst präzise widerspiegeln soll. Mit Hilfe der Sys-
temsimulation konnte der Arbeitsablauf nicht nur getestet, sondern auch optimiert werden.
Durch die erfolgreiche Emulation von drei biologisch relevanten Benchmark-Modellen wurde
die Funktionalität der neuromorphen Hardware demonstriert.
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1 Introduction

1.1 Emergence and the Brain
The whole is more than the sum of its parts.

Aristotle is said to have coined this phrase in order to describe an interesting and, at a
first glance, somewhat surprising phenomenon that seems prevalent in nature: the emergence
of complex systems with novel properties and functionalities from a multitude of simple
components.
When the interaction of simple entities creates a new behavior that can not be traced back

to the dynamics of a single entity, such a system is called emergent, as new properties arise
or emerge from the interplay of its parts. Quite often, such systems are highly complex, such
that their behavior can not be easily understood. It took, for example, many centuries for
physicists to trace back the empiric, macroscopic laws of thermodynamics to the interaction
of the microscopic constituents of matter. On the other hand, some macroscopic phenomena
such as high-temperature superconductivity still await their microscopic explanation.
The behavior of an emergent system does not, in general, depend on any single one of

its constituent entities, as it is usually robust against the loss of some of its microscopic
components. This principle of robustness can be found in various domains at many different
scales in nature. The proper functioning of organisms is not impaired by the loss of single
cells, nor do phase transitions depend on the exact number of molecules involved.
Ranging from the billion light-year scales of the Cosmic Microwave Background down to

the subatomic scales of quark-gluon plasma, science tries to explain the emerging properties
of systems at a larger scale by investigating them at a lower scale (e.g. in time or space).
This approach lies at the heart of our ongoing effort to understand the world around us. It
is not particular to any single branch of science, as it has been successfully applied over a
wide range of scientific disciplines, such as genetics (explanation of phenotypes through gene
expression), demography (population dynamics arising from interactions among individuals)
or physics (large-scale coherent phenomena as a result of quantum interactions), just to name
a few.
Biological neural systems occupy a somewhat exceptional position, as they are arguably the

most complex systems we have so far encountered. Understanding them is not only a question
of academic interest, as it also promises the key to many age-long philosophical questions,
such as the problem of selfhood or the mind-body problem. Without the proper scientific
approach, such questions are doomed to the field of mere speculation.
It is not purely by chance that the field of neuroscience has become so highly active and

productive during the past few decades. With the dawning of the computer era, on the one
hand, and with the invention of powerful experimental techniques, on the other, neurosci-
entists now have the tools to measure and investigate the inner workings of the brain at
previously unimagined detail and then try to reproduce their functionality in custom-built
artificial neural networks.
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1 Introduction

Even to the scientifically untrained, the brain is an astonishing device. It allows its possessor
to routinely react with amazing speed to highly complex stimuli, for example while driving a
car, to store massive amounts of information, most of which can be recalled at will - a lifetime
of memories - or to perform highly sophisticated motor tasks, such as juggling or acrobatics.
Another one of its key features is its ability to adapt and learn - all the skills described
above are the result of some form of training. Ultimately, the human brain produces, at its
highest level of emergence, the still mysterious phenomenon we call consciousness, a result
of the complex interaction of external stimuli, learned abilities, memories and sophisticated
rationality.
Results from neuroscience have a wide range of application beyond appeasing our innate

thirst for knowledge. In their ability to solve a large spectrum of complicated problems,
humans are far superior to computers or robots, which are usually specialized for a very
restricted category of tasks. Also, the brain’s ability to learn and adapt still lies far beyond
the possibilities of any artificial device. From this point of view, learning about how these
paradigms are realized in biological neural networks may prove useful in creating better, more
intelligent synthetic agents. On the other hand, a deeper insight into the workings of human
brain may also facilitate the treatment of neurodegenerative diseases or mental disorders.
Ultimately, neuroscience may provide the knowledge for creating brain-machine interfaces
(see e.g. Mehring et al. [2003]) or even artificial brains, entailing unforeseeable possibilities
for humankind.

1.2 Approaches to Neuroscience

When investigating the functionality of the brain, different approaches can be taken, depend-
ing on the level of detail one chooses as a starting point.
In the psychophysics approach, the brain is roughly subdivided into large areas which are

responsible for different tasks, e.g. the processing of visual stimuli. These areas can be further
subdivided into smaller units, which specialize on various sub-tasks, such as edge detection
in the primary visual cortex or color processing in the visual area V4. By studying the effect
on a subject’s experience or behavior of systematically varying the properties of a stimulus
along one or more physical dimensions, psychophysicists try to determine the function and
the interconnections of the different modules of the brain.
In a more detailed approach one can focus on populations of neurons which lie close to-

gether and display similar activity patterns. One would then argue that these populations
are assigned to different tasks and would try to explain the various processes in the brain
by describing the interactions among such populations. A prominent example of such a
population-based approach is the so-called LISSOM model (Miikkulainen et al. [2005]), which
uses the concept of self-organizing maps to explain the structure of the primary visual system.
A very detailed approach would be to start by modeling single neurons, which are generally

agreed upon as being the basic building blocks, or processing units, of the nervous system.
This approach can range from specifying the general behavior of neurons and building so-called
formal models (see e.g. Destexhe [1997]; Brette and Gerstner [2005]) to accurately investigat-
ing their substructure and molecular mechanisms (see e.g. Hodgkin and Huxley [1952]; Shouval
et al. [2002]; Kubota and Kitajima [2007]). In any case, both electrophysiological experiments
at such a detail level and reverse-engineering a functional network out of single neurons are
difficult tasks, as there are 1011 neurons in the human brain, each of them connected to other
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1.2 Approaches to Neuroscience

neurons through approximately 104 synapses (resulting in an average total of 1015 synapses
in an adult human brain) (Shepherd [2004]).
There are two cardinal approaches for tackling this problem. One possibility is to simulate

the electrophysiological behavior of single neurons and their pairwise interaction (i.e. synapse
dynamics) in a software environment. The computational complexity of this problem scales
strongly with the size of the simulated network, the connection density and the electrophysi-
ological detail level, as does the time needed for simulating such a network (Morrison et al.
[2005]). Apart from optimizing the simulation algorithms, the only solution for simulating
large neural networks, possibly even on a brain scale, lies in increasing the available raw com-
putational power. A prominent example for this paradigm is the Blue Brain Project (EPFL
and IBM [2008]), which at its current state of development uses over 4 million processors to
simulate a highly detailed version of a cortical hypercolumn.
The second line of thought tries to overcome the inherent limitations of software simula-

tions by designing so-called neuromorphic hardware systems (see e.g. Mead [1989]; Indiveri
et al. [2006]; Merolla and Boahen [2006]; Renaud et al. [2007]; Vogelstein et al. [2007]; Indiveri
[2008]). Software simulations suffer from two major drawbacks. First of all, a lot of resources
are spent on computing the dynamics of the simulated units, i.e. numerically integrating the
corresponding differential equations. Secondly, the architecture of the processors ultimately
running the program is inherently serial, so a lot of computing cycles are needed to update
the state of every single neuron in the network, which in biological reality of course happens
all at the same time. Both these difficulties can be tackled by designing electronic circuits
which behave similarly to the components of a biological neural network. Such a silicon neu-
ral network does not need to integrate any differential equation, since its inherent dynamics
are (nearly) identical to their biological counterparts. These hardware circuits can work and
exchange signals independently of one another, so there is no need for time consuming serial
processing because the implemented solution is inherently parallel. This neuromorphic hard-
ware approach has a highly welcome side-effect: the small size of the constituent components
(on the order of micrometers or less) implies very short time constants for the ongoing elec-
trodynamic processes. This results in a speedup factor of several orders of magnitude with
respect to biological timescales.
The FACETS1 research project (FACETS [2009]) unites a highly interdisciplinary team

of researchers in its quest for understanding the computational principles and paradigms
behind the human brain. Biologists try to measure characteristics of single cells and larger
structures within the brain. Mathematicians and physicists try to model neural networks and
examine their behavior with computational and analytical methods. A number of workgroups,
including the Electronic Vision(s) group in Heidelberg, are involved in building a large scale
neuromorphic hardware device as a substrate for emulating neural network models. This
so-called wafer-scale system is, within its physical limitations, freely configurable to emulate
nearly arbitrary neural networks with an acceleration factor of up to 5 orders of magnitude
with respect to biological real time (Schemmel et al. [2007, 2008]). On the FACETS wafer-
scale neuromorphic hardware, up to 200.000 neurons and 50 million synapses can be emulated
in parallel. This system is designed to serve as a universal tool for neuroscientific modeling,
as the neuron and synapse circuits in the hardware reflect the behavior of state-of-the art
neuron and synapse models.

1Fast Analog Computing with Emerging Transient States
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1.3 The FACETS Demonstrator Project

Such an immensely complex system with such an enormous configuration space requires an
equivalently complex software framework for its maintenance and operation. Since hardware
design an software engineering are, to a large extent, complementary lines of work, it makes
sense to have them done in parallel. However, for the testing of the developed software or of
the operation workflow, a test bench in the form of a functional model of the yet unfinished
hardware system is indispensable. For this purpose, an abstract high-level description of
the given device was developed, with interfaces that resemble the ones implemented in the
physical hardware.
The FACETS wafer-scale neuromorphic hardware system is composed of sophisticated sub-

units for which every detail is, in principle, known. Nevertheless, because of its huge complex-
ity, it is impossible to predict the behavior of the system as a whole until actually operating
it. Especially the impact of the system’s intrinsic properties onto the dynamics of emulated
neural networks can not be analytically estimated. With the real wafer-scale system not yet
being available, only an executable system specification with behavioral models of all compo-
nents can expose these consequences. By investigating the behavior of this virtual hardware,
one can provide the scientific community with instruction and information about the capa-
bility and the limitations of the system already in early stages of development, long before
it is physically available. Giving researchers a feeling for the huge potential of this novel
neuroscientific tool is essential to pave the way for the success of the FACETS Hardware.
Within FACETS, a sub-project called the FACETS Demonstrator was initiated, which

aims to demonstrate the successful interdisciplinary approach of the project. The capability
of the neuromorphic hardware to perform brain-like computation shall be tested and demon-
strated with biologically relevant cortical network models. For this purpose, neuroscientists
involved in FACETS provided a versatile set of cortical benchmark models for emulation on
the FACETS wafer-scale system. As long as the real FACETS Hardware is not available, the
executable system specification has to take its place. This virtual hardware also has the ad-
vantage of not having any imperfections due to the semiconductor production process, which
is very convenient, as it also serves as a reliable test bench for the operating software.

1.4 Outline

One aim of this thesis is the enhancement of an existing system simulation of the FACETS
wafer-scale system. This executable system specification is then used as a test bench for the
software layers designed to operate the FACETS Hardware. Furthermore, three FACETS
Demonstrator benchmark models are simulated with the enhanced virtual hardware.
The thesis starts with a description of the FACETS wafer-scale system, its operating soft-

ware and its existing virtual version (the system simulation) in chapter 2. In chapter 3 the
three chosen FACETS Demonstrator benchmarks are presented. As a next step, the modifica-
tions made to the existing system simulation will be described in chapter 4, with a particular
focus on the analog circuits responsible for the emulation of neuron and synapse dynamics.
Furthermore, the developed methods and a software module for the transformation of param-
eters from the biological domain into the corresponding hardware configuration is presented
in chapter 5. In the next chapter (6), the modified system simulation and with this also the
developed parameter transformation is tested. Last but not least, the neural network bench-
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1.4 Outline

mark models for the FACETS Hardware are emulated with the virtual hardware and their
performance is analyzed in order to illustrate and quantify the capabilities and constraints of
the FACETS wafer-scale system.
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2 FACETS Neuromorphic Computing
Framework

In this chapter the reader is provided with an overview of the FACETS wafer-scale neuromor-
phic hardware system as well as the software layers that are needed to operate such a system.
Furthermore, the executable system specification of the wafer-scale system is presented. The
level of detail varies according to the relevance for this thesis.

2.1 Wafer-Scale Hardware System

(Most of the information about the FACETS wafer-scale hardware system was taken out of
Schemmel et al. [2008] and Fieres et al. [2008] or acquired by personal communication with
members of the Electronic Vision(s) group.)
The FACETS Stage 21 Hardware system basically consists of a very large number of ASICs2

containing the circuits emulating neurons and synapses. The desire to arbitrarily interconnect
a large number of neurons leads to the wafer-scale neuromorphic system presented here. The
technology used is a 180nm CMOS3 process. The chip-manufacturing starts with a so-called
wafer of monocrystalline silicon, to which a series of treatments is applied in order to build
integrated circuits into the semiconductor material. A typical wafer is 1mm thick and has
a circular geometry with a diameter ranging from 150mm to 450mm. Due to technical
limitations4 the maximum size of a chip is limited to a defined fraction of the wafer, the
so-called reticle. In the case of the FACETS wafer-scale system the size of the reticle is
20mm × 20mm. Each reticle contains eight analog neural network chips called HICANN5.
The HICANN chip is the primary building block of this system and hosts up to 512 Neurons
and 130k synapses, it is described in section 2.1.1. The reticle is applied onto an 8-inch (200
mm) wafer such that the HICANN chip is replicated around 400 times. HICANNs are not only
connected with their neighbors within one reticle but also with the those belonging to adjacent
reticles. This is possible through a method called wafer-scale integration: a post-processing
step applies additional wires onto the wafer, such that reticles are interconnected, which
makes the required high connection density possible. In order to utilize the neuromorphic
substrate, it has to be connected to the outside world. This is realized through a stack of
digital communication units ending at a host computer (see section 2.1.3). In addition to this

1The term Stage 2 corresponds to the FACETS wafer-scale neuromorphic hardware, Stage 1 corresponds to
the single chip system based on the neuromorphic chip Spikey, which has been developed earlier at the
Electronic Vision(s) group in Heidelberg

2Application Specific Integrated Circuit
3Complementary Metal Oxide Semiconductor
4During chip-manufacturing photolithography is used to mark areas in the silicon, which shall be later treated
in a certain way, e.g. doped. A pattern is applied with a laser beam that passes a photomask, the size of
which is limited for VLSI (very-large-scale integration).

5High Input Count Analog Neural Network
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2 FACETS Neuromorphic Computing Framework

Figure 2.1: HICANN block structure with
connectivity structure of the Layer 1 network,
which is responsible for the neuron-to-neuron
communication. For a description see the
text in section 2.1.1.
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the stack of digital communication can interconnect several wafer-scale systems, which allows
to emulate neural networks that are too large to fit onto one wafer.

2.1.1 The HICANN Chip

The HICANN chip is the primary building block of the FACETS wafer-scale system, it con-
tains all analog circuits emulating neuron and synapse behavior as well as the interface to the
host via the DNC (cf. 2.1.3). In figure 2.1, a block diagram of the HICANN chip is shown. The
biggest part is occupied by the Analog Neural Network Core (ANNCORE), which contains
the synapse and neuron circuits. The ANNCORE will be described in a separate section
(2.1.2) and for now is regarded just as the source and target of neural pulses. Remaining
functional units of the HICANN chip are the so-called Layer 1 network, which is responsible
for the transport of spike events to ANNCOREs on the whole wafer, and the digital part of
the HICANN that controls the rest of the chip and communicates with the outside world.

