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Abstract

Self-Stabilizing Network Architectures on a Neuromorphic Hardware System

This thesis presents methods to improve the usability of a neuromorphic hardware de-
vice. The utilized chip physically implements a network of spiking neuron models. It is
operated with a high acceleration compared to biological real-time and is designed for
the investigation of computational principles inspired by the brain. Its application is
hindered by characteristics of the implemented units, as emulation results reflect inho-
mogeneities within the utilized substrate. In a first step, various sources of imperfection
are identified, specified and, if possible, counterbalanced by calibration routines. In or-
der to further increase the homogeneity of the substrate, balancing approaches on the
network level are sought. Extensive software simulation studies prepare the adoption
and successful application of biologically inspired self-stabilizing architectures to the
hardware system. It turns out that the application of short term synaptic plasticity is
vital for achieving a foundation the research on brain-like computing with neuromorphic
hardware can build upon.

Selbst-Stabilisierende Netzwerk-Architekturen auf einem neuromorphen Hard-
waresystem

Die vorliegende Arbeit zeigt Methoden zu einer Verbesserung der Benutzbarkeit ei-
nes neuromorphen Hardwaresystems auf. Der verwendete Mikrochip implementiert ein
Netzwerk spikender Neuronenmodelle. Im Vergleich zur biologischen Echtzeit läuft das
System mit stark erhöhter Geschwindigkeit und ist für die Untersuchung am Gehirn
orientierter Prinzipien der Informationsverarbeitung bestimmt. Die Anwendung wird
durch individuelle Merkmale der verwendeten Komponenten erschwert, da sich Inhomo-
genitäten des zugrundeliegenden Substrats in den Emulationsergebnissen widerspiegeln.
Zunächst werden verschiedene Störfaktoren ermittelt, spezifiziert und, falls möglich, mit
Hilfe von Kalibrierungsprozessen abgeschwächt. Zur weiteren Verbesserung der Substrat-
homogenität werden ausgleichende Konzepte auf Netzwerkebene gesucht. Die Übertragung
und erfolgreiche Anwendung biologisch motivierter selbststabilisierender Architekturen
auf die Hardware wird durch umfangreiche Softwaresimulationen vorbereitet. Die Ver-
wendung synaptischer Kurzzeitplastizität stellt sich dabei als wesentlich für das Errei-
chen einer Grundlage heraus, auf der die Erforschung am Gehirn orientierter Informati-
onsverarbeitung aufbauen kann.
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Introduction

Today, personal computers and custom information processing devices – like mobile
phones, digital cameras or pocket calculators – are well-established in everyday life.
Interestingly, they follow a completely different design principle than another, natural
and powerful system: the mammalian and, in particular, the human brain. Although
these man-made utilities reveal an astounding capabilities, many tasks are obviously
performed much more efficiently by a human mind. Simply, a phenomenological regard
roughly divides the different skills of both models:
The biological approach outclasses any technical system concerning recognition of faces
or speech as well as almost every learning assignment. The easier a problem can be
solved by means of a straight algorithm, the more powerful SISD-architectures1 gain. In
1996, for the first time in history the chess computer ‘Deep Blue’ won a game against the
world champion Garry Kasparov. Finally, when it comes to basic arithmetics, computers
out-paced men a long time ago.

So, the question arises, how these differences can be characterized on a basic level. In
the late 19th century, it was discovered that the brain consists of nerve cells – so-called
neurons – which are interconnected by synapses.2 Today, we know that the human brain
inherently processes information in parallel, while yielding a high fault tolerance regard-
ing malfunctions of individual components. The cerebral cortex, essentially involved in
many intelligent functions of the brain, was found to exhibit a widely homogeneous
structure, independent of the competence of a specific area [Mountcastle, 1979]. The
universality of the cortical tissue is underlined by the ability of its domains to adopt
functions of other domains, e.g. after an accident, and by the similarity of its texture
in different species [Lehmann and Löwel, 2008]. Furthermore, the cortex features self-
tuning of its activity [Shu et al., 2003; Destexhe et al., 2003; Boustani et al., 2007] and
organizes its synaptic connections without supervision [Bi and Poo, 1997; Dan and Poo,
2004].

The question on what properties of the involved units are of particular importance and
on how the different units need to be interconnected in order to yield their unique com-
putational power is easily formulated. The answer to this issue touches various scientific
disciplines, like biology, medicine, mathematics, computer science or psychology. This
diversity is reflected in the participants of the FACETS project,3 which is funded by the
European Commission within the Future Emergent Technology program. The FACETS

1SISD: Single Instruction, Single Data stream. For instance, the ‘von Neumann computer’.
2The human brain contains approximately 1011 neurons and 1014 synapses.
3FACETS: Fast Analog Computing with Emergent Transient States
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members comprise 13 groups of 7 European countries including biologists, computer sci-
entists, engineers and physicists, aiming at “conceiving paradigms of computation that
depart significantly from the Turing concept of contemporary IT systems and make use
of the complex and ongoing dynamics seen in brain activity.” [FACETS , 2008].
Understanding the human brain will lead to promising medical therapies as well as new
computing devices and is likely to form one of the major achievements of the 21th century.

As a natural science, the investigation of this computational architecture is based on
measurements and modeling. Thus, new techniques, which allow the investigation of the
basic components – the neurons and synapses – on a microscopic level, boosted knowledge
in neuroscience, considerably. For instance, the patch clamping technique [Sakmann
and Neher , 1995] provided access to single ion channel dynamics of neuron membranes.
Consequently, profound models of neuron dynamics [Hodgkin and Huxley, 1952; Brette
and Gerstner , 2005] and synaptic plasticity [Tsodyks and Markram, 1997; Markram et al.,
1998] were developed.
A different approach investigates higher brain regions via electroencephalography (EEG)
or functional magnetic resonance imaging (fMRI) [Huettel et al., 2004]. The obtained
insights allow to identify the role of different domains within the brain and provide
valuable indicators on how information is processed (see e.g. [Hubel and Wiesel, 1962,
1965]).
Nevertheless, a vital point of the brain capacity lies in its connection structure. Each
neuron is synaptically linked to thousands of other neurons, forming a complex recur-
rent network. As this ‘jungle’ of axons and dendrites, inter alia, features long-range
connections, only little measured data exists regarding the connectivity. In order to
close this gap of knowledge, neuroscientists have to try out different models. Auspicious
approaches are, for instance, the concept of liquid computing [Maass et al., 2002; Jaeger ,
2001] or studies on high-conductance states [Shelley et al., 2002; Kumar et al., 2008].
To some extent, these investigations can be performed analytically, but the mixture of
digital (spikes) and analog (neuron and synapse dynamics) data makes analytical calcu-
lations difficult.

Therefore, numerical simulations of neural networks are employed. There exist sev-
eral approaches within the FACETS project with different focuses: Some simulation
back-ends implement neuron and synapse models of high precision (e.g. the NEURON
simulation software [Hines and Carnevale, 2003] implementing a Hodgkin-Huxley neu-
ron model [Hodgkin and Huxley, 1952]), but accept either massive computational efforts
(in case of software simulators, see e.g. [EPFL and IBM , 2008]) or a limited network
size (in case of hardware implementations [Renaud et al., 2007]). Other software simu-
lators, like PCSIM [Pecevski and Natschläger , 2008] or NEST [The NEural Simulation
Technology Initiative, 2008] aim at a faster computation using approximations of the
above models: “NEST is best suited for models that focus on the dynamics, size, and
structure of neural systems rather than on the detailed morphological and biophysical
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properties of individual neurons.”4 But these concepts still apply exact parameters to
the simulated components. The third approach within FACETS – the implementation
of neural dynamics with analog VLSI5 hardware – accepts a certain amount of loss of
control over all parameters. In exchange, an inherent parallelism (close to the biological
ideal) is gained, which allows for a fast emulation6 that is almost independent of the
network size.
A simple and certainly idealized framework for the application of simulators in neuro-
science is shown in figure .1.
Ideally, any simulation back-end offers perfect control over all units that constitute the
network, and yields perfect results in terms of the utilized models. But certain inhomo-
geneities are unavoidable and depend on the basic mode of operation of the back-end.
For instance, computer simulators will always deal with inaccuracies due to discrete time
steps. Particularly, when distributing a network simulation to a cluster, the principles
of calculating all involved unit dynamics for the successive time steps can become chal-
lenging [Morrison et al., 2005].
However, analog hardware suffers from inequalities of the physical implementation of
similar units and of unintended interference of the units e.g. via the power supply.

In order to provide an interface to the different back-ends in abstract – biology inspired
– terms, a unified language, called PyNN [Davison et al., 2008, accepted for publication],
was developed within the FACETS project. While a certain degree of abstraction will be
found in any simulator interface, this common language provides additional advantages
due the clean portability of experimental setups.
To overcome back-end specific differences it is feasible to apply generic universal network
architectures, which are able to self-tune their properties to a certain amount, while pro-
viding the latitude to specialize functionality. This approach yields not only technical
advantages, but is also biologically realistic, as all nerve cells are subject to noise and
other perturbing influences: The most powerful network substrate known – the human
cortex – exhibits such properties of universality and self-stabilization [Baddeley et al.,
1997].
Upon this foundation, the investigation of trained or self-learning networks can be as-
sumed to lead to similar conclusions, independent of the utilized back-end.

As stated above, the minimization of inhomogeneities is a major challenge when devel-
oping an analog neural emulator. The current version of the FACETS Stage 1 Hardware
– a prototype on the path to large integrations of analog neural circuitry on a silicon
substrate – exhibits serious variations regarding the properties of neurons and synapses.
In accordance with the framework presented in figure .1, this work addresses

• the investigation and maximization of homogeneity of the FACETS Stage 1 Hard-

4http://www.scholarpedia.org/article/NEST (NEural Simulation Tool)
5VLSI: Very Large Scale Integration
6Since all units follow their respective inherent dynamics, the term emulation is used. In contrast, a

simulator calculates the behavior of all units externally.
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ware,

• the proper mapping of abstractly defined networks to and operation of simulator
back-ends,

• the application of self-stabilizing network architectures.

Basically, this thesis divides into two parts: The chapters I – III introduce the reader to
the FACETS Stage 1 Hardware, the operating software package and utilized concepts
on the network level, respectively. In chapter IV – VI, the author’s contributions to
the above issues are presented. In particular, a self-stabilizing network architecture is
applied to the chip, in order to determine whether the degree of inhomogeneity, remaining
after calibration and other efforts, can be reliably counterbalanced by a substrate on the
network level.
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I The FACETS Stage 1 Hardware

Rather than simulating neural networks in discrete time steps, the FACETS mem-
ber UHEI1 takes the approach to emulate neural and synaptic behavior via a CMOS2

hardware device. Analog circuitry can reveal dynamics similar to common neuron and
synapse models, enriching the spectrum of available simulation back-ends. Even though
analog designs always deal with noise and variations due to the production process, these
effects should not interfere with large scale networks, as long as the variances remain
within a biologically realistic extent. On the other hand, the usage of integrated circuits
allows highly accelerated emulations compared to the biological archetype since the time
constants of all processes can be chosen extremely short. This speedup is almost inde-
pendent of the network size, as all cells inherently operate in parallel.

The following sections give an overview of the current FACETS Hardware device (section
I.1) and present the utilized neuron models (section I.2) and synapse models (section
I.3) including their hardware implementation. Furthermore, details of the configuration
and communication chain are addressed in brief (section I.4). Thereafter, restrictions of
the FACETS Stage 1 Hardware on network topology and parameter configuration are
discussed (section I.5). Finally, a glimpse into the future looks forward to the upcoming
Wafer-scale Integration of the FACETS Hardware (section I.6).

As not stated otherwise, the following sections are based on [Schemmel et al., 2007,
2006] and [Grübl, 2007] as well as personal communication with Dr. Johannes Schem-
mel3, Dr. Andreas Grübl4, Daniel Brüderle5 and Sebastian Millner6.

I.1 System Overview
The core of the FACETS Stage 1 Hardware holding the analog neural network is an
ASIC7 called Spikey which contains 384 neurons and almost 100.000 synapses per chip.
It is currently run with a speedup of 105 compared to biology. In future, up to 16 chips
can be interconnected, yielding networks of several thousand neurons and more than one
million synapses. A micro photograph highlighting the elementary layout of the chip is

1Electronic Vision(s), Ruprecht-Karls-Universität Heidelberg
2CMOS: Complementary Metal Oxide Semiconductor
3schemmel@kip.uni-heidelberg.de
4agruebl@kip.uni-heidelberg.de
5bruederle@kip.uni-heidelberg.de
6sebastian.millner@kip.uni-heidelberg.de
7ASIC: application-specific integrated circuit
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I.1 System Overview

Figure I.1: A micro photograph of the Spikey chip.

shown in figure I.1.

Figure I.2: Experimental setup of the FACETS Stage 1 Hardware.
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I The FACETS Stage 1 Hardware

In order to operate the chip, Spikey is bonded on an PBC8 named Recha, which is
plugged onto the so-called Nathan-board (see figure I.2). An FPGA9 on the Nathan-
board controls the configuration of and communication with Spikey. Up to 16 of such
units can be operated by one backplane. Via a proprietary interface the backplane is
connected to a Linux computer. Besides configuration and operation this setup allows
digital readout of the action potentials generated by any neuron. Additionally, an os-
cilloscope provides access to the membrane potential in the sub-threshold regime via an
analog readout.

The Spikey-chip measures 5 × 5 mm2 and is fabricated by UMC10 in a 180 nm CMOS
process with one poly-silicon layer and six metal layers.

I.2 Neuron Model
The neurons emulated by the FACETS Stage 1 Hardware are conductance-based, leaky
integrate-and-fire point-neurons [Destexhe et al., 1998] obeying the following dynamics:

−Cm
∂Vm
∂t

= gleak · (Vm − Vrest) +
∑
k

gk(t) · (Vm − Vrev,exc) +
∑
l

gl(t) · (Vm − Vrev,inh)

with Vrev,exc, Vrev,inh and Vrest denoting three reversal potentials – excitatory, inhibitory
and resting, respectively. The summation is done over all excitatory (k) and inhibitory
(l) synapses. Their conductance course is presented in section I.3. The neurons have a
membrane capacitance Cm and constantly (dis-)charge towards a resting potential Vrest
via a conductance gleak.
When a neuron’s Vm exceeds a predefined threshold voltage Vthresh, it emits a digital
action potential – in the following occasionally denoted as spike. At the same time
its membrane potential is instantly set to a reset potential Vreset, where it is forced to
remain for a refractory period τrefrac.

I.2.1 Hardware Implementation

In the FACETS Stage 1 Hardware neuron membrane capacitances are realized using
capacitors. Furthermore, each neuron contains a comparator circuit, that compares the
membrane potential with the threshold. When Vm > Vthresh, the conductance between
the capacitor and the reset potential is increased to a high value. A feedback circuit as-
sures that this conductance rises quickly and does not return to zero once Vm < Vthresh.
Additionally, the comparator circuit generates a square wave voltage that is transmitted
to Spikey’s digital part, where the spike is detected digitally and processed for feedback
and readout.
The comparator behavior is adjusted via a bias current icb. This parameter also controls

8PBC: printed circuit board
9FPGA: Field Programmable Gate Array

10UMC: United Microelectronics Corporation, Taiwan
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I.3 Synapse model

the period τrefrac the capacitor remains connected to the reset potential. Furthermore,
it determines the period of the square wave voltage sent to the digital part. Threshold,
reset mechanism and icb are studied in detail in section IV.4.

