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A QoS Network Architecture to Interconnect
Large-Scale VLSI Neural Networks

Stefan Philipp, Johannes Schemmel and Karlheinz Meier

Abstract—This paper presents a network architecture to in-
terconnect VLSI1 neural network chips to build a distributed
ANN2 system. The architecture combines techniques from circuit
switching and packet switching to provide two different service
classes: isochronous connections and best-effort packet transfers.
The isochronous connections are able to transport the axonal
data of artificial neurons between VLSI ANN models that
feature a speedup of multiples orders of magnitudes compared
to biology. The connections use reserved bandwidth to provide
loss-less transmissions as well as a low end-to-end delay with
bounded jitter. Best-effort packet transfers use the remaining
bandwidth for on-demand multi-purpose communication. The
data forwarding is performed between synchronized instances of
a dedicated switch architecture used at each network node. The
switch is scalable in terms of port numbers and line speed. Its low
complexity allows for an implementation within programmable
logic or directly within a VLSI neural network chip. A reference
implementation of the proposed network architecture is presented
within an existing framework that hosts VLSI neural network
chips operating at speedups of 104 to 105. The network architec-
ture is further not limited to VLSI neural networks, but it can
in principle be used in all network environments that require
isochronous connections as well as packet processing.

Index Terms—VLSI neural networks, quality of service,
isochronous communication, crossbar switches, AER

I. INTRODUCTION

VLSI implementations of ANNs are an interesting alter-
native to the modeling of neural networks in software.

In VLSI neural networks, biological characteristics of neurons
and synapses like membrane potentials and ion channels are
represented by electrical counterparts like voltages, currents
and conductances. An overview of VLSI implementations of
neural networks can be found in [1]. Implementations by our
research group have been reported in [2], [3].

The chips in [2], [3] use a mixed-signal design, that is,
analog and digital circuit techniques are combined. Analog
design allows for a compact continuous-time implementation
of the neuron and synapse circuits, whereas digital design is
well-suited for configuration and external communication. The
chip in [3] integrates 384 leakage integrate-and-fire neurons [4]
with 256 synaptic inputs on a single die (cf. Figure 1). The
small area used by the neurons leads to small time constants
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Fig. 1. A network module equipped with the VLSI ANN of [3] on the left.

and thus to an operational speedup of the membrane time
constants of 104 to 105 compared to biology.

Action potentials (or spikes) are created as digital events in
continuous time. Synaptic connections between the neurons
can be implemented directly on-chip. In addition to this,
a digital external interface allows to interconnect multiple
chips to a large-scale neural network by using a dedicated
communication network. These inter-chip connections then
represent long-range axonal connections of biological neurons.
In contrast to VLSI neural networks that operate at biological
speeds, chips like the latter have strong QoS3 [5] requirements
in terms of throughput, delay and delay variation (or jitter) on
the connections provided by the communication network.

The expected data rates depend on the encoding of the spike
events and on the estimated spike frequencies, which in turn
depend on the neural network configuration. As a calculation
example, a modeled neuron with a biological mean firing rate
of 10 Hz at a speedup of 105 causes a physical spike event
rate of 1 MHz. The spike event rate can be even higher in the
case of bursting. Example bandwidth requirements for a single
neuron and a whole chip are given in Table I.

The transmission of spike events via a connection network
will result in end-to-end delays that are significantly larger
than if using ANN-internal connections. Besides the pure
throughput, the communication network therefore has to guar-
antee an upper bound to the delay of the inter-chip connec-
tions to model axonal connections with biologically relevant
timings. As an example, a physical delay of only 100 ns at
a speedup of 105 corresponds to a biological axonal delay
of 10 ms. The timing requirements on the interconnection
network become even more critical within a large distributed

3Quality-of-Service
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TABLE I
EXAMPLE DATA RATES FOR THE CHIP OF [3] WITH MEAN RATES OF

1 MHZ AND PEAKS AT FOUR TIMES LARGER RATES. SPIKE EVENTS ARE
ENCODED WITH 32 BITS. [7]

ANN neuron ANN chip
Spike event rate average 1 MHz 384 MHz

peak 4 MHz 1536 MHz
Inter-chip connection average 4 MB/s 1.5 GB/s

peak 16 MB/s 6.1 GB/s

system in which not all chips are directly connected, but spike
events have to be transported via multiple intermediate hops.
Since the timing of incoming spike events is used in plasticity
models like STDP4 [6], the transmission delay should further
be as constant as possible (i.e. with low jitter). Although end-
to-end jitter can be reduced using buffers at the destination,
this increases the overall delay, complicates the VLSI design
and reduces the space left for neuron and synapse circuits.