2.1.1.1 On-Wafer Neuron-to-Neuron Communication (Layer 1)

The communication of spikes is performed with a mixture of time division and space division
multiplexing. The network for the pulse event transportation consists of 64 horizontal buses
running through the middle of the chip and 128 vertical buses on each side of the ANNCORE,
as it is depicted in figure 2.1. One bus carries the spikes from up to 64 neurons by transmitting
a 6-bit digital signal, that encodes the currently sending neuron (with an ID from 0 to 63).
The ANNCORE generates these digital signals and feeds them into one of up to eight hori-
zontal buses (green arrows). A signal of a horizontal bus can be switched to vertical buses in
the left and right of the HICANN (not shown in the figure). Repeaters, which send or receive

8



2.1 Wafer-Scale Hardware System

Layer 1 events to or from adjacent HICANNs, are located at the HICANN borders(blue ar-
rows). Thereby, the on-wafer communication network is able to connect every HICANN with
any other on the wafer.
Signals on the vertical buses can be switched to one of 64 synapse drivers on each side of an
ANNCORE block, where the signal is further processed. The signal can be also injected to
the ANNCORE of the neighbor HICANN (red arrows).
The Layer 1 buses work asynchronously and reach an rate of up to 1.6GBit/s each.
Each HICANN has 8 circuits for the generation of pseudo-random spike sources implemented
with a shift register. Each of them can send on one of the eight horizontal buses that are fed
by the ANNCORE. The firing rate of each can be set individually.

2.1.1.2 Digital Units of the Chip

The remaining digital part of the chip has two major tasks:
The first is to communicate with the digital network chip (DNC), which is carried out by the
DNC Interface. It exchanges pulse events as well as configuration and request packets with
the DNC. While received pulse events are fed into the Layer 1 network, the configuration
packets are decoded and processed by the chip control module. These configuration and
control operations of the chip are the second major task.

2.1.2 Analog Neural Network Core (ANNCORE)
The task of the ANNCORE is mainly to receive a pulse from a pre-synaptic neuron from
Layer 1, then translate the pulses into synaptic signals that end in the neuron circuits. In the
neuron circuits the neuron behavior is emulated and possibly a spike is detected and a pulse
is transmitted back into the Layer 1 and propagated to other cells. Figure 2.2 depicts the
structure of the ANNCORE. The largest space is occupied by the synapse arrays containing
256 × 256 synapse circuits.6 Synapse Drivers at the left and right of the synapse handle
the pre-synaptic signals from the Layer 1 network and operate the synapses circuits. The
short-term plasticity mechanism is included in the synapse driver circuits. There are 256
neuron circuits in each block of the ANNCORE, each of these so-called denmems can receive
synaptic input from all synapses of the same column. 64 neurons share a priority encoder,
which turns one neuron signal after another into a 6-bit Layer 1 signal. This signal is then
transmitted to the Layer 1 network and to the DNC Interface. The ANNCORE contains also
circuits for long-term synaptic plasticity, which are located above the upper and below the
lower synapse block.

2.1.2.1 Synapse Drivers

The synapse drivers are the interface for the Layer 1 events to enter the ANNCORE. They
are alternately located on the left and right of the synapse array, one synapse driver drives
the synapses of two rows. Hence, there are 64 synapse drivers located on each side of the
synapse block that can be fed with serial 6-bit signals from Layer 1 resulting in a maximum
of 64 pre-synaptic inputs per driver. A synapse driver is connected to the synapses via one
of 4 different strobe lines. At arrival, a serial pulse event it is deserialized and the 6-bit

6Note that the first produced version of the HICANN chip contains only 232× 256 synapses per block, as 14
synapse rows could not be realized due to missing space on the chip. Nevertheless, in the whole course of
this thesis the HICANN is assumed to hold 256 rows of synapses per block.
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2 FACETS Neuromorphic Computing Framework

Figure 2.2: Schematic of the ANNCORE with
Layer 1 buses. Elements not depicted in this fig-
ure: the Priority Encoders, which generate Layer
1 signals for the neuron-to-neuron communication,
and the circuits implementing a long-term plastic-
ity mechanism. For a description see the text in
section 2.1.2.
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sender address is split up into two parts. The upper two bits encode which of the 4 strobe
lines a pulse is sent on to the synapse circuits. The length of these strobe pulses τstdf can be
modulated by a short-term plasticity mechanism, which is described later in this paragraph.
The lower 4 bits of the 6-bit neuron address are transmitted to the synapse array. In order
to avoid signal attenuation on Layer 1 buses due to feeding one lane multiple times into one
ANNCORE, the signal received by one synapse driver can be mirrored to an arbitrary number
of adjacent drivers above and below.

2.1.2.2 Synapse Circuits

The synapse circuit contains a 4-bit address decoder and a 4-bit static RAM storing the
synaptic weight. If the subsequently received 4 bits from the synapse driver match the ones
stored in the address decoder, an output current is generated. The transmitted signal is
a square current pulse with amplitude weight · gmax and length τstdf. The stored digital
weight is translated by a digital-to-analog converter and determines the fraction of gmax to be
applied as the amplitude of the square pulse. The maximum conductance gmax can only be set
individually for every synapse row, and thus is responsible for the base value of the strength
of synaptic connections. This results in a maximum of 16 different synaptic weights for 256
synapses belonging to one row. The output current is injected into one of two available inputs
of the neuron circuit, where it modulates the course of a synaptic conductance. For every row
it has to be decided in the synapse driver, whether the synapses connect to the first or second
input of the denmem. In a typical setting the first input is used to emulate an excitatory
synaptic conductance, the second one emulates an inhibitory synaptic conductance. This
means that the synapses belonging to one row are either excitatory of inhibitory.
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2.1 Wafer-Scale Hardware System

2.1.2.3 Short-Term Plasticity (STP)

Remark: Almost everything of the sections (2.1.2.3, 2.1.2.4, 2.1.2.5) was taken from the
diploma-thesis of Johannes Bill, section I.1.3, as the described circuits is almost the same in
the HICANN chip as in the protoype chip Spikey

When firing several times in succession, biological synapses will change their effective weight
over time spans of some milliseconds to seconds. This effect is known as short-term depres-
sion and facilitation. The short-term plasticity mechanism implemented in the HICANN is
motivated by a phenomenological model developed by Markram et al. [1998].

2.1.2.4 Hardware Model

Every synapse driver of the FACETS Stage 2 Hardware supports two modes of short-term
plasticity, namely depression and facilitation. The basic idea is to introduce a time varying
inactive partition I with 0 ≤ I ≤ 1. It decays exponentially with time constant trec, while
every AP processed by the synapse driver increases I by a fixed fraction USE towards the
maximum. This idea leads to the following dynamics for the inactive partition:

İ = −I/trec + U · (1− I) · δ(t− tAP)

with 0 < USE < 1 and trec denoting adjustable constants. The impact of the inactive partition
on the effective synapse weight is controlled via a scaling factor λ.
In depression mode the inactive partition reduces the synapse’s effective weight, thus:

wdep ∝ 1− λ · I (2.1)

In facilitation mode the inactive partition is added to the static synaptic efficacy: wfac ∝
1 + λ′ · I. For practical reasons (see below) it is useful to keep the same scaling factor λ but
introduce another constant N , and write the impact of I in the form

wfac ∝ 1 + λ · (I −N) (2.2)

2.1.2.5 Hardware Implementation

The model presented above results in additional circuitry in the synapse driver (see fig. 2.3).
This paragraph outlines the basic operation of the STP mechanism. For details see Schemmel
et al. [2007].
Short-term synaptic plasticity can be switched on via the enable-signal. The mode-signal
selects the type of STP. The inactive partition I corresponds to the voltage VI.7 The current
Irec adjusts the decay time constant trec. When triggered by a spike, charge is transferred
from C1 to the adjustable capacitor C2

8. This leads to a rapid change of VI:

∆VI = C2
C1 + C2

· (Vmax − VI)

7More precisely, we identify I = VI /Vmax, as I is normalized to 1, while VI is normalized to Vmax.
8C2 can be set to i · C1/8, with i ∈ {1, 3, 5, 7}.
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2 FACETS Neuromorphic Computing Framework

Figure 2.3: Synapse driver circuit implementing short-term plasticity. The STP mechanism is located
in the lower left part of the circuit. This diagram actually shows the circuits of the FACETS Stage
1 Hardware. For the short-term plasticity there is just one major change in the HICANN chip: The
capacitor C2 is replicated 64 times, one for every pre-synaptic neuron feeding this synapse driver.

Particularly, VI never exceeds Vmax, which controls the scaling parameter λ:
The output of the operational transconductance amplifier (OTA) O2 adds a (positive or
negative) current Istp to the static synaptic weight Igmax. This current is proportional to the
voltage V̂ between the two inputs of the OTA. Since O2 is biased with Igmax, its output is
also proportional to this current. Hence, Istp = µ · Igmax · V̂ with a constant µ. This leads to:

Itotal = Igmax + Istp = Igmax · (1 + µ · V̂ )

In case of depression V̂ = −VI, and thus, λ = µ · Vmax.
In case of facilitation V̂ = VI − Vfac. The adjustable reference voltage Vfac is introduced to
increase control over the weight-range covered by facilitation. This becomes necessary, since
the OTA cannot supply higher currents than its bias. For N = Vfac/Vmax it is λ = µ · Vmax.

In the HICANN chip the capacitor C2 is replicated 64 times, each one implements the inactive
partition I for each of the 64 pre-synaptic neuron feeding this synapse driver.
A suitable configuration for STP is presented in Section 5.2 considering all constraints and

trying to mimic the original model of short-term plasticity by Markram et al. [1998].

2.1.2.6 Long-Term Plasticity

In addition to STP, which changes the efficacy of synapses in the range of biological seconds,
a mechanism implementing long-term potentiation and depression (time range: seconds to
hours) is built into the chip. This spike-time dependent plasticity (STDP) may change the
digital 4-bit weight of the synapses. In the first produced version of the HICANN chip this
mechanism is disabled. As this mechanism is only of secondary importance for this thesis,
the reader is referred to Bi and Poo [1997] and Morrison et al. [2008] for the biological data
and models and to Schemmel [2006] for the hardware implementations.
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2.1 Wafer-Scale Hardware System

2.1.2.7 Membrane Circuits

The hardware neuron circuits implement an adaptive exponential integrate-and-fire model
according to Brette and Gerstner [2005] described by differential equations (2.3) with a vari-
able speedup-factor of 103 and 105. One membrane circuit called denmem has two circuits for
synaptic input. The output current from every of the 256 synapses belonging to the column
above the denmem is injected into one of its input circuits, where it modulates the size of a
conductance g between an adjustable so called reversal potential and the membrane capaci-
tance. The two synaptic inputs can used for e.g. excitatory and inhibitory input. Up to 64
denmems can be grouped together to form a neuron by connecting its membrane capacitances,
such that the maximum number of input synapses per neuron is ≈ 16K with the possibility
to set different values for nearly every parameter of the denmem (e.g. multiple excitatory
reversal potentials and time constants can be set for a single neuron)

C
dV

dt
= −gL (V − EL) + gL ∆T exp(V − VT

∆T
)− w + I

τw
dw

dt
= a(V − EL)− w

(2.3)

The first equation describes the dynamics of the neuron’s membrane potential V . The
voltage is coupled with the adaption current w. Synaptic input is injected through the current
I. El denotes the leak reversal potential to which the voltage converges if no more input is
applied. gL is the leakage conductance that controls the speed of this convergence. The
exponential term describes the process of an action potential (AP) generation. The threshold
VT and the slope factor ∆T determine the start of the exponential nonlinearity. a denotes
the adaption coupling parameter and τw the corresponding time constant. A spike is usually
detected when V reaches a finite value Vspike. The downswing of V after an action potential
is not described by the equations but introduced with a reset mechanism at the spike time
tspike:

V → Vreset

w → w + b
(2.4)

In biology current flows into the cell trough ion channels, which are activated by neurotrans-
mitters that are released by synapses. In this neuron model ion channels are represented by
a conductance between a synaptic reversal potential and the membrane voltage V .
Thus:

I = gexc(t)(V − Erev,e) + ginh(t)(V − Erev,i) (2.5)
where gexc/inh and Erev,exc/inh denote excitatory and inhibitory conductances and reversal
potentials. An incoming spike triggers an increase of the conductance by the weight weight

g → g + weight (2.6)

The synaptic conductance then decays with time constant τ :

τ
dg

dt
= −g(t) (2.7)

The ADEX neuron model is capable of reproducing all known biological firing patterns (see
Touboul and Brette [2008]). Simulation of the hardware circuits implementing this model have
shown, that nearly all of this firing patterns are also reproducible by the denmems (Personal
communication from M.-O. Schwartz and S. Millner).
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2.1.3 Stack of Digital Communication Units (Layer 2)
The HICANN chip emulates neuron dynamics with a speedup factor of about 104 compared
to biological neurons. Assuming 512 neurons per chip, each firing with a mean biological
frequency of 10Hz, more than 50×106spikes/s are generated in one HICANN. For an appro-
priate analysis of network dynamics one needs to record most of these spikes. This requires a
high bandwidth for the communication of these spikes to a host computer, therefore a hier-
archical stack of hardware units was developed, that configures and interacts with the wafer.
This communication is also referred to as Layer 2 communication. 8 HICANNs are linked
to one so-called DNC9 over a 2-Gigabit connection each. 4 DNCs communicate with one
FPGA10 over a 16 Gigabit connection. DNCs and FPGAs are mounted on a printable circuit
board (PCB). The connection setup of these units is shown is figure 2.4. A total of 12 FPGAs

Figure 2.4: Wafer-scale system setup with component connections. FPGAs and DNCs are located
on the printable circuit board (PCB). 1 FPGA is connected to 4 DNCs, each of which has a link to 8
HICANNs on the wafer.

are needed to operate one fully configured FACETS wafer-scale system. FPGAs receive data
from a host computer which is mainly divided into configuration and pulse packets. Config-
uration packets are processed and possibly further transmitted to the addressed sub-units,
where the same procedure is repeated. The Layer 2 is not only responsible for the recording,
but also for the transport of spikes to and from HICANN chips on different wafers. Therefore
FPGAs have to be interconnected. For the correct on-time delivery of spikes the DNCs and
FPGAs implement a special routing. Every neural event carries a target and a time at which
it shall be delivered to a HICANN. As the time that is needed for the transmission of such a
digital event package is not a priori predictable and depends on the overall network activity,

9Digital Network Chip
10Field Programmable Gate Array
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these pulses are delayed and then injected into the Layer 1 network at the correct point in
time. This feature offers the possibility to realize synapses with an adjustable delay. This
is contrary to the on-wafer neuron-to-neuron communication, where pulses are transported
nearly instantaneously.
A schematic of the future wafer-scale system is shown in figure 2.5 containing also the me-
chanical and electrical supplementary infrastructure.

Figure 2.5: Schematic of the FACETS wafer-scale system. In the center the wafer with the reticle
structure is shown. Above and below there are the printable circuit boards containing FPGAs and
Digital Network Chips. Further the mechanical (aluminium frames and plate) and electrical (blue, at
the top) support modules are illustrated.

2.2 Software Layers for the Operation of the Wafer-Scale System
A system like the FACETS Stage 2 Hardware, as described in section 2.1, which is very
complex and highly configurable, needs an adequate software counterpart. Biological neu-
ral network models have to be mapped onto the hardware system, the configuration has to
be specified and later converted into a protocol that is processable by the hardware. The
FACETS neuromorphic hardware is designed to serve as flexible modeling tool for neurosci-
entists. Therefore an user-friendly interface is indispensable, which conceals the complexity
of the system but at the same time provides all the advantages to the user.
The software stack developed for this task is depicted in figure 2.6. The highest level is

PyNN, a high level modeling tool for neural networks. A biological network architecture
is first described by a directed hypergraph (BioGraph), which is then translated into its
counterpart of the neuromorphic hardware system, the so-called HardwareGraph. This highly
complex process is conducted by the so-called MappingTool. The Stage 2 Configurator finally
undertakes the configuration of the hardware system, runs the simulation and returns the
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Figure 2.6: Software layer controlling the FACETS Stage 2 system. The top level is the
meta-language PyNN, in which neural network models are described. A given network model
is then converted into a graph representation by the PyNN interface to the FACETS Hardware
(PyNN.hardware.stage2). The MappingTool translates this network into a hardware configuration.
Finally the FACETS is configured and operated by the Configurator. Figure taken from Brüderle
[2009].
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retrieved data to the user via PyNN.