I.3 Synapse model

The FACETS Stage 1 Hardware implements a double-exponential conductance-based
synapse model. When triggered, the conductance between the neuron and the respec-
tive reversal potential jumps immediately to a starting value greater than zero, then it
rises exponentially with time-constant τrise until it equals a previously defined threshold
w · gmax. Finally, it falls exponentially with time-constant τfall towards a very low level
w · grest.
For technical reasons each 192 synapses with the same presynaptic neuron share one
parameter gmax (see section I.5). The individual synapse multiplies that value with a
discrete weight-factor w ∈ {0, 1, 2, . . . , 15}.
Furthermore, Spikey supports two different types of synaptic plasticity, namely short
term plasticity (STP) and spike time dependent plasticity (STDP). While STP alters
gmax, hence appearing as a pre-synaptic property, STDP changes the digital weight-
factors w, thus describing characteristics of particular synapses.
In the hardware the information flow from a digital spike to an EPSP on a neuron’s
Vm is generated by a complex process: Whenever a neuron (or external input) emits
a spike, the action potential is transferred digitally to the assigned synapse driver (see
also section I.5), which is triggered to generate a linear voltage ramp. In the synapse
this voltage ramp is transformed to an exponential current ramp, controlling the con-
ductance between the post-synaptic neuron and the respective reversal potential. The
units involved in this process will be described in the following.

t

Vout(t)

w · g(t)

Figure I.3: Time course of Spikey’s double-exponential conductance-based synapse model.
The synaptic conductance w · g(t) is shown alongside the linear voltage ramp Vout(t)
generated by the synapse driver (in arbitrary units).

17



I The FACETS Stage 1 Hardware

I.3.1 The Synapse Driver

Synapse drivers receive action potentials from both Spikey’s digital part and the neu-
ron blocks as feedback connections and transform them into linear voltage ramps, for
transmission to the synapses. Furthermore, they implement short term plasticity. Thus,
the synapse drivers control the dynamics of the synapse model. This paragraph out-
lines their basic operation (for details see [Schemmel et al., 2007]). Figure I.4 shows the
synapse driver circuit.

Figure I.4: Synapse driver circuit implementing short term plasticity. The STP mecha-
nism is located in the lower left part of the circuit.

A digital AP enters the circuit as a square wave voltage (pre-signal) generated by the
digital part. The signal can either originate from an external input, a specified neuron
in the same half of the chip or a specified neuron in the other half (see section I.5).
The output voltage transmitted to the synapses is called Vout. When a pulse enters
the driver, Vout is set to Vstart via M1. At the same time the fall/rise-line is pulled
down, initiating the rising voltage ramp: Vout is increased linearly in time via the cur-
rent mirror M5/M6, while the connection M4 is interrupted. The slope of the voltage
ramp is controlled via Irise. As Vout exceeds the driver strength determined by Igmax,
the comparator O1 pulls up the fall/rise-line11: Vout begins to fall linearly towards
Vrest with a slope, defined by Ifall. The time course of Vout and the resulting synaptic
conductance w · g(t) are drafted in figure I.3.
The circuitry realizing STP is located in the lower left part of the synapse driver. Its
operation is presented in a separate paragraph.
Besides the control voltages and currents, each synapse driver has a configuration byte.
Its structure is shown in table I.1. Furthermore, two synapse rows can be combined in
order to increase the weight resolution. This feature is not yet supported by the software
11The transformation of Igmax into a voltage for comparison to Vout is performed via an ‘inverse synapse

circuit’. Thus, the actual synaptic strength is proportional to the control current: gmax ∝ Igmax.
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I.3 Synapse model

and will not be presented in this work.

Bit Description

0 0: external input, 1: feedback connection
1 selected feedback source: 0: adjacent block, 1: this block
2 1: set row to be excitatory
3 1: set row to be inhibitory
4 1: enable the STP-mechanism
5 select STP mode: 0: facilitation, 1: depression

7 6 size of capacitor C2 = 2X+1
8 · C1 (X ∈ {00, 01, 10, 11})

Table I.1: The structure of the synapse driver configuration byte.

I.3.2 Synapses and Reversal Potentials

The synapses are arranged on two two-dimensional grids, so-called synapse arrays, of
size 256×192. Each synapse driver operates a row of 192 synapses. Each set of 192
synapses shares the configuration bit, whether all synapses are excitatory or inhibitory
(see table I.1). Besides to a driver, each synapse is also assigned to a post-synaptic
neuron forming 2 × 192 columns.
A synapse transforms the driver’s linear voltage ramp Vout into an exponential current
Iout ∝ w · exp(ρ · Vout), scaling with an individually adjustable, discrete weight-factor
w ∈ {0, 1, 2, . . . , 15} and generating the designated exponential behavior.12 Iout can
either be connected to an ‘excitatory’ or an ‘inhibitory’ wire. Both head towards the
post-synaptic neuron and are shared by 256 synapses operated by different synapse
drivers. Thus, all excitatory currents

∑
0<i<255 ; i exc. Iout,i sum up to a total excitatory

current Iexc. In the same way a total inhibitory current Iinh sums up.
Iexc and Iinh control the conductances between the neuron’s capacitor and the respective
reversal potentials Vrev,exc and Vrev,inh. In the following this connection is denoted as
ion channel, according to its biological counterpart.

I.3.3 Short Term Plasticity (STP)

When firing several times in succession, biological synapses will change their effective
weight over time spans of some milliseconds to seconds. This effect is known as short
term depression and facilitation. The short term plasticity mechanism implemented in
Spikey is motivated by a phenomenological model developed by Markram et al. [1998].

12The value of the constant ρ is of no importance, since Vout can be adjusted in a wide range.

19



I The FACETS Stage 1 Hardware

Hardware Model

Every synapse driver of the FACETS Stage 1 Hardware supports two modes of short
term plasticity, namely depression and facilitation. The basic idea is to introduce a time
varying inactive partition I with 0 ≤ I ≤ 1. It decays exponentially with time constant
trec, while every AP processed by the synapse driver increases I by a fixed fraction to-
wards the maximum. This idea leads to the following dynamics for the inactive partition:

İ = −I/trec + C · (1− I) · δ(t− tAP )

with 0 < C < 1 and trec denoting adjustable constants. The impact of the inactive
partition on the effective synapse weight is controlled via a scaling factor λ.
In depression mode the inactive partition reduces the synapse’s effective weight, thus:

wdep ∝ 1− λ · I

In facilitation mode the inactive partition is added to the static synaptic efficacy:
wfac ∝ 1 + λ′ · I. For practical reasons (see below) it is useful to keep the same scaling
factor λ but introduce another constant N , and write the impact of I in the form

wfac ∝ 1 + λ · (I −N)

Hardware Implementation

The model presented above results in additional circuitry in the synapse driver (see fig.
I.4). This paragraph outlines the basic operation of the STP-mechanism. For details see
[Schemmel et al., 2007]. The influence of dynamic synapses on the membrane potential
is shown in figure I.5.
Short term synaptic plasticity can be switched on via the enable-signal. The mode-signal
selects the type of STP. The inactive partition I corresponds to the voltage VI .13 The
current Irec adjusts the decay time constant trec. When triggered by a spike, charge is
transferred from C1 to the adjustable capacitor C2

14. This leads to a rapid change of
VI :

∆VI = C2
C1 + C2

· (Vmax − VI)

Particularly, VI never exceeds Vmax, which controls the scaling parameter λ:
The output of the operational transconductance amplifier (OTA) O2 adds a (positive or
negative) current Istp to the static synaptic weight Igmax. This current is proportional
to the voltage V̂ between the two inputs of the OTA. Since O2 is biased with Igmax, its
output is also proportional to this current. Hence, Istp = µ · Igmax · V̂ with a constant
µ. This leads to:

Itotal = Igmax + Istp = Igmax · (1 + µ · V̂ )
13More precisely, we identify I = VI/Vmax, as I is normalized to 1, while VI is normalized to Vmax.
14C2 can be set to i · C1/8, with i ∈ {1, 3, 5, 7}.
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In case of depression V̂ = −VI , and thus, λ = µ · Vmax.
In case of facilitation V̂ = VI−Vfac. The adjustable reference voltage Vfac is introduced
to increase control over the weight-range covered by facilitation. This becomes neces-
sary, since the OTA cannot supply higher currents than its bias. For N = Vfac/Vmax it
is λ = µ · Vmax.

enable, mode and C2 are set via the synapse driver configuration byte listed in table
I.1. The voltages and currents are generated by the on-chip DAC (see section I.4).

All hardware parameters are summed up and compared to the variables of the PCSIM
implementation of the FACETS Hardware Synapse in table V.1.

I.3.4 Spike Time Dependent Plasticity (STDP)

Besides short term plasticity, that does not alter the synaptic strength permanently (it
recovers with time-constant trec), the FACETS Stage 1 Hardware provides a persistent
plasticity mechanism on long time scales – namely, Spike Time Dependent Plasticity
(STDP). The model implemented in Spikey is presented in [Schemmel et al., 2007, 2006]
and is based on [Song et al., 2000; Bi and Poo, 1997].
Basically, for each synapse the time points of pre- and post-synaptic action potentials
are compared. The resulting ∆t = tpre − tpost determines, whether the APs occurred
causal (∆t < 0) or acausal (∆t > 0). Causal spike pairs strengthen the synapse (w is
slightly increased), acausal spike pairs weaken it (w is slightly decreased).
Since Spikey’s weight matrix only supports discrete weights, the impact of numerous
causal and acausal spike pairs is stored temporarily, until a preset threshold is exceeded.
Then a STDP controller within the digital part updates the respective discrete weight
w.

I.4 Configuration and Readout
All parameters operating the FACETS Stage 1 Hardware and describing a neural network
experiment (namely, configuration and spike input) must be transfered to the Chip.
Spikes, emitted by the neurons, as well as analog membrane potentials must be read
back. This section briefly addresses the components involved in this read- and write-
process on the hardware level. The software layers are presented in chapter II.

I.4.1 The Parameter RAM

Most analog parameters are provided as 10-bit digital numbers in units of irefdac
10 · 1023 . iref-

dac is a reference current provided externally by the Recha-board. A digital-to-analog
converter (DAC) within Spikey generates the desired currents. These currents are stored
within current memories. Also voltages (so called vouts) are generated using currents
from the DAC, by creating them via a resistor and storing them on capacitors.
Since both currents and voltages cannot be stored in the analog domain for more than
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Figure I.5: Comparison of static and dynamic synapses on the FACETS Stage 1 Hardware. A
neuron was stimulated with Poisson background noise (different in every trial). Additionally,
one synapse driver, injecting equidistant spikes with 20 Hz biological frequency (speedup = 105)
and one spike appended after 500 ms, was configured to be either facilitating (top), static
(middle) or depressing (bottom). The figures show the membrane voltage trace as seen on
the oscilloscope. Thus, time and voltages are given in hardware units. While each lower trace
displays a single trial (with the Poisson input clearly visible), for the upper traces 100 trials
were averaged revealing the influence of the specified synapse driver. The three plots only differ
in the mode of this driver. Obviously, depressing synapses become weaker the more APs being
processed in succession, which can be seen in the decreasing height of the singe PSPs. After
500 ms without activity the PSP induced by the presynaptic spike has almost the same height
as the first induced PSP, which indicates that the inactive partition has almost recovered to its
initial value. In contrast to static synapses a facilitating driver develops its full strength only
after a couple of transmitted APs, since its starting strength is smaller by the factor (1− λ ·N).
The configuration of the synapse drivers equals the setup used on a network level as presented
in section VI.3. Both workarounds discussed in section IV.5 have been applied to the short term
plasticity mechanism. The following parameters were chosen: Vstdf = 0 (minimum vout), Vfac
bypassed, VSTART=0.25 V, Vdtc = 0.7µA, C2,fac = 3

8C1 and C2,dep = 1
8C1.
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a couple of milliseconds, they have to be rewritten by the DAC periodically. For that
purpose they are stored in a SRAM module in Spikey’s digital part. The DAC updates
all values (about 3000 in total) one after another. Then it starts again with the first
address. A full parameter-RAM refresh cycle currently takes about 15ms.

I.4.2 External Voltages

Some voltages are generated externally by a DAC on the Recha-board. Examples are
the on-chip DAC reference current irefdac and some more specific, global voltages like
Vstart and Vrest of the synapse driver voltage ramp. Unlike voltages generated inside
the Chip (see also section I.5), external voltages are subject to no relevant restrictions
regarding their adjustability. But it was found that these voltages can become unstable
in case of high load. As this defect was discovered in November 2008, its cause was not
completely understood when this thesis was written.

I.4.3 Spike Readout and Spike Input

When a neuron emits a spike, the square wave voltage, indicating the spike (see section
I.2), is processed by a priority encoder, detecting the neuron address, and a time-to-
digital converter (TDC), generating a sub-time stamp. This information is passed to an
output buffer, that adds a system-time stamp. Each 64 neurons share one unit consist-
ing of priority encoder, TDC and output buffer. In total, Spikey contains six of such
units for spike readout. All buffers share one bus to transfer their data to the Nathan-
FPGA, which stores the spike data in an ordinary RAM. This output spike data is read
back, translated from hardware time to biological time by the software and, eventually,
provided to the user.
The current version of the FACETS Stage 1 Hardware (Spikey III) reveals errors, when
multiple neurons of the same block of 64 neurons are recorded and emit spikes simulta-
neously: The priority encoder can enter a locking state and stops further spike output.
Only the last 5 - 9 neurons of each block can be recorded reliably at the same time.
Furthermore, Spikey’s output rate is limited by design: Since all output buffers share
one bus, buffer overflows can occur due to this bottleneck. Typically, for larger networks
a total readout spike rate of about 2000Hz (in biological time) can be processed without
buffer overflows.15

The external spike input works likewise: For each spike the software generates system-
time stamp, sub-time stamp and synapse driver address. This information is written
into a playback memory on the Nathan board. Via the Nathan-FPGA and a bus system
this data is passed to an input buffer on Spikey. At the proper system-time, sub-time
and driver address are transmitted from the buffer to a digital-to-time converter (DTC)
which generates the pre-signal for the respective synapse driver at the precise time point,
determined by the sub-time stamp.
15The rate in biological time depends on (a) the system clock frequency and (b) the hardware-to-biology

speedup. Currently, ν = 100 MHz and speedup = 105.
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Each 64 synapse drivers share one unit consisting of input buffer and DTC, yielding
eight of such input units per chip.

I.4.4 Analog Readout and Oscilloscope
The FACETS Stage 1 Hardware supports monitoring of several internal voltages via an
analog output, called ibtest pin. The pin can be connected to an oscilloscope, that
provides a convenient readout via a TCP/IP port.
Any neuron’s membrane potential and any vout voltage can be viewed via the ibtest
pin. Normally, only one parameter can be seen on ibtest at a time.16

I.5 Network Topology and Parameter Constraints
Although most parameters are adjustable and any two neurons can be connected synap-
tically, the FACETS Stage 1 Hardware reveals several constraints when mapping larger
networks. These constraints span the values a parameter can take, configurations mul-
tiple units share and network topologies impossible to map.
Some constraints are acceptable and intended by design. Others originate from faults of
particular units, that cannot be counteracted during the calibration process outlined in
section II.2.

