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Entwicklung eines Embedded Linux Systems für die GTU des ALICE TRD

Der Übergangsstrahlungsdetektor (TRD) des ALICE am CERN ist als Triggerdetektor
konzipiert. Er trägt zur Auswahl der für die jeweilige Fragestellung relevanten Ereignisse
aus der großen Anzahl der Teilchenkollisionen bei. Die Global Tracking Unit (GTU) ist für
den L1-Triggerbeitrag sowie die Pufferung und Übertragung der Rohdaten an das Data
Acquisition System und den High-Level Trigger zuständig. Als hierachisches System aufge-
baut besteht sie aus 109 Modulen.
In dieser Arbeit wird die Entwicklung eines Embedded Linux Systems und der dafür
notwendigen Hardware-Komponenten vorgestellt, welches als Plattform für Software
zur Steuerung und Überwachung der GTU dient. Das entwickelte FPGA-Design er-
möglicht über Schnittstellenkomponenten den Zugriff auf die verschiedenen Untersys-
teme der GTU. Zur Nutzung der SD-Speicherkarten wurde ein SD Memory Card Con-
troller entwickelt. Die Initialisierung der SD-Karten wird über Software-Routinen reali-
siert, während leistungsrelevante Lese- und Schreiboperationen in die Controller-Hard-
ware integriert sind. Bei der Entwicklung des Linux-Kernels stellen die spezifischen
Hardware-Komponenten der GTU eine besondere Herausforderung dar. Der Kernel-
Konfigurationsprozess ist so konzipiert, dass relevante Parameter des FPGA-Designs au-
tomatisch eingebunden werden, ohne eine manuelle Anpassung der Kernel-Quellen zu
erfordern. Ein für das Laden des Kernels zuständiger Bootloader implementiert grundle-
gende Zugriffsroutinen auf das Dateisystem der SD-Karten.

Development of an Embedded Linux System for the GTU of ALICE TRD

The Transition Radiation Detector (TRD) of ALICE at CERN is designed as trigger detector.
It serves to select physical events of interest to the main research questions among the
huge number of particle collisions. The Global Tracking Unit (GTU) is responsible for con-
tributing to its L1 trigger decision. It also buffers and forwards the event raw data to the
Data Acquisition System and the High-Level Trigger. Designed as a hierachical system, the
GTU consists of 109 system boards.
This thesis describes the development of an Embedded Linux System and the necessary
hardware components, which is used as platform for software to control and monitor the
GTU. The FPGA design developed also provides access to the different system compo-
nents of the GTU. An SD Memory Card Controller was designed to access the SD Mem-
ory Cards. Initialization of the cards is done by software, while performance-relevant
read and write operations are integrated into the controller hardware. The custom-built
hardware components of the GTU represent a particular aspect to the development of
the Linux kernel. An auto-configuration mechanism allows to extract and integrate rel-
evant parameters of the FPGA design into the kernel configuration without the need of
adapting kernel sources manually. The boot loader responsible for loading the kernel
implements routines to access the file system of the cards.
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1 Introduction

The investigation of nature and its innermost workings have been fascinating physicists
and philosophers from the beginnings of science. Since J. Dalton renewed Democritus’
hypothesis on a particle model of matter, many new discoveries have been made on this
subject.
In the 1920s, the high-energy physics era began, and scientists were able to have deeper
insight into the structure of matter. As a result of these experiments, new particles have
been discovered, which helped to verify or disprove some theories, but also revealed
new questions. A theory, which sufficiently describes most of the observed phenomena,
is the Standard Model of particle physics. Based on gauge theories of the electroweak and
strong interaction, it unifies three of the four known fundamental interactions between
the elementary particles and has been approved and refined by those high-energy physics
experiments.

Physics Overview According to the Standard Model all known matter is constituted
from two types of elementary particles, leptons and quarks. Interaction among those par-
ticles can be ascribed to three fundamental forces: the electromagnetic, the strong and
the weak interaction, which are carried by corresponding gauge bosons. Both the theory
of electroweak interaction and the theory of quantum chromodynamics (QCD) are consid-
ered by the Standard Model.
Table 1.1 lists all twelve known fundamental particles, their electric charges, and their
masses. Although there exists an anti-particle to each particle listed below, they have not
been included in the table as they have corresponding properties.
In table 1.2 the four fundamental forces are listed along with their characteristic range,
relative strength, and the corresponding gauge bosons. The fourth fundamental force,
gravitation, is not yet integrated in the Standard Model. In fact, it still has to be formulated
as a quantized theory. The weak and the electromagnetic force, however, couple to the
weak and the electromagnetic charge, respectively. The strong interaction is explained by
introducing a color charge, which states the name quantum chromodynamics. This charge
can be one out of red, blue, green or the corresponding anti-colors, respectively.

In contrast to the electromagnetic and the weak force, the strength of the interaction be-
tween quarks increases with growing distance. As a result, solitary quarks cannot be
observed. This phenomenon is known as confinement. Considering the color charges,
confinement can also be expressed as a free particle having to be color-neutral, resulting
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Generation Leptons q/e m Quarks q/e m

First
e -1 511 keV u 2/3 ≈ 3.3 MeV/c2

νe 0 ≤ 225 eV d −1/3 ≈ 6 MeV/c2

Second
µ -1 106 MeV s −1/3 ≈ 104 MeV/c2

νµ 0 ≤ 0.17 MeV c 2/3 ≈ 1.27 GeV/c2

Third
τ -1 1.78 GeV b −1/3 ≈ 4.2 GeV/c2

ντ 0 ≤ 18.2 MeV t 2/3 ≈ 171.2 GeV/c2

Table 1.1: All known matter consists of twelve elementary particles. Each par-
ticle has an anti-particle with corresponding properties, which are not shown in
the table. The electric charge is given as a multiple of the elementary charge,
while the mass is given in energy equivalent. Source: [A+08]

Force Range [m] Strength (rel.) Couples to Gauge Boson
Strong 10−15 1 Color charge Gluon (g)
Weak 10−17 10−2 Weak charge W±, Z0

Electromagnetic ∞ 10−14 EM charge Photon (γ)
Gravitation ∞ 10−38 Mass Undetected

Table 1.2: Interaction between the elementary particles can be described with
the four fundamental forces listed above. These forces have effects on matter
at very different scales. While electromagnetism and gravitation have effects on
atomic and macroscopic scales, the weak and strong interaction are observable
on subatomic scales. Sources: [Stö00, A+08]

in two kinds of composite quark particles, called hadrons.
When combining a quark and its anti-quark, a new color-neutral particle forms, since
color and its anti-color annihilates coloration. The resulting particle family is called
mesons. In analogy to the classical theory of colors, there is another way to achieve color
neutrality by additively mixing the three colors red, green and blue, or anti-red, anti-
green and anti-blue, respectively. Thus, the combination of three pairwise differently
(anti-)colored quarks also results in colorless particles, referred to as baryons.

The Standard Model sufficiently describes the variety of hadrons and baryons and most
of the other phenomena seen in particle physics so far. But there are still some questions
left open, such as why there are exactly three generations of fundamental particles or
where their physical properties actually come from. These questions are some of the
reasons for building the Large Hardon Collider (LHC) at CERN1.

Specifically, physicists at ALICE (A Large Ion Collider Experiment) hope to gain more in-
sight into the physics of the universe at a very early stage for the purpose of learning
more about how the universe developed. QCD predicts a cancellation of confinement at
either high density of hadron matter or high temperatures, when a phase transition from

1European Organization for Nuclear Research, situated in Geneva, Switzerland.
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the hadronic into a partonic phase occurs, and quarks can move quasi-freely. This par-
tonic sea is referred to as quark-gluon plasma (QGP). Ultra-relativistic heavy-ion collisions
as provided by the LHC for ALICE are expected to produce very hot QGP via hard initial
parton scattering. With extremely high particle densities (several thousand per unit of
rapidity for each collision), the demands regarding the resolution of the detector are very
high. Furthermore, a massive amount of data is produced for each single event, which
can be neither completely analyzed in real-time nor stored. Thus, a dedicated hierarchi-
cal 4-stage trigger system preselects physics events of interest for permanent storage and
offline analysis.

The Transition Radiation Detector (TRD) is one of the sub-detectors of ALICE. Its main pur-
pose is to trigger on electrons with high transversal momenta. The Global Tracking Unit
(GTU) is part of the trigger chain of ALICE and provides the contribution by the TRD to
the trigger decisions, but is also responsible for reading out and buffering the event raw
data. It consists of several sub-entities, each capable to run control and monitoring soft-
ware. For reliability and flexibility, it is advisable to provide the GTU with an Embedded
Linux System. The development of such a framework is subject of this thesis.

Embedded Linux Systems An embedded system is a computer system consisting of both
hardware and software, which is designed to perform one or a few dedicated tasks.
The manifold applications of embedded systems vary from control systems for indus-
trial plants to common home appliances such as washing machines, cell phones or enter-
tainment devices. While in the beginning embedded systems were provided with very
application-specific system software (home-grown system software), embedded derivatives
of modern operating systems nowadays offer support for a large number of embedded
platforms and thus replace home-grown software solutions.
Because of its flexibility and portability, Linux represents a suitable operating system for
embedded purposes. It is written in C for the most part, and its open source code allows
to adapt the kernel to specific hardware as well as to extend it for new functionality or re-
move features, which are not relevant for the actual purpose. The portability arises from
the support for various processor architectures such as ARM, x86, PowerPC and others
provided by both the kernel and the development toolchain used to compile the kernel
sources.

In contrast to Linux distributions for desktop systems and servers, Embedded Linux is
especially designed for systems with limited resources. Thus, the standard C library glibc
is usually replaced by less memory-consuming yet more limited alternatives. The same
applies to system software and user applications. As UNIX-like system, Linux depends
on a root file system, which provides the directory structure required by the kernel and
contains system and user applications. On desktop systems, the root file system is usually
located on the hard disk drive. Embedded systems, however, typically do not have such
storage devices, but use their main memory to host the root file system instead. The
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specific memory region, which is reserved for this purpose, is referred to as ramdisk and
can be accessed and formatted with any file system just as normal storage media. The
root file system, which is appended to the image of the embedded kernel, is copied to the
ramdisk during the boot stage. However, any modifications applied to the ramdisk are
lost in case of a reboot or power-cycle.

Building an Embedded Linux System implies cross-compilation of both kernel and appli-
cation sources. A cross-compiler, which runs on a platform of a processor architecture
different to that of the target system, processes the source code and generates executable
code for the target processor architecture. This is necessary, because most embedded sys-
tems are not designed to operate as development platforms. Moreover, the embedded
kernel usually lacks device drivers to access the boot medium, which is often based on
PROMs or flash memory chips.

An Embedded Linux System typically consists of the following elements:

• The Linux kernel binary image, including the root file system

• A boot loader

• Custom-developed drivers for special hardware

• One or more application processes to provide the functionality required

The kernel image incorporates both the actual Linux kernel and the root file system,
which contains the directory nodes as well as system and user applications. The boot
loader is responsible for copying the kernel image from the boot medium into main mem-
ory and jumps to the kernel entry point. While desktop systems are equipped with a
BIOS, which offers basic I/O capabilities to access the boot medium, the boot loader of
an embedded system must implement those routines by itself due to the lack of a BIOS.
Because the Linux kernel does not support special hardware components an embedded
system is equipped with, it is necessary to provide custom-developed device drivers to
access these components. Those drivers are implemented as kernel modules located in a
specific directory of the root file system and can be added to or removed from the kernel
dynamically during runtime. Finally, one or more applications are required to perform
the actual task the system is intended for.

Thesis Overview This thesis focuses on the development of an Embedded Linux Sys-
tem and the necessary hardware components for the Global Tracking Unit of the ALICE
TRD to serve as a platform for future control and monitoring software.
The following chapter gives an overview of the particle accelerator LHC and its experi-
ments, in particular ALICE, the TRD and the GTU. Chapter 3 illustrates technical aspects
of the GTU. The Embedded PowerPC System, which serves as the basic hardware plat-
form to communicate and interface with the GTU and its components, is described in
chapter 4. In chapter 5 the development process of the Embedded Linux is discussed.
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An essential part of the development was to adjust the kernel to the application-specific
hardware. The generic SD Memory Card Controller, also developed in this thesis is de-
scribed in chapter 6. It allows to access the SD Memory Cards the GTU is provided with.
The controller is required to enable the use of cards as boot media for the Linux and to
host the root file system. Chapter 7 discusses the development of a boot loader respon-
sible for copying the Linux kernel image from the SD Memory Cards into main memory
and its execution. It is implements the necessary basic I/O routines to access the card file
system. Finally, the last chapter summarizes the results of the thesis.
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2 The Experiment

The structure of matter and the fundamental interactions is investigated at the European
Organization for Nuclear Research (CERN)1. It provides the Large Hadron Collider, a huge
particle accelerator to collide particle beams, and the necessary computing resources re-
sponsible for analyzing the data produced by the detectors of the experiments, which
study these collisions.
At the time of writing this thesis, the accelerator is in the final stage of completion, and
first beam is expected in early September of 2008. Each of the eight sectors of the acceler-
ator is in state of cooling and has nearly reached its operating temperature of 1.9 K.

The following sections give a summary of the LHC and its experiments. After a brief
overview of the accelerator and the ALICE experiment, the Transition Radiation Detector
(TRD) is described in more detail. The last section discusses the main objectives of the
Global Tracking Unit as part of the TRD.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a particle accelerator located near Geneva, Switzerland,
in a circular tunnel2 approximately 100 m beneath the surface and has a circumference of
nearly 27 km. Two counter-rotating particle beams will collide at four specific interaction
points, where the experiments are stationed to study the collisions. The center-of-mass
energies will be about 14 TeV for proton-proton collisions and 1,150 TeV for heavy-ion
collisions. To keep the beams on their circular track, over 1,000 super-conducting mag-
nets are spread along the particle beam tubes, cooled down to a temperature of 1.9 K.
Figure 2.1 shows a schematic view of the LHC accelerator complex and its four major
experiments ALICE, ATLAS, CMS and LHCb.
While ATLAS, CMS and LHCb are primarily designed to study proton-proton collisions,
ALICE is the only experiment particularly developed to run in heavy-ion mode (Pb-Pb)
as well. Its main objective is the detection of quark-gluon plasma (QGP) and the study of
its properties.

1CERN was founded by several European states in 1954 and is located near Geneva, Switzerland.
2The tunnel was initially created for and used by the LHC predecessor LEP (Large Electron Positron Collider).
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The Experiment

Figure 2.1: Schematic view of the LHC accelerator complex. The accelerator ring
as well as the four major experiments ALICE, ATLAS, CMS and LHCb are situated
in a tunnel about 100 m beneath the Franco-Swiss border near Geneva.

2.2 A Large Ion Collider Experiment

Collisions of heavy lead ions (208Pb) are analyzed by A Large Ion Collider Experiment
(ALICE). It is expected that quark-gluon plasma (QGP) is formed from these collisions
at the energies provided by LHC. The detection and study of QGP and its properties is
the main objective of ALICE, which consists of several sub-detectors complementing one
another. In figure 2.2 an outline of the ALICE detector layout is given.

Particle and Vertex Tracking The innermost detectors of ALICE are responsible for cap-
turing the tracks of electrically charged particles.
The Inner Tracking System (ITS) cylindrically surrounds the beam axis at the point of col-
lision. It is capable of tracking particles at a very high resolution of up to 12 µm in order
to localize the vertices.
The ITS is followed by the Time Projection Chamber (TPC), which is filled with Ne and CO2

gas. When charged particles travel through the cylindrical gas volume, the gas molecules
are ionized along the trajectory of the charged particles. The secondary electrons are ac-
celerated by a strong homogeneous electric field parallel to the beam axis and drift to-
wards the readout chambers. Two of the spatial coordinates of the ionization points are
given by the pad position which the charged particles arrive at. The third coordinate is
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Figure 2.2: Overview of the ALICE detector layout. Source: [ALI]

determined by the time the secondary electrons need to reach the readout pads.

Particle Identification Adjacent to the TPC is the Transition Radiation Detector (TRD). Its
main objective is to track and identify electrons with transversal momenta greater than
about 3 GeV/c and to form a trigger contribution to decide on the readout of the TPC (L1
trigger). A more detailed description of the TRD follows in section 2.3.
The next detector following the TRD is the Time of Flight detector (TOF), which is capable
of measuring the flight time with a resolution of 100 ps to determine the mass of high-
energy particles. Additionally, TOF also participates in the L0 trigger decision.
The High Momentum Particle Identification Detector (HMPID) determines the mass of parti-
cles of extremely high energy. It is based on the detection of Cherenkov radiation, which
is emitted when a charged particle travels through a dielectric medium at a phase veloc-
ity vp > c.
The outer areas of the detector consist of the Photon Spectrometer (PHOS) and the Electro-
magnetic Calorimeter (EMCAL). Aside from contributing to the L0 and L1 trigger decisions,
PHOS is designed to determine the temperature of the collision. Last, EMCAL provides
the ability to identify photons directly and offers hadron rejection. Furthermore, it adds
a jet-trigger and the capability to study medium-induced modification of jet fragmenta-
tion.

The entire detector complex is enclosed by the L3-Magnet, which produces a homoge-
neous magnetic field parallel to the beam axis. This magnetic field deflects charged par-
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ticles in their trajectory depending on their momentum. The transversal momentum of a
particle can be determined by the radius of its circular trajectory, since r = pt

e·B .

2.3 The Transition Radiation Detector

The Transition Radiation Detector (TRD) is used to identify and trace charged particles.
Of special interest is the detection of electrons and positrons with transversal momenta
greater than 1 GeV/c, because they indicate a di-lepton decay of heavy vector mesons
(J/ψ, Υ). The analysis of the appearance of those resonances provides a significant meth-
od to investigate QGP ([ALI01, MS86, AAA+06]). However, since they are produced
rarely (about 105 collisions for one Υ), it is necessary to trigger on these events, which is
performed by the TRD especially designed for this purpose. In the targeted momentum
range, the production rate of pions is much higher than that of electrons. To differentiate
between those particles, the effect of transition radiation is used. The tracks of the particles
can be reconstructed by the charges detected at the readout pads of the drift chambers
and the chronological sequence the charges arrive at the pads.