A widely used protocol for the transport of spike events
is the AER5 protocol [8], which makes use of the fact that
electronic communication is several orders of magnitudes
faster than the firing rates of biological neurons. AER uses a
handshake mechanism and preserves the asynchronous timing
of the spike events. However, asynchronous handshakes are not
suitable for inter-chip communication at high speedups. The
physical firing rates of the neurons and the communication
delays between the chips would lead to unrealistic biological
uncertainties of the spike event delivery between the neurons
in a large and distributed setup [3].

This paper presents a digital and synchronous network
architecture suitable for the interconnection of VLSI neural
network chips at high speedups. The presented architecture
operates as a separate communication layer with QoS control
techniques. To be more precise, it provides isochronous end-to-
end connections between the chips, that is, independent com-
munication channels with guaranteed throughput and small,
nearly constant delay with minimum jitter for the transport of
axonal neuron data. Since complex distributed systems often
have additional transport requirements for on-demand multi-
purpose data (e.g. synaptic weights or similar configuration
data), the network architecture provides an additional traffic
class for best-effort packet-based communication without QoS
guarantees by using the remaining bandwidth of the physical
links. The integration of the two traffic classes is performed
by the bypass-switch, a dedicated switch architecture that
combines principles of circuit switching and packet switching
in a single design.

The paper is organized as follows: Section II first describes
the overall architecture of the network. The transport of
priority and best-effort traffic is presented separately. This is
done in a more general way since the target applications of the
network are not limited to VLSI neural networks. Section III
then describes the central bandwidth reservation algorithm in

4Spike-Time Dependent Plasticity
5Address Event Representation

packet-based
user logic

adaptive
routing

static
routing

network layer

bypass switch

physical links to other switches,
data encoding / decoding

data link layer

physical layer

user logic for
isochronous transfers

synchronization

upper layers

packet
interface

connection
interface

connection
requests

offline
configuration

best-effort priority

Fig. 2. Overview of the proposed network architecture.

detail and section IV discusses the theoretical performance and
scalability of the network architecture. Section V presents a
reference implementation of the proposed architecture within
an existing framework that interconnects a larger number of
the VLSI neural network chips of type [3].

II. NETWORK ARCHITECTURE

A. Overview

Figure 2 illustrates an overview of the proposed network
architecture. It consists of multiple parts: (A) A framing
strategy of the physical link data. (B) A synchronization
and timing sublayer. (C) The bypass-switch multiplexing the
traffic classes. (D) Interface specifications for upper-layer
access to isochronous and packet-based data. (E) A bandwidth
reservation mechanism, which is executed offline prior to the
operation of the network. The main idea of the network is
to compute a compact reservation pattern for all isochronous
connections offline prior to the network operation. The calcu-
lated pattern is then written into routing tables for priority
traffic within the switch to simplify the online forwarding
process. Best-effort packets are handled purely online and use
the remaining bandwidth.

The central part of the proposed architecture is the bypass-
switch, which integrates the two traffic classes. It contains one
or multiple global ports to the physical links (multiplexing
both classes) as well as local ports to upper-layer user logic
(separated for each class). To simplify the discussion, the
following description of the switch only considers multiplexed
ports without a limitation of generality.

Figure 3 shows a schematic design of the switch. It is
based on an input-buffered crossbar switch, but uses a queuing
bypass for priority data at each input. While best-effort data
is stored into queues, priority data is forwarded immediately
without any queuing. An N -Port bypass-switch has N input
ports and N output ports. There is no internal speedup, that is,
each internal data path operates at the same external line rate.
The central crossbar has 2N ×N ports and multiplexes data
of both traffic classes. By doubling the size of the crossbar,
the switch removes conflicts at inputs between priority and
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Fig. 3. High-level view of a 4-port bypass-switch. Incoming best-effort data
is stored in input queues whereas priority data bypasses all queuing. Best-
effort traffic uses unreserved or unused priority bandwidth.

best-effort data with moderate additional costs. The space
requirement of the crossbar is still of O(N2) complexity.