I.5.1 Topology
When a network shall be emulated by the Hardware, one has to decide, which hardware
neuron to map every ‘biological’ neuron to. This yields the question, if all desired
synapses can be established. This mapping process can become a challenging task for
large networks. One approach regarding mapping algorithms is presented in section II.3.
This paragraph addresses the underlying hardware topology.

Restrictions on Connectivity

Each synapse array is operated by 256 synapse drivers, 64 of which are reserved for
external input only. For driver 0 to 191 there exist three choices17 regarding the source
of the pre-signal. The source is set via the configuration byte (see table I.1). For synapse
driver n ∈ {0, . . . , 191} there exist the following sources:

• external input

• APs of the nth neuron in the same block

• APs of the nth neuron in the other block
16Actually, Spikey allows simultaneous analog readout of up to eight (almost arbitrary) neurons’ mem-

brane potentials. Since this feature is used rarely and uses additional pins on the Recha board, it
will not be discussed, here. Additionally, a workaround providing write-access to multiple vouts
simultaneously under certain conditions is presented in section IV.5.

17ignoring merging of adjacent synapse drivers
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The selected source is valid for all synapses operated by the same driver. Hence, it is
impossible, that two neurons with the same index ’n modulo 192’ serve as pre-synaptic
neurons for any two neurons located in the same half of the chip.

Restrictions on Synapse Configuration

Furthermore, all synapses operated by the same synapse driver share its configuration
byte. Especially, all these synapses are either excitatory or inhibitory – a condition,
that is in accord with the common network models. A real constraint is the shared
configuration of short term synapse dynamics (see table I.3): This limits the network
size to 192 neurons for the setup presented in section VI.3.

I.5.2 Parameter Ranges

All parameters can only be set within a certain range. As stated in section I.4, external
voltages can be set to any value needed. But most voltages and currents are generated
by the on-chip DAC (see section I.4). Such currents can only be set from 0 to 2.5µA18

with a 10-bit resolution, yielding a step-size of 2.44 nA.
More restricted are the internally generated voltages vouts: The current revision (Spikey
III) allows for a vout-range from 0.6 V to 1.6 V. The exact interval is determined by
the individual vout. Especially, the lower bound prevents reasonable STP-parameters
as revealed in section IV.5. A workaround to lower a small number of vouts is presented
there, too.

As described in section I.3 all synapses, operated by the same synapse driver, share their
maximum synaptic weight due to Igmax. As the synaptic weight-factor w is a 4-bit digital
value, the weakest (non zero) synapse in a row must at least have wweak = 1

15 · wstrong,
for the strongest synapse being of weight wstrong.

I.5.3 Shared and Individual Parameters

As stated above, all analog circuitry is subject to variations due to the production pro-
cess. Many resulting effects on neural and synaptic behavior can, in principle, be coun-
teracted by readjusting the respective parameters. This calibration process is hindered,
since many voltages and currents are shared by multiple neurons or synapse drivers.
Hence, the universality of a parameter can become crucial for the success of a calibra-
tion algorithm.

Table I.2 and table I.3 list parameters, which are commonly utilized in order to set
up Spikey properly, and show whether a parameter can be set individually for a unit
or is assigned to multiple, similar parts. ‘Global’ indicates that a voltage or current
supplies the entire chip. A ‘shared’ parameter serves all units that are located in the
same half of the chip AND have an index of the same parity (odd or even) – resulting
18Currently, it is irefdac = 25.0µA. A parameter that is not expected to be changed.
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in four independent equivalent voltages/currents supplying one parameter to one chip.
‘Individual’ parameters refer to exactly one unit, meaning that there exist as many in-
dependent voltages/currents as neurons or synapse drivers. In case of vouts, every vout
voltage includes a bias current voutbias of the same universality which is omitted in the
listing. Some parameters have different names in the hardware design and the software
environment and are denoted with both names, here.

parameters referring to neurons
parameter universality

Ileak (= g leak) individual
icb individual
all reversal potentials (exc, inh, resting) shared
reset potential shared
threshold voltage shared

Table I.2: Universality of parameters referring to neurons. A ‘shared’ value involves 4
voltages/currents with each entity supplying 96 neurons.

parameters referring to synapse drivers
parameter universality

drviout (= Igmax) individual
adjdel individual
drvifall (= Ifall) individual
drvirise (= Irise) individual
Vdtc (= Irec) shared
Vfac shared
Vstdf (= Vmax) shared
vcb shared
vplb shared
Vrest (= VREST) global
Vstart (= VSTART) global

Table I.3: Universality of parameters referring to synapse drivers. A ‘shared’ value
involves 4 voltages/currents with each entity supplying 128 synapse rows.

I.6 Stage 2 – Wafer-Scale Integration
The FACETS Stage 1 Hardware is a chip based system: Each identical unit – the Spikey
chip – needs an extensive set of other devices (RECHA, NATHAN and Backplane) in
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order to communicate with other units, i.e. to synaptically connect neurons on different
chips, involving a minimum spatial distance between the units. Considering signal prop-
agation delays, this concept inherently limits the number of interconnectable neurons.
Hence, a system being capable of emulating large neural networks needs to feature a
high integration density.

Figure I.6: Schematic of the FACETS Stage 2 Hardware as presented in [Schemmel
et al., 2008]. Between the mounting brackets are the wafer and the motherboard, linked
with elastomeric connectors.

Rather than cutting the identical units into dies, the upcoming FACETS Stage 2 Hard-
ware aims for a wafer-scale integration meaning that the ASICs holding analog neu-
ral network cores are interconnected on the uncut wafer during a post-processing step
(see figure I.6). For operation a motherboard is attached ‘on top’ of the wafer using
elastomeric connectors. A wafer of 20 cm diameter is supposed to contain about 350
HICANN 19 building blocks. As each HICANN implements 512 neurons and 512×256
synapses20 one wafer can theoretically emulate neural networks consisting of more than
180 thousand neurons and 45 million synapses – achieving a new dimension of integra-
tion density. For an expected speedup factor of 104 and an average pre-synaptic firing
rate of 10 Hz this yields an event rate of 12 Giga-events per sec and HICANN requiring a
vast communication bandwidth. As each event involves charging and discharging of the
wire capacitances a new low-voltage signaling scheme was developed in order to limit
the power consumption.
19HICANN: High Input Count Analog Neural Network
20Optionally, multiple neurons can be combined to bigger neurons supporting up to 16k pre-synaptic

inputs per neuron.
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The FACETS Stage 2 Hardware supports STDP and short-term plasticity. Further-
more, it extends Spikey’s conductance-based leaky integrate-and-fire neuron model to
the aEIF-model21 proposed by [Brette and Gerstner , 2005]. This neuron model inher-
ently minimizes the impact of threshold variations (like those discussed in section IV.4)
on the firing behaviour.

The tape-out of the first HICANN prototype is planned for early 2009. Further details
on neuron and synapse models and the technical realization of the FACETS Stage 2
Hardware are found in [Schemmel et al., 2008]. Network topology and the mapping of
biologically relevant network models on the future system are addressed in [Fieres et al.,
2008].

21aEIF: adaptive exponential integrate-and-fire
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As described in chapter I, almost all parameters, characterizing the emulated network
in the FACETS Stage 1 Hardware, are represented by voltages and currents. In order
to use the chip as a neural simulator, an abstractly described neural network must be
mapped to the hardware resources, and all biological values have to be expressed in terms
defined by the circuity. Additionally, components not belonging to the actual network –
like Spikey’s digital part or the entire communication chain – need to be configured and
operated.
Furthermore, any approach for operating the hardware will aim for an abstract frame-
work that hides these technical details from the user. Ideally, the experimenter is allowed
to express his thoughts in a language close to the biological model and independent of
the utilized simulation back-end.

Section II.1 addresses the multilayer software package, which performs the above tasks
and was developed by the Electronic Vision(s) group. In section II.2, a closer look is
taken at the parameter translation, which also considers variations of the individual
hardware components due to the production process. Finally, in section II.3, a concept
is described, on how a network can be mapped to the chip efficiently.

II.1 Software Structure

The software operating the FACETS Stage 1 Hardware can basically be divided into three
layers. From the experimenter’s view, the network, the execution of the emulation and
the readout are described in the python-based language PyNN. Through the Hardware
Abstraction Layer all commands and data are passed to the hardware specific low level
code, which carries out the communication with the chip.
While the data structures used in the top layer reflect the biological framework, the low
level code rather images the chip layout. Figure II.1 gives an overview of the software
layers, which are described in the following.

II.1.1 PyNN

For comparison of different simulation back-ends and the verification of simulation re-
sults, it is beneficial to describe all experiments in a unified, portable language. The
PyNN-project1 [Neural Ensemble, 2008] aims for the development of such a common

1PyNN: Python package for simulator-independent specification of Neuronal Network models, see:
http://neuralensemble.org/trac/PyNN
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PyNN

PyNN.hardware 

PyHAL

Spike Train In

Communication Spike Train Out

Chip Model

C++ (Boost.Python wrapper)

PyScope

C++

Chip Configuration

Figure II.1: Software overview showing the software structure of the FACETS Stage 1
hardware system. With friendly permission of Eric Müller [Müller, 2008].

API.2 PyNN is developed within the FACETS project and is currently supported by
NEST [Gewaltig and Diesmann, 2008], PCSIM [Pecevski and Natschläger , 2008], NEU-
RON [Hines et al., 2008] and the FACETS Stage 1 Hardware.3
The PyNN definitions include functions for setting up networks (e.g. create() or con-
nect()), classes for generating stimuli (e.g. SpikeSourcePoisson) and commands to
acquire the simulation results (e.g. record()). Besides these procedural commands, the
API defines two objects for the management of sets of similar neurons (Population)
and synaptic connections between those (Projection).
Since each simulator implements the same API, it suffices to change a single line of code
to switch to another back-end:

import pyNN.pcsim as pyNN −→ import pyNN.nest2 as pyNN

The functions implemented in the pyNN.hardware.stage1 module communicate with
the lower software layers. The PyScope module provides access to the oscilloscope. The
PyHAL module is presented in detail.

II.1.2 Hardware Abstraction Layer
The storage and organization of the commands and network configuration received from
the PyNN-layer is performed by the so-called Hardware Abstraction Layer [Brüderle

2API: Application Programming Interface
3The pyNN.hardware.stage1 module is not included in the release of the PyNN package, since it cannot

be used without the hardware.
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et al., 2007]. As written in Python, it is abbreviated as PyHAL. The major functionality
of this layer is organized in two submodules, namely config and buildingblocks.

The buildingblocks contain a Network class, which holds the Neurons and manages
some common quantities (e.g. the network size or the number of external inputs). The
connectivity is purely stored by the Neuron objects, which keep track of all incoming
and outgoing Synapses. Besides the synaptic weight, each Synapse object is able to
store its STP- and STDP-configuration.
External stimuli are not contained in the Network, but processed directly by the HWAc-
cess object provided in the config module. Its main tasks are to

• assign the Neurons to the hardware neurons,

• load the calibration data and translate all biological values to hardware parameters
(see section II.2),

• pass the external stimuli to the low level software,

• initialize the configuration of the chip and

• read back the emulation results (spikes only).

Most of the such prepared configuration is stored in a SpikeyConfig object. Via the
Boost.Python4 wrapper, the communication to the low level software is established.

II.1.3 Low level Software
The low level, hardware specific code is written in C++. It implements an image of the
structure of the actual hardware, e.g. the Spikey object. The low level software provides
functions to send all configuration data and the spike trains to the chip, and to read
back the spike output.

II.2 Mapping Biological Networks to the Hardware
In contrast to a software simulator, which can be designed to use a native data structure,
the parameters, needed to operate electrical circuitry, clearly differ from biological terms.
Furthermore, since permutations applied to the mapping of abstractly defined neurons
to the hardware neurons should influence the emulation results as little as possible, an
individual adjustment of the values, that are written to the particular components, is
suggested. Table I.2 and table I.2 in section I.5 give an overview of parameters, which
can be set for each neuron or synapse driver, individually. In the following, the basic
concepts of the existing calibration algorithms are outlined. The interpretation of many
parameters depends on the specified speedup factor, which relates the ‘emulation time’
to the real ‘hardware time’. As the calibrations base on each other, it is recommended
to keep the order of the description.

4http://www.boost.org/doc/libs/1 34 0/libs/python/doc/index.html
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vout calibration: This is an actual hardware calibration, in a more restricted sense.
Since all vout voltages can be measured via the ibtest output (see section I.4), a
rather precise mapping between the written parameters and the resulting voltages can
be determined. When the correct hardware voltages are known, the range of biological
voltages (typically, −80 mV to −55 mV, ignoring the excitatory reversal potential) can
be mapped to the hardware voltages (currently, about 0.6 V to 1.6 V – cf. section I.5).

output pin calibration: As the vout voltages were measured internally, they can be
used to calibrate the analog output pins, which are used to measure neuron membrane
voltage traces on the oscilloscope. For each pin, a neurons resting potential Vrest is set
to specified voltages. The values seen on the oscilloscope allow for an adjustment of the
analog readout units.

icb calibration: A calibration algorithm, addressing variations in the threshold voltage
and the reset mechanism. This phenomenon is studied in detail in section IV.4. Also,
approaches for moderating this issue are presented there.

τmem calibration: The current Ileak controls the conductance gleak between the mem-
brane and the resting potential Vrest. It is, for both biology and electronics, τmem =
Cm/gleak (in their respective units). The membrane time constant can be determined
by setting Vrest > Vthresh. Thus, the neuron will spike periodically. The time constant
of the exponential ‘decay’ can be measured either via the firing rate or directly via the
trace of the membrane voltage. An individual adjustment of Ileak to the desired τmem
for every neuron additionally considers variations in both the conductance gleak(Ileak)
and the membrane capacitance Cm.

drviout and drvifall calibration: In order to determine the synaptic efficacy of a
synapse driver, an input is connected to a neuron with a fixed discrete hardware weight
w. The amplitude and the time course of the EPSPs allow the adjustment of the max-
imum synaptic conductance gmax(drviout) and the time constant of the falling edge
τfall(drvifall), e.g. by comparison to software simulations. In addition, variations of
the transistors M7, M8, M10 and the comparator O1 in the synapse driver circuitry
(shown in figure I.4) are compensated. The synaptic efficacy is subject to various inter-
ferences. Thus, the described method just outlines the basic idea. Some sources of error
are discussed in section IV.1 and section IV.3. A detailed description of a calibration
routine is presented in section IV.2.

weight transformation calibration: To consider variations in the membrane capaci-
tance Cm and the ion channels (see section I.3) of the neurons, the weight vector of
incoming connections can be adjusted for each neuron. Due to the discrete nature of
the hardware weights, this results in a loss of control over the exact configuration of
the individual synapse. For that reason, this method should only be applied to larger
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networks, when control over the average synaptic weight is more important than the in-
dividual synapse. Possible measures for calibration are mean firing rates under specified
stimuli or the amplitude of individual EPSPs.

II.3 Graph Model
As mentioned above, the software has to decide, to which hardware neurons map the
neurons defined in PyNN. This mapping process has not only to consider the hardware
topology of possible synaptic connections, but also parameters shared by multiple units
(see section I.5) and communication bottlenecks due to limited bandwidth.
For the smaller Stage 1 hardware, this task could be accomplished by rather straight
algorithms – or simply by the experimenter. But the Stage 2 wafer-scale integration,
presented in section I.6, exhibits a much more complex topology caused by different hi-
erarchical levels and multiple communication layers. Presumably, many larger networks
will not be perfectly mappable to the hardware. So, it must be decided, which of the
available (imperfect) mappings is to be chosen. Preferably, this evaluation does not in-
crease the configuration overhead noticeably.