The TRD is divided into 18 entities (Supermodules) in azimuthal direction, forming a hol-
low cylinder. Each Supermodule consists of five stacks lined up in z-direction. A stack
is made up of six modules, each consisting of radiator material, drift chamber and read-
out electronics. A detailed summary of the design and geometry of the TRD is given
in [ALI01].
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Transition Radiation and Particle Identification Transition radiation is emitted when
relativistic charged particles cross the interface of two media of different dielectric con-
stants. A charged particle approaching this boundary represents an electric dipole in
combination with its induced image charge. The dipole field intensity varies in time
while the particle moves towards the boundary. Thus, electromagnetic radiation is emit-
ted, which is highly collimated in forward direction. The energy of the emitted transition
radiation is proportional to the Lorentz factor γ = E/mc2 of the particle and typically
corresponds to soft X-ray radiation. At same energies, the effect is more distinctive for
particles of lower mass. It is used to distinguish between electrons and pions, which
have a much higher production rate than electrons in the targeted momentum range.
Because mpion ≈ 273melectron, pions hardly produce transition radiation compared to elec-
trons. The chronological sequence of the signals triggered by electrons and pions is given
in figure 2.4. Unlike electrons and pions, which produce a continuous ionization trail,
photons of the transition radiation abruptly lose energy resulting in a spatially confined
charge signal. The peak at the end of the drift time reflects the charges produced by the
transition radiation.

Particle Tracking The TRD consists of six layers of drift chambers separated by radiator
material, which causes crossing particles to produce transition radiation. The chambers
are filled with Xe and CO2 gas and divided into two regions, the drift region and the ampli-
fier region. The drift region is flushed by a homogeneous electric field. A charged particle
crossing the gas volume ionizes the gas molecules and frees electrons, which drift with
constant velocity due to the homogeneous field. However, the charge of these secondary
electrons is too low to be detected. Thus, the amplifier region dominated by an inhomo-
geneous electric field of high intensity accelerates those electrons and triggers a cascade
of further electrons, which can be measured. The particle track can be reconstructed by
capturing the chronological sequence of the charges arriving at the readout pads. Both
figure 2.5 and 2.6 show cross sections of a drift chamber of the TRD.

2.4 Objectives of the Global Tracking Unit

The study of quarkonia and jet production in heavy ion collisions provides an effective
way to research QGP. The Global Tracking Unit (GTU) is designed to trigger on both, di-
lepton decays of heavy vector mesons (J/ψ and Υ) and jet production [dC03, dC, Ret]. In
order to associate the particles detected with their emerging point to verify a di-lepton
decay, it is necessary to reconstruct their trajectories and transversal momenta [dC03].
Based on the results of these track matching calculations, the GTU contributes to the
L1 trigger decision3, which is evaluated by the Central Trigger Processor (CTP). Depending

3A L1 trigger is issued by the Central Trigger Processor to indicate an event of interest and start further
detector readout. See [Ret07] and [Kir07] for a detailed explanation of the TRD trigger hierarchy.
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on the trigger sequence, the GTU reads out and buffers the event raw data from the
detector for further processing and forwarding to the High Level Trigger (HLT) and the
Data Acquisition System (DAQ) [Ret07, Kir07].
Figure 2.9 gives an overview of the TRD readout chain and the GTU data path. Data from
the detector is transmitted by the TRD front-end electronics via 1,080 optical fibers, which
provide an aggregate bandwidth of 2.7 GB/s per detector stack (12 fibers). Because the
trigger contribution must be calculated within less than 2 µs, track matching and trigger
processing demand for a low-latency implementation. To minimize the dead time of the
detector, the large amount of event raw data is read out at the full bandwidth provided
by the optical fibers (green), which connect the TRD font-end electronics to the GTU.

Reconstruction of Particle Track Segments Projected on a plane perpendicular to the
beam axis (x-y-plane of the TRD), a charged particle passes through the detector on a
circular path due to the longitudinally directed, homogeneous magnetic field of the L3-
Magnet. The transversal momentum pt of the particle can be calculated by determining
the radius r of the circular particle track, since radius and transversal momentum are
correlated by r = pt

e·B . Considering the transversal momenta of interest (pt ≥ 3 GeV/c),
the radius is of the order of 25 m. That is, the track segments detected within the drift
chambers are weakly bent and can be approximated with segments of a straight line
(tracklets). If the particle is assumed to have emerged from the primary interaction point,
gradient and axis intercept are sufficient to describe the particle track within a detector
module. The tracklets are fitted and parameterized by the TRD front-end electronics. It
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consists of readout boards supplied with the Multi-Chip Modules (MCMs), which buffer and
preprocess the event raw data [Gut02, Gut06, Sch08].

Track Matching The Track Matching Units (TMUs) of the GTU are responsible for recon-
structing the track of a particle, which passed the associated detector stack. The recon-
struction is based on the tracklets received. The tracklets of all detector layers of a stack
are extended straightly and projected to an imaginary plane in the middle of the detector
stack (see figure 2.7). Tracklets from different layers, which have both intersection points
in close vicinity on the projection plane and similar gradients, are considered as a track
(window criterion). The transversal momentum of the particle is estimated from the track
radius and compared to a threshold (see [dC03], [dC]).
Projected on the x-y-plane, both track segments and interaction point of a particle of in-
terest are on a circular arc. According to calculations by J. de Cuveland, it is sufficient to
fit a line to the tracklets, which can be seen as a secant of the circular arc. The radius of the
track can be determined by the line parameters a and b (see figure 2.8) and the following
formulas [dC03]:

r =
d12/2
sin (α)

(2.1)

where

α = ϕ2 − ϕ1 = arctan
(

y2

x2

)
− arctan

(
y1

x1

)
(2.2)

d12 =
√

(x2 − x1)2 + (y2 − y1)2 , yi = a + b · xi , i ∈ {1, 2} (2.3)
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The results of the TMUs are processed by the Supermodule Units (SMUs) and the Trigger
Unit (TGU), which contribute to the L1 trigger decision of the CTP.

Event Readout When the CTP signals a L1 trigger, the SMUs issue control signals to the
TMUs to start the readout of the event raw data. The data is transmitted by the TRD front-
end electronic via 12 optical fibers per detector stack at a high bandwidth to minimize the
dead time of the detector. The data is buffered in the local SRAM of the TMUs, which is
capable to capture the data at the full bandwidth provided by the optical lines. Each TMU
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handles the data of one detector stack, meaning a Supermodule is completely covered
by five TMUs [Ret07]. The buffered data of all stacks of a Supermodule is merged and
formatted by the corresponding SMU and forwarded to the DAQ and the HLT [Kir07].
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Figure 2.9: Overview of the GTU data path. Track matching and trigger process-
ing (red) require a low-latency implementation, because the trigger contribution
must be delivered 6.2 µs after the interaction. The dead time of the detector is
minimized by using the full bandwidth provided by the optical fibers to read out
the event data (green).
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The main objective of the Global Tracking Unit (GTU) is to determine the transversal mo-
menta of the detected particles in order to contribute to the L1 trigger decision. The
particle tracks are reconstructed from the parameters of the tracklets fitted to the track
segments detected in the drift chambers of the Transition Radiation Detector (TRD). For
reconstruction and the subsequent decision on the contribution to the L1 trigger, a time
period of less than 2 µs is available. The GTU also reads out and buffers the event raw
data of the detector at high data rates (approx. 2.7 GB/s per detector stack) for forward-
ing to the Data Acquisition System (DAQ) and the High Level Trigger (HLT).

In this chapter, an overview of the layout and the modules of the GTU is given. While
the first section describes technical details, the second one discusses how communication
with the system is established for monitoring and controlling purposes.

3.1 Technical Aspects

The GTU is located in the ALICE pit outside the L3-Magnet, below the muon detector
arm. According to the layout of the TRD, it consists of 18 sub-entities (segments), each
associated with one Supermodule1 of the detector. The segments are placed in groups of
two in a 19"-crate. The resulting nine crates are distributed over three racks. A segment
is composed of five Track Matching Units (TMUs), which receive data from one Super-
module via optical fibers and reconstruct the particle tracks (see section 2.4). Further,
each segment is supplied with one Supermodule Unit (SMU) responsible for receiving trig-
ger signals from the Central Trigger Processor (CTP) and controlling a the TMUs of the
segment based on the trigger sequence. An SMU also merges and formats the buffered
event data of all five TMUs of a segment and forwards it to the HLT and DAQ. An LVDS
backplane is installed on the back of each segment and allows high-speed communica-
tion between an SMU and the five TMUs. A CompactPCI backplane is used to supply
power, as well as for control and monitoring purposes. In addition, one crate is equipped
with the Trigger Unit (TGU). It evaluates the trigger-relevant information of all 18 SMUs
to decide on the L1 trigger contribution to be sent to the CTP. Figure 3.1 gives an overview
of the physical layout of the GTU and its segments.

118 Supermodules are subsequently arranged around the beam axis and form a hollow cylinder. Each
Supermodule consists of five detector stacks. A stack is composed of six layers of modules. A module is
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Figure 3.1: Physical layout of the GTU. Signal connections and other details are
shown as an example for the crate housing the Trigger Unit. The GTU and its
necessary infrastructure is located in racks C16, C17 and C18 below the muon
detection arm inside the ALICE pit.

Board Layout The three board types (in the following referred to as XMUs) have been
developed by J. de Cuveland within the scope of his dissertation [dC]. They are based
on a 14-layer CompactPCI board with an identical PCB2 layout of six units of height and
only differ in the components equipped. In figure 3.2 a simplified schematic view of the
TMU board is given as an example. Figure 3.3 shows a photography of the front side and
the back side of the TMU. The most relevant components are labeled.
The central element common to all boards is a Xilinx Virtex-4 FX100 FPGA3. This power-
ful device provides 94,896 Look-Up Tables (LUTs) and 768 freely usable I/O pins. It also
offers a number of specialized functional blocks like Digital Clock Managers (DCMs) to
derive clocks from a reference clock frequency and 20 Multi-Gigabit Transceivers (MGTs)
capable of processing serial data at gigabit rates. The MGTs are used to make the in-
coming detector data available in the FPGA. Furthermore, two embedded PowerPC 405
processor cores are integrated into the FPGA and used in a software-hardware co-design
for monitoring and configuration purposes.

made up of drift chamber, radiator material and readout electronics. See [ALI01, dC03].
2PCB: Printed Circuit Board
3FPGA: Field Programmable Gate Array. A semiconductor device containing a large number of config-
urable logic blocks, which are connected by a programmable switch matrix.
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Each XMU is supplied with a flash PROM4 to store the FPGA configuration, which is
uploaded to the FPGA device on either power-on, reset or on request. The FPGA con-
figuration is programmed to both FPGA and PROM via JTAG5. A detailed description of
the JTAG programming mechanism is given in [Kir07].
Data from the detector is transmitted to the GTU by the detector front-end electronics via
optical fibers. Each XMU is supplied with several slots for Small-Form-Factor-Pluggable
(SFP) modules6 to connect the fibers. These modules convert the optical gigabit signals
into electrical signals and vice versa and connect them to the MGTs. Two fast 512 Kb x
36 DDR2 SRAM chips7 are used to buffer the incoming event data from the detector for
further processing.
Most important to this thesis are the two embedded PowerPC 405 processor cores, which
are the central elements of the Embedded PowerPC System described in the next chapter.
A 64 MB DDR2 SDRAM chip8 serves as main memory for the processors. To provide the
boards with non-volatile memory as well, each XMU has a slot for an SD Memory Card.
Finally, several sensors are available to monitor operating voltages and temperatures for
both PCB and FPGA. The sensors are accessed via I2C buses.
Compared to the TMUs, the assembly of both the SMUs and the TGU is slightly different.
SMUs and TGU are provided only with four SFP slots preserved for future applications
such as multi-gigabit Ethernet (see chapter 4 and 5). Both board types are also equipped
with a daughter board, the Detector Control System (DCS) board. It is used for monitoring
and administration purposes throughout ALICE and represents the connection of these
XMUs to the TRD network. Additionally, the SMUs are supplied with another board
called Source Interface Unit (SIU). It is optically connected to the Data Acquisition System
(DAQ) and the High Level Trigger (HLT) and used for the event data transfer. To commu-
nicate with the CTP, the TGU is provided with a special adaptor board, which transmits
the trigger contribution signals via LVDS lines. A more extensive discussion of the board
components listed above is given in [Ret07] and [Kir07].

Embedded PowerPC System The Xilinx Virtex-4 FX100 FPGA is supplied with two
embedded PowerPC 405 processor cores allowing to provide the boards with software,
which is capable to interact with the GTU components. The hardware design containing
the processor and its peripheral components is referred to as Embedded PowerPC System
and is described in the next chapter. Although it is an integral part of the GTU design,
it is developed separately with different design tools. The Embedded PowerPC System

4Xilinx XFC32P
5JTAG: Joint Test Action Group. JTAG names the IEEE 1149.1 standard (Standard Test Access Port and
Boundary-Scan Architecture) for test access ports designed for testing PCBs.

6These modules are standardized devices to transmit optical data. Each module is equipped with a sender
and receiver unit.

7Cypress CY7C1320AV18
8Samsung K4T51163QC-ZCD5. The chip is organized as a device of 32 Mb x 16.
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Figure 3.2: Simplified diagram of a TMU board. The components most relevant
to this thesis are colored orange.

represents the basic hardware design to monitor and administrate the GTU via slow con-
trol.

3.2 GTU Remote Access

The Detector Control System board is used for remote accessing objectives throughout AL-
ICE and provides the necessary capabilities to monitor and control the GTU over the TRD
network.

The Detector Control System Board The Detector Control System (DCS) board repre-
sents the interface to monitor and administrate the GTU and is located on the back of
each SMU and the TGU. Its central element is an Altera Excalibur FPGA, which is pro-
vided with an embedded ARM RISC processor core [Alt02a, Alt02b]. The board also sup-
plies 32 MB SDRAM and networking hardware, which makes it capable of running an
Embedded Linux System and being accessed via the TRD network. Moreover, the board
is equipped with a TTCrx chip to decode trigger signals received from the CTP via optical
fibers and forward them to the SMUs. The JTAG interface permits to remotely reprogram
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Figure 3.3: The photography shows a TMU board fully equipped with 12 SFP
modules as installed at CERN. The labeled parts are: (1) FPGA, (2) 2 x 18Mb DDR2
SRAM, (3) SFP module, (4) 64 MB DDR2 SDRAM, (5) SD Memory Card slot, (6)
LED dot matrix, (7) CompactPCI connector, (8) LVDS backplane connector, (9)
JTAG connector, (10) UART connector.

and reconfigure both flash PROM and FPGA of the XMUs, respectively. However, in or-
der to communicate with the Embedded PowerPC System, the standard hardware and
software of the DCS board had to be extended. The extensions included to implement an
additional UART9 core into the DCS FPGA design to serve as communication interface as
well as to develop a Linux device driver to access this core. The necessary modifications
were carried out by S. Kirsch and M. Schuh (see [Kir07] and [Sch07]).

The Shared UART Interface Accessibility from anywhere inside the TRD network and
the set of standard tools of the Embedded Linux make the DCS boards ideal hosts to re-
motely control and monitor the GTU. However, only two data lines are available per DCS
board for communication with the XMUs of one GTU segment due to the limited number
of FPGA I/O pins. Thus, a serial communication protocol was chosen and implemented
by using a UART interface.
Because the fixed UART peripheral of the Excalibur device is already in use, an open
source UART soft core from opencores [JGM] was added to the DCS FPGA design [Kir07].

9UART: Universal Asynchronous Receiver/Transmitter. A data word of the UART data stream consists of
one start bit, five to nine data bits, an optional parity bit, and one stop bit.
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Furthermore, the Embedded PowerPC System of the XMU FPGA designs needed to be
supplied with a UART soft core as well.

Figure 3.4: Serial communication between a GTU segment and the DCS board.
The RX and TX data lines of a DCS board are shared by both the SMU and the
TMUs of a GTU segment.

Figure 3.4 gives an idea about the UART connection between a DCS board and a GTU
segment. As illustrated, it is characteristic for the DCS UART soft core interface to be
shared by both SMU and TMUs of a segment. The RX and TX data lines of the DCS
UART are connected to the FPGA of the SMU and distributed to the TMUs via two data
lines of the CompactPCI backplane. Due to the presence of pull-up resistors, these two
data lines are only driven low actively. Thus, in order to merge the DCS UART TX signal
with the input signal of the local UART connector of each board, it is necessary to use a
logical AND for signal combination. The same applies to the local UART TX signals of
all TMUs, which are combined with the local SMU TX signal and connected to the DCS
UART RX port.

The Control Software The software to communicate with the XMUs is part of the Em-
bedded Linux of each DCS board and consists of two applications. One is responsible for
remotely reconfiguring and updating both flash PROM and FPGA via JTAG. The other
provides the software interface to communicate with the Embedded PowerPC System via
UART for monitoring and controlling purposes. The applications each comprise a Linux
device driver, which manages the access to the JTAG and UART interface, respectively,
and a main program providing the necessary interfacing commands.

Remote FPGA configuration is done by the JTAG programming tool (xsvfplayer). It exe-
cutes the high-level IEEE 1149.1 (JTAG) bus operations given in an XSVF10 file to program
the PROM or FPGA device with the corresponding FPGA configuration [Kir07].

10XSVF: Xilinx Serial Vector Format. Vendor-specific file format used to record JTAG operations by describ-
ing the information, which needs to be shifted into the device chain. See [Xil07d].
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To communicate with the GTU via the UART interface, another application (gtucom) is
used. It provides commands to interface with the GTU system software running on the
Embedded PowerPC System of the individual boards [Sch07]. The GTU system software
is capable of configuring and monitoring a large number of system parameters of the
GTU at runtime. In particular, all GTU status registers and diagnostic entities can be ac-
cessed by the system software. It also retrieves information about the board status such
as temperature or supplied voltages. This allows the GTU to be monitored and adminis-
trated from anywhere on the TRD network.

35





4 The Embedded PowerPC System

The Virtex-4 FX100 FPGA provides two embedded PowerPC 405 processor cores, which
are used in a software-hardware co-design to monitor and control the GTU. Several pe-
ripheral components are attached to the processor bus and form the Embedded PowerPC
System. The great benefit of this co-design is the ability to read and modify operating pa-
rameters of the GTU at runtime in a straightforward manner by using flexible software.
The hardware part of the embedded system is developed separately from the GTU main
design. In the present context, some of the peripherals are important to a basic working
system, such as communication interface or memory controller. The others are responsi-
ble for interfacing system components of the GTU.

This chapter describes the layout of the Embedded PowerPC System and the most im-
portant components. First, a brief overview of the PowerPC 405 processor core is given,
followed by a description of the peripheral components. Finally, a short summary with
suggestions for future extensions regarding the capabilities of the system concludes this
chapter.

4.1 The PowerPC 405 Processor

The IBM PowerPC 405 processor is a 32-bit implementation of the PowerPC embedded-
environment architecture, which is derived from the PowerPC architecture1. In particular,
the processor core integrated into Xilinx Virtex-4 FX100 devices is a PowerPC 405F6 core2.
Figure 4.1 shows a high-level block diagram of this processor core and its most important
internal components.

