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Abstract— When studying the different aspects of synaptic plas-

ticity, the timescales involved range from milliseconds to minutes,

thus covering at least seven orders of magnitude. To make this

temporal dynamic range accessible to the experimentalist, we have

developed a highly accelerated analog VLSI model of leaky integrate

and fire neurons. It incorporates fast and slow synaptic facilitation

and depression mechanisms in its conductance based synapses. By

using a 180 nm process 105 synapses fit on a 25 mm2 die. A single

chip can model the temporal evolution of the synaptic weights in

networks of up to 384 neurons with an acceleration factor of 105

while recording the neural action potentials with a temporal resolution

better than 30 µs biological time. This reduces the time needed for

a 10 minute experiment to merely 6 ms, paving the way for complex

parameter searches to reproduce biological findings. Due to a digital

communication structure larger networks can be built from multiple

chips while retaining an acceleration factor of a least 104.

I. INTRODUCTION

In recent years a new interest in implementing biologically

realistic neural systems based on spiking neurons could be ob-

served [1][2]. Part of the motivation lies in the increased consensus

within the neuroscience community considering single neuron

models and the modeling of synaptic transmission including the

different aspects of plasticity.

The VLSI model presented in this paper is part of this ongoing

approach. It differs from the cited examples insofar as its tries

to achieve an acceleration factor as high as possible compared

to biological time. Together with the high number of provided

synapses—the presented system can be scaled up to more than

106 synapses—it aims to complement numerical simulations.

One aspect would be the statistical analysis of the temporal

development of synaptic transmission due to plasticity. With a

speed-up factor of 105 for a single chip and still more than 104

for networks built of multiple dies it is possible to do extensive

parameter searches even for experiments spanning several minutes

of biological time.

The chosen neuron model is the standard leaky integrate and fire

with conductance based synapses [3]. To facilitate the communica-

tion between the neurons, the action potential (AP) is propagated

as a digital pulse. Conductance-based synapses connect these

digital neuron outputs to the membranes of other neurons. In the

presented chip 256 synapses connect to one neuron, a number

limited by the size of the chip.

Two plasticity mechanisms are implemented in the synapse

circuits which are both based on the temporal change of synaptic

transmission. Although they modulate the same parameter the

timescales involved differ by more than four orders of magnitude.

Short term plasticity is based on the history of pre-synaptic

APs. It emulates the limitation of resources involved in the

synaptic transmission, like for example neurotransmitters [4]. The

temporal evolution of the network is caused by long term synaptic

plasticity based on spike time dependent plasticity (STDP) [5][6].

In this model each synapse measures the correlation between
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pre- and post-synaptic APs which is then used to calculate long

term changes in the synaptic weights. While synaptic plasticity

is implemented on the circuit level in the presented system,

slower adaptation processes—like neuro-modulators—as well as

developmental changes in neuronal connectivity can be easily

incorporated into the digital control of the analog continuous-time

model.

II. UTILIZED MODELS

A. Neuron and Synapse Model

The membrane potential V (t) is governed by the following

differential equation:

Cm

dV

dt
= gm(V − El) +

∑

k
pk(t)gk(t)(V − Ex)

+
∑

l
pl(t)gl(t)(V − Ei) (1)

Each term on the right hand side contributes an individual current

to the total membrane current, which by itself is equal to the

derivative of the membrane potential multiplied by a constant

Cm representing the total membrane capacitance. The first term

models the contribution of the different ion channels that deter-

mine the potential El the membrane will eventually reach if no

other currents are present. The synapses use different reversal

potentials, Ei and Ex, to model inhibitory and excitatory ion

channels. The index k in the first sum runs over all excitatory

synapses while the index l in the second covers the inhibitory

ones. The individual activations of the synapses are controlled by

the synaptic open probability pk,l(t) [3]. Plasticity is included in

the model by varying gk and gl with time. Since the involved time-

scales vary greatly between short-term and long-term plasticity,

both mechanisms act at different stages of the synaptic signal

transmission chain. The synaptic conductance gk,l is modeled

as a product of the synaptic weight ωk,l(t) and a maximum

conductance gmaxk,l(t).

gk,l(t) = ωk,l(t) · gmaxk,l(t) (2)

The weights are used for the initial setup of the connection

strengths. They are modified by the implemented long-term plas-

ticity algorithm (STDP) and thus vary slowly with time t. Short-

term plasticity acts by temporarily increasing or decreasing the

maximum conductance gmaxk,l(t).

B. Short Term Synaptic Plasticity

The implemented model follows the ideas developed in [4][7].

