
Faculty of Physics and Astronomy

University of Heidelberg

Diploma thesis

in Physics

submitted by

Simon Friedmann

born in Heidelberg

October 2009

Extending a

Hardware Neural Network

Beyond Chip Boundaries

This diploma thesis has been carried out by Simon Friedmann at the

Kirchhoff Institute for Physics

University of Heidelberg

under the supervision of

Prof.Dr.KarlheinzMeier

Abstract

Extending a Hardware Neural Network Beyond Chip Boundaries

This thesis presents the design, the implementation and the experimental testing of an FPGA-
based networking system for a neuromorphic VLSI hardware device. An isochronous gigabit trans-
port network is used for the exchange of digital spike events among multiple network modules.
The high speedup factor of the utilized chip compared to biological timescales imposes challeng-
ing latency and throughput requirements on the digital logic. Event processing inside the chip
necessitates sorting of spike events by time before transmission to the chip. These demands are
met with a low-latency adaptive readout-rate sorting module embedded in the network logic. The
design process was facilitated by simulations using the SystemC extension of the C++ program-
ming language in combination with the VHDL hardware description language. Support for the
implemented network was integrated into an existing software framework to allow experimental
tests of functionality and performance. Delays of 142ms and event rates of 340Hz in biological
dimensions were demonstrated in experiments. For the next revision of the used artificial neural
network ASIC delays of 9.1ms and rates of 5.3 kHz are expected. When each chip has neuronal
connections to every other, the resources of the FPGA device allow for a maximum network size
of 64 chips.

Ausweitung eines neuronalen Netzwerks in Hardware über Chip-Grenzen hinaus

Die vorliegende Arbeit präsentiert den Entwurf, die Verwirklichung und die experimentelle Über-
prüfung eines FPGA-basierten Systems zur Vernetzung eines neuromorphen Hardwaresystems in
hochintegrierter Schaltungstechnik. Für den Austausch von Aktionspotentialen zwischen mehreren
Netzwerkmodulen wird ein isochrones Gigabit-Transportnetzwerk verwendet. Der hohe Beschleuni-
gungsfaktor des verwendeten Chips im Vergleich zu biologischen Zeitskalen stellt hohe Latenz- und
Durchsatzanforderungen an die digitale Logik. Die Verarbeitung von Aktionspotentialen innerhalb
des Chips erfordert deren zeitliche Sortierung vor der Übertragung zum Chip. Diesen Anforderun-
gen wird mit einem Sortiermodul mit niedriger Latenz und adaptiver Ausleserate begegnet, das in
der Vernetzungslogik eingebettet ist. Der Entwurfsvorgang wurde durch Simulationen unterstützt,
die die SystemC-Erweiterung der Programmiersprache C++ in Kombination mit der Hardwa-
rebeschreibungssprache VHDL verwenden. Das implementierte Netzwerk wurde in existierende
Software integriert, um experimentelle Funktionalitäts- und Leistungstests durchzuführen. In Ex-
perimenten wurden Laufzeiten von 142ms und Ereignisraten von 340Hz in biologischen Einheiten
nachgewiesen. Für die nächste Revision des verwendeten künstlichen neuronalen Netzwerk ASICs
werden Laufzeiten von 9.1ms und Raten von 5.3 kHz erwartet. Die Ressourcen des FPGAs er-
lauben eine maximale Netzwerkgröße von 64 Chips, wenn jeder Chip neuronale Verbindungen zu
jedem anderen unterhält.

II

Contents

1 Introduction 1
1.1 Neural Networks . 2
1.2 The FACETS Project . 3

2 Environment of the Experiment 5
2.1 The FACETS Stage-1 System . 5

2.1.1 Nathan Network Module . 5
2.1.2 Backplane . 6
2.1.3 SlowControl Access . 7

2.2 The Multi-Class Gigabit Network Architecture . 7
2.2.1 Principles of Operation . 8
2.2.2 Interconnecting User Logic and Network . 9
2.2.3 Global Synchronous Signal . 11

2.3 The Spikey Analog Neural Network Chip . 12
2.3.1 Structural Overview . 12
2.3.2 Functional Description . 13
2.3.3 Communicating with Programmable Logic 14
2.3.4 Software and Experiment Workflow . 15

3 Concepts for Multi Chip Operation 17
3.1 Initial Considerations . 17

3.1.1 Spikey Interface Constraints . 17
3.1.2 Spikey and Network Data Rates . 19
3.1.3 Digital Event Timing . 19

3.2 Design Principles . 20
3.2.1 Sorting of Event Streams . 20
3.2.2 Providing Deterministic Neuronal Delays 22
3.2.3 Routing Algorithm . 23

3.3 Building Blocks . 23
3.3.1 Sender . 23
3.3.2 Receiver . 26
3.3.3 Sorter . 27

4 Simulations for Prototyping and Testing 33
4.1 Why Simulate? . 33
4.2 Tools and Methodology . 34
4.3 Simulations . 34

4.3.1 SystemC Prototype . 35
4.3.2 Mixed-Language Simulation . 36
4.3.3 Simulating the Implementation . 36
4.3.4 Tests of Single Blocks . 36

III

5 Implementation 37
5.1 Implementation of the Building-Blocks . 37

5.1.1 Lookup Tables . 37
5.1.2 Implementation of the Send switch . 38
5.1.3 Transmit buffer and Event Representation on the Network 39
5.1.4 Implementation of the Sorter . 39

5.2 Integration into the FPGA . 43
5.2.1 Clocking . 43
5.2.2 Integration with the Spikey Controller . 45
5.2.3 Resource Requirements . 47

5.3 Running of Experiments . 47
5.3.1 Configuration by SlowControl . 47
5.3.2 Starting procedure . 49

5.4 Debugging Features . 50
5.4.1 Logging of Event-Streams . 50
5.4.2 Counting Discarded Events . 51
5.4.3 Event Sources for Testing . 52

5.5 Development of Supporting Software . 52
5.5.1 Hardware Access Framework . 52
5.5.2 Modifications to Spikey Test Software . 53

6 Experiments and Performance Analysis 55
6.1 Validation of Correctness . 56

6.1.1 Correctness of the Routing Mechanism . 56
6.1.2 Merging of Event Streams . 56

6.2 Performance Measurements . 59
6.2.1 Latency . 59
6.2.2 Transfer Rates . 62

6.3 Demonstration Experiment . 65
6.3.1 Simple Artificial Neural Network Demonstration 65

7 Scalability of the System 69

8 Conclusion and Outlook 71
8.1 Achievements . 71
8.2 Improving the System . 72

8.2.1 Advancements Requiring New Hardware . 74

List of Acronyms 77

Bibliography 79

Acknowledgments 83

IV

Chapter 1

Introduction

The last 60 years saw the rise of computer technology to a central part in our society. With
the advent of computing machines came the idea, that intelligence, which previously was only
attributed to humans or animals, is independent of brain tissue. In the late 1950s, in a phase of
nearly limitless expectations, thinking machines were envisioned, which would equal humans in
intellectual tasks.

“It is not my aim to surprise or shock you – if indeed that were possible in an age
of nuclear fission and prospective interplanetary travel. But the simplest way I can
summarize the situation is to say that there are now in the world machines that think,
that learn, and that create. Moreover, their ability to do these things is going to
increase rapidly until in a visible future – the range of problems they can handle will
be coextensive with the range to which the human mind has been applied.”

— Herbert A. Simon, 1958 [SN58]

Although more than 50 years later computers are impressive and powerful devices, they are still
not considered to be thinking. No machine has passed Turing’s “imitation game”, for which it
must appear indistinguishable from a human to a human [Tur50] [loe09]. The classical paradigm
of sequentially computing with discrete states – the Turing Model – is therefore perhaps not the
ideal basis for such machines. Today, the field of artificial intelligence has left behind this early
hype and settled to much less ambitious topics like pattern recognition and autonomous control,
where it is quite successful.

In other fields of information technology, important topics concern the further increase of com-
putational power, which is becoming more and more challenging. The doubling of transistors
per processor every 18 months, usually referred to as Moore’s Law [Moo65], is physically limited
by minimal possible sizes of semiconductor structures. Using faster clock speeds leads to higher
energy consumption. Modern processors have already surpassed the average hot plate when it
comes to power densities [hHcF05].

Therefore, since a few years ago, the main processor manufacturers have switched to increase
performance by integrating multiple processing units onto a single die. But it has proven to
be difficult to write software which fully utilizes this parallelism. Already in the early days of
computing it was found, that for the sequential processing paradigm the speedup gained through
parallelization is limited by the amount of sequential code in the program [Amd67]. In practice
most algorithms require a certain fraction of operations which can’t be executed simultaneously.
If this fraction is one percent, the algorithm can’t be executed more than a hundred times faster
than on a single unit, no matter how many processors are used.

In summary, as of today, computers have failed to become intelligent, making them faster is
increasingly difficult and they are not ideally suited for parallelization. Perhaps one can get around

1

2 CHAPTER 1. INTRODUCTION

these problems by taking a fundamentally different approach to computing? The thinking devices
that we know of are the higher developed brains, e.g. mammalian and especially human. Its
outstanding properties are its ability to adapt, or learn, its low power consumption of only a few
watt [LS03] [Mea90] and its inherent parallelism. Thereby it seems to be an ideal candidate to
search for new computing paradigms.

There are even more incentives for research on the brain or neural networks in general. Another
reason is curiosity. It has been man’s desire ever since to understand the world around him and
what lives in it. Researching the one tool which empowered him to do so, seems an obvious
consequence. A better understanding of the principles of the brain will probably also lead to a
better understanding of diseases related to the brain and might help to develop medicaments and
therapies.

One approach in neuroscientific research is trying to use methods from electrical engineering
to build integrated circuits behaving like biological neural systems [MM88][Mea90]. This al-
lows for the construction of neuromorphic structures, which are significantly faster than biol-
ogy [SBMO07][SFM08], making experiments possible that are not feasible with computer simu-
lations. Super-realtime experiments enable statistics intensive analyses like parameter sweeps or
long-term experiments over weeks and months of simulated time [Brü09]. Also from the technolog-
ical point of view this approach is interesting. Microchips implementing these structures can have
properties like low power consumption, inherent parallelism and fault tolerance [Mea90]. They
can be used for large-scale networks on small space [SFM08].

Besides implementing realistic models of neurons and synapses, it is of importance to provide
well-suited means for their interconnection. Few neurons on individual chips have only limited
computational capabilities. It therefore makes sense to combine multiple chips, each implementing
a small network itself, to a larger system.

This thesis presents the final piece for such an inter-chip network within the framework of an
existing neuromorphic experimentation platform.

Overview of this Thesis

The goal of this work is to develop, implement and test a network technology to enable multi-chip
experiments with an existing artificial neural network chip and an existing isochronous transport
network.

Since realism is an overall goal for this system, some biological background is given in the
next section. Thereafter, the FACETS research project is introduced, which is a multidisciplinary
effort with a focus on finding new computing paradigms inspired by the brain. The technical
environment for the system is outlined in Chapter 2. The presentation of new work starts with
Chapter 3, which describes the working principles of the event network and its components. The
following Chapter 4 discusses methodological aspects of the simulations used in the development
process. Chapter 5 gives the details of the implemented design and supporting software and
Chapter 6 presents experimental results. The scalability of the system is evaluated in Chapter 7.
Thereafter, the final chapter discusses the results and gives perspectives for future improvements
and developments of the system.

1.1 Neural Networks

Like the single chip itself, the inter-chip network should be designed to be usable for biologically
relevant experiments. Therefore, a basic understanding of the matter is required. This section
presents some aspects of biological neural networks, which are of importance for this work.

1.2. THE FACETS PROJECT 3

Neurons and synapses Neurons are considered as central components of information process-
ing in biological neural networks, such as the human brain [LMBA06] [BBJ+05]. In a simplified
picture, information flows in one direction along the neuron. Signals are received by the dendritic
tree, “processed” by the cell body, the soma, and forwarded to other neurons by the axon. The
axon is connected to dendrites of other neurons by synapses. There, signals are transported to the
postsynaptic neuron by means of chemical neurotransmitters. However, along the neuron itself,
signals travel as electrical potentials, that propagate along the cell’s membrane. The brain contains
large numbers of neurons, which are strongly interconnected. The cat visual cortex for example
contains approximately 50000 neurons in 1 mm3, which are connected to 6000 other cells [BC85].

Early models of neurons by McCulloch and Pitts [MP43] assumed, that neurons are in either an
active or inactive state, depending on whether their summed inputs are above a certain threshold.
More recent models reflect the spiking mechanism of neurons [Maa97]: The soma generates a
stereotypical voltage curve, called action potential or spike, on its membrane, which travel down the
axon and evokes a change in postsynaptic potential (PSP). When the potential on the membrane
of the postsynaptic neuron exceeds a threshold, it produces an action potential itself.

Properties of Neural Networks

In these kinds of models, information is coded in the timing of spike events [Maa97]. This comple-
ments the coding in firing-rates with a wide field of possible time-based codes. Which codes are ac-
tually used in biology is not definitely known and subject of ongoing research [Sof95] [SKdRvSB98]
[dZ00]. For an artificial neural network that uses continuous-time spiking neurons, biological tim-
ing constraints must be respected, when transporting spike events between chips.

Action potential propagation delays Delays in biological neural networks are introduced for
example by the physical length of the axon. The velocity at which action potentials travel along it is
determined by several characteristics of the cell and ranges between 0.1 m/s and 100 m/s [Deb04].
According to [SSR02], horizontal cortico-cortical connections1 have delays of the order of 0.2 m/s,
giving a delay of 50 ms for neurons 1 cm apart. Measurements of axons in the visual cortex of cats
found length up to 12.55 cm [BDM05]. Synaptic delay is within 0.4 to 4.0 ms (mean at 0.75 ms)
according to [KM65]. The typical rise time of an excitatory PSP of 3 to 10 ms may also delay
propagation [SSR02].

These considerations show, that propagation delays (i.e. latency) in biological neural networks
cannot be fixed to a single value. Instead they are on the scale of milliseconds to hundreds of
milliseconds.

Firing rates In awake and attentive animals a strong synaptic bombardment of neurons in the
neocortex region of the brain is observed [DRP03]. This results in so-called high-conductance
states, in which the input resistance is reduced and the membrane voltage is less negative than in
non high-conductance states. In this state, neurons typically fire irregularly at rates between 5 to
40 Hz, according to [STG01].

1.2 The FACETS Project

FACETS stands for Fast Analog Computing with Emergent Transient States. It is an interdisci-
plinary research collaboration of sixteen European groups, funded by the European Commission
as part of the Information Society Technologies (IST) program [ea05]. The goal of the project
is to find new computing paradigms inspired by brain activity, that are different from the well
established Turing model [Tur37]. Within the FACETS project the realization of such newfound
paradigms is to be prepared by laying down a theoretical and experimental foundation. More

1Connections within the neocortex of the human brain.

4 CHAPTER 1. INTRODUCTION

information on the goals, ongoing activities and published results can be found on the project
website [FAC09].

The interdisciplinary approach combines scientists from several fields. Biologists gather data
in single cell and network experiments on neural tissue in-vivo and in-vitro. Modelers use this
data for computer simulations and to build a theoretical understanding. Based upon this work,
neuromorphic hardware devices are designed following two branches. One tries to mimic biology
as close as possible in small networks [ZBS+06] with the possibility of hybrid living-artificial neural
networks [BRG+07]. The other exploits the intrinsic properties of silicon, that lead to timescales
faster than biology, when decreasing element size. A small size of artificial neurons and synapses
allows for a high number of elements per chip and thus enables large-scale networks.

For this thesis the Spikey chip, following the second branch, plays a major role and is introduced
in Chapter 2, along with its system environment. The chip and its environment form the FACETS
stage-1 system. Single chips are mounted on support modules, which among other things provide
network connectivity between the modules. In contrast, in the FACETS stage-2 system [SFM08],
which is currently under development, the neural network chips are not separated into individual
dies, but are directly interconnected on the production wafer. Thereby, a much higher connection
density can be achieved than in stage-1. Using these connections, events can be exchanged by
means of an asynchronous digital network protocol that was specifically designed for this purpose.
For event communication to other wafers or to a host computer a second digital network is provided
by external chips. The stage-2 system also features an improved neuron implementation, which
allows a flexible configuration of neuron count and the number of presynaptic connections per
neuron. Neurons with up to 14366 incoming connections are possible in the system [Mil09].

Chapter 2

Environment of the Experiment

This chapter gives an overview of the existing hardware and software components. It introduces
the FACETS stage-1 system, which is a hardware platform that can be used for the exploration of
artificial neural networks. These are the Spikey analog neural network ASIC1 and the isochronous
multi-class gigabit network architecture (MCGN).

2.1 The FACETS Stage-1 System

The Stage-1 system is developed in context of the FACETS project as a multi-chip neural network
platform. A schematic overview can be seen in Figure 2.1, technical details are listed in Table 2.1.
The Spikey analog neural network chip plays a central role in the system. One of the chips at a
time is situated on a Nathan network module, where it is connected to an FPGA2. Up to sixteen
of these network modules can be plugged into a single Backplane to form a larger network. The
Backplane is connected to a controlling PC for configuration access.

2.1.1 Nathan Network Module

The Nathan network module serves two purposes: It supplies infrastructure for the operation
of an artificial neural network ASIC (ANNA) and it enables several of these to communicate
among each other within a large scale network. To accomplish this in a flexible way, the network
module features a Xilinx Virtex-2 Pro FPGA [Xil07], directly connected to the neural network
chip. This FPGA has eight serial multi gigabit tranceivers (MGT), four of which are connected to
the backplane adapter. The four remaining can be used for additional interconnections between
the network modules, e.g. to interconnect multiple backplanes. The work described in this thesis
utilizes the transport network established by these multi-gigabit tranceivers.

Other parts on the board are a DDR3-SDRAM4 module of typically 256 MByte, two 512
KByte SRAM5 chips, a digital to analog converter to generate reference voltages and currents for
the ANNA and a temperature sensor for monitoring.

An extensive description can be found in [Grü03].

FPGA device details An FPGA is a programmable device used for the implementation of
digital logic circuits. In contrast to a processor, which executes sequences of instructions, the
basic elements of an FPGA are configured to form a circuit described on the gate level. In the
given device the basic logic elements are organized in configurable logic blocks (CLB). They consist
of four slices, which contain two function generators each. Each function generator is programmed

1Application Specific Integrated Circuit
2Field Programmable Gate Array
3Double Data Rate
4Synchronous Dynamic Random Access Memory
5Static Random Access Memory

5

6 CHAPTER 2. ENVIRONMENT OF THE EXPERIMENT

Figure 2.1: Schematic view of the FACETS stage-1 system with one backplane. Only four nathan
network modules and not all signaling lines are shown for clarity.

to implement a boolean function with 4 bit wide input. Its output can either be asynchronously
passed out of the slice or via a Flip-Flop storage element. Function generators are implemented
as SRAM lookup tables (LUT4) that can also be used as random access memory or shift registers.

Using the Flip-Flop, circuits synchronous to a clock signal can be build. The FPGA has
signaling lines dedicated to clock networks to allow for a low skew distribution of the clock signal.
These networks are driven by global clock buffers (BUFG). Digital clock managers (DCM) provide
various features for the conditioning of clock signals, such as frequency modification and phase
shifting.

The CLB elements are arranged in a regular structure with slices forming columns and rows.
Inserted into the structure are columns with specialized blocks. These blocks contain the MGT
logic interfaces and dedicated memory resources called BlockRAM. The latter are memory cells
with a capacity of 18 kBit and two configurable access ports. The PowerPC block available in the
FPGA is not used for this thesis. A detailed description of the device is given in [Xil07].

2.1.2 Backplane

The Backplane provides power, connectivity and clock signals for the network modules. It is de-
signed to fit into a standard 19” rack, where it takes a height of three rack units6. It contains
two jumper-selectable alternative clock sources with frequencies of 100 or 156.25 MHz, which can
be used as clock inputs to the Nathan FPGAs. Each of the network module slots is individually
connected to a central FPGA on the Backplane. These connections are used to load bitstream
configuration files onto the Nathan FPGAs and for configuration and control access during ex-
periments. This is done by the SlowControl, which is a moderate speed and bandwidth network,
connecting the programmable logic with a standard, off-the-shelf PC.

The signal lines of the MGT links are routed between the module slots in a fixed topology
shown in Figure 2.2. Each node represents one Nathan board and is connected to four nearest
neighbors via one MGT link per neighbor. Since the network modules are not point-to-point
interconnected with each other, nodes must be able to route traffic through which is not directed
at them. Since the Backplane has sixteen slots, the maximum distance between two nodes is four
hops.

A detailed description of a previous version can be found in [Grü03]. For the work presented
here a revised board has been used. The Backplane description above refers to this newer version.

61 rack unit = 44.45 mm

2.2. THE MULTI-CLASS GIGABIT NETWORK ARCHITECTURE 7

Figure 2.2: The multi-gigabit tranceiver links of the Nathan network modules are interconnected
on the Backplane in a toroidal topology. Every node has four nearest neighbors and the maximum
distance is four hops. The numbers shown are used to address the modules.

2.1.3 SlowControl Access

Setup and control of neural experiments is done using the SlowControl network. This includes
among other things the reading and writing to the SDRAM on Nathan, the configuration of the
ANNA and programming of routing information for inter-chip communication. The controlling
PC can communicate with client logic modules implemented on the FPGA by reading and writing
32 bit data words to 32 bit wide addresses. Sixteen such modules can be individually addressed
in every device. For example on Nathan there may be a module for RAM access and one to
communicate with the ANNA, among others.

The controlling PC uses the custom-made Darkwing PCI7 card as access device to the hard-
ware. It is connected to the Backplane by a SCSI8 cable. On the original Backplane, the network
modules are physically connected in a ring topology, which is reflected by a TokenRing (IEEE
802.5) like architecture of the SlowControl. With the new revision the modules are point-to-
point connected to the Backplane FPGA as a central hub. However, this thesis uses a FPGA
programmed for software compatibility, that emulates the previous topology.

There is ongoing work to replace the Darkwing card with a Gigabit Ethernet link to the
Backplane. This is to improve data rates and to communicate with the Nathan modules in
parallel. More on this and a more detailed description of the SlowControl can be found in [Dre08].

2.2 The Multi-Class Gigabit Network Architecture

The multi-class gigabit network (MCGN) architecture was designed in the Electronic Vision(s)
group with the purpose to interconnect the Nathan network modules. It is a multi-class network
that combines transport of priority traffic with quality of service (QoS) requirements and the
exchange of packet based best-effort traffic. A detailed description can be found in [Phi08a] a
outline is given in [PSM09]. The following paragraphs define some important concepts.

Quality of service QoS is a general computer networking concept and is described for example
in [PD03]. A network with QoS can give guarantees for some or all of its performance charac-
teristics, e.g. constant throughput, maximum error rates or maximum latency. Typical examples
are multimedia streaming applications, where a constant data rate is required or telephony, where

7Peripheral Component Interconnect
8Small Computer System Interface

8 CHAPTER 2. ENVIRONMENT OF THE EXPERIMENT

Nathan FPGA: Xilinx Virtex-II Pro (XC2VP7-6 FF 672)
Slices 4928
Dedicated RAM blocks (18 KByte) 44
Multi-gigabit tranceivers 8
max. MGT data rate 3.125 GBit/s
DDR-SDRAM
Size 256 or 512 MByte (max. 2 GByte)
Data bus width 64 bit
Max. clock frequency 133 MHz
SlowControl

Clock frequency 40 to 100 MHz
Logic modules per FPGA 16
Address width 32 bit
Data width 32 bit

Table 2.1: Device types and performance characteristics of the FACETS stage-1 system.

latency and jitter9 must be bounded. In packet switched networks, this can be implemented by
allowing routers to prioritize individual packets based on their traffic class. One example is the
Differentiated Services standard for the Internet Protocol [NBBB98] [BBC+98]. Another method
is to preallocate network resources for a connection, as the Integrated Services architecture does
[BCS94].