Central Processing Unit (CPU) The Central Processing Unit is based on a 32-bit RISC
Harvard architecture and implements a five-stage instruction pipeline as well as branch
prediction to improve the efficiency of the execution of instructions. Its execution unit
contains the General Purpose Register file (GPR), which consists of 32 32-bit registers,
the Arithmetic-Logic Unit (ALU), and the Multiply-Accumulate Unit (MAC). An integrated
Floating Point Unit (FPU) is not provided.

1The PowerPC architecture originally provides a 64-bit memory model.
2See [IBM06] for more detailed information about this specific processor core.
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Memory Management Unit (MMU) The Memory Management Unit provides address
translation from logical to physical address space, protection functions and control of
storage-attributes for this address space. It supports various page sizes from 1 KB up to
16 MB. A fully associative translation look-aside buffer (TLB) is used to improve the perfor-
mance of address translation. TLB contention between data and instruction accesses is
prevented by a 4-entry instruction and an 8-entry data shadow-TLB maintained by the
processor transparently to software.

Instruction-Cache and Data-Cache Units Despite using a Harvard architecture, the
processor accesses the memory by two separate two-way set-associative cache units, the
instruction-cache unit (ICU) and the data-cache unit (DCU). Both ICU and DCU are each
16 KB in size and supplied with cache arrays, a cache controller and a Processor Local Bus
(PLB) master interface to fetch data and instructions, respectively, from memory devices
attached to the PLB.

Timer Resources The processor is provided with two timers, the 64-bit incrementing
time base3 and the 32-bit decrementing programmable interval timer, which are both clocked
at the processor clock frequency. In addition, three timer-event interrupts are supported:

• Programmable Interval Timer (PIT) event interrupt

• Fixed Interval Timer (FIT) event interrupt

• Watchdog Timer (WDT) event interrupt

When the PIT register is set to a non-zero value, it starts decrementing immediately and
triggers a PIT event interrupt as soon as its contents reaches zero. In contrast, a FIT
interrupt occurs if a specific bit in the time base lower register changes from zero to
one. A WDT event is triggered in a manner similar to FIT, but can additionally cause
a hardware reset. Watchdog Timers are of special interest for embedded systems, which
need to be self-reliant. Normally, the operating software of such a system periodically
clears the WDT event. However, in case of a software failure, which prevents the event
from being cleared, a Watchdog-timeout occurs and causes a hardware reset to bring the
system back to normal operation.

Debug Logic The PowerPC 405 debug logic supports both an internal and an external
debugging mode. The internal mode is used during normal program execution for de-
bugging system software and applications. However, to test system hardware as well as
software, external debuggers can be interfaced via the JTAG port of the processor. The
Xilinx Microprocessor Debugger (XMD) is a debugging software, which makes use of the

3The time base is actually implemented as two 32-bit registers. At a clock frequency of 400 MHz, a time
base roll-over occurs about every 1,500 years.
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Figure 4.1: PowerPC 405 processor core block diagram. Source: [Xil08b]

external debugging mechanism. It has been constantly used for development during this
thesis to initialize the boot memory of the test setup with software and to monitor the
program execution.

Interfaces To support the attachment of peripherals, the PowerPC 405 processor pro-
vides a set of interfaces as follows:

• The Processor Local Bus (PLB) interface provides a 32-bit address bus and three dedi-
cated 64-bit data buses attached to the instruction-cache and data-cache units. One
of the 64-bit buses is connected to the instruction-side PLB interface (ISPLB) and en-
ables the ICU to fetch instructions from any memory device connected to the PLB.
The other two 64-bit buses are attached to the DCU through the data-side PLB inter-
face (DSPLB) to provide read and write access to PLB memory devices via separate
buses.

• The Device Control Register (DCR) bus interface provides a mechanism to configure,
control and hold status of peripheral devices, which are not part of the processor
block but reside on the same FPGA chip. The devices can be attached to the device
control registers, which are accessible by dedicated processor instructions.

• The On-Chip Memory (OCM) interface is used to attach additional memory to the
instruction and data caches. The additional cache memory can be accessed at per-
formance levels matching the cache arrays.

• The JTAG port interface supports attachment of external debugging devices.
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• The On-Chip Interrupt Controller interface combines asynchronous interrupt inputs
from sources both inside and outside the FPGA device and passes them to the
PowerPC 405 processor core.

• The clock and power management interface provides several methods of clock distri-
bution and power management. It enables power-sensitive applications to control
the processor clock using external logic.

For further and more detailed information about the internal components and interfaces
of the PowerPC 405 processor, please refer to [Xil08b] and [Xil07c].

4.2 Embedded PowerPC System Configuration

The present Embedded PowerPC System for the GTU consists of one PowerPC 405 pro-
cessor and the peripheral components attached to the PLB. In order to make them ac-
cessible to the processor, they are mapped into its address space. The peripherals of the
present embedded design are split into three groups. A schematic overview of the Em-
bedded PowerPC System is shown in figure 4.2.
The core components provide a basic configuration for communication with the system
and debugging purposes. These components are:

• A PowerPC 405 processor core

• A BRAM instance, which serves as the boot memory, and a controller to access it

• A reset block used to generate appropriate reset signals

• An interrupt controller, which passes interrupt inputs from sources both inside and
outside the FPGA device to the CPU

• A JTAG controller to attach external debugging hardware

• A UART component, which provides basic communication over a serial interface

On systems, which are not equipped with additional on-board memory, BRAM cells of
the FPGA device are used to serve as instruction and data memory for the processor.
In case of the GTU, each of the XMU boards is supplied with a DDR2 SDRAM chip
to be used as processor memory instead. However, at least one BRAM instance is still
required as boot memory, which is initialized with boot code by the FPGA configuration.
Although the Virtex-4 FX100 FPGA provides two embedded PowerPC 405 cores, only
one processor is currently in use, while the second remains unconnected.

The board-specific peripherals are related to hardware, which is supported by correspond-
ing IP cores4 supplied by the development tools. This class currently includes the DDR2

4IP core: Intellectual Property core. A design entity with dedicated functionality.
See http://www.xilinx.com/ipcenter/.
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Figure 4.2: Block diagram of the Embedded PowerPC System. The individual
components are split into three groups. The core components form the basic con-
figuration to communicate with the embedded system and provide debugging
capabilities. Board-specific peripherals are additional components, which are al-
ready supported by corresponding IP cores. The user peripherals provide custom-
developed hardware peripherals to attach the GTU system components.
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Multi-Port Memory Controller (MPMC) only. Other components such as the TEMAC5 are
to be added for future extensions.
Finally, support for custom-made hardware peripherals is provided by the custom periph-
eral interfaces, including:

• Multiple instantiations of an interface to attach both registers and BRAM instances
of GTU system components to the PLB and make them accessible to software. The
BRAMs and registers are used to configure, control and hold status information of
the system components.

• An interface, which allows to connect the custom-built SRAM controller to the PLB.

• An interface providing access to SD Memory Cards via the SD Memory Card Con-
troller described in chapter 6.

The following subsections describe the most important peripherals of the Embedded
PowerPC System.

4.2.1 The Processor Local Bus

Most of the components shown in figure 4.2 are attached to the Processor Local Bus (PLB)
of the PowerPC 405 processor6. The bus entity consists of a control unit, a watchdog
timer and separate address, write and read data path units. The PLB v4.6 as used for
this design supports up to 16 master and eight slave devices. Furthermore, it has a 32-bit
wide address bus and a 32, 64 or 128-bit wide data bus. For the present design, the PLB
is driven at a clock frequency of 100 MHz and a bus width of 32 bits is used.

4.2.2 The UART Communication Interface

Communication with the XMUs is currently done via the UART cores provided by the
FPGA design of the DCS boards. These boards are used for administration and control-
ling purposes and are situated on the back of each SMU and the TGU. Each DCS board is
responsible for communication with one GTU segment. A more detailed description of
the DCS boards and their application is given in chapter 3.
To interface with a DCS board, the Embedded PowerPC System implements a UART IP
core configured to transmit and receive serial data streams at a baud rate of 57,600 Bd.
Each data word consists of a start bit, eight data bits and one stop bit, while a parity bit

5TEMAC: Tri-Mode Ethernet Media Access Controller. A core well suited for the devel-
opment of high-density Gigabit Ethernet communications and storage equipment. See
http://www.xilinx.com/products/ipcenter/TEMAC.htm.

6The reset block as well as the JTAG controller and the interrupt controller are directly connected to the
CPU via dedicated interfaces. In addition, the interrupt controller is also attached to the PLB.
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is not supported (57600/8N1). Figure 3.4 shows the physical connection layout between
a DCS board and the XMUs of one segment.

4.2.3 The DDR2 SDRAM Controller

The DDR2 SDRAM controller is used to access the 64 MB DDR2 SDRAM chip each of
the GTU boards is provided with and serves as instruction and data memory for the
PowerPC 405 processor.
The Multi-Port Memory Controller (MPMC) is a highly parameterizable IP core supporting
SDRAM, DDR and DDR2 memory (see [Xil08a]). In addition, the controller configura-
tion tool provides a collection of pre-configured settings for various memory chips.
Both controller and DDR2 SDRAM are driven by the global system clock frequency of
200 MHz, which is within range of the memory chip specification7. To ensure a reliable
DDR2 memory, a long-term test has been run, which continuously writes and reads the
entire memory and counts the number of detected bit errors. The test results are listed in
section 4.4.

4.2.4 The Custom Peripheral Interfaces

The custom peripheral interfaces connect the GTU system components to the Embedded
PowerPC System. Due to the upgrade to another bus architecture8, the existing custom
peripherals needed to be re-designed and adapted.
The GTU system components provide BRAM instances and register banks, which allow
to configure and hold information about the status of the system components. The pe-
ripheral interfaces used to access both BRAMs and register banks via control and moni-
toring software are referred to as BRAM interfaces and are provided with a parameteriz-
able design to adjust them accordingly.
Aside from those BRAM interfaces, there are another two interfaces to attach the SRAM
controller and the SD Memory Card Controller, respectively. Since they are very specific
and performance-relevant, these interfaces are implemented as non-customizable enti-
ties.

Single BRAM Interface The single BRAM interface is primarily designed to access con-
tinuous address regions, which are not part of the Embedded PowerPC System, such as
BRAM instances or register banks of the GTU system components. The address and data
bus width is set to 10 and 32 bits, respectively, by default but can be adjusted within

7The minimum and maximum clock frequency of the memory chip specification are 125 MHz and 266 MHz,
respectively. See [SAM05].

8With version 10.1 of the development tools, the On-Chip Peripheral Bus (OPB) architecture has been de-
clared obsolete by Xilinx.
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a specific range by using generic parameters (generics) to match particular requirements.
Another customizable property is the address alignment, which is typically set to byte-
alignment or word-alignment. A list of the generics can be found in table 4.1 below.

Generic Range Default Description
U_AWIDTH 0 to 32 10 Width of address bus
U_DWIDTH 0 to 32 32 Width of data bus

U_ALIGNMENT 0, 1, 2 2 Address alignment
0: byte, 1: half-word, 2: word

Table 4.1: The BRAM interfaces provide generic parameters for customizing the
width of the address bus and the data bus, respectively. Another generic is used
to designate the address alignment. The default values are adjusted to a 18 Kb
BRAM with 32-bit aligned addresses.

A diagram of the data path of the interface is shown in figure 4.3. Address, read and write
data from the PLB (Bus2IP_Addr IP2Bus_Data and Bus2IP_Data) are directly connected
to the BRAM interfacing ports. Several control signals are derived from Bus2IP_CS (chip
select) and Bus2IP_RNW (read-write) signals of the PLB, including the BRAM write en-
able signal wr_en and the PLB write acknowledge signal sig_wr_ack. In case of a read
transaction, data is available on the BRAM output port registers one clock cycle after the
address has been assigned. Thus, the PLB read acknowledge signal sig_rd_ack has to be
delayed by one clock cycle.

Figure 4.3: Diagram of the single BRAM interface. Bus address, read data and
write data are directly connected to the BRAM interfacing ports. The parameteri-
zable bus widths are given for an 18Kb BRAM entity as an example. Because data
is available at the BRAM output ports one clock cycle after an address has been
assigned, the PLB read acknowledge signal is delayed.

Multiple BRAM Interface The multiple BRAM interface allows to attach up to four
BRAM entities per interface instance. It was developed to avoid unnecessary consump-
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Figure 4.4: Schematic view of the multiple BRAM interface. The substantial
difference to the single BRAM interface is the presence of an address decoding
logic, which allows to select between the individual BRAM units. The interface
provides four separate input data buses (rdata0..3) and write enable signals
(wr_en0..3) for each BRAM connected. The parameterizable widths address,
read data and write data bus are given for an 18Kb BRAM entity as an exam-
ple.

tion of PLB arbiter logic as is the case when dealing with multiple instances of the single
BRAM interface. The implementation is similar to the single BRAM interface. In addi-
tion, an address decoding logic selects between the individual BRAM instances connected.
Separate data input ports and write enable signals are available for each of the BRAM en-
tities. The multiple BRAM interface also provides the same generics as listed in table 4.1.
Figure 4.4 gives an overview of the data path of the multiple BRAM interface.
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SRAM Controller Interface The XMUs are each provided with two fast 18 Mb DDR2
SRAM chips, which serve as buffer for event data. The custom-made controller to access
the SRAM is attached to the Processor Local Bus via the SRAM controller interface.
The SRAM controller9 uses a number of separate FIFOs to buffer both write and read
addresses as well as write and read data. In case of a write transaction, write address and
data are loaded into corresponding FIFOs when the write enable signal wen is asserted.
A read operation is implemented in two steps. The read address is loaded into the read
address FIFO by asserting the read enable signal ren. The controller performs the read
operation and stores the data into the read data FIFO, which can be read out by asserting
the qen signal. The latency of data available from the SRAM is not specified precisely
due to several arbitration processes, but is typically 14 clock cycles after initiation of the
read access. Thus, the SRAM controller provides a signal to indicate valid read data
(data_valid), which is derived from the empty signal of the read data FIFO.
A schematic overview of the SRAM controller interface is shown in figure 4.5. Read and
write enable (rd_en and wr_en) as well as the write acknowledge signals are derived from
the chip-select and read-write signal of the PLB. The read acknowledge signal is obtained
from data_valid because of the latency of SRAM data. If no valid data is indicated
within 128 clock cycles, the PLB master aborts the data request with a timeout error.

Figure 4.5: The SRAM controller interface connects the SRAM controller to the
Embedded PowerPC System. Valid data from the SRAM is indicated by the signal
data_valid, which is used as read acknowledge signal for the PLB. If this signal
is not asserted within 128 clock cycles after initiation of the read operation, the
PLB master aborts the read request with a timeout error.

9For a detailed description of the controller, please refer to [Ret07].
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SD Memory Card Controller Interface During the development of the SD Memory
Card Controller described in chapter 6, a PLB interface was required to connect the con-
troller to the PowerPC design and make it accessible to software. Aside from a control
register to operate the controller, the interface also provides registers to store a command
to be transmitted to the card. An address decoding logic arbitrates the read access to the
registers and the BRAM used to buffer card data. Figure 4.6 shows the data path of the
interface.

Because the PowerPC 405 processor is based on a 32-bit memory model, the 40-bit card
commands sent by the software are split into the 8-bit command index and the 32-bit
command argument (see section 6.2), which are transmitted separately over the PLB.
Both command index and argument are stored in different registers (CMD_REG0 and
CMD_REG1). The two registers are merged and assigned to the command input port of
the controller. Another 8-bit register (CTRL_REG) combines the control signals used to
operate the controller. For detailed information about these registers, please refer to ta-
ble 4.2 and B.2. Write data and address are directly connected to the interfacing ports of
the controller BRAM, which buffers the data exchanged between card and host.
An address decoding unit selects the corresponding data source, which is assigned to the
PLB input data bus. A 6:1 multiplexer selects between the different command and con-
trol registers, the card response registers of the controller or status data. Another 2:1
multiplexer arbitrates between data of the 6:1 multiplexer and BRAM data.

Register Address (Offset) Length [Bits] Description
CMD_REG0 0x00 8 Command index
CMD_REG1 0x04 32 Command argument
RESP_REG0 0x08 8 Higher 8 bits of 40-bit response
RESP_REG1 0x0C 32 Lower 32 bits of 40-bit response
CTRL_REG 0x10 8 Control signals

STAT 0x14 8 Controller and card status signals

Table 4.2: This table lists the registers of SD Memory Card Controller interface
along with their size in bits and their offset relative to a base address.

4.3 PowerPC System Build Flow

The Embedded PowerPC System is built with the Xilinx Embedded Development Kit (EDK),
an integrated software solution for designing embedded processing systems for Xilinx
FPGAs with embedded PowerPC hard processor cores and/or MicroBlaze soft processor
cores. A standard Xilinx EDK project contains a large number of files, which are not all
essential to the hardware design or its generation process. Many of them are configura-
tion files generated by the graphical user interface (GUI). However, the EDK hardware
build flow is totally independent of the GUI, for it is based on plain text source code and
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Figure 4.6: The interface shown above connects the SD Memory Card Controller
to the Embedded PowerPC System. Signals on the left side are connected to the
PowerPC PLB, while the controller is attached to the signals on the right side.
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script files (Makefiles). Because the synthesis flow of the GTU design is also based on
Makefiles, it is desirable to narrow the PowerPC EDK project to its relevant source files
and combine both build flows into one single build pass.
Plain text files also benefit from being manageable by a revision control system. Actually,
the entire GTU project tree is under control of such a system, in this case SVN10.
The script-based GTU console build flow permits to be automated and executed periodi-
cally at a specific time. In combination with the revision control system, it forms the GTU
Nightly Build System, which provides the most recent hardware design created from the
latest source revision.

A minimalistic EDK project consists of the following components:

• A Microprocessor Hardware Specification (MHS file)

• A Microprocessor Software Specification (MSS file)

• A hardware peripheral directory (pcores/) (contains MPD, PAO and VHDL/Verilog
source files)

• A software driver directory (drivers/) (contains MDD, MLD and C source files)

• Two Makefiles (<project-name>.make and <project-name>_incl.make)

The MHS file defines the top level of the hardware design on an abstract level. It provides
information about the processor and bus architecture as well as peripherals, connectiv-
ity and address space segmentation. The components are described by Xilinx-specific
meta-code, which is a generic layer on top of VHDL11 or Verilog12 and defines generic pa-
rameters and port assignments of the individual entities.
The MSS file contains directives for customizing operating systems, software libraries
and drivers for the embedded system. Its syntax is similar to that of the MHS file and
describes generic parameters to configure the software on an abstract level.
The hardware peripheral directory contains the source code of additional custom pe-
ripherals. The code is located in separate subdirectories for each component and is a
combination of both abstract meta-code (MDD and PAO) and VHDL/Verilog sources.
The MDD (Microprocessor Peripheral Definition) file defines the interface of the periph-
eral, while the PAO (Peripheral Analyze Order) file contains a list of HDL files, which are
needed for the synthesis, and defines the analyze order for compilation.
The source code of the software drivers for the custom peripherals is located in the indi-
vidual subdirectories of the software driver directory. While the MDD (Microprocessor
Driver Definition) and MLD (Microprocessor Library Definition) files contain directives
for customizing the software drivers and libraries, respectively, the actual driver sources

10SVN: Subversion. See http://subversion.tigris.org.
11VHDL: Very High Speed Integrated Circuit Hardware Description Language. Commonly used as a

design-entry language for FPGAs and ASICs (Application-Specific Integrated Circuits) in electronic de-
sign automation of digital circuits.