The timing of the switch is induced by the underlying
synchronization sublayer, which synchronizes all switches of
the network. The bandwidth of the physical links is framed
by dividing the time axis into equally-sized time frames. Each
time frame further consists of a synchronization character
plus f time slots, where f is a globally constant number (cf.
Figure 4). Bandwidth is assigned on a time-slot basis such that
the slot data either belongs to isochronous priority data or to a
best-effort packet. The switch operates according to the slotted
timing. Each time slot, the crossbar transfers the corresponding
amount of data in parallel from its inputs to its outputs.

frame 1

1

frame 3frame 2

0 2 .. .. f-1 10 2 .. .. f-1 10 2 .. .. f-1

synchronization character

Fig. 4. The bandwidth of each link is divided into equally-sized frames with
the globally constant number of f time slots.

The crossbar itself is controlled by a request logic com-
puting the port assignments. Each time slot, the request logic
first denotes reserved input and output ports according to the
priority routing table. Unused ports are further scheduled for
best-effort traffic in a second step according to the queue oc-
cupancies. Note that priority data (of isochronous connections)
is forwarded without investigating the data content. Since this
avoids the usage of slot headers, it allows very tiny slots sizes
that transport only few bytes, which is a major advantage of
the switching scheme. The hierarchical design of the switch
allows to further discuss the forwarding process for both traffic
classes separately.

B. Isochronous Priority Transfers

The synchronization sublayer provides a global synchro-
nization of all switches with the precision of a single time
slot. It is assumed, that synchronization can be established
depending on the application environment of the network,
e.g. in embedded environments or SoCs6, synchronization

6System on Chip

can use a global reference clock. Successful synchronization
can be verified via the arrival times of the synchronization
character of each frame. Due to physical delay variations, the
offset numbers of time slots entering a switch may have a
constant shift between different ports at the same time. This
can be resolved by a logical renumbering scheme at each
switch. Furthermore, f can be selected to an arbitrary large
number independent of the physical link delays to minimize
the bandwidth loss due to the synchronization character [7]. To
simplify the discussion, it is assumed that frames at all ports of
all switches arrive aligned without a limitation of generality.
The minimum bandwidth waste due to the synchronization
character is ignored in the following.

The set of all isochronous connections to be established
has to be known a priori or has to remain unchanged for
a long time compared to the operation of the network. The
reservation pattern is then calculated by a global bandwidth
mapping algorithm, which is executed initially at the time the
network is set up. For each connection, the algorithm assigns
one or multiple time slots at all links of the route between the
two end-points according to its bandwidth requirement. The
slots are reserved exclusively based on a periodic scheme such
that no link is overbooked. The corresponding port and slot
reservation scheme is stored in the priority routing tables of
the switches.

The deterministic reservation of slots eases the forwarding
process: After priority data enters the switch, its output port is
identified only by its time slot according to the synchronized
time. No header processing of slot data is performed and the
full bandwidth of reserved connections is available for payload
data. Furthermore, the forwarding process is of only O(1)
complexity, which allows the usage of small time slots and
high line rates. Note that the throughput is guaranteed and the
forwarding delay is reduced to the small and constant value
of the traversal time of the crossbar and the physical layer of
the switch, i.e. no jitter is introduced at intermediate switches.

The mapping algorithm further resolves the usual problem
of contention that arises at the output ports of typical switch
architectures that are based on slotted timing [9], [10], [11]:
Since an output can accept data from a single input only during
each time slot, the case that data from multiple inputs should
be forwarded to the same output results in blocked input ports
or data drops. In contrast to this, the solution presented in
this work removes contentions with an appropriate reservation
scheme and also avoids any buffering. The connections are
mapped to time slots in a way that contention is avoided
and that the data can be forwarded immediately without any
buffering and with minimum delay (cf. Figure 5).

Due to the reservation of bandwidth, the network is not
capable of handling excess data for connections, the amount
of data injectable into a connection by the user logic is limited.
Comparable to [10], a slot admission policy is needed to
regulate the traffic at the user interface of the source network
node of a connection: The switch denotes the upper layer
when reserved slots became available for transmission. The
resulting waiting process is the only point where end-to-end
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Fig. 6. Embedding a best-effort packet of 8 slots into successive time frames
on the same link. Slots 2, 4 and 5 are reserved for priority data. The packet
uses unreserved and unused priority slots and is extended over several time
frames.

connection jitter is introduced. The mapping process takes
care of connections having extreme jitter requirements and
distributes time slots of such connections more equally among
the frames. In the case of bursts, a traffic shaping algorithm
like leaky bucket [12] can be used to smoothen the data at the
source node.