Priority traffic Quality of service demands for artificial neural networks are directly derived
from biological properties of their ideal. The relevant characteristics are described in 1.1. The
main QoS requirement is fixed delay with low jitter, since timing of spike events is assumed to be
relevant for information processing. The delay must also be in a biologically realistic time domain
with respect to the ANNA10. MCGN provides this QoS by using resource reservation and time
division multiplexing (TDM) for priority data.

Best-effort traffic Resources not reserved for priority data can be used for packet based traffic
without QoS requirements. Such traffic can comprise the distribution of stimulus data for the
neural network among the SDRAM modules of several Nathan boards.

The work presented in this thesis only deals with the handling of priority traffic. Therefore
the further discussion focuses on this traffic class. The interested reader may refer to [Phi08a] for
more information on the integration of both traffic classes.

Besides guaranteeing QoS it is necessary to allow a huge number of inter-neuron connections.
MCGN provides scalability by focusing on inter-chip connections, over which several neuronal links
are established. The network is implemented within the FPGAs on Nathan and uses the MGT
links. The next section gives a short overview of the functional operation of MCGN. Thereafter
the interface to user logic and a service for system-wide synchronization are described.

2.2.1 Principles of Operation

Time division multiplexing Several chip-to-chip connections can share a single MGT link.
This is done by dividing the time into equally sized slots. During one slot a fixed number of bits
is transmitted. A fixed number of slots and a trailing gap form a frame, which is periodically
repeated. Each slot contains data of a single connection only. For example to transport four
connections over a single link, a frame consisting of four slots can be used, each being assigned to

9Jitter is the variation in end-to-end delay over a network connection
10The Spikey chip works on an accelerated timescale

2.2. THE MULTI-CLASS GIGABIT NETWORK ARCHITECTURE 9

a different connection. During the gap no user data is transmitted, instead lower network layers
may insert data of their own.

Resource reservation The slot to connection assignment is done before the experiment i.e.
resources are preallocated for the whole network and do not change during the run. The assignment
is done frame-wise, so the allocation pattern repeats periodically with every frame.

In case only one slot of a larger frame is allocated for a single connection, data has to be
buffered by the user logic until the time division reserved for this connection is reached. The
waiting time ranges between zero slots and the frame length. This waiting time is the only source
of jitter for priority traffic on the part of the network.

Synchronization For the operation of MCGN a global synchronization of all network nodes is
required. This is necessary to ensure that data arriving over multiple links at one node belongs
to the same slot within each frame. This way, a connection routed through a node can simply be
forwarded by connecting the input to the output during the correct time-slot.

To detect synchronization or the loss of it, a special bit-sequence - the sync character - is
inserted in each inter-frame gap. The network is synchronized, when for every node, all incoming
sync characters arrive at the correct local time. To achieve this condition, the controlling PC
adjusts the local time counter in every node and additionally programs small delay buffers at
the node’s outputs during the network setup phase. The network stays synchronized, because all
network modules are clocked from the same source on the Backplane.

Besides network operation, the synchronization provides a global time base with the resolution
of a single clock period for the whole system.

2.2.2 Interconnecting User Logic and Network

The Switch

MCGN implements a switch within every network node. This switch has two types of ports: MGT-
ports interface the MGT links to the neighboring nodes and user-ports interface user logic inside
the FPGA. Besides directing traffic from a user-port to one or more MGT-ports, the switch acts
as a router within the network, forwarding traffic from MGT-port to MGT-port. Since resource
reservation determines which outgoing port of the switch reads which incoming port for every
time-slot, the scheduling of the switch is done by a look-up of a static routing table. A diagram
of the switch can be seen in Figure 2.3.

In the given implementation the switch has a data path width of 16 bit and two cycle slots,
which are 32 bit wide.

Interface to User Logic

The switch presents timing information and handshake signals for every data direction of the
user-ports to the user logic.

Handshake To exchange data the respective destination (for example the switch logic) asserts
the accept signal to indicate that it is ready to receive data. In the next clock cycle the source
(for example the user logic) writes to data and asserts valid. Multiple cycles have to be used, in
case the slot size is larger than 16 bit. Because the switch features no internal buffers, it can not
hold back data, when the user logic is not ready. accept is therefore not evaluated by the switch.

Timing The current position within the time-frame is presented to the user in multiple ways:
The enable signal is low during the inter-frame gap and high during the data period. The current
slot number is denoted by slot (7 bit). On the last clock cycle of the data period last is
asserted and during transmission of the synchronization character sync is set. For multi-cycle

10 CHAPTER 2. ENVIRONMENT OF THE EXPERIMENT

Figure 2.3: The diagram shows the MCGN switch as a link between user logic and network. It is
drawn here in an example configuration with two user- and four MGT-ports. A data stream with
a frame length of four passes from user-port 1 through the switch to MGT-port 2.

2.2. THE MULTI-CLASS GIGABIT NETWORK ARCHITECTURE 11

clk
accept
valid
data affe bffe

Figure 2.4: Timing diagram of the handshake at the user-port, with transmission of a single
2 cycle slot.

clk
enable
slot 0 1 2 3 0 1 2 3
sync
last
sfirst
sofs

Figure 2.5: Diagram of the timing information supplied by the switch for a frame length of four
and 32 bit wide slots.

slots sfirst indicates the first cycle within the slot and sofs the offset within the slot. In the
given implementation sofs is only 1 bit wide and slots are 2 cycles or 32 bit long respectively.

The implementation allows to adjust how far in advance the timing information of the transmit
side is given. This is useful for pipelined applications, e.g. to read from a RAM address depending
on the slot number.

2.2.3 Global Synchronous Signal

Distribution of the Signal

In the synchronization process mentioned above, MCGN is synchronized with the precision of a
single clock cycle. During the process, the transmission delays of all links become known. In the
synchronized system it is possible to provide a global synchronization service to the user logic,
using the obtained delays. The service allows a single network module to raise a global synchronous
signal (GSS), that will be asserted on all modules at the same clock cycle.

To accomplish this the raising module initializes a counter to a sufficient large number and
distributes this value, decremented by the respective transmission delays, to its neighboring nodes.
These upon reception initialize their counters themselves and distribute the signal to their neigh-
bors excluding the originally sending one. The counters on all nodes are also decremented during
each clock cycle. This way the value decrements in time and space as it propagates through the
network. All counters reach zero in the same clock cycle, leading to the simultaneous assertion of
the GSS event on all nodes.

Interface to User Logic

The MCGN architecture allows for multiple GSS IDs to signal different global events. For each of
these a set of interface signals is defined:

Raising Before GSS events can be raised or received enable must be asserted. This is important,
as in an unsynchronized network spurious events may be detected. After that, raise may be high
for a single clock cycle to start distribution of the GSS.

Receiving When enable is high, the occurrence of a GSS is indicated by event. The signal
will stay high until ack is set.

12 CHAPTER 2. ENVIRONMENT OF THE EXPERIMENT

Figure 2.6: Microphotograph of the Spikey chip. The upper regular part contains synapses,
synapse drivers and neurons. The synapse drivers are situated in between the two synapse blocks.
The digital part on the lower half of the picture can be identified by its irregular structure. Adapted
from [Grü07] with permission.

2.3 The Spikey Analog Neural Network Chip

Neurons and synapses in the stage-1 system are implemented as analog circuits on the Spikey
ASIC. It features 384 neurons with 256 synapses each, totaling in 98304 synapses. The chip is
fabricated in a standard 180 nm CMOS11 process and has a die size of 5 × 5mm. It operates at
continuous time with an acceleration factor of about 105 compared to biological real-time. The
implemented neuron is modeled on the leaky integrate and fire model [GK02] and spike timing
dependent plasticity (STDP) mechanisms are available in every synapse. Short term plasticity
features allows to configure individual synapse drivers as facilitating or depressing, increasing or
decreasing synaptic weights depending on firing rates. A microphotograph is shown in Figure 2.6.

Spikey was developed in the Electronic Vision(s) group and is available in a third revision, with
a fourth version currently in production. A detailed description of the chip is given in [Grü07].
The implemented neuron and synapse models can be calibrated to match biological characteristics,
enabling the chip to be used as a neuroscientific tool [Brü09]. It is accessible from a simulation
device independent modeling language and neuroscientific experiments have been performed on
it [Kap08] [Bil08].

This section will give a very basic overview and highlight the aspects relevant to the following
chapters. First of all, structure and function of Spikey are outlined, then the controller imple-
mented on the Nathan FPGA is described and finally, the focus will be on support software and
experiment workflow.

2.3.1 Structural Overview

Digital and analog part Spikey is a mixed-signal chip. It contains an analog part implementing
neurons and synapses, which takes up the larger part of the area. The digital part has a supporting
role. It provides configuration access to parameters of the analog part, contains a reference time
counter and communicates with the outside world.

The two parts differ in a fundamental way: The analog computation is done in true continuous
time. The implemented circuit mimics the neuron model’s characteristics for membrane voltages

11Complementary Metal Oxide Semiconductor

2.3. THE SPIKEY ANALOG NEURAL NETWORK CHIP 13

and currents. The digital part uses quantized time, which is determined by a clock signal. A
conversion between the two time domains is done by the time to digital (TDC) and digital to time
converters (DTC). They convert action potentials of the artificial neurons into digital events and
vice versa.

Network blocks As can be seen in Figure 2.6, the analog part is split into two identical network
blocks. Each of them contains 192 neurons with 256 synapses. The latter are arranged in a matrix,
connecting synapse drivers on the rows with neurons on the columns.

Frequencies Multiple clocks at different frequencies are used on the chip. The external clock
input of the chip is driven by the Nathan FPGA and reconstructed by a phase locked loop (PLL).
So Spikey and Nathan are synchronous to each other. On Spikey there is a fast and a slow clock,
with the latter having half the frequency of the primer. The fast clock is used to increment the
reference time counter, which is used to digitize events. The FPGA’s main clock has the same
frequency as the slower clock. The chip is designed to work at frequencies of up to 400 MHz for
the fast clock.

Neuronal events Inside the analog part, action potentials are represented as voltage spikes
within a continuous time domain. For transportation off chip, these events are digitized into a
discrete time domain by assigning them an 8 bit time stamp and a 4 bit time bin. The time stamp
is derived from a reference time counter. The time bin is calculated by subdividing one fast clock
cycle into sixteen subdivisions. A 9 bit address field completes the neuronal event and identifies
the synapse driver for incoming events and the neuron number for outgoing ones.

Event buffers Events going into and out of the network block are stored in FIFO12 buffers inside
the digital part. A DTC is associated with each input buffer, which is in turn connected to a block
of 64 synapse drivers. Every block has two buffer - DTC pairs, leading to sixteen input buffers and
DTCs in total. Two pairs are used per block, because event time is referenced to the fast clock,
while the event input buffers are inside the slow clock domain. One buffer per DTC is therefore
associated with the rising and one with the falling edge of the slow clock. Thus, for a given time
stamp at most eight events can be simultaneously injected into the synapse arrays. Because of the
split in two network blocks, each neuron can therefore receive four events at maximum within one
cycle.

Outgoing events are digitized by the TDCs and stored in six output FIFO buffers with the fast
clock. One buffer is connected to 64 neurons and can receive an event from one of them in every
cycle.

Interface to the outside world All communication is done over two 8 bit links, which operate
at frequencies of up to 400 MHz with double data rate. Their physical characteristics are based
on the HyperTransport specification [Hyp06]. They give a maximum rate of 1.6 GBytes/s. To the
FPGA logic this appears as one 64 bit word within one slow clock cycle.

2.3.2 Functional Description

Synchronization Since the clock signals on Spikey are derived from the FPGA clock, time
counters on both are synchronous by design. But because the physical distribution of the signal
imposes a propagation delay, there is an uncertainty of at maximum one clock period between
the two clock edges. This can lead to one-off mismatches between FPGA and Spikey time coun-
ters, requiring a synchronization mechanism. This mechanism is implemented within the Spikey
controller logic on the FPGA.

A correct synchronization between FPGA and Spikey is important, because the time counter
on Nathan is used to augment the 8 bit time stamps of events coming from the chip. For multi-chip

12First In First Out

14 CHAPTER 2. ENVIRONMENT OF THE EXPERIMENT

Packet slot Neuron numbers
0 0 - 63

256 - 319
1 64 - 127

320 - 383
2 128 - 191

384 - 447

Table 2.2: The table shows the fixed assignment between neuron addresses and packet slots.

experiments this mechanism works in conjunction with MCGN’s network wide synchronization to
realize a common time on all neural network chips and FPGAs.

Event Generation and Digitization Digital events are transmitted to the chip over the Hy-
perTransport link and demultiplexed to an event input buffer. When the buffer is not empty, the
first element is removed from it and its time stamp is compared to the current system time. On
match, the event is forwarded to a DTC and the addressed synapse driver to generate a spike.

When the neuron circuit generates an action potential, the logic of TDC and event output
buffer produces a digital event with the current system time and neuron address and stores it in
the output buffer. If multiple events fire within the same clock cycle, a priority encoder delays
events with higher neuron number prior to digitization in the TDC. They are then sampled within
the next clock cycle.

Event Loopback Mode As a debugging and verification feature the chip contains an event
loopback module, that - when enabled - replaces the functionality of the analog part. Events
coming from the input buffers are pipelined through this module and then fed into the output
buffer, as if they were coming from the network blocks. In the process their time stamp is increased
by 10.

2.3.3 Communicating with Programmable Logic

The Nathan FPGA is connected to Spikey by means of the HyperTransport link. This interface
provides transmission and reception of one 64 bit data packet per FPGA clock cycle. It is used
for all communication with Spikey , which includes configuration, stimulation and monitoring of
the implemented neural network.

Event packing A single digital event is 21 bit wide. Three of these can be packed into one
64 bit data packet using three separate packet slots. As additional bits are required for protocol
data and valid bits, the highest nibble13 of the time stamps is stored only once inside the packet.
This of course reduces the number of possibilities to combine events and has to be taken into
account by the sending logic.

For events coming from Spikey the datapath layout restricts, in which packet slots events can
appear. Each slot is associated with two output buffers, which hold events of neurons connected
to their TDC only. The mapping of neuron addresses to packet slots is listed in Table 2.2.

Interface logic The existing controller module in the FPGA logic (cf. Figure 2.7) consists of
two parts: spikey_control implements the low-level access to Spikey . spikey_sei is a data
source and sink for spikey_control reading from and writing to the PlaybackMemory within the
local SDRAM.

In the PlaybackMemory a sequence of commands can be stored, which is consecutively sent
to the chip. Special delay commands can be used to control the timing. Stimulus events are

13Two 4 bit nibbles form an 8 bit byte

2.3. THE SPIKEY ANALOG NEURAL NETWORK CHIP 15

Figure 2.7: Schematic overview of the interface logic for Spikey within the Nathan FPGA.
spikey_control is the low-level interface to the chip. spikey_sei transfers events and control
data from the PlaybackMemory to Spikey and in the opposite direction.

coded as event commands, preceding the actual event data and providing a delay time to wait
afterwards, and event packets. The latter hold three events each and use the same encoding as
the link interface.

2.3.4 Software and Experiment Workflow

A single chip experiment on the stage-1 system is performed by going through the following steps:

• Transmission of stimulus event data and configuration commands to the PlaybackMemory

• Synchronization between Nathan FPGA and Spikey

• Playback of the PlaybackMemory

• Transmission of result event data to the control PC

Stimulus events and configuration commands are assembled into a sequence of instructions, that
are written to the PlaybackMemory and executed similarly to a program in a CPU14. This
access uses the SlowControl network after assembling is done in software on the attached PC.
This software is either the createtb testbench program or the low level part of a PyNN script
(discussed below).

When all data has been transmitted and stored in the SDRAM, spikey_sei starts to read the
just transmitted program back into FIFOs implemented in BlockRAM resources of the FPGA. A
predefined time elapses, before the experiment is started, to give the FIFOs time to fill.

Then spikey_sei begins the processing of the command sequence, which must contain a special
command to synchronize time counters. As soon as the FIFOs run empty, the logic ends the
experiment and disables event processing. When having sustained high event rates programmed
into the PlaybackMemory , this might happen before the end of the sequence is reached, because
the SDRAM can not provide the high data rates of the Spikey interface continuously. Therefor a
large amount of BlockRAM cells is allocated for the read and write FIFO buffers.

After the experiment has ended, the PC reads result data out of the SDRAM via the Slow-
Control.

14Central Processing Unit

16 CHAPTER 2. ENVIRONMENT OF THE EXPERIMENT

The testbench software framework The createtb software was developed to verify the
Spikey ASIC and its FPGA controller in simulation and experiments with real hardware. It
provides the low level framework to interface the chip and perform automated tests. On invocation
it is given one or more test modes to execute. These test or validate certain aspects of the chip. A
set of different communication modes is provided of which two are of interest: In the file mode read
and write operations, that would be performed over the SlowControl are written to a file, which
can be parsed by the simulation testbench. Non-interactive testmodes - that is testmodes that do
not require the results of their read operations during runtime - can thus be used in a completely
simulated environment. The msgqueue communication mode uses the real SlowControl to talk to
the actual hardware. It is used to perform experiments with Spikey .

Software for neuroscientific experiments For neuroscientific experiments, i.e. experiments
which use a description of the artificial neural network in biological terms, another software system
is used. Using the same hardware access code as createtb, the stage-1 system is made available as
backend for the PyNN modeling framework. PyNN allows a description of neural networks using
the Python programming language. The description is independent of the actually used simulator.
In case of the hardware system as backend, the biological network parameters are transformed to
the configuration parameters of the system. The transformation uses individual calibration files
to account for variations between chips.

Chapter 3

Concepts for Multi Chip

Operation

The previous chapter summarizes the state of the FACETS stage-1 system, as it is used for single-
chip operation. A revised version of the Spikey ASIC can be used for experiments and a low
latency isochronous interconnect is available as basis for multi-chip operation.

This chapter outlines concepts, which link the Spikey controller and MCGN to support the
formation of large scale artificial neural networks across chip boundaries. The coming section
starts with an analysis of the existing system and derives constraints for the design. After these
abstract considerations, the chapter continues with an explanation of the operation principles and
an introduction of the basic logic blocks.

3.1 Initial Considerations

A system overview is presented in Figure 3.1. The event network is formed by logic on top of the
Spikey controller and the MCGN implementation. It uses the priority traffic class of MCGN to
communicate with other network modules. To this end it routes events inside the FPGA: Coming
from Spikey , they are directed to a user port and time slot in such a way, that they are delivered
to the intended destination chip. The source event has to be translated into a target event by
mapping neuron addresses onto synapse driver addresses and adding a delay to the time stamp.

3.1.1 Spikey Interface Constraints

Section 2.3.2 outlines how the Spikey analog part converts digital into analog events. After trans-
mission to the chip, the digital part processes events in order of arrival following the first in first
out principle. When their time stamp matches the system time, a buffer forwards events to the
DTC for conversion. It is therefore necessary, that the FPGA ensures well ordered event streams
to the chip.

The problem To illustrate this problem by an example, consider the processing steps on Spikey
(see Section 2.3 or [Grü07]). For a sequence of events within the event input buffers on the chip,
the first event arriving is immediately taken out of the FIFO and stored in a register stage. A
logic process compares its time stamp to the current system time in every clock cycle. When the
timers have counted up to match the event time stamp, the next event – if available – is taken
from the FIFO. Because time stamps are 8 bit wide a match will occur at the latest, after the
timer has been incremented by 256.

Assuming two sequential events for the same point of time and thus with identical time stamps
that follow each other in the FIFO, the DTC will convert the first one as expected. When the
second one passes to the register stage, the time counter has already been incremented, blocking

17

18 CHAPTER 3. CONCEPTS FOR MULTI CHIP OPERATION

Figure 3.1: Overview of the system. The event network logic is on top of the Spikey controller
and the MCGN implementation. Thereby, it links the Spikey chip to the gigabit network.

the FIFO until the counter matches again on the next wraparound. Of course, during this time
other events have to wait in the buffer and so also future event processing is disturbed.

This problem arises not only for events with identical time stamps, but also for those, where
the second event has an earlier time stamp than the first one. To prevent it, it must be assured
by external facilities, that events going to the same event input buffer are in strict monotonic
order before they are transmitted to Spikey . In other words, event streams to certain subranges
of synapse driver addresses must be sorted on the FPGA.

Incidence

In a multi chip network there are two types of sources for events: Other network chips and the
PlaybackMemory . A strict monotonic ordering of streams within the PlaybackMemory , going to
a single input buffer, is assured by the existing software. As described in Section 2.3.2 TDCs
on Spikey digitize events in a strict monotonic order, too. It seems necessary, to name some
situations, where the order is violated and blocking of the buffers can occur.

Simultaneous source events For a setup, in which two source neurons in different blocks are
connected to one destination synapse driver, with a certain probability both sources will spike
within the same clock period. Without further prevention those events will reach the destination
chip with identical time stamps, resulting in a blocked buffer.

Buffer race conditions For the same setup consider the following situation at the output event
buffers of the source chip: When activity in both neuron blocks differs, the numbers of events in
those FIFOs may be diverging. But because the propagation time through a FIFO is directly
proportional to the number of contained elements, this can lead to events generated at a later
point in time overtaking events, passing through the other buffer. Again, when streams passing
through these two buffers share a common destination, the arriving stream may not be in correct
order.

Network jitter Extending this setup to a network of three chips, with two chips containing one
source neuron each and the third being the destination, imposes an additional uncertainty on the
transportation time. Events have to wait before transmission, until a valid data slot is available,

3.1. INITIAL CONSIDERATIONS 19

which leads to delays, that can be considered random. Between connections routed via different
numbers of intermediate hops, the propagation delays also differ by fixed offsets. So transmission
times from both sources are subject to variations and events with earlier time stamps may overtake
later ones. When streams are merged together at the destination, the temporal order is lost.

3.1.2 Spikey and Network Data Rates

This section discusses the data rates of Spikey and the gigabit network and analyzes, what conse-
quences result for the FPGA logic between them.

It was stated in Section 2.2.2, that the network in the given implementation has a 16 bit wide
datapath. That means in every FPGA clock cycle 16 bit of data can be passed to the switch or
received from it. It was also mentioned, that events processed by Spikey are 21 bit wide. 12 bit
for time stamp and time bin and 9 bit for the address. So at least two clock cycles are required
to pass a single event. The interface to the Spikey chip on the other hand can deliver up to three
events in a single FPGA clock cycle. But events on the chip are digitized and generated twice that
fast. So in one clock cycle the system time counter, which is the reference for the time stamp,
increases by two.

Example For an FPGA frequency of 100 MHz the system time counter is referenced to a
200 MHz clock. At maximum one TDC can digitize 200 × 106 events per second and insert
them into its event output buffer. From this FIFO 100 × 106 events can be read per second and
send off chip. The FPGA in turn can send 50 × 106 events per second over a single MGT link.

These numbers are only peak event rates. The event packing algorithm used on the Spikey
interface introduces an additional overhead, as the implemented logic inserts empty packets, when-
ever the common high nibble is increased. Overhead is also present within the MCGN: At the
end of every frame is a gap, where no data is transmitted.

Consequences for the design These throughput estimates show, that the total interface rate
of Spikey is much higher than the one of the network. Six bundled MGTs would be required, to
provide the equivalent bandwidth. The design is should support multiple MGT links in parallel,
but limitations on logic size imposed by the FPGA need to be kept in mind. To support the
bandwidth of six MGTs, the MCGN switch would have to be implemented with six user ports,
totaling in twelve ports. For each one a buffer structure is necessary to store events, until a valid
slot is available.