12Another common hardware description language.
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are available in plain C.
Last, the Makefiles are supplied with the necessary instructions to generate the design
netlists for the target platform. A detailed description of the EDK project structure and
syntax of the meta-code files is given in [Xil07a] and [Xil07b].

Figure 4.7: Global build flow of the GTU design. The three individual build parts
are represented by corresponding Makefiles.

Figure 4.7 illustrates the global GTU design build flow. It is divided into three parts: the
Embedded PowerPC System build flow (blue), the GTU hardware synthesis (green) and
the system software generation process (red). Each of them is represented by a corre-
sponding Makefile. However, the different build parts are not independent from each
other. The PowerPC netlists are required by the GTU hardware design, while the GTU
system software depends on the software headers and libraries generated by the EDK
software build flow. In a final step, the software bitstream is integrated into the FPGA
configuration file to initialize the boot memory (BRAM) of the Embedded PowerPC Sys-
tem with the software when the FPGA is programmed with the resulting XSVF file (see
section 3.2).
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4.4 Test Setup and Results

The test setup, which has been used to verify the functionality of the Embedded PowerPC
System consists of a crate similar to the ones installed in the ALICE pit and one TMU
board. A personal computer interfaces with both the JTAG and the UART connector of
the test board to program the FPGA and establish communication with the Embedded
PowerPC System. The PowerPC design is integrated into and tested with all three XMU
FPGA designs.

The DDR2 SDRAM Controller The DDR2 SDRAM controller has been tested exten-
sively to ensure a reliable access to the memory. The test software continuously writes
pseudo-random test data to the entire memory and counts the number of bit errors de-
tected when the readout is performed. It also measures the time to completely write and
read the data. Table 4.3 summarizes the test results. During the test period of about
ttwtot + ttrtot = 4 · 105s, a data volume of dvtot ≈ 1, 529 GB has been transferred be-
tween controller and DDR2 SDRAM. This corresponds to an average data transfer rate of
drw = 1

2 ·
dvtot
ttwtot

= 3.66 MB/s (write access) and drr = 1
2 ·

dvtot
ttrtot

= 4.02 MB/s (read access).
The tests have indicated no errors yielding a bit error rate BER ≤ 1

dvtot
= 0.76 · 10−13,

which is about industry standard. The very data transfer rates probably result from the
test method and underestimate the actual performance of the controller. The test soft-
ware measures reads and writes of single data words, which implies a large overhead
when calling the access and timer routines.

dvtot [GB] ttwtot [s] ttrtot [s] drw [MB/s] drr [MB/s] BER
1, 529 2.14 · 105 1.95 · 105 3.66 4.02 < 0.76 · 10-13

Table 4.3: Test results of DDR2 SDRAM controller. dvtot represents the total data
volume transferred between the processor and the memory. ttwtot and ttrtot are
the total time to write and read dvtot / 2, respectively. The average data transfer
rate of write and read access is given by drw and drr, respectively. Finally, BER
represents the bit error rate calculated from BER ≤ Nerr

dvtot [bit] , where Nerr < 1 is the
number of bit errors.

4.5 Status and Future Prospects

The Embedded PowerPC System at its present stage offers the capability to control and
administrate the GTU and its system components, which are attached to the Processor
Local Bus via several custom-designed interfaces. It implements a memory controller
(MPMC), which allows to access the DDR2 SDRAM chip and use it as data and instruc-
tion memory for the PowerPC processor core. The interface for the SD Memory Card
Controller developed for this thesis and described in chapter 6 allows software to access

51



The Embedded PowerPC System

the SD Memory Cards installed. Still, some enhancements and extensions can be applied
to the embedded design to improve its performance and capabilities.

The DCS boards currently represent the interface to communicate with the XMUs via the
UART soft core implemented into the DCS FPGA design. Each DCS UART soft core is
shared by the six GTU boards of a segment. However, the serial communication protocol
in use allows data transfer at low rates of 56 Kb only. On the other hand, the Virtex-4
FX100 FPGAs are supplied with Multi-Gigabit Transceivers (MGTs), which can be used for
Gigabit Ethernet purposes. In combination with the MGTs and the Xilinx TEMAC core, the
SFP modules (see chapter 3.) could serve as PHYs13 and provide Gigabit Ethernet using
the 1000BASE-X standard for optical fibers. However, only SMUs and the TGU have
SFP modules reserved for networking purposes. To connect the TMUs to the network as
well, it would be necessary to use the SMUs as switches, which establish point-to-point
connections to the TMUs via the common backplane.

Activation of the second PowerPC processor provided by the Virtex-4 FX100 devices
would increase the computing power of the Embedded PowerPC System and offer new
abilities to administrate the GTU while simultaneously performing time-critical tasks.
While one CPU of each FPGA would be responsible for monitoring and controlling pur-
poses only, the other one could concentrate on time-critical statistics on event or trigger
rates, respectively. However, some of the peripheral components (e. g. main memory and
communication interface) would have to be shared by both processors. Thus, a number
of precautions would have to be taken in order to avoid access conflicts.

The Embedded PowerPC System as presented has become an inherent part of the GTU
design and is already successfully in use at CERN. Its major task is to provide the hard-
ware infrastructure to monitor and control the individual system components of the GTU.
Although there are some extensions to improve the performance and capabilities for fu-
ture applications, the system is ready-to-use as-is.

13PHY: Physical layer of the OSI model. A PHY connects a link layer device to a physical medium (optical
fiber or copper cable).
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At present, the GTU is controlled and monitored by standalone system software, which
runs on the Embedded PowerPC System of each XMU. Via an UART core, the DCS
boards provide the interface to communicate with this software (see section 3.2). The
GTU system software offers various commands to perform configuration and monitor-
ing tasks such as setting configuration parameters of GTU system components or reading
out temperatures and supply voltages.
On the other hand, the Embedded PowerPC System as described in the previous chap-
ter is an ideal platform not only to run task-specific control software, but it is powerful
enough to host an operating system like Linux, which offers a number of advantages over
a task-specific system software.
The crucial advantage of an operating system like Linux over a task-specific system soft-
ware is the capability of multi-threading. While the current GTU software can execute
only one administration command at a time, a multi-threading environment permits to
simultaneously perform various monitoring and controlling tasks.
In contrast to the GTU system software, a Linux kernel is provided with a TCP/IP stack,
which is essential for networking purposes. With the existing Xilinx device driver for the
TEMAC1, the fundamental requirements for a high-speed Ethernet connection via the
Multi-Gigabit Transceivers (MGTs) of the Virtex-4 FX100 FPGA are fulfilled. The Multi-
Gigabit Ethernet connection is intended to replace the low-performance UART commu-
nication (see section 4.5).
Each XMU has a slot for an SD Memory Card in order to provide the boards with mass-
storage media. The cards are formatted with a FAT32 file system, which can be accessed
through a corresponding device driver provided by the Linux kernel. However, the GTU
system software cannot benefit from the file system, since the cards can currently be ac-
cessed in raw data mode only. The necessary I/O routines to access the file system prop-
erly still need to be integrated manually.

Considering the preceding discussion, it is desirable to supply the GTU with an operat-
ing system rather than a task-specific system software. Linux has established itself as a
standard platform for embedded purposes and represents an appropriate choice in order
to reach more flexibility regarding the development of custom device drivers and admin-
istration features. While system commands are integrated as inherent part of the GTU

1Xilinx Tri-Mode Ethernet Media Access Controller. See chapter 4.
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system software and thus require re-booting of the PowerPC processor when changed,
under Linux control software can be changed in a straightforward manner.

In this chapter, the development of an Embedded Linux System for the GTU is described.
The following section discusses the advantages and disadvantages of current Embed-
ded Linux distributions. Subsequently, the process of configuring the kernel as well as
building and testing the Embedded Linux System is illustrated. The last section gives an
overview of the current status and an outlook to future extensions.

5.1 Embedded Linux Distributions

When choosing a suitable Linux distribution for the GTU, several requirements have to
be taken into account. The kernel provided has to be compliant with the PowerPC 405
processor architecture and support vendor-specific hardware design components like the
Xilinx UART core or the TEMAC for Ethernet purposes. The kernel configuration should
offer a mechanism to extract and integrate system parameters of customized hardware
designs in order to avoid modifying the kernel sources manually. Furthermore, the re-
sulting Embedded Linux System should also provide a complete root file system supplied
with system tools and userland2 software.

The main focus of this diploma thesis is to develop an Embedded Linux System, which
suits the demands stated above. Several Linux projects3 and mailing lists4 have already
attended to port Linux on embedded PowerPC processors. A diploma thesis about a
basic approach written by A. Sinsel concentrates on fundamental preparations and mod-
ifications of the kernel sources for this purpose [Sin03]. Consulting these sources, an
extensive research has limited the large variety of Embedded Linux distributions to the
following four candidates:

• Linux From Scratch (LFS) (http://www.linuxfromscratch.org)

• uClinux (http://www.uclinux.org)

• MontaVista Linux (http://www.mvista.com)

• Petalinux (http://www.petalogix.com)

Aside from LFS, which is built from the very bottom and can be applied to almost any
system architecture, the other three distributions are especially designed for embedded
purposes. Unnecessary features have been removed in order to narrow the kernel, since
embedded systems mostly have limited resources. The following paragraphs describe
different aspects of those four distributions.

2Operating system software, which does not belong to the kernel.
3For a detailed list please refer to http://www.penguinppc.org.
4linuxppc-embedded@ozlabs.org, linuxppc-dev@ozlabs.org
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Linux From Scratch Building a Linux From Scratch5 starts from the very bottom, because
the system is created step-by-step, entirely from source code. The the big advantage is
that the emerging system is adapted precisely to the needs of the user, resulting in a very
tiny kernel.
On the other hand, building a Linux system from the very bottom is a rather time-
consuming task. Typically, it starts with building an appropriate toolchain, a set of pro-
gramming tools required to compile software source code [Yag03]. However, there are
several sets of tools available, which allow to easily generate a toolchain for the target
processor architecture that can be used alternatively6.
Once the buildchain is created, the Linux system is built in several passes. First, a tem-
porary Linux environment is set up, which contains the essential tools to build the final
LFS system. Based on this environment, the kernel can be successively configured and
compiled. Finally, the necessary system and user applications are installed on the root
file system.
Regarding the present Embedded PowerPC System, the kernel source code has to be
modified manually in order to integrate the configuration settings of the hardware de-
sign. Because a standard Linux kernel does not support Xilinx-specific peripheral com-
ponents, the necessary device drivers have to be developed for the kernel as well.

uClinux uClinux is a Linux distribution particularly designed for microcontrollers and
microprocessors without a Memory Management Unit (MMU). It provides both kernel ver-
sion 2.4 and 2.6 and comes with a selection of software applications (including the GNU
Core Utilities), which can be integrated into the kernel root file system according to re-
quirements. The standard C library glibc is replaced by the much smaller uClibc7, which
minimizes the usage of memory resources.
Aside from several processor architectures including the PowerPC 405 family, uClinux
also supports various Xilinx development boards and other embedded platforms. Fur-
thermore, the distribution offers a mechanism to extract relevant system information
from custom hardware designs and integrate it into the kernel configuration. This auto-
config mechanism8 allows to fit the kernel to custom hardware in a very flexible way.
However, it is available for hardware designs based on the Xilinx MicroBlaze soft processor
core9 only.

MontaVista Linux MontaVista Linux is a commercial Linux distribution based on kernel
version 2.6, which offers full support for uClibc and comes with a large number of user-

5To be exact, LFS is not a Linux distribution. The name refers to the process how the system is built.
6See http://www.kegel.com/crosstool or http://www.buildroot.org.
7uClibc is compatible to glibc and primarily designed to handle the memory management for systems
without an MMU, but can be used for systems provided with an MMU either.

8The parameters of the hardware design are extracted and stored in a file called auto-config.in, which is
included by the kernel build flow.

9http://www.xilinx.com/microblaze
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land applications. In addition, it provides a platform and application development kit,
which are both fully graphical integrated development environments.
MontaVista Linux supports different processor architectures like ARM, X86 or PowerPC
as well as various development platforms of Xilinx and other vendors. However, system
parameters of custom-developed hardware have to be integrated manually into the ker-
nel configuration.
There is a large overhead due to the project files of the graphical development environ-
ment, which are not directly related to the actual kernel sources. Since the GTU project
tree is under control of a revision control system, it is desirable to integrate the kernel
sources into the repository as well. In contrast to the plain text kernel build flow of typ-
ical Linux distributions, the MontaVista Linux build flow is hardly suitable for being
controlled by a revision control system.

Petalinux Petalinux is specifically developed for usage with Xilinx FPGAs and particu-
larly supports the Xilinx MicroBlaze soft processor core. It is derived from uClinux and
comes with both kernel version 2.4 and 2.6 as well as the set of uClinux userland soft-
ware.
Apart from MicroBlaze and PowerPC, no further processor architectures are supported
by the distribution. However, the provided PowerPC kernel is not operational, and the
development of the Petalinux PowerPC kernel has been suspended for the time being.
In addition to the support for various development platforms of different vendors, Peta-
linux also provides the uClinux auto-config mechanism for customized MicroBlaze plat-
forms.

Considering the demands stated at the beginning of this section, none of the distribu-
tions previously discussed seems to be a suitable solution on its own. Building a Linux
bottom-up is unreasonable, because any modification on the design requires to adapt the
kernel sources manually. Furthermore, vendor-specific hardware components are not
supported by corresponding kernel device drivers. On the other hand, even Linux distri-
butions particularly developed for embedded purposes and providing support for Xilinx
platforms are unusable with custom-developed PowerPC designs. However, the auto-
config mechanism provided by both uClinux and Petalinux represents a basic approach,
which can be extended to build an Embedded Linux System for embedded PowerPC
designs.

The decision was made in favor of Petalinux to serve as the basic development platform,
because it provides both the auto-config mechanism and is particularly developed to
work with Xilinx FPGAs. The uClinux-based PowerPC kernel provided is replaced by
a regular, but modified MontaVista PowerPC kernel. Furthermore, several patches are
applied to the kernel as well.
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A promising way to implement the auto-config mechanism for PowerPC processors as
well has been described by J. Williams, architect and maintainer of the port of uClinux
to the Xilinx MicroBlaze soft processor core [Wil06]. The instruction guide explains the
steps necessary to prepare a uClinux distribution to support custom PowerPC platforms
and integrate the required kernel sources into the build flow. As a uClinux derivative,
Petalinux can be modified in the same way. Within the scope of this diploma thesis, Peta-
linux v0.20-rc3 has been chosen as the reference.
To set up the Petalinux environment accordingly, the PowerPC kernel provided by the Pe-
talinux distribution has to be replaced by a regular, but modified kernel version 2.4.2910.
The kernel modifications were carried out by MontaVista and concentrate on design-
specific source code referring the PowerPC 405 family in order to get a first Linux kernel
running on an IBM PPC 405GB reference platform11 . Furthermore, Petalinux lacks a
PowerPC buildchain to cross-compile for this processor. Thus, the toolchain proposed by
J. Williams is used. Support for custom hardware designs is provided by adding a new
entry in the Petalinux vendor tree (powerpc-auto). It is the equivalent of the petalinux-auto
platform used for MicroBlaze systems and enables the auto-config mechanism for the
PowerPC in the first place.

The proceeding subsections give an overview of how to configure the PowerPC hardware
project and kernel settings to build a Linux kernel image for the Embedded PowerPC
System.

5.2.1 Petalinux and Xilinx Embedded Development Kit

The auto-config mechanism links the hardware synthesis flow of the Xilinx Embedded De-
velopment Kit (EDK) with the Linux kernel build flow. As shown in figure 5.1, relevant
data from the Microprocessor Software Specification (MSS) file is extracted and merged into
the auto-config.in file. This file is included into the kernel configuration and represents
the actual connection between both build processes. To enable the auto-config mecha-
nism for the hardware design, the project files powerpc.mss and powerpc_incl.make have
to be adapted accordingly. A description of the necessary modifications is given in ap-
pendix A.
When the synthesis of the Embedded PowerPC System is completed, auto-config.in is
available in the target output directory specified in powerpc.mss and has to be copied to
the corresponding directory in the Petalinux vendor tree [Wil06].

10Actually, in the case of this diploma thesis kernel version 2.4.30-pre1 has been used.
11More precise information about the kernel modifications are given in [Sin03].
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Figure 5.1: The auto-config mechanism of Petalinux forms the connection be-
tween Xilinx EDK and Petalinux. Relevant hardware system parameters are ex-
tracted from the design and stored in the configuration file auto-config.in, which
is included by the kernel configuration.

5.2.2 The Petalinux Toolchain and Build Flow

A toolchain (also: buildchain) is the set of tools, which is necessary to build software from
its source files. It consists of several programs to compile, assemble and link the source
code. Typically, these are the GNU C compiler, the GNU binary utilities12 and the GNU C
library.

The Toolchain of Petalinux Usually, software is developed on a host platform with a
processor architecture corresponding to that of the target platform, which the software
is applied to. However, when dealing with embedded systems, host and target system
architecture will differ in most instances. Thus, a cross-compiler is needed, which is capa-
ble to generate executable code for a processor architecture other than the one which the
compiler runs on.

12Aside from the GNU assembler and GNU linker, the binary utilities provide several more tools for manipu-
lation of object code generated by the compiler.
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Although it is possible to manually create a cross-compilation buildchain
bottom-up [Yag03], a more fail-safe and less time-consuming alternative is to use a pre-
built toolchain. For the development of the present Embedded Linux System, the build-
chain recommended in the instruction guide of J. Williams has been used. It was created
with buildroot, a set of several Makefiles and patches, which allow to easily generate a
cross-compilation toolchain and a root file system for the target Linux system using the
uClibc library. The toolchain consists of the GNU gcc 3.4.2, the GNU binutils 2.16.1 and
genromfs 0.5.113, which allows to create a ROMFS14 root file system from a dedicated di-
rectory tree.