Note that the network has to be reconfigured if the connec-
tion requests change. This depends on the application. Since
a new reservation can be calculated in parallel during the
network operation, a synchronous update of all routing tables
can be used.

C. Best-Effort Packet Transfers

Best-effort traffic is transferred as in packet switched net-
works, i.e. its bandwidth requirements are assumed to be
unknown and may change during the operation of the network.
Requests for packet transfers may arise on-demand, a pre-
calculated mapping is not required. Best-effort packets are
embedded in unreserved or unused priority slots. Since time
slots are assumed to be small, a best-effort packet may occupy
multiple time slots and can be extended over several time
frames (cf. Figure 6). The packets contain an additional header
to allow global routing.

The switch architecture concerning best-effort traffic equals
an input-buffered crossbar switch with VOQs7: Packets en-
tering the switch are stored in separate FIFO8 queues for
each output at each input (cf. Figure 7). Incoming packets
are collected out of the priority slots depending whether slots
are used for priority traffic or not. The header of each packet is

7Virtual Output Queuing
8First-In First-out
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Fig. 7. Virtual output queues at a single input of a 4-port switch. Packets
are pre-routed and stored in separate queues for each output. The framing
logic extracts and inserts best-effort traffic into the slotted time frames. Only
a single dual-port memory element is needed at each input (depicted with the
dotted line) and no speedup is required.

looked up and a routing algorithm computes the local output.
The packet is then stored in the appropriate VOQ. Note that
only one queue is written and read at the same time. Therefore,
all N2 queues for an N -port switch can be implemented with
only N dual-port memory elements and N2 FIFO controllers.

In each time slot, the request generation logic of the switch
collects the requests from all currently unmatched VOQs for
which inputs and outputs are not used by priority traffic in the
following time slot. The best-effort scheduler then calculates a
bipartite matching of inputs and outputs within the duration of
a time slot. At the time the scheduler completes, the framing
logic at the queue outputs is informed of the scheduling result.
Since packets are not merged within the time frames, the
scheduling result for a dedicated output remains valid until
a packet has been transmitted completely.

The scheduler used for best-effort traffic can in principle
be any scheduler which is usable for virtual output queuing
to calculate a bipartite matching, e.g. iSlip [13], [14], RPA or
DPA [15] etc. The duration of a time slot imposes an upper
bound on its complexity.

The interface to the upper-layer logic is slightly more
complex than for isochronous data. Packets are transmitted slot
by slot at the source node and re-assembled at the destination.
Furthermore, the switch forwards the online routing requests
to the upper-layer. This allows to implement different packet
types with even different routing strategies at the same switch.

III. MAPPING ALGORITHM

The bandwidth mapping algorithm computes the contention-
free slot reservation pattern of the isochronous connections
prior to the network operation. The challenge to perform
a contention-free forwarding and to guarantee QoS for the
connections has therefore been moved from online to an
offline pre-calculation. The algorithm is a central part of the
network architecture. It may be executed in software, since the
isochronous connections are assumed to remain unchanged for
a long time compared to the operation of the network.

To be more formally, the topology of the network is rep-
resented by a graph G = G(V,E) with V comprising the
upper layer processes and switches of the network and E the
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set of its interconnects (upper-layer switch ports and physical
links). The mapping algorithm processes the n requests for the
isochronous connections c1, ...cn ∈ C, ci = (vs, vd, wc) with
vs, vd ∈ V and wc ∈ R, 0 < wc < 1 the bandwidth requested
by the connection c. The algorithm tries to find a valid slot
assignment at each link e ∈ E for a given period m. The
synchronized framing requires m to hold f = m · n, n ∈ N,
but f can selected to be large due to the logical renumbering
of frames at each switch input (cf. section II-B). A possible
algorithm consists of three steps: (A) The assignment of a
number of time slots to each connection according to its
bandwidth requirement. (B) The routing of the connections
between its end-nodes. (C) The calculation of the contention-
free periodic slot assignment.

The first step is basically a quantization process. For each
connection request c ∈ C with bandwidth requirement wc, it
calculates the number of data slots mc ∈ N to be reserved as
the smallest integer number that holds:

wc

wf
≤ mc

m
≤ 1, (1)

where wf ∈ R, 0 < wf < 1 is the total bandwidth usable
for data per link. In other words, the requested bandwidth is
rounded up to the next possible value according to the time
slot granularity imposed by the global framing scheme. The
algorithm does not calculate the exact positions of the reserved
slots, but only the number of slots to be reserved within each
reservation period exclusively for that connection on the whole
route from the connections source node to its destination.