The fixed topology of the Backplane prevents an arbitrary allocation of the MGT bandwidth
between random nodes. Four of the eight MGTs are hard wired. Combining them to interconnect
two particular nodes may require taking detours over other nodes. This may or may not be
acceptable, depending on the latency requirements. The remaining four MGTs can be freely
interconnected by cables.

Despite of the high Spikey interface rate, spike trains can have even higher rates, since the
system time is incremented twice as fast.

Concluding from these observations, the FPGA logic should be designed to allow maximum
rates for a short time (bursts). Sustained rates should fully utilize the available bandwidth. This
applies to both the Spikey interface and the gigabit network in transmit and receive direction.

3.1.3 Digital Event Timing

From the experimenters point of view, it is desirable to have selectable delays on artificial neuronal
connections to model for example different axonal lengths (cf. Section 1.1). This means, that a
spike generated at one neuron, should be presented to the postsynaptic neuron after a configurable
time. With Spikey this is not possible for connections inside a single chip, since there is no way
to delay the spike deliberately. Therefore all those connections have the same delay.

Now with event processing outside of Spikey , this limitation can be overcome. The trans-
portation over the network introduces a natural latency, which is subject to jitter and may also

20 CHAPTER 3. CONCEPTS FOR MULTI CHIP OPERATION

vary depending on the path, an event takes. The design should make it possible to program an
artificial delay for every neuronal connection with the network latency as lower limit. Jitter should
be compensated for to provide deterministic timing. The dynamic range of this programmability
should be large enough to cover the range of short and long paths between network nodes. At least
connections with up to four hops should be possible simultaneously, to allow fully interconnected
networks on the Backplane.

Since the implemented neuron model is time based, the timing of the network should satisfy
biological requirements. At a speed-up factor of about 105, an axonal delay of 20 ms in the
biological time domain requires chip-to-chip transmission latencies of 200 ns. For a FPGA clock
frequency of 156.25 MHz the time for a single hop transmission of the MCGN alone is given as
160..180 ns [Phi08a]. Hence, the timing requirements are on the limit of what the hardware can
provide. Therefore minimizing latency must be a primary objective of the design.

3.2 Design Principles

This section outlines the principles of multi-chip operation. It discusses general aspects, while the
section following describes core components, which realize these principles.

3.2.1 Sorting of Event Streams

To satisfy the requirements stated in Section 3.1.1, event streams going to Spikey have to be
sorted by their time stamps. Classical sorting algorithms (e.g. BubbleSort, QuickSort [SS02])
often assume, that the data to be sorted is stored in a randomly accessible memory. Then they
define a sequence of comparison and memory movement operations to iteratively transform the
data into a sorted state. These algorithms require the complete data to be available before they
start, thereby introducing additional delay. Using such an algorithm to sort the event stream, all
events within a certain range of time stamps would have to be stored in order of arrival. Then,
the algorithm would iteratively sort the events and afterwards transmit them to the chip. During
sorting, no further events for this range of time stamps can be accepted. Thus the time required
for sorting, determines the minimal achievable delay.

This time can be reduced by shortening the time stamp range wherein sorting takes place. But
only events within this range can be accepted and stored by the sorter. A large size is necessary
due to uncertainties in the transmission latency (cf. Section 3.1.1). It is also desirable, since it
provides a higher dynamic range of programmable delays to the experimenter.

Insertion Sort The idea of Insertion Sort [SS02] is very simple: Each input element is directly
inserted at the correct position within the output array. The position can be determined by
sequentially comparing the new element to the already placed elements. It is then inserted before
the first element which compares greater. To reduce comparison operations, a binary search [SS02]
can be used to find the proper insertion point.

The algorithm exhibits two desirable features: The output data stream is always well ordered
and the input data is processed in one pass, therefore allowing a streamed operation.

The main disadvantage is, that for every insertion all following elements of the output array
have to be moved down one place. This leads to a comparatively high runtime complexity.

Modified Insertion Sort Exploiting the special characteristics of the problem at hand, this
disadvantage can be overcome. Events are not required to be stored in a sequence without gaps.
Instead they can be stored in a hash table with the time stamp as key. To get a sorted stream,
the readout side only has to read from the table at the index corresponding to the current time.
An example of the algorithm in progress is given in Figure 3.2.

The need for comparison and movement operations is eliminated altogether. It is therefore
possible to insert events within a single clock cycle, so that the throughput of the data path is not
reduced. As a positive side effect this algorithm also removes events with identical time stamps

3.2. DESIGN PRINCIPLES 21

Figure 3.2: Illustration of the modified Insertion Sort algorithm: Every row shows the situation
within the current clock cycle with time advancing downwards. To the left are time stamps of
incoming events. To the right are outgoing events. The middle part represents the hash table with
eight entries. The highlighted cell is the one being currently read. Its content will be output in
the next clock cycle.

from the stream, which is stated as a requirement in Section 3.1.1. To make optimal use of this
feature one would implement one hash table for every block of synapse drivers. Otherwise also
non-colliding events with identical time stamps have to be dropped. How many hash tables can
be implemented is primarily a question of available logic and memory resources.

Look ahead extension The algorithm introduced so far has a severe drawback. It was stated in
Section 3.1.2, that the system time counter is incremented with the doubled FPGA frequency. This
counter is the reference for the event time stamps stored in the table. Because there must be a table
entry for every time stamp, the algorithm would make it necessary to read with twice the FPGA
frequency. There are two arguments opposing this: First, it would make the implementation more
difficult. The planned frequency for the FPGA clock is 156.25 MHz, so the table would require
a readout frequency of 312.5 MHz. For example the maximum clock frequency of the BlockRAM
storage elements specified in the datasheet [Xil07] is 355 MHz for register to register transfers. At
this frequency only very short logic paths are possible, making the place and route process more
difficult. Even more complications arise, because the existing Spikey controller and the network
logic were not designed for such high frequencies and would have to remain at 156.25 MHz. This
would introduce additional clock boundary crossings, which require special care and resources.
Furthermore, the limited clock generation and distribution elements of the FPGA, which are used
to full extend in existing designs, would be burdened even further. The other argument against
is, that the link to Spikey also operates at the FPGA frequency. Even if every entry of the table
could be read, not all events stored therein could be transferred.

A better solution is to not only consider one entry of the table per clock cycle, but to also look
ahead at future entries. This way a decision can be made which entry is to be read next. For
example when only few entries contain valid elements, one can skip empty ones and “fast forward”
to the next valid event. When there is a dense sequence of events, one can use the time gained
during the fast forward to read more of them than would be possible otherwise.

Of course the range of the fast forward must be limited. A minimum offset to the system
time counter must be guaranteed, to account for the transmission time to the destination synapse
driver on the chip. The maximum offset is a parameter that can be optimized. Latency is limited
by the time difference of the read position and the system time. The further the readout process
is allowed to advance into the future, the greater the minimum latency will be.

22 CHAPTER 3. CONCEPTS FOR MULTI CHIP OPERATION

Figure 3.3: The diagram illustrates the effect of jitter amplification. The three subpictures show
the transportation process of a single event for slightly different latencies. Time increases from left
to right. Ticks mark overflows of an 8 bit time counter. The event is digitized at the time indicated
by the asterisk. The arrow illustrates the transportation time to the destination Nathan. The
bracket above the timeline, marked with “0” and “255”, indicates, when the event will be delivered
by the DTC depending on the programmed delay.

3.2.2 Providing Deterministic Neuronal Delays

An 8 bit time stamp and a 4 bit time bin represent the timing information of digital events coming
from Spikey . The number stored within the time stamp is taken from the system time counter,
clocked with the fast clock on the chip. The time bin is an extension to increase precision of
the spike generation by the DTC. Processing of events on Spikey is - outside of the analog part
- always done with the precision of the time stamp. The event input and output buffers treat
the time bin information as payload data and pass it through unmodified. Therefore, the same is
done outside of the chip. According to [Phi08a], the minimal transmission delay for the transport
network is 25 FPGA clock cycles or 50 time stamps. This does not include additional waiting
delays inside buffers on Spikey and higher level FPGA logic. To provide the required dynamic
range for the programmable delays, while limiting the datapath width, it is decided not to make
the delays programmable with the precision of the time bins. Instead the time bin is treated as
payload data, that is only forwarded unmodified. In biological terms the precision of the delays
would therefore be 320 µs at a speed-up factor of 105.

Delay mechanism To artificially delay an event, the time stamp must be incremented to the
destination time. The DTC will then pass the event to the analog part at the intended instant. Due
to the sorted-by-time stamp requirement of Spikey (cf. Section 3.1.1), it is desirable to transmit
events at the latest moment possible. Otherwise events arriving later, but intended for an earlier
target time, would have to be dropped. Therefore an intermediate storage memory is required.

This memory is provided by the sorting table described above. The only thing to do is increment
the time stamp, before the event is inserted into the table.

Jitter amplification Figure 3.3 illustrates a problematic effect when using 8 bit time stamps:
A small variation in transmission time td can lead to the event being delayed for the length of a full
counter period P , where P = 256 for 8 bit time stamps. When td is greater than P (illustration
b), for some programmed delay values D the resulting target time stamp will be delivered one
period too late. One example value in the diagram is D = 0, for which in b) the event arrives
256 cycles later than in a). So instead of being compensated, a small variation is amplified in this
case. When td is close to P this can happen at random due to network jitter.

Subfigure c) shows, that this is not only a problem for lower values of D, but can also happen
to the upper end of the range. For a programmed delay of D = 255, events in a) and b) arrive in
period three, but in c) are delivered in period two.

The root of the problem is, that because of the timing relations in the system, there may be
more than one wraparound of an 8 bit time counter within the lifetime of an event. This leads to
ambiguous situations, as the receiving side has no definite information about when the event was
digitized. Therefore it can not reliably decide when it should be delivered. Consequently, events
would not be delivered deterministically.

3.3. BUILDING BLOCKS 23

Time stamp extension To solve this problem, the easiest way is to extend the time stamp by
additional bits. That way P can be made much larger than td and it is assured, that only one
wraparound of the time counter occurs during the lifetime of an event.

To allow for long range connections, it was decided to extend the time stamp by 4 bit. That
way extended events are 25 bits wide and still easily fit into a single two cycle network slot of
32 bit. It has to be determined by experiments (cf. Section 6.2.1), whether this extension is large
enough.

3.2.3 Routing Algorithm

It was discussed in Section 2.2, that routing between network nodes is configured by programming
the static routing table of the MCGN switch. But additional routing is required inside the FPGA
to direct events to a designated user port and time slot of the MCGN. Also source events have to
be mapped to target events before transmission to Spikey .

Logical connections Between two neurons logical connections are established. A connection
has a fixed axonal delay, by which timestamps are incremented as outlined in the previous subsec-
tion. Multiple logical connections, that interconnect neurons on the same pair of chips are bundled
together. A number of time slots, which are routed through the gigabit network to the destination
node, are associated with it. Each bundle is associated with a set of time slots by which they are
transported through the gigabit network.

Connection tags To distinguish connections within one bundle, every connection is tagged
with a subnr. The neuron address of the source event is not used for this purpose directly. The
receiving side would have to store an entry for every neuron address of every remote Nathan it is
connected to. By introduction of the subnr it is possible to reduce the amount of required entries,
because information needs only to be stored for remote neurons, which are actually connected.

3.3 Building Blocks

In the following section, the basic logic components, that form the design, are described individ-
ually. All of them are implemented in every Nathan FPGA. The top components are separated
by direction of the data path. Sender reads events coming from Spikey and passes them to the
network. Receiver writes events coming from the network to Spikey . Event streams are sorted
at the destination within the Sorter block, which is described separately.

3.3.1 Sender

Figure 3.4 shows an overview of the sending logic. On the left side is the Spikey controller interface
described in Section 2.3.3. This controller has been altered to provide events coming in from Spikey
to the outside logic. It presents three events from a single packet in parallel. Source_gen contains
a lookup table (LUT), that stores the initial routing information. It transforms events according
to these information and forwards them to the Send_switch, which forwards event streams to
the requested user port. There, the Transmit_buffer holds events until a time slot for them
is available. It interfaces the MCGN switch logic and is responsible of inserting events into the
correct network slots.

Source gen

Source_gen, which stands for source event generator, is the first event processing stage. Its LUT
stores whether events should be transported at all and, if so, where they should be send to. By
default all events, that occur on Spikey are also transmitted to the FPGA, to be stored within
the PlaybackMemory . Since not all of them may be connected to neurons on other chips, it is

24
C

H
A

P
T

E
R

3.
C

O
N

C
E

P
T

S
F
O

R
M

U
L
T

I
C

H
IP

O
P

E
R

A
T

IO
N

Figure3.4:Dataflowsfromlefttorightthroughthesendinglogic.TheSend_switchconnectstheSpikeyinterfacetothenetworkinterface.The
dotsindicate,thataflexiblenumberofuserportscanbeusedbyinstantiatingmultipleTransmit_buffer.Refertothemaintextforadiscussion
ofthecomponents.

3.3. BUILDING BLOCKS 25

necessary to drop unwanted ones. This is done by setting the drop-bit in the respective lookup
table entry.

If the event is to be transmitted, three pieces of routing information are provided:

• The user port number

• A number identifying the connection bundle for that user port.

• A subnr within the bundle.

To reduce the index size of the LUT a special feature of the Spikey interface is used. According
to Table 2.2 neurons are linked to fixed slots within an event packet. So only a subset of all neuron
addresses will be presented on a single slot. Because of this, it is sufficient to only use 7 bit as
index into the lookup table. The tables of all three Source_gen instances must of course contain
different entries.

Time stamp extension Source_gen is also responsible for calculating the extended time stamp.
Events from Spikey have 8 bit wide time stamps, which are to be supplemented with further bits
from the FPGA system time counter. But because time passes between event generation on Spikey
and reception on Nathan, the additional bits can not just be copied from the counter. Instead,
two cases are distinguished:

• When the 8 bit time stamp is lesser than the lower 8 bit from the FPGA time counter upon
reception, it is assumed, that the event was digitized within the same period. The extended
bits are copied from the time counter.

• When the time stamp is greater or equal to the lower byte, the nibble from the time counter
is taken decremented by one.

Send switch

The Send_switch forwards event streams from the three input slots to one or more Trans-

mit_buffer blocks. It is required, because events from any packet slot may need to be transported
via any user port.

Alternative without Send switch Considering a design without Send_switch points out the
reasons for its use: In this alternative the three input slots would be statically connected to three
user ports. Then events from one neuron block could only reach a single user port. If neurons
within this block are connected to neurons on multiple different remote chips, a time slot at the
associated user port must be reserved for each destination node. If this is the case for all blocks,
over-reservation of network resources would be the consequence.

A bundle transporting events from all three input slots at low rates would still need at least
three time slots in total, even if one slot would suffice for the rate. It would also impact latency, as
for an identical number of totally reserved slots, fewer are available for a single Transmit_buffer.
So on average events would have to wait longer.

Besides that, this alternative would reduce flexibility in the number of user ports, because it
requires exactly three ports.

Switching The switch is an input buffered switch, with a crossbar interconnecting input and
output ports. Incoming data is buffered, before it enters the crossbar and a scheduler configures the
crossbar depending on the outputs requested by the input events. The details of the implemented
switch are not important for the principle of operation and can be tuned to optimize performance.
However the input buffer can not be omitted to allow situations, where events from two slots
request the same output port.

The scheduler selects the input to output mapping depending on the user port number re-
quested by the event, which is provided by Source_gen. The data passed through contains the
extended event time stamp and bin, the subnr and the connection bundle number.

26 CHAPTER 3. CONCEPTS FOR MULTI CHIP OPERATION

Figure 3.5: In this illustration the receiving logic is shown. Data coming from the network
flows from left to right. Events from the PlaybackMemory (labeled with ”PBM”) are mixed with
two network streams, using a Sorter block as an adapter. The Spikey interface controller is on
the right side. Other combinations of Receive_lines and PlaybackMemory stream adapters are
possible. Refer to the main text for a discussion of the components.

Transmit buffer

For every port a Transmit_buffer is instantiated. Its purpose is to store events until a valid
slot for their connection is available. It contains the logic to transmit the event to the user port.
Timing details of the interface can be found in Figures 2.4 and 2.5.

MultiFIFOs A central component is the MultiFIFO block, which is reused from code for [Phi08a].
It organizes multiple logical FIFOs within one memory element. It is suitable for situations, where
multiple queues are needed, but only one of them is read or written at a time. This is applicable
here, as Send_switch forwards one event at a time and on the reading side, one event at a time
is forwarded to the MCGN switch. Each of the queues inside a MultiFIFO stores events for one
connection bundle.

Mfi lut To determine when to read which queue, the Mfi_lut maps the slot number provided
by the MCGN switch onto the index of the corresponding queue. This index number is referred
to as multi FIFO index (mfi). It identifies the connection bundle on the local user port.

3.3.2 Receiver

Figure 3.5 gives an overview of the datapath of Receiver. It shows a special configuration, where
two user ports and one event stream from the PlaybackMemory are used. It is also possible to
use two or three streams from the PlaybackMemory by sacrificing one Receive_line for each.

Events coming from the network are mapped to target events within make_target. They are
afterwards stored in the Recv_queue FIFO memory and then fed into the Sorter module. Events

3.3. BUILDING BLOCKS 27

from the PlaybackMemory are send as is and therefore no make_target module is required. The
output FIFOs of the PlaybackMemory also make any other queues unnecessary.

Because the individual streams are processed in parallel, checks for synapse driver collisions (cf.
Section 3.1.1) need to be done in the Reduce_events module. All operations, that require informa-
tion of all streams, have to be done or supported by Reduce_events. It produces an event packet
that is then transferred to the Spikey controller. Its structure, illustrated in Figure 2.7, needs to
be modified to allow external input of events and to provide streams from the PlaybackMemory
to the outside. All events to Spikey have to pass through Receiver.

Discussion of the Sorter module is - due to its complexity - separated into another subsection.
The rest of the components is discussed here.

make target

As outlined in the description of the routing algorithm (cf. Section 3.2.3), events have to be mapped
onto target events, before they are passed to Spikey . This is done by the make_target process.
It increments the timing information of the source event by the programmed delay and fills in the
target synapse driver address from a lookup table. Index into the lookup table is the subnr of the
arriving event and the number of the connection bundle. The latter is derived from the network
time slot, in which the event arrives. The slot number is used as index into the Slot_lut lookup
table, which provides the bundle number.

At this point it should be noted, that there is no unique number identifying connection bundles.
Instead, on the receiving side a local virtual connection (lvc) number is used, that is unique for
each connection bundle arriving at a specific user port of the receiving FPGA. On the sending
side the mfi is used in a similar fashion (see above). So mfi and lvc are not identical numbers.
This is done to allow for a reduction of the amount of routing information, that needs to be stored
per port. By using only local identifiers, the lookup tables can be made smaller.

For each arriving event the Recv_lut stores an 8 bit delay value and the address of the targeted
synapse driver. The subnr in the address field is replaced by the synapse driver address. For
calculation of the target time stamp, the delay value is the combination of a common high nibble
and the individual 8 bit connection delay.

Recv queue

Before events are stored in Sorter, they may be delayed inside Recv_queue. It was described in
Section 3.2.1, that sorting is done by storing events in a hash table with time stamps as keys.
Therefore the time range of the Sorter is limited by the size of the table and events with time
stamps too far in the future can not be accepted. Instead they are delayed in the Recv_queue.
At which precise time events are forwarded to the Sorter is determined by an accept condition,
which is discussed later.

Reduce events

The Sorter modules work in parallel without direct interaction between each other. The Re-

duce_events module provides services to coordinate these units. Its purpose is to reduce multiple
event streams into a single packet stream, that can be send to Spikey . It has to take measures
to synchronize the readout processes in Sorter and to prevent collisions, when multiple events
for the same time stamp and synapse driver are valid in one packet. As it has to closely interact
with the sorting mechanism, a description of how these features are achieved is given in the next
section.

3.3.3 Sorter

The purpose of the Sorter module is to implement the sorting algorithm described in Section 3.2.1.
It is part of the receiver logic and can take input from Recv_queue or directly from the Playback-

28 CHAPTER 3. CONCEPTS FOR MULTI CHIP OPERATION

Figure 3.6: This figure gives an overview over a part of the datapath within Sorter. It shows the
path of incoming events until they reach the memory. The dotted lines separate the pipeline stages.
MEM and OCCMEM are RAM modules, whereas accept and store are registered combinational
logic blocks. Reading of events is illustrated in Figure 3.7.

Memory . However Sorter is aware of the kind of input source and uses handshake signaling only
with Recv_queue. This handshake is required to delay events with time stamps too far in the
future. The PlaybackMemory readout logic delays events itself, making a handshake unnecessary.

Overview To implement the sorting algorithm, a table is required, where events can be stored
with their time stamp as key. In digital logic, such a table is provided by random access memory
(RAM) elements. Time stamps serve as the storage address within the RAM. To keep the required
size small, only the lower 8 bit of the extended time stamp are used. So the RAM must provide
storage for 256 events. The stored data consists of 9 bit synapse driver address and 4 bit time bin,
resulting in a RAM size of 3328 bit.

Because events are continuously fed into the Sorter and read from it, a dual port RAM is
needed. This means, that it must be possible to perform two access operations, either read or
write, simultaneously in every clock cycle. If only one port was available, the input and output
side would have to alternatively access the memory, effectively reducing the throughput by a factor
of two.

Entries in the memory have to be marked as valid or invalid. If one stored an additional valid
bit for this purpose in the same memory as the event data, two accesses on the RAM would be
necessary to store a single event. At first a read operation would have to check whether the address
is not already occupied, and, if so, a write operation would store the event. This would also reduce
the effective throughput by a factor of two.

While the need for two accesses can not be eliminated, if one does not want to overwrite stored
events, full throughput can be maintained by storing the valid bit on a separate memory. That
way the acceptance of events can be pipelined and the two memory operations are carried out in
parallel.

It was also stated, that the algorithm uses a look ahead mechanism to check multiple addresses
for valid events, within one clock cycle. This can be accomplished by making one port of the
memory, which is containing valid bits, wider then the other. That way multiple valid bits can be
read out within one clock cycle.

Writing of events

To support the description of the storage process, Figure 3.6 shows the relevant part of the data-
path. MEM is the RAM for event data and OCCMEM the one for valid bits. Storage is pipelined
into three stages:

Acceptance of events The accept logic reads the event presented on the input and decides
whether it should be considered for storage. The decision is made, based on its time stamp and

3.3. BUILDING BLOCKS 29

the current time. Due to the size of the memory, it can be stored only when its time stamp is less
than 256 time stamps in the future. When this is true, pop is asserted to remove the event from
the preceding FIFO stage. The accept condition is derived in the following:

The extended 12 bit time stamp Tc is compared to two comparison values Thigh and Tlow of
the same size. They are calculated from the current address, at which the readout process is
reading. Two comparison values are needed, because the algorithm reads a window of w valid bits
at once. Events, that would need to be stored within this window, but arrive after it was read
from memory, must be dropped, because a decision of what events to read has already been made
at this point of time.