The Petalinux Build Flow Before the compilation of the sources can be started, it is
necessary to configure both kernel and root file system properly. Configuration is started
with the command make menuconfig. First, general specifications regarding the system
environment such as information about the hardware design (vendor and target plat-
form), the desired kernel version (if there is more than one available) and the standard C
library to be used (usually uClibc) must be given.
When the system environment has been specified, the actual kernel configuration menu
is entered. Depending on the system platform, different configuration options are pro-
vided to fit the kernel to the target hardware. For a basic working kernel, it is necessary
to specify the processor type and the communication interface. Furthermore, a device
driver to access the storage device, which hosts the root file system, and support for the
file system type of the root file system must be enabled.
The last configuration menu allows to select the userland applications, which the root file
system will be provided with. While core applications like a TTY daemon15 and a shell are
mandatory, the GNU Core Utilities provide tools for other purposes like networking or
file system management and can be added as required.

The configuration settings are stored in three separate files:

• General specifications: <petalinux_dir>/software/petalinux-dist/.config

• Kernel configuration: <petalinux_dir>/software/petalinux-dist/linux-2.4.x/.config

• Userland configuration: <petalinux_dir>/software/petalinux-dist/config/.config

After configuration, the kernel sources can be compiled resulting in the binary Linux
image file, which combines both kernel and root file system. This image is ready-to-use
and can be executed on the target platform.

13http://romfs.sourceforge.net
14ROMFS is a simple read-only file system often used for embedded purposes, when the root file

system has to be placed within the memory. For more elaborate information please refer to
http://lxr.linux.no/linux/Documentation/filesystems/romfs.txt.

15A TTY daemon manages physical or virtual terminals and provides user interaction with the system con-
sole.
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5.2.3 Configuration of Kernel and Root File System

The kernel of the Embedded Linux System for the GTU only implements device drivers
for both communication via the UART interface and accessing the root file system. For
embedded systems, a binary image of the root file system is usually appended to the
kernel image. During boot stage, the root file system image, located on the boot medium
is copied to a ramdisk, which is located in main memory. The kernel accesses the root file
system of the ramdisk.

Ramdisk Embedded systems are often not provided with non-volatile storage media
such as hard disk drives. Instead, they use memory devices based on flash technology to
store the images of both kernel and root file system. However, flash chips have some
significant limitations. Generally, the access time of flash chips is higher compared to
RAM chips, particularly regarding write operations. A write operation on flash memory
implies both an erase and a write cycle of a memory block16 at once. Erasing a data block
before writing is necessary to reset all bits to one, because a write operation allows to set
corresponding bits to zero only.
The most inconvenient limitation of flash memory is the finite number of cycles a memory
block can be erased and written, which for current devices is of the order of 100,000.
Extensive write operations as performed by the kernel when operating on the root file
system would soon damage the flash chip, if no precautions are taken to prevent a block
from being frequently accessed17.
Thus, the kernel does not operate on the root file system stored on the flash memory,
but on a copy created during the boot stage and located in main memory. This specific
region of memory, which serves as block-oriented storage device, is referred to as ramdisk.
A ramdisk is accessed through a special ramdisk driver provided by the kernel and can be
formatted with a file system as any other storage medium.

Kernel Configuration The following settings specify the PowerPC 405 processor core
and map the Linux system console to the UART interface in order to provide communi-
cation with the system:

• Platform support

– (40x) Processor Type
– TTYS0 device and default console

16Typically 32 KB or 128 KB.
17Common methods are wear leveling and bad block management (BBM). While wear leveling counts the writes

and dynamically remaps blocks in order to spread write operations between sectors, BBM performs write
verification and remapping to spare sectors in case of write failure.
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• Character devices

– Xilinx UART Lite

– Console on UART Lite port

The ramdisk required for the root file system is created and accessed by using the Memory
Technology Device (MTD) drivers18. Furthermore, support for the file system type of the
root file system must be enabled, which is ROMFS in this case.

• Memory Technology Devices (MTD)

– Memory Technology Device (MTD) support

– MTD partitioning support

– Caching block device access to MTD devices

– RAM/ROM/Flash chip drivers

* Support for RAM chips in bus mapping

– Mapping drivers for chip access

* Generic uClinux RAM/ROM filesystem support

• File system

– ROM file system support

Although the Embedded PowerPC System is not provided with networking hardware
at present, Networking support in the submenu General setup must be activated. Some
kernel sources rely on these settings and cannot be compiled otherwise. For the same
reasons, it is necessary to enable the options Packet socket and TCP/IP networking of
submenu Networking options as well, while all other items of this submenu must be de-
activated to avoid errors during the build process. However, Networking device support
is not required and can be disabled. Other kernel configuration settings can be left as
default.

Root File System Configuration The Root filesystem type is specified in the submenu
System settings and must be set to ROMFS. Mandatory core applications, which have to be
integrated into the root file system, are init, gettyd and a shell (bash). Other Miscellaneous
applications (GNU Core Utilities) can be added as required. Although there is a busybox
available as well, it is not recommended to make use of it, since its sources are flawed
and cause the build flow to aborts with a large number of errors.

After configuring the root file system, the compilation of the kernel sources can be started
with the following commands:

18Originally developed to provide access to flash memory, the MTD drivers can be used for RAM and similar
chips as well.
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• make clean ensures a proper clean-up of the development tree to avoid misconfig-
ured remainings of former build processes. In case of a modification of the auto-
config.in hardware parameter file, it is necessary to invoke make distclean instead,
since this file is read only once at the initial configuration pass of a clean environ-
ment. However, this command also deletes the configuration files of make menu-
config (see subsection 5.2.2).

• make dep evaluates the kernel dependencies.

• make finally starts the actual compilation process of kernel and applications.

Kernel Patches Since several source files of the Petalinux environment are flawed, a
number of patches have to be applied, which were created during the development of the
Embedded Linux System. A full list including a brief description of the patches is given in
appendix, section A.2. The patch sources are located in the directory
/petalinux-v0.20-rc3/patches of the DVD, which is attached with this diploma thesis.

After applying the patches, the build flow can be executed without errors. The resulting
kernel image is stored in the following directory:

<petalinux_dir>/software/petalinux-dist/images/

It contains the same kernel image in different file formats. linux.bin is the pure binary
kernel image resulting from the kernel build process. A binary image of the root file
system including the system and userland applications is stored in the file romfs.img.
These two files are concatenated to image.bin and image.elf, an Executable Linux File (ELF).
ELFs are preferred for debugging purposes, because they contain additional information
about the code sections, while image.bin is suited to be directly copied into memory and
executed. The size of image.bin corresponds to the size of memory used by the kernel and
is about 2.7 MB.

5.3 Test Results and Status

The setup described in section 4.4 has been used in order to test the generated Linux
kernel. It has been tested on different GTU boards and with all three designs, which
implement the Embedded PowerPC System described in the previous chapter. The Xilinx
Microprocessor Debugger (XMD) is used to connect to the JTAG interface of the PowerPC
processors via the JTAG controller shown in figure 4.2. It provides commands to load the
kernel image file into the DDR2 memory and to execute and control the program flow.
The necessary command sequence is listed below.
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• connect ppc hw -debugdevice devicenr 2 cpunr 1 connects to the JTAG controller
of the Embedded PowerPC System. Since the JTAG chain contains two devices
(XCF32P PROM and Virtex-4 FX100 FPGA), the FPGA must be selected by the
parameter devicenr 2. The parameter cpunr 1 is required to address the first
PowerPC 405 processor core of the FPGA device.

• dow image.elf loads the kernel image into the DDR2 memory and sets the Program
Counter (PC) of the processor to the kernel entry point.

• con finally starts execution from the actual PC address.

5.3.1 Results

Figure 5.2 shows the output of the system console during the boot stage. Information
about the initial memory allocation is given in lines one to five. The two columns specify
the physical start and end address, respectively. The messages up to line nine result from
the boot code, which uncompresses the Linux kernel, while the actual kernel boot stage
begins at line ten. Subsequently, various information about the kernel and the system is
given. The modified MontaVista PowerPC kernel used in this system is of version 2.4.30-
pre1 and was originally ported to run on Xilinx Virtex-II Pro FPGAs (line 10 and 11). Line
19 gives information about the current memory usage. The output messages of ramdisk
creation and initialization is shown in lines 31 to 35. After mounting the root file system
(line 41 to 45), the init process is entered and the shell is spawned (line 50 and 51).
In order to perform a simple test of the runtime-stability of the Embedded Linux System
under long-term conditions, an infinite loop has been run, which executes the uptime
command to display the system uptime. At the present time, the system is running stable
for more than 80 days.

5.3.2 Problems Encountered and Solutions

During the development of this Embedded Linux System, a major problem has been en-
countered, which seriously affected the runtime-stability of the Linux kernel. The uptime
of the operating system varied from a few seconds to several hours.

The Embedded PowerPC System, which was used to test a first working version of the
Linux kernel, differs from the current hardware design. Most of the peripheral compo-
nents19 listed in chapter 4 were implemented differently to attach them to the On-Chip
Peripheral Bus (OPB)20. The OPB is intended to access low-speed and low-performance
system resources. A "PLB to OPB" bridge is required to access the OPB peripherals.

19All except the MPMC and the Multiple BRAM Interface, which have been added during the development
of the Embedded Linux System.

20The OPB has been declared obsolete by Xilinx. However, it is still supported by the development tools in
order to provide compatibility with older designs.
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[00]
[01] loaded at: 00400000 005341E0
[02] board data at: 00531138 00531150
[03] relocated to: 004052BC 004052D4
[04] zimage at: 00405885 005308E8
[05] avail ram: 00535000 04000000
[06]
[07] Linux/PPC load:
[08] Uncompressing Linux...done.
[09] Now booting the kernel
[10] Linux version 2.4.30-pre1 (gerlach@gtudev) (gcc version 3.4.2) #68 Thu Feb 14 17:55:46 CET 2008
[11] Xilinx Virtex-II Pro port (C) 2002 MontaVista Software, Inc. (source@mvista.com)
[12] On node 0 total pages: 16384
[13] zone(0): 16384 pages.
[14] zone(1): 0 pages.
[15] zone(2): 0 pages.
[16] Kernel command line:
[17] Xilinx INTC #0 at 0x41200000 mapped to 0xFDFFF000
[18] Calibration delay loop... 398.95 BogoMIPS
[19] Memory: 61928k available (988k kernel code, 1800k data, 44k init, 0k highmem)
[20] Dentry cache hash table entries: 8192 (order: 4, 65536 bytes)
[21] Inode cache hash table entries: 4096 (order: 3, 32768 bytes)
[22] Mount cache hash table entries: 512 (order: 0, 4096 bytes)
[23] Buffer cache has table entries: 4096 (order: 2, 16484 bytes)
[24] Page-cache hash table entries: 16384 (order: 4, 65536 bytes)
[25] POSIX conformance testing by UNIFIX
[26] LinuxNET4.0 for Linux 2.4
[27] Based upon Swansea University Computer Society NET3.039
[28] Initializing RT netlink socket
[29] Starting kswapd
[30] pty: 256 Unix98 ptys configured
[31] RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
[32] uclinux[mtd]: RAM probe address=0xc0150f98 size=0x173000
[33] Creating 1 MTD partitions on "RAM":
[34] 0x00000000-0x00173000 : "ROMfs"
[35] uclinux[mtd]: set ROMfs to be root filesystem
[36] NET4: Linux TCP/IP 1.0 for NET4.0
[37] IP protocols: ICMP, UDP, TCP
[38] IP: routing cache hash table of 512 buckets, 4Kbytes
[39] TCP: Hash tables configured (established 4096 bind 8192)
[40] NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
[41] VFS: Mounted root (romfs filesystem) readonly.
[42] Freeing unused kernel memory: 44k init
[43] Mounting proc:
[44] Mounting var:
[45] Populating /var:
[46] Running local start scripts.
[47] Setting hostname:
[48] Setting up interface lo:
[49] /etc/rc.d/S40network: ifconfig: command not found
[50] init: Booting to single user mode
[51] # _
[52]

Figure 5.2: Output of the Linux system console during the boot stage of the Em-
bedded Linux System. The kernel has been tested with all three XMU designs
on different GTU boards and shows no errors or warning messages at boot time.
The line numbers have been added manually.
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Because the system crashed virtually in a statistical manner, first assumptions focussed
on an unreliable DRAM controller. A number of RAM tests were run to verify the func-
tionality of the controller. The tests included linear and random access and were applied
to randomly chosen memory regions of different size as well as to the entire memory. The
refresh cycle logic of the controller was also tested. However, no errors were detected.
The Linux kernel was examined systematically in order to try to trace back the problem
where it first occurs. The kernel never crashed during the boot process, and extensive
tests yielded that the system becomes instable when the scheduling mechanism of the ker-
nel is started. However, the cause of the kernel instability could not be determined fur-
ther, because the kernel machine code would have been to be debugged in detail.
Since both uClinux and Petalinux are known to run stable on several Xilinx development
platforms, an approach from the opposite direction was chosen. The Linux kernel de-
scribed in this chapter was stable on a reference platform board ML40321. However, an
XMU design ported to the ML403 caused the kernel to crash. The test results showed
that the kernel instability was triggered by the XMU hardware design.
The major difference between the Xilinx reference design and the former revision of the
Embedded PowerPC System is the memory controller to access the DDR2 SDRAM. While
the reference design uses a DDR2 SDRAM controller attached to the PLB, the XMU de-
signs used an OPB memory controller. This controller had to be chosen, because the
DDR2 memory chips of the GTU boards have a 16-bit wide data bus, which was not sup-
ported by any PLB memory controller of the hardware development tools at that time.

By upgrading to a new version of the development tools, a new memory controller was
available. The Multi-Port Memory Controller22 offers support for a large number of mem-
ory chips including the ones used for the XMUs. However, the upgrade required to
completely re-design the Embedded PowerPC System in favor of the PLB architecture,
since the OPB has been declared obsolete by Xilinx.

5.3.3 Status

The Embedded Linux System described in this chapter represents the basic platform for
the development of a flexible and expandable system to monitor and control the GTU.
The system provides a stable kernel version 2.4.30-pre1, which is basically configured to
support a serial console and access to a ramdisk for the root file system. The root file
system contains several system and user applications, including a shell and a number of
GNU Core Utilities. The current Embedded Linux System has been successfully tested
on different GTU boards with all three FPGA designs for more than 80 days. It is still in
development stage, since the necessary device drivers to access the GTU system compo-
nents have to be developed.

21The ML403 is a development platform with a Virtex-4 FX12 FPGA device. For more information, please
refer to http://www.xilinx.com/products/devkits/HW-V4-ML403-UNI-G.htm.

22See chapter 4.
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5.4 Future Prospects

In order to use the Embedded Linux System within the GTU framework, a few extensions
to the kernel are still required.

First, device drivers for the GTU system components attached to the Embedded PowerPC
System have to be developed. The drivers enable future software applications to access
status and control registers of the GTU.
In order to access the SD Memory Cards, the kernel must be supplied with a block device
driver to communicate with the SD Memory Card Controller. Such a driver would also
permit to replace the ramdisk-based file system by a common one for non-volatile stor-
age media.
Currently, the DCS boards on the back of each SMU represent the interface to commu-
nicate with the PowerPC processors via a shared UART connection at low bandwidth
only. As stated in the previous chapter, the MGTs provided by the Virtex-4 FX100 FPGA
would enable each SMU to establish a Multi-Gigabit Ethernet connection, which requires
to extend the Embedded PowerPC System by the Xilinx TEMAC core and to integrate the
existing TEMAC device driver into the kernel. High-speed data transfer is of special in-
terest to the GTU Boot Loader (GBL) described in chapter 7. The GBL is a boot utility, which
not only has to be capable of copying the Linux kernel image from the SD Memory Cards
into main memory for execution, but is also responsible for storing new images files on
the cards (see chapter 7). Regarding the image file size of about 2.7 MB of a basically con-
figured kernel, it is desirable to have a high-speed communication link provided, since a
file transfer at a data rate of 56 Kb/s would last about seven minutes. There are also other
applications (event replay), which require to transfer huge amounts of user data. At the
current bandwidth provided, a data exchange for event replay would last several days.

In summary, the Embedded Linux System developed during this thesis opens up a num-
ber of new aspects and perspectives regarding the usage capabilities of the Embedded
PowerPC System. As a standardized platform, the operating system can be extended
in a flexible manner by additional device drivers and user applications, which allows to
adapt to the evolving requirements and purposes of the experiment.
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All GTU boards have been equipped with a slot for SD Memory Cards to provide the
system with mass-storage devices for various purposes. The most relevant is to serve
as storage medium for the Linux kernel and its root file system of the Embedded Linux
System described in the previous chapter.
SD Memory Cards have been chosen over common mass-storage devices like (S)ATA hard
disk drives because of several significant aspects. Because of the existing magnetic stray
field of both the dipole magnet and the L3-Magnet, which is of the order of 20 mT, it is
not inadvisable to use magnetic storage devices. Moving parts such as the read-and-write
heads of hard disk drives or the storage plates suffering from mechanical wearout are not
applicable for long unserviced times at ALICE.
In contrast to hard disk drives, the memory content of an SD Memory Card is not affected
by magnetic fields, since the cards are based on flash technology. There are also no loose
mechanical parts suffering from mechanical wearout. Furthermore, the small dimensions
of the cards make them ideal storage devices for embedded systems such as the GTU is.

This chapter discusses the development of a controller to access the SD Memory Cards
installed on the GTU. After an overview of SD Memory Cards and their functional prin-
ciple, the implementation of the controller is described. The last sections refer to the test
environment and test results as well as possible future extensions.

6.1 SD Memory Card and Specification

SD Memory Cards (Secure Digital Memory Cards) are mass-storage media based on flash
memory technology. They are available with different capacities from 16 MB to 32 GB
and more1. Figure 6.1 shows an SDHC Memory Card as installed on each GTU board.

SD Memory Cards are supplied with an integrated controller to access the flash memory
chip. It is responsible for reading and writing the flash memory as well as optionally
encrypting the data before storing. The cards provide several configuration and status
registers, which hold information about the capabilities and operation conditions of a
card. Table B.1 summarizes the registers.
SD Memory Cards can operate in two different modes. The SD mode enables access to all

1Cards with a capacity larger than 2 GB are usually referred to as SDHC Memory Cards (High Capacity).
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Figure 6.1: Kingston SDHC Memory Card with a capacity of 4 GB
as installed on each GTU board. Source: [Com]

card features including encryption support. The underlying communication protocol is
called SD Memory Card protocol. Data is transferred via four parallel, bi-directional data
lines a a maximum clock frequency2 of 50 MHz, giving a maximum data transfer rate of
200 MB/s.
The second operation mode is based on an SPI3 compatible communication protocol.
Data is transmitted via two uni-directional data lines (one for each direction), and the
clock frequency is fixed to 25 MHz. In contrast to SD mode, encryption of data is not
supported. Figure 6.2(a) and table 6.2(b) illustrate the pinout of an SD Memory Card and
the SPI signal assignment.