2.2.1 PyNN
A large number of simulation tools for neural networks have come up over time, each with its
specific focus and own user interface. For the comparison of different simulation back-ends
and for the cross-check of results a unified language for the description of neural network
models has been developed within the FACETS project: With PyNN11 (Davison et al. [2008])
network models can be built once and the same simulation can be run later on any back-end
supported by PyNN, currently NEST (Gewaltig and Diesmann [2007]), NEURON (Hines et al.
[2008]), Brian(Brette and Goodman [2008]), PCSIM (Pecevski and Natschläger [2008]) and the
FACETS Hardware.
PyNN distinguishes between a low-level and a high-level API12: A number of standard types
of cells and synapses are provided. Individual cells can be either created and connected, or
groups (Populations) of the same type can be defined. Between these populations or cells
connection patterns can be applied (so-called Projections).
The FACETS Hardware can be operated from PyNN. The PyNN interface to the FACETS

wafer-scale system PyNN.hardware.stage2 handles the instructions of a given network model
and operates the lower software layers described in the following paragraphs. Having the same
interface for the neuromorphic hardware and established software simulators allows to run
and compare neural network simulations by just switching one line in the code, the one that
describes the simulator to use (supposed that both backends support the used cell and synapse
types):

import pyNN.nest as simulator → import pyNN.hardware.stage2

The PyNN.hardware.stage2 module also supports the executable system specification of the
FACETS wafer-scale system (see section 2.3 and chapter 4), such that we can run neural
network experiments described in the meta-language PyNN on the virtual version of the
FACETS wafer-scale system and compare the results with simulations performed with soft-
ware simulators. Experiments of this kind are presented in chapter 6.

2.2.2 GraphModel
The core of the operating software stack is the so-called FACETS GraphModel developed by
the project partner at the TU Dresden (Wendt et al. [2008]), which holds all information of
both the biological network model and the FACETS hardware. The PyNN.hardware.stage2
module creates a graph of the biological neural network described in the meta-language PyNN.
In this BioGraph the whole topology and setup of the neural network is stored. The FACETS
GraphModel consists of nodes, hierarchical and directed named edges, as well as hyperedges.
E.g. neurons are nodes within the graph, synapses are realized through directed edges between
two neurons and every node or edge may have a connection to its parameter node.
The HardwareGraph represents the structure and the configuration of the FACETS hardware
system. It contains all hardware modules in a hierarchical structure (e.g. FPGAs, DNCs
and HICANNs). If units are connected in the hardware, e.g. a horizontal Layer 1 bus with
a vertical one, the same connection is drawn in the HardwareGraph with a directed named
11Python Neural Networks
12Application Programming Interface
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Figure 2.7: FACETS GraphModel. One can see the BioGraph at the left and the HardwareGraph
at the right. Mapping assignments of biological elements to its hardware counterparts are depicted.
Figure taken from Brüderle [2009].

edge.
With the so-called mapping edges the BioGraph can be linked to the HardwareGraph, e.g. a
biological neuron is mapped to its representation in the HardwareGraph, a membrane circuit.
An exemplary graph is depicted in figure 2.7.

2.2.3 MappingTool

The translation of a biological neural network into a system like the FACETS hardware is
quite complex, as resources are limited or parameters can not be set to arbitrary values
with the desired precision. The MappingTool, mainly developed at the TU Dresden, aims
at optimizing this procedure, such that the hardware representation resembles the biological
network as precisely as possible. For that a series of algorithms have to be applied, starting
with the placement of biological neurons onto the wafer, going on with drawing synaptic
connections on and off the wafer (Layer 1 and Layer 2 routing), ending with the transformation
of parameters. This is a task of multi-objective optimization, as several shortcomings and
limitations have to be considered. And even one procedure affects the outcome of the others.

2.2.3.1 Neuron Placement

There are many requirements for an accurate placement of neurons onto the wafer:
One of the most limited resources of the FACETS wafer are Layer 1 buses for synaptic connec-
tions (see section 2.1.1.1 and Fieres et al. [2008]). In large networks some synaptic connections
can not be realized due to the limited number of horizontal and vertical buses. This synapse
loss may have serious impact on the mapped neural network model. The utilization of these
buses can be reduced, if neurons are placed in an intelligent manner. This can be done by e.g.
placing neurons with similar outgoing and / or incoming connections onto the same HICANN.
Furthermore, neurons have to be grouped according to their type (excitatory or inhibitory):
Hardware neurons that are connected to the same priority encoder send on the same Layer
1 bus(cf. section 2.1.2). Thus their spikes enter the ANNCORE through just one synapse
driver, where the type of the synaptic connection is set.
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The FACETS project partners from TU Dresden developed a force-based clustering algo-
rithm that is able to cluster biological neurons having similar properties (Wendt et al. [2007]).
This NForceCluster algorithm operates in an abstract multi-dimensional space where neurons
are arranged according to their distance in terms of properties. Neurons are then clustered
into groups that fit onto a HICANN and are finally mapped to the corresponding hardware
circuits in the HardwareGraph. This leads to a much higher mapping efficiency compared
to a random placement, i.e. a lower loss of synapses and/or reduced space needed on the
wafer. At the current state, neurons can be arranged according to the following properties:
common incoming synapses, common outgoing synapses and the neuron type (excitatory or
inhibitory). The weighting of each property can be set individually.

2.2.3.2 Routing of Synaptic Connections

After the placement the neurons have to be connected (routed). For inter-wafer connections
the FPGAs and DNCs have to be configured accordingly. For intra-wafer connections the
Layer 1 buses have to be switched, such that every desired pulse reaches its target HICANN.
Furthermore, the address decoders in the ANNCORE have to be set. For that task a sophis-
ticated routing algorithm was developed in the Electronic Vision(s) group in Heidelberg, that
aims to realize as much synaptic connections as possible. At the same time this algorithm
is able to prioritize special synapses to make sure, that these connections are realized in the
network. For a detailed description of this routing algorithm see Fieres et al. [2008].
After the placing and routing of the network, it can be evaluated whether all neurons and
synapses of the biological network have been realized on the neuromorphic substrate. The
MappingTool offers the possibility to provide a PyNN-description of the distorted network.
This model can later be run on a software simulator to analyze e.g. the influence of an occurred
synapse loss.

2.2.3.3 Parameter Transformation

As a last step neuron and synapse parameters have to be transformed into adequate electrical
parameter values. This transformation is challenged by lots of difficulties: parameters can
just be defined with limited precision, single biological parameters are represented by multiple
hardware parameters, not every hardware parameter can be set individually for every biolog-
ical value but is shared for a group of functional units, the neuromorphic hardware works at
quite a different time-scale. This parameter transformation is part of the author’s work for
this thesis and is described in detail in chapter 5.

2.2.4 Configuration and Control of the FACETS Hardware
The lowest layer in the stack needed for the operation of the FACETS hardware is the so-called
Stage 2 Configurator. This module reads out the configuration data from the GraphModel
and builds data packets that can be processed by the hardware system. In advance to that, the
connection to the FPGAs of the system is established, to which the data is transmitted. After
the successful configuration of the FACETS hardware spike trains are sent to it as stimuli
for the hardware neurons. This triggers the emulation of neuroscientific experiments on the
FACETS hardware. The Configurator receives and collects pulse data from the hardware and
also may interact with the running system (e.g. readout or change of synaptic weights). In a
future version this shall be also possible from PyNN in an interactive mode. After running the
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simulation the Configurator delivers the acquired results back to the PyNN module, where it
is further handled.

2.3 Executable System Specification of the FACETS Wafer-Scale
Hardware System

Within the FACETS project and as a substantial part of the work for this thesis, an executable
system simulation model of the final FACETS hardware platform has been developed to
characterize the routing architecture, to identify communication bottlenecks and to examine
the impact of limited and discretized parameter value ranges. This simulation model not
only serves as a constant feedback for the developers of the hardware architecture design but
also as a specification for the operating software described in section 2.2. In this section
an overview is given about the state of the system simulation, with which the author was
faced at the beginning of his work. Later on, a short introduction into the system modeling
language SystemC is provided, as it will be the major tool for the further development of the
executable system specification in chapter 4.

2.3.1 Initial State: Overview

The system simulation is a high-level description of the FACETS Stage 2 hardware system,
and was realized in the simulation environment of NCSim 13. NCSim is capable of running
various simulation tools within one framework. At the moment it supports VHDL14 and
VerilogAMS, which are hardware description languages for digital, mixed-signal and analog
(only supported by VerilogAMS) system design, and SystemC, a system modeling language
based on C++, which is described more precisely in the next section. Thus, different modules
of a large system, described in differing modeling languages, can be simulated and verified
together in one run. This, for example, provides the possibility to simulate the behavior of
one module very precisely while using very abstract versions of other components.

Figure 2.8: Hierarchical Structure of the executable system specification of the FACETS wafer-scale
Hardware.

13NCSim stands for Incisive Simulator and is a unified simulation engine for the design and verification of
digital and analog systems (e.g. ASICs or FPGAs) from Cadence Design Systems

14Very High Speed Integrated Hardware Description Language
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In Figure 2.8 the hierarchical structure of the virtual FACETS wafer-scale System is de-
picted. The top-level module instantiates one or more printable circuit boards pcb, which are
the containers for the FPGAs (l2_fpga), Digital Network Chips (l2_dnc), both responsible
for the digital-event communication (cf. section 2.1.3, and the wafer containing the hicann
modules with its sub-units (cf. section 2.1.1).
The simulated modules are connected to one another according to the real FACETS Stage 2

system and provide the same functionality. The behavioral SystemC models of the FPGAs
and DNCs implement all the routing mechanisms for the digital event communication and are
limited by the same buffer sizes and maximum bandwidths as the real system. A schematic
of the HICANN SystemC module is shown and described in figure 2.9, reflecting the state
of development at the beginning of the work for this thesis. While all other modules are
simulated in SystemC or C++, the Layer 1 module layer1net is described and simulated in
VerilogAMS, which means that every signal on every wire has to be computed at simulation
time. Obviously, this massively slows down the run time of a simulation. The ANNCORE
at that state already implements correct pulse routing from synapse drivers to the assigned
neurons. However, the implemented neurons do not mimic any behavior of real neurons, they
just fire at every incoming spike and no timing-dependent features are integrated, such as
e.g. a short-term synaptic plasticity mechanism. The model as a whole can be configured and
operated via configuration and pulse files or via packets received by the FPGA. The FPGA
then translates this data into Layer 2 communication packets which are further propagated
to the DNCs and HICANNs, where the correct configuration and creation of pulse events on
the Layer 1 is performed.
At this state the system simulation is already fully executable, it provides the full function-

ality for routing of spikes over Layer 1 and Layer 2. However, it lacks the speed of execution
that is necessary for the application of e.g. the cortical benchmark models described in 3 and
misses a correct behavioral model of the ANNCORE.

2.3.2 Introduction to the System Modeling Language SystemC

SystemC is a modeling language for system design based on C++ made for the system level of
design (for a detailed information see Groetker et al. [2002]). With its event-driven simulation
kernel SystemC provides the possibility to run processes concurrently, as it is often needed
when designing highly parallel working systems. One can arbitrarily choose the abstraction
level of design for the whole simulation (e.g. timing accuracy) and separately for every sub-
unit.
In a transaction-level model (TLM) the communication between different modules is per-
formed via function calls. A transaction-level model is accurate in terms of functionality and
sometimes in terms of timing but usually it is not accurate in terms of structure.
In a pin-accurate, cycle-accurate hardware model modules are accurate at their boundaries in
these two characteristics. In addition, the modules are functionally accurate, but the internal
structure is not necessarily the same as in the real implementation.
A model at the register transfer level (RTL) is pin- and cycle-accurate at its boundaries, but
also its internal structure reflects the registers and combinational logic of the target imple-
mentation.
SystemC allows to simulate models of different levels of accuracy in one environment. For
example, a TLM module can communicate with a RTL module by switching a transactor
between these modules. Thereby, one can test one module at a very detailed implementation
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Figure 2.9: Schematic of the HICANN in SystemC (Effective January 2009), reflecting the state of
development before the start of the work for this thesis. In the upper left the DNC Interface dnc_if
is depicted. It receives pulse events and configuration data from the Digital Network Chip. While
pulse events are directly fed into the Layer 1 network, configuration data is communicated to the
chip control module in the lower left, where the task of configuration of the anncore and layer1net
is undertaken. Signals of the Layer 1 network are communicated via ports and are implemented in
VerilogAMS, all other modules in SystemC. For an explanation of ports and interfaces see section 2.3.2
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level (e.g. at the RTL) with an abstract test bench module, or, one can iteratively refine a
system from a model that is pin-accurate at the beginning to a model at the RTL at the end.
Furthermore, with SystemC one can create an executable specification of a model, which can
e.g. serve as a test bench for the software that will operate and communicate with this design.
The basic SystemC core language offers the following elements:

• Modules are the basic building blocks storing data types and implementing algorithms

• Ports are the gates for modules to connect and communicate with their surroundings

• Interfaces provide a set of operations just specified by their name, passed parameters
and return values. An interface is implemented by a module or a channel, that is derived
from interface such that there can be different implementations for one interface. 15

• Channels build the communication units, which carry out the operations defined in an
interface. SystemC provides a number of elementary communication mechanisms from
simple wires and buffers to FIFOs. A modeler can design his or her own channels in
SystemC.

• Processes are the basic functional units. In the SystemC simulation kernel they can be
executed concurrently in opposition to typical programming languages where processes
are executed sequentially.

• Events trigger or resume the execution of processes representing a condition that may
occur during simulation. An event object can be notified by a process or a channel to
trigger all its associated processes immediately, after a delta-delay or after time t.

module A module B

module A module B

communication over interfaces (TLM)

communication directly over ports (RTL)
port

interface

channel connecting 

port and interface

port−to−port connection

Figure 2.10: Example of different models for communication in SystemC. In the top modules A and
B communicate over a port-to-interface connection (i.e. via function calls). At the bottom the modules
are directly connected from port to port communicating with primitive signals. This method is used
for pin-accurate modeling while the first one is used for transaction-level modeling.

In a transaction-level model communication between two modules is performed in the fol-
lowing way, see also figure 2.10: Module A has an outgoing port that is connected to an
interface in module B. If A wants to communicate something with B, it just calls one of the
functions defined in the interface. Also in a pin-accurate model a module has an outgoing port
15In Object Oriented Programming an interface is a purely virtual base class
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but this time, it is connected to an incoming port in module B. The connection is realized
through a primitive signal. For the communication the value of the signal has to be changed,
for example, if this connection implements just a single digital signal, the signal connecting
the two ports can be switched from 1 to 0.
Timing is brought into effect through the interplay of processes and events. For example,
process A wants to trigger process B with a delay of 10 seconds. Process B is sensitive to
an event called trigger_process_b, this means that every time when this event gets activated,
process B is executed. Thus, process A can notify the event trigger_process_b to get active
in 10 seconds. This way process B will be executed after 10 seconds.