Let Rc be the current read position extended to 12 bit, then Tlow := Rc + 2w and Thigh :=
Rc + 256. The accept condition is then given by

(Tc < Thigh) ∧ (Tc > Tlow) for Rext 6= 15 (3.1)

Tc < Thigh for (Rext = 15) ∧ (Text = 0) (3.2)

Tc > Tlow for (Rext = 15) ∧ (Text = 15) (3.3)

Rext and Text are the highest nibble of Rc and Tc respectively.
Three separate equations are necessary to account for wraparound effects of the 12 bit time

counter. Condition (3.1) is the normal case: Neither Tlow nor Thigh will overflow, when Rext = 15,
and it can be directly checked if the time stamp is within the valid range. Condition (3.2) is used,
when the time stamp lies within the next period of the 12 bit counter, but the read position has
not wrapped around yet. The event may be less than 256 time stamps in the future, but Tc > Tlow

would never be true. This condition can be dropped, since the case differentiation implies, that
the target point of time is greater than the current read position. Similarly for Condition (3.3),
Tc < Thigh would not be fullfillable, because Thigh has already wrapped around. Here, too, the
condition can be dropped, because the case differentiation implies, that the target time stamp is
at maximum 256 time stamps in the future.

When events come from the PlaybackMemory , no handshake signaling is used. Then the accept
mechanism is of no use, because events can not be delayed and are lost, if they are not accepted.
However, the readout algorithm would lose events when they arrive between Rc and Rc + 2w.
These situations are actively detected with another accept condition: Let R be the current 8 bit
read address, then, also 8 bit wide, Tl := R and Th := R + 2w. T is the 8 bit event time stamp
and the accept condition is

(T ≥ Th) ∨ (T < Tl) (3.4)

During operation of the network, this accept condition will never be false. This is the case,
because the PlaybackMemory itself ensures a minimum time difference between the target point
of time and the time of delivery to Sorter. Therefore such collisions will not occur.

The interaction between the accept process and Recv_queue can lead to prolonged blockage
of Sorter, when merging two event streams. If variability of time stamps of the two streams is
comparable to the range of the sorting process, an event in Recv_queue can block following ones.
The blockade can last long enough, so that, when leaving the queue, the reading position has
already passed their time stamp. In this case, they would be delayed until the time stamp is valid
again after the next wraparound of the 12 bit system time, blocking the queue themselves. To
prevent this, a drop condition is evaluated and, when true, events are removed from the queue,
without storing them in Sorter.

The condition assumes, that events more than 2048 time stamps in the future are outdated
and should be dropped. The usable range of the 12 bit time stamps is therefore limited to 2048
instead of 4096.

Storage of events When an event is accepted for storage, it is passed to the next pipeline
stage. The store block in Figure 3.6, behaves like a register and delays the event for one clock

30 CHAPTER 3. CONCEPTS FOR MULTI CHIP OPERATION

Figure 3.7: The picture shows the reading side of Sorter. Two finite state machines (FSM)
control the readout of the MEM and OCCMEM memories. Not shown in the figure is an enable signal
for Sorter, which is used to start the readout. Writing of events is illustrated in Figure 3.6.

cycle. Simultaneously, a lookup in OCCMEM is performed, to check whether the address destined for
the event is already occupied. In the same cycle the write enable of OCCMEM is asserted, to mark
the slot as occupied. This can be done without knowledge of the result of the read operation,
because the valid bit for this address will be set afterwards, whether it was occupied before or not.
The actual writing process to MEM is performed in the next clock cycle. The result from OCCMEM

is combined with the valid bit from store and presented to the write enable of the destination
RAM. Only when the slot was free before, is the write enable asserted, thereby preserving already
stored events.

Reading of events

The reading logic of the Sorter performs several tasks: Events must be read synchronously to
the system time counter. The look ahead feature presented in Section 3.2.1 requires the parallel
processing of a range of valid bits. The reading process must adapt to the population of valid
events within this range. Doing so the time difference between reading position and system time
must stay within limits. And last, multiple parallel Sorters must be synchronized to prevent
race conditions in event streams to synapse drivers as detailed in Section 3.1.1. This is done in
cooperation with the Reduce_events module of Receiver.

Figure 3.7 illustrates the datapath for reading from the Sorter memories. The readout process
is controlled by two coupled finite state machines (FSM). The readout FSM selects the actual
address to read from, while the control FSM steers the process on a higher level. It reads the
current system time from the t_chip port and writes the read_pos register storing the current
start address of the window of valid bits. The content of this window is output on the occ port
and also used by the readout FSM to select addresses. The Reduce_events module performs an
or-reduction of the occ signals from all parallel Sorters. The result is fed back through the colocc
(for collective occupation) port and the number of set bits therein is counted by the Bit_counter

combinational logic block. The resulting event stream is given out through the Event port.

Control FSM The Control FSM writes to read_pos and determines how many events are to be
read from the next window. It takes the system time and the number of set bits in the collective
window as inputs. Basically, the FSM controls where and how much to read, but not which events
exactly. By using t_chip and colocc as inputs, the respective FSMs in all Sorter instances see

3.3. BUILDING BLOCKS 31

the same inputs and behave identically. So output events have always the same time stamp and
race conditions in event streams to synapse drivers are prevented.

It also means, that the control FSM sees the combined stream of all Sorter modules, which
contains events from other streams along with its own. This is not the optimum solution for
maximizing performance, but other concepts, that improve on this part, need to check each event
against the history of events from all other Sorter blocks. Another possibility is to sort by
addresses, before events are passed to Sorter, requiring a more complex logic. See Section 8.2 for
more on this.

The read_pos register holds the start address of the reading window. For a window width
w = 8, for example, it will successively have the values 0, 8, 16, 24, etc. The FSM exerts control
over the reading rate by varying the time between updates of read_pos. Depending on the time
difference b between read_pos and t_chip and the number m of set bits within colocc, the
number n of events to process within one window is calculated. This calculation is performed,
when a new window has been read from OCCMEM. It is tried to maximize n and b, while keeping
bmin ≤ b < bmax, for given limits bmin and bmax. Due to the relations between system time and
FPGA clock, n = w

2
leads to no change in b1.

When no bit is set in colocc, the FSM will set n to a minimal value, until b = bmax and
thereafter n = w

2
. When a full window is encountered, n = w allows to read all events, by

decreasing b towards bmin. The calculation must choose n in such a way, that b does not underrun
bmin.

Readout FSM The readout FSM iterates over the valid bits in colocc and calculates the
address of the associated events within MEM. It takes read_pos as base address and adds the bit
position within colocc. The event is only marked as valid on the output of Sorter, when its
bit in occ is also set. The state machine is signaled to restart by the control FSM, when a new
window was read from OCCMEM.

1
n is required to be even

32 CHAPTER 3. CONCEPTS FOR MULTI CHIP OPERATION

Chapter 4

Simulations for Prototyping and

Testing

This chapter describes the simulations that helped prepare the implementation and the tools
that were used in the process. The simulations themselves are not primarily intended to produce
specific results, but serve as a development tool. Therefore, one can consider the conceptual design
(Chapter 3) and the implementation itself (Chapter 5) as results of the described activities. This
chapter focuses on methodological aspects.

4.1 Why Simulate?

Hardware design is usually an iterative task. Designers often have only a basic idea as a starting
point and find more sophisticated solutions as their understanding of the system increases. They
then can go back to an earlier stage and incorporate the new ideas, usually attaining an improved
solution. In this process, the time it takes to implement a new idea and test it, defines how fast
development progresses. The level of detail of the preliminary testing determines the efficiency of
each iteration.

In the initial development phase of digital logic, testing is done in simulations. They play a
central role during the development process, since, in particular for ASIC design, implementation
in hardware is expensive. Even for FPGAs, which can be reprogrammed with new circuits at any
time, simulations serve important purposes:

Simulation as prototype Especially when designing on the system level, with several devices
interacting, it is beneficial to be able to concentrate on the higher levels of the design at first.
Common hardware description languages allow more abstract constructs for simulation than for
synthesis. For example, to generate random numbers one, can use a predefined function, whereas
the description for implementation must precisely model the circuits to generate the random
numbers. Therefore, in a high-level simulation of the system the basic functionality of the overall
concepts can be tested.

Simulation as verification tool Simulations are important to verify the functionality of the
system. This may be done at multiple stages during the development process, e.g. after the
prototyping phase, before beginning with the implementation. Even for the final version, which
can also be tested on an FPGA, simulations are important, because they allow more insight than
experiments on the hardware. Every signal can be inspected and modified, while monitoring access
to hardware devices is often limited.

Another advantage is, that, in simulation, a single part of the design can be isolated and placed
in an artificial test environment. Therein, controlled test patterns can be applied to check the be-
havior for a set of predefined situations. This is especially useful, when a seldom occurring problem

33

34 CHAPTER 4. SIMULATIONS FOR PROTOTYPING AND TESTING

is found. It can then be reproduced in a minimal environment and direct tests of modifications
aimed at solving the issue are possible.

4.2 Tools and Methodology

For this thesis, simulations were used for prototyping as well as for verification. Moreover, during
the development process, the prototype simulation was transformed into a verification simula-
tion. Foremost, this was possible by using the SystemC1 hardware description language and the
ModelSim simulation software2.

SystemC SystemC is an extension of the C++ programming language meant for hardware
description. The focus – in contrast to VHDL or Verilog – is on system level simulation, especially,
when the design comprises hardware and software components. SystemC extends C++ by means
of a class library and requires no special compiler software. Therefore, a host of tools and code
packages can be used for development and inside the simulation. The final simulation is a program,
that, when executed, uses e.g. terminal and file output to report results. With a general purpose
programming language as basis, it is possible to include sophisticated self-checking capabilities
into the simulation itself.

Due to its system level approach, the language is ideally suited to simulate the event commu-
nication within the stage-1 system. Details, like the workings of the Spikey controller logic or the
serialization of the gigabit transceivers, can be abstracted into high level methods. Thus, the com-
plexity is reduced and the runtime is improved, allowing for faster development cycles. Complex
parts, e.g. the event sorting algorithm, are rapidly added and can easily be modified, without too
much concern of the actual circuits. Hence, a high-level system simulation allows the exploration
of concepts. Another prospect of using SystemC is, that existing simulation code, written in pure
C++, can be integrated.

ModelSim ModelSim is a simulator, which supports the VHDL, Verilog and SystemC hardware
description languages. Mixed-language simulations combining blocks described in any of theses
are possible. Also of interest is an interface to the C programming language, which can be used
to call C functions from within VHDL or Verilog code.

ModelSim is integrated into the FPGA design flow of the Electronic Vision(s) group, which
was used for this thesis. The integration allows simulation of the VHDL code used for synthesis
in a test environment containing a complete stage-1 system. The simulator is therefore also used
for verification tests on the final design.

Event based simulation Both SystemC, as well as ModelSim use an event based concept to
simulate concurrent activities of the simulated units. The simulated design consists of concurrent
processes that are executed on specific events. In digital logic, these events are signal transitions,
on which the processes are sensitive. An example would be a register, that changes its output in
reaction to an event caused by a rising clock edge. Each pending event is stored in a list together
with its designated point of time, at which it is processed. The running of processes may in turn
generate events, that are then added to the list.

4.3 Simulations

The approach for this thesis was to start with a SystemC prototype simulation to find suitable
concepts for the realization of the event network. The prototype used existing C++ code (described
in [Grü07]) to simulate Spikey and MCGN. The prototype was then successively translated to

1SystemC is standardized as IEEE Std. 1666-2005
2ModelSim from MentorGraphics is used in version 6.3a

4.3. SIMULATIONS 35

VHDL for synthesis. In the following text, the specific steps of refinement of the simulations are
detailed.

4.3.1 SystemC Prototype

Sorting of event streams was considered to be central from the beginning and so Sorter was the
first component of the simulation. To not be too far away from the properties of the targeted
hardware device, the process of sorting itself was implemented in detail. The difficulty lies in the
timing of read and write operations on a single memory, while only one operation per port can
be performed per clock cycle. To transfer this to the simulation, a global clock signal equivalent
to the FPGA clock is used. However, the memory is not precisely modeled, but an array data
structure is used. The designer has to check manually, that the number of memory operations
does not exceed the limit.

Successively, the other logic blocks were added to the simulation. For the Spikey chip and its
control logic, as well as for MCGN, existing C++ code blocks were available. They were developed
as part of [Grü07] for the simulation of a proposed implementation of the event network. Since
that simulation did not use SystemC, the code does not follow the event based approach, but has
data interdependencies programmed implicitly into its procedural description. This means, that
function calls are ordered in such a way, that in every clock cycle inputs are first processed, before
new output values are stored. The code therefore does not make the concept of clock cycles explicit
in contrast to SystemC, where each new cycle is treated as an event, that triggers the processing
of input data. This difference is resolved by adapter modules with event triggered processes that
make the function calls to the existing code in the correct order.

The simulation model of the Spikey chip supports several modes for event generation. The
one used most frequently generates random events from a poisson process and allows to switch
periodically to a higher rate to simulate bursting.

Event tracking To allow a fast development cycle, the simulation itself contains methods for
a quick evaluation. The Event_tracker class assigns every event a unique tracking number upon
its generation by the Spikey block. This number is used at several monitoring points to record the
path an event takes. With this data, Event_tracker performs automated checks and generates a
report.

For example, one check reports every event that does not arrive at a destination Spikey block
and was not explicitly recorded as dropped. This ensures, that all possibilities of event loss in
the system are known and understood. Another check measures the simulated time of arrival and
detects events delivered too late or too early.

Besides the results of the checks, the report contains information about the maximum number
of events in FIFOs, drop rates detailed by reason and configuration of the lookup tables. Thereby
changes to event processing can quickly be evaluated, since the report points out functional errors
and shows performance figures.

Large-scale simulations The SystemC simulation can interpret configuration files from the
mapper software tool. This program was developed as part of [Phi08a] to map randomly generated
artificial neural network descriptions to MCGN switch configurations. The existing C++ code
blocks simulating the switches can read these files to configure their routing tables. The latest
version of mapper supports the new event processing logic by additionally specifying the routing
parameters described in Section 3.2.3 in the generated configuration files. Hence, it is possible to
produce a configuration of MCGN and event network based on random neural networks and run
experiments with it. This was used for large-scale simulations of a completely equipped Backplane
with random connections between the Nathan network modules.

36 CHAPTER 4. SIMULATIONS FOR PROTOTYPING AND TESTING

4.3.2 Mixed-Language Simulation

After the prototype simulation had evolved into a complete system for event processing, its purpose
changed from serving as exploration platform for ideas to being a model for the implementation.
The event network blocks, as described in Section 3.3, were rewritten in the VHDL hardware
description language for implementation on the FPGA. In a mixed-language setup with ModelSim,
they were used as replacements for the previous SystemC blocks and subjected to the same tests.
This allowed to validate, that behavior was unchanged, yet required additions for event tracking.

The tracking number is treated as part of event data in the SystemC simulation. In the VHDL
description, it is passed along with the event. FIFOs and buffers provide additional memory
structures parallel to those for the event data. These additional structures are enclosed in compiler
pragma statements that disable them for synthesis. Also included in this extra simulation logic
are processes to detect and record dropping of events. To use the Event_tracker class in this
simulation as well, the C interface provided by ModelSim is used. A C++ library has access to
the Event_tracker object and exports access functions with C bindings, which ModelSim makes
available in VHDL.

4.3.3 Simulating the Implementation

The existing design flow supports the simulation of the hardware description used for implemen-
tation. Subject to the simulation is a complete Backplane with 16 Nathan modules. The system
is accessed via the SlowControl, which uses a file communication model to simulate control com-
mands from the PC. Access operations are listed in a file and carried out in order during the
simulation. Results are written to a response file for later evaluation. The command file can be
generated by the createtb test software (cf. Section 2.3.4) and thus, the complete software hard-
ware stack can be simulated. Only the analog part of the Spikey chip is not part of the simulation,
because ModelSim does not support analog circuits.

4.3.4 Tests of Single Blocks

For a number of logic blocks, isolated simulations were developed, which only contain the individual
component in a controlled environment. For the Send_switch block the test presents different
stimulation patterns to the switch, to see if it forwards them correctly. For example, first a stream
of one event per clock cycle with alternating requested output port is presented, thereafter one
event per cycle at different input ports and last, one event per cycle to a fixed port and a second
event every other cycle to another input port. Similar tests for Sorter allow to test specific arrival
patterns of events and to systematically test relations between e.g. time of arrival and destined
time stamp.

Chapter 5

Implementation

Chapter 3 outlined the basic workings of the required logic for multi chip operation of the FACETS
stage-1 system. The fundamental principles and the basic structure were presented. This was done
on a higher level of abstraction to focus on the general characteristics. This chapter will descend
further down into concrete details of the implementation on the Nathan FPGA and of supporting
software. For the creation of the final circuits, the design is described in the VHDL programming
language. The software tools from Xilinx1 are used for synthesis.

The text will continue, where Chapter 3 ended, and start with the implementation of the
building blocks introduced there. Then, the integration of the design into the existing FPGA
framework logic is described and the process of running an experiment outlined. The chapter will
conclude with debugging facilities and the supporting software.

5.1 Implementation of the Building-Blocks

Section 3.3 introduced several components as building blocks of the design. This chapter will
complete their description by supplementing details of their implementation. A focus will be set
on aspects that are relevant for the operation and that may be useful to work building up on the
design.

5.1.1 Lookup Tables

Various lookup tables are present in Sender and Receiver. These are:

• The Send_lut within the Source_generator of Sender stores the initial routing information.

• Mfi_lut maps slot numbers to multi fifo indices on the sending side.

• Slot_lut serves a similar purpose on the receiving side, mapping slot numbers to local
virtual connection numbers.

• Recv_lut holds information to translate source to target events within Receiver.

The content of these tables determines the configuration of the network connections across chip
boundaries. Its encoding is also relevant to user software, which wants to utilize the network.

Send lut Three tables with different content exist, one for each Spikey packet slot. They contain
128 entries, that are 12 bit wide. The 7 bit index into the table is given by bit 8 and bits 6 to 0
of the neuron address. This exploits the fixed mapping of neurons to packet slots (cf. Table 2.2).
Two blocks of neurons are wired to one packet slot and for one slot they are distinguished by bit 8
of the address. One LUT entry contains the following information:

1ISE WebPack version 10.1.03

37

38 CHAPTER 5. IMPLEMENTATION

Bits Name Description
11 drop set, when event should not be processed

10..9 port user port to send this event to
8..6 mfi MultiFIFO queue to store this event in
5..0 subnr connection tag to substitute address

Every Send_lut uses one BlockRAM in a dual port configuration. One port is used for lookup
during experiments, the other for offline programming. The lookup port is configured 128×16 bit,
which covers only 2 kbit of the 18 kbit available, leaving room for the addition of more information
in the future. The programming port is configured 256 × 8 bit.

Mfi lut and Slot lut These tables both identify the connection bundle transported over a given
slot, but they don’t hold identical information. They contain 64 entries each due to the slot number
size of 6 bit. Mfi_lut gives out a 3 bit MultiFIFO index and Slot_lut returns a 4 bit lvc number
for the following lookup within Recv_lut. Both tables are implemented in single port RAM blocks
using distributed logic resources.

Recv lut The Recv_lut has 1024 entries of 17 bit each. The concatenation of subnr and lvc

serves as index. The following information is stored:

Bits Name Description
16..8 target_addr synapse driver address for the target event
7..0 delay time stamp delay value

The table is stored in a single dual port BlockRAM with both ports configured as 1024×17 bit.
Thus, 17 of 18 kbit are used, leaving room for a possible addition of one bit per entry. Because
the BlockRAMs are one of the more expensive resources on the FPGA, it is very desirable in
terms of scalability to fit the Recv_lut into only one BlockRAM module. Under this constraint
it is not possible to use a larger index and hence, the total amount of bits for subnr and lvc is
predetermined.

5.1.2 Implementation of the Send switch

The Send_switch directs event streams to requested user ports. It is an input buffered switch and
consists of three parts: Input buffer stage, crossbar and scheduler. The input buffer stage in the
current implementation is a single register. The crossbar is implemented as one multiplexer per
output, for which the scheduler - implemented as priority encoder - generates the selects. Each
input raises a request signal to its destination port and the scheduler selects the input with highest
priority for transportation within the next cycle. That way, it is possible for one input port to
starve out the others, when multiple streams are to be routed to the same port.

The Send_switch implementation could be improved in several ways: The scheduler could
be extended to support a dynamic priority scheme and deeper FIFOs with virtual output queues
(VOQ) could be used. For VOQs, within one input FIFO, multiple virtual queues are managed
in parallel - one for each output - to prevent head of line blocking. This would allow to imple-
ment iSLIP or other more advanced schedulers. Altogether, this would increase throughput and
eliminate unfairness caused by starvation [McK99].

However, due to its simplicity, the Send_switch requires only few resources, while still pro-
viding a fully functional component. Since it was predictable, that the amount of available logic
resources would be a severe limitation, a minimal solution was given advantage. This leaves open
the possibility for improvements, should resources be available after the implementation is finished.

5.1. IMPLEMENTATION OF THE BUILDING-BLOCKS 39

5.1.3 Transmit buffer and Event Representation on the Network

The Transmit_buffer stores events until a valid network slot is available. It uses the MultiFIFO

component, which stores its data inside a single BlockRAM. The memory determines the possible
range for the configuration parameters number of FIFOs, their depth and width of entries. The
used configuration is 8×4×32 bit or 1 kbit in total of 18 kbit available. Pointers into the memory
are managed by external FIFO logic. The amount of resources required for this logic, increases
primarily with the number of FIFOs, since additional pointer registers are required for each. It
grows to a lesser extend with the depth, as only additional bits for the pointers are needed. The
RAM allows an upscaling of the parameters to a certain point.

Event representation Event data is transported in two cycles of a single network time slot.
The first cycle holds time and the second address information.

Cycle Bits Name
0

15..8 timestamp

7..4 timebin

3..0 timeext

1
15..9 zero
8..0 address

Actually only the lower six bits of address are occupied by subnr. The VHDL datapath
description handles 8 bit sized address fields to allow an easy extension in the future. The
synthesis tool may however recognize the two upper bits as constant and use that for optimization.

Transmission process The interface to the MCGN network port was discussed in Section 2.2.2,
Figures 2.4 and 2.5 on page 9 show timing diagrams of an example transmission process. The
slot signal of the timing information is used as index for the Mfi_lut, by which it is mapped
asynchronously onto a FIFO index. When the associated FIFO is not empty, the logic checks if
the switch is ready to accept new data. This is the case, when signals accept and enable are set
and the first cycle of a new slot has started (indicated by sofs) or a first cycle has already been
transmitted. Timing information is presented one cycle in advance, so the transmission process
can be registered. Because of the registered operation, the pop signal to the FIFO is issued, while
the first cycle is transmitted. The event will then be removed from the FIFO with the next clock
edge, while the same FIFO is still selected. Would it be set later, the wrong queue would be
popped.

5.1.4 Implementation of the Sorter

For the two memories outlined in Section 3.3.3 dual-port BlockRAMs are used. Regarding only
size, it would be beneficial to implement OCCMEM, which stores only 256 bits, as distributed RAM.
But, since two independent ports, both capable of read and write operations, are required, a
BlockRAM must be used, because distributed RAM can not provide this feature. Its ”left” port
which stores incoming events is configured 256 × 1 bit. The ”right” port which is used by the
readout logic is configured 32 × 8 bit. This gives a look ahead window of eight events. For MEM

both ports are configured 256×32 bit. Only the ”left” port is writable, because event data doesn’t
need to be overwritten on readout. Thus, an implementation in distributed memory would be
possible, if BlockRAMs needed to be saved and logic resources were available.

40 CHAPTER 5. IMPLEMENTATION

Figure 5.1: This is the state diagram for the control state machine. Transition labels show only
the evaluated inputs, while all other inputs are ignored. n is the number of events, that may be
processed within one window. IDLE is the reset state.