(a)

Pin No. Name Description
1 CS Chip select (active low)
2 DataIn Host-to-card commands and data
3 VSS1 Supply voltage ground
4 VDD Supply voltage
5 CLK Clock
6 VSS2 Supply voltage ground
7 DataOut Card-to-host data and status
8 RSV Reserved
9 RSV Reserved

(b)

Figure 6.2: (a) Pinout (bottom view) and (b) pin assignment of an SD Memory
Card operating in SPI mode. Source: [San04]

As discussed in section 6.3, the implementation of the developed SD Memory Card Con-
troller is based on the SPI protocol for various advantages. The following section gives a
short description of the SPI mode.

2The standard clock frequency is 25 MHz.
3Single Peripheral Interface: Synchronous serial data link standard, designed by Motorola to connect de-
vices in a master-slave-fashioned manner.
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6.2 The SPI Mode

When the card is powered up, it operates in SD mode. In order to enter the SPI mode, a
reset command must be sent simultaneously to asserting the CS signal of the card. Once
the SPI mode is active, the SD mode can be re-entered only by power-cycling the card.

SPI Bus protocol Communication in SPI mode between host and SD Memory Card
is established in a master-slave-fashioned manner, where the host represents the mas-
ter, and the card is the slave. Transactions can only be initiated by the host. The serial
bit streams of the SPI mode are byte-aligned to the CS signal. SPI messages consist of
command, response and data block tokens. A command token is always confirmed by
a response token. In case of a read or write operation, an additional data block token is
sent by the card or the host, respectively. Transmission in SPI mode is done with the least
significant byte (LSByte) first, while the individual bytes are transmitted with the most
significant bit (MSBit) first.

Command Token When operating in SPI mode, the flash chip controller of the SD Mem-
ory Card supports 25 different command tokens, which are divided into a number of
classes4. Each command token consists of 48 bits. Table 6.1 explains the individual bit
fields of an SPI command token.

Bit index 47 46 [45:40] [39:8] [7:1] 0
Width [bits] 1 1 6 32 7 1
Value ’0’ ’1’ x x x ’1’
Description Start bit Transmission bit Cmd index Arg CRC7 End bit

Table 6.1: Command token format. Every token consists of 48 bits. Start bit,
transmission bit and end bit have fixed values. Source: [Tec06]

Response Token When the SD Memory Card receives a command token or data token
from the host, it confirms reception with a response token. Commands are acknowledged
with command response tokens, while data blocks are confirmed with data response tokens.
Table 6.2 lists the response tokens for both response types. A description of the individual
bit fields of each response token is given in [Tec06].

Data Block Token A data block token is transmitted between host and card in case
of a single block read or single block write operation. It consists of an 8-bit start block token

4A description of all command tokens and classes is given in [Tec06].
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Response type Response format Length [Bits]
Response to command R1 8

R1b 8 + x
R2 16
R3 40
R7 40

Response to data Data Response Token 8
Data Error Token 8

Table 6.2: The SPI mode supports different types of response tokens of variable
length, which can be classified into responses to commands and responses to
data.

Byte index 514 [513:2] [1:0]
Value "11111110" x x
Description Start token Data block CRC16

Table 6.3: A data block token typically has a size of 515 bytes and consists of
the start token, which has a fixed value, the actual data block and the CRC16
checksum calculated from the upper 513 bytes.

followed by the actual user data block (512 bytes)5 and a 16-bit CRC16 checksum token.
The structure of a data block token is shown in table 6.3.

Initialization Sequence After the SD Memory Card is powered on, it operates in SD
mode. In order to enter SPI mode, the host has to send a CMD0 command token and
concurrently assert the CS signal. The card responds with an R1 response token and is
ready to receive further initialization instructions. Once the SPI mode has been entered,
a return back to SD mode is only possible by a power-cycle.
A CMD8 must be transmitted to determine the card version and voltage range. When
this information has been retrieved, it is necessary to repeatedly send the paired com-
mand combination (CMD55, ACMD41), until the card signals it has exited initialization
state6. To finish the initialization process, the host must transmit CMD58 and check the
CCS flag of the OCR register in order to determine the card capacity type, and the SD
Memory Card is ready for operation. Figure 6.3 illustrates the initialization sequence of
SPI mode.

5In case of a standard SD Memory Card, the size of a data block must be at least one byte and as large as
one card write block at most. The standard block size is 512 bytes. SDHC Memory Cards have a fixed
block size of 512 bytes.

6Bit zero of R1 is cleared.
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Figure 6.3: This figure illustrates the initialization sequence of an SD Memory
Card when operating in SPI mode. Various properties of the card (voltage range,
capacity) are checked for in order to identify the card type. The bold arrows
represent the initialization branch, which has to be processed for cards compliant
with SD Memory Card Specification Version 2.0. Source: [Tec06]
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Read and Write Operation A single block read operation is triggered by transmitting
CMD17 with a valid logical block address (LBA) as the command argument. The LBA has to
be aligned to the size of a data block and must not exceed the maximum LBA, which can
be determined from the capacity of the card (in bytes) divided by the data block size. The
card responds to the read operation with an R1 response token, followed by a data block
token. If the read access fails, a data error token is returned instead providing information
about the cause of error. In figure 6.4 the timing diagram of a single block read operation
is shown.
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Figure 6.4: Timing diagram of a single block read operation. The host trans-
mits the read command (CMD17), which is responded by the card with an R1
and a data block token. Detailed information about timing values Nx is given in
table B.3. Source: [San04]

A single block write operation is initiated by sending CMD24. As for CMD17, a valid LBA
is expected as an argument. The card also responds with an R1 token and waits for a data
block token to be sent by the host. After reception, a data response token is returned and
completes the transaction. Until the card has finished writing the data to the memory,
it sends busy tokens7. Figure 6.5 illustrates the timing diagram of a single block write
operation.

6.3 The SD Memory Card Controller

The development of the SD Memory Card Controller aims to design an efficient device,
which is compatible with different types of memory cards and does not depend on spe-
cific hardware requirements in order to be applicable with different designs and plat-
forms as well.

7During a busy token, the output data line is kept down to zero for eight clock cycles.
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Figure 6.5: Timing diagram of a single block write operation. The host issues the
write command (CMD24), which is responded with an R1 token. The card waits
for a data block token, which has to be transmitted by the host. The card confirms
reception of the data block token with a data response token. As long as the
card has not finished programming the data, it continuously sends busy tokens.
Detailed information about timing values Nx is given in table B.3. Source: [San04]

A basic question for the development of the controller is whether to operate in SD mode
or SPI mode. Since the SD mode underlies a proprietary protocol, it requires a license
to make use of it. Furthermore, the SD protocol has a much higher complexity than the
SPI protocol. An implementation of the SD mode would consume a lot of valuable logic
resources. In contrast, the SPI mode is based on a straightforward protocol and can be
implemented in a less resource-consuming manner.
Regarding speed and performance, the SD mode provides a much higher data transfer
rate of 200 MB/s in contrast to 25 MB/s of the SPI mode. The SD mode also supports
encryption of data before storing on the memory chip. However, both are features of
minor interest in the present context. Once the Embedded Linux System is running, the
SD Memory Cards are write-accessed only with a low amount of data8. Considering the
preceding discussion, the decision was made in favor of the SPI mode, which addition-
ally offers a wide compatibility range with other card types such as Multi Media Card or
CompactFlash Card.

Another question, which has to be considered, concerns the actual implementation of the
controller. Since the Virtex-4 FX family is supplied with embedded PowerPC cores, a
first draft suggests a controller completely written in software, which accesses the card
through a basic SPI hardware communication layer. The software would be responsible
for command sequencing and the handling of incoming responses as well as transferring
and receiving data blocks. However, this approach represents the contrary to the demand
for independence of specific hardware requirements, since it completely relies on a con-

8Actually, the Linux kernel at present lacks a device driver to access the cards. See section 5.4.
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trolling computer.
A controller completely implemented in hardware is inappropriate as well. As illustrated
in figure 6.3, the initialization sequence is a complicated and nested process. Dealing with
all eventualities would result in a complex and resource-consuming FPGA design. On the
other hand, the flexibility of software allows to realize the card initialization in a straight-
forward manner, while time-critical read and write operations can be implemented in
hardware. The considerations above lead to a solution, which combines the best of both
approaches: Time-critical read and write operations are implemented in hardware, while
initialization and status control of the card is done via software.
The implementation of the data path is another subject to be taken into consideration. Be-
cause data is transmitted block-aligned between host and card, a buffer of the size of at
least one data block is required. The data buffer can be implemented as FIFO or dual-
ported BRAM. FIFOs would have to be read out sequentially, which makes manipulation
of a specific word of the data block an inefficient task. Unlike FIFOs, dual-ported BRAMs
are randomly accessible, which allows to modify any single data word within the mem-
ory.
To increase the performance of the controller, a technique referred to as bank switching is
used. The BRAM is divided into several regions (banks) of the size of one data block. By
switching between those banks, it is possible to process or prepare another data block,
while the card is still busy transferring or receiving data. This mechanism is discussed in
paragraph 6.3.1.
Typically, host and controller are located in different clock domains9. That is, the signals
between the two clock domains must be synchronized by a so-called clock domain cross-
ing. The clock domain crossing of dual-clock FIFOs based on distributed RAM requires
particular attendance because of their critical timing. However, BRAMs are provided
with two independent interfaces, which share the same memory and allow to access it
from different clock domains, while the clock domain crossing is handled internally.

The SD Memory Card Controller developed and described in the following sections uni-
fies compatibility (SPI mode), flexibility (the generic interface allows to operate the con-
troller by both software and hardware) and performance (bank switching) in a straight-
forward manner.

6.3.1 Implementation

The implementation of the SD Memory Card Controller comprises three parts. The finite
state machine (FSM) generates the control signals for the SD Memory Card and other sub-
components of the controller core. The address path maps the bank address scheme10 of the

9In a clock domain, all entities are driven by the same clock frequency.
10When using a bank address scheme, linear memory is divided into several equal regions, each referred

to as a memory bank. The bank address selects the bank to operate on, while an offset addresses memory
words within a specific bank.

74



6.3 The SD Memory Card Controller

host on a linear address scheme used inside the controller to access the BRAM. The data path
prepares the commands for transmission and processes incoming and outgoing data. A
schematic overview of the SD Memory Card Controller is given in figure 6.7.

The Finite State Machine The state machine is the central element of the controller. It
uses three user control input signals (USR_SD_CMD_INIT, USD_SD_RW_INIT, and
USR_SD_RNW) and three user handshake output signals (USR_SD_CMD_ACK, USR_SD_RW_ACK,
and USR_SD_BUSY). Further, it generates control signals for the SD Memory Card (CS) and
the BRAM (WE). The remaining incoming and outgoing control signals are for internal
use. A diagram of the complete FSM is shown in figure 6.6.

Upon reset, the state machine first enters the IDLE state and remains unless a command
execution is requested. When a command is issued, the state CS_HOLD is entered and
held for seven clock cycles to ensure a correct alignment to the CS signal. Afterwards,
the transmission of the command is started. The state machine implies two major com-
mand branches to separate between fix implemented read and write commands (FSM
commands) and external initialization and control/status commands (USR commands).

When the host issues a read or write operation by asserting the signal USR_SD_RW_INIT,
the FSM command path is entered. According to the value of signal USR_SD_RNW, either a
read or write transaction is performed. In both cases, the serial transmission of the com-
mand is prepared (FSM_CMD_START). The next three states of both sub-branches are iden-
tical regarding their functionality. The state machine remains in FSM_CMD_<OP>, where
<OP> designates the corresponding transaction type (READ or WRITE), until all command
bits are transmitted. Afterwards, the state FSM_<OP>_WAIT_RESP is entered to wait for the
incoming response11. The response is captured and stored to a register to be available for
further processing by the host (FSM_<OP>_CAPT_RESP).
In case of a read operation, the controller waits for the data block and stores it into the se-
lected BRAM bank (FSM_READ_WAIT_DATA, FSM_READ_CAPT_DATA). The CRC16 checksum
of the preceding data block is captured separately (FSM_READ_CAPT_CRC). When finished,
the state machine returns to IDLE state.
When performing a write operation, the controller prepares and sends the start token
first to signal the start of data transaction (FSM_WRITE_DATA_START_TOK). In the following
states FSM_WRITE_DATA and FSM_WRITE_CRC, the 512-byte data block as well as the CRC16
calculated from the data block is transmitted to the card. The two states
FSM_WRITE_WAIT_DATA_RESP and FSM_WRITE_CAPT_DATA_RESP are responsible for cap-
turing the data response token, which is stored in the response register. The state ma-
chine remains in the state FSM_WRITE_BUSY until the card has finished the writing data to
the memory and stops sending busy tokens. Finally, the state machine returns to IDLE
state.

11A response is triggered by the card dropping its data out line to zero.
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Figure 6.6: The state machine of the SD Memory Card Controller processes sev-
eral state signals and generates signals for controlling internal and external com-
ponents. Command processing is divided into two branches. The FSM command
path is entered if the host triggers a read or write operation. Depending on the
operation, the corresponding states are passed. If the host issues any other com-
mand, the USR command states are processed.
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If the host issues a user command, the states of the USR command branch are traversed.
A USR command is initiated by asserting the signal USR_SD_CMD_INIT causing the state
machine to enter USR_CMD_CS. The transmission of the command is prepared and ex-
ecuted in state USR_CMD_START. Waiting for the response and capturing it is done the
same way as already described for the FSM command path (USR_CMD_WAIT_RESP and
USR_CMD_CAPT_RESP).

During all states except IDLE, the controller asserts USR_SD_BUSY to avoid being inter-
rupted while a transaction is running.

The Address Path An 18 Kb dual-ported BRAM is used to buffer the data blocks ex-
changed between host and SD Memory Card. Since a data block has a standard size of
512 bytes, the BRAM can be divided into four banks, each capable to store one data block.
The host determines the bank to operate on with the two bit wide signals USR_BANK and
USR_SD_RW_BANK, respectively. The former signal is used for data exchange between the
host and the BRAM, while the latter indicates the memory bank accessed by the card.
Two seven bit wide offset addresses (USR_OFFSET and OFFSET) enable access to 128 32-
bit words within a specific bank. The address path is responsible for mapping the bank
address scheme to a linear address scheme as used to access the BRAM. The relation be-
tween both address schemes is shown in table 6.4.
Logical block addresses, which are used to access the data blocks of the SD Memory Card,
do not require address mapping.

Bit position 14 [13:12] [11:5] [4:0]
Value ’0’ x x "00000"
Description Fixed Bank no. Data word offset within block 32-bit alignment

Table 6.4: Address mapping between bank addresses and linear addresses.

The Data Path The data path can be divided into two branches, the command and re-
sponse path and the data block path. The command and response path is responsible for
preparing and transmitting both USR and FSM commands issued by the host. It also
captures the card responses in a register for further evaluation by the host. Before a
command is transmitted, a CRC7 checksum is calculated from the command index and
argument. Index, argument and CRC7 are concatenated and loaded into a 48-bit shift
register, which serves as a serializer and starts transmitting the individual bits. Simultane-
ously, a decrementing counter is set to the length of the command. A zero-crossing of the
counter signals the end of command transmission. Another 40-bit shift register (the de-
serializer) captures the incoming response of the card. According to table 6.2, the length
of a response token varies with the response type, but is 40 bits in maximum12. In or-

12Except R1b, which can be split up into R1 and an undefined number busy tokens.
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der to avoid the overhead to determine the expected response token from the command,
the maximum number of response bits are captured, and the decrementing counter is set
accordingly. When the counter reaches zero, the response has been completely captured
and is stored into a register for further processing by the host, which is responsible for
evaluating the response accordingly.

Incoming and outgoing data blocks are handled by the data block path. A 18 Kb dual-
ported BRAM, which is divided into four memory banks, buffers the data blocks ex-
changed between host and card. To efficiently store the data blocks, the controller is
capable to switch between different BRAM banks. While the SD Memory Card processes
a write operation and thus reads data from one memory bank, the host can simultane-
ously store data in another bank for the next write transaction. The same applies to the
card in case of a read operation. This switching mechanism is a relevant enhancement of
data throughput combined with true random access within a data block.
The signal USR_SD_RW_ENDIANESS determines the byte order of the data located in the
controller BRAM. If the signal is de-asserted, data is interpreted or stored little endian,
while asserting the signal corresponds to big endian.
In case of reading data from the card, the de-serializer is used to capture the incoming
serial data stream. The corresponding counter is set to the length in bits of the data
stream13. A CRC16 is calculated from every incoming byte resulting in the total check-
sum of the entire data block. Every 32 bits, the lower four bytes of the shift register are
read out14. According to USR_SD_RW_ENDIANESS, the 32-bit data words are stored to the
BRAM. This process is repeated until all 128 words have been received (zero-crossing
of the counter). The final checksum is compared to the one transmitted by the card,
which has been calculated by the card-internal controller. If no CRC error is detected,
USR_SD_NO_CRC_ERR is asserted. Otherwise, the signal remains de-asserted to mark the
data as invalid, and the host has to react in a corresponding manner. In case the read ac-
cess fails, a data error token is sent by the card, which keeps information about the cause of
the error. Error information is stored in the response register for evaluation by the host.
Writing data to the card is slightly different, since a data start token must precede the data
block after the card response has been received. A 2:1 multiplexer controlled by the state
machine selects between data start token and data words from the BRAM. After sending
the start token, data words of 32 bits are sequentially loaded from the designated BRAM
bank into the serializer according to the selected byte order. A counter is set to the size
of the data block, and the serializer transmits data in a corresponding manner. The total
CRC16 checksum of the entire data block is calculated from each single byte and trans-
mitted to the card as well. Finally, the card confirms data with a data response token.
Because card data can be accessed one block at a time only, modifying specific words
within the memory chip of the card implies a read-modify-write operation. The entire
block, which the designated words are located in, is loaded into the BRAM. The host

13Length of one data block in bits: 512 * 8 bits = 4,096 bits
14Both shift registers always hold the data words in big endian order.
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Figure 6.7: Schematic view of the SD Memory Card Controller. Two shift regis-
ters are used as serializer and de-serializer. Multiplexers and a dual-ported 18 Kb
BRAM allow a fast and straightforward data exchange with the card.
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then accesses the specific word addresses by the bank offset. Last, the block is sent back
to the card again.

The SD Memory Card Controller PLB Interface In order to access the cards through
the controller by software running on the embedded PowerPC processor cores of the
Virtex-4 FX FPGA, a special interface is required, which allows to attach the SD Memory
Card Controller to the Processor Local Bus (PLB) of the Embedded PowerPC System
discussed in chapter 4. The interface provides two command registers and a control
register, which are mapped into the address space of the processor. The two command
registers are required, because the PowerPC is based on a 32-bit memory architecture and
the 40-bit user commands15 have to be split into the 8-bit command index (seven index
bits plus one start bit) and the 32-bit command argument. The control register is eight bits
wide and used to combine the control signals. As for user commands, the 40-bit response
register of the controller is split into an 8-bit and a 32-bit signal. A detailed description of
the interface and its registers is given in chapter 6 and table B.2.