In the case of short term depression the absolute synaptic efficacy

ASE is thought to be distributed between an inactive (I) and

a recovered partition (R). With each AP a conductance pulse

with gmax proportional to the percentage of the total efficacy

momentarily in the recovered partition is generated. After the AP

was communicated to the post-synaptic neuron a fixed fraction

of the recovered efficacy, the usable synaptic efficacy USE, is

transferred to the inactive partition. While this transfer repeats

with each AP the inactive partition loses efficacy to the recovery



Fig. 1. Die photograph of the network chip.

one by a time-continuous recovery process. These dependencies

are summarized in eq. 3:

dI
dt

= − I
trec

+ USE · R · δ(t − tAP )

R = 1 − I , gmax = ASE · R
(3)

In the case of facilitation the roles of I and R are exchanged and

gmax becomes proportional to I .

C. Long Term Synaptic Plasticity

The correlation measurement for STDP is part of every synapse.

It is based on the biological mechanism as described in [5][6].

For each occurrence of a pre- or post-synaptic action potential

the synapse circuit measures the time ∆t that has passed since

the last occurrence of the respective other action potential. The

exponentially weighted time difference is called the STDP modi-

fication function F [5] and is defined as follows:

F (∆t) =

{

A+ exp(∆t
τ+

) if ∆t < 0 (causal)

−A
−

exp(−∆t
τ
−

) if ∆t > 0 (acausal)
(4)

A look-up table is used to translate the output of the modification

function into a change of the synaptic strength ω, depending on the

actual value of ω. Thus, the STDP implementation is not limited

to an additive or multiplicative update rule [8], instead a wide

range of possible update rules can be programmed into the chip.

D. Network Model

The network model is based on the transmission of events from

one source neuron to multiple destination neurons, which do not

need to be located on the same die. Events are communicated

digitally but continuous-time inside the chip. The on-chip network

is fully connected, i.e. each neuron can be connected to any

other via a synapse. The only limitation thereby is the number

of synapses per neuron, which is smaller than the total number

of neurons. Therefore, for each neuron a subset of the chip’s

neurons has to be selected as input. A synapse receiving an event

converts the digital pulse into an exponential onset and offset of

the synaptic open probability p(t) to generate the experimentally

observed time-course of the synaptic conductance [9]. Events

crossing the die frontier must leave the continuous-time domain;

they get a digital time-stamp marking their onset.

III. CHIP OVERVIEW

Fig. 1 shows a photo of the network chip. Two synapse

arrays containing 50k synapses each occupy most of the area.

Fig. 2 shows the operation principle of the synapse and neuron

circuits. Both synapse arrays consist of 256 rows × 192 columns

below which 192 neurons are located. Each neuron contains a

capacitance Cm that represents the membrane capacitance. Three

different conductances model the different ion channel currents.
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Fig. 2. Operating principle of the spiking neural network. The three
boxes show the signal processing done by synapse drivers, synapses and
neurons.
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Fig. 3. Membrane potential Vm response to 250 Poisson distributed
input spike trains. Top: Input spike trains with 3 Hz mean firing rate in
biological time. Middle: Vm recorded from one neuron of the presented
chip. Bottom: Vm calculated with the neuro-simulator NEST.

The membrane leakage current flows through gleak. It can be

individually controlled for each neuron. The leakage reversal

potential El, the excitatory and inhibitory reversal potentials of

the synapse conductances gx and gi as well as the threshold and

reset voltages Vth and Vreset can be set for groups of 96 neurons

each.

In most biological neurons, the synapse conductance is gener-

ated by the ion channels of synapses that are distributed across

the dentridic tree and, to a lesser extend, the soma of the neuron.

On the chip the membrane capacitance and the conductances

connected to it are localized inside the neuron. The excitatory and

inhibitory conductances are controlled by the sum of the currents

generated by the active synapses located in the respective column.

A third conductance models all ion channels contributing by their

respective leakage currents to the neuron’s resting potential El.

Whether a synapse is excitatory or inhibitory is determined by a

control signal common to all synapses of one row which is used

inside the synapse to switch its output between the excitatory

or inhibitory input line. The weight storage of the synapse is

implemented as static RAM whose content is converted into a

current by a 4-bit multiplying DAC in each synapse.

Fig. 3 shows the response of a single neuron’s membrane

potential to Poisson distributed spike trains. The mean rate of each

input was 0.12 MHz. With the onset of the input spike trains the

neuron enters a high-conductance state [10] which is characterized

by an increase of the membrane conductance and a depolarization

of the membrane potential.