With these basic features and the possibility to build own modules, channels, ports and
interfaces, SystemC becomes a very flexible and powerful tool for system modeling.
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3 FACETS Demonstrator Benchmark Models

The neural networks presented in this section shall serve as benchmarks for the FACETS
wafer-scale system. In order to prove the functionality and universality of the FACETS
hardware (2.1) and its operation software framework (cf. section 2.2) as a neuroscientific
modeling tool, the cortical models must be of biological relevance and represent a large variety
of network dynamics and paradigms. All models are described in PyNN (cf. section 2.2.1),
so that they can be both simulated with neural software simulators and emulated with the
FACETS hardware. A high scalability of the models is required to test the influence of
hardware constraints (e.g. loss of synapses when large networks are mapped onto the wafer).

3.1 KTH Layer 2/3 Attractor Memory

FACETS project partners from the KTH Stockholm provided the community with an attractor
memory model of the neocortical layer 2/3. The network architecture is based on Lundqvist
et al. [2006].
The human neocortex consists of 6 distinct layers. Each of them is specified by its nerve cell

types and the destination of their afferent and efferent1 connections. A columnar structure of
the cortex was discovered by Mountcastle [1979]: When moving an electrode perpendicular
to the surface of the cortex, it encounters cells, which are activated by the same sensory
input. When moving the electrode parallel to the cortex surface, one notices sharp changes
in the attenuation of cortical neurons at every 200 − 300µm. Therefore, it was conjectured
that about 104 − 105 neurons are organized in an approximately cylindrical so-called vertical
hypercolumn, with a diameter of 0.2− 0.3mm. The vertical connections in this area are much
denser than horizontal ones. Neurons belonging to one hypercolumn have nearly identical
receptive fields2. One hypercolumn holds between 50 and 100 minicolumns with about 80
neurons each. It was proposed that minicolumns - not single neurons - are the smallest
computational units in the cortex (Lundqvist et al. [2006]). Each of minicolumn may react to
a certain feature of the hypercolumn’s receptive field, which enables a hypercolumn to process
many different features of its receptive field.
The Layer 2/3 Attractor Memory model is the result of applying an associative attractor

memory architecture to the columnar structure of the cortex. The model uses neuron and
synapse models that correspond to biological measurements. In vitro experiments support
the attractor memory paradigm, as local UP states3 of about 0.5% of pyramidal cells in the
cortical layer 2/3 were observed. These neurons simultaneously enter in a state of high activity

1afferent transmit signals into a cell and efferent out of the cell
2The receptive field of a neuron in a high cortical region is the set of all neurons in a lower region, from which
it receives its afferent connections. A lower cortical region is considered to be closer to the associated
receptor cell population.

3Neurons have two preferred subthreshold membrane potentials. These states are referred to as UP and
DOWN states. In the experiment a cell in an UP state increases its membrane potential by some 10mV,
also its spiking frequency increases to 20Hz.
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Figure 3.1: Schematic of the Layer 2/3 attractor memory model. Description in the text, section
3.1.1. This schematic was provided by Mihai Petrovici

and an increased mean membrane voltage that lasts for several hundreds of milliseconds. One
possible explanation for these states are attractor dynamics (see Cossart et al. [2003] and Shu
et al. [2003]). This model is able to perform critical cell assembly operations, such as pattern
recognition, completion and rivalry (Lundqvist et al. [2006]).

3.1.1 Network Model
The Layer 2/3 model chosen as a FACETS Benchmark has an elaborated structure which
is shown in figure 3.1. The model contains a number of hypercolumns depicted in blue.
Minicolumns (yellow rectangles) in a hypercolumn compete in a winner-take-all fashion for a
state of high activity. A minicolumn contains 30 interconnected excitatory pyramidal cells,
each of which receives an individual excitatory input from a Poisson-type spike source in
Layer 4. Each minicolumn receives inhibitory input from 2 RSNP4 cells depicted as yellow
diamonds. The overall activity of all minicolumns in a hypercolumn is damped through
a negative feedback provided by inhibitory interneurons in the basket column (basket cell
populations are depicted as yellow ellipses). Every attractor is represented by one minicolumn
per hypercolumn. Minicolumns belonging to an attractor form a so-called patterns (there are
three patterns in figure 3.1). They excite each other via long-range connections, thus enabling
pattern completion: even when a single minicolumn receives input from Layer 4, it spreads its
activity to all other minicolumns belonging to the same pattern. Minicolumns belonging to
different attractors and hypercolumns inhibit each each other via RSNP cells, thus creating
a long-range winner-take-all mechanism leading to a pattern rivalry.

4Regular spiking non pyramidal
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3.1 KTH Layer 2/3 Attractor Memory

Figure 3.2: Spiking patterns of the Layer 2/3 Attractor Network simulated with NEST shown in a
raster plot. Each dot denotes a spike of a certain neuron at time t. The spike trains of 9 hypercolumns
with 3 minicolumns each are plotted. Minicolumns belonging to the same attractor are grouped
together. The activity of the basket and RSNP cells is not plotted.

The default benchmark configuration consists of 9 hypercolumns with 3 minicolumns each,
with a total of 936 neurons. However, the model is fully scalable in both the number hyper-
and minicolumns. The connection probabilities are given in figure 3.1. As only a fraction
of a biologically realistic number of minicolumns are implemented, the strength of synaptic
connections has been scaled up such that every neuron receives the same input as measured
in experiments.

3.1.2 Example
Exemplary spiking patterns of this model can be seen in figure 3.2. This example network
contains 9 hypercolumns with 3 minicolumns each, thus giving rise to 3 different attractors.
Minicolumns belonging to the same pattern are grouped together. One can see that all the
neurons of one attractor simultaneously enter in a state of high firing rate, which lasts for
several hundred milliseconds. Each pyramidal cell in the minicolumns receives a Poisson-type
input of 4000Hz. For the RSNP and pyramidal cells, an adapting neuron model is used.
All synapses (except the ones connecting the Poisson input) exhibit short-term plasticity
dynamics (excitatory synapses are depressing, inhibitory synapses are facilitating).

3.1.3 Measure of Stability
The most basic qualitative measure for this model is whether it exhibits any attractor patterns
at all. One quantitative measure is the average attractor dwell time, i.e. the average duration
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Figure 3.3: Schematic of the Synfire Chain with feed-forward inhibition

of the attractor state. An attractor state can be recognized by an increased mean firing rate
and an increase of the mean membrane voltage of the cells belonging to the active pattern.
Analysis has pointed out (Petrovici et al. [to be published 2010] that the latter condition
is a much more reliable measure than the former. Another qualitative measure is to check
whether the model is able to perform pattern recognition. For this, the input from Layer 4
has to be changed, such that the different attractors respond to different input patterns.

3.2 Synfire Chain with Feed-Forward Inhibition
A synfire chain (Abeles [1982]) is a feed-forward network that consists of a chain of neuron
groups, each projecting to the following group. Each neuron has many excitatory connections
to neurons of the next group. This means that neurons of one group receive a highly correlated
input.
Such a network setup allows a stable propagation of synchronous spikes in cortical neural
networks (Diesmann et al. [1999]). The model presented here is based on Kremkow et al.
[submitted 2009]. It has been developed by FACETS participants from ALUF5 and INCM6

and adds a feed-forward inhibition mechanism, which limits the number of spikes generated
within an excited neuron.

3.2.1 Network Model
The network architecture of this synfire chain is depicted in figure 3.3. One synfire group
consists of 80% excitatory and 20% inhibitory neurons. These numbers have been chosen
in order to resemble the neuron distribution in the neocortex. The two sub-groups have
no recurrent connections. Each neuron of the inhibitory sub-group is connected to 65% of
the excitatory neurons of the same group with a synaptic delay of 4ms. Excitatory neurons
stimulate 65% of both excitatory and inhibitory neurons of the following group with a delay
of 20ms. The first synfire group is stimulated as if it had a preceding group, in which every
neuron fires once (the exact firing times are Gauss-distributed with a given σ). The reaction of
the network to such a pulse packet can be seen in figure 3.4: in the left panel one can recognize
a stable synfire chain, when feed-forward inhibition is enabled. In the right panel the response
of the network is shown when feed-forward inhibition is disabled, i.e. the inhibitory cells are
removed. Not only does the width of the pulse packet diverge, but also the number of times

5Albert-Ludwigs-Universität Freiburg
6Institut de Neurosciences Cognitives de la Méditerranée, Marseille
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Figure 3.4: Rasterplots of a stimulated Synfire Chain with and without feed-forward inhibition
simulated with NEST. On the left feed-forward inhibition is enabled, such that a clean synfire attractor
is achieved. On the right feed-forward inhibition is disabled, the pulse packets diverges

an excited neuron fires. The pulse packet diverges without the throttling inhibitory group.
The network can be easily scaled up by either increasing the number of neurons per group or
the number of groups.

3.2.2 Measure of Stability

The presented synfire chain with feed-forward inhibition is self-stabilizing in the manner that
the width of the pulse packets stay approximately constant in later synfire groups. In such a
synfire attractor every excitatory neuron of a synfire group should spike exactly once within
a narrow time window. In order to compare implementations of this model on the FACETS
Wafer-Scale System with software simulations, one should first compare the total number of
spikes per group and later the jittering of the spikes, that means the standard deviation of the
spike times. The closer the total number of spikes to the number of neurons per group and
the lower the mean deviation of the spike times, the better the functionality of the synfire
chain.

3.3 Self-Sustaining Cortical Activity with Asynchronous Irregular
Firing Patterns

The third FACETS Demonstrator benchmark is a model of self sustained activity with asyn-
chronous irregular firing patterns in the cortex, which is based on Destexhe [2009] and was
provided by FACETS project partners from UNIC7, in Gif-sur-Yvette.
The activity of single cortical neurons in awake animals is quite noisy, with irregular dis-

charges at frequencies between 1 and 20Hz (Matsumura et al. [1988]). Simulated networks
composed of integrate-and-fire neurons can reproduce this activity pattern, showing asyn-
chronous irregular(AI) states. In order to display characteristics similar to in-vivo measure-
ments large networks of a few thousand integrate-and-fire (IF) neurons are needed (Vogels
and Abbott [2005], Boustani et al. [2007], Kumar et al. [2008]). The model chosen tries to be

7Integrative and Computational Neuroscience Unit
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as close as possible to the biological reality, it does not use simple IF but adaptive exponential
integrate-and-fire neurons (ADEX). This neuron model reflects the highly complex behavior
of biological neurons including phenomena such as adaptation, bursting, or the ability for an
inhibitory rebound (see section 2.1.2.7 and Brette and Gerstner [2005], Touboul and Brette
[2008]).

3.3.1 Network Model
The model consists of 80% excitatory pyramidal cells and 20% inhibitory interneurons which
are randomly connected with a probability of 2%. Excitatory cells are regular-spiking, while
inhibitory are fast-spiking8. The standard network according toDestexhe [2009] consists of 500
neurons. 10% of all cells are initially stimulated for 50ms, and depending on the parameters
the activity is self-sustained or dies out. With this setup the generation of AI states is possible,
this means that single cells spike irregularly and that the pairwise correlation of the spike
trains of two neurons is low, i.e. they don not fire in synchrony. The network gets much more
stable if 5% of the excitatory cells are replaced by low-threshold spiking (LTS) neurons. LTS
neurons are capable of a rebound burst, i.e. the neuron bursts in response to an input when
it is in a hyperpolarized state (the membrane voltage is below the resting potential).
When scaling up the network size, the connectivity has to remain constant, while synaptic
weights have to be reduced such that every neuron still receives the same total input.

3.3.2 Quantification of the Network States
The following two properties can be used to quantify and describe the network dynamics:
regularity and synchrony.
The regularity can be estimated by computing the coefficient of variation (CV) of the inter-
spike intervals (ISI), averaged over all network cells:

CVISI =
〈
σISI

i
ISIi

〉
(3.1)

ISIi and σISI
i denote the mean and the standard deviation of the inter-spike intervals of a

neuron, the brackets 〈〉 indicate averaging over different cells. The CVISI takes on large
values ≥ 1 for temporally irregular systems. (The CV for a Poisson processes is 1)
The synchrony can be quantified by calculating the average cross-correlation (CC) between

arbitrary pairs of neurons in the network:

CC =
〈
Cov(Si, Sj)
σ(Si)σ(Sj)

〉
(3.2)

Cov(Si, Sj) denotes the covariance between two spike counts Si and Sj, and σ(Si,j) is the
standard deviation of each spike count. The average 〈〉 should be taken over at least 500
pairs. The network is considered to be in an asynchronous state if CC is low enough (typically
< 0.1).

8Regular spiking neurons respond with a constant firing rate to a constant current input. Fast-spiking neurons
behave the same but with a higher firing rate
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4 The Executable System Specification - New
Strategy and Components

As motivated in the introduction of this thesis (see 1.3) a further development of the exe-
cutable system specification becomes indispensable, if:

1. The virtual hardware is supposed to serve as a realistic test bench for all layers of the
operation software presented in Section 2.2.

2. The capability of the system to serve as universal tool for neuroscientific modeling shall
be demonstrated with the models from Section 3.

3. Thereby, the constraints and consequences of the general design shall be determined.

In this chapter, the reader is provided with the changes made to the system simulation
compared to its state introduced in Section 2.3. The focus is on the implementation of the
behavioral model of the Analog Neural Network Core conducted by the author. At the end
an overview is given about the current state of the full virtual FACETS Stage 2 Hardware
and the simplifications compared to the real system are listed.

4.1 Changes Applied to the Wafer and HICANN Level
One of the most urgent needs for the refinement of the virtual hardware1 is a speed up in simu-
lation duration. Thus, all modules implemented on the Register-Transfer-Level (RTL) should
be replaced by Transaction Level Modeling (TLM) solutions. The only module simulated at
the register transfer level was the VerilogAMS implementation of the Layer 1 network, which
is pin-accurate and cycle-accurate. This means that every single wire on the real chip has its
representation in the module and is connected time-accurately to other modules where the
signals are translated into abstract function calls. So the wire Layer 1 network was removed
on the level of a whole wafer and replaced by a behavioral model of Layer 1 written in Sys-
temC - one for each HICANN. The behavioral Layer 1 modules interact with one another
over interfaces, that means via function calls and not via digital signals on pins.
The actual implementation, configuration and testing of the behavioral Layer 1 module was
successfully conducted in parallel tho the author’s work by Bernhard Kaplan.
On the HICANN level the following changes were applied by the author (see also figure 4.1:

All modules responsible for the digital control of the chip except the dnc_if were replaced
by one appropriate TLM module. This means, that the configuration of all submodules is no
more performed via configuration packets, which are generated by the host and transmitted
via Layer 2 communication to the HICANN DNC Interface.
Instead, the configuration data is retrieved by direct access to the Hardware GraphModel(see

1the terms virtual hardware, executable system specification and system simulation are use synonymously in
this thesis
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Figure 4.1: Schematic of the HICANN in SystemC. This module is basically just the container
for its submodules: the interface to the Digital Network Chip (DNC_IF), the Layer 1 network
(Layer1net), and the Anncore. The DNC_IF receives pulse data from the DNC and injects it into
the Layer1net. The Layer1net module connects to other Layer1net modules of adjacent HICANNs
and to the ANNCORE of the same container. This way all neural events can be easily propagated and
distributed to all ANNCOREs on one Wafer. In the ANNCORE these spikes are further processed and
possibly a response is transmitted back into the Layer 1 network and to the DNC Interface, where it can
be recorded and transfered to higher modules of the digital event communication. In the current state
of the executable system simulation, the configuration of the HICANN’s submodules is not performed
via packages received from the DNC, but via direct access to the Hardware GraphModel.
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section 2.2.3). Technically, before the start of the simulation every HICANN is assigned
a pointer to a C++ class called gm_access, which was developed by the project partners
of the TU Dresden and allows a user-friendly interface to all needed data stored in the
GraphModel. With this acquired data the HICANN carries out the configuration of the
Anncore, Layer1net and DNC_IF.
This new procedure of configuration embodies a high abstraction from the real hardware
model, but was necessary due to the following reasons:

1. There were changes in the protocol of the configuration packages, so that the earlier
implemented modules of the digital control of the chip were outdated.