6.3.2 Integration of the Controller into the GTU Design

To integrate the SD Memory Card Controller into the GTU design, the interface for the
controller is attached to the PLB of the PowerPC design. The PowerPC top entity must be
supplied with additional interfacing ports for the controller (see right side of figure 4.6).
The SD Memory Card Controller is added to the top-level design of the GTU and con-
nected to the corresponding ports of the PowerPC entity. Embedded PowerPC System
and controller are driven by different clock signals, derived from a central clock genera-
tion entity. While the PowerPC processor and the PLB are driven at a clock frequency of
400 MHz and 100 MHz, respectively, the controller runs with a 25 MHz clock.

6.4 The Software Interface

The software interface provides the user with a set of routines for basic card operations
such as sending commands and receiving card responses out of which more complex op-
erations are constructed. These include initializing the card or reading and writing data
blocks from or to the card. The card responses are evaluated to check for errors signaled
by the card. Additionally, the initialization status of the card is summarized in an ini-
tialization status indicator. Although the hardware part of the controller supports bank
switching, it is not implemented yet, since it gets relevant in combination with a Linux
block device driver only.

15The lower eight bits of the command are appended by the controller.
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Fundamental commands are integrated into the GTU system software to provide a first
working version of interaction with the SD Memory Cards. These commands are sum-
marized in table 6.5.

Command Options Description
sdcard init - Initialize SD Memory Card
sdcard initstat - Get initialization status
sdcard read <block addr> [<number of blocks>] Read <number of blocks>

beginning from <block addr>
sdcard write <block addr> <d1> ... <d512> Write 32-bit data words

to <block addr>

Table 6.5: Fundamental commands of the GTU system software. Currently, only
initialization, read and write operation are supported.

Sending User Commands User commands are transmitted to the SD Memory Card by
using the method sd_send_cmd(cmd_struc). A command structure is passed as a parame-
ter containing the command index and its argument. The values are stored to the registers
CMD_REG0 and
CMD_REG1 of the bus interface, respectively. The command transaction is initiated by set-
ting the corresponding bit of the CTRL_REG register (see table B.2). The controller trans-
mits the command to the card and polls for the signal USR_SD_CMD_ACK, which confirms
command reception. If the assertion of the signal is not detected within a certain time
period16 a timeout error is raised, and the transaction is aborted.

Receiving Response Tokens Responses from the card are fetched by the method
sd_recv_resp(resp_buf ). The busy signal is polled until it is de-asserted or a timeout er-
ror aborts the transaction after 500 µs with an error message. Otherwise, the response
registers RESP0 and RESP1 of the controller are read out, and their content is stored in
resp_buf.

All other functions provided by the software interface are built upon the basic communi-
cation methods described above. In the following, the rest of them are described to give
an insight into initializing the card as well as loading and storing data blocks.

Software Initialization Sequence Apart from SD(HC) Memory Cards, the XMU board
hardware supports no other card types. Because SDHC Memory Cards are compliant
to SD Specification Version 2.00, only the main branch of the initialization sequence (bold
arrows in figure 6.3) is processed by the initialization routine (sd_init()) illustrated in

16The timeout value can be set manually and is 500 µs as default.
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Figure 6.8: This diagram describes the initialization sequence as it is imple-
mented in software. The dashed sections can be identified with the correspond-
ing initialization states of the main branch shown in figure 6.3.
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figure 6.8. The dashed sections correspond to the states of the main branch of the initial-
ization sequence. The card responses are evaluated to check for occurring errors. Since
this is a first draft of the initialization routine, a detected error is reported only, and the
initialization is canceled immediately without further examination. The initialization sta-
tus of the card is obtained from the output of the responses and the status signals of the
bus interface. A description of the individual bits of the status indicator is given in ta-
ble 6.6.

Bit position Description
0 Card is present
1 Card is write-protected
2 Card is legacy (ver. 1.x) (CMD8)
3 Card unusable (non-compatible volt. range / chk pattern err) (CMD8)
4 Card unusable (non-compatible volt. range) (CMD58)
5 Ver. 2.00 or later card
6 Error on command (not further specified)
7 Initialization successful

Table 6.6: The initialization status indicator contains information about the ini-
tialization process of the card.

Reading Data Reading a data block from the card is done by using the function
sd_read_block(block_addr, rbuf, endianess). The first parameter is the logical block ad-
dress LBA of the card block to read from. It is checked against the maximal block address
permitted, which depends on the capacity of the card. In case of a valid LBA, it is writ-
ten to the CMD1_REG register. Further, a buffer to store the data in is required, which has
to have at least the size of one data block. The byte order how the data is stored in the
BRAM by the controller has to be determined by the last parameter. The read command
is issued by setting the corresponding bit of the register CTRL_REG of the bus interface (see
table B.2). If the response has indicated no errors, the data block stored in the BRAM is
copied to the buffer. Finally, the function returns to the main function. In figure 6.9(a) an
outline of the read data process is shown.

Writing Data Figure 6.9(b) describes the function sd_write_block(block_addr, wbuf, en-
dianess), which is used to write a data block to the SD Memory Card. The parameters are
similar to that of the function sd_read_block, except that the buffer contains the data to
be written to the SD Memory Card. The LBA is checked for validity as well and stored
to the CMD1 register. Next, the content of the write buffer is written to the BRAM. As for
reading data, the endianess of the data has to be determined. When the data has been
written to the card, the incoming response is checked for errors. While the card is busy to
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(a) (b)

Figure 6.9: Diagrams of the sd_read_block (a) and sd_write_block (b) functions
of the SD Memory Card Controller software interface. The responses are eval-
uated to check for possible occurring errors. If an error has been detected, the
transaction is aborted immediately, and it is returned to the main function.

store the data block to its memory, the USR_SD_BUSY signal remains asserted by the con-
troller. The software polls for de-assertion of this signal and returns to the main function
if card and controller are not busy any longer.
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6.5 Test Environment and Test Results

To verify the functionality of the SD Memory Card Controller, a test setup similar to
that described in section 4.4 is used. Additionally, the board is equipped with a 4 GB
SDHC Memory Card as shown in figure 6.1. The controller is integrated into the top level
of all three FPGA designs and connected to the PowerPC top level entity. A computer
interfaced with both the JTAG and the UART connector of the board is used to program
the FPGA device with a GTU design. Via the Xilinx Microprocessor Debugger (XMD), a
test application is downloaded into the PowerPC BRAMs. It generates pseudo-random
data for each data block to be written to the card and stores it to a write buffer. The time
to write and read a specified number of card blocks is measured. Each card block, which
has been read out, is compared to the write buffer in order to detect possible bit errors.
The time to write and to read as well as the number of detected bit errors are added
up with the values of the previous test cycle, and the next test cycle is entered. During
the test period of about 13 days, a data volume of 341.25 GB has been transferred to the
SD Memory Card, which corresponds to a data transfer rate of 0.16 MB/s (write access)
and 7.69 MB/s (read access). Within this test period, no bit errors have occurred, leading
to a bit error ratio of less than 3.4 · 10-13, which is close to industry standard. Detailed
information about the test results is listed in table 6.7 below.

dvtot [GB] ttwtot [s] ttrtot [s] drw [MB/s] drr [MB/s] BER
341.2 1.1 · 106s 2.3 · 104 0.16 7.69 < 3.4 · 10-13

Table 6.7: The table lists the test results of the SD Memory Card Controller. Dur-
ing the overall test time of ttwtot + ttrtot ≈ days, a total data volume of dvtot =
X GB has been transferred between card and host. The average data transfer rate
of write and read access is given by drw and drr, respectively. BER represents
the bit error rate calculated from BER ≤ Nerr

dvtot [bit] , where Nerr is the number of bit
errors.

6.6 Status and Future Prospects

In summary, the present SD Memory Card Controller is provided with all necessary fea-
tures to meet the demands stated at the beginning of this chapter. Due to the SPI-based
communication protocol, which can be implemented in a resource-saving manner, the
controller is compliant with different kinds of SD Memory Cards as well as several other
memory card types such as MMC or CompactFlash Card. Any hardware, which pro-
vides the necessary controlling capabilities and interfacing ports can act as host and ac-
cess the cards. Efficient data transaction is realized by hardware-controlled handling of
data transaction and providing the capability to use a bank switching mechanism. The
measured bit error ratio is less than 3.4 · 10−13.
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The control software provides the necessary routines to operate the cards used in the
GTU. Aside from initializing cards compliant with the SD Specification Version 2.00, the
controller supports reading and writing single data blocks.

Although the controller is ready-to-use as-is, there are extensions, which could be made
in future. To provide access to older card versions and other card types, the software
initialization sequence could be adapted to deal with the other initialization branches
shown in figure 6.3. In fact, this is of minor relevance to the GTU, because it is equipped
with SDHC Memory Cards only. For reasons of future use with platforms supporting
other card types, the software could be extended in the corresponding manner.
At present, there is no support to access specific card-internal configuration and status
registers (see table B.1), which contain useful information about the SD Memory Card in
use. Thus, it might be advisable provide dedicated software routines in order to read,
evaluate and write those card registers.
An important improvement to both the controller hardware and software is the imple-
mentation of extensive error handling. If the card detects an error (e. g. transmission
error), the state machine currently does not abort and enter a dedicated error state. In-
stead, it passes all following states until the transaction is completed. To handle the
possible occurring errors during a read or write transaction, both data error token and data
response token should be evaluated. A data error token is returned, if a read operation
fails, and the card can not provide the required data. Every data block written to the card
is acknowledged by a data response token. In case of a write error, the host may send
further commands to determine the cause of the problem.
Finally, to enable the Embedded Linux System described in chapter 5 to access the cards
as well, it is necessary to develop a Linux block device driver. The main purpose of the
SD Memory Cards is to serve not only as a boot medium for the Linux, but also to host
the Linux root file system.

The SD Memory Card Controller has been extensively tested by a corresponding test
configuration (see section 6.5). The results have indicated no errors yielding a bit error
rate of < 3.4 · 10-13. That is, the controller is close to industry standard and ready-to-use.
It has been integrated as a fully operative part into the GTU main design currently in use
at the CERN.
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A boot loader is a program, which is executed previously to the actual operating system.
It is responsible for loading the kernel and other parts of the operating system from the
boot medium into the main memory. However, this generally assumes the presence of
a Basic Input Output System (BIOS), which provides the boot loader with the necessary
routines to access the boot medium. In case of embedded systems, there is commonly no
BIOS available.
The SD Memory Cards installed on the GTU serve as boot media for the Embedded Linux
System discussed in chapter 5 and are accessed via the SD Memory Card Controller de-
scribed in the previous chapter. However, the GTU does not provide any kind of BIOS,
therefore the boot loader must supply routines to access the controller. Thus, commonly
used boot loaders like GRUB, LILO or U-Boot are unusable.
The desired boot program not only has to provide typical functionality to load and exe-
cute the kernel image, but must also be supplied with administration and recovery capa-
bilities. Because the cards are permanently installed on the GTU located in the ALICE pit,
they can be remotely accessed only. Thus, the boot loader must be capable to write access
the cards as well to store a Linux kernel image on the SD Memory Cards. Furthermore,
in case of a system failure causing the card file system to be damaged, the boot program
must provide recovery capabilities such as reformatting the card. This is very specific
functionality common boot loaders do not offer.
The boot program should also be able to allow the user to select between different kernel
images on the card. This is of particular interest for testing and development purposes in
order to have kernels at different configuration and development stages accessible.

In this chapter, the development of a boot loader for the GTU is described. First, the
general idea of the boot process is discussed. Subsequently, a description of the boot
loader and its basic capabilities is given, followed by a summary of the test setup and
problems encountered. The last section is related to future extensions and possible im-
provements.
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7.1 The Boot Process

When a computer system is powered up or reset, the internal registers of the CPU are
set to initial values. In particular, the Program Counter1 (PC) is set to a specific address
referred to as reset vector, from where the CPU starts execution. On non-embedded sys-
tems, this address contains an instruction to jump to the entry point of the BIOS, which
manages several initialization tasks. This includes identifying and testing different hard-
ware components as well as initializing the interrupt vector table and providing basic I/O
methods to access the hardware. When finished, the BIOS copies the bootable content
of the Master Boot Record (MBR)2 of the boot medium to a dedicated address in main
memory and continues execution at this address. These instructions are normally part of
a boot loader, which accesses the storage device to copy and start the operating system
kernel by using the BIOS routines.
Regarding the boot process of the Embedded PowerPC System, the processor starts ex-
ecution at address 0xFFFFFFFC . As typical for most embedded systems, the GTU is not
supplied with a BIOS. Instead, the reset vector points to the last 32-bit data word of the
BRAM instance, which holds an instruction to jump to the entry point of the main pro-
gram. While this has been the GTU system software up to now, it is replaced by a boot
loader, which implements BIOS functionality.

7.2 The GTU Boot Loader (GBL)

The GTU Boot Loader (GBL) is responsible for loading and booting the kernel images from
the SD Memory Cards. Since the GTU lacks a BIOS, the GBL must be provided with
basic I/O methods to access the cards via the SD Memory Card Controller discussed in
the previous chapter. Furthermore, the cards can be remotely accessed only, thus the GBL
must implement administration capabilities such as storing kernel images to the cards as
well. The software layer, which is used to interface this controller offers both, read and
write access to the cards on raw data level. However, SD Memory Cards are usually
formatted with a FAT32 file system, which must be accessible by the Linux kernel in
order to make use of the cards as common file system-based mass storage media. Thus,
the access routines provided by the GBL have also to preserve the integrity of the card
file system rather than operating in raw data mode.
Regarding recovery capabilities, it is necessary to supply methods, which allow to format
a card with a FAT32 file system. This is of major interest in case the file system of a card
is damaged, because it is the only option to bring the system back to an initial state.

1Also: Instruction Pointer (IP)
2The MBR is the first data block (512 bytes) of a partitioned storage medium and holds the partition table as
well as a boot loader. However, the MBR can optionally reference the boot sector of a specific partition,
which contains the actual boot loader.
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For testing and development purposes, it is desirable to have several kernel images of
different configuration available to boot. This implies a configurable kernel image path,
which can be adapted during runtime to select the path a kernel image will be stored to
or is loaded from.

7.2.1 Implementation and Integration

A boot loader can generally be implemented following two different approaches, either
single-staged or multi-staged. Single-stage boot loaders are small enough to entirely reside
in the boot sector of the storage medium. In contrast, the multi-stage approach is applied,
if the boot program code is too large to be stored within the boot sector and must be
divided into several parts. The boot sector then only keeps the initial boot stage, which
loads further boot program code.
In the present context, a BRAM instance of the Embedded PowerPC System represents
the initial boot medium. The reset vector of the processor points at the last data word of
the BRAM, which holds an unconditional jump to the entry point of the boot loader code
before. Regarding the two boot models, the GBL can be implemented as follows:

• Single-staged approach
The entire GBL is located in the BRAM. To boot the Linux kernel, it copies the kernel
image from the SD Memory Card into the DDR2 SDRAM and executes it.

• Multi-staged approach

– A minimalistic boot routine in the BRAM copies the GBL from the SD Memory
Card to the DDR2 SDRAM.

– The GBL loads the Linux image from the SD Memory Card into the main mem-
ory and executes it.

Providing that recovery capabilities are entirely hosted by the GBL, the multi-stage ap-
proach proves to be inappropriate. In case of a damaged file system, the only option for
recovery would gone, if the GBL is also broken. Thus, the decision is made in favor of the
single-stage approach. Figure 7.1 illustrates the implementation of the single-stage boot
process.

The GBL at its present state is capable of read-accessing the SD Memory Cards and copy-
ing a dedicated kernel image into main memory to execute it. The boot routine is imple-
mented in the following steps:

1. Initialize the SD Memory Card.

2. Read the partition table located in the Master Boot Record of the card.

3. Access the FAT32-formated partition which contains the Linux image file.

4. Copy the binary kernel image to the main memory.
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Figure 7.1: Single-stage boot process. When the PowerPC processor is reset, it
starts execution of the boot loader located in the BRAM, which copies the binary
Linux image from the SD Memory Card into the DDR2 SDRAM. Afterwards, the
processor continues execution at the entry point of the kernel to boot the opera-
tions system.

5. If any error occurs so far, print an error message and retry.

6. Continue execution at the entry point of the kernel.

Figure 7.2 illustrates the implementation of these steps by the boot routine bl_load() of
the GBL. For initialization of the card, the corresponding method of the controller soft-
ware layer is used (sd_init()).
Since the present SD Memory Cards are partitioned following the PC BIOS MBR partition-
ing scheme, the Master Boot Record (MBR) must be read out to retrieve information about
the card partitions stored in the partition table (partition_init()). A detailed description
of both the MBR and the partition table is given in appendix, chapter C.
The cards used are formatted with a FAT32 file system. As stated at the beginning of this
section, a special set of routines is required to access the file system properly. With the
functionality of these routines based on the I/O methods of the card controller, the boot
loader is capable to read and evaluate the partition table of the cards as well as reading
data from the existing FAT32-formated partitions (fat_init()).
At present, a dedicated kernel image is expected to be located in the root directory of one of
the primary partitions of the SD Memory Card. The GBL searches for the image file and
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Figure 7.2: The GBL boot routine bl_load() encapsulates the individual steps
necessary to boot the kernel. Initialization of the SD Memory Card is done by
sd_init(). Both partition_init() and fat_init() are responsible for reading and eval-
uating the partition table as well as accessing the FAT32 file system and copying
the kernel image to the main memory. Last, bl_execute() branches to the entry
point of the kernel to start the operating system.

copies it to the main memory, if it is found (fat_init()). If no error has occurred during
the previous steps, the processor jumps to the kernel entry point and starts the operat-
ing system (bl_execute()). In case of an error, the implementation of the boot routine at
the present development stage preserves to display an error message and retries the boot
procedure.
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7.3 Status and Future Extensions

The GTU Boot Loader (GBL) at present is still under development, but provides basic I/O
functionality to access the SD Memory Cards via the controller developed for this thesis.
The GBL is capable of read-accessing FAT32-formatted cards and loading the kernel im-
age to be executed. The image file is expected in the root directory of a primary partition
of the card.

Administration and recovery functionality is required for updating the kernel image or
reformatting the card in case of a damaged card file system. Thus, the boot loader has
to be extended by routines, which provide the capability to write-access the cards and
preserve the integrity of the FAT32 file system while operating on it.
It is also desirable to provide the opportunity to select between different kernel images
to boot. This is of special interest for development and testing purposes, since kernel
images of different configuration can be swapped in a straightforward manner. The abil-
ity to choose between the image files requires a configurable image path not only when
loading, but also when storing a kernel image.