The FACETS members Dresden5 and Heidelberg6 addressed this issue systematically and
developed a generic framework, called the Graph Model. Basically, – before the actual
mapping process – models of both the ‘biological’ network (bio graph) and the hard-
ware substrate (hardware graph) are generated. The graphs consist of several building
blocks: Nodes, for instance, represent neurons, parameter sets or hierarchical structures
(like the set of all used synapse parameters) in case of the bio graph, or hardware units
like the HICANN network cores in case of the hardware graph. Synaptic connections
between neurons or the assignment of parameters are represented by so-called named
edges. Hierarchical dependencies, e.g. the relation of a neuron to be part of a HICANN,
are indicated via hierarchical edges.
Then, a mapping algorithm connects the nodes of both graphs via so-called hyper edges,
describing the actual mapping process. The rating of ‘quality’ of different maps is ac-
complished via a cost function, specified by the experimenter.

A detailed presentation of the Graph Model can be found in [Wendt et al., 2008].

5Hochparallele VLSI-Systeme und Neuromikroelektronik, Technische Universität Dresden
6Electronic Vision(s), Ruprecht-Karls-Universität Heidelberg
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Computation in Neural Networks

Typical tasks for neural networks are perception and processing of external stimuli ap-
plied to the network. Finally, this process should lead to decisions and initiate actions.
This chapter addresses two paradigms that have been proposed in order to perform such
tasks:

• The concept of Liquid Computing allows manifold computational operations on
arbitrary input streams using generic network architectures. (section III.4)

• A hierarchic structure of Synfire Chains has been proposed to classify complex
objects and time intervals or to provide clean switching between selected actions.
(section III.1)

As these concepts are inspired by measurements of the cortex, it is reasonable to provide
some general network properties found in biology:

In vivo experiments have shown that in large, active networks synaptic conductance often
exceeds the neurons’ inherent leak conductance. This so-called High-Conductance-State
results in fundamental consequences regarding the information processing of individual
neurons that should be considered when modeling and investigating neural circuits (see
section III.2).

In general, cortical architectures are likely to compensate perturbing influences of erro-
neous components and background noise. Regarding analog hardware emulators like the
FACETS Stage 1 Hardware, such compensative mechanisms can counteract variations
of hardware devices due to the production process, particularly those that cannot be
reduced by calibration algorithms (see section III.3).

III.1 Synfire Chains

When a neuron gets excited by many pre-synaptic neurons simultaneously, it is likely to
emit a spike. So-called synfire chains are feed-forward networks consisting of a chain of
groups, each projecting to the following group. These networks can sustain the propa-
gation of synchronous pulse packets [Abeles, 1991] which have been found to withstand
dispersion under appropriate conditions [Diesmann et al., 1999], [Gewaltig et al., 2001].

34



III.2 High Conductance States

Synfire chains have been proposed to represent primitives in the process of object recog-
nition [Bienenstock, 1995]: If multiple interconnected primitives are stimulated at the
same time, their chains can compose a wider and more stable synfire chain, representing
a more complex object.
As shown in [Haß et al., 2008] synfire chains can also be used to identify time intervals.
Furthermore, [?] demonstrate, how a set of interconnected, closed-loop1 synfire chains
perform random scribbling.

A stable, closed-loop synfire chain has been set up on the FACETS Stage 1 Hardware,
as described in section VI.1.

III.2 High Conductance States

As stated above, in awake animals neurons experience considerable synaptic input most
of the time [Destexhe et al., 2003]. In simulations this background stimulus can be mod-
eled as additional, statistical conductance of the ion channels [Destexhe et al., 2001].
Effectively, this High-Conductance-State results in a shorter membrane time constant
compared to the resting state and yields a probabilistic dependency, whether a spike is
emitted under a given stimulus. Especially, a weak input, that would not cause a resting
neuron to spike, reveals a non-zero probability to trigger a post-synaptic spike [Hô and
Destexhe, 2000]. Furthermore, the reduced time constant allows the membrane potential
to follow changes in the input even for high frequencies, resulting in an increased tem-
poral resolution of the neuron [Destexhe et al., 2003]. Thus, changing a neuron’s state
between ‘resting’ and ‘high-conductance’ allows perceiving the neuron as integrator and
coincidence detector, respectively [Rudolph and Destexhe, 2003].

A proposal on approximating high-conductance-states within the integrate-and-fire neu-
ron model considering the limited number of inputs of the FACETS Stage 1 Hardware
is presented in section VI.2.

III.3 Self-stabilizing Networks

Cortical neurons of awake animals exhibits a spontaneous firing activity of typically
about 5Hz - 20Hz [Baddeley et al., 1997; Steriade, 2001; Steriade et al., 2001]. Although
this omnipresent activity is often assumed when modeling and simulating neural circuits,
it has been stated that it is a challenging task to set up networks featuring a low but sta-
ble activity over a wide range of external stimuli [Abeles, 1991]. An auspicious approach
to self-stabilizing network architectures was introduced by [Sussillo et al., 2007] and will
be presented in the following. It employs a phenomenological model of short-term plas-
ticity proposed by [Markram et al., 1998] and utilizes – in accordance with [Thomson,
1997] – that the dynamics of a synapse depend on the type of the pre- and post-synaptic

1closed-loop synfire chain: The last layer projects on the first layer, forming a closed loop.
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III Models of Organization and Computation in Neural Networks

neuron. “This self-tuning principle enables neural circuits to respond to external pertur-
bations with a characteristic transient response in the firing rate of excitatory neurons,
and then returns to its previous firing rate within a few 100 ms back into a given target
range.“ [Sussillo et al., 2007].

external

input

facilitating, inhibitory facilitating, excitatory

depressing, inhibitory depressing, excitatory

exc neurons

inh neurons

fac

fac

dep

dep

Figure III.1: Schematic of the self-stabilizing network architecture proposed by [Sussillo
et al., 2007].

A schematic of the investigated network architecture is shown in figure III.1. Two pop-
ulations of neurons, an excitatory and an inhibitory one, receive uncorrelated, external
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stimuli. The rate of the input spike trains can vary over time. Each population projects
to both itself and the other population. The parameters of the synapses are chosen such
that

• synapses between neurons of the same population are depressing, while

• synapses connecting neurons of different populations are facilitating

over a wide range of pre-synaptic firing frequency. Thus, on increasing total network
activity, the recurrent excitation acting on the excitatory population and the recurrent
inhibition acting on the inhibitory population are damped, while inter-population con-
nections are strengthened, favoring inhibitory activity throughout the network. Alike,
for decreasing total network activity, the presented connectivity pattern privileges the
emission of excitatory spikes. Overall, the network tends to both moderate very high
and avoid very low activity and, thus, exhibits a self-stabilizing behavior.
While such networks were proven to almost completely compensate the impact of input
variations on the firing rate of the excitatory population on long time scales, i.e. some
hundred milliseconds or longer, external perturbations still significantly affected network
activity for about 50 - 100 msec. Hence, such circuits preserve their ability to integrate
external inputs into computation [Sussillo et al., 2007].

Since the FACETS Stage 1 Hardware provides a similar short-term plasticity mecha-
nism (see section I.3), it is feasible to apply the above concepts to the hardware in order
to counteract inevitable perturbations of such an analog device.2 For their simulations
[Sussillo et al., 2007] used networks of 5000 neurons. As each Spikey chip only holds 384
neurons, it needs to be verified whether small-sized networks are capable of exploiting
this paradigm (see section VI.3).

III.4 Liquid Computing
The computational paradigm of the liquid state machine (LSM) was proposed and ana-
lyzed by [Maass et al., 2002], and will be shortly described with respect to spiking neural
networks3 (see figure III.2) in the following. Independently, [Jaeger , 2001] introduced a
similar concept, the echo state approach.

The state of a randomly, sparsely connected network consisting of N neurons – the
so-called liquid – can be described as a high-dimensional vector x(t) ∈ RN varying over
time. The state x(t) consists of the N states xi(t) of the liquid neurons.4 When the
liquid gets externally stimulated by one or more spike trains u(·) projecting on different
subsets of the liquid, the input stream is mapped to a high-dimensional state vector
trajectory x(·). Due to the recurrent connections, x(t) depends on both the previous
and the current input, revealing a fading memory. Usually, the liquid does not converge

2Several examples for inherent, hardware specific perturbations can be found in chapter IV.
3The liquid state machine is an abstract concept that does not necessarily require neural networks.
4A suitable state xi(t) can be defined by adding 1 for every spike while decaying with a typical membrane

time constant τ : ẋi = −xi/τ + δ(t− tspike)
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M
L

f
M

x (t)M

u( ). y(t)

Figure III.2: Schematic of the liquid state machine, according to [Maass et al., 2002].
A recurrent network (the liquid filter L) and a subsequent readout function f transform
the input stream u(·) into an output function y(t).

to an attractor state, but describes a trajectory of transient states over time. If the
connectivity of the recurrent network is chosen appropriately, different input streams
are clearly separated in the state space, while moderately jittering the input will result
in similar trajectories.
As stated in [Maass et al., 2004] a sufficiently complex liquid performs manifold, non-
linear operations on the input when mapping the input stream into the high-dimensional
state space. The resulting ‘computational primitives’, represented by the neuron states
xi(·), are accessible to a readout that needs to be trained for the specific task. [Maass
et al., 2002] proved that even a memory-less readout function f : RN → R can the-
oretically extract any information on the elapsed input stream from the current state
vector x(t) ∈ RN that can possibly be provided by a system with fading memory. In this
sense, the liquid state machine, consisting of the liquid and a readout function, possesses
universal computational power.
While the readout function f is trained for a specific task with supervised learning rules,
the liquid is a generic network that is widely independent of the designated application.
This allows multiple readout functions to be served by one liquid in parallel. In practice,
it is often sufficient to use small feed-forward perceptron5 networks as readout functions
in order to perform complex tasks like pattern recognition, spike coincidence detection
or calculating the time integral of firing rates.
Furthermore, computations are performed in real time, enabling the LSM e.g. to recog-
nize a spike pattern and to provide this result to another computational unit even before
the input stream was completely injected.6

The question how a recurrent network should be set up in order to provide an optimal
map u(·) 7→ x(·) is subject to ongoing research. E.g. computer simulations comparing

5The perceptron describes an early neuron model introduced in [Rosenblatt, 1958].
6Obviously, this example assumes that the already injected part of the spike pattern allows an unam-

biguous identification of the pattern.
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III.4 Liquid Computing

liquids implementing static synapses with those using dynamic synapses indicate an im-
portant computational role of synapse dynamics [Maass et al., 2002] – in accordance
with earlier analytical studies [Maass and Sontag, 2000]. A fast neural emulator like
the FACETS Hardware could be utilized for systematic analyses of the computational
capability of different recurrent circuit architectures.

III.4.1 High-Dimensional Attractors
An improvement of the liquid state machine introducing persistent memory was pro-
posed by [Maass et al., 2007]. Beside training the memory-less readout function, some
neurons inside the recurrent network – so-called high-dimensional attractors – are trained
to perform a specific task when triggered by the input (e.g. to generate a specific fir-
ing pattern) or to act as memory unit (e.g. indicate which input stream bursted most
recently). The training was accomplished with a subsequent supervised learning rule
named ‘teacher forcing’. A such trained memory that involves only a couple of neurons
was shown to be capable of storing information over long time spans. Inevitably, this
results in a slightly restrained state space, as a small number of ‘dimensions’ is fixed to
a specific value representing the attractor state. The other neurons of the liquid still
process the input streams without hindrance, preserving a high-dimensional state space
and, thus, the computational power of the LSM.
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IV Investigation and Minimization of
Analog Imperfections

Regarding the requirement for homogeneity of the neural substrate on the unit level, the
uncalibrated FACETS Stage 1 Hardware violates this postulate in manifold ways. Some
inaccuracies are unavoidable when producing a physically implemented neural emulator
(i.e. as a microelectronic realization) and are allowed for by design. Others are unin-
tended and have been discovered over time.
This chapter discusses an assortment of such inhomogeneities, partly discovered by the
author. It is aimed for an understanding of the underlying effects on a microelectronic
level, in order to minimize their influence on the network behavior via additional pa-
rameter adjustment or temporary workarounds.

Section IV.1 investigates a subtle system-wide interference of the different hardware com-
ponents. The following three sections address variations of the synaptic efficacy (section
IV.2 and section IV.3) and of the hardware neurons (section IV.4) due to the production
process. Concepts for determining and reducing these fluctuations are developed. In
section IV.5 the short term plasticity mechanism of the hardware synapses is analyzed.
As it will be found that the desired configuration is hindered by insufficient parameter
ranges, a workaround is presented, which allows an adequate operation. Finally, the
dependency of the hardware behavior on the chip temperature is investigated in section
IV.6.

IV.1 Synaptic Background Conductance
It was observed that the neuron resting potential does not only depend on the preset
Vrest voltage (see section I.2) but also on the configuration of the entire network. A
systematic investigation revealed that a neuron’s observed resting potential depends on

• the number of external inputs connected to the neuron,

• the hardware weight of the established connections and

• whether the synapses are excitatory or inhibitory,

but is independent of

• the maximum synapse driver strength drviout and

• the number of processed spikes.
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IV.1 Synaptic Background Conductance

This suggests that there exists a constant and permanent synaptic leakage conductance
caused by a too high Vout voltage of the synapse drivers even while there are no APs
processed (see section I.3). Indeed, such a permanent conductance is existent by design
as the synapses transform Vout into w · g(Vout) exponentially yielding an always non-
zero conductance between the membrane and the reversal potentials. But the observed
influence on the neuron membrane exceeds the expected amount by far: Synaptic leakage
conductance can easily cause an otherwise resting neuron to fire continuously, as shown
in figure IV.1.

Figure IV.1: Shifting of the neuron resting potential due to synaptic leakage conductance.
#inputs synapse drivers are configured with Ifall 6= 0 and synaptically connected to a
neuron with the discrete excitatory weight w. The measurement was taken on an arbi-
trary neuron of Spikey 18 exhibiting an unmodified resting potential of Vrest = −70.8 mV.
The plots show the effect with different values of Ifall. From upper left to lower right:
0.15µA, 0.3µA, 0.5µA, 1.0µA. For Ifall = 0 A the membrane potential remains com-
pletely unchanged. The color-bar is cropped at Vmem = −55 mV, a typical neuron thresh-
old voltage. With disabled spike mechanism the highest membrane voltage observed was
Vmem = −36.0 mV.
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IV Investigation and Minimization of Analog Imperfections

In November 2008 measurement taken by Dr. Andreas Grübel and the author revealed
that the synaptic resting potential VREST provided by the Recha-DAC located outside
the chip (see section I.4) is not stable at a low voltage. Caused by a yet unknown
malfunction a current on the VREST line of up to 4.3 mA generates a voltage due to
several resistors1 between the DAC and the synapse driver circuitry. The effect of a
raised VREST voltage on the synaptic conductance is illustrated in figure IV.2.

t

V (t)

VSTART
VREST

VREST+∆

t

g(t)

g(VREST)

g(VREST+∆)

Figure IV.2: Schematic of the linear voltage ramp generated by a synapse driver and
the resulting synaptic conductance course. The red graphs show the effect of an instable
VREST voltage that has been raised by ∆ due to erroneous leakage currents. Even a ‘rest-
ing’ synapse driver induces a noticeable permanent synaptic conductance. Additionally,
the minimum synaptic efficacy of dynamic synapses determined by the difference VSTART
- VREST is reduced (see section IV.5).