2. No automated creation of the configuration packages with data acquired from the
GraphModel is available.

3. The new procedure benefits from a speedup in simulation time, which is one of the main
targets of the revised system simulation.

This solution is essential for achieving an executable system simulation that reflects the full
capability of the future wafer-scale system. Furthermore, the ANNCORE itself was substan-
tially re-engineered by the author, as will be shown in the following section.

4.2 The Behavioral Model of the ANNCORE
The behavioral model of the ANNCORE contains all important functional units of its real
counterpart. In Figure 4.2 a schematic of the SystemC ANNCORE is shown. Only the
synapse drivers have their individual counterparts in the behavioral ANNCORE. From the
synapse circuits two arrays with the digital synaptic weights and address decoder bits remain.
Membrane circuits that are grouped together to emulate a single biological neuron with an
increased input count are represented by one single behavioral neuron. The information which
synapse column connects to which logical neuron is stored in a designated map (not shown
in the figure).
Neural pulse events from the Layer 1 network enter the ANNCORE through one of the

synapse drivers. Every pulse event carries the 6-bit ID of one of up to 64 pre-synaptic neurons
sending on this bus. The received pulse event can be mirrored to the adjacent synapse drivers
above or below. The SystemC synapse driver compares the 6-bit ID with the IDs stored in the
synapse address decoder array and, in case of a match, inject a spike into the corresponding
neuron instance. When a neuron fires, a Layer 1 event with a 6-bit neuron ID is generated
and sent to both the behavioral model of the Layer 1 network and the DNC Interface of this
HICANN.

4.2.1 Synapse Drivers and Synapse Array

The behavioral model of synapse driver can be configured directly with nearly all original hard-
ware specific parameters. One can set the maximum conductance gmax,row and the synapse
type (excitatory or inhibitory) for each of its two synapse rows. Furthermore a synapse driver
keeps all hardware specific parameters concerning short-term plasticity. In the behavioral
model the address decoding of Layer 1 events is simplified such that the 6-bit address is
not split up into two parts as conducted in the real hardware. Instead, the synapse address
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from L1 (pulses)

and HICANN (config)
synaptic weight array

address decoder array

Synapse Drivers

Neurons

Priority Encoders

to Layer 1 and DNC_IF

match!

. . . . . . . .

Figure 4.2: Schematic of the behavioral model of the ANNCORE with all basic functional units:
synapse drivers (256), neurons (8 - 512), the synapse arrays (with 131K synapses) and the priority
encoders. The module can be accessed via the simulated HICANN for configuration or from the
virtual Layer 1 network for for sending pulse events (which contain the ID of the pre-synaptic neuron
sending on the Layer 1 bus and the ID of the synapse driver to which it is addressed). When the
latter happens, the pulse is sent to the corresponding synapse driver and possibly mirrored to adjacent
drivers. The synapse driver then checks the two associated rows in the address decoder arrays. In case
of a match the stored weight is read and possibly modulated by the short-term plasticity mechanism
in the synapse driver. Then the evaluated synaptic response is sent to the neuron assigned to the
active synapse column. If a spike is detected in the neuron module, it is further propagated to one of
eight Priority Encoders, from which a pulse is fed back into the Layer 1 network or sent to the DNC
Interface.
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decoder array stores values between 0 and 63. (In contrast to the real hardware, where one
synapse stores 4 bit and the upper two bits of of a received signal are decoded in the synapse
driver.) The 4-bit digital weights wdigital are stored in a second array as integers from 0 to 15.
Hence, for every incoming spike the synapse driver compares the received neuron ID with all
addresses stored in the corresponding rows of the synapse address decoder array. In the case
of matching the related digital weight is read from the weight array. Then the amplitude of a
post-synaptic signal is generated with weight w = gmax,row ·

wdigital
16 . This information is sent

to the designated neuron, where the course of the synaptic conductance is finally calculated.

4.2.2 Short-Term Synaptic Plasticity
The virtual hardware exactly captures the short-term plasticity mechanism implemented in
the hardware, as described in Section 2.1.2.3.
Thus, in depression mode, the synaptic weight affecting a neuron is modulated in the following
way, according to (2.1):

wdep = wmax · (1− λ · I) (4.1)

Remember that I denotes the inactive partition of synaptic resources and λ = µ · Vmax the
scaling factor, determined by hardware parameters.
In case of facilitation the synaptic weight applied to a neuron’s conductance is given according
to (2.2):

wfac = wmax · (1 + λ · (I −N)) (4.2)

Note that for the facilitation mode the factor N = Vfac
Vmax

is added compared to depression,
which ensures a wider range of facilitation.
For every pre-synaptic neuron, a tuple containing the time of the last spike tlast and the

corresponding value of the inactive partition I(tlast) is stored. For every incoming spike the
inactive partition I is updated:

I(t) = I(tlast) · exp (− t− tlast
τrec

)

Then, the pulse is sent to the neurons according to equations (2.1) or (2.2). In a last step,
the inactive partition I is increased by the fixed fraction USE :

I = I + USE · (1− I)

and the current time is stored in tlast.
After the configuration of a synapse driver has been carried out with hardware specific

parameters (e.g. Vmax, Vfac, Irec and the size of the Capacitor C2), these parameters are used
to calculate the abstract parameters used in the STP mechanism above.

4.2.3 Hardware Neurons
For the simulation of the ANNCORE to be as realistic as possible, an accurate model of the
neuron circuits is essential. One approach would be to translate the dynamics of the real
hardware neurons back into a functional model, as it was conducted with the STP mecha-
nism in the section above. The presented solution is a different one. As the denmem circuit
represents an implementation of the adaptive exponential integrate and fire model (ADEX)
from Brette and Gerstner [2005], just this model is used in the virtual hardware. The ADEX
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model is given by the differential equations (2.3) and has already been implemented in sev-
eral established neural software simulators, such as NEURON, NEST or BRIAN. Thus, a
possible strategy to include this model into the behavioral ANNCORE could have been to
run a NEST instance for each neuron of one HICANN. However, in this approach one would
have to interact with this running program at every incoming or outgoing spike, which would
result in a significant communication overhead, along with a correspondingly longer simula-
tion time. Therefore it was decided to design our own ADEX neuron model and include it
into the existing executable system simulation. Another key reason for that decision was the
following:
The software simulators addressed above are all time-driven, in contrast to the system simu-
lation, which provides an event-driven simulation kernel.2 Include a time-driven model into
an event-driven environment would imply a significant performance loss, which is why it was
regarded as mandatory to implement an event-based version of the ADEX neuron model and
embed it into the system simulation.
An event-based neuron model needs the following functions to interface with its simulation

environment.

• A function that updates a neuron after an incoming spike (e.g. calculate all variables of
the neuron for the actual point in time and increase a synaptic conductance according
to synapse’s strength).

• A function that updates a neuron after an outgoing spike (e.g. update all variables
according to the actual point in time and then reset the potential to the reset potential)

• A function that returns the time of the next spike under the assumption that there is
no future input to this neuron

Hence, the procedure of an event-driven simulation is the following:

1. Determine the neuron that is going to spike next in time.

2. Update the state of this neuron (see update function above) and propagate the spike to
all neurons, to which it has outgoing synaptic connections, and update also their state.

3. Re-calculate the time of the next spike for every neuron that is involved in this proce-
dure.

4. Continue with the first step.

Fortunately, the event-driven simulation kernel provided by SystemC is able to perform
the first task. The propagation of spikes is performed through the Layer 1 and Layer 2
communication. Thus, one just has to care about three function listed above.
It is also useful to provide another function:

• A function that provides a refractory mechanism,3 which ensures that there is minimal
time between two spikes. This function clamps the membrane voltage to the reset

2Time-driven means that the states of all neurons are updated in parallel after every time step dt. In an
event-driven simulator the neuron variables are only updated, when a spike is received or emitted.

3In biology an action potential is not a delta peak, but has a certain width in time. During an AP no
other depolarization can occur as Na+ Channels are closed. This time is denoted absolute refractory time.
A relative refractory mechanism follows the first one: the hyperpolarization of the membrane potential
inhibits the membrane to generate another AP.
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potential but allows incoming events to update the neuron’s variables, e.g. synaptic
conductances.

4.2.3.1 Analytical Integrate-and-Fire Model with Synaptic Conductances

By changing (or removing) certain parameters or variables, on can reduce the rather com-
plex ADEX neuron (the one implemented in the HICANN chip) to a much simpler model,
for example, by removing the adaptation current and setting ∆T to 0 one obtains a leaky
integrate-and-fire neuron. For this neuron model, there exists an analytical solution (Brette
[2006]), which means that spike times can be calculated exactly up to machine precision.

C
dV

dt
= −gL(V − EL) + gexc(V − Erev,e) + ginh(V − Erev,i)

τ
dg

dt
= −g

(4.3)

Brette not only provides the mathematical concept for the exact calculation of this model
but also the functions implementing this concept written in C. The model was included
into the executable system simulation and for the first time it was possible run a simulation
on the virtual hardware that showed exactly the same spiking behavior of a single neuron
as the equivalent software simulation with NEST. However, this model not only misses an
adaptation and an active spike generation mechanism but also has the major constraint that
excitatory and inhibitory synaptic time constants have to be identical.

4.2.3.2 Event-based Adaptive Exponential Integrate-and-Fire Model

The ADEX neuron model implemented in the FACETS Stage 2 system is described by the
system of two differential equations given in (2.3), which means that there is no way to
calculate spike times other than using an approximation method (e.g. Runge-Kutta or simple
Euler). Usually, these methods are used within time-driven simulations, where the states of
all neurons are updated in parallel for every time step, with the consequence that a neural
event occurred during one time bin cannot effect its surroundings before the next time step.
Working in an event-driven simulation environment, it is not suitable to update every neuron
at every time step, because this would result in a very long queue of events for the scheduler 4.
The management of this queue is assumed to be the major bottleneck of event-driven neural
simulations, cf. Brette et al. [2006].
Therefore, task was to turn this analytically unsolvable model into an event-based neu-

ron model, which changes the neuron variables only when a neural event (i.e. a spike) is
received or released. Of course, one wants to predict the firing time of a neuron with as little
computational cost as possible. Considering that the executable system simulation of the
FACETS Stage 2 system is not supposed to serve as yet another neural software simulator,
the author provides a simple event-based model of the implemented neuron circuits, which is
not optimized in speed but easy to implement and also capable of recording the membrane
voltage.

4The scheduler in an event-driven simulator sorts all tasks-to-be-done according to the time when the tasks
shall be processed. It then starts to work off the job that comes first in the queue and then proceeds
downwards, along the queue. During a simulation, the temporal priority of some tasks changes all the
time. Thus, the queue containing all future tasks has to be rearranged very often, which is very expensive
in terms of computational power.
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Figure 4.3: Example of Neuron Algo-
rithm
A blue line denotes the membrane poten-
tial in the past. The red line is the course
which has been simulated by the neuron
algorithm, in order to calculate the timing
of the next spike. Dashed line: expected
course of the membrane potential.

1. At t1 the neuron receives a spike from
an excitatory synapse. A future spike is
determined to happen at time tsp,1. The
simulator schedules this time, to call this
neuron to spike.

2. The neuron gets an inhibitory input at
time t2. There will be no future spike so
the scheduled spike at tsp,1 is canceled.

3. excitatory input at time t3. A spike for
this neuron is scheduled at time tsp,2.

4. At time t4 = tsp,2 this neuron fires and
the membrane voltage is reset to Vreset.

5. After the refractory time has passed, the
time of the next spike is calculated, in this
case there is no future spike.

t1 tsp1

V_tresh

V_rest

t2 tsim

V_tresh

V_rest

t3 tsp2

V_tresh

V_rest

t4

V_tresh

V_rest

t5 tsim

V_tresh

V_rest

Before attempting the prediction of spike times, one has to determine whether the neuron
will spike in the first place. The spiking case is easy to detect, one can just numerically
integrate the model’s differential equations until the membrane voltage V exceeds the spike
detection voltage VSpike. For the non-spiking case we need a condition that reliably tells us
that there won’t be a future spike. A careful inspection of the membrane dynamics yielded
an easy and suitable way to implement this condition:
The neuron may only spike if the membrane voltage keeps increasing, i.e. dVdt > 0.
As described above there are three basic functions needed for an event-driven neuron model

to interact with the simulator. The implementation of these functions for this specific neuron
model is described in the following, an example of the algorithms working is shown in figure
4.3:
After an incoming spike at time t1 one first has to update the neuron by running algorithm

2. This algorithm just integrates the differential equations up to the current time t1. Then
the synaptic conductance is updated (in our model the synaptic conductance is increased by
a value determined by the strength of the synapse), and we run algorithm 1 to calculate the
time to the next spike. The time of the next spike tnext,spike of this neuron is updated, in the
case of no future spike it is tnext,spike =∞.

38



4.2 The Behavioral Model of the ANNCORE

Figure 4.4: Example to illustrate the need of dVdt to be larger than 0, if used as a break condition to
predict a future spike. An excitatory spike is received at t1 in a hyperpolarized state (i.e. the membrane
voltage V is below the resting potential Vrest). With no further spike the membrane voltage keeps
increasing and the program would end up in an infinite loop, if it was not chosen that min dVdt > 0.

Algorithm 1 Calculate time of next spike
while V < VSpike and dV

dt > min dV
dt do

integrate differential equations
t_sim+ = dt

end while
if V ≥ VSpike then

return t_sim
else
return −1

end if

Algorithm 2 Calculate equations up to current time
if time_to_run < t_sim then

Set variables back to time of last update
end if
while t_sim < time_to_run do

integrate differential equations
t_sim+ = dt

end while
Vlast = V
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Figure 4.5: Case in which our algorithm fails to predict a spike: At t1 the neuron receives an
excitatory input, the membrane would reach the threshold if there was no other input (dashed line).
At t2 an inhibitory spike is received, the algorithm re-calculates the time of the next spike and predicts
that there will not be a future spike because the derivative of the membrane voltage dVdt is negative at
t2. The excitatory synaptic time constant used here is 5 times the inhibitory one.