The second step routes all connections one by one by
respecting the available bandwidth per link. The routing of
a single connection can be done using the shortest-path
algorithm from Dijkstra [12] with a slight modification. The
algorithm uses weights that are assigned to the links e ∈ E to
represent its already-assigned network load. After a particular
connection c has been routed, the weights of the affected links
are increased according to its number of time slots mc. During
the processing of the algorithm, the link weights increase and
paths for connections to be routed depend on the routing of
previous connections such that succeeding connections are
routed around heavily loaded edges and use free edges first.
Doing so, the algorithm ensures that each reservation period
is booked with not more than m time slots. In the case that
the Dijkstra algorithm fails, the set of connection requests is
rejected. New requests with less bandwidth requirements or a
finer slot granularity with larger values m can be made.

The third step of the algorithm computes the contention-
free assignment. It is solved by transforming the assignment
problem to the vertex-color problem [16] from graph theory.
Without limitation of generality, it is assumed that mc = 1
for each connection (connections with multiple time slots can
be modeled by an appropriate number of parallel connections
using the same route). Due to the deterministic forwarding
process, the reserved slot positions at intermediate links of
a connection’s route are determined just by the position of
the reserved slot at the first link. The assignment problem can

therefore be reduced to the calculation of the position qc of the
time slot at the first link for each connection c (the first link
will be an upper-layer input port of the switch). This problem
is solved with an undirected collision graph G′ = G′(V ′, E′).
The graph consists of n vertices vi, one for each connection ci.
The graph edges e′ ∈ E′ denote the traffic constraints of the
local forwarding processes: An edge e′ = (v′

1, v
′
2) is created

between v′
1 and v′

2 in the case that the routes of c1 and c2

share a link e ∈ E (cf. Figure 8 and Figure 9).

A B C

E

c1

c2 c3

D
c4

Fig. 8. An example network of five nodes A to E with four connection
requests c1 to c4 depicted with dotted lines between the nodes.

c1

c2c3

c4

Fig. 9. The connection collision graph of Figure 8.

The slot assignment problem now equals the problem of
assigning different numbers qc for vertices v′ that are con-
nected by an edge e′, i.e. to find a vertex coloring of G′.
Vertex coloring is a highly investigated problem and a couple
of algorithms exist [16]. The difficulty to find a valid coloring
clearly depends on the connection requests, the topology of the
network and the maximum number of available ”colors” i.e.
the m time slots per reservation period. The problem is more
likely being solved for large numbers m with the drawback of
increased connection jitter.

IV. THEORETICAL PERFORMANCE

A. QoS Guarantees for Priority Traffic

Since priority traffic is transported within reserved slots
without contentions, no data is dropped and 100 % throughput
is guaranteed during the transportation process. Connection
data arriving at the switch is forwarded without buffering
and with O(1) online complexity. Its delay is caused mainly
by the physical layer and by the traversal of the crossbar.
Therefore, the transport delay is small, constant and the jitter
is independent of the number of network hops. Variation of the
overall connection delay is introduced only at the source node
during the waiting process for reserved slots. The amount of
introduced jitter depends on the distribution of reserved slots
within a reservation period. A period of m slots ensures that
the jitter is bounded by m time slots in the worst case. If
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constant overall delay (zero jitter) is required, a jitter buffer
at the end node can be used. Its size is bounded according to
the jitter bounds. The latter setup requires additional timing
information to be sent along with priority data.

B. Performance of Best-Effort Traffic

The transport of best-effort packets comprises the fragmen-
tation to slots, the re-assembly, the routing and the scheduling.
Since the routing can be implemented via table look-ups within
the upper layer, only the scheduling process is of significant
complexity. The scheduling has to be performed within a sin-
gle time slot. Different schedulers are conceivable: maximum-
size matching (MSM) is known to achieve near optimum
results, however is not useful due to its high complexity of
O(N2.5). iSLIP [13] is very common in literature and easy to
implement in hardware. RPA and DPA [15] are also suitable
to be implemented in hardware and perform well. Note that at
high reservation rates, only few slots are available for best-
effort traffic. In this case, the remaining scheduling tasks
becomes simple and a complex scheduler is not required [7].