Obviously, the effect is determined by Ifall, the current controlling the synaptic time
constant τfall (see figure IV.1). For Ifall = 0A the membrane potential is not affected
at all. Synapse drivers operating the left or the right synapse array distort VREST equally
(not shown). The current observed on the VREST line exceeds the expected current of
#inputs · Ifall by about one order of magnitude. Other synapse driver parameters like
Irise, Igmax, Vplb as well as all STP parameters do not contribute to the above effect. Fur-
ther measurements revealing the source of the too high leakage current need to be taken.

Until the VREST voltage can be stabilized on a low value it is recommended to restrict
any synapse driver Ifall current to a maximum of 0.15µA as this value guarantees stable
neuron resting potentials. A workaround applied to Spikey 25 lowering VREST in order
to allow a decent operation of short-term plasticity is presented in section IV.5.

1Mostly, the DAC’s source resistance and a protective resistor
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IV.2 Synapse Driver Calibration

IV.2 Synapse Driver Calibration

Due to variations in the production process, synapse drivers reveal a manifold behavior
regarding the maximal amplitude gmax and the time constants τrise and τfall of the gen-
erated voltage ramps (see section I.3).
Concerning gmax the variances arise from comparator biases of the comparator O1 (see
fig. I.4). The time constants are adjusted via current mirrors involving several transis-
tors. Their mismatch causes variations of the time constants. In order to counterbalance
these inhomogeneities and to adjust the characteristics of the synapses in general, all
three controlling currents – namely, drviout, drvirise and drvifall – can be set in-
dividually for each synapse driver (see also section II.2).
Since neither the synapse driver’s voltage course nor the conductance course at the ion
channel2 are observable, a calibration routine must match the effect of a synapse on the
membrane potential to the desired conductance course. An opportune method is to sim-
ulate the favored synapse behavior with a software simulator and adapt the Hardware
synapse to the simulation results.

The calibration process is considerably hindered by the capacitance of the vertical wires,
transmitting the current from the synapse to the ion channel. Further, in typical net-
works a neuron experiences numerous conductive connections to the reversal potentials
most of the time – altering the neurons effective resting potential Vrest and relaxation
time constant τmem (see also section III.2).
Taking these effects into account, previous calibration algorithms stimulated the neuron
with several Poisson spike trains. Knowing the spike times of each driver, every EPSP
can be assigned to its generating driver. In a single trial, individual EPSPs are unrec-
ognizable due the noise of the EPSPs from other synapses. But after stimulating the
membrane with numerous different Poisson spike trains, the noise averages out, reveal-
ing the separate EPSPs. This method is known as spike triggered averaging (STA, for a
typical application of this technique see e.g. [Matsumura et al., 1996]. After measuring
all drivers’ strengths, their drviout and τfall are adjusted. This procedure is repeated,
until the desired accuracy is reached.

A simpler method has been proposed by the author, exploiting the synapse drivers’
leakage described in section IV.1: Almost all synapse drivers get connected to a neuron
with high synaptic weights. Without spike input they add a medium and constant con-
ductivity to both reversal potentials. The fraction of excitatory to inhibitory synapses
determines the effective resting potential of the neuron. Using this setup, the calibration
process can be reduced to single EPSPs from the considered synapse driver. Only the
noise of the membrane and the analog readout must be averaged out.
In order to accelerate the calibration routine, multiple synapse drivers3 process a spike
in the same trial, but at different points in time. Furthermore, the calibration process is

2More precisely, the hardware equivalent to the biological ion channels, defined in section I.3.
3typically 8 or 16
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IV Investigation and Minimization of Analog Imperfections

shortened without losing precision, as drviout is adjusted just roughly in the beginning,
increasing precision with each trial by incrementing the number of averaged repetitions.
The presented algorithm has been implemented by the author (filename: drviout-
Calib.py). The current version only alters drviout, while drvirise and drvifall are
set to fixed values, and uses the integral of the EPSP as measure. Further, the cali-
bration uses only one (arbitrary) neuron. Thus, variances of the EPSP caused by the
neuron do not average out. The impact of this effect is discussed in section IV.3. Future
versions could improve performance by averaging the calibration factors obtained from
different neurons.

Comparison of Performance

In order to evaluate the precision, achieved by the different calibration algorithms, Daniel
Brüderle implemented a tool to analyze the EPSP-integrals. It is based on his calibration
routine using spike triggered averaging. One chip’s (Spikey III #18) left synapse driver
block was calibrated with both calibration algorithms, using the same reference neuron.
The evaluation was run on this neuron, too, in order to eliminate variations caused by
different neurons (see section IV.3).
The calibration exploiting the synapse drivers’ leakage yielded a relative standard devi-
ation of about 15% over all synapse drivers’ EPSPs and took 195 min. The calibration
based on STA resulted in a relative standard deviation of about 20% and took 199 min.
Both algorithms allow a satisfying calibration of the synapse drivers, approaching the
limit derived in section IV.3. A total duration of 2 × 3 hours is acceptable to calibrate
both synapse driver blocks. The algorithm proposed by the author performed slightly
better, but might lack on compatibility with future Hardware revisions, since it uses an
unintended ’feature’.

Remark: The comparison was carried out before the source of error of the synaptic
leakage conductance was discovered in November 2008 (see section IV.1). Hence, both
calibration routines had to deal with variable membrane resting potentials. Presum-
ably, a repetition would yield an increased performance of both calibration methods.
The approach of the author was still applicable despite of a reduced synaptic leakage
conductance with Ifall limited to 0.15µA.

IV.3 Exploring the Limits for Calibration Algorithms

When counterbalancing variances of the synapse drivers, the question arises, what level
of uniformity – regarding the integrals of the EPSPs – can be achieved.
Basically, four components contribute to the actual membrane potential seen on the
oscilloscope, whenever an EPSP occurs4. Each of them adds specific variations and
statistical errors.

4Assuming an idealized setup with only one EPSP on a resting neuron.
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IV.3 Exploring the Limits for Calibration Algorithms

(1) The synapse driver creates the linear voltage ramp transmitted to the synapses
(see sections I.3 and IV.2). (driver specific)

(2) The synapse transforms the voltage into an exponential current (see section I.3).
(individual for each synapse)

(3) The vertical conductor, the ion channel5 and the neuron’s capacitance
determine the impact of the current on the membrane potential. (neuron specific)

(4) The analog readout connects the membrane to the oscilloscope. (neuron specific)

(5) All components are subject to statistical noise.

Minimization of (1) has been discussed in the previous section IV.2.
Systematic readout errors (4) could – in principle – be measured by setting a neuron to
a fixed, predefined voltage (for instance a resting potential) and observing its voltage on
the oscilloscope. Correction factors obtained in this way could adjust latter measures.
The systematic readout errors caused by the eight analog readout channels, are being
measured and included in the software flow by Daniel Brüderle, while this thesis is being
written. Their contribution to the readout error was found to outrange neuron-wise
effects by about factor 10.
Statistical errors due to noise (5) can be reduced arbitrarily via numerous repetitions of
the same setup.
Genuine neuron specific variations (3) can only be counteracted statistically in larger
networks by multiplying all incoming synapse weights with a neuron specific weight fac-
tor. This approach has been suggested and implemented by Daniel Brüderle (see also
section II.2).
Only the variations of the synapses w themselves (2) cannot be reduced, since their
discrete nature prevents stepless corrections. Hence, this variation sets the benchmark
for all calibration algorithms concerning items (1) and (3)6.

The author proposed and implemented the following method to estimate the influence of
the synaptic variance (2) on the EPSP-integral. Based upon an adequate calibration of
the synapse drivers using drvioutCalib.py7 presented in section IV.2 and a calibration
of the membrane leakage conductance gleak using doCalibration tauMem.py by Daniel
Brüderle, all 256 × 192 = 49152 synapses of a synapse array are surveyed: Each neuron
is set to a predefined effective resting potential via leakage conductance as applied in the
synapse driver calibration. Then, all 256 synapse drivers excite each neuron with one
EPSP of the same discrete weight w.8 The integrals of the EPSPs are measured.

5The hardware equivalent to the biological ion channels, presented in section I.3.
6Reducing the readout errors (4) does not effect the network’s behavior.
7The actual precision of the calibration is of no significance, since the synapses of each driver are

analyzed separately.
8In detail, the neurons are stimulated and analyzed one by one. 32 EPSPs from different drivers are

excited per trial at different points in time. The membrane potential is averaged over 10 identical
trials in order to reduce statistical noise (5). This process is repeated until all pairs (driver, neuron)
have been measured.
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IV Investigation and Minimization of Analog Imperfections

In order to remove the systematic neuron specific errors (3) and (4), all EPSP-integrals
of the same neuron are divided by their common mean, multiplicatively normalizing
them to 1. The standard deviation of these normalized EPSP-integrals of one single
synapse driver (again normalized to their common mean) is a measure of the relative
variation caused by the synapses (2). By averaging the relative standard deviations of
all drivers the certainty of the estimate is improved.
Finally, this estimate still contains the (already reduced) error due to statistical noise
(see footnote). This error is determined separately (stdOfOnePsp.py) based on eight
arbitrary synapse drivers and one arbitrary neuron: Ten-times averaged EPSP-integrals
are gathered 50 times for each driver. The mean of the standard deviations of the drivers’
EPSP-integrals is an estimate for the noise level of the readout.

The measurements described above have been carried out for the left synapse array
of Spikey 25. The target value of the synapse driver calibration was

∫
(V (t)−Vrest) dt =

1 V ·ms, given in biological time and hardware voltage. The unnormalized EPSP-
integrals are shown in figure IV.3, the neuron-wise normalized EPSPs in figure IV.4.

The normalized EPSP-integrals (excited by the same synapse driver) have a mean rela-
tive standard deviation of 13.46%9.
The noise of the underlying measurement has been determined to be 8.0%.
Thus, the synapse inherent lower bound for the relative standard deviation after all
calibrations concerning (1) and (3) is estimated to be√

(13.46%)2 − (8.0%)2 = 10.8%

IV.4 Neuron Threshold Variation
For single-neuron experiments the resting potential Vrest and the threshold voltage
Vthresh can be adjusted at will. But since both voltages are shared by 96 neurons
(see section I.5), discrepancies of single neurons (resulting from fabrication process vari-
ations) can hardly be counteracted in larger networks. A cause for inhomogeneities of
Vrest has been addressed in section IV.1. The author also discovered serious variations
of the threshold voltage Vthesh, which are discussed in this section.

The second version of the FACETS Stage I Hardware (Spikey II) suffered from a dramatic
instability in many parameters (see section I.4 and [Müller , 2008]), affecting (among oth-
ers) the threshold voltages and concealing other reasons of neuron inhomogeneity. Spikey
III solves the problem of drifting voltages and currents, revealing other sources of error.
This explains the late formulation of the following conclusion:

9Malfunctioning or obviously faultily measured neurons have been sorted out. About 10% in total.
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IV.4 Neuron Threshold Variation

Many neurons lack either an adjustable threshold or a reliable reset mechanism.

As remarked in section I.2, the bias current icb plays a key role for spike emission and
membrane reset. icb can be set individually for each neuron in a range 0 to 2.5µA.10

The threshold comparator contains, among others, two transistors, in order to compare
the membrane potential Vmem to the preset threshold Vthresh. Due to variations in the
production process, the transistors do not perfectly match. This results in a compara-
tor bias ∆Vthresh, effectively shifting Vthresh and, hence, in a variety of neuron specific
threshold voltages, that can be either higher or lower than the preset value. icb provides
the bias current for this comparator circuits: The higher icb is set, the lower ∆Vthresh
becomes [Schemmel, 2008].
On the other hand, icb also controls the refractory period τrefrac. A high icb corre-
sponds to short a τrefrac. In hardware the reset mechanism and the refractory period
are combined: When emitting a spike, the neuron gets connected to the reset potential
Vreset for the period τrefrac with high conductivity. Hence, the refractory period needs
to be long enough to discharge the neuron’s capacitor (at least close) to Vreset. If icb
is set too high, Vmem might even stay above Vthresh, locking the neuron in a state that
prohibits any further dynamics.

Before these effects were understood, icb was a global parameter with a fixed value
for all neurons. It was set to 0.2µA – a rather low value. In large networks this caused
some neurons to spike with very high rates without any external stimuli, since their
resting potential Vrest was above the effective threshold Vthresh + ∆Vthresh. In recurrent
networks such neurons distort the expected network behavior to an extent that makes
quantitative studies impossible.
In order to quantify the variance of effective threshold voltages, the threshold was set to
Vthresh = −57 mV for the left neuron block (192 neurons) of Spikey 25. Then, the resting
potential Vrest was swept over a wide range. A schematic is shown in figure IV.5. The
measured neurons’ firing rates are presented in the left plot of figure IV.6. The standard
deviation of the effective threshold voltages is σ(Vthresh) = 4.5 mV. 43 neurons reveal a
shift of more than 5 mV.11
A more extensive investigation of the effects described above is shown in figure IV.7,
exemplary for neuron 256 of Spikey 25. This neuron exhibits a typical behavior for a
neuron with negative ∆Vthresh: For a fixed difference Vthresh−Vrest = 1mV and low icb
the neuron spikes constantly. As long as the reset period τrefrac is long enough to pull
down the membrane close to Vreset, the spike rate remains on an almost constant level.
While increasing icb (thus, shortening τrefrac), at some point the reset mechanism does
not manage to pull down the membrane potential completely. Thus, the relaxation to-
wards Vrest with time constant τmem = Cm/gleak exceeds the threshold earlier, resulting

10More precisely, icb is a current generated by the DAC with upper bound irefdac/10.
11All voltages are given in biological units. In October 2008 the mapping of the biological voltages onto

the vout voltages changed due to modifications in the voutbias currents allowing a larger dynamical
range of the hardware voltages. This leads to a reduction of the threshold voltage variation in
biological terms.
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Figure IV.5: Schematic of threshold voltage deviation and its effect on spiking behavior.
Due to the comparator mismatch, the selected threshold and the effective threshold differ.
Sweeping Vrest, the shift can be detected: For Vrest > Vthresh+∆Vthresh the neuron begins
to spike repeatedly without any external stimulation.

in a higher firing rate. Eventually, the reset does not even pull Vmem below threshold,
causing a locking state and the spike rate to drop to zero. This locking state occurs
at lower icb as the threshold (and Vrest) rises – a correlation that has not yet been
understood.

These results suggest to adjust icb for each neuron, such that ∆Vthresh is reduced, while
the reset mechanism still pulls down Vmem close to Vreset. However, for some neurons,
∆Vthesh cannot be reduced to an acceptable extent, before their reset mechanism fails.
In order to preserve overall network behavior, such neurons should rather be switched
off than be allowed to spike erroneously.