92



8 Conclusion and Outlook

Designed as fast trigger detector, the ALICE TRD (Transition Radiation Detector) serves to
select only particle collisions of major interest to the main purpose of research. As high-
level part of the TRD front-end electronics, the Global Tracking Unit (GTU) is responsible
for reconstructing particle tracks and transversal momenta in order to form a contribu-
tion to the L1 trigger decision. The GTU also buffers the entire event data of the TRD and
forwards it to the Data Acquisition System and the High-Level Trigger.
As one of the most complex systems of the TRD readout chain, the GTU requires con-
tinuous monitoring and control. The Xilinx Virtex-4 FX100 FPGA devices used in the
GTU provide embedded PowerPC 405 processor cores, which can be used in a software-
hardware co-design to administrate the system. While the design is currently provided
with standalone software of limited flexibility, it is desirable to have an embedded sys-
tem, which manages system administration in a more flexible and expandable way.

Within the scope of this diploma thesis, the Embedded Linux System and the necessary
hardware components were developed for the GTU. The Embedded PowerPC System
was designed to serve as the basic hardware platform for the Linux kernel. It is capable
of interfacing with the GTU system components. To provide the necessary infrastructure
for storing and booting the Linux kernel from the SD Memory Cards installed, an SD
Memory Card Controller and the GTU Boot Loader were developed. A substantial aspect
of the development of the Embedded Linux kernel was the support for custom-designed
embedded platforms such as the GTU is.

The Embedded PowerPC System developed in this thesis provides essential system com-
ponents such as the processor core, memory controller and communication interface, as
well as custom-developed interfaces to attach system components of the GTU. In order
to provide flexible interfacing capabilities despite the variety of different GTU system
components, the custom interfaces have a parameterizable design.

The design of the SD Memory Card Controller provides a resource-saving performance-
optimized implementation without limiting compatibility with other memory devices
based on flash technology. Initialization and status control of the card is done by a
hardware-software combination, while performance-relevant read and write transactions
are implemented fully in hardware. A dual-ported BRAM serves as buffer for the data
exchanged between host and card. A bank switching mechanism divides the BRAM into
four independent buffers and provides the opportunity to prepare data blocks while the
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card simultaneously processes others. Compatibility with other flash-based memory de-
vices is preserved by using the SPI communication protocol. Moreover, the controller has a
generic interface to be usable with various host designs. It is not fixed to a specific clock
frequency, but implements a clock domain crossing between host and SD Memory Card.
Additional interfacing logic allows to attach the controller to the Processor Local Bus of
the PowerPC. The present implementation of the SD Memory Card Controller provides
reliable transactions with bit error rates less than 10-12 and is integrated into the GTU
hardware design currently in use at CERN.

The GTU Boot Loader (GBL) is responsible for copying the Linux kernel image from the
SD Memory Cards to main memory and starting the kernel boot process. It must also
provide administration and recovery capabilities to store new kernel image files on the
cards or reformat a card in case of a damaged file system. The cards are accessed by the
SD Memory Card Controller and formatted with a FAT32 file system. The GBL is supplied
with a set of basic routines designed to access the file system based on low-level controller
software I/O routines.

The development of the Embedded Linux System required support for the custom-de-
veloped hardware design without the need of adapting kernel sources manually to mod-
ifications of the hardware design. By combining specific parts of different embedded
Linux distributions a kernel buildchain could be developed, which provides an auto-
configuration mechanism to integrate hardware design parameters into the kernel config-
uration. The Embedded Linux System developed represents an operating system ready
to use as a platform for the deployment of a flexible and easily expandable system to
monitor and administrate the GTU. It has shown stable operation for more than 80 days
on various GTU system boards.

By the time of writing this thesis, the fundamental parts of an embedded administration
and control system for the GTU are available. Thoroughly tested, the system is ready to
be extended for the specific functionality of the GTU system software for a forthcoming
use at CERN.
However, there are several extensions to improve the performance and capabilities of
the system. The next step could be the implementation of a Multi-Gigabit Ethernet con-
nection to provide faster communication with the GTU boards. To use the Multi-Gigabit
Ethernet connection, the GBL must be extended by a TCP/IP stack. Its administration
and recovery capabilities also need to be augmented. In order to integrate the function-
ality of the GTU system software into the Embedded Linux System, corresponding device
drivers for accessing the custom hardware components such as the BRAM interfaces, the
SRAM controller interface and the SD Memory Card Controller interface are needed. Finally,
the monitoring and control software, which replaces the current standalone GTU system
software, needs to be ported.
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Appendix A

Embedded PowerPC System and Petalinux

A.1 Example Configuration of EDK PowerPC Project

Integration of the auto-config mechanism of Petalinux into the Xilinx EDK hardware build
flow requires to adapt the project files powerpc.mss and powerpc_incl.make of the Embed-
ded PowerPC System. The auto-config mechanism allows to extract relevant information
from the hardware design and stores it in the file auto-config.in, which is included into the
Linux kernel configuration. In the following excerpts of the relevant parts of both project
files are listed.

A.1.1 Excerpt from PowerPC MSS File

[...]
BEGIN OS
PARAMETER OS_NAME = petalinux
PARAMETER OS_VER = 1.00.b
PARAMETER PROC_INSTANCE = ppc405_0
PARAMETER TARGET_DIR = ""
PARAMETER stdout = uartlite
PARAMETER stdin = uartlite
PARAMETER main_memory = ddr2_mpmc
PARAMETER main_memory_bank = 0

END
[...]

The parameters OS_NAME and OS_VER are needed to associate the processor instance with
the Petalinux operating system. To include the auto-config scripts, which extract the
hardware system parameters, these parameters must be set to petalinux and 1.00.b, re-
spectively. The parameter TARGET_DIR specifies the output directory, where the auto-
config.in file is stored in. Both stdin and stdout identify the standard I/O communica-
tion device of the embedded system. The Petalinux-related parameters main_memory and
main_memory_bank are used to designate and configure the main memory instance.
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A.1.2 Excerpt from PowerPC Makefile

[...]
XILINX_EDK_DIR = /opt/xilinx/edk9.1
SYSTEM = powerpc
MHSFILE = powerpc.mhs
MSSFILE = powerpc.mss
FPGA_ARCH = virtex4
DEVICE = xc4vfx100ff1152-11
LANGUAGE = vhdl
SEARCHPATHOPT = -lp $(PETALINUX)/hardware/edk_user_repository
SUBMODULE_OPT = -toplevel no -ti powerpc_i
PLATGEN_OPTIONS = -p $(DEVICE) -lang $(LANGUAGE) $(SEARCHPATHOPT) $(SUBMODULE_OPT)
LIBGEN_OPTIONS = -mhs $(MHSFILE) -p $(DEVICE) $(SEARCHPATHOPT)
[...]

The parameter SEARCHPATHOPT defines the library path for user peripherals and driver
repositories. It has to be extended by -lp $(PETALINUX)/hardware/edk_user_repository and
must be added to both PLATGEN_OPTIONS and LIBGEN_OPTIONS in order to make the Pe-
talinux scripts accessible to the synthesis tools.

A.2 Petalinux Patches

This section provides a full list of the patches, which had to be created and applied to the
Petalinux source files in order to get a flawless kernel build flow. The source code of the
patches is located in the directory /petalinux-v0.20-rc3/patches on the project DVD, which
is attached to this thesis. In the following, a brief description of each of the patches is
given.

<petalinux_dir>/settings.sh

The patch for the file settings.sh originally extends the executable search path PATH by the
directory of the MicroBlaze toolchain, which comes with the Petalinux distribution. The
patch adapts the file and adds the directory of the PowerPC buildchain to the search path
instead.

<powerpc_toolchain_dir>/powerpc-linux-ld.sh

Because the options -fatal-warnings and -Wl are not provided by the GNU linker of the
uClinux PowerPC toolchain as used, the kernel build flow aborts with a number of errors.
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The script powerpc-linux-ld.sh bypasses this problem by calling the linker and omitting
these options. The linker has to be renamed to powerpc-linux-ld.real. A symbolic link must
be created from powerpc-linux-ld to powerpc-linux-ld.sh in the buildchain directory.

<petalinux_dir>/software/petalinux-dist/user/mount/fstab.c

Some of the source files of Petalinux and uClinux are outdated and contain obsolete code
fragments. This patch replaces the line die (EX_USER, "%s", sys_siglist[sig]) with
die (EX_USER, "%s", strsignal(sig)), because sys_siglist is no longer supported
by the kernel sources.

<petalinux_dir>/software/petalinux-dist/linux-2.4.x/include/linux/in.h

The kernel sources are provided with two versions of in.h, both required by different
applications. Since the header files are of similar content, multiple definitions of constants
and data structures exist, causing the kernel build flow to fail. However, the definitions in
the file <petalinux_dir>/software/petalinux-dist/linux-2.4.x/include/linux/in.h can be removed
(or disabled in this case) to avoid further conflicts.

<petalinux_dir>/software/petalinux-dist/linux-
2.4.x/arch/ppc/boot/simple/misc-embedded.c

In file misc-embedded.c, the kernel boot parameter string char netroot_string[] is ini-
tially set to "root=/dev/nfs rw ip=on" and causes the kernel to try and mount a network file
system as root file system. Since there is no networking device available, the kernel fails
to mount a root file system and stops. The patch defines the boot parameter as an empty
string. Kernel parameters can be explicitly set in the kernel configuration.

<petalinux_dir>/software/petalinux-dist/linux-2.4.x/include/linux/nfs.h

The header file nfs.h contains a few lines of code required by the kernel, which is is en-
closed by preprocessor directives checking for the definition of the symbol __KERNEL__.
Because this symbol is not defined, the code is omitted during compilation and causes
several errors. The patch for this file disables the preprocessor directives.
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<petalinux_dir>/software/petalinux-dist/include/include-
linux/linux/nfs_mount.h

The file nfs_mount.h lacks including the file <linux/nfs2.h>, which contains several essen-
tial NFS2 protocol definitions. As described in chapter 5, it is necessary to enable net-
working support in the kernel configuration, which depends on these definitions. The
patch adds a line to include the necessary file.

<petalinux_dir>/software/petalinux-dist/user/mount/nfsmount.c

The file nfsmount.c includes the non-existing header file <gnu/types.h>. The corresponding
line of code is disabled by the patch.

<petalinux_dir>/software/petalinux-dist/user/mount/nfsmount.h

As for the previous file, nfsmount.h includes the non-existing header file <gnu/types.h>.
Additionally, it lacks the constant NFS_VERSION 3 required by the drivers for networking
support. The patch adds the required constant and disables the inclusion of the non-
existing header file.

<petalinux_dir>/software/petalinux-dist/Makefile

This file is the top-level Makefile of the Petalinux build flow and contains the necessary
build targets. However, the build flow to generate the U-Boot boot loader is flawed and
not needed in this context. Thus, the u-boot target it is removed from the build target
all specified in the beginning of the Makefile. The non-existing TFTP1 output directory
is defined as a root directory (TFTPDIR = /tftpboot), but cannot be created without root
permission. Furthermore, a number of environment variables are not properly set. The
patch fixes the errors in a corresponding manner.

<petalinux_dir>/software/petalinux-dist/linux-2.4.x/Makefile

The PERL script, which calculates the kernel dependencies (depmod.pl), is called with
flawed command line options. The patch adapts the Makefile to pass the correct argu-
ments to the script.

1TFTP: Trivial File Transfer Protocol. A very basic form of FTP. It is neither capable to list directory contents,
nor does it provide authentication or encryption mechanisms.
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<petalinux_dir>/software/petalinux-dist/vendors/Xilinx/powerpc-
auto/Makefile

A number of Makefile directives begin with a tabulator space, which causes them to be
considered as a command for a rule. The Makefile also tries to copy the kernel image
files to a directory, which does not exist and can not be created without root permissions
(/tftpboot). Furthermore, a wrong installation path of kernel modules is given. The patch
fixes the errors by removing the tab spaces, disabling the copy command and adjusting
the module installation path.
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Appendix B

SD Memory Card Controller

B.1 SD Memory Card Configuration and Status Registers

SD Memory Cards provide a set of status and configuration registers, which hold relevant
information about the capabilities and operation conditions of the card. Table B.1 gives
an overview of the card registers.

Name Width [Bits] Description
CID 128 Card Identification Number
RCA 16 Relative Card Address (not available in SPI mode)
DSR 16 Driver Stage Register
CSD 128 Card Specific Data
SCR 64 SD Configuration Register
OCR 32 Operation Condition Register
SSR 512 SD Status Register
CSR 32 Card Status Register

Table B.1: Configuration and status registers of an SD Memory Card, which
contain relevant information about the capabilities and operation conditions of
the card. Source: [Tec06]

CID stores an individual number to identify the card. When operating in SD mode, the
local system address of a card is held by RCA. This address is dynamically suggested by
the card and approved by the host during initialization. It is used for the addressed host-
card communication after the card identification procedure. The DSR register is used to
configure the output drivers of the card. Information regarding the operation conditions
of the card is stored in CSD. In addition to the CSD register, SCR provides information about
special features of the card. The register OCR stores operation conditions such as voltage
profile or capacity status of the card. SSD provides information about the card proprietary
features. Finally, the CSR register holds the actual card status. A detailed description and
example settings are given in [Tec06].
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B.2 Control and Status Registers of the PLB Interface

The interface to attach the SD Memory Card Controller to the PLB of the PowerPC pro-
cessor provides an 8-bit control register and an 8-bit status register.
The control register CTRL is used to initiate both commands transmitted by the host (USR
commands) and read/write operations (FSM commands). In case of an FSM command,
the type of transaction (read or write) is defined by a corresponding bit of this register.
Furthermore, the register enables write access to the BRAM, which buffers the data trans-
mitted between card and host.
The status of both controller and card is captured in the STAT register. It combines the
handshaking signals of the controller as well as information about the card presence and
protection status1. The status registers also captures the busy state of the controller. The
assignment of the individual bits of both registers is summarized in table B.2 below.

Register Bit position Description
CTRL_REG [7:6] Bank index

5 Reserved
4 Acknowledge signal NO_CRC_ERR_ACK
3 Reserved
2 Type of operation (0: w, 1: r) (USR_SD_RNW)
1 Initiate r/w operation (USR_SD_RW_INIT)
0 Initiate user command (USR_SD_CMD_INIT)

STAT 7 Card busy (USR_SD_BUSY)
6 No CRC error detected (USR_SD_NO_CRC_ERR)

[5:4] Reserved
3 FSM command (r/w) acknowledge (USR_SD_RW_ACK)
2 User command acknowledge (USR_SD_CMD_ACK
1 Write protected (SD_WRITE_PROT)
0 Card present (SD_PRESENT)

Table B.2: Assignment of the individual bits of the PLB interface control and
status register to the corresponding interfacing signals of the SD Memory Card
Controller.

B.3 Timing Values of Single Block R/W Transactions

The timing values for both single block read and single block write access to an SD Mem-
ory Card are listed in table B.3 below. The values are given in units of eight clock cycles,
because data transmitted in SPI mode is byte-aligned to the CS signal.

1Card presence and protection status are retrieved via I2C bus and routed through the controller.
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Value NCS NR NW NCR NRE NAC NWR NDB NDR

Min 0 6 6 1 2 1 1 514 1
Max - 6 6 8 2 See below - 514 -

Table B.3: Timing values of single block read and write operations, given in
units of eight clock cycles. The maximum read access time is calculated by the
host as follows: NAC(max) = 100((TAAC· fPP) + (100·NSAC)), where fPP is the
interface clock rate, and TAAC and NSAC are given in the CSD register.

NCS defines the number of cycles the CS signal must be asserted before a transaction can
be initiated. NR and NW correspond to the time required to send a read and write com-
mand token, respectively. NCR is the number of cycles between the end of the command
token and the beginning of a response token. The response token requires NRE cycles to
be transmitted by the card. In case of a read operation, NAC and NDB specify the time to
access and transmit a data block token, respectively. When performing a write operation,
the number of cycles between the end of the response token and the start of the trans-
mission of a data block token is given by NWR. NDR is the time the card requires to write
a data block including the variable number of clock cycles the card is busy to store the
data.
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Appendix C

Boot Loader

C.1 Master Boot Record and Partition Table

On partitioned data storage devices, which follow the BIOS partitioning scheme common
to personal computers, the first logical data block (or sector) is called the Master Boot
Record (MBR). Information about the individual primary partitions such as start address
and length is stored in the partition table, which resides in the MBR. Further, the first 440
bytes of the MBR are reserved to host the code of a boot loader. The structure of an MBR
is shown in table C.1.

Address Size [Bytes] Description
0x0000 440 Boot loader executable
0x01B8 4 Disk signature (optional)
0x01BC 2 Null (0x0000)
0x01BE 64 Table of primary partitions (four 16-byte entries)
0x01FE 2 MBR signature (0xAA55, little endian)

Table C.1: Structure of a Master Boot Record. The first 440 bytes host the boot
loader (or part of it in case of a multi-stage boot solution). The partition table
consists of four table entries, each 16 bytes in size and referring to one primary
partition. The table is located at offset 0x01BE . The last two bytes keep the signa-
ture to identify the MBR.

The partition table consists of four table entries, each keeping information about one
of four primary partitions of the storage medium. Table C.2 shows the structure of a
partition table entry. Most relevant are the Cylinder-Head-Sector (CHS) fields, which
specify both the first and last sector in the partition. The coding scheme of a CHS field is
given in table C.3. A partition table entry also stores the partition type and the number
of sectors in the partition. The status field marks a partition as bootable (0x80 ) or non-
bootable (0x00 ).

The CHS addressing scheme was an early method for addressing each physical data
block on a hard disk drive. It is based on the physical geometry of hard disk drives,
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Offset Size [Bytes] Description
0x00 1 Status
0x01 3 Cylinder-Head-Sector (CHS) address of first partition sector
0x04 1 Partition type
0x05 3 CHS address of last sector in partition
0x08 4 Logical Block Address (LBA) of first sector in partition
0x0C 4 Number of sectors in partition

Table C.2: Structure of a partition table entry. The status field marks a partition
as bootable 0x80 or non-bootable 0x00 . Both start and end address as well as the
size of the partition are stored in dedicated fields of a table entry.

which are divided into heads, cylinders (tracks) and sectors and is still used for floppy
disks. However, CHS has been replaced by the Logical Block Address (LBA) addressing
scheme. Data blocks are successively addressed by an index, with the first data block be-
ing LBA=0. The translation from CHS to LBA is given by LBA = (C · H + h) · S + s− 1,
where:

• LBA: Logical Block Address

• c: Cylinder number

• H: Number of heads

• h: Head number

• S: Number of sectors

• s: Sector number

Bit position [23:16] [15:14] [13:8] [7:0]
Description Cylinder bits [7:0] Cylinder bits [9:8] Sector Head

Table C.3: Cylinder-Head-Sector entry.
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