In contrast to a biological neuron the axon of its VLSI counter-

part is electrically isolated from its input. It carries a digital signal

that encodes the exact time of each spike’s occurrence by its rising



TABLE I

CHIP SPECIFICATION SUMMARY

process features 0.18 µm, 1 poly, 6 metal

die/core size 5 × 5 mm2/ 4.25 × 4.32 mm2

synapse size 10.3 × 10.5 µm2

neurons/synapses 384/98304

supply voltage (digital and analog) 1.8 V

digital core clock frequency 200 MHz

adjustable analog parameters 2969

parameter resolution 10 bit (nominal)

event time resolution (TDC, DTC) 156 ps (nominal)

event input FIFOs 16 channels, 64 entries each

event output FIFOs 6 channels, 128 entries each

LVDS bus data transfer rate 3.2 Gigabyte/s max.

edge. This signal is also routed back along the same column of

synapses that comprises the neuron’s input. This allows the STDP

circuit located inside each synapse to measure the time between a

pre-synaptic pulse and a post-synaptic spike. The digital APs are

routed to the synapse drivers (see Fig. 2) which convert them to

pre-synaptic voltage pulses controlling the synaptic conductances.

The short-term plasticity circuit is also located inside the synapse

driver.

Several steps are necessary to code the spikes into events. An

asynchronous priority encoder identifies the spiking neuron and

sends its number to the next stage. If more than one neuron fires

at the same time, the neuron with the highest priority is selected.

After its number has been transmitted, the one with the second

highest priority gets its turn and so on. For each selected neuron,

a time-to-digital converter (TDC) measures the point in time of

the spike.

The digital control occupies about one-third of the core area.

Its main task is to manage a set of FIFO buffers for the incoming

and outgoing event signals and the formatting of event packets

that can be sent and received via the LVDS external interface.

Table I summarizes the specifications of the presented chip.

IV. IMPLEMENTATION OF SYNAPTIC PLASTICITY

A. Short term synaptic dynamics

Short term plasticity is realized by dynamically modifying

the maximum conductance of the synapses. Fig. 4 shows the

circuit diagram of the relevant part of the synapse drivers. This

circuit also implements the controlled rise and fall of the synaptic

conductance. Its output signal Vout directly drives the gate voltage

of the current sinks of all 192 synapses located in a row (see

Fig. 2). In the resting state it is pulled down to Vrest by M7

and M4 since the last AP left the fall/rise signal in the high-state.

Although M9 is in a high-impedance state, the level of the fall/rise

signal is kept high by it, since M9 is a reduced threshold-voltage

device having a much larger leakage current than M2.

An incoming pre-synaptic AP enters the circuit at the pre pin.

It pulls the fall/rise line down and simultaneously activates M1.

M1 directly connects Vout to an external low-impedance voltage

source Vstart, therefore Vout jumps from Vrest to Vstart. The pre

pulse lasts only for about 5 ns. Afterwards Vout rises further at a

constant rate controlled by Irise and the current mirror built from

M5 and M6.

The output current of the synapse changes exponentially with

Vout, therefore for values close to Vrest, which is below 100 mV,

the absolute output current of the synapse is very low. Without M1

the linear rise of Vout would introduce a biologically unrealistic

slow rise of the effective synaptic conductance. By setting Vstart

and Irise accordingly, the rise time can be controlled within a very
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Fig. 4. Synapse driver circuits implementing short-term synaptic dynam-
ics.

broad range. This is necessary because biological rise times may

be below 1 ms for fast excitatory synapses [9].

To control gmax the comparator O1 limits the rise of Vout by

pulling the fall/rise line high. Since the real output current of

the synapse can not be measured in the synapse driver, a replica

transistor M10 is used which is an exact copy of the complete

current DACs of two adjacent synapses. It is diode-connected and

sinks the reference current Igmax. Its gate voltage is compared to

Vout to determine the point in time when the synapse has reached

its maximum output current corresponding to gmax. Ifall sets the

fall-time of Vout via the current mirror M7/M8. M9 turns off

after Vout has fallen below the gate voltage of M10. The circuit

is now ready for the next AP.

Synaptic plasticity is activated by the enable signal. The mode

line switches between depression—as it is shown in Fig. 4—and

facilitation. The output current from the OTA O2 is added to

Igmax, thus increasing or decreasing the reference voltage seen

by O1. The maximum current the OTA is able to source or sink

is determined by its bias input connected to a copy of Igmax.