Based upon these facts, the author proposed and implemented a calibration routine
(calibrator icb min.py). Highest priority is that icb is high enough to prevent er-
roneous, constant spiking – either by reducing ∆Vthresh to an acceptable extent or by
’switching off’ the neuron as it enters a locking state. This condition determines icbmin.
The central plot of figure IV.6 shows the results of this first calibration routine: It per-
forms well regarding erroneous, unstimulated spiking. The introduction of an upper
limit for icbmin (right plot of figure IV.6) is not recommended.
While this thesis is being written, the above algorithm is included in an improved cal-
ibration routine by Daniel Brüderle that determines a reduced threshold discrepancy
(→icbmin) and a minimal refractory period (→icbmax), separately. A future revision of
the FACETS Stage 1 Hardware – scheduled for summer 2009 – will separate the com-
parator bias from the refractory period, allowing to reduce ∆Vthresh without affecting
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τrefrac. Additionally, a more sophisticated mapping process (section II.3), supporting
the exclusion of faulty neurons, is in progress.

IV.5 Short Term Plasticity
When investigating the influence of dynamic synapses on a neural network’s behavior, it
is essential to provide a comparison to the performance of static synapses. In particular,
the respective synaptic weights need to be converted into each other in a meaningful
manner.
Furthermore, it is desirable to be in control of the applied STP-parameters. As pre-
sented in section I.3, all parameters describing the short-term plasticity mechanism of
the FACETS Stage 1 Hardware are adjusted by voltages and currents. Since only the
influence of these parameters on the membrane potential can be observed, it is a chal-
lenging task to identify e.g. the recovery time constant of the inactive partition.

This section addresses the above issues: After a theoretical analysis of the synapse
dynamics, a concept is presented on how Spikey’s STP-parameters can be measured.
It will be found that the parameter range of the vout-voltages does not allow an ade-
quate operation of short-term plasticity. Finally, a workaround alleviating this problem
is presented.

IV.5.1 Analysis of Synapse Dynamics
Following [Sussillo et al., 2007], the conversion between dynamic synapse weights WD

and static synapse weights WS can be achieved by assuming a regular firing of the pre-
synaptic neuron with rate ν = 1/T : The (in-)active partition I (see section I.3) will
converge towards a constant value I0(ν) resulting in a corresponding synaptic weight.
This weight allows for a conversion between WD and WS .
In case of depression it is:

WS = WD · [1− λ · I0]

In case of facilitation it is:

WS = WD · [1 + λ · (I0 −N)]

For I = I0(ν), the decay of I (with time constant trec) outweighs the increment C ·(1−I)
after every spike. Hence, the equilibrium condition reads:

C · (1− I0)
!= [I0 + C · (1− I0)] · [1− exp(−T/trec)]

⇔ I0 = C

exp(T/trec)− 1 + C

As expected, lim
T→0

I0 = 1 for high firing rates and lim
T→∞

I0 = 0 for low rates. Fig-
ure IV.8 shows the (in-)active partition at equilibrium I0 as well as the corresponding
synaptic weights WS for exemplary parameters. In contrast to the UDF-model proposed
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threshold after each spike. One notices that the edge of the locking state depends on the
preset threshold voltage.
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by [Markram et al., 1998], which the hardware STP-mechanism is based on, the dynam-
ics of the FACETS Stage 1 Hardware do not exhibit a maximum at a certain frequency
but are strictly monotonic in- or decreasing, depending on their mode.
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Figure IV.8: left: The (in-)active partition at equilibrium I0 with respect to the rate of a
regular input. right: The corresponding static weight for dynamic synapses in depression
and facilitation mode. parameters used: C2 = 3

8 · C1, trec = 100 msec, λ = 0.7 and
N = 0.6.

The largest change of I0 with respect to the firing rate ν satisfies

f(ν) := ∂2I0
∂ν2 = 0.

This equation does not have an analytical solution. Numerical calculations of Mihai
Petrovici yielded that the solution ν̃ of f(ν) = 0 is linear in the reciprocal recovery time
constant 1/trec for any fixed step size C. Hence, the product trec ∗ ν̃(trec, C) is only a
function of C, which is shown in figure IV.9.

IV.5.2 Measurement of Hardware Parameters
As stated above, determining Spikey’s STP-parameters is a difficult task, since only
the membrane potential Vm is directly accessible by measurement. Taking the expected
errors into account, the following paragraphs only aim for a determination of the mag-
nitude of the parameters. Since the considered voltages and currents are shared by each
128 synapse drivers (see section I.5) a high-precision calibration on a network level is
unfeasible, anyway. While the measurement of the gain µ of the STP operation amplifier
O2 was carried out by the author, techniques for gauging trec have not yet been applied.

The OTA O2 Gain µ

As presented in section I.3, the STP mechanism does not alter the discrete weight-
factor w but the synapse drivers reference current Igmax. Hence, a measurement should
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Figure IV.9: Dependency of the maximum of the derivative of I0(ν) with respect to C
and trec. With friendly permission from Mihai Petrovici.

rather rely on variations of Igmax than on other data. Since the vout voltages like Vmax
and Vfac exhibit a minimum value of about 0.6 V on Spikey III (see section I.5), it is
necessary to switch to facilitation-mode in order to apply small voltages to the inputs
of the operation amplifier O2. Large trec and a large step size C2/C1 = 7/8 ensure
that I0 ≈ 1 after few spikes even for moderate input frequencies. Thus, the effective
conductance is determined by

Itotal = Igmax · [1 + µ · (Vmax − Vfac)]

By recording the resulting membrane potential and adjusting Igmax with static synapses,
such that the input excites the neuron in a similar manner, the gain factor µ can be
measured. Based on 4 synapse drivers of Spikey 25, it was found µ = (3.0± 0.5)V −1.

For depressing synapses this result means that even the lowest possible value Vmax ≈
0.6 V will push the synaptic efficacy to 0 after few spikes. Correspondingly, for Vmax =
Vfac ≈ 0.6 V the first couple of action potentials transmitted by facilitating synapses will
leave no trace on the neuron membrane unless the (in-)active partition I rises quickly
enough, which requires C2/C1 = 7/8 with a large trec. This, however, leads to a quick
saturation of I close to its maximum value. As a result, both modes lead to an almost
‘binary’ synaptic behavior, yielding an effective weight of zero or max most of the time.

Differential Measurement of trec

The circumstances described above make it difficult to measure the recovery time con-
stant of the (in-)active partition trec. But as soon as the full range of required vout-
voltages can be attained, the following method should be able to determine the relation
between trec and Irec (= Vdtc).
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Since the fraction C2/C1 can be assumed to be rather precise,12 one can exploit that∣∣∣∂WS
∂ν

∣∣∣ ∝ ∣∣∣∂I0
∂ν

∣∣∣ is maximal for ν = ν̃ as shown above. Hence, by varying the input fre-
quency ν and comparing the impact on the membrane to the effect caused by static
synapses,13 WS(ν) can be measured and thus also trec.

IV.5.3 Random Spike Losses

Particularly, during the activation of short term plasticity random spike losses were
observed, indicating that, under certain circumstances, some spikes entering the synapse
driver are not processed at all. It seems that this error occurs if the duration of the action
potential – more precisely the pre-signal – is not set up properly. The involved circuity
is described in section I.3 and section I.4. The duration of the AP is controlled via Vplb
in the software layers. If EPSPs drop out randomly, Vplb might be set either too low or
too high.
High values of Vplb cause short pre-pulses which might not suffice to trigger the synapse
driver to start the voltage ramp. Low values of Vplb yield long pre-pulses that can cause
a locking state in the circuits generating the pre-signal. This state results in a permanent
current between VSTART and Vout leading to a constant synaptic conductance.
The current setting Vplb = 0.15µA supports both static and dynamic synapses.

IV.5.4 A Workaround regarding Internal Voltages

As shown above, restrictions on the configuration range of Spikey III ’s vout voltages
lead to a much too strong STP mechanism: A narrow range of possible values for the
(in-)active partition I covers the whole spectrum of obtainable effective synaptic weights.
Two workarounds presented in the following allow for a decent operation, anyhow.

Figure IV.10: The ibtest pin is located in the upper left corner of the Recha board below
the analog readout pins.

In order to achieve vout values below 0.6 V, the ibtest pin described in section I.4 can
12In addition, averaging the measurement over multiple synapse drivers reduces statistical errors due to

variations of the capacitances.
13By readjusting Igmax.

56



IV.5 Short Term Plasticity

be utilized. Usually, it provides read access to a single, while arbitrary, vout voltage.
However, the existing wiring can also be exploited to gain write access to multiple vouts
in parallel under the restriction that (a) all connected voltages will drop to the same
value and (b) the resulting value cannot be adjusted at will due to the additional resis-
tance of the ibtest circuitry.
In practice, a cable is plugged to the ibtest pin as shown in figure IV.10. It can be
either simply hot-wired or connected to an external power supply unit (optionally with
reversed voltage). Before multiplexing the vouts to the pin the respective voutbias cur-
rents must be set to zero in order to limit the load on the ibtest circuitry. Furthermore,
the internal vout generation via the DAC should be reduced by setting the requested
voltage to zero.
All these issues are covered by the additional keyword argument voltageOnTestPin=[...]
of the pyNN.run() function of the pyNN.hardware.stage1 module. By supplying a list
of indices of vouts to pyNN.run(), the respective voltages of both halves of the chip will
be connected to ibtest during the subsequent configuration process.
For instance, pyNN.run(1000, voltageOnTestPin=[12, 13]) will provide write access
to all four Vfac voltages and then run the network for 1 biological second while the indices
[14, 15] would select Vstdf.
This workaround must be handled with care since the currents of all connected
vouts gather in the wire to the pin. The total current, which can be monitored via an
amperemeter, must not exceed 3 mA.

The second workaround effectively implements a minimum synaptic control current Igmax.
As described in section IV.1, Spikey III ’s global synapse driver resting voltage VREST
is significantly above 0 V if many synapse drivers are configured even with moderate
Ifall. In order to reduce this problem the connection between Recha-DAC and VREST
was bypassed on Spikey 25, leaving only the internal 10Ω resistor to induce a voltage
that raises VREST. This allows operating all 512 Ifall currents at about 0.15µA with no
noticeable change in VREST.
This low value of VREST guarantees that the initial value of each synaptic course con-
trolled via VSTART is above the leakage conductance determined by VREST as illustrated
in figure IV.2. Each synaptic voltage ramp Vout(t) starts at VSTART independently of
the maximal voltage defined by Igmax. (see section I.3). Even in case of extremely low
Igmax – e.g. for I ≈ 1 in depression mode or I ≈ 0 in facilitation mode – the synaptic
conductance jumps a to noticeable value.
While slightly modifying the intended synapse dynamics, this setup limits the effect of
depressing synapses at high frequencies. On the other hand, facilitating synapses exhibit
a non-vanishing synaptic efficacy after longer periods without activity.

Combining the above methods, the following settings have been found to provide a
suitable short-term plasticity mechanism on the FACETS Stage 1 Hardware:

• short all Vfac (without an additional power supply unit) via ibtest,

• set Vstdf to the lowest possible value via the on-chip DAC,
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• restrict Ifall to 0.15µA,

• set VSTART = 0.25 V and Vdtc = 0.7µA,

• use C2/C1 = 1/8 in depression mode and C2/C1 = 3/8 in facilitation mode.

Presumably, this technique will become obsolete in Summer 2009 as Spikey IV is ex-
pected to provide vout voltages close to zero.

IV.6 Temperature Dependency
While using the second revision of the FACETS Stage 1 Hardware, Spikey II, it was
observed that the same configuration and spike input on the same chip yielded differing
results in different trials. Though some level of inaccuracy is taken for granted on an
analog emulator, the variation of data acquired on different days exceeded the variation
of measurements taken consecutively. This suggested the existence of some source influ-
encing the hardware behavior on time scales of hours or days, potential candidates being
changes in the power supply, electro-magnetic fields or fluctuations of chip temperature
– caused by either the ambiance, the configuration or network activity.
This section addresses the temperature dependency. After the presentation of the exper-
imental setup possible heat sources are investigated. It will be found that the ambient
air has a major influence on chip activity. Therefore, a stabilization of the chip tem-
perature is desirable. Most measurements taken on Spikey II should still be valid for
its successor Spikey III. A comparison between cooled and uncooled hardware devices
regarding their thermal stability is presented at the end of this section.

IV.6.1 Experimental Setup
In order to quantify the influence of different sources on the hardware behavior three
measures were utilized:

• The ambient air temperature was measured with an ordinary digital thermome-
ter14.

• The chip temperature was approximated using a PT 100 temperature probe being
attached to the backside of the Recha board. Thermal conductance was achieved
by heat-conductive paste and unused metal connectors between Spikey and the
board. The conversion from the PT 100 resistor to degree Centigrade was carried
out by a Philips PM 2525 multimeter.

• As measure of chip activity the mean firing rate of several non-interconnected
neurons being excited with arbitrary but fixed Poisson spike trains was used.

Measurement errors – and, in particular, systematic errors – of the stated chip temper-
ature are difficult to determine, since the quality of thermal conductance to the chip is
14manufacturer: TFA, Kat. Nr.: 30.1026
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unknown. An aggravating factor is that the temperature probe is also inevitably influ-
enced by the air flow of cooling fans. A possible, while elaborate, method to measure the
chip temperature with high precision would be the application of a IR camera targeted
directly at the chip.
Having said this, all values regarding chip temperature must be accepted with caution
and shall only be taken as indicators for changes in temperature.

Figure IV.11: The experimental setup used for measuring the chip temperature.

Figure IV.11 shows the experimental setup including the multimeter and the cables at-
tached to the probe located between the Nathan and the Recha board. All measurements
involving the chip temperature were taken on Spikey II, No. 8.
In order to raise or lower the ambient temperature, the room’s window was opened or
closed. Occasionally, a hair dryer was used to blow warm air in direction of the hardware
from a distance of about one meter.

IV.6.2 Systematic Investigation
First of all, it was observed that the chip temperature rises to high values that might
damage the circuitry after repowering the entire backplane and configuring the Nathan-
FPGA. Until Spikey’s so-called reset flag has been cleared, the on-chip DAC does not
update the voltage and current memories. Thus, the currents drift to high values heating
up the chip. Additionally, the communication bus between the FPGA and Spikey’s
digital part is in BusIdleMode, with a high default voltage inducing additional currents
in the digital part. The major states of the chip’s analog and digital domain as well as the
bus from ‘power-on’ until ‘regular operation’ are listed in table IV.1. The compilation
of these states was kindly supported by Dr. Andreas Grübl.
As the chip heats up after power-on, it is advisable to clear the reset flag right after
initializing the Nathan-FPGA.15

15This can be achieved by writing the following two commands to all occupied Nathan slots:
dwrite $NATHAN 2 40 1 and dwrite $NATHAN 2 40 0.
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last action digital part analog part bus

power-on off current memories drift off

darkwing + nathan bit-
files sent, ‘dinit -r’

reset flag set current memories drift BusIdleMode

clear reset flag idle current memories set to 0 BusIdleMode

Spikey constructor called idle, several sta-
tus registers set

clock on EventIdleMode

Spikey::config() called idle currents updated from pa-
rameter RAM

EventIdleMode

Table IV.1: States of Spikey’s analog and digital part and the communication bus to the
Nathan-FPGA after repowering the backplane.

In contrast to the states assumed by the analog and digital part after power-up, which
drove the chip temperature close to 60 ◦C, changes in the network configuration and
neural activity left almost no thermal trace on the hardware. None of the following
setups increased the measured chip temperature, which was at about 35 ◦C, by more
than 0.3 ◦C:

• analog recording of membrane potentials via the oscilloscope,

• many high synaptic weights w,

• many high control currents (e.g. drviout, drvirise),

• almost permanent external stimulation ( runtime
idle time = 1

2),

• permanent activity in a bursting recurrent network.