The neuron model stores two sets of variables internally, one that belongs to the time of
the last update tlast after an incoming or outgoing spike, and one that belongs to the latest
simulated time tsim when calculating the time of the next spike. This way, when the simulator
calls this neuron to fire, variables of tlast just have to be set to the ones from tsim. Also, at
an incoming spike, algorithm 2 checks if the current simulation time is more advanced than
the latest simulated time tsim and does the integration only for the missing time steps. This
approach can save a lot of computation time as the numerical integration is computed multiple
times for a certain time period only if an incoming spike during that period forces the model
to re-calculate the next firing time.
Unfortunately, the spike prediction algorithm described above may cause erroneous results

if certain values of the synaptic time constants are used. When the excitatory synaptic
time constant τexc is higher than the inhibitory time constant τinh and an inhibitory spike is
received after an excitatory spike the algorithm may fail to predict a spike. In figure 4.5 a case
is shown in which the suggested algorithm fails to predict an outgoing spike. This problem
would become more acute if multiple time constants were used in our simulated neuron model.
However, this weakness is not crucial for our neuron model, as at the moment only two

different time constants are used and in most biological models inhibitory synaptic time
constants are larger than excitatory ones (see e.g. Varela et al. [1999] and Schneggenburger
et al. [1992]).
As in the real HICANN chip neuron circuits (denmems) can be switched together to emulate
one single neuron with a high input count, for each denmem a different synaptic input behavior
can be chosen. In biological terms this would be a multitude of synaptic conductances and
reversal potentials. If one wants to implement this functionality in the virtual hardware, one
has to optimize the spike time prediction mechanism.
Note that in algorithm 1 in the integrating while loop the break condition, which implements
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the non-spiking condition, is dV
dt > min dV

dt and not dV
dt > 0, as we could end up in an infinite

loop when the membrane voltage converges to the resting potential EL, compare figure 4.4.
The numerical integration of equations (2.3) is conducted with Heun’s method (which is a
two-stage second-order Runge-Kutta method). The step size dt and all parameters of the
ADEX model can be set from the PyNN interface to the FACETS Stage 2 hardware system.

4.3 Current State of the Executable System Specification

4.3.1 Integration Into a Single Workflow

Alongside the virtual hardware, changes have been applied to the framework in which the
system simulation is implemented:

• The system simulation has been taken out of the NCSim environment. As the cur-
rent version of the system simulation uses SystemC and C++ only, it can run as
a stand-alone program. A new top level of the virtual hardware has been created
called Stage2VirtualHardware that instantiates the desired number of printable cir-
cuit boards and wafers.

• As now the virtual hardware can be compiled with a C++ compiler and the SystemC
library, a single makefile has been developed that cares about all modules needed to run
the executable system specification from a PyNN script, i.e. all modules belonging to
the software stack for the operation of the FACETS Stage2 Hardware (cf. section 2.2)
and the virtual Stage 2 Hardware can be compiled with one single makefile.

• Thus, if the Stage 2 Configurator (cf. section 2.2.4) is configured to run with the virtual
hardware instead of the not yet available real hardware, the Configurator builds the de-
sired virtual hardware and also the module that controls it (Stage2ControlSystemSim).
The Stage2 Control also carries out all the communication with the virtual hardware:
while the FPGAs and DNCs are configured via configuration packages, the configuration
of all the HICANNs is bypassed, each HICANN gets access to its representation in the
HardwareGraph and reads out all necessary data for its self configuration (see section
4.1). Spike events for the stimulation of neurons on a wafer are written to files which
are read out during the simulation by the FPGAs. The converse procedure happens for
recorded spikes, which are written to files by every FPGA.

As a consequence of all applied changes, the executable system specification is now operable
from PyNN. That means that neural experiments can be set up and later run on the virtual
FACETS hardware.

4.3.2 Real vs. Virtual Hardware

The current state of the system simulation represents most of the functionality of the real
FACETS wafer-scale system. The similarities and differences are listed in the following:

• The virtual FACETS hardware is not operated from a separate host PC but directly on
the controlling PC via configuration packets, files and function calls.
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• All parts involved in the Layer 2 communication, i.e. FPGAs, DNCs and the DNC
interfaces, show the same functionality and constraints (e.g. buffer sizes and clock cycle
times) as in the real hardware.

• The configuration of the HICANNs is not conducted by processing packets received from
a DNC but via direct access to the GraphModel. However, the HICANN considers all
information actually available in the HardwareGraph.

• The routing of spikes on the wafer does not involve any timing. This means that a spike
released by one HICANN instantaneously reaches its target neurons.

• Most of the functional units of the ANNCORE (e.g. synapse drivers, neuron circuits)
have a sufficient representation in the virtual hardware. Priority Encoders, the STDP
mechanism and on-chip spike sources (which are not yet supported by the MappingTool)
still lack a sufficient level of specificity.

Under these conditions the virtual hardware exhibits most of the functionality and constraint
of the real hardware. The influence of this has been further tested in chapter 6.
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5 Transformation of Biological Parameters
into their Hardware Equivalents

Unfortunately, finding an adequate biology-to-hardware translation is not trivial, as not every
biological parameter has its individual counterpart on the micro chip, and often is emulated
by a set of correlating parameters. Many of these values can not be configured individually
for every unit in the chip but only for a group of units. Due to process limitations, hardware
parameters are limited to a certain range of possible values. However, the chip is designed to
provide a hardware representation of all biologically relevant parameter values.
The transformation of parameters takes place in the MappingTool(see section 2.2.3), after

the placement of neurons and the routing of synaptic connections was conducted. For every
HICANN, the class CustomParamterTransformation is instantiated with access to all nodes
and connections of both the biological and the hardware GraphModel that are needed to
perform the transformation for one HICANN.

5.1 Synapse Drivers and Synaptic Weights
As described in section 2.1.2.2, not every synapse can be configured individually. For every
synapse row a fixed maximum conductance gmax can be set at the synapse driver. Every
synapse stores a 4-bit weight with values in the range of [0, 15], resulting in an applied weight
in the range of [ 0

16 ,
15
16 ] · gmax. Hence, there is a maximum of 16 different settings of synaptic

weights per row. Remember that the output signal of a synapse is a square current pulse
with length τstdf and amplitude weight ·gmax. This current ultimately modulates the synaptic
conductance between the neuron’s membrane capacitance and the dedicated reversal synaptic
potential. Therefore, the biologic synaptic conductance needs to be mapped to the hardware
circuitry by the following transformation:

gbio → gmax · weight · τstdf (5.1)

Short-term plasticity affects the maximum conductance of a synapse. On the hardware, this
is realized by varying the pulse length τstdf. As τstdf has no effect on the initial configuration,
we consider it as a scaling factor and set it to 1 for further calculations. This just leaves gmax
as an adjustable parameter. The current parameter transformation offers three different ways
of transformation:

• One that scales gmax such that the largest biological value of this row is exactly mapped
to the highest settable digital weight (15).
gmax = 16

15 · gbio,max

• One that calculates the mean biological weight per row and maps it to the half maximum
digital weight.
gmax = 2 · gbio,mean
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This has the consequence that values higher than 2gbio,mean are capped to a maximum
weight of 15.

• One that just exploits a part of the range of settable digits. Like in the first case, we
take the largest biological value and now map it to an arbitrary digital weight, e.g. the
half maximum:
gmax = 2 · gbio,max.
The use of this transformation may be useful, when STDP is integrated so that both
long-term potentiation and depression is possible for all connections.

In the next step, the digital 4-bit weights are calculated as the fraction of the biological value
gbio and gmax multiplied with 16.

weight(i) = stochastic_round
(
gbio(i)
gmax

· 16
)

(5.2)

The obtained values are rounded to values between 0 and 15. In order to avoid a systematic
attenuation or strengthening of synaptic connections, stochastic rounding is used: e.g. a value
of 7.4 is rounded off with a probability of 0.6 and rounded up with a probability of 0.4.
Thereby it is assured, that the total and local (e.g. for one synaptic row) mean of synaptic
weights remains constant.
When it comes to choose one of the types of configuration presented above, there is no

universal solution for all given network topologies. One has to know the optimization target,
which can be for example a very precise parameter transformation for certain values or a
transformation, that is not that precise, but gives an ample scope for a long-term evolution
of synaptic weights, when STDP is used.
As a possible alternative the mapping and routing algorithms in theMappingTool could also

take into account the weight of synaptic connections, and thereby try to place the neurons and
route the connections such that synapses with similar weights are emulated in circuits of one
row in the synapse block. The hardware implementation also allows to combine two synapse
circuits, which are located in the same column and are operated by the same synapse driver,
to represent one synapse with an 8-bit resolution. This functionality is not yet supported
by the mapping and routing algorithms and also would result in a halving of total possible
inputs per neuron.

5.2 Short-Term Plasticity
Among others, PyNN supports the short-term plasticity mechanism presented in Markram
et al. [1998] (name in PyNN: TsodyksMarkramMechanism). The FACETS Hardware imple-
ments a slightly modified version of it: it can not implement depression and facilitation at
the same time. The basic functionality, however, stays the same:
The strength of the synaptic response at an incoming spike is limited by its absolute synaptic
efficacy wtextmax, the currently available recovered partition R, and the utilization of synaptic
efficacy U . The normalized absolute synaptic efficacy can be divided into two parts: the
recovered partition R and the inactive partition I:
1 = R+ I
Only the recovered partition R is available for and only the fraction U of the recovered par-
tition affects the strength of a synaptic response, which therefore is equal to wmax ·R · U .
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Figure 5.1: Example of the short-term plasticity mechanism by Markram et al. [1998] as described
in text. This figure shows the impact of a pre-synaptic spike train onto the variables determining the
plasticity mechanism. In the top the recovered partition R decreases with every AP, and then recovers
with τrec. In the middle the usable synaptic efficacy u is shown, it increases with every AP and then
decays with τfacil back to its resting value U . At the bottom, the product of R and U is plotted, the
value of which determines the amplitude of the synaptic response at arrival times of incoming spikes.
One can see that the applied amplitude of the synaptic response (denoted with a red cross) increases
with every AP and converges to a maximum value, thus this synapse shows facilitating behavior.
(Parameters used for this simulation: U = 0.4, τrec = 100ms, τfacil=400 ms)

After a synaptic response to an incoming spike the fraction U of the recovered partition gets
instantaneously unavailable, and recovers with time constant τrec. In other words, the amount
of U ·R is transferred from the recovered to the inactive partition. R then recovers with τrec
from I.

A facilitation mechanism is introduced by a variation of the usable synaptic efficacy U , the
running value of the utilization of synaptic efficacy is referred to as u(t). With every AP u(t)
is increased by a certain value. The running usable efficacy u(t) then decays with the time
constant τfacil to its resting value U . The amplitude to be added to the current utilization u
was specified as U · (1− u), ensuring that u < 1.
In Figure 5.1 this model of short-term plasticity was stimulated with a pre-synaptic spike

train. The course of the variables u and R, as well as the strength of the resulting synaptic
response is shown.
At an incoming spike at time tAP the following happens:

R→ R · (1− u) = R(tAP)
u→ u+ U · (1− u) = u(tAP)
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The course of R(t) and u(t) at time ∆t after tAP are described by the following equations:

R(tAP + ∆t) = 1− (1−R(tAP)) · exp −∆t
τrec

u(tAP + ∆t) = U + (u− U(tAP)) · exp −∆t
τfacil

(5.3)

The amplitude of a synaptic response generated after an incoming action potential is given
by:

w = wmax ·R · u (5.4)

Whether a synapse is facilitating or depressing depends on the time constants, the usable
efficacy U and the stimulation frequency, also a mixed behavior is possible, e.g. facilitation
at the beginning of high pre-synaptic activity and depression later on.
As the circuits in the synapse drivers of the FACETS hardware system support either de-
pression or facilitation, but not a combination of both (cf. 2.1.2.3), a restriction is given for
the translation of the parameters given in the TsodyksMarkramMechanism, as one should use
only one of the two time constants τrec and τfacil and set the other one to zero.

5.2.1 Depression Mode
For pure depression mode (τfacil = 0) the applied synaptic weight in the original model from
Tsodyks and Markram is:

w = wmax ·R · U (5.5)

The short-term plasticity circuits in the hardware modulate the synaptic response in the fol-
lowing way, as described in equation (2.1):

w = wmax,HW · (1− λ · I) (5.6)

Remember that the scaling factor λ is determined by the product of the gain factor µ of the
used operational transconductance amplifier and the voltage Vmax. After every pre-synaptic
AP, the inactive partition I is increased by (1 − I) · C2

C2+C1
and decays with a time constant

regulated by the current Irec. One can see that in the original model only the usable efficacy
U is applied, much in contrast to the hardware implementation, where this is not taken into
account. Therefore, one has to scale the maximum weight wmax,HW accordingly (or rather:
the maximum conductance per synapse row gmax, as described above). The course of R can
be exactly represented by (1−I) if the scaling factor λ of the short-term plasticity mechanism
is set to 1. Hence, one has to perform appropriate translations from parameters of the original
model defined in PyNN into corresponding hardware counterparts.

R→ (1− λ · I)
wmax · U → wmax,HW

τrec → Irec

(5.7)

The recovery time constant τrec can be directly transferred by adjusting the current Irec
accordingly, for the quantized changes of I (in the model of Markram: utilization of synaptic
efficacy U) the best matching hardware configuration of C1 and C2 is chosen (possible values:
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[1
9 ,

3
11 ,

5
13 ,

7
15 ]). The resulting values for the corresponding voltages, currents and bits are listed

in Table 5.1.

Parameter Transformation in Depression Mode
hardware parameter transformation

Vmax
1
µ

Irec const · τrec
C2

C2+C1
∈ [1

9 ,
3
11 ,

5
13 ,

7
15 ] U

wmax wmax,PyNN · U

λ 1

Table 5.1: Parameter Transformation from the original model to a hardware configuration for Short-
Term Depression

5.2.2 Facilitation Mode
The transformation task gets more complicated when it comes to facilitation. If τrec is set
to zero in the original model, the recovered partition R is fully available all the time (i.e.
R = 1 = const) and only the utilization of synaptic efficacy u varies in time. Thus, the
resulting applied weight is:

w = wmax · u (5.8)
The synaptic response implemented in the hardware system according to (2.2), withN = Vfac

Vmax
,

is:
wHW = wmax,HW · (1 + λ · (I −N)) (5.9)

Therefore, the course of u has to be emulated by (1 +λ · (I −N). There are two important
constraints: we have to assure that the resulting weight wHW can not exceed wmax given
in PyNN, and λ · (I − N) must not exceed 1 as the operational transconductance amplifier
OTA2 (cf. figure 2.3) does not support an output current higher than its bias (cf. 2.1.2.5).
The second condition can be fulfilled by setting Vmax = 1

µ . Note that at the first AP the
inactive partition is I = 0, so that the applied weight will be:

wHW = wmax,HW · (1−N)

With this setting of Vmax, a possible range of [1−N, 2−N ] · wmax,HW for applied weights is
possible. The original model is capable of a range in between U and 1, so that the following
equations have to be solved in order to project the full range of possible biological values for
U onto the hardware.

(1−N) · wmax,hw = U · wmax

(2−N) · wmax,hw = 1 · wmax
(5.10)

U and wmax are given, so that we get the following solution for wmax,HW, N and thus Vfac.

wmax,HW = (1− U) · wmax

N = 1− 2 · U
1− U

⇒ Vfac = 1− 2 · U
1− U · Vmax

(5.11)
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This transformation allows us to imitate the behavior of short-term potentiation with the
dynamics implemented in the HICANN chip, the resulting electrical values are listed in Table
5.2.

Parameter Transformation in Facilitation Mode
hardware parameter transformation

Vmax
1
µ

Vfac N · Vmax
Irec const · τfacil
C2

C2+C1
∈ [1

9 ,
3
11 ,

5
13 ,

7
15 ] U

wmax,HW (1− U) · wmax

λ 1
N 1−2U

1−U

Table 5.2: Parameter Transformation from the original model to a hardware configuration for Short-
Term Facilitation.

5.2.3 Considering Restrictions from Chip Design

The application of the short-term plasticity mechanism, including all necessary parameter
transformations (presented in the paragraphs above), works well (as is also seen in section
6.3.2), as long as the mechanism is configurable for every single synapse. In reality this is not
the case, many constraints have to be taken into account:

• The electrical entities Vmax, Vfac and Irec, which are essential for the STP dynamics, are
shared by a block of 64 synapse drivers.