Bit counter For the readout algorithm it is necessary to count the number of bits set in the
colocc signal (cf. Section 3.3.3). This is done by the Bit_counter combinational logic block. A
first implementation formulated its functionality straightforward as VHDL for-loop with a counting
variable. But the XST synthesis software inferred an adder and a multiplexer for every iteration
of the loop. For an eight bit window this resulted in a very long combinational path, which made
place and route difficult. To get a solution, that takes up less resources and is also faster, an
alternative approach was chosen: For the Bit_counter_4 component a logic function is directly
designed to count the set bits within one nibble. Two of them are instantiated for the lower and
upper half of the colocc signal and their outputs are fed into a 3 bit adder. The 4 bit input x is
mapped onto a 3 bit output y by the boolean function f , y = f(x). y is a binary number between
0 and 4, that is equal to the number of ones in x. The truth table for f can easily be written down
and coded as VHDL code.

Because x is 4 bit wide, f can be implemented within one lookup table (LUT4) of the FPGA
logic resources for every bit in y. Bit_counter_4 is therefore realized in three parallel LUT4,
which is the minimal achievable size on this FPGA. It is also the fastest possible solution, since
only one logic lookup is required. It was also verified with the netlist produced by synthesis, that
only three LUT4 are inferred.

Control state machine

This FSM controls the readout process on a high level. It sets the read_pos register and determines
how many events may be read within one window. Figure 5.1 shows the state diagram. There are
three types of states: The FSM is in the IDLE state after reset and as long as enable is held low.
This allows to disable event processing until Spikey is set up and synchronized. START_READ and
CMPLT_READ are the main working states, where memory is accessed and the number n of events
to process is calculated. The WAIT states are used to give the readout FSM enough time to process
the calculated number of events.

In a strict formulation, the state would also include the read_pos register, because it is used in
the transition logic in the same way as the state. The states in Figure 5.1 would then exist multiple

5.1. IMPLEMENTATION OF THE BUILDING-BLOCKS 41

Figure 5.2: In this figure the logic elements that are implementing the control state machine and
the related elements are shown. Clouds represent combinational logic and a triangle on the lower
edge of a rectangle indicates a register. Buses are drawn bold.

times for every possible read_pos value. The FSM can also be understood as hierarchical state
machine, where for each read_pos value Figure 5.1 shows the sub-states and their transitions.
Then START_READ would transit to CMPLT_READ within another sub-state.

Figure 5.2 gives an overview of the logic elements used to implement the FSM and some
supporting logic. The next_read_pos register holds the value read_pos will be updated to on the
next transition from START_READ to READ_CMPLT. It is used to do calculations depending on the
reading position, before read_pos is updated.

calc buf state The calc_buf_state process calculates the time delta b between t_chip and
the reading position and distinguishes between several cases:

buf_state =

top b ≥ bmax

bottom b ≤ bmin

middle_limited b ≤ bmin + (w − 1)

middle_free else

(5.1)

b = next_read_pos− t_chip (5.2)

buf_state is calculated only during the START_READ state. That way, in the READ_CMPLT state,
information about the time delta is available in a form, that can be easily processed by the
calc_num_ev_proc process.

42 CHAPTER 5. IMPLEMENTATION

clk
state w1 start cmplt w4 w3 w2 w1 start cmplt start
buf_state top middle_free
read_pos 0x008 0x010 0x018
next_read_pos 0x010 0x018 0x020
m 0 6 2
n 4 6 2

Figure 5.3: The diagram shows an excerpt of the readout process. States are abbreviated for
readability: ”start” stands for START_READ, ”cmplt” for READ_CMPLT and ”w1” etc. for WAIT_1 etc.
read_pos and next_read_pos are given in hexadecimal numbers. At the beginning the buffer is
at the top and no events are set in the window. The second window holds six events and all of
them are going to be processed. Consequently the buffer is below top for the next window.

calc num ev proc In the next cycle, during the READ_CMPLT state, n is calculated by this
combinational process.

n =

max(w/2,m) buf_state = top

min(w/2,m) buf_state = bottom

b − bmin buf_state = middle_limited

m buf_state = middle_free

(5.3)

Processing w/2 event slots doesn’t change b. Thus in the top case, at least that much events are
processed, to not increase the time delta any further. The opposite is the case for bottom. To
not decrease the delta further, at maximum w/2 slots are processed. Between top and bottom,
middle_limited indicates, that processing more than b − bmin slots would underrun the lower
limit. Processing exactly that number leads to being in state bottom, when the next window is
read. It would make sense to set n = max(b − bmin,m) here, but the simpler solution above was
chosen, to save an additional comparator and multiplexer. This does not affect the principle of
operation, because in all other cases n depends on m.

OCCMEM access The upper five bits from next_read_pos serve as address for the OCCMEM

memory. In the START_READ state the output is saved in a register. In the next cycle, the state
changes to READ_CMPLT and the address is changed. One cycle later, the output presents the
result for the new address. For n = 0, 1, 2, according to the state diagram, the state will now be
START_READ again and so the output will be saved again. It is registered at the earliest point of
time possible in this situation, where n = 0, 1, 2. Also during START_READ, the window is erased
by asserting the write enable signal of OCCMEM. The data input is wired to zero, as indicated by
the ground symbol in Figure 5.2.

The output of the register is fed through asynchronous logic in the Reduce_events module
back to the colocc port of the Sorter. It then goes asynchronously through Bit_counter,
calc_num_ev_proc and the state transition logic. This is a rather long logical path and having
a register after the memory output greatly improves timing, as the clock to output time for a
register is much smaller than for a BlockRAM.

An example of the overall resulting timing can be seen in Figure 5.3.

Synchronous start The readout process has to be started synchronous to the Spikey system
time. The start signal is given from the outside by raising enable. Because the output from OCCMEM

is registered in the START_READ state, a valid address must be presented to the memory already
in the IDLE state. Therefore read_pos is set to t_chip+ bmax during this state. next_read_pos
is set to t_chip + bmax + w.

For correct processing it is necessary to start on a system time that is divisible by w. Otherwise,
the correspondence between bits in occ and the reading position would be broken. The readout

5.2. INTEGRATION INTO THE FPGA 43

FSM assumes, that bit i belongs to time stamp read_pos + i. Since only the upper five bits of
read_pos are used as address for OCCMEM, an additional offset would be introduced.

This condition has to be ensured outside of Sorter within the logic driving enable. That way,
scalability is improved, because the logic is needed only once for multiple Sorter instances.

Readout state machine

Besides the control FSM a second state machine selects the actual event from memory. Its purpose
is to present an address to MEM and to mark the validity of events, which were read from the memory.
Its state i_valid is a bit-index into colocc. After reset and for every new window (when the
control FSM is in START_READ) it starts at i_valid = 0. Then in every clock cycle, it advances
to the next set bit.

The address to MEM is given by read_pos + i_valid. Because the collective occupation bits
are used to calculate i_valid, these addresses not necessarily hold valid events. For this reason,
the valid bit on the outgoing event port is set from the individual occupation bits in occ.

5.2 Integration into the FPGA

The design described in this thesis builds on existing work. It combines and extends two designs,
one containing the Spikey controller and the other the gigabit network. Both have particular
requirements on the limited dedicated resources for clock generation and distribution, which have
to be conjoined into one utilization scheme. Also some modifications needed to be done inside the
Spikey control logic to realize event streams from and to other Nathan modules.

5.2.1 Clocking

As described in Chapter 2 the Backplane provides a common clock for all Nathan modules, which
themselves generate the clock signal for Spikey . The maximum frequency for the network is
156.25 MHz [Phi08a], which is also attainable for the Spikey ANNA [Grü07]. Therefore, this is
also the targeted maximum clock frequency for this design.

The existing designs, which were using either the network or the Spikey controller, make
different use of the clocking resources on the FPGA. These usage schemes have to be combined
into a single one that fits into the device.

Required clock signals The different parts of the design have different requirements on clock-
ing.

• The DDR-SDRAM controller logic needs two clock signals situated on the upper edge of the
FPGA, which are 180° phase shifted to each other. The frequency may not exceed 140 MHz
[Sch05]. Experiments later on have shown, that also a minimum of 60 MHz must be provided.

• The SlowControl ring clock is fed into the FPGA on the bottom edge via an external pin
and must be distributed over a dedicated clock network inside the device. The SlowControl
client logic derives a separate slower signal from the system clock to ease place and route.

• The MCGN needs a reference clock of up to 156.25 MHz for the MGTs and its interface.
It implements a special feature to minimize delay, that requires one clock buffer multiplexer
(BUFGMUX) [Phi08a].

• The clock input to Spikey is generated on the FPGA and multiplied inside the chip. Half
the frequency of the Spikey slow clock has to be provided on a differential IOB. For the
HyperTransport link, that operates at the fast Spikey frequency with DDR, three clock
signals with 0°, 90° and 180° phase shift are needed [Grü07].

44 CHAPTER 5. IMPLEMENTATION

Figure 5.4: Shown is the utilization of DCM and BUFGMUX resources on the FPGA. The DCMs
are located on the four corners of the chip and BUFGMUX are drawn as triangles, labeled 7P, 6S
etc. The sr_clk is directly given on a clock buffer from an input/output block (IOB) connected
to an external pin. For sc_clk general purpose routing lines are used, since for each DCM only
four dedicated lines are available. The top left DCM is not used.

5.2. INTEGRATION INTO THE FPGA 45

FPGA clocking resources The used FPGA device has four digital clock managers (DCM)
and sixteen global clock multiplexer buffers (BUFGMUX), that drive sixteen clock domains from
external or internal sources. The DCM uses a delay locked loop (DLL) to generate de-skewed clock
signals with multiplied or divided frequencies and can dynamically do phase shifting. BUFGMUX
are used to drive the dedicated clock networks and can be configured as simple buffers, possibly
with an enable signal, or as multiplexers to dynamically switch between two clocks.

Various constraints for the usage of these components exist, because only limited routing
resources dedicated to clock signals are available. The FPGA is divided into four quadrants, each
having eight clock networks. Two BUFGMUX - designated as primary and secondary - share
access lines to one quadrant and thus compete for access. In the multiplexer configuration, two
neighboring buffers also share inputs. Using general purpose routing lines as inputs to clock buffers
is possible, but must be done with great care, since they have higher and more variable delays.
If more than eight clocks are used in a design, manual placement of the DCM and BUFGMUX
components is usually required. Details can be found in [Xil02].

DCM and BUFGMUX usage Figure 5.4 illustrates the usage of DCM and BUFGMUX
resources. The system DCM in the lower left corner reconstructs the external clock signal of the
Backplane and provides it as the main clock sys_clk of the design to all quadrants. Buffer 7P
may therefore not be used. usrclk_mxd interfaces the MGTs and is used for the min delay patch
mentioned above. This buffer is used in a clock multiplexer configuration - with one input being
ground - and shares its inputs with 7S. In the given configuration only sys_clk can be placed
next to userclk_mxd, since only they have a common input.

Pins to the SDRAM module are situated at the top edge and thus clock buffers for the link are
placed at the top, too. The sdram_dcm has sdram_clk as input and generates the phase shifted
DDR clocks for the external module. Because the clock signal from the RAM chip is fed back to
the DCM for de-skewing, a separate DCM is required.

The anna2x clocks are used for the Spikey interface DDR registers. The signal anna2x_clk and
the 180° phase shifted version anna2x180_clk are provided by the system DCM on dedicated ports,
that generate a doubled and inverted doubled signal respectively. Because of the unknown phase
relation between FPGA and Spikey , it may be required to shift the sampling clock [Grü07]. This
can be done by switching to the shifted anna2x90_clk, that is generated by anna_dcm from the
doubled system clock. The DCM is configured as variable phase shifter, which can be programmed
via SlowControl. The inverted clock signal anna2x270_clk is produced by local inversion clocking,
i.e. no global clock network is used.

The SlowControl ring clock is provided via pin and directly routed to a clock buffer. It is
only required by lower network levels and has therefore not to be routed to every quadrant.
Unfortunately a buffer on the rather crowded bottom edge must be used, since the IOB is situated
here. The system DCM feeds the sc_clk buffer over general purpose routing resources, because
only four outputs of a DCM can use dedicated resources and sc_clk is in no particular phase
relation to other clocks. It uses an output of the system DCM that provides a signal with a
frequency divided by four.

Alternative configuration Early experiments have shown, that at least two of the used Spikey
chips had difficulties at 156.25 MHz. For the test an existing FPGA configuration file with existing
test software, that writes and reads data to the parameter RAM of Spikey , was used. It was
therefore decided to implement an alternative clocking scheme, which can be selected prior to
synthesis and runs at 100 MHz. At this frequency, the sdram_clk is operated at full system clock
speed to stay above the minimum of 50 MHz.

5.2.2 Integration with the Spikey Controller

The implementation of the existing Spikey control logic is described in [Grü07]. An outline was
given in 2.3.3. The only event source is the PlaybackMemory . With multi-chip network operation
this has to be extended to include event streams coming over the network.

46 CHAPTER 5. IMPLEMENTATION

Figure 5.5: The altered spikey interface logic. The original can be seen in Figure 2.7. Event
streams have been redirected to use playback_evs, evin and evout ports. The start_playback

and sync control signals were added.

Figure 5.5 shows the modifications, that were done to the control logic. Several additional ports
were introduced: The event stream from the PlaybackMemory is forwarded to the outside through
playback_evs. It is fed into Receiver, to be merged with incoming streams (cf. Figure 3.5). The
resulting stream is handed to spikey_control over evin. Events from spikey branch off to Sender,
before they are stored in the PlaybackMemory .

Modified HyperTransport datapath The HyperTransport framing and deframing on the
FPGA is done with twice the system clock frequency. The framing logic samples data to be
transmitted with this speed and thus only half the system clock period minus setup time are left
for routing. In case of a 156.25 MHz, this is less than 3.2 ns.

The design often failed static timing analysis due to one of these paths. To get around this,
an additional register was placed in the datapath of framer and deframer logic, prolonging the
required routing delay by a full system clock period. Since this increases link latency by one cycle
per direction, the register can be disabled by VHDL generic parameter before synthesis.

Because synchronization of Spikey explicitly uses the link latencies for its calculations, it must
be adapted to whether the register is used or not.

Additional control signals The control signals start_playback and sync allow control of
PlaybackMemory processing from outside the controller logic. start_playback starts the SDRAM
read request to fill the buffers. After a predetermined time spikey_sei starts processing of the
buffer contents. Synchronization of Spikey is performed upon a command stored in the Playback-
Memory and sync indicates its completion.

PlaybackMemory buffers The PlaybackMemory is stored in the SDRAM of the Nathan
board. The interface logic inside the FPGA uses FIFO buffers for reading and writing. They
are required to cross the clock domain between the main FPGA clock and the SDRAM clock and
to buffer data, while the SDRAM is in a refresh cycle2. The size of theses buffers was reduced
from 2048 entries to 1024 to free additional BlockRAMs.

The sustainable data rate of the SDRAM is smaller than that of the Spikey interface. Both
can transfer one 64 bit word per clock cycle, but even if operated at full system clock frequency,

2SDRAM is dynamic memory and requires periodic refresh cycles to keep its content.

5.3. RUNNING OF EXPERIMENTS 47

Component BlockRAM LUT4 Flip-Flop
Sender 5 581 300

Transmit_buffer 1 197 83
Send_switch 0 132 83
Other 3 55 51

Receiver 10 868 596
Sorter (PBM) 2 165 94
Receive_line 4 310 235

Sorter 2 202 99
Other 0 83 32

Total 15 1449 896

Table 5.1: Resource consumption of individual components. The module hierarchy is indicated by
indentation and Other refers to not explicitly named logic on the same level. The Sorter module
labeled with (PBM) is the one attached to the PlaybackMemory . The given numbers assume the
default configuration, where Transmit_buffer and Receive_line are instantiated twice.

the maximum data rate of the SDRAM is reduced by refresh cycles. Therefore experiments at
high rates are limited by the size of available buffers.

5.2.3 Resource Requirements

This subsection gives an overview of the utilized FPGA resources in the final design. The given
numbers are extracted after the synthesis and place and route steps for the default configuration.
It includes Spikey controller, gigabit network and SDRAM controller, as well as Sender and
Receiver. The MCGN switch is configured to use four of the eight available MGT links and
provides two internal user ports. therefore Sender uses two Transmit_buffer and Receiver

two Receive_line components. Of the debugging features only Drop_counter is enabled (cf.
Section 5.4 for a discussion of debugging components)

This design takes up 96% (4732 of 4928) of logic slices and 88% (39 of 44) of BlockRAMs, as
given by the place and route report.

Break-down of utilization numbers Table 5.1 shows individual numbers for some submod-
ules. They were extracted from the final design with the floorplanner tool from Xilinx. The
receiving side is the larger one and Receive_line the most complex component. Relevant for
scalability are most of all Transmit_buffer and Receive_line, because they are instantiated
once for every user port of the MCGN switch.

5.3 Running of Experiments

An experiment run with an artificial neural network distributed over multiple chips involves three
steps: First the interconnecting network has to be synchronized (cf. Section 2.2.1), second net-
work connections have to be configured and then all nodes have to be started synchronously.
Synchronization and configuration of the MCGN switch are described in [Phi08a] and the remain-
ing configuration is described in the next section. After that comes a description of the startup
procedure.

5.3.1 Configuration by SlowControl

The cross-chip inter-neuron connections have to be configured by writing the lookup tables de-
scribed in Section 5.1.1. This is done by write commands via the SlowControl network interface
(cf. Section 2.1.3). To avoid having one client module per lookup table, a central programming
component Mem_prog was designed.

48 CHAPTER 5. IMPLEMENTATION

Operation outline Mem_prog implements a SlowControl client module and forwards write re-
quests to a programming bus, to which all lookup tables are connected. It acts as the single bus
master and the clients only read from the bus. Bus signals are:

Name width Description
sel_type 3 bit Selects lookup table by type
sel_mem 4 bit Selects an individual memory of those selected by type
baddr 12 bit Byte-address in LUT memory
wen 1 bit Write enable
data 8 bit Data to be written

A SlowControl write request contains the selection and address bits and a 32 bit data word. A
finite state machine within Mem_prog serializes this word to the 8 bit programming bus line, while
setting baddr to the respective associated byte addresses. The most significiant byte is written
first to the highest byte address.

Client logic This generic behavior needs only minimal logic at most of the LUTs. The two
small tables Mfi_lut and Slot_lut have entries smaller than 8 bit and therefore four entries can
be programmed with one SlowControl command. data’s lower three respective four bits and baddr

are connected directly to the memory port. Logic is required only to generate the write enable
signal from the selected type and id. The same holds true for Send_lut, except that here only
the lower 16 bit of the SlowControl command are serialized to the memory. Because the lookup
port of the memory is configured 16 bit wide (cf. Section 5.1.1), one entry is programmed by one
command.

Requiring additional care, is the case for Recv_lut, which has 1024 entries of 17 bit. It is
not possible to configure the second port with a width of 8 bit and access the complete 17 kbit
range [Xil07]. Instead the second port is also 17 bit wide and local logic assembles one word for
storage. Data is transfered via the 8 bit bus in three clock cycles and then written to the memory
in the third cycle.

The mapping of SlowControl address bits to programming bus signals is given as:

SlowControl module number: 5
Address-Bits Contents

31..19 zero
18..16 sel_type 000 : Send_lut

001 : Mfi_lut
010 : Slot_lut
011 : Recv_lut
100 : reserved
101 : reserved
110 : reserved
111 : Ext_delay

15..12 sel_mem

11..0 baddr

Bits 11..0 in the request are the base address for baddr on the bus. So data bits 31..24 are written
to base address plus three, bits 23..16 to base address plus two and so forth.

Other configuration targets Besides lookup tables, other targets for configuration exist, that
are also connected to the programming bus. In general there is at least the Ext_delay register,
which stores the common upper nibble of delays (cf. Section 3.2.2). But also other targets for
debugging purposes may exists, depending on the synthesized features.

5.3. RUNNING OF EXPERIMENTS 49

Figure 5.6: State diagram for the global control state machine. Transitions are labeled with the
condition on which they are taken and ”/” indicates negation. GSS 0 and GSS 1 are the global
synchronous signals described in Section 2.2.3. sync is the identically named signal from the
Spikey controller. t are the lower four bits of the system time counter and reload can be used to
return to the reset state IDLE.

Write-only memory It should be stated explicitly, that, to the user, Mem_prog provides write-
only memory. Read requests to the module aren’t processed at all. While it would be nice to
verify the contents of the LUTs, write-only allows an efficient implementation of the bus. Signals
can be routed in a chain from Mem_prog to the attached LUTs. If the clients would also have to
be able to write to the bus, one would either have to use expensive tristate buffers3 or a star-like
point to point topology.

5.3.2 Starting procedure

A synchronous start of an experiment distributed over multiple chips is coordinated by the node
control state machine NCS, which is situated on every Nathan network module. It uses the GSS
mechanism of the MCGN network (cf. Section 2.2.3) to start the Spikey controller to read the
PlaybackMemory and enable processing of network events.

Its state diagram is shown in Figure 5.6. After reset the FSM is in the IDLE state. When
the global synchronous signal GSS 0 is raised, the experiment starting procedure is begun. In the
START_PB state, the start_playback signal to the Spikey controller is set (cf. Section 5.2.2) to
initiate PlaybackMemory readout. During the immediately following WAIT_PB state, spikey_sei
signals a read request to the SDRAM client module, which will start to fill its FIFO buffer with
the contents of the PlaybackMemory . After a given time it is assumed, that the buffer is full
enough and the playback commands are read from it and processed. Among them must be a
synchronization command, that will initiate the synchronization of the Spikey time counters.
When this is done, sync is asserted and NCS enters the WAIT_STARTTIME state.

Section 5.1.4 stated, that Sorter requires to be started synchronized to the system time
counter. Therefore, in WAIT_STARTTIME, it is waited until the system times lower nibble is 1110. In
the next state the enable signal to Sorter is raised, so that in the next clock cycle it will start on

3The FPGA has 2464 tristate buffers compared to 9856 flip-flops

50 CHAPTER 5. IMPLEMENTATION

a system time divisible by sixteen. In the default configuration w is eight and so the requirement
for a correct synchronous start of Sorter is fulfilled.

The end of an experiment is signaled by a second GSS signal, upon which the state machine
enters the FIN state, in which it remains until it actively set to IDLE again by the reload signal.

SlowControl interface The GSS signals are raised from the outside by SlowControl write re-
quests to any of the network modules. To prevent spurious GSS events, when the network is not
yet synchronized, GSS processing must be enabled for each node beforehand. The SlowControl
addresses to write to are:

SlowControl module number: 5
Address-Bits Contents

31 one
30..4 zero
3..0 op 0000 : raise GSS 0

0001 : raise GSS 1

0010 : set reload to NCS

0100 : enable processing of both GSS signals

5.4 Debugging Features

In the early implementation phase, it is of benefit to have facilities in the design, that allow to
monitor ongoing transactions. For example one wants to protocol events at multiple points in the
design, to track their path. It is also advantageous to have dummy components to substitute more
complex structures. These could be simple random event sources or similar. Another feature,
which is also of interest in the later lifetime, is to detect and count when and where events are
deliberately dropped.

For the aforementioned purposes components were designed, which can optionally be included
into the design. Event_logger can log event streams on several channels. Drop_counter has
multiple counters to record when and where events are discarded. As test event sources Sin-

gle_ev_src and Fake_spikey can be used.

5.4.1 Logging of Event-Streams

The event logging module Event_logger has three channels, which can be individually selected
for synthesis: The evin and evout channels are three events wide each and directly compatible to
the Spikey interface ports. In fact the primary purpose of the component is to monitor input and
output of Sender and Receiver. A third, single event channel debug can be enabled to record
streams from various taps in the datapath. All channels can also use additional memories to store
the full 32 bit wide system time along with events.