C. Scalability and Complexity

Concerning isochronous connections, the online scheduling
algorithm is of low complexity and a large number of ports can
be used. In the case that only isochronous traffic is required,
the complexity of the switch reduces to a single crossbar with
a static periodic routing table as in [17]. Scalability in the line
speed is limited by the best-effort scheduler. If the line speed
increases, the duration of a single time slot can be increased
accordingly. This is important for network environments where
transmission techniques may be updated at times.

The scalability in the number of network nodes depends
on the difficulty to find a valid mapping for the isochronous
connections with a sufficiently small value of m. This further
depends on the particular network topology and the set of
connection requests of the application. The complexity of
the computation can be reduced by combining requests for
multiple connections between the same two network nodes
into a single isochronous connection. This may further balance
the network load during operation and allows for a more tight
bandwidth assignment. Section V-A presents mapping results
for a different number of VLSI neural network chips within
an existing framework.

Concerning best-effort traffic, the switch behaves as a
common input-buffered switch with VOQs. Scalability results
and QoS guarantees depend on the scheduling algorithm used.

The space complexity of the 2N × N crossbar that mul-
tiplexes the two traffic classes is of O(N2). Although this
doubles its size, it also improves the throughput for best-
effort traffic. To see this, the switch has been compared in
simulation against an typical architecture that uses a single
N × N crossbar and thus suffers from contention between
the traffic classes at each input. The simulation uses a 5-port
switch with a packet size of 11 slots and 40 % of reserved
slots. Incoming best-effort traffic has been simulated with
independent statistical arrivals at each port with a certain
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Fig. 10. Comparison of scheduling results for switch designs with and
without separate crossbar inputs for the traffic classes. It can be seen that
the bypass-switch architecture outperforms the standard design.

arrival property for each time slot. Figure 10 shows the results.
It can be seen that by doubling the inputs of the crossbar,
contention at the input ports between both traffic classes is
eliminated and the average delay as well as the throughput of
best-effort packets is significantly improved.

V. REFERENCE IMPLEMENTATION

This section presents the reference implementation of the
described network architecture within the ANN hardware and
software framework of [18], [19]. The framework consists
of backplanes that hold up to 16 network modules each. A
backplane fully equipped with 16 ANNs of type [3] provides
6144 artificial spiking neurons with 1.57 million synapses.

Figure 1 shows a photograph of a network module. It can
be equipped with a single VLSI neural network chip and
comprises up to 1 GByte of local memory and further support
components like DACs9 and ADCs10. The local ANN chip and
all other components on the module are interfaced by a central
Xilinx Virtex-II Pro FPGA11 [20], which also provides the
physical interconnects to other modules. The programmable
logic of the FPGA contains the interface code of the ANN
chip as well as the online part of the reference implementation
of the proposed network architecture.

The physical layer of the network is realized by eight
FPGA-internal multi-gigabit transceivers [21], which operate
at 3.125 Gbit/s external line rate. The overall end-to-end delay
of the transceivers has been reduced to 128 ns by applying the
modifications from [22]. Four of the transceivers are hardwired
by the backplane such that each network module is directly
physically connected to four others. The resulting topology
equals a two-dimensional toroid and also a four-dimensional
binary cube (cf. Figure 11). The four remaining connectors can
be used to add additional connections with cables between the
modules or to interconnect multiple backplanes.

9Digital-to-Analog Converter
10Analog-to-Digital Converter
11Field Programmable Gate Array
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Fig. 11. The hardwired topology of a backplane illustrated as toroid and
cube. Each node hosts a single ANN chip as well as an FPGA, which accesses
the physical interconnects. Nodes not directly connected communicate via
intermediate nodes.

A. Isochronous Priority Transfers

Isochronous connections are used for the modeling of inter-
neuron axonal connections between the ANN chips. For that
reason, the ANN chip contains a digital control part that
is able to transmit spike events of neurons to its external
interface and to receive incoming events. A spike event is
transmitted within 32 bits, which is the time slot size of the
network. The slot duration is 12.8 ns. The ANN chip requires a
dedicated controller logic within the FPGA to be interfaced to
the communication network [23]. Prior to an experiment, the
user has to define the required set of the inter-chip isochronous
connections and their bandwidth demands depending on the
physical neuron placement and the synaptic connections of the
neural network to be modeled. The transport of multiple inter-
neuron connections within a single isochronous connection
reduces the amount of bandwidth to be reserved for it to cope
with bursting of single neurons.