The situation changed as the ambiance was warmed or cooled: Figure IV.12 shows the
relation between the temperature of the chip Tchip and the surrounding air Tambiance.
Changes in the ambient temperature are followed by almost identical changes in the chip
temperature.

In order to determine the impact of the variation of temperature on the hardware be-
havior, the chip was warmed with a hair dryer. It was found that the chip’s activity
revealed a serious temperature dependency: An increase of the chip temperature by less
than 3 ◦C caused a drop of the firing rate of about 20%! Figure IV.13 exemplary shows
the time course of the membrane voltage of an arbitrary neuron stimulated with Poisson
spike trains. The same setup was applied for different chip temperatures. Obviously,
the entire voltage course drops, the warmer the circuitry becomes.
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Figure IV.12: Relation between the temperature of the chip Tchip and the surrounding
air Tambiance. Each point was taken after the ambiance temperature was constant for a
couple of minutes. Thus, the chip was supposed to be at thermal equilibrium. The linear
function a · Tambiance + b approximating the measurement best is drawn as a black line.
The standard errors of the fit parameters, reflecting statistical errors, are σa = 0.01
and σb = 0.4◦C. Systematic errors are hard to estimate due to the unknown thermal
conductance between chip and probe.

Figure IV.13: Time course of a neuron’s membrane voltage as seen on the oscilloscope
(in arbitrary units). The warmer the chip becomes, the more the membrane voltage drops
resulting in a lower firing rate. The green trace shows the trigger signal and is of no
relevance.
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IV.6.3 Temperature Stabilization

The above results suggest that stabilizing the chip temperature is essential for ensuring
reproducible emulation results. As found by [Müller , 2008], Spikey II ’s erroneous voltage
drifts of the vout voltages lessen as temperature decreases. Therefore, it was favorable
to cool down and stabilize the chip at a low temperature. Since Spikey III exhibits stable
parameters, there is no further need for operating the hardware at low temperature. The
following approaches have been tried out to provide a stable thermal setup.

Figure IV.14: left: The backplane connected to Evolver 13 in a ‘19-inch rack metal case’
(with removed cover). When closed, two fans supply a continuous air stream dissipating
the chip’s heat. Spikey III no. 25 – the chip used for most experiments presented in this
thesis – is located in this case. right: The peltier cooling device and its controller.

With help of Dr. Andreas Grübl the backplane connected to Evolver 13 was installed
into a 19-inch rack metal case. A photograph of the opened case is shown in figure IV.14
(left). While this method does not support cooling below the ambiance at least the heat
dissipation works at a steady level. Furthermore, the grounded metal case shields the
hardware from external electro-magnetic fields.
An active cooling device was build by Maurice Güttler according to plans suggested by
Dr. Johannes Schemmel. Basically, a peltier element attached to the backside of the
Recha board cools down the chip to the desired temperature. A controller actuates the
peltier element via a thermosensitive resistor. Figure IV.14 (right) shows a photograph
of a peltier element and the controller. Due to the limited space at the backside of
the Recha board it turned out to be difficult to attach both the sensor and the peltier
element such that both have a good thermal conductance to the chip but do not interact
directly: When the peltier device began to cool intensely, its backside heated the sensor
more than the chip cooled it, leading to an even stronger cooling and causing the cooling
system to run at maximum power. Without a systematic tuning of the controller and
an elaborate placement of the probe, this approach yields no satisfactory improvement
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(see also the following Comparison Measurement).
By way of trial, the backplane was also placed in a climate cabinet in order to provide a
constant and cold ambiance. But the SCSI-connector and the power lines led through a
flexible notch in the door yielded serious communication errors. Thus, this setup is also
not applicable without any further effort.

IV.6.4 Comparison Measurement
To estimate both the capability of the peltier cooling device and the influence of varia-
tions of the temperature on long time scales two benchmarks were carried out: The firing
rate of one Spikey III with peltier cooling, one without cooling and one uncooled Spikey
II were measured (a) for an entire weekend considering natural thermal fluctuations and
(b) for about two hours with artificial variations in temperature.

For that purpose, all three Spikey chips, located on the same backplane, were operated
in parallel. On each Spikey, 7 neurons were stimulated with excitatory and inhibitory
Poisson spike trains, which – once generated – remained unchanged for the rest of the
investigation. All configuration currents and voltages were set to equal values on all
chips. Only the discrete weight factors were adjusted such that any neuron exhibited an
average firing rate 10 Hz < ν < 35 Hz.

18 0 6 12 18 0 6 12 18

time [h]

0.96

0.98

1.00

1.02

1.04

n
o
rm

a
liz

e
d
 r

a
te

Spikey III no. 22, w/o peltier cooling
Spikey III no. 25, w/  peltier cooling
Spikey II  no. 5,  w/o peltier cooling

Figure IV.15: Variation of the chip activity over one weekend in September 2008. All
chips were operated by the same backplane and were configured similarly. Especially, the
cooled Spikey III chip reveals a different behavior for day- and nighttime. The communi-
cation to Spikey 5 broke down after about 12 hours. The error bars reflect the uncertainty
of the 60-minutes mean firing rates (see body text). The trace of each Spikey III chip is
based on about 60.000 hardware runs, each emulating 4 biological seconds.

Then, every 30 seconds each chip was run 10 times in a row for 4 biological seconds.
Such a sequence of 10 runs is referred to as a trial in the following. For each trial the
mean firing rate ν of all 7 neurons is stored. Figure IV.15 shows the results over one
weekend in September 2008. Every chip’s trace has been divided by its mean value
normalizing the firing rate to 1. In order to reduce statistical errors an average is made
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over groups of 120 trials (corresponding to 60 minutes), as temperature variations are
assumed to be negligible over this time span. The error bars reflect the uncertainty of
the mean values σ<ν>, more precisely: σ<ν> = σ{ν}/

√
120. If there exists no source

of error acting on long time scales, meaning that all errors are already covered by the
60-minutes uncertainties σ<ν>, the standard deviation of the set of mean values σ{<ν>}
equals the mean value of the 60-minutes standard deviations < {σ<ν>} >.
With a ratio ξ := σ{<ν>}

<{σ<ν>}> = 7.3 the cooled Spikey III performed worse than the
uncooled Spikey III that revealed a lower variation on long time scales (ξ = 3.7). Inter-
estingly, the cooled Spikey III tends to increased activity (corresponds to lower temper-
ature) during the night, while during daytime activity drops. The communication to the
Spikey II chip broke down after about 12 hours. In general, Spikey II reveals a larger
variance inside each trial than the Spikey III chips reflecting that the latest revision of
the FACETS Stage 1 Hardware exhibits a higher parameter stability resulting in smaller
fluctuations on short time scales.

0 20 40 60 80 100

time [min]

0.85

0.90

0.95

1.00

1.05

1.10

n
o
rm

a
liz

e
d
 r

a
te

25.0
◦
C 23.6

◦
C 24.3

◦
C 25.8

◦
C

Spikey III no. 22, w/o peltier cooling
Spikey III no. 25, w/  peltier cooling
Spikey II  no. 5,  w/o peltier cooling

Figure IV.16: Variation of the chip activity over two hours. The setup is similar to the
one presented above, except for each 4 trials are averaged, here. At the beginning, the
window of the laboratory was closed. The first vertical line indicates that the window
was opened, the second one that it was half open, the third one that it was totally closed.
Additionally, the ambiance temperature was taken at these events.

The same setup was used for a shorter time period in order to have more control over
the ambiance. The data acquired as well as the events changing the air temperature are
shown in figure IV.16. Apparently, the cooled Spikey III reveals a significant tempera-
ture dependency. It has not yet been investigated whether this sensitivity of Spikey 25
arises from the peltier cooling device or is a property of this specific chip.

In summary, it was found that the analog circuity of the FACETS Stage 1 Hardware
is sensitive to fluctuations of the chip temperature which exhibits a strong correlation
with the ambiance. Hence, it makes sense to stabilize either the hardware directly or at
least its surroundings. Multiple approaches serving this purpose have been presented,
none of which delivers a satisfactory performance. The additional challenge of cooling
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IV.6 Temperature Dependency

the chip down to a low temperature due to parameter instability has become obsolete
with the third revision of the Spikey chip. After a power-on of the system it is suggested
to configure the chip with a realistic network setup. Valid data cannot be taken until
the hardware is at thermal equilibrium with its ambiance.
For a detailed investigation of the chip behavior a more precise measurement of the chip
temperature (e.g. via an IR camera) is indispensable. Furthermore, enhanced control
over the ambiance (e.g. via a climate cabinet) must be obtained. A different suggestion
for stabilizing the chip behavior is to employ self-stabilizing neural network architectures.
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V Software Contributions

Following the credo of the PyNN -project to provide portable experiment descriptions
(see section II.1), the Electronic Vision(s) Group developed an implementation of the
PyNN-API for the FACETS Stage 1 Hardware. The author contributed to maintain
this module close to the current state of the PyNN definitions (see section V.1) and
added a convenient configuration of hardware synapse dynamics to the front-end (see
section V.2). To allow the simulation of the hardware via PCSIM, appropriate neuron
and synapse models have either been picked from the ‘PCSIM simobject database’ or
were newly implemented (see section V.3).
In order to allow an interactive operation of the FACETS Stage 1 Hardware, a generic
graphical user interface – presented in section V.4 – has been developed. Section V.5
gives an overview of miscellaneous smaller software improvements, contributed by the
author.

V.1 Keeping the PyNN-Module up to date
Since the meta-language PyNN (see section II.1) is an API under ongoing development,
changes in the standard need to be adopted by the back-end specific modules. The
author helped to maintain the PyNN-module of the FACETS Stage 1 Hardware and
keep it up to date.

The pyNN.ID-Class
All pyNN.backendName modules, which implement the back-end specific functionality of
the PyNN-API, revert to a set of functions and inherit classes from the common module
pyNN.common. Among others, this common module provides the functional framework
to

• translate back-end specific parameter names to the common standard,

• check whether a requested parameter is existent in the utilized neuron or synapse
model,

• ensure correct data types or

• convert values being held in differing units in the back-end.

For the specific back-end, it often suffices to implement fundamental get() and set()
functions that are endowed by the above features with a powerful and convenient func-
tionality. The central class, providing this ‘chassis’ to the user, is the pyNN.ID-class.
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V.2 Configuration of Short Term Plasticity via PyNN

When using pyNN.hardware every neuron or external input is represented (and man-
aged by the user) as such an ID-object. NEST and PCSIM also apply this concept to
synapses.
For instance, when changing a parameter of a neuron created via n = pyNN.create(...),
the command n.v rest = -70 realizes that this is a valid attribute, converts the volt-
age from mV to the back-end specific unit and stores the value in the back-end specific
memory space.

The author implemented the pyNN.ID-class for the pyNN.hardware.stage1 back-end.
As no such unifying data-structure existed before, all functions – as create, connect
or record – had to be attuned to the common class. As well, the compatibility to the
Hardware Abstraction Layer (HAL) had to be ensured.

The pyNN.Population-Class

Commonly, sets of neurons, featuring similar characteristics, are combined to so-called
populations when it comes to the simulation of larger networks. The PyNN-API defines
a common pyNN.Population-class which facilitates the management of such sets. For
instance, a Population p allows to arrange the contained neurons on two- or three-
dimensional grids and to address them via their coordinates p[m,n]. Furthermore, it
provides functions for iteration, convenient recording or assignment of parameters to all
members.
The author implemented pyNN.Populations for the pyNN.hardware.stage1 back-end.

Synaptic connections between Populations are established via so-called Projections.
This functionality was added to the pyNN.hardware.stage1 module by Andreas Bauer.

V.2 Configuration of Short Term Plasticity via PyNN
Since neural network experiments on the Facets Hardware are scripted in python and
PyNN a convenient configuration of the synapse dynamics shall be available on this
software level. The PyNN-API does not yet define an interface to set up short term
plasticity via pyNN.connect(). Hence, a hardware specific implementation was needed.
After consulting the PyNN-developer Andrew Davison the optional dictionary STP was
added to the pyNN.connect()-function. This implementation can easily be modified as
soon as PyNN defines a common standard.

V.2.1 Usage and Parameters

The STP-mechanism is part of each synapse driver. Nevertheless, some voltages are
shared by multiple synapse drivers: Vfac, Vstdf and Vdtc can be set (in Volts) using
pyNN.set STP globals(). To read the current settings, pyNN.get STP globals() can
be used.
Individual parameters can be passed when establishing a synapse via pyNN.connect()
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V Software Contributions

providing a dictionary named STP. Its default value is None, denoting a static synapse.
A dynamic connection is generated if STP holds the following keys:

• ’mode’ = ’fac’ or ’dep’: Whether the synapse driver emulates depressing or
facilitating synapses.

• ’cap’ = 1, 3, 5, 7: The change of the (in-)active partition after each spike can
be controlled by setting the capacitance C2 in units of C1/8. The allowed values
reflect the possible hardware settings.

As each synapse driver can emulate only one synapse type at a time, network topologies
given as a PyNN -script might be contradicting. E.g. a driver can not serve depressing
and facilitating synapses, simultaneously. In that case, an exception will be raised.

At present, plasticity parameters are hardware specific, e.g. the recovery time constant
is passed as a voltage. This is due to the fact that the hardware voltages have not yet
been mapped to their biological counterparts. A proposal for measuring these inner
parameters with indirect techniques is presented in section IV.5. An implementation of
more generic parameters is highly desirable.

V.2.2 Details of the Software Structure
When instantiating a dynamic synapse in PyNN, this information needs to be carried
into the low level structures of the code and translated into data suitable for the FACETS
Stage 1 Hardware back-end. This section outlines the information flow for short term
plasticity. In a similar manner STDP configuration data could be handled. Therefore, a
con-generic STDP-data-structure without specific functionality has been implemented.

init .py and pyhal s1v2.py: The dictionary holding the STP-configuration simply
gets passed through pyNN.connect() and pyNN.hardware.connect() to the hardware
specific connect command of the Pyhal Building Blocks.
Global parameters, set via pyNN.set STP globals(), are written to the corresponding
voltages in the HWAccess-object. The pyNN. synapsesChanged flag indicates that this
information is outdated in Spikey’s parameter RAM and needs to be retransmitted.

pyhal buildingblocks s1v2.py: The Network-Object holds a list of Neurons. These
keep track of their incoming and outgoing synapses. The synapses no longer are simple
floats, but the newly introduced Synapse-class inherits from float. Beyond the weight
w of static synapses, the class also provides STP- and STDP-data for the mapping
process.

pyhal config s1v2.py: The HWAccess member function mapNetworkToHardware() calls
synapseStatusByte() when preparing the SpikeyConfig object. The latter function
extracts the weight- and STP-information from the Synapses and translates it into the
synapse driver’s status byte presented in section I.3.
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V.3 Implementation of the FACETS Hardware Model in PCSIM

Furthermore, mapNetworkToHardware() passes the global STP-voltages to the Spikey-
Config-object.

pyspikeyconfig.cpp: The python-wrapper to access the SpikeyConfig-object. Beside
providing read-/write-access to the SpikeyConfig member variables, it checks for am-
biguous synapse driver configuration.

When the SpikeyConfig-object holds the desired configuration and all update flags are
set properly, the low level software structures will transmit the data to the Hardware.