For each of them, dual-port BlockRAMs with one read-only and one write-only port serve as
memory. One stores events and the lower byte of the system time, a second, optional one the time
of the clock cycle in which valid is asserted. Their ports are configured as 512 × 32 bit and thus
can store 512 events. One entry contains:

Bits Name Description
31..24 timestamp Lower 8 bit of the time stamp
23..20 timebin Event time bin
19..17 zero
16..8 address Neuron or synapse driver address
7..0 systime Lower byte of the system time

5.4. DEBUGGING FEATURES 51

A 9 bit counter points at the current write address and is incremented on every new event.

The recorded data is available to the user via a separate SlowControl client. Counters and
memories can be read, a write command resets the counters to zero. The address bits of a Slow-
Control read request are interpreted in the following way:

SlowControl Module Number: 6
Bits Name Description

31..30 zero
29 sel_counters Set to one to read counters

28..27 sel_channel 00 : evin, 10 : evout, 01 : debug
26..9 zero
8..0 addr Address in memory

BlockRAM consumption Each event stream is stored in one or two RAMs, depending on
whether full system time logging is enabled or not. evin and evout have three parallel streams
each, and so they require three or six memories. debug takes one or two RAMs, leading to a total
memory consumption between one and fourteen BlockRAMs.

5.4.2 Counting Discarded Events

Events can be dropped at several points in the datapath, of which some are monitored and the
number of events dropped is logged. The aim of Drop_counter is to give an approximate view of
where events are discarded, so that bottlenecks can be identified. Detecting the loss of all events
is for some cases impossible or would require tremendous effort and resources. Let me give two
examples to illustrate this: First, events injected into the network may be routed nowhere, since
the MCGN switch was not configured to forward this particular slot. This situation can not be
detected inside FPGA logic. Second, the Sorter may not read some valid slots in its memory due
to the readout algorithm detailed in 5.1.4. Logging these drops would require a more complicated
counting interface and some calculation logic or a buffer to defer incrementation.

In the default configuration there are seven counters, which are 16 bit wide. Both numbers can
be configured prior to synthesis. Monitored drop points are (the given counter numbers refer to
the default configuration with two user ports):

• In Send_switch, when two input ports simultaneously request the same output port and
the FIFO of the port with lower priority is full. There is only one counter for Send_switch
(Counter no. 0).

• The Transmit_buffer can overflow, when the requested queue inside the MultiFIFO is full.
There is one counter for every Transmit_buffer (Counter no. 1 and 2).

• For each Recv_queue there is one counter, since new events are dropped, when the FIFO is
full (Counter no. 4 and 6).

• Sorter uses one counter for the drop condition discussed in Section 3.3.3 (Counter no. 5
and 7).

For every counter exists a 1 bit increment signal, which is set, when an event is dropped. Local
logic at the monitored points has to generate this signal.

Read access to the counter values is provided by a shared SlowControl client module. The
interface specification is:

52 CHAPTER 5. IMPLEMENTATION

SlowControl module number: 5
Address-Bits Contents

Read access
31 one

30..20 zero
19..16 op 0001 : read drop counter

2..0 sel select the drop counter by number
Write access

31 one
30..4 zero
3..0 op 0101 : clear drop counters

The width of the sel field depends on the number of actually used counters. If more than eight
are used, more bits will be used. On a clear request, counter will only be reset to zero, for which a
bit was set in the data word. So to clear counter two only, the write request must contain a data
word, where only bit two is set.

5.4.3 Event Sources for Testing

Two dummy event sources are available to substitute the Spikey controller in test setups without
neural network ASIC. Single_ev_src produces exactly one event immediately after its enable
signal is asserted. Address and packet slot of this event can be programmed with the Mem_prog

infrastructure (cf. Section 5.3.1). To write the address, set sel_type to 101, and to 110, to write
the packet slot.

Fake_spikey is a random event source. It uses linear feedback shift registers to generate events
with random timing and addresses.

Both sources also provide a 32 bit wide system time counter, which is normally implemented
by the Spikey controller. This allows operation without any Spikey related logic.

5.5 Development of Supporting Software

To ease the handling of the system, some supporting software tools were written, that use the
SlowControl to communicate with the hardware. The evn-prog program can be used to interac-
tively program the lookup tables. evn-list reads events recorded by Event_logger and presents
them in readable form to the user and evn-drop accesses the drop counters.

Beyond that, the existing test software for the Spikey chip createtb [Grü07] was modified and
extended to perform multi-chip tests with it.

All software is written in the C++ programming language.

5.5.1 Hardware Access Framework

The hardware access framework is a set of C++ classes to provide high level functionality to
the programs mentioned above. Theses classes abstract SlowControl communication and contain
methods tailored to their associated hardware modules.

SlowControl library A C library provides low-level methods to read from and write to indi-
vidual SlowControl client modules on Nathan. Before they can be used, an open function must be
called, which returns a handle to be used in read and write requests. A close function invalidates
this handle.

Class hierarchy Figure 5.7 shows the class hierarchy of the framework. The primary base class
Slow_base stores the handle and implements opening and closing. Derived from it the Mem_prog

class is intended to utilize the hardware module of the same name described in Section 5.3.1.

5.5. DEVELOPMENT OF SUPPORTING SOFTWARE 53

Figure 5.7: Class hierarchy of the hardware access framework. Arrows point from derived to base
class.

It features a method to write data to specific programming bus targets. Its specialization, the
Lut_prog class uses this method to provide programming functions for each programming target.
So a LUT entry can directly be programmed with a call to one of these functions.

Event_logger is another specialization of Slow_base and provides functions to read counters
and events from the hardware module of the same name. Similarly, Drop_counter implements
methods to read and reset drop counters.

5.5.2 Modifications to Spikey Test Software

Experiments are performed by a modified version of the createtb program, which was previously
used for single-chip testing. It contains the hardware abstraction layer for the Spikey chip and
communicates by SlowControl. A description can be found in [Grü07].

The program contains several test modes, which perform different tests on the hardware. To
evaluate the hardware design and perform multi-chip experiments, new test modes were developed.
Chapter 6 describes what they do. Other modifications concern experiment workflow and the
integration of the hardware access framework (cf. Section 5.5.1).

Start of playback In the original version createtb has a function to send a spike train to
Spikey . It transfers event data to the SDRAM via SlowControl and also automatically starts the
readout process on the FPGA. For multi-chip operation, these steps are separated. First, event
data is distributed to one or more nodes and then, readout is started globally by raising a GSS
event.

A mode variable was added to the hardware abstraction class Spikey, that selects whether the
sendSpikeTrain member function should also start the experiment or only transfer data.

Packet slot utilization As described in Section 5.2.2, Receiver combines event streams from
the PlaybackMemory and the network. In memory, events are coded in 64 bit words, as they are
on the Spikey interface. That implies, that three events can be stored in parallel. In the modified
design by default only one of these can be passed to the chip, since the others are reserved for
network traffic. The sendSpikeTrain function is extended to reflect this and store only one event
per 64 bit word.

The packing algorithm in use would store two events with consecutive time stamps in the same
packet. When it is allowed only one event per packet, it will not transmit the second one at all.
This behavior is sensible regarding the available bandwidth of the Spikey link. At maximum a
rate of 0.5 events/time stamp can be sustained on a single slot. However, it should be possible to
alter the algorithm to allow bursts at higher rates for a limited time. A readout behavior similar
to the one of Sorter (cf. Section 3.3.3) could be implemented completely in software.

54 CHAPTER 5. IMPLEMENTATION

Chapter 6

Experiments and Performance

Analysis

Experiments described in this chapter serve two purposes: First to test whether the whole stage-1
system behaves as expected and can be used for multi-chip neural network experiments. And
second to evaluate the performance of the inter-chip network. The relevant measures for the latter
are latency and throughput.

Basic test setup Most of the experiments use the same basic setup: Spikey is configured to use
the event loopback module instead of the real analog part. That way, events that would normally
be transmitted to an analog synapse driver are transferred directly to the output buffers behind
the neuron circuits. They return to Nathan with a time stamp increased by 10 and the synapse
driver number in the neuron address field.

To simulate Spikey activity, events are written to the PlaybackMemory and transferred to the
chip after the experiment has started. The loopback module returns them to the FPGA, where
they appear the same way as events generated by the analog part would. The Sender component
can now transport them to another Nathan, where Receiver delivers them to its own Spikey
chip. The loopback module there returns the events to the FPGA, where they are stored in the
PlaybackMemory for later readout.

This setup allows to deterministically generate test activity patterns without uncertainties.
This could not be guaranteed, when using the analog network blocks. To verify the result of a test
mode, the spike trains read back from each module can be evaluated.

Figure 6.1 shows which Nathan modules are used and how they are interconnected.

Figure 6.1: Topology of the used Nathan modules on the Backplane. Boxes indicate the available
slots on the Backplane, where only those filled with a number are equipped with a Nathan board.
The connections between nodes are labeled with the MGT numbers. The same number is used on
both ends of a link.

55

56 CHAPTER 6. EXPERIMENTS AND PERFORMANCE ANALYSIS

System under test All tests described in this chapter use the final Nathan FPGA design in
default configuration with four MGTs and two user ports. The 100 MHz oscillator of the Backplane
is used as system clock. The 156.25 MHz clock is not used, because it causes high error rates on
the Spikey HyperTransport links, as discussed in Section 5.2.1. As a consequence the FPGA uses
the alternative clocking configuration with full SDRAM frequency. The used Spikey chips belong
to revision two and three.

6.1 Validation of Correctness

The first experiments are to check if the system works as intended. This is the case, when events
are transported to the correct destination in space and time. Here space means Nathan module
and synapse driver address and the timebase is the Spikey system time counter. Furthermore it is
checked, whether the constraints discussed in 3.1.1 are met, i.e. if events are transmitted in order
of their time stamps and event buffer collisions are prevented.

6.1.1 Correctness of the Routing Mechanism

This experiment tries to deliver a single event from one Spikey to another to validate correctness
in space. It repeatedly configures a random route, i.e. source neuron, routing parameters (subnr,
mfi, etc.) and destination synapse driver. Then it generates a spike train containing the event
to be routed followed by random noise. The noise events are picked from all possible neurons on
the source chip, except for the test neuron. The test mode programs the lookup tables to drop all
events, that come from “noise neurons”. The experiment is successful, when only the chosen event
is present in the recorded spike train of the destination chip.

In more detail, the stimulus spike train has the following pattern: The test event is the first
one in the stimulus spike train and followed by noise. First comes a regular part, where events
are placed 10 time stamps apart and all neuron numbers – except for the tested one – are swept
through. After that 1000 events with random addresses – again except for the tested one – follow
at random intervals between one and eleven time stamps.

That way, it is validated, that events from any source are delivered correctly, that arbitrary
routing parameters can be used and that other events are not transported. The rate of the source
spike train is kept low, with regular intervals of 10 time stamps between events, to prevent loss
caused by bandwidth limitations in the gigabit network.

Parameters This test mode has three selectable parameters:

• The source and target Nathan numbers Nsrc and Ndest.

• The number ni of iterations.

Performed experiments This test mode was used throughout the implementation phase to
verify design changes. The final implementation succeeds reproducibly, for example with ni =
1 × 106, Nsrc = 0 and Ndest = 1. With these parameters, the test lasts nearly 67 hours, during
which one million events are transported without errors. The experiment demonstrates, that all
routing parameters can be used in arbitrary combinations. The deliberate rejection of individual
neuron addresses is verified with billions of events.

6.1.2 Merging of Event Streams

A major task of Receiver is to merge incoming event streams and send them ordered by time
stamp to Spikey (cf. Section 3.1.1). The purpose of this experiment is to demonstrate this ability.
It establishes a situation that makes unordered arrival of events likely by configuring two source
neurons for one target synapse driver. For both sources random spike trains are generated by
poisson processes [Dow08]. After the experiment run, the test mode iterates over the events

6.1. VALIDATION OF CORRECTNESS 57

No. Nsrc,0 Nsrc,1 Ndest R[events/time stamp] ni ne Comment
(0) 1 7 0 0.01* 1000 30000 passed
(1) 0 2 1 0.15* 100 64 passed
(2) 0 2 1 0.30* 100 64 passed
(3) 0 2 1 0.40* 15 64 1 run failed
(4) 0 2 1 1.0* 7 64 1 run failed
(5) 0 2 1 1.0 100 64 passed
(6) 0 2 1 0.15* 4 1000 Dext = 2, D ∈ [0, 255]
(7) 0 2 1 0.15* 100 1000 Dext = 1, D ∈ [32, 255]

Table 6.1: Parameters and results of the performed merging experiments. Rates labeled with an
asterisk (*) indicate, that events were not allowed to have consecutive time stamps. Experiments
(3) and (4) were aborted after the erroneous run to inspect the cause of the error manually. The
inspection - discussed in the main text - however showed failures to be not caused by unordered
transmission of events.

recorded at the destination and tries to match each of them to one from the sources. The matching
is done by subtracting the expected delay from the target time stamp and searching an event with
this value as source time stamp. If events were not transmitted to Spikey in correct order, a
deadlock would occur and at least one event would take 256 time stamps longer through the
loopback than expected.

Besides this indirect approach the test software also searches directly for deadlocks in the target
spike train. For rates above 0.05 events/timestamp, gaps of more than 128 time stamps between
target events are considered as deadlocks of length 256. For rates above 0.01 events/timestamp,
deadlocks of length 4096 are identified by detecting gaps of more than 2048 time stamps. The
rate limits are necessary to ensure, that the respective gaps are truly deadlocks and not allowed
intervals. Below these rates, only the matching described previously is used to detect erroneous
events, while above both methods are used simultaneously. The matching approach is sensitive to
a wide range of errors, while the gap analysis specifically finds deadlocks.

The procedure is repeated in multiple iterations, and in every single one the test mode config-
ures a new randomly selected network configuration. These are source and destination addresses
and routing parameters like subnr, mfi and lvc.

Parameters The test mode has six parameters:

• Two source Nathan numbers Nsrc,0 and Nsrc,1.

• The destination Nathan number Ndest.

• The mean firing rate R for each source spike trains.

• The number of experiment repetitions ni.

• The number of iterations ne to generate events in each repetition. Roughly the total number
of events.

Also for some experiments the peak event rate at the source node was capped by preventing events
with consecutive time stamps. The modified createtb program is not able to place such events into
the PlaybackMemory (cf. Section 5.5.2). Thereby the peak rate is limited to 0.5 events/timestamp.

ne is the number of iterations in which one or two events are randomly generated. Depending
on the selected rate, the number of events is larger than ne.

Performed Experiments

Table 6.1 shows an excerpt of used parameter sets. Capping of peak rates was in use for most of
the experiments. When an error occurred during one run, abort was triggered to allow a manual
examination.

58 CHAPTER 6. EXPERIMENTS AND PERFORMANCE ANALYSIS

Event output buffer delays Tests, especially at high rates, are sensitive to multiple failure
modes apart from unordered transmission. In experiments (3) and (4) events at the end of the
target spike train had no matching source events. Using Event_logger to analyze the event stream
from Receiver before transmission to Spikey , events were found to be passed in correct order and
sent as expected. The events in question had unexpected values for bits 11 to 8 of the time field.
Those are the bits inferred by the FPGA logic to supplement the 8 bit time value provided by
Spikey . The wrong upper bits in the recorded stream are probably caused by a full event output
buffer on the chip (cf. Section 2.3.1). These FIFOs are 128 entries deep and get filled during
a run, because spike rates were above the sustainable transfer rates of the chip interface. The
propagation time through a full FIFO is equivalent to 256 time stamps. The time from analog
part - or loopback module in the case at hand - to Sender is even larger, as further pipeline stages
are passed. The FPGA logic has no means to detect from which period events originate. So a
nearly full event output buffer results in events being assigned to the wrong period.

This problem was already identified in the conceptual development phase by simulation. Hence
it was possible to include a solution in the fourth revision of the Spikey ASIC, by making the
depth of the output FIFOs programmable. However, a chip of this version was not yet available
for testing.

The parameter ne = 64 is chosen for experiments with high rates to minimize this effect. Since
the number of events may be higher than 64, as commented on the parameter ne above, the FIFO
can however still grow too full.

During experiments in which peak rates were not capped, e.g. (5), this failure mode was not
observed. With R = 1.0 an event is generated for every time stamp, but the software is only
capable of sending every second one to the PlaybackMemory . Therefore the total event number
is far below 64 and the FIFO does not grow too full.

Low-rate experiments For example experiment (0) was performed with a low rate of 1 event
every 100 time stamps on average per source. The rate is high enough to make deadlocks on Spikey
possible, since statistically four events should interact within 256 time stamps. By using very long
spike trains (ne = 30000), many patterns of event arrival at the destination occur without the
problems discussed in the previous paragraph.

Because of the limited SDRAM bandwidth, it is difficult to run experiments with high rates and
large ne. For rates above approximately 0.1 events/time stamp, createtb gives an error message
to indicate, that the read buffers of the PlaybackMemory ran empty, before the experiment was
finished. In these cases ne must be selected to match the buffer depth, so that the complete data
for one run is available in BlockRAM FIFOs.

Sorter deadlocks During early experiments with a preliminary design, very long gaps of about
4096 time stamps were observed at the destination node. Recv_queue buffers incoming events and
presents them in order of arrival to Sorter. The latter accepts an event into its memory not until
its target time stamp allows to store it in the sorting memory. That is the case, when it is less
than 256 time stamps greater than the current reading position (cf. Section 3.3.3). Now consider
two consecutive events in Recv_queue, which are 256 time stamps apart. When the event with
the greater time stamp is ahead of the other in the queue, the reading position will be equal to the
time stamp of the other event, when the first one is accepted by Sorter. Consequently it arrives
too late to be send to Spikey in time. Accepting it, would result in a deadlock, since it would be
delivered after the next wrap-around of the 12 bit reading position.

As a consequence the logic of Sorter was extended to check whether an incoming time stamp
is more than 2048 time stamps in the future. In this case, it must be dropped to prevent the
deadlock. This drop condition was already described in Section 3.3.3 and is included in the final
design. The deadlock was not observed since then.

Influence of the extended delay Large extended delays lead to long waiting times in Recv_queue

to compensate the difference between real link latency and demanded delay. When merging event

6.2. PERFORMANCE MEASUREMENTS 59

streams with different programmed delays, that are also subject to jitter (cf. Section 3.1.1), events
with time stamps over a wide range may be present in Recv_queue at about the same time. Be-
cause Sorter only covers a range of 256 time stamps, events arriving in the wrong order and being
apart more than that are lost, as a consequence of the drop condition discussed in the previous
paragraph.

Large extended delays increase the probability of one event blocking a number of others inside
Recv_queue, since they have to wait, even if the buffer is empty. This can lead to losing a large
number of following entries and results in a longer period without events in the target spike train.

This was observed in experiment (6). Experiment (7), for which only the delay range was
changed, does not show such gaps.

Single bit errors This test mode is also sensitive to single bit errors in events transmitted to
Spikey . When the error affects the time stamp, unmatched events are detected. By listing source
events which were not associated with any target event, a candidate can be found, that differs
only in one bit from the expected event. When the address is affected, events are dropped at the
source node. Yet, the corrupted events are visible in the recorded spike train. They appear as
events from other, unused neuron addresses.

Single bit errors were observed during some experiments, for which accidentally an FPGA
configuration with timing errors was used. After solving the timing violations for the final design,
bit errors were not detected again.

6.2 Performance Measurements

The previous section described experiments, that build a basic confidence in the implemented
design. This section will continue with more thorough tests, which also allow to characterize the
performance of the network.

6.2.1 Latency

Key to a successful multi-chip operation is a low-latency interconnecting network. This experiment
therefore serves two purposes: To measure the minimal achievable transmission time and to verify
a correct delivery in time without jitter.

The test mode iterates over a wide range of programmed delays D. For each value of D it
performs a number of runs. Each run generates a spike train of several hundred events with fixed
intervals of 256. The time stamp of the first event is shifted by one before each run. For the next
value of D, it is reseted to an initial value T0. Because of the fixed interval of 256, in one run the
events have identical 8 bit time stamps and only the time spent waiting on a valid MCGN slot is
different.

As an example, the test mode starts with D = D0. The spike train generated in the first run
begins with event time stamps

T0, T0 + 256, T0 + 512, ...

In the next run the spike train begins with

T0 + 1, T0 + 1 + 256, T0 + 1 + 512, ...

This goes on for a predefined number of runs until D is incremented to D = D0 +1. The next run
will then again start with

T0, T0 + 256, T0 + 512, ...

In summary, this iteration scheme allows to test a range of programmed delay values with all
possible time stamps, while also varying timing relations to the MCGN. That makes it possible
to cover a large space of possible timing combinations.

60 CHAPTER 6. EXPERIMENTS AND PERFORMANCE ANALYSIS

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500 600 700 800

m
ea

su
re

d
de

la
y

[ti
m

es
ta

m
ps

]

programmed delay [timestamps]

 135

 140

 145

 150

 155

 160

 165

 170

 115 120 125 130 135 140 145 150

programmed delay [timestamps]

Figure 6.2: Measured delays over programmed delays. The left picture is a composition from
runs over one, two, three and four hops. The right is a detail of the left, in that individual points
are discernible. Each point is produced by one run. So for one programmed delay value, multiple
runs with variated event timing are plotted. Points for one programmed delay are atop each other,
indicating, that delivery is free of jitter. For small delay values, no events arrive, and so no points
are drawn.

Resulting spike trains are analyzed as described in Section 6.1.2: For every arriving event a
matching source event is searched, based on the expected delay. Besides this automatic self-check
of the experiment, the measured delay of every single run is plotted against its programmed delay.
This allows to graphically check for correctness. To find the minimal possible delay, a histogram
is plotted, showing the number of arriving events for every measured delay value.

Source and target addresses, as well as routing parameters are again randomly chosen for every
run. Experiments are executed over different physical distances by routing MCGN time slots over
one or more intermediate nodes. The pass from one node to the next is called a hop.

Parameters The test mode has seven parameters:

• The source and target Nathan numbers Nsrc and Ndest.

• The range of programmed delay values to test as given by its lower and upper bounds D0

and D1.

• A step size for the delay values ∆D.

• A number of runs ni per delay value.

• A number of events ne per run.

6.2. PERFORMANCE MEASUREMENTS 61

 0

 50000

 100000

 150000

 200000

 250000

 300000

 100 200 300 400 500 600 700 800

co
un

t

measured delay [time stamps]

1 hop
2 hops
3 hops
4 hops

Figure 6.3: Latency measurements over multiple distances. Plotted is the histogram of mea-
sured delays for experiments using connections over a variable number of hops. For multi-hop
connections, measurements covered only the transitional range, characterized by the sharp edge.

Performed experiments Figures 6.2 and 6.3 show results of performed experiments. The
tested range covers delay values from D0 = 0 to D1 = 768 with a stepping of ∆D = 1. For each
delay value ni = 256 runs with ne = 1001, for the single-hop measurement, and ne = 1000, for
multi-hop measurements, were performed1.

Figure 6.2 shows the delays measured in each run. All points for one delay value are atop each
other, which shows that they arrived without jitter. They form a line with slope one, showing
a linear relation between programmed and measured latency. The offset of 20 time stamps is
introduced by the loopback module on Spikey (cf. Section 2.3.2). The event passes the loopback
twice: First on the source chip, then at the destination.

Figure 6.3 shows the number of arrived events for each measured delay value in multiple
experiments. For low latencies, no events arrive at all. For high latencies, a plateau is reached,
where all events arrive. In between, the rate slowly increases over a range where some events
arrive, then, after an abrupt increase, the rate transitions to a range where most events arrive.
For a single hop, the edge is centered at time stamp 213, the transition to low delays extends
for about 60 time stamps and for 70 to higher delays. For two, three and four hops, the pattern
is shifted to higher delays, since the physical transmission time is longer. Overall, the minimum
delay of safe transfer is 284, or Dext = 1 and D = 28. Lower delays can be achieved, when some
loss of events is acceptable.