Thus, provided the input voltage difference is large enough, the

OTA will sink all the current previously sunk by M10, reducing

the reference voltage seen by O1 below Vstart. The voltage on

the node VI represents the inactive partition I of the synaptic

efficacy. After a prolonged period of inactivity VI has dropped to

zero since C1 is continuously charged through M11. With each

AP charge is transferred from C1 to C2, increasing VI . Therefore,

from the n-th to the (n + 1)-th AP VI changes as follows:

VI,n+1 − VI,n =
C2

C1 + C2
(Vmax − VI,n) (5)

This is equivalent to the model defined by eq. 3. The capacitance

of C2 can be digitally controlled between 1/8 and 7/8 of C1.

The OTA translates this into a current which is subtracted from

Igmax. In the case of facilitation the VI line is connected to the

non-inverting input of O2, while the inverting input is connected

to a reference voltage Vfac. While eq. 5 remains valid the current

subtracted from Igmax at the input of O1 is now proportional

to Vfac − VI . Setting Vfac between Vmax and zero leads to a

transition from strong depression for VI = 0 to strong facilitation

for VI = Vmax. Fig. 5 shows a simulation of VI , the membrane

potential and the output current Iout of the synapse, which is

proportional to gmax(t), for both depression and facilitation. Fig. 6

shows the measured membrane potential for a similar setup. VI

and Iout are not accessible in the real chip. To set the membrane

conductance to values representing the active state [11] the neuron

sees a constant background of synaptic activity. The rise and fall

times of the synapses participating in this background are set to
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Fig. 6. Measurement of the postsynaptic membrane voltage Vm showing
synaptic depression (left) and facilitation (right). The top and bottom traces
differ by the C2/C1 ratio. The grey traces show single measurements
while the solid traces are averaged results from 500 runs.

much larger values than those of the synapse under examination.

Therefore their post-synaptic potentials are weak and spread over

a much longer time as displayed in Fig. 6. Thus, they are not

discernible in the plots of Vm. Two different values of the ratio

C2/C1 are shown.

In the bottom case it can be seen that a steady state is reached

when VI approaches Vmax. This is caused by an equivalence

between the amount of charge leaking through M11 between two

APs and the charge transfer from C1 to C2 with each AP. In the

case of the larger C1/C2 ratio this equivalence is reached after

less than the 10 APs used in the experiment. By this mechanism

the steady state value of gmax becomes dependent on the input

frequency. For shorter periods between two consecutive APs less

charge leaks from the inactive to the active partition, thus, the

equilibrium value of VI gets larger.

B. Spike time dependent plasticity

The synapse circuit implements eq. 4 in each synapse, thereby

performing the correlation measurements fully in parallel (see [12]

for details). Each synapse internally adds up these exponentially

weighted measurement results independently for pre-post (causal)

and post-pre (acausal) pairs. Therefore eq. 4 is broken up in two

independent parts:

Fc(∆t) = A+ exp(∆t
τ+

), Fa = 0 if ∆t < 0 (causal) (6)

Fa(∆t) = A
−

exp(−∆t
τ
−

), Fc = 0 if ∆t > 0 (acausal)

Fc and Fa are added to the accumulated modification function

ΣFc and ΣFa. The values of ΣFa,c are periodically read out

by the digital STDP controller. It subsequently performs two

comparisons:

a) |ΣFc − ΣFa| > Vω update threshold

b) ΣFc − ΣFa > 0
(7)

If the outcome of (7a) is true, a weight update is performed by

replacing the actual 4 bit weight ω of the synapse by the value

stored in the row corresponding to said weight ω of the causal

or acausal lookup table. Which table is used is determined by

the comparison in (7b): if the accumulated value of the causal

modification function ΣFc is larger than the acausal value ΣFa,

the causal is used and vice versa. After the weight has been

updated the accumulated values ΣFa,c are set to zero. If no weight

update was performed, ΣFc and ΣFa would continue to sum up

the results of the Fa,c measurements.

V. CONCLUSION

In this paper a new VLSI model for biological neural systems

was presented. It is based on a highly accelerated analog I&F

network which implements plasticity within a large range of time

scales. This is possible by combining the usage of capacitive

storage for short-term variables, i.e. the inactive partition I or the

accumulated modification function ΣFa,c, with digital memory

for persistent information like the synaptic weights. The high

acceleration factor keeps the necessary capacitances small and

strongly reduces leakage and fixed-pattern noise problems. First

measurements show that the response of the chip is in good

agreement with simulation as well as biological findings.
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