It has been shown in section II-B that the reliability of the
isochronous connections depends on a successful synchroniza-
tion of all switches. The implemented synchronization uses a
global clock reference and is executed once during network
startup. Adjustable delay elements at the output ports of the
switches compensate different physical transmission delays
with a precision of 6.4 ns. The stability of the synchroniza-
tion has been verified with a dedicated test-setup that uses
measurement circuits at the end-points of the isochronous
connections.Test spike events have been injected into the
connections and the accurate timing of its arrival at the end-
points has been verified. Once established, the synchronization
has proven to be stable during all tests. A final end-to-
end delay of only 154 ns has been achieved for connections
between neighbored modules.

Although the throughput of the isochronous connections is
guaranteed by design, the end-to-end jitter depends on the
minimum possible value m of the periodic assignment and thus
on the performance of the mapping process. A reference im-
plementation of the algorithm of section III has been developed
in software. The performance of the implemented algorithm
has been analyzed against a set of pseudo-random neural
networks of a regular binary cubic topology with k = 2d nodes
for different dimensions d (cf. Figure 11(b)). Each network

TABLE II
MAPPING RESULTS FOR REGULAR NETWORKS OF k = 2d NODES IN A

d-DIMENSIONAL BINARY CUBIC TOPOLOGY (SEE TEXT).

nodes links max hops connections jitter [slots] occupancy

4 8 2 12 2 100 %
8 24 3 56 4 100 %

16 64 4 240 8 100 %
32 160 5 992 20 80.1 %
32 160 2 480 7 71.4 %

node consists of an ANN that uses all 384 neurons and is
connected to d others. The 2 × 256 synaptic inputs of each
chip are equally distributed to neuron outputs of all chips,
such that the inter-chip network has to implement k(k − 1)
aggregated connections. Each connection is assigned a single
slot, the jitter therefore equals the number m of time slots per
reservation period times the slot duration of 12.8 ns.

The results of the bandwidth mapping are shown in table II.
The first four lines show results for networks that contain
inter-chip connections between all nodes as described above.
The last line corresponds to a network whose connections are
limited to a distance of two network hops. The slot occupancy
denotes the percentage of time slots the algorithm succeeded to
use. It can be seen that the mapping algorithm is able to occupy
80 % of all available slots even with nearly 1000 isochronous
connections (with multiple inter-neuron connections each).
Furthermore, by avoiding far hops with large delays, the
number of connections decreases and the jitter per connection
improves significantly. Note that 100 % slot occupancy of the
hardwired links between the 16 chips of a fully equipped
backplane allows for an overal rate of up to 5 · 109 spike
events/s to be transmitted between the chips.

B. Best-Effort Packet Transfers

Best-effort packets are used by a global shared memory
subsystem implemented within the programmable logic. Its
task is to transfer multi-purpose data such as configuration
data, control data or synaptic weights between the memory
chips on the modules. Each packet carries 32 bytes of memory
data and occupies 11 slots (3 slots for header information). The
implemented routing algorithm performs a simple dimensional
routing and is of low complexity.

The VOQs at each input port are implemented with FPGA-
internal dual-port memories (only a single memory block
is needed at each port). Two different best-effort schedulers
have been implemented in hardware, namely iSLIP [13], and
DPA [15]. The schedulers perform a matching decision every
12.8 ns. Table III shows the amount of logic needed for
different switch configurations.

VI. CONCLUSION

This paper presents a network architecture feasible to in-
terconnect VLSI neural network chips to large-scale neural
networks using digital communication techniques. The data
of axonal connections between neurons on different chips
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TABLE III
SLICE USAGE FOR THE BYPASS-SWITCH IMPLEMENTATION AT DIFFERENT

CONFIGURATIONS. PORT NUMBERS ARE FOR GLOBAL PORTS, LOCAL
ISOCHRONOUS PORTS AND LOCAL BEST-EFFORT PORTS. THE PERCENTAGE

VALUES ARE GIVEN FOR A XILINX VIRTEX-II PRO XC2VP7 FPGA [20]

Ports Scheduler Memory 4-input
GL PR BE Blocks look-up tables

4 + 1 + 1 iSLIP-1 5 1621 (16 %)
4 + 1 + 1 DPA 5 1751 (18 %)
6 + 1 + 1 iSLIP-1 7 3338 (34 %)
6 + 1 + 1 DPA 7 3411 (35 %)

is transported with isochronous connections, which provide
QoS in terms of guaranteed throughput, low delay and low
jitter. The low delay and jitter values allow for an operation
of VLSI ANN models at speedups of multiple orders of
magnitudes. Multi-purpose data such as configuration data,
control data or synaptic weighs is transported on-demand
with best-effort packets using the same physical resources and
without provision of QoS.