Table 6.2 gives an overview of safe minimal delays for all possible distances on a single Back-
plane. The two rightmost columns show a comparison to the biological time domain for two cases:
The first case represents the system under test, in which Spikey is clocked at 200 MHz (cf. Sec-
tion 5.2.1) and has a speed-up of 105. The second case is for the next Spikey revision, which is not
yet available for testing. It is designed to have a speed-up of 104 and should be able to operate at
312 MHz.

By design, the maximum programmable delay is 2048 time stamps, which is selected by Dext =
8 and D = 0 (cf. Section 3.3.3). For a speedup of 105 and a 200 MHz clock, this is equivalent to
1024 ms and for 104 and 312 MHz to 65.6 ms.

1The difference in ne happened accidentally and has no special meaning. ne can be chosen arbitrarily.

62 CHAPTER 6. EXPERIMENTS AND PERFORMANCE ANALYSIS

Distance Time stamps 200 MHz, 105 312 MHz, 104

1 hop 284 142.0 ms 9.1 ms
2 hops 341 170.5 ms 10.9 ms
3 hops 387 193.5 ms 12.4 ms
4 hops 439 219.5 ms 14.1 ms

Table 6.2: Minimal achievable safe latencies for multiple distances. The values in the time stamps
column are taken from Figure 6.3. The two columns to the right compare them to the biological
time domain for two different setups. The left one is for the actually tested system and the right
one should be possible with revision four of the Spikey chip, which will be available shortly.

6.2.2 Transfer Rates

The purpose of the next experiment is to measure what throughput can be sustained for given
event source rates. In general, the total bandwidth of the gigabit network is lower than that of
the interface to Spikey (this was discussed in Section 3.1.2). Hence, for high rates loss of events is
expected. The design contains several points, where events can be dropped for various reasons. In
this experiment the number of drops is measured by comparing the recorded spike train against
the stimulus train.

The test mode iterates over a range of test rates, multiplying the rate by a constant factor at
every step. In one iteration, multiple runs with random poisson spike trains are performed. Each
train uses randomly chosen source and target addresses and routing parameters. The event packing
algorithm implemented in the sendSpikeTrain function of the hardware abstraction layer removes
source events, if data rates are too high. Also, like for the experiment described in Section 6.1.2,
the source rate is limited to 0.5 events/timestamp by preventing events with consecutive time
stamps. Therefore, the program determines the actual rates at source and destination by counting
the numbers of actually transmitted events. It also checks, that only events with the programmed
target address arrive at the destination.

Based on the data gathered in one iteration, the mean transfer rate and standard deviation are
calculated for each test rate. The final result is the achieved ratio of delivery rate to source rate.

Parameters This test mode has seven parameters:

• The source and target Nathan numbers Nsrc and Ndest.

• The test rate R0 to begin at.

• The multiplication factor f for every iteration.

• The number of iteration steps ni. The final rate is R = R0 · fni−1.

• The number of runs per test rate nj .

• The number of events per spike train ne.

Performed experiments Figure 6.4 and 6.5 show the combined results of multiple experiments.
The test connection used twelve of twelve time slots of a single MGT link between Nsrc = 0 and
Ndest = 1. The covered test rates range from 0.001 events/timestamp to 1 events/timestamp. For
the lower rates ne = 10000 was used (Figure 6.4). For high rates, the SDRAM bandwidth limits
the length of a spike train to below 1024 (cf. Section 5.2.2). Variable lengths below this limit were
used to analyze their effect on the transfer rate (Figure 6.5).

6.2. PERFORMANCE MEASUREMENTS 63

 0.9984

 0.9986

 0.9988

 0.999

 0.9992

 0.9994

 0.9996

 0.9998

 1

 1.0002

 0.001 0.01 0.1

ar
riv

al
 r

at
io

test rate [events/time stamp]

low-rate series

Figure 6.4: Comparison of experiments with low event rates. The ratio of delivered events to
source events, is plotted against the test rate. For test rates above 0.01 events/time stamp, error
bars indicate the standard deviation for 100 iterations (nj = 100), below only ten iterations were
used. In each iteration 10000 events were send (ne = 10000).

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1

ar
riv

al
 r

at
io

source rate [events/time stamp]

64 events
256 events
512 events

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 1

ar
riv

al
 r

at
io

test rate [events/time stamp]

Figure 6.5: Comparison of experiments with high event rates. Both plots show the same ex-
periments. In the upper plot the source rate is used as x-axis, i.e. the rate of events actually
transmitted from the PlaybackMemory to Spikey . In the lower picture the test rate is used in-
stead, i.e. the rate of event generation in the software. Both plots show the ratio of delivered events
to source events and the standard deviation for 100 iterations (nj = 100). Three experiments with
different lengths of spike trains are shown. Error bars in the upper plot are not drawn for reasons
of clarity.

64 CHAPTER 6. EXPERIMENTS AND PERFORMANCE ANALYSIS

 0

 250

 500

 750
61: Transmit_buffer

61: Sorter

 0

 2000

 4000

 6000

 8000
256: Transmit_buffer

256: Sorter

 0

 10000

 20000

 30000

 40000

 0.1 1

dr
op

 c
ou

nt

test rate [events/time stamp]

512: Transmit_buffer
512: Sorter

Figure 6.6: Comparison of drop rates and reasons during experiments with variable ne of 64, 256
and 512. The plotted numbers give the totally counted drops for all runs of one test rate. All
counters not shown are at zero. Note the logarithmic scale of the x-axis.

Results

According to Figure 6.5 and 6.4, the tested rates can be divided into two ranges: Up to a source
rate of 0.17 events/timestamp, more than 95% of events arrive. The length of the spike train has
no influence on the arrival ratio and therefore only runs with a length of 10000 events are shown,
in Figure 6.4. In this range rates can be sustained over a prolonged time.

Above 0.17 events/timestamp, the arrival ratio breaks down significantly and shows a strong
variance among runs with identical test rate. The length of the spike train ne has a major influence
on achievable arrival ratios and the limitation of the source rate. This range characterizes the
bursting behavior of the network.

Sustainable transfer rates According to Figure 6.4, no events are dropped for rates below
0.01 events/timestamp. With one event in hundred time stamps on average, interactions between
events are very unlikely. Buffers are sparsely populated and for most events the system will appear
empty. For even lower rates, no other events will be transported, during the lifetime of one event.
Thus, it is not necessary to test rates below 0.001 events/timestamp. Above 0.01 events/timestamp
reliability degrades slowly, until it becomes manifest at 0.17 events/timestamp.

Burst performance In the range above 0.17 events/timestamp the length of the spike train
ne gains influence. The upper plot in Figure 6.5 shows, that the event packing algorithm in the
sendSpikeTrain function limits the achievable source rate. For high test rates events are removed
by the software, thus decreasing the effective spike train length. This leads to the ascending “tail”
visible in all three experiments. Shorter trains are transported with less loss and hence it seems
as if the arrival ratio would improve with higher rates, which is not the case. Ignoring the “tail”,
the rest of the points clearly show, that for short bursts a higher percentage of events arrives at
the destination, than for long bursts.

Figure 6.6 shows readout values of Drop_counter (cf. Section 5.4.2) obtained during the ex-
periment. It shows where events are lost for the different spike train lengths.

6.3. DEMONSTRATION EXPERIMENT 65

For ne = 64 practically all loss is on the sending side inside Transmit_buffer. Overflow of
this buffer indicates, that the event rate at the source exceeds the network bandwidth. Losing
events here is inevitable, due to the given throughput relations. A larger FIFO could improve
performance for bursts, but would also increase latency.

The decrease of the drop rate at high test rates is caused by the event removal of sendSpike-
Train. The actually transmitted spike train holds less than ne events and therefore the absolute
number of dropped events during one run is reduced, too. The effect is visible for all three burst
lengths.

For higher ne, loss caused by the input drop condition of Sorter (cf. Section 3.3.3) begins do
dominate. In all three experiments, its associated drop rate peaks at 0.3 events/timestamp and
then declines to lower rates. The Recv_queue FIFO has a depth of 128 entries. Events coming
in at high rates fill up the buffer and thus increase the propagation time through it significantly.
When transmission latency plus this propagation delay grow larger than the programmed delay,
the drop condition is true and the event is dropped by the input logic of Sorter. During the clock
cycle in which the event is being dropped, time advances by two time stamps. Hence, for dense
spike trains, it is well possible, that the next event also has to be dropped. From then on, the
drop rate is antagonized by the arrival rate in shrinking the FIFO to a size yielding a delay which
does not cause dropping of events.

This explanation is in good agreement with the results from the performed experiments. For
ne = 64 the FIFO can not become more than half full. Drops at Sorter now only occur, when
transmission jitter and small programmed delay combine negatively. Therefore the drop rate at
Sorter is very low. For larger ne, the FIFO can grow fuller and the effect is more probable, leading
to an increased drop rate.

Recv queue influence on throughput If the depth of Recv_queue is the reason for loss at
Sorter, a smaller depth should reduce the drop rate. This would of course be accompanied by an
increase in loss due to overflows of the Recv_queue FIFO. Figure 6.7 shows an experiment with
ne = 512, where Recv_queue was reduced to 32 entries. The number of drops at Sorter is reduced
by about 50% compared to Figure 6.6. The arrival ratio in the lower sub picture is on average
above 0.5 events/timestamp, where it was mostly below 0.4 events/timestamp in Figure 6.5. Here,
one has the counterintuitive case, where a decrease in buffer size increases throughput.

Absolute rates Figure 6.8 shows a plot with absolute event rates for an experiment with ne =
64. The source rate is measured after any potential removal of events by sendSpikeTrain. The
standard deviation for each test rate is high, as would be expected for short random spike trains.
At a test rate of about 0.5 events/timestamp the slope of the curve begins to decrease and the
rate approaches an upper limit below 0.375 events/timestamp. This plateau is caused by the
aforementioned removal of events by sendSpikeTrain. For lower test rates, one would ideally
have a linear relation between test and source rate with a slope of one. The measured curve has
a slightly smaller slope, because consecutive time stamps are prevented.

The delivery rate measured at the destination follows the source rate closely for test rates up
to 0.3 events/timestamp. Above these rates, dropping of events limits the delivery rate to below
0.25 events/timestamp.

6.3 Demonstration Experiment

6.3.1 Simple Artificial Neural Network Demonstration

The purpose of this experiment is to demonstrate, that the system can be used for the experi-
mentation with artificial neural networks on multiple chips. The idea is to configure two simple
networks on two separate Spikey chips and transmit the output of one to the synapses of the
other across the gigabit network. When the first network is stimulated, the second should exhibit
activity only, when the network is configured to forward events.

66 CHAPTER 6. EXPERIMENTS AND PERFORMANCE ANALYSIS

Recv_queue with depth of 32

 0

 4000

 8000

 12000

 16000

dr
op

 c
ou

nt

Transmit_buffer 0 (src)
Sorter 0 (dest)

Recv_queue 0 (dest)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 1

ar
riv

al
 r

at
e

test rate [events per timestamp]

transmission ratio

Figure 6.7: Drop rates for reduced Recv_queue depth of 32. Compare these plots to their
counterparts in Figures 6.6 and 6.5. Loss at Sorter is reduced by about a factor of two, while
drop at Recv_queue now increases. The total arrival ratio is better, than for a depth of 128.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ra
te

 [e
ve

nt
s/

tim
e

st
am

p]

test rate [events/time stamp]

source rate
delivery rate

Figure 6.8: Absolute measured source and delivery rates for ne = 64 and nj = 100. The source
rate curve is a result of the event packing algorithm implemented in the createtb software. The
delivery rate is the number of events, that arrive at the destination.

6.3. DEMONSTRATION EXPERIMENT 67

Figure 6.9: Setup of the artificial neural network demonstration experiment. The upper half
shows the source Nathan network module on Backplane slot 0. Stimulus is applied to synapse
driver 255 and results are stored in the PlaybackMemory , labeled PBM. A network connection
forwards events from neuron 67 to synapse driver 255 on the destination chip. Each dot represents
an active synapse in the network block.

68 CHAPTER 6. EXPERIMENTS AND PERFORMANCE ANALYSIS

No. Neuron Firing rate [events/time stamp]
Spikey A Spikey B

(0) 3 (4.3 ± 0.1) × 10−4 0.0
67 (4.1 ± 0.1) × 10−4 0.0
134 (3.1 ± 0.1) × 10−4 0.0

(1) 3 0.0 (3.7 ± 0.1) × 10−4

67 0.0 (4.4 ± 0.1) × 10−4

134 0.0 (4.3 ± 0.1) × 10−4

(2) 3 (4.1 ± 0.1) × 10−4 (6.0 ± 0.2) × 10−4

67 (4.0 ± 0.1) × 10−4 (7.0 ± 0.2) × 10−4

134 (3.7 ± 0.1) × 10−4 (6.2 ± 0.2) × 10−4

Table 6.3: Artificial neural network demonstration. Experiments (0) and (1) are without network
connection and only one Spikey is stimulated respectively. Experiment (2) is identical to (0),
except for the network connection from neuron 67 of Spikey A to synapse driver 255 of Spikey B.
The measured firing rates at the destination are solely produced by events transported via the
inter-chip network.

To achieve this, a PyNN script was used to generate a configuration file for the Spikey analog
part. The configuration activates in total nine synapses with maximum weight, to connect neurons
3, 67 and 134 to synapse drivers 127, 191 and 255. Figure 6.9 gives an schematic overview of the
setup. Some fine tuning had to be done on the produced configuration file. Synapse driver strength
was set to maximum to achieve reliable firing. Therefore it may be, that one input event evokes
more than one output event, when a very strong spike is digitized multiple times.

A test mode for the createtb program was developed to send the configuration file to the
chips, produce stimulus spike trains and gather resulting events. Stimulus events are non-random:
Four bursts of seven events at intervals of two time stamps are sent to synapse driver 255 with
gaps of 400 time stamps in between.

Performed experiments Table 6.3 lists results for this experiment. The first two experiments -
(0) and(1) - were to validate the configuration of the analog part. There was no network connection
between chips and stimulus was applied to only one of them. The results show, that neurons fire
only on stimulation.

For the third experiment (2), stimulation is only applied to Spikey A and a connection from
neuron 67 to synapse driver 255 on Spikey B is established. The network connection is the only
difference to (0). The measured rates show that activity is evoked by spike events transmitted
over the event network.

Chapter 7

Scalability of the System

This chapter summarizes scalability related characteristics of the event network. Of major impact
are the dimensions of data fields in the lookup tables described in Section 5.1.1. As a reminder:
There are four types of lookup tables. After an event is received from Spikey , Send_lut assigns it
to a connection bundle and tag. On the remote Nathan, Recv_lut translates these into a target
synapse driver address and delay. The association of bundles to MCGN time slots is performed
by Mfi_lut and Slot_lut. All neuronal connections within one bundle link the same two Nathan
modules.

The connection tag, or subnr, is 6 bit wide. Therefore 64 neuronal connections can be fitted
into one bundle. The Transmit_buffer logic block maintains eight internal queues, which are
associated with one bundle each. This results in an equal number of outbound bundles per user
port and thus sixteen in total per Nathan. The inbound number of bundles is determined by the
size of the local bundle identification number lvc, which is 4 bit wide. Thereby sixteen inbound
bundles can be used per user port, totaling in 32 per Nathan.

Altogether, this allows for the simultaneous interchange of events between all network modules
of a fully equipped Backplane. It is also possible to simultaneously connect all 384 neurons of one
Spikey to synapses on another one by combining multiple bundles.

A further increase of the numbers of inbound bundles and connections per bundle is limited by
the index of the Recv_lut lookup table. This index is composed of the connection tag subnr and
the bundle identification lvc. Since 17 bit are stored per entry and the lookup table memory has
a capacity of 18 kBit, at maximum a 10 bit wide address can be used for the BlockRAM storage
memory [Xil07]. Therefore, subnr and lvc together may not use more than 10 bit as long as
only one BlockRAM is used for the lookup table. To add one more address bit, the amount of
memory elements must be doubled. According to Section 5.2.3, five BlockRAM components are
still available on the FPGA. Thus, for two user ports, either the number of inbound bundles or
the number of connections per bundle could be doubled.

The amount of outbound bundles can be improved by adding more queues to the MultiFIFO

component inside the Transmit_buffer. One limiting element is again the underlying BlockRAM
memory. For an entry size of 32 bit, the memory provides 512 entries. The product of number of
FIFOs and their depth may therefore not exceed 512. However, the control logic, which maintains
pointers for each virtual queue, is also enlarged, when either of the quantities are increased.
Considering only the memory, 128 queues with a depth of four or 32 queues with a depth of
sixteen would be possible. Such an increase would also make it necessary to enlarge the Mfi_lut

lookup table and the mfi field in Send_lut.

The signal lines of the MGT-links are hardwired on the Backplane (cf. Section 2.1.2). The
topology can be described as a binary hypercube with edges representing links and corners repre-
senting Nathan modules. The dimension of the hypercube is the number of MGTs per node. To
fully utilize the topology of one Backplane, every node must implement four MGT-links. Note,
that the number of MGTs can be different from the number of user ports. The presented imple-

69

70 CHAPTER 7. SCALABILITY OF THE SYSTEM

mentation has four MGT ports to fully cover the Backplane topology. Two user ports make half
the theoretical bandwidth available.

The presented implementation can be scaled up to 6 MGTs by change of a parameter and
resynthesizing the design. In the canonical hypercube topology this yields a six-dimensional hy-
percube with 64 Nathan modules on four Backplanes. In such a network, the longest path has six
hops, which would, extrapolating from latency measurements in Section 6.2.1, lead to a delay of
541 time stamps. This is equivalent to a biological time of 271 ms for a Spikey clock of 200 MHz
and speed-up of 105, and 17.3 ms for a clock of 312.5 MHz and speed-up of 104.

Of course, an arbitrary number of Nathan modules can be interconnected by the gigabit trans-
port network if other topologies are used. For example, several canonically interconnected five-
dimensional hypercubes could be links to form layers of a feed-forward network. In every layer,
each node would connect to one node in a layer above or below using the sixth MGT.

Power consumption also has an impact on scalability. In the current setup, a single Backplane
is powered by a commercial ATX1 power supply.According to results from the Xilinx Power Ana-
lyzer software, the FPGA on Nathan consumes 4.95 W for a design with six MGTs at 100 MHz.
Together with Spikey consuming 0.54 W [Grü09], this totals in 87.84 W for a Backplane with
sixteen Nathan modules. 100 W is a safe upper limit, when also including the Backplane FPGA
into the sum. It was already stated in Section 2.1.2, that the Backplane is designed to fit into
a 19”-rack, where it takes 3 U2 of height. For a common 2 m tall rack with 42 U, 12 Backplanes
could be assembled into one rack, when 6 U are reserved for controlling PC, power supply and op-
tional additional components. A rack would thus in total consume 1.2 kW plus 800 W for PC and
additional components. Even when doubling this number to account for power supply efficiency,
this is well within the range for racks used in data centers. For example IBM lists 40 kW per rack
for the BlueGene/P supercomputer [IBM07].

What poses a more difficult obstacle to scaling is the demand of MCGN, that all Nathan
modules have the same clock source. Thereby, elaborate means are required to feed one central
clock signal to all Backplanes in the system. The Backplane itself provides connectors to feed in
an external clock. For a single rack system, cables of about a meter in length would suffice, which
is short enough for a reliable transmission of the signal. For a system with more than one rack,
cable lengths of a few to several meters should be feasible. For example Serial Attached SCSI
allows for a cable length of 8 m at a data rate of 3 GBit/s [sas03].

Furthermore the length of signal cables for the MGT interconnection is limited. MCGN uses
programmable delay elements on every link, to balance physical latencies of the lines. According
to the synchronization condition given in [Phi08b], the network is synchronized, when time slot
0 arrives in the same clock cycle on every link. Therefore, a long physical delay on one line is
compensated by increasing the delay for the other lines. The largest programmable delay in the
current implementation is seven cycles, which is equivalent to 70 ns at 100 MHz. Assuming the
velocity of propagation at 2/3 the speed of light in vacuum, 14 m of difference in cable length could
be compensated. This would shrink to 8.96 m for a clock frequency of 156.25 MHz. Cable length
is also limited by the transceivers themselves. According to [mgt04], a maximum cable length of
10 m is possible at 156.25 MHz using Infiniband cables. At lower data rates 15 m long cables can
be used.

In summary, a“data center scale”system consisting of four to eight racks is technically possible.
It would have 768 to 1536 Spikey chips with 301056 to 602112 neurons and consume 16 to 32 kW
of power. The limitations of throughput, per hop delay and number of connection bundles would
allow only locally connected artificial neural networks. The latencies through the network would
amount to hundreds of milliseconds to seconds in biological time.

1Advanced Technology Extended
21 rack unit = 44.45 mm

Chapter 8

Conclusion and Outlook

The goal of this thesis is the completion of an event network for a multi-chip artificial neural
network hardware system. For this purpose digital event processing logic was developed to enable
the exchange of digitized spike events across chip boundaries. This included devising a low-
latency stream sorting logic module with an adaptive readout rate. The sorting module not
only allows a temporary excess of the chip interface bandwidth, but also eliminates jitter of the
transport network for neuronal connections. The design was implemented for the FACETS stage-
1 system in FPGA logic. The hitherto existing workflow to setup and perform experiments was
adapted to make multi-chip experiments possible. To this end, software modules and programs
were developed to access the implemented logic modules. Various experiments were performed to
verify the function of the event network within the stage-1 system and to measure its performance.
Also, its scalability was studied to identify the limiting factors.

This chapter discusses the results gathered by these activities and gives an outlook on possible
improvements and future developments.

8.1 Achievements

The most important result of this thesis is, that the exchange of spike events across chip bound-
aries, i.e. multi-chip operation, is now possible within the FACETS stage-1 system. The most
demonstrative experiment underlining this achievement is the simple artificial neural network
setup described in Section 6.3.1. It represents a prototype for more elaborate experiments using
interconnected neurons on several chips. But also the remainder of experiments described in Chap-
ter 6 made extensive use of the event network. Millions of events were transferred and verified in
total. This qualitative result is complemented by quantitative performance measurements, namely
those of latency, throughput and the limits of scalability.

Latency A low latency is of foremost importance for the biological relevance of the network.
It imposes a lower bound on the axonal delay which can be modeled between chips. Hence, it is
desirable to keep this bound as low as possible to ensure flexibility for the modeler. Flexibility
also benefits from a high range of programmable delay values. The implemented event network
makes programmable delays in the stage-1 system possible for the first time. By design, the
maximum difference in delay among connections to a single chip is 255 time stamps and 2048 time
stamps among connections to different chips. These numbers correspond to 128 ms and 1.02 s
respectively in the biological time domain for a Spikey clock frequency of 200 MHz and a speed-up
of 105, i.e. the tested setup. The fourth version of the Spikey chip is designed for a clock frequency
of 312 MHz and a speed-up of 104, resulting in biological time differences of 8.17 ms and 65.6 ms
respectively. The minimum delay for reliable communication between two chips was found to
be 284 time stamps, which corresponds to 142 ms for the tested setup and 9.1 ms for Spikey-4.

71

72 CHAPTER 8. CONCLUSION AND OUTLOOK

Minimum delay connections can be used between any two directly adjacent network modules in
the MGT-interconnect topology of the Backplane.

According to earlier considerations in Section 1.1, propagation delays of action potentials in
biological neural networks range from milliseconds to hundreds of milliseconds. Since a large
amount of this time is caused by the propagation delay along the axon, the delays between neurons
are related to their physical distance. Therefore, low-delay connections are of great importance,
when modeling circuits confined to small volumes. With Spikey-4, delays in the range of about
10 ms will be possible, with differences in delay in a similar range. This makes the network usable
for experiments with a timing that is biologically still relevant.