• In every synapse driver one can set just one mode of short-term plasticity, adjustable
parameters are the enable and mode bits as well as two bits to set the size of the
capacitor C2, responsible for the size of the utilization of synaptic efficacy.

• Voltages are restricted to values between 0V and 1.8V, currents to values between 100nA
and 20 µA, both can be set with 10-bit precision. The gain factor µ is not manually
adjustable.

• All synapses (up to 512) that are operated by one synapse driver share one setting of
short-term plasticity. For every pre-synaptic source, only one capacitor emulating the
inactive partition I is provided.

STP-compatible mapping and routing algorithms have to consider all these restrictions and
draw synaptic connections in a way that synapses with a similar short-term plasticity behavior
are fed by the same synapse driver. At the current point of development, this feature is not
yet supported by the MappingTool.
In order to realistically represent the capabilities of the FACETS Stage 2 system, the follow-

ing approximations and simplifications are made in the process of parameter transformation.
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1. Voltages and currents can be set individually for every synapse driver (of course, this is
only possible in the executable system simulation). Thus, a future setup is resembled,
when synapses will be grouped appropriately by the MappingTool.

2. For all synapses belonging to one synapse driver, the biological parameters (i.e. U , τrec
and τfacil) defined in the PyNN script are collected and the mean values are computed.

3. From the mean values it is evaluated whether short-term plasticity shall be enabled and
which mode shall be used.

4. The transformation is performed according to the translations methods presented above.

In fact, this sequence may result in critical distortions of the network dynamics, which have
to be evaluated and compared to results obtained with established software simulators.

5.3 Membrane Circuits
The PyNN description of the adaptive exponential integrate-and-fire neuron model (ADEX,
see 2.1.2.7), which is implemented in the HICANN chip, holds a total of 18 parameters. The
denmem circuits in the HICANN foresee 24 for parameters for the hardware implementation
of this model. This means, that not every model parameter in PyNN has its individual
counterpart in the hardware but can be represented by several hardware parameters. Also,
not for every parameter there is a linear transformation, instead, a look-up table has to be
used when performing the parameter transformation. These look-up tables first have to be
determined from simulations of the membrane circuits. The HICANN chip is still under test
and a suitable calibration is not yet available.
At the moment, the virtual FACETS hardware is the only instance that is operated by the

PyNN.hardware.stage2 module (cf. section 2.2.1). Thus, for now, it is sufficient to provide
the transformation for the virtual hardware, which exactly implements the ADEX model.
Therefore, the parameters of a biological neuron are just passed through to its counterpart in
the executable system simulation. Furthermore, every simulated hardware neuron (see 4.2.3)
is configured with the speedup factor it shall run with compared to biological time, with the
integration time step dt it shall use for numerical integration and with a flag, if its membrane
is to be recorded or not.
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6 Experiments and Results

In this chapter, experiments conducted with the FACETS Stage 2 executable system spec-
ification are presented. The chapter is mainly divided into two parts: low-level tests of
submodules of the system simulation (e.g. neuron models or short-term plasticity) and the
application of the FACETS Demonstrator benchmark models presented in chapter 3. Before,
the experimental setup of the executable system specification and the operating workflow are
described.

6.1 Experimental Workflow

Every experiment starts with a PyNN description of a certain neural experiment, which con-
tains the network model, stimulation data and all the information related to the experiment.
The PyNN interface to the FACETS Stage 2 Hardware PyNN.hardware.stage2 converts the
network model into a graph representation (the so-called BioGraph, cf. 2.2.2), which is then
passed to the MappingTool (cf. section 2.2.3). The MappingTool first places the biologi-
cal neurons onto the available resources of FACETS Hardware. The utilized algorithm can
be chosen from e.g. random placement, the NForceCluster algorithm or an external manual
placement. Next, the routing of synaptic connections on and off the wafer is performed,
followed by the transformation of biological parameters into their counterparts on the hard-
ware. The configuration of the hardware system is extracted from the Hardware Graph and
communicated to the corresponding modules of the executable system specification. Input
spike trains, created from the PyNN description of the experiment, are preprocessed for the
neuromorphic hardware, for example, they have to be transformed to the time scale of the
accelerated hardware. This spike data is written to files, which are later read from the virtual
FPGAs.
The executable system specification is then called to run the simulation for the desired time.
The FPGAs start to read spike stimuli which are then transmitted the HICANNs, where
neurons are stimulated thus initiating the network dynamics. Pulse events of neurons which
were set to be traced, are recorded and transferred up to the FPGAs, where they are written
into another file.
After the simulation has finished, these spikes are translated back into their biological time
scale and returned to the PyNN program that initiated the whole procedure. The retrieved
data can now be analyzed by the user.

6.2 General Experimental Setup

Before a simulation can be started, it has to be decided how much of the hardware shall be
utilized and thereby simulated. Of course, more hardware units, e.g. more FPGAs, DNCs or
HICANNs, imply more resources and more features that are used and tested in an experiment.
Certainly, this results in an increase of simulation time. As a compromise it was decided to
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Figure 6.1: Spike trains of a single leaky integrate-and-fire neuron simulated with NEST and with
the virtual hardware. The simulation on the virtual hardware was conducted once with the exact
integrate-and-fire neuron (IFSC, see 4.2.3.1) and once with newly developed event-based ADEX neuron
(see 4.2.3.2). The neuron was stimulated with a Poisson Input of 50Hz.

use the following setup as default:

• 1 FPGA

• 4 DNCs

• 4 reticles with 8 HICANNS each

• a maximum of 64 neurons per HICANN

This results in a maximum of 2048 neurons available on the system. The speedup factor
with which neurons and synapses are emulated in analog and mixed-signal circuits compared
to biological real time was chosen to be 104, which is also supposed by the real wafer-scale
system. The default time step used for the approximation method in the ADEX neuron model
(see section 4.2.3.2 was dt = 0.01ms (biological time). If not explicitly mentioned otherwise,
this setup was used for all experiments described in this chapter.

6.3 Low-Level Experiments
Before running large neural network models with the executable system simulation, one first
wants to test the behavior of all participating submodules in order to find their intrinsic
flaws and constraints. Especially the enhanced modules of the wafer-scale system simulation
(cf. chapter 4) are tested. Furthermore, also the maximum reachable bandwidth of pulse
events over the Layer 2 communication was estimated. For every comparison made between
a hardware emulation (with the executable system specification) and a software simulation
(with either NEST or NEURON), only one line of code was changed in the PyNN description
of the experiment, namely the one which specifies the simulator to use.

6.3.1 Neuron Test
As described in section 4.2.3, two neuron models were implemented in the behavioral model
of the ANNCORE. The first is a leaky integrate-and-fire model with synaptic conductances
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Figure 6.2: Membrane potential of an adaptive exponential integrate-and-fire neuron model stimu-
lated with excitatory and inhibitory Poisson input. The voltage course of both the NEURON simula-
tion and the simulation on the virtual hardware is shown. The used speedup factor was 104.

(IFSC, see 4.2.3.1), which calculates the spikes and neuron variables exactly up to machine
precision. The second is an event-based version of the ADEX neuron model (see 4.2.3.2),
which uses an approximation method. The ADEX model can also be used as a leaky integrate-
and-fire model if the adaption current and the exponential term are switched off, thus, the
spike behavior of both IFSC and ADEX can be compared with a leaky integrate-and-fire
model simulated with a software simulator. Such a comparison is illustrated in figure 6.1.
One can recognize almost the exact same spike pattern. The spike trains generated with
the executable system specification start a bit earlier than the ones produced by NEST. This
happens because the translation between the hardware- and the biological domain of the spike
output from hardware to biological time is not yet fully matured.
Subsequently, the correct behavior of the event-based ADEX neuron model was tested: A

single ADEX neuron (EIF_cond_exp_isfa_ista) with synaptic conductance was stimulated
with 500Hz excitatory and 200Hz inhibitory Poisson input. In figure 6.2 the time course
of the membrane voltage of this neuron is shown, simulated with both NEURON and the
virtual hardware. The trace produced by the virtual hardware resembles the one recorded
with NEURON with the only exception that the second spike occurs a bit later. The reason
for this can be found by looking at the course of the excitatory conductance of the neuron,
shown in figure 6.3. One can recognize that some spikes (between 43ms and 47ms) in the
system simulation arrive later than in the corresponding NEURON simulation. This happens
particularly when lots of spikes lay within a very short time interval. The reason for this is
the method with which spikes are transmitted from the FPGA to the HICANNs over Layer
2 connections. Spikes cannot not be delivered at an arbitrary time but have to be processed
one after another. In the case of a burst, some spikes can not be delivered on time and arrive
late at their targets (i.e. at the Layer 1 network and thus at the neurons). It can even happen
that spikes are lost, when too many pulse packets have to be transmitted at the same time.
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Figure 6.3: Excerpt of the course of the excitatory conductance of the ADEX as simulated in figure
6.2. One can see that some spikes arrive later in the virtual hardware simulation than in the NEURON
simulation.The explanation for that is given in the text.

This limitation is further examined in section 6.3.3.
This problem can be alleviated if a lower speedup factor for the membrane circuits is used

in the system simulation. Remember that the simulated neuron used in the example above
works with an acceleration factor of 104 compared to biological time, i.e. 1s of biological time
corresponds to 0.1ms in hardware time. In a subsequent run, the speedup factor used for the
simulation was reduced to 103. Note that the digital units (i.e. the modules involved in the
Layer 2 communication) of the system still run with the same speed. Consequently, the total
simulation time is increased by an order of magnitude. The result can be seen in figure 6.4,
where the membrane trace of the ADEX neuron coincides with the one from NEURON. Thus,
it has been shown that the simulated hardware neurons can perform like their equivalents in
software simulators.

6.3.2 Short-Term Synaptic Plasticity

In the following the short-term plasticity mechanism implemented in the virtual hardware (see
section 4.2.2) and thus the parameter translation developed in section 5.2 is tested. The setup
is the following: a spike source (SpikeSourceArray) is connected to a simple integrate-and-fire
neuron (IF_cond_exp) with a short-term plasticity mechanism (TsodyksMarkramMechanism).
The strength (i.e. the weight) of the connection is chosen to be 50nS. This means that the
synaptic conductance of the neuron is increased by this value at every post-synaptic spike, if
the short-term plasticity mechanism is disabled. If STP is enabled, the synaptic conductance
is increased by just a fraction of this weight (the maximum weight could then be viewed as
an absolute usable efficacy). Both the (excitatory) conductance and the membrane potential
are recorded.

6.3.2.1 Depression

The parameters used in PyNN for the depression mode are the following: U = 0.4, τrec =
400ms and τfac = 0 (These parameters are also used in the Layer 2/3 Attractor Memory
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Figure 6.4: Membrane potential of the ADEX model simulated with NEURON and the virtual
hardware (with a speedup factor of 103). Same synaptic input as in figure 6.2.
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Figure 6.5: Example the short-term depression on the virtual hardware compared to a simulation
with NEST
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Figure 6.6: Example of the short-term facilitation mechanism of the virtual hardware compared to
a simulation with NEST.

network model described in section 3.1.1). For an interpretation of these values, see sec-
tion 5.2, where the short-term plasticity mechanism according to Markram et al. [1998] is
described. Remember that for the usable efficacy U in the hardware only 4 values are pos-
sible ([1

9 ,
3
11 ,

5
13 ,

7
15 ]). In this example, this results in the following distorted usable efficacy

USE = 5
13 ≈ 0.385 in the hardware. In figure 6.5 the influence of the short-term plasticity

mechanism on the neuron’s membrane potential and the excitatory conductance are plot-
ted for the virtual hardware (on the left) and for NEST (on the right). One can see that
the amplitude of the increase of the conductance decreases with every subsequent incoming
spike. While the first quantal increase has an amplitude of 20nS, the last one is only about
2nS high. The course of the membrane potential of the neuron simulated with the virtual
hardware resembles the one simulated with NEST very well.

6.3.2.2 Facilitation

For the case of short-term depression, the following parameters were used in the PyNN script:
U = 0.2, τrec = 0 and τfac = 100ms, thus the corresponding usable efficacy in the hardware
being USE = 3

11 = 0.273.(Again, the parameter were taken from Layer 2/3 Attractor Memory
network model) The resulting conductance and membrane traces of the simulation with the
virtual hardware and NEST can be compared in figure 6.6. We can see that the facilitation
mechanism in the executable system specification works: the quantal increment of the synaptic
conductance increases with every subsequent incoming spike. However, the course of both
the conductance and the membrane potential differ from the ones produced by NEST. This
happens mainly because the usable efficacy in the virtual hardware is distorted: USE = 0.273
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instead of U = 0.2 due to the transformation algorithm described in section 5.2.2.
It was successfully shown in this section that the STP mechanism implemented in the

synapse drivers of the virtual ANNCORE as well as the parameter transformation work well,
with the constraint that for the usable efficacy U only 4 values are possible. Maybe the best
way to avoid this distortion would be to restrict U to these 4 possible values already in the
PyNN interface to the FACETS Hardware.

6.3.3 Bandwidth Test

When attempting to simulate large networks, such as the FACETS Demonstrator benchmark
models, it was noticed that the neurons did not receive the expected input. Furthermore,
not every spike generated in the simulated ANNCOREs was recorded from the FPGA. The
reason for this was easy to find: a limited bandwidth for the transport of Layer 2 Pulse
packets between FPGA, DNCs and HICANNs.
Therefore, a systematic examination of the bandwidth was conducted. For that, a single

neuron was stimulated by external Poisson spike sources while varying their input rate. It is
important to know how the MappingTool arranges external spike sources on the wafer: Every
DNC Interface on a HICANN contains 8 Layer 2 - to - Layer 1 channels. Each channel is
connected to a horizontal Layer 1 bus of the HICANN. The direction of the channel can be
set to either towards the HICANN (for the sending of spikes) or from the HICANN (for the
recording of spikes). Up to 64 neurons can send on such a L2-to-L1 channel.
External spike sources are distributed in the following way onto these channels on a wafer (in
this setup: a grid of 8 × 4 HICANNs):
At first, one channel of the first HICANN is filled up with 64 source neurons. The same is
subsequently repeated with all other HICANNs. When the first channel of the last HICANN is
full, the algorithm proceeds with the second channel on the first HICANN and so on. A sweep
over the number of Poisson spike sources and the Poisson rate was conducted, while each time
counting the number of spikes received by the neuron. Thereby the following limitations for
Layer 2 connections could be determined: The maximum bandwidth between a DNC and

Maximal Bandwidth of Neural Events over Layer 2
Connection bandwidth (in spikes/s)

1 FPGA→ 1 DNC → 1 HICANN 2.0× 107

1 FPGA→ 1 DNC → 8 HICANN 9.4× 107

1 FPGA→ 4 DNC → 8 HICANN 3.3× 108

Table 6.1: Maximum reachable bandwidth of spike events over Layer 2 communication

one HICANN is 2.0 × 107 spikes/s. One DNC can handle up to 9.4 × 107 spikes/s, when
connected to several HICANNs. An FPGA, which is connected to 4 DNCs with 8 HICANNs
each, reaches a maximum of 3.3× 108 spikes/s (see table 6.1).
The resulting maximum total input rates for one FPGA depending on the used speedup

factor are listed in table 6.2. When preparing a model to be run on the FACETS Hardware,
these limitations should be considered. Also, the spike sources should be distributed onto all
available HICANNs for a maximization of input bandwidth.
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Maximal input rate per FPGA for different speedup factors
speedup factor maximal total input rate

103 3.3× 105

104 3.3× 104

105 3.3× 103

Table 6.2: Maximum available input rate for one FPGA using different speedup factors in the
ANNCORE

6.4 High-Level Experiments with the FACETS Demonstrator
Benchmarks

In this section, first simulation results of the FACETS Demonstrator benchmarks models (as
described in chapter 3) are presented. In order to run these models on the virtual hardware,
some modifications had to be applied. For all simulations a speedup factor of 103 was used to
ensure a Layer 2 bandwidth that is high enough for an acceptable stimulation and recording
of all neurons. A qualitative profiling of the computational performance has been carried out
for the first benchmark model in section 6.4.1.3.