The network architecture is based on a slotted timing
scheme. It combines connection-based transfers and packet-
based transfers by means of global synchronization, a global
bandwidth reservation algorithm and the dedicated bypass-
switch architecture. In contrast to other slotted timing schemes,
its deterministic arrival pattern releases from investigating the
slot content, which leads to high speeds and a small slot size
for fine-grained bandwidth reservations. Due to its low online
complexity, the network architecture is scalable in terms of
the number of network hops, port numbers and line speed.

A reference implementation of the proposed network ar-
chitecture in programmable logic and software within an
existing ANN framework has been presented. The framework
comprises VLSI ANN models with a speedup of 104 to 105

on backplanes with 16 units each. The proposed reservation
algorithm succeeds to compute compact reservation patterns of
71 % to 100 % slot occupancy for different network sizes and
is able to reserve bandwidth even for networks with nearly
1000 isochronous connections. The stability of the framing
and synchronization has been verified. An implemented switch
with 4 global ports and a single local connection occupies
only 1621 of the 4-input look-up tables of the FPGA used.
This shows the feasibility of the architecture for embedded
systems and SoCs. More generally, the network architecture
can be used in all environments with the need for isochronous
connections and packet transmissions.

In particular, the network architecture is suitable to be the
top-level network for the next stage of the framework, which
uses wafer-scale integration of neural networks [24], [25].
Isochronous connections are required to interconnect 20 cm
wafers with about 50 million synapses each. Due to its low
online complexity and due to its scalability in terms of line
speed and the number of network hops, the proposed network
architecture can be scaled to this application without major
changes.
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[3] J. Schemmel, A. Grübl, K. Meier, and E. Mueller, “Implementing
Synaptic Plasticity in a VLSI Spiking Neural Network Model,” in
Proceedings of the IEEE International Joint Conference on Neural
Networks, IEEE Press (2006).

[4] W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge University Press, 2002.

[5] S. N. Bhatti and J. Crowcroft, “QoS-Sensitive Flows: Issues in IP Packet
Handling,” IEEE Internet Computing, vol. 4, no. 4, pp. 48–57, 2000.

[6] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian learn-
ing through spike-timing-dependent synaptic plasticity,” Nature Neuro-
science, vol. 3, no. 9, pp. 919–926, 2000.

[7] S. Philipp, “Design and Implementation of a Multi-Class Network Archi-
tecture for Hardware Neural Networks,” Ph.D. dissertation, Universität
Heidelberg, 2008.

[8] A. Mortara and E. Vittoz, “ A communication architecture tailored
for analog VLSI artificial neural networks: intrinsic performance and
limitations,” in IEEE Trans. on Neural Networks, vol. 5, 1994, pp. 459–
466.

[9] A. Hung, G. Kesidis, and N. McKeown, “ATM input-buffered switches
with guaranteed-rate property,” in Proc. of IEEE ISCC’98, Athens, 1998,
pp. 331–335.

[10] S. Li and N. Ansari, “Input-queued switching with QoS guarantees.” in
Proceedings of IEEE INFOCOM’99, New York, 1999, pp. 1152–1159.

[11] T. Felicijan, “Quality-of-Service (QoS) for Asynchronous On-Chip Net-
works,” Ph.D. dissertation, University of Manchester, Dept. of Computer
Science, 2004.

[12] A. S. Tanenbaum, Computer Networks. Pearson Education Int., 2004.
[13] N. McKeown, “The iSLIP scheduling algorithm for input-queued

switches,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 188-201,
Apr. 1999., 1999.

[14] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and M. Horowitz,
“Tiny Tera: A packet switch core — using new scheduling algorithms
to build a 1-terabits packet switch with a central hub no larger than a
can of soda,” IEEE Micro, vol. 17, no. 1, pp. 26–33, /1997.

[15] J. Hurt, A. May, X. Zhu, and B. Lin, “Design and implementation
of high-speed symmetric crossbar schedulars,” In IEEE Int. Conf. on
Communications, June 1999, 1999.

[16] D. Brélaz, “New methods to color the vertices of a graph,” Commun.
ACM, vol. 22, no. 4, pp. 251–256, 1979.
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[19] J. Fieres, A. Grübl, S. Philipp, K. Meier, J. Schemmel, and
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