The Spikey-3 based system, with its larger latencies, can still be used for experiments with
reduced biological accuracy. Also, models which use firing-rates to encode information are less
affected by larger delays and should be well suited for this system.

Throughput The other important performance measure is throughput, i.e. the amount of events
that can be passed through a connection per time unit. The experiments described in Section 6.2.2
show, that the range of sustainable rates, at which less than 5% of events are dropped, reaches
up to 0.17 events/timestamp. This is equivalent to a biological firing rate of 340 Hz for the tested
setup and 5.304 kHz for Spikey-4. Assuming a maximum firing rate of 40 Hz for neurons in the
high-conductance state (cf. Section 1.1), this allows 8.5 and 132.6 axonal connections respectively
to be transported by a single MGT link.

At rates above 0.17 events/timestamp, significant loss of events occurs. The actual fraction
which arrives at the destination depends strongly on the total number of events being sent (cf.
Figure 6.5).

The maximum outbound bandwidth per Nathan is limited by the number of user ports on
the MCGN switch. The final design, that was subject of the experiments described in Chapter 6,
implements two user ports. Hence, half of the total bandwidth provided by the four MGT-links
of the hardwired Backplane links can be used in this configuration.

Scalability An analysis of the scalability of the networking system was conducted (cf. Chap-
ter 7). It found, that the number of inter-chip connections per Nathan is primarily limited by the
lookup table sizes in the networking logic and thus by logic and memory resources of the FPGA
device. The presented implementation allows for neuronal networks with 32 neuron-to-neuron
connections between any two Nathan modules on a fully equipped Backplane. With the available
FPGA resources, the network can be scaled to four fully equipped Backplanes with the same in-
terconnectivity. A further scaling requires fundamental changes in the FPGA design to free more
resources.

For weakly interconnected networks, e.g. feed forward topologies, scaling is limited by the
maximum length of cables for clock distribution and the MGT links. A “data center scale” system
with up to eight racks and 1536 Spikey chips featuring 602112 neurons is feasible. Such a system
would consume 32 kW of power in total. Due to the limitations by the network, namely large
latencies and only locally interconnected topologies, and the chip inherent maximum neuronal
input count of 256, such a large-scale system would only be of limited interest for neuroscientific
studies.

8.2 Improving the System

The presented implementation still offers room for improvements. Fortunately, programmable
logic allows for later modifications and a continuous evolution of the system. Constrained by
hard limitations, like the number of logic elements the FPGA provides, some aspects of the event
processing logic can be improved:

Extended sorting memory size The experiments that measured throughput (cf. Section 6.2.2)
revealed, that for high rates and long experimental durations the input logic at Sorter is respon-

8.2. IMPROVING THE SYSTEM 73

sible for more than 50% of drops. The drop condition, which was added to the input logic to avoid
deadlocks in Sorter (cf. Section 3.3.3 and 6.1.2), will become unnecessary, if the size of the sorting
memory is increased. If the size of the memory is equal to the dynamic range of time stamps, it
will not be necessary to artificially retain events in Recv_queue, when their target time is more
than 256 time stamps in the future. Hence, the deadlock inducing situations, in which one event
far into the future would stall another beyond its instant of delivery, cannot occur.

Increasing the size of the sorting memory from 256 to 1024 is possible with limited additional
resource requirements. No additional BlockRAM components would be required, since the one in
place was not used to full capacity. An extension to the full range of 2048 would make a second
BlockRAM necessary. As mentioned in Section 5.2.3, five BlockRAMs are not used in the final
design. The increased sorting memory size should therefore be possible even in combination with
an optional extension of Recv_lut, that was mentioned in the previous section.

Common extended delay In the presented implementation, the 12 bit target time stamp is
calculated by adding a 12 bit delay to the source time stamp. While the lower 8 bit of the delay
are individually programmable for every neuronal connection, the upper 4 bit are common to one
Nathan. An alternative implementation would be, to store a common 12 bit delay and add the
sum of this and the individual 8 bit delays to the source time. This would require eight more bits
in the common delay register and an additional 12 bit adder.

The alternative implementation would allow more precise control over the usable delay range
on one Nathan. In particular, the common 12 bit delay could be set precisely to the minimal value
as measured in Section 6.2.1.

Specialized PlaybackMemory adapter The PlaybackMemory is integrated into the event
network by using a marginally modified Sorter as adapter. Yet, the sorting and buffering ca-
pabilities of this complex logic block are not required. It should be possible to develop a more
lightweight adapter consisting of a small FIFO and a comparator. The adapter would exhibit
the same interface as Sorter to the Reduce_events module and thus deliver events synchronized
with the Sorter blocks working in parallel. This would free a considerable amount of resources,
especially the two BlockRAMs that are needed for Sorter.

Better support for connections with multiple destinations The current design was not
optimized for 1-to-N connections, i.e. connections, which transport events from one source to more
than one destination chip. To implement such a topology, one has to use the multicast mechanism
of MCGN and route time slots to multiple destinations. A dedicated connection bundle would then
be assigned to these time slots. A disadvantage here is the all-or-nothing nature of the approach:
All connections within the bundle share the same destinations. Therefore, one bundle has to be
allocated for every combination of destination Nathans.

A very simple measure to improve the situation would be to drop events of undesired connec-
tions at the destination. The one unused bit of Recv_lut entries could be used to select events
that are to be dropped. Of course, this leads to overhead, since these events occupy additional
network and lookup-table resources. If on average more than half of the connections in a bun-
dle would be dropped at a destination, another approach is more effective. An event sequencer
in Source_generator could generate an event for every destination, based on extended routing
information in Send_lut. They would then be handled by the network like any other event. This
method has the disadvantage, that it multiplies traffic in Sender and on the network by the number
of destinations.

Both methods combined would allow a more flexible means of implementing 1-to-N connections
in the system.

Spatial sorting in Receiver Another fundamental change in the event processing logic, would
be to add a spatial sorting stage to Receiver before the temporal sorting stage of Sorter blocks.
A switch like Send_switch could direct incoming events from user ports to Receive_line blocks

74 CHAPTER 8. CONCLUSION AND OUTLOOK

depending on their destination address. Thus, each line could be associated with a set of synapse
driver blocks (cf. Section 2.3.1). Thereby, collisions of events targeted at the same time stamp, but
in separate blocks, would no longer occur. Collisions of events within the same block are illegal
anyway and actively filtered out by Reduce_events in the current design.

The other advantage would be the elimination of the 1-to-1 relation between user ports and
Receive_line blocks. For example four user ports could be connected to two Receive_lines,
improving throughput. MCGN takes two clock cycles to deliver one event, but the Receive_line

can accept one in every cycle. Two of the user ports could be delayed by a single cycle to exploit
this.

Implementing this improvement would require BlockRAM and distributed memory resources
for additional Send_lut and Slot_lut blocks. Further, logic resources comparable to the amount
Send_switch were required (cf. Section 5.2.3), as well as more logic cells needed for two additional
user ports on the MCGN switch. Considering the available resources, these requirements are
unlikely to be satisfiable without optimizations in other parts of the design.

8.2.1 Advancements Requiring New Hardware

The improvements outlined in the previous section are all at least in principle possible using the
existing hardware platform. However, it may be of interest to also consider what would be possible,
when modifying some parts of the framework.

FPGA upgrade Looking at the age of the Virtex-II Pro FPGA model and the scarcity of its
resources, upgrading the Nathan modules to a newer FPGA device comes to mind easily. While it
would require a large amount of effort to redesign the layout of the printed circuit board (PCB),
it would provide more sophisticated logic cells in higher quantities. A synthesis run, that was
performed with the Virtex-V 110LXT model as a target to estimate improvements, listed a usage
of 6% (4711 of 69120) of Flip-Flops and 7% (5407 of 69120) of logic lookup tables. This would
leave plenty of room to use more user ports and MGT-links, to implement resource intensive
improvements from the previous section and to use additional features of MCGN, like shared
memory [Phi08b].

Real-time interaction system Complementing the established model of inserting stimulus
events via the PlaybackMemory , the gigabit network could be used for this purpose. An adapter
card could be connected to the PCI-Express bus of a controlling PC and by cable to MGT-links
of Nathan modules. To increase the bandwidth, multiple cards, possibly even on multiple PCs of
a computing cluster, could be used. The adapter would not have to be specifically designed for
this purpose, but a commercial board could be used, provided it has sufficiently many MGTs.

PCI-Express features data rates of 2 GBits/s and above, which is comparable to the data
rates of the gigabit network. Therefore, software could transmit and receive spike trains, while
the experiment is running, allowing for the integration of the hardware system into software
simulations.

Final Remarks

Concluding from the analysis of results presented in this chapter, the implemented event network
is usable for neuroscientific experiments. The versatility of mappable neural networks is limited by
the minimal end-to-end latencies between chips, which are large compared to biological networks
in small volume. Also, the achievable connection densities do not match that of biological networks
in the neocortex of the human brain (cf. Section 1.1). However, especially with Spikey-4, which
will be available within a short time, networks that are still biologically relevant can be studied
on the hardware system.

The stage-2 system following an approach of waferscale integration will finally supersede stage-1
as a large-scale hardware system. It interconnects several chips directly on the wafer by means of

8.2. IMPROVING THE SYSTEM 75

signaling lines added in a postprocessing step. The asynchronous event network using these lines
will allow for higher data rates and lower latencies. An improved neuron model will enable high
input counts of up to 14366 incoming connections per neuron [Mil09]. But until this system is
fully operational, stage-1 is the only available and tested hardware system within the FACETS
project that can be used for large-scale experiments. Hence, in extending the system for multi-chip
operation, the presented work has opened new experimental opportunities.

Even when stage-2 is operational stage-1 will offer possibilities for that it is better suited than
the waferscale system. For example, it could be used as basis for a small scale system combining
an FPGA and one or more Spikey chips into a single device. Such a device could possibly be
build as a USB1-stick or in another form more accessible than the Backplane system. Multiple
Spikey chips can be combined in a chain and connected to a single FPGA without requiring the
use of additional pins [Grü07]. The presented event networking logic would then interconnect the
chips inside the FPGA. This device could be used to give a wider audience access to neuromorphic
hardware systems by providing it to other research groups.

By its low power requirements, such a device would also be applicable to embedded applications,
e.g. as a controller in a robot. The translation of motor and sensor signals from spike trains to
voltages and currents would be accomplished by the FPGA. An interface to the event network
would enable real-time interaction between neural network and the robotic hardware system.
Because of the high speedup factor of the Spikey chip, neural codes that use firing rates to encode
information could be used for the control of fast dynamic systems. As stated in Section 8.1 rate
based networks are less obstructed by the latency limitations of the event network. Therefore, the
stage-1 system may – beyond being a neuroscientific experimentation platform – serve as a basis
for future technological applications using neuromorphic hardware.

1Universal Serial Bus

76 CHAPTER 8. CONCLUSION AND OUTLOOK

List of Acronyms

ANNA Artificial Neural Network ASIC

ASIC Application Specific Integrated Circuit

ATX Advanced Technology Extended

CLB Configurable logic block of the Virtex-II Pro FPGA

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

DCM Digital Clock Managers

DDR Double Data Rate

DLL Delay Locked Loop

DTC Digital to Time Converter

FACETS Fast Analog Computing with Emergent Transient States

FIFO First In First Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

GSS Global Synchronous Signal

IOB Input/Output Block

IST Information Society Technologies

LUT4 4-input lookup table of the Virtex-II Pro FPGA

LUT Lookup Table

MCGN Multi-Class Gigabit Network

MGT Multi-Gigabit Tranceiver

PBM Playback Memory

PCB Printed Circuit Board

PCI Peripheral Component Interconned

PC Personal Computer

PLL Phase Locked Loop

77

78 CHAPTER 8. CONCLUSION AND OUTLOOK

PSP Postsynaptic Potential

QoS Quality of Service

RAM Random Access Memory

SCSI Small Computer System Interface

SDRAM Synchronous Dynamic Random Access Memory

STDP Spike Timing Dependent Plasticity

TDC Time to Digital Converter

TDM Time Division Multiplexing

USB Universal Serial Bus

VHDL Very high speed integrated circuit Hardware Description Language

VOQ Virtual Output Queue

Bibliography

[Amd67] Gene Amdahl. Validity of the single processor approach to achieving large-scale
computing capabilities. In AFIPS Conference Proceedings, volume 30, pages 483–
485, 1967.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture
for differentiated services. RFC 2475, Network Working Group, December 1998.

[BBJ+05] Theodor H. Bullock, Michael V. L. Bennett, Daniel Johnston, Robert Josephson,
Eve Marder, and R. Douglas Fields. The neuron doctrine, redux. Science, 310:791–
793, November 2005.

[BC85] C. Beaulieu and M. Colonnier. A laminar analysis of the number of round-
asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell
bodies in area 17 of the cat. Computational Neurology, 231(2), 1985.

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architec-
ture: an overview. RFC 1633, IETF: Network Working Group, June 1994.

[BDM05] Tom Binzegger, Rodney J. Douglas, and Kevan A.C. Martin. Axons in cat visual
cortex are topologically self-similar. Cerebral Cortex, 15(2):152–165, 2005.

[Bil08] Johannes Bill. Self-stabilizing network architectures on a neuromorphic hardware
system. Diploma thesis (English), University of Heidelberg, HD-KIP-08-44, 2008.

[BRG+07] G. Bontorin, S. Renaud, A. Garenne, L. Alvado, G. Le Masson, and J. Tomas. A
real-time closed-loop setup for hybrid neural networks. In Proceedings of the 29th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBS2007), 2007.

[Brü09] Daniel Brüderle. Neuroscientific Modeling with a Mixed-Signal VLSI Hardware
System. PhD thesis, Ruprecht-Karls Universität Heidelberg, 2009.

[Deb04] Dominique Debanne. Information processing in the axon. Nat Rev Neurosci,
5(4):304–316, 04 2004.

[Dow08] T. Downarowicz. Law of series/poisson process. Scholarpedia, 3(11):3922, 2008.

[Dre08] Jürgen Drexler. Entwurf und implementierung einer parallelen netzwerkschnittstelle
zum betrieb künstlicher neuronaler netze. diploma thesis, Ruprecht-Karls Univer-
sität Heidelberg, 2008.

[DRP03] Alain Destexhe, Michael Rudolph, and Denis Pare. The high-conductance state of
neocortical neurons in vivo. Nature Reviews Neuroscience, 4:739–751, 2003.

[dZ00] R. Christopher deCharms and Anthony Zador. Neural representation and the cor-
tical code. Annual Review of Neuroscience, 23:613–647, March 2000.

79

80 BIBLIOGRAPHY

[ea05] Karlheinz Meier et al. The facets project: Fast analog computing with emergent
transient states”. EU FP6-2004-IST-FETPI contract no. 15879, 2005.

[FAC09] FACETS. Fast Analog Computing with Emergent Transient States – project web-
site. http://www.facets-project.org, 2009.

[GK02] Wulfram Gerstner and Werner Kistler. Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge University Press, 2002.

[Grü03] Andreas Grübl. Eine fpga-basierte plattform für neuronale netze. diploma thesis,
Universität Heidelberg, 2003.

[Grü07] Andreas Grübl. VLSI Implementation of a Spiking Neural Network. PhD thesis,
Ruprecht-Karls-University, Heidelberg, 2007. Document No. HD-KIP 07-10.

[Grü09] Andreas Grübl. personal communication, 2009.

[hHcF05] Chung hsing Hsu and Wu chun Feng. A power-aware run-time system for high-
performance computing. In Proceedings of the 2005 ACM/IEEE conference on
Supercomputing. IEEE Computer Society, 2005.

[Hyp06] HyperTransport Technology Consortium. HyperTransport I/O Link Specification,
revision 3.0a edition, November 2006.

[IBM07] IBM. IBM Blue Gene/P Specification, 2007.

[Kap08] Bernhard Kaplan. Self-organization experiments for a neuromorphic hardware de-
vice. Diploma thesis (English), University of Heidelberg, HD-KIP-08-42, 2008.

[KM65] B. Katz and R. Miledi. The measurement of synaptic delay, and the time course
of acetylcholine release at the neuromuscular junction. Proceedings of the Royal
Society of London. Series B, Biological Sciences, 161(985):483–495, February 1965.

[LMBA06] Francisco López-Muñoza, Jesús Boyab, and Cecilio Alamoa. Neuron theory, the
cornerstone of neuroscience, on the centenary of the nobel prize award to santiago
ramón y cajal. Science, 2006.

[loe09] Homepage of the loebner prize in artificial intelligence.
http://www.loebner.net/Prizef/loebner-prize.html, 09 2009.

[LS03] Simon B. Laughlin and Terrence J. Sejnowski. Communication in neuronal net-
works. Science, 301(5641):1870–1874, 2003.

[Maa97] W. Maass. Networks of spiking neurons: the third generation of neural network
models. Neural Networks, 10:1659–1671, 1997.

[McK99] Nick McKeown. The islip scheduling algorithm. IEEE/ACM Transactions on Net-
working, 7(2):188–201, 1999.

[Mea90] C. A. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78:1629–
1636, 1990.

[mgt04] Infiniband Cable Characterization with RocketIO™ MGTs, 2004.

[Mil09] Sebastian Millner. personal communication, October 2009.

[MM88] Carver A. Mead and M. A. Mahowald. A silicon model of early visual processing.
Neural Networks, 1(1):91–97, 1988.

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits. Electron-
ics, 38(8), April 1965.

http://www.facets-project.org

BIBLIOGRAPHY 81

[MP43] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, pages 127–147, 1943.

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the differentiated services
field (ds field) in the ipv4 and ipv6 headers. RFC 2474, Network Working Group,
December 1998.

[PD03] Larry L. Peterson and Bruce S. Davie. Computer networks: a systems approach.
Elsevier Science Ltd., 3rd edition, 2003.

[Phi08a] Stefan Philipp. Design and Implementation of a Multi-Class Network Architecture
for Hardware Neural Networks. PhD thesis, Ruprecht-Karls Universität Heidelberg,
2008.

[Phi08b] Stefan Philipp. Design and Implementation of a Multi-Class Network Architecture
for Hardware Neural Networks. PhD thesis, Ruprecht-Karls Universität Heidelberg,
2008.

[PSM09] Stefan Philipp, Johannes Schemmel, and Karlheinz Meier. A qos network architec-
ture to interconnect large-scale vlsi neural networks. In IJCNN 2009 Conference
Proceedings, 2009.

[sas03] Serial attached scsi (sas). Specification 376-2003, ANSI/INCITS, October 2003.

[SBMO07] J. Schemmel, D. Brüderle, K. Meier, and B. Ostendorf. Modeling synaptic plasticity
within networks of highly accelerated I&F neurons. In Proceedings of the 2007 IEEE
International Symposium on Circuits and Systems (ISCAS’07). IEEE Press, 2007.

[Sch05] T. Schmitz. Evolution in Hardware – Eine Experimentierplattform zum parallelen
Training analoger neuronaler Netzwerke. PhD thesis, Ruprecht-Karls-University,
Heidelberg, 2005.

[SFM08] J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of analog neural
networks. In Proceedings of the 2008 International Joint Conference on Neural
Networks (IJCNN), 2008.

[SKdRvSB98] S. P. Strong, Roland Koberle, Rob R. de Ruyter van Steveninck, and William
Bialek. Entropy and information in neural spike trains. Physical Review Letters,
80(1):197–200, 1998.

[SN58] Herbert A. Simon and Allen Newell. Heuristic problem solving: The next advance
in operations research. Operations Research, 6(1):1–10, January 1958.

[Sof95] William R. Softky. Simple codes versus efficient codes. Current Opinion in Neuro-
biology, (5):239–247, 1995.

[SS02] Gunter Saake and Kai-Uwe Sattler. Algorithmen und Datenstrukturen - Eine Ein-
führung mit Java. dpunkt.verlag, 2002.

[SSR02] Walter Senn, Martin Schneider, and Berthold Ruf. Activity-dependent development
of axonal and dendritic delays, or, why synaptic transmission should be unreliable.
Neural Computation, 14(3):583–619, 2002.

[STG01] M Steriade, I Timofeev, and F Grenier. Natural waking and sleep states: a view
from inside neocortical neurons. J Neurophysiol, 85(5):1969–1985, May 2001.

[Tur37] A. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 42:230–265, 1937.

[Tur50] Alan Turing. Computing machinery and intelligence. Mind, pages 433–460, 1950.

82 BIBLIOGRAPHY

[Xil02] Xilinx, Inc., www.xilinx.com. Virtex-II Pro Platform FPGA Handbook, 2002.

[Xil07] Xilinx. Virtex-II Pro and Virtex-II ProX Platform FPGAs: Complete Data Sheet,
November 2007.

[ZBS+06] Quan Zou, Yannick Bornat, Sylvain Säıghi, Jean Tomas, Sylvie Renaud, and Alain
Destexhe. Analog-digital simulations of full conductance-based networks of spiking
neurons with spike timing dependent plasticity. Network: Computation in Neural
Systems, 17(3):211–233, 2006.

Acknowledgments

I want to express my gratitude to everyone who supported this work.
All the hardies and softies of the Electronic Vision(s) group and the friendly atmosphere they
provided. Thank you for all the proofreading and support!

Especially I want to thank

Prof. Dr. Karlheinz Meier and Dr. Johannes Schemmel for their commitment that makes
this fascinating project and my small contribution to it possible.

Prof. Dr. Udo Kebschull for providing a second opinion for this thesis.

Dr. Stefan Philipp for many discussions, ideas and support. And of course his high-quality
VHDL code.

Dr. Andreas Grübl for giving the initial ideas and his help especially with Spikey .

Ursula Ernst for extensive proofreading and general support.

My family.

83

84

Erklärung:

Ich versichere, daß ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 18.09.2009
.......................................

(Unterschrift)

	Introduction
	Neural Networks
	The FACETS Project

	Environment of the Experiment
	The FACETS Stage-1 System
	Nathan Network Module
	Backplane
	SlowControl Access

	The Multi-Class Gigabit Network Architecture
	Principles of Operation
	Interconnecting User Logic and Network
	Global Synchronous Signal

	The Spikey Analog Neural Network Chip
	Structural Overview
	Functional Description
	Communicating with Programmable Logic
	Software and Experiment Workflow

	Concepts for Multi Chip Operation
	Initial Considerations
	Spikey Interface Constraints
	Spikey and Network Data Rates
	Digital Event Timing

	Design Principles
	Sorting of Event Streams
	Providing Deterministic Neuronal Delays
	Routing Algorithm

	Building Blocks
	Sender
	Receiver
	Sorter

	Simulations for Prototyping and Testing
	Why Simulate?
	Tools and Methodology
	Simulations
	SystemC Prototype
	Mixed-Language Simulation
	Simulating the Implementation
	Tests of Single Blocks

	Implementation
	Implementation of the Building-Blocks
	Lookup Tables
	Implementation of the Send_switch
	Transmit_buffer and Event Representation on the Network
	Implementation of the Sorter

	Integration into the FPGA
	Clocking
	Integration with the Spikey Controller
	Resource Requirements

	Running of Experiments
	Configuration by SlowControl
	Starting procedure

	Debugging Features
	Logging of Event-Streams
	Counting Discarded Events
	Event Sources for Testing

	Development of Supporting Software
	Hardware Access Framework
	Modifications to Spikey Test Software

	Experiments and Performance Analysis
	Validation of Correctness
	Correctness of the Routing Mechanism
	Merging of Event Streams

	Performance Measurements
	Latency
	Transfer Rates

	Demonstration Experiment
	Simple Artificial Neural Network Demonstration

	Scalability of the System
	Conclusion and Outlook
	Achievements
	Improving the System
	Advancements Requiring New Hardware

	List of Acronyms
	Bibliography
	Acknowledgments