6.4.1 KTH Layer 2/3 Attractor Memory

6.4.1.1 Modifications Applied to the Default Model

The following changes were made to the Layer 2/3 Attractor Memory Network model de-
scribed in section 3.1.1:

• The architecture was reduced to 6 hypercolumns with 3 minicolumns each, resulting in
a total number of 624 neurons.

• The original model uses the IF_cond_exp_gsfa_grr neuron model for the pyramidal
and RSNP cells. This model is based on Muller et al. [2007] and adds a conductance-
based adaptation as well as a relative refractoriness mechanism to the conductance-based
leaky integrate-and-fire neuron. Unfortunately this model is not (yet) supported by the
FACETS hardware and a transformation to the ADEX model is not close at hand,
therefore it was replaced by a simple leaky IF model (IF_cond_exp) with an absolute
refractory time (τrefrac = 1.0ms).

• In the default model every pyramidal cell receives a Poisson input with a frequency of
4000Hz. This results in a total stimulation rate of 2.16 · 106Hz for the whole network
containing 540 pyramidal cells. Remembering that the maximum total bandwidth for
one FPGA at a speedup factor 103 is 3.3 · 105 (see table 6.2, the input rate for one
cell was reduced to 4000

7 = 571Hz, at the same time the synaptic weight of the Poisson
sources was multiplied by 7. Furthermore, instead of one spike source with 571Hz,
every neuron has a higher number of spike sources with a reduced rate, such that the
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spike sources are distributed over all HICANNs (cf. section 6.3.3). In this case, every
pyramidal cell receives individual Poisson input from 7 spike sources with 81.5Hz each.

• All synaptic delays were set to 0, as delays are not supported by the virtual hardware.

6.4.1.2 Results
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Figure 6.7: Rasterplot of the Layer 2/3 Attractor Memory network simulated on the virtual FACETS
Hardware. The network consists of 6 hypercolumns with 3 minicolumns each. One can easily recognize
the attractor patterns. .

The Layer 2/3 Attractor Memory Network was run for 4000ms (biological time) on the
virtual hardware with the modifications mentioned above. The resulting rasterplot is shown
in figure 6.7. Despite all the applied changes to the model, the network clearly exhibits at-
tractor patterns. The time an attractor remains active is a bit smaller than in the default
example in section 3.1.1. A statistical analysis of the network states, i.e. the calculation of
the mean firing rate and the mean membrane voltage of cells belonging to one attractor has
not yet been carried out.
However, qualitative studies with simulations on the virtual hardware have shown, that the
Layer 2/3 Attractor Memory network model is rather robust to modifications: attractor pat-
terns could be produced with and without a short-term plasticity mechanism in the synapses,
with the default ADEX neuron model instead of leaky IF model, and for different network
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sizes (3, 6 or 9 hypercolumns with 3 minicolumns each).
As a next step, the network size should be scaled up to larger networks so that the impact of
possible losses of synaptic connections on the wafer can be evaluated. In parallel, the network
performance should be analyzed with the methods described in section 3.1.3.

6.4.1.3 Profiling

The simulation of the Layer 2/3 network with 624 neurons for 4000ms on the virtual hardware
took on average 1900s for a speedup factor of 103 and an integration time step of dt =
0.01ms The same simulation with NEST takes 120ms with time step dt = 0.1ms, which is
small enough to produce reliable results. The pure simulation with the executable system
specification took 1700s while about 200s were needed for the setup and mapping of the
network. Note that the used integration time step used in the simulated neurons doesn’t
have a severe influence on the simulation time. While the simulation duration can hardly be
reduced when a time step of dt = 0.1ms is used, the simulation of the same network with
dt = 0.001ms took only 300s longer than with dt = 0.01ms. Thus, most of the computational
time of the simulation in the virtual hardware is spent in parts other than the neuron circuits,
i.e. for the propagation of spike over the Layer 1 network and in the digital modules for the
Layer 2 communication. Hence, the author advises to use dt = 0.01ms as the default time
step for the numerical integration in the simulated neurons as sometimes the results from a
simulation with dt = 0.1ms were unusable.

6.4.2 Synfire Chain with Feed-Forward Inhibition
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Figure 6.8: Synfire Chain simulated on the virtual hardware. In the left panel: Synfire Chain with
feed-forward inhibition, inhibitory cells are not shown. The pulse packet properly propagates from one
group to the following. In the right panel: the same Synfire Chain, but this time without feed-forward
inhibition. Neurons spike several times and the width of the pulse packet diverges.

As the FACETS wafer scale system does not support settable delays for synaptic connec-
tions on the wafer, and a routing of delayed synaptic connections over Layer 2 is not yet
included into the MappingTool, all synaptic delays are set to zero. This seemed critical, as
the Synfire Chain (see section 3.2) makes extensive use of synaptic delays, especially for the
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connection between the inhibitory sub-group to the excitatory sub-group of the same Synfire
Group. The delayed inhibitory input (4 ms) impedes the excitatory neurons from spiking
more than one single time.
When running the synfire chain with the parameters from the default model, the synfire
chain dies out after the second group. By reducing the synaptic weight of the connections be-
tween the inhibitory and the excitatory sub-group, i.e. reducing the strength of the inhibition
mechanism, the synfire chain works as it should: pulse-packets properly propagate from one
synfire group to the next. An example with 8 synfire groups with and without feed-forward
inhibition is shown in figure 6.8. In this run, excitatory neurons spiked only once and the
width σ of the pulse packet did not spread.
Some simulations of larger networks were also attempted on the limited setup with 32

HICANNs with 64 neurons each, thus a maximum of 2048 neurons: Stable synfire chains
have been realized for a length of up to 10 groups (1250 neurons). For larger networks some
synapses were lost so that the synfire chain died out after several groups. This happens al-
though the routing program (see section 2.2.3) reports that all synapses have been successfully
realized. This error is already noticed during the parameter transformation, long before the
configuration of the virtual hardware. It seems that the error occurs when the routing infor-
mation is read out from the HardwareGraph. This presents a solvable technical problem, so
the simulation of larger synfire chains should be possible. Also, a statistical analysis of the
synfire chain as it is described in section 3.2 should be carried out.

6.4.3 Self-Sustaining Cortical Activity with Asynchronous Irregular Firing
Patterns
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Figure 6.9: Self-sustained Activity with AI states. (a) Rasterplot of the randomly connected network
with 500 neurons. Inhibitory neurons have indices ranging from 400 to 500. The activity is sustained
for 2000ms. (b) Time course of the membrane voltage of 4 neurons is shown. One can recognize the
irregular activity.

The network model showing self-sustained activity with asynchronous irregular (AI) states
according to section 3.3 was only tentatively tested with the virtual FACETS Stage 2 Hard-
ware. The randomly connected network consists of 500 cells (80% excitatory / 20% in-
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hibitory), 5% of the excitatory neurons are of a low threshold spiking (LTS) type. For all
cells, the ADEX neuron model is used. 10% of the network are initially stimulated for 50ms
by external spike sources, then the network is left to itself.
Unfortunately, a stable network setup, which is able to reliably produce self sustaining

activity with AI states, has not yet been found for the virtual hardware. However, a network
configuration that sometimes shows the desired behavior is found by reducing the spike fre-
quency adaptation for the excitatory cells. However, the network showed different behavior
in different runs (i.e. when different random seeds were used). An example of sustained AI
state activity is shown in figure 6.9. The self-sustained activity has been recorded for 2000
seconds, the rasterplot is shown on the left. The right plot represents the voltage traces from 4
neurons of the network: one can easily recognize the irregularity in their spiking activity. The
coefficient of variation of the inter-spike intervals in this case is CVISI = 2.11 and the average
cross correlation between two arbitrary neurons is CC= 0.009± 0.065, thus the network is in
an asynchronous irregular state. However, for the same network setup it may also happen
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Figure 6.10: Rasterplots for two given examples, when the randomly connected network does not
show self-sustained activity with AI states. In (a) the activity of the network dies out, in (b) the
network makes a transition into a highly correlated regular state.

that the activity of the network is not sustained or that the networks fires highly correlated
and regularly (see figure 6.10). A thorough examination of these phenomena is planned for
the near future.
At this point, it has been shown that self-sustaining AI states are possible on the virtual

hardware, but still a lot of analysis and parameter optimization have to be carried out for
this benchmark model to work properly on the hardware substrate.
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7.1 Achievements
Gaining control of a highly complex neuromorphic hardware system is per se a difficult task,
as one has to deal with an extensive range of hardware imperfections which result in an un-
predictable chip behavior. This task gets even more complicated for a large-scale system like
the FACETS wafer-scale hardware, which aims to be flexible enough to serve as a universal
neuroscientific modeling tool. For this purpose a correspondingly complex, custom-built soft-
ware framework for operating the neuromorphic device is indispensable.
As the physical hardware is not yet available, an executable system specification serves as the
test bench for this support software.
Therefore, the existing system simulation has been modified with focus on functionality

and simulation speed. As a result of this procedure the ANNCORE now has its adequate be-
havioral representation in the virtual hardware, which provides the same configuration space
for all functional units as in the real HICANN chip.
An event-based adaptive exponential integrate-and-fire neuron model has been successfully
embedded into the simulated ANNCORE of the system simulation along with an analytically
exact integrate-and-fire neuron model. The functionality of both was proven by comparing
them to analogous software simulations. This endeavour was significantly facilitated by the
use of the meta-language PyNN for the specification of the corresponding experiments.
The HICANN implementation of the short-term synaptic plasticity mechanism was accurately
reproduced in the virtual hardware. Additionally, a parameter transformation from the orig-
inal STP model to a configuration of the hardware was developed and also included into the
MappingTool. Therewith, both the parameter transformation and the virtual STP mecha-
nism could be tested, revealing the impact of the restricted configurability of the hardware.
Although it was possible to reproduce synaptic response patterns from software simulations,
there is still potential for an enhancement.
One major achievement that was inherent with the further development of the executable
system specification and that is not further mentioned in this thesis, is the constant feedback
that was given to the developers and maintainers of the software stack for the operation of the
FACETS Hardware. Not only were these software layers tested when operating the virtual
hardware, but the enhanced system simulation also gave rise to the implementation of new
features, such as a hardware specific modification in the pyNN.hardware.stage2 module or the
separate placing of excitatory and inhibitory neurons in the MappingTool.
The dynamics of two FACETS Demonstrator Benchmark models could be reproduced on

the virtual hardware. This entails two major achievements, the first concerns the operation
workflow, the second relates to the performance of the network models:
The software for the operation of the FACETS wafer-scale system has reached a mature state:
it is capable to transform a network model described in PyNN into a representation on the
hardware and later run the simulation on the virtual hardware. Also, the configuration of the
system and the readout of spike data work appropriately.
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After applying only minor modifications to the original model, simulations on the virtual
hardware of the Layer 2/3 Attractor Memory network exhibit the same attractor patterns as
corresponding software simulations. The network proved to be very stable against changes of
both neuron and synapse models.
An unexpectedly positive result was the successful implementation of a synfire chain on the
virtual hardware: even though the wafer-scale hardware does not support any adjustable
delays for synaptic connections, a configuration for a stable propagation of pulse packets was
found for the executable system specification. In addition to that, the discussions regarding
this benchmark model revealed another workaround possibility, namely the implementation
of adjustable synaptic delays over the Layer 2 communication network.
The third FACETS Demonstrator benchmark underwent only preliminary testing, neverthe-
less a network showing self-sustained activity with asynchronous irregular states could be
realized, although still lacking functional reliability. Locating the source of this flaw remains
a task for the future.
One major constraint of the FACETS system was discovered: the limited bandwidth for
sending and recording spikes over Layer 2. To tackle this problem, all simulation of larger
networks had to be conducted with a speedup of 103 (instead of the default value of 104).
However, the virtual hardware was shown to be capable of simulating small biologically

relevant models with very different architectures. As of now, scaled versions of the FACETS
Demonstrator benchmark models can be simulated with the virtual system in order to further
study hardware-specific limitations, such as the loss of synaptic connections due to the limited
Layer 1 communication bandwidth.

7.2 Outlook

The FACETS wafer-scale hardware system aims to serve as a universal and highly flexible
tool for neuroscientific modeling. Ideally, a modeler should be able to make use of all the
benefits of a neuromorphic system (e.g. the speedup or the low power consumption) without
considering any technical details or restrictions. The ideal neuromorphic hardware would
be as easy to use as any other simulator supported by PyNN. Problems which arise from
the complexity of the system, such as synapse loss or discretization of parameters, should
be automatically compensated. Neurons should be arbitrarily excitable and recordable. This
requires not only a highly configurable hardware system but also a very sophisticated software
layer that deals with all these problems.
As any groundbreaking idea still in its infancy stages, the FACETS wafer-scale hardware

system still has a long way to go before achieving this dream.
However, the way that is being paved by the FACETS Demonstrator seems to point towards
the right direction. In the course of this sub-project, the development of the software layers
was substantially advanced, while the level of detail of the virtual hardware was increased.
Some emerging problems that limit the performance of the current system are mentioned in
the following, together with some suggestions for their solution.
A limited number of individually adjustable spike sources with high stimulation rates ap-
peared as a major constraint when emulating neural network models on the virtual hardware.
Therefore, all simulations had to be conducted with a relatively low acceleration factor of only
103. To fix this problem, one should implement the on-wafer Poisson spike sources into the
virtual hardware (there are 8 per HICANN) and include them also into the Mapping strategy.
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7.2 Outlook

In many cases it should be enough to combine on-chip spike sources for neurons to receive
a relatively uncorrelated input. This would decrease the need of Layer 2 resources so that
a simulation could be run with a higher acceleration factor with the same synaptic input.
Another strategy would be to use one part of the neurons on the wafer just as Poisson-like
spike sources for the actual experiment.
Regarding the number of neurons which can be recorded during a single run, the user is
often limited by the output bandwidth to recording only a fraction of them. If this is not
sufficient for subsequent analysis of the network state, an automated procedure should be
provided, which runs the same experiment several times and later combines the recordings
from different neurons in different runs to produce one single result.
Furthermore, in order to exploit all features implemented in the ANNCORE, the Mapping

and Routing strategies have to be tuned. This is especially needed for the usability of the
short-term plasticity mechanism, as some STP parameters can only be set for a quarter
of synapses per ANNCORE. Neuron circuits in the FACETS Hardware that are switched
together allow a very versatile configuration, for example many different time constants and
reversal potentials in the synaptic input circuits. Following this approach, also neuron models
with various adaptation mechanisms can be implemented. In this respect, the hardware
neurons outplay many software simulators that do not yet support these features.
A further refinement of the executable system specification targeting these detailed im-

provements should definitely be conducted. On the one hand, this will encourage a further
enhancement of the software layers responsible for the operation of the neuromorphic hard-
ware system. On the other hand this might reveal bottlenecks and flaws in hardware design,
possibly leading to the development of superior modules to be implemented in future versions.
A persistent effort in both software engineering and hardware design remains necessary for
achieving the declared goal of the FACETS neuromorphic engineering division: to create a
superior, universal modeling tool.
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