V.3 Implementation of the FACETS Hardware Model in
PCSIM

In order to provide a software simulator back-end revealing the same network dynamics
as the FACETS Stage 1 Hardware, Spikey’s neuron and synapse models have been imple-
mented in PCSIM [Pecevski and Natschläger , 2008]. This simulator is being developed
under administration of Dejan Pecevski1 and Thomas Natschlaeger2 of the FACETS
member TU Graz. The hardware model was implemented by the PCSIM developer DI
Klaus Schuch and the author.

The usage of a software simulator can facilitate the work with a hardware system, as it
provides and improves necessary understanding:

• The software simulator gives knowledge about and precise control over most in-
ternal parameters, like the time course of synaptic conductances or the variation
of resting potentials over a population of neurons. This supplies a great aid on
searching for appropriate network parameters.

• Since variations of hardware components due to the production process might be
unknown or not yet been measured, a software simulator allows to distinguish
inherent network properties from hardware specific effects. Thus, the extent of
hardware inaccuracy can be rated from a network point of view.

• After the behavior of the chip and the simulator have been adjusted to a sufficient
degree, the hardware emulation provides a fast back-end for parameter sweeps or
long term experiments.

In the following the recommended PCSIM objects to use in conjunction with the Hard-
ware are presented. Some objects are common models, others have been tailored to the
chip.

1dejan@igi.tugraz.at
2tnatschl@igi.tugraz.at
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V Software Contributions

Neuron Model The PCSIM simulator provides a conductance based leaky integrate
and fire neuron (class CbLifNeuron) with the same underlying differential equation as
the hardware neuron.

Basic Synapse Model For static synapses the StaticCondExpSynapse is an adequate
approximation to the hardware synapse. When triggered it rises to it’s maximum con-
ductance value instantaneously and decays exponentially. The maximum weight does
not vary over time.

Dynamic Synapse Model In order to simulate the Short Term Plasticity mechanism
of the FACETS Stage 1 Hardware, two new synapse classes – namely, FacetsHWDe-
pressionExpSynapse and FacetsHWFacilitationExpSynapse – have been added to
the ’PCSIM simobjects database’. Like the StaticCondExpSynapse they attain their
maximum conductance values without delay, but here the maximum weights change
over time. More precisely, they exhibit the hardware synapse dynamics in depression
mode and facilitation mode, respectively. The software variables and the corresponding
hardware parameters are listed in table V.1. For the synapse driver circuits and the
naming of their components see section I.3.

PCSIM

Depression Facilitation Hardware comment

max dep max fac µ · Vstdf scale factor for strength of STP

– norm Vfac/Vstdf facilitation reference voltage

inact tau act tau Vdtc recovery time constant

inact step act step C2/(C1 + C2) relative step after each spike

inact0 act0 always ground (=̂ 0) initial values of the (in-)active partition

W W w · f(drviout) synaptic weight without STP modification

Table V.1: The parameters describing short term plasticity in software and hardware.
The hardware mechanism is discussed in section I.3.

V.4 Instant Interaction via a Universal GUI
In order to provide a convenient interaction with experiments, the author developed
a universal graphical user interface (GUI), called the borescope. It can help to gain a
qualitative understanding of interrelated parameters by interactively investigating the
influence of different configurations on a measured variable, or to search roughly for
proper parameter ranges. Above all it allows an intuitive configuration with instant
readout of the hardware at the same time.
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V.4 Instant Interaction via a Universal GUI

The diversity of possible setups and types of measurands demands a very generic software
structure from the borescope. Furthermore, it must provide an intuitive user interface
and needs to be ’plugged’ easily to the parameters of interest.

Currently, the borescope features:

• 3 programmable sliders (providing both step-less and discrete values)

• 2 binary check-boxes (on / off)

• 2 graphical outputs

• 2 textual outputs

Any feature can be connected to any value accessible to the probed experiment. Free
programmable functions are executed, whenever a controller element changes its value.
A screen-shot of the borescope is shown in figure V.1. A snippet of code demonstrating
the configuration is presented in table V.2.

Figure V.1: A screenshot of the Borescope. The example shows an instant interaction
with the network architecture presented in section III.3.
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V Software Contributions

Generally, parts of the plugged script are executed in a loop. The loop can be paused
manually, or automatically after every pass. Other parts of the script serve for initial-
ization. To provide this information on different parts, an experiment must be provided
as Experiment-Class, consisting of a onLoad()-, a prepare()- and a go()-function.
Since almost every experiment (logically) satisfies this structure, the integration of any
experiment into the borescope should be an easy task. On the other hand, every script,
written for the borescope, can also be executed solely – it is not dependent on the GUI.
The definition of parameters to be monitored and functions to be executed is done via
an additional configuration file.

A documentation of the usage, including useful examples and details on the execu-
tion flow, can be found in the borescope’s directory, filenames: readme.txt, experi-
ment template.py and experiment template cfg.py. The borescope was used regu-
larly by the author, while this work was done.

cfg˙slider˙1 = [ ’stat2dyn DEP’ , 5 , 0 , 8 , False ]

def prepare˙slider˙1(self):
self.stat2dynFactor[’dep’] = self.controlling˙GUI.slider˙1.val
self.newNetwork = True

Table V.2: Code demonstrating the configuration of a slider for the borescope. The first
line defines appearance and ranges of the slider. The function defined from the second
line of code determines the functionality of the slider. The example is taken from the
cfg.py-file of the experiment shown in figure V.1.

V.5 Other Software Improvements

The author helped to improve and maintain the software layers presented in section II.1.
The usage of some useful features is described in the following.

Restriction to Recordable Neurons

As stated in section I.4, only a small subset of neurons can be recorded reliably on Spikey
III. The exact number of such ‘recordable neurons’ varies from chip to chip. The author
added an attribute to the workstation setup file workstations.xml, storing the list of
neurons that were found to be recordable for each workstation. The pyNN.record()-
function evaluates this information and prints a warning, if errors during readout are
likely to occur.
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V.5 Other Software Improvements

Assigning Workstations to Users

Since one backplane usually operates multiple workstations, a user might accidentally
send data to a chip currently emulating networks of someone else. In order to ‘protect’
a user’s workstation from erroneous reconfiguration, the author added a warning that is
displayed if a chip is about to be utilized, which was not marked to be the user’s default
workstation via workstations.mine.

Automated Spike File Generation

In contrast to software simulations, which typically reconfigure the network after every
run, it is common practice for hardware emulations to rerun the same setup several times
in order to estimate or reduce the influence of analog noise. An option was added to the
pyNN.hardware.stage1 module that allows to conveniently store the results of every
run in distinct files. It is activated by passing an argument to the initialization routine:
pyNN.setup(..., incrementFilename=True).

pyNNgroups

As not all neurons are reliably recordable simultaneously, neurons of interest need to be
mapped to specified locations on the chip. In the future, this task will be performed
automatically, using the graph model presented in section II.3. A small preliminary
mapping tool – pyNNGroups – was implemented on top of PyNN by the author. It was
primarily developed to conveniently map a synfire chain to the chip (see section VI.1)
and adopts some features of the pyNN.Population-class, which was not available to the
hardware module at that time.
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VI Realizing Network Paradigms on the
Hardware

The development of the FACETS Hardware aims for the emulation of neural networks,
which possess computational power or other types of functionality, like activity modula-
tion or signal propagation. This chapter presents the implementation of three concepts
that provide or improve information processing power for the underlying substrate.
As presented in section VI.1, a stable closed-loop synfire chain, see sectionIII.1, was
successfully emulated on a Spikey chip. Synfire chains feature strong feed-forward con-
nections, with a high tolerance to variations in the synaptic properties. Other network
architectures require a more precise adjustability and a rather homogeneous substrate.
It is common practice to expose these networks to a permanent background conductance,
modeling a biologically realistic high-conductance state (see section III.2).

The inhomogeneities of the current revision of the FACETS Stage 1 Hardware exceed an
acceptable level, as shown in chapter IV. Furthermore, only few input channels – with
limited input bandwidth – are available, impeding an independent spike-based stimula-
tion of all neurons throughout the network. In section VI.2, an alternative concept of
stimulation is presented, which allows the approximation of a high-conductance state
under the above constraints. Finally, a self-stabilizing network architecture is investi-
gated regarding its applicability to the hardware. It will be found that such networks
are capable of reliably counterbalancing inherent variations of hardware components (see
section VI.3).

VI.1 Synfire Chains
The synfire chains presented in section III.1 reveal a rather simple architecture. Addi-
tionally, a synfire chain’s functionality can be assigned to three basic types:

• The chain aborts: Even if the first layer is strongly stimulated the chain is not
able to keep up activity across all layers.

• Activity disperses: The time span a single layer fires increases with each layer. In
case of closed-loop synfire chains this results in permanent activity.

• The chain works as intended: The pulse packets stay focused and activity does not
break down.

Due to these clearly separated states it is likely that a stable synfire chain can be estab-
lished even if all network parameters are subject to quantitative errors. This raises hope
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VI.1 Synfire Chains

to successfully emulate synfire chains on an imperfect analog substrate like the FACETS
Stage 1 Hardware.
However, the topology of the present hardware system (see section I.5) restricts the
maximum size of a single chain to 192 neurons, while successful simulations, as carried
out by the authors of [?], used 3750 neurons per synfire chain.1 Hence, a balance be-
tween wide layers (increasing stability by outweighing inhomogeneities) and long chains
(reducing negative effects of dispersion due to lower frequencies in case of closed-loop
chains) must be found. Supportingly, dispersion can be counteracted by adding sparse,
random recurrent inhibitory connections: Strong activity in one layer damps the activity
of other layers. This concept, used by [?], was adopted for the hardware emulation.

A synfire chain was set up using the pyNNgroups-class (see section V.5) as it provides
methods to conveniently map selected neurons in each layer to recordable hardware
neurons (see section I.4). The search for suitable parameters – weights, connectivity
probabilities, chain length and layer width – was performed by interactive execution
with the borescope (see section V.4).

The spike pattern of a looped-back chain emulated on a Spikey III chip is shown
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Figure VI.1: Looped-back synfire chains on the FACETS Stage 1 Hardware. left: a chain
on Spikey III initiated via an external excitatory pulse at t = 200 ms. right: a stable
synfire chain on Spikey II – the initial stimulus was injected minutes ago.

in left panel of figure VI.1. The spikes of one excitatory and one inhibitory neuron per
layer were recorded. The chain was stimulated by injecting a strong excitatory input
pulse (duration: 10ms) into the first layer at t = 200 ms. After about 300 ms, activity
has passed the entire chain and the last layer excites the first one again. Due to variations
from chip to chip concerning synaptic strength and neural excitability, parameters need
to be adapted for each system individually. For the same reason there is no benefit in

1Personal communication with Sven Schrader
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VI Realizing Network Paradigms on the Hardware

exploring parameter spaces separating the different types of functionality, as the results
would solely be valid for a single chip.
The right panel of figure VI.1 shows an extract of a remarkably stable chain run on
a Spikey II chip: The chain was initiated during another run minutes before the plot-
ted data was recorded. This example demonstrates the fundamental difference between
hardware emulations and software simulations: As long as the chip is not being reconfig-
ured, it will follow the network dynamics – independent of external control. Accordingly,
a ‘hardware experiment’ does not necessarily involve a reconfiguration of network pa-
rameters. In case of the plotted synfire chain, it simply reads back the spikes of several
neurons for a preset duration.
Some looped-back synfire chains on this Spikey II chip were observed to be still stable
after more than 30 minutes in real time, corresponding to more than 2 years in the
biological interpretation.2

Although each Spikey chip contains 2 · 192 neurons, thus providing enough neurons
for two synfire chains, restrictions to the network topology (see section I.5) prevent a
generic implementation of interconnections, which could have possibly allowed for the
chains to bind as described in section III.1. A laborious manual design and mapping of
such a network has not yet been performed. The upcoming multi chip operation of the
FACETS Stage 1 Hardware will provide a substrate supporting multiple interconnected
generic synfire chains.

VI.2 An Approximation for a High Conductance State
As outlined in section III.2 cortical neurons in alive animals often experience a perma-
nent synaptic input which – presumably – does not carry any particular information,
but fundamentally changes neural spike processing. In computer simulations this back-
ground input can be modeled as an additional conductance between the membrane and
the different reversal potentials which is drawn from a normal distribution (with non-
zero mean) at each simulation step.
The FACETS Stage 1 Hardware does not provide a similar mechanism. A generic ap-
proach for modeling high conductance states would be stimulation via Poisson spike
trains. But since each neuron needs to be excited with a high input rate and low
synaptic weights in order to achieve the intended mean and standard deviation of the
background conductance, this concept poses several problems:

• All spike trains must be generated by the software and then be transmitted to
the chip, slowing down the operation of the hardware due to the configuration
overhead.

• Larger networks might only provide 64 external input channels for both experiment
specific and Poisson input (see section I.5). This easily results in a shortage of
available inputs and bandwidth.

2with a speedup factor of 5 · 104
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VI.2 An Approximation for a High Conductance State

• If there exist more neurons than input channels, the background stimulation of
the neurons will not be pairwise independent. This might cause parasitic network
correlations distorting the emulation results.

The author introduced an alternative for modeling high conductance states on Spikey
reducing the above issues, which is presented in the following. The conductance towards
each reversal potential caused by the background stimulation, as applied in computer
simulations, can be expressed as a constant mean value endued with moderate noise
g(t) = ḡs + gs(t), as long as background activity remains statistically unchanged during
the considered time span. The mean of gs(t) vanishes over time. Regarding the sub-
threshold dynamics of a leaky integrate-and-fire neuron (see section I.2) with – for the
sake of simplicity – only one synaptic reversal potential Vrev, the mean background
conductance ḡs just alters the effective resting potential Ṽ and the effective membrane
time constant τ̃ :

−Cm
∂Vm
∂t

= gleak · (Vm − Vrest) + g(t) · (Vm − Vrev)

= gleak · (Vm − Vrest) + ḡs · (Vm − Vrev) + noise

= (gleak + ḡs) ·
[
Vm −

(
Vrest + ḡs

gleak + ḡs
· (Vrev − Vrest)

)]
+ noise

=: Cm
τ̃
· (Vm − Ṽ ) + noise

This equation can easily be expanded to multiple conductance channels with different
reversal potentials. The sub-threshold dynamics always result in an effective reversal
potential Ṽ , an effective membrane time constant τ̃ and additional noise on every ion
channel.

Hence, a high conductance state can be modeled by adjusting the resting potential Vrest
and the membrane leakage conductance gleak properly accompanied by moderate noise
generated with Poisson spike trains. Regarding the FACETS Stage 1 Hardware these
noise inputs can be operated with low firing rates and higher synaptic weights. Thus,
each neuron only occupies few background channels. By connecting each neuron to
a small subset randomly drawn from the noise inputs, erroneous network correlation
caused by background stimuli can be reduced considerably.

Furthermore, this approach considers a dis-proportionality of Spikey III’s intrinsic time
constants: Synaptic time constants τsyn typically exceed membrane time constants of
unstimulated neurons τleak = Cm/gleak by a factor 3. In case of high conductance states,
this ratio between τsyn and τ̃ is biologically realistic. Hence, only Vrest needs to be
adjusted when modeling high conductance states on Spikey III.

The network presented in section VI.3 makes use of this technique.
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VI.3 Self-tuning through Short Term Plasticity

In view of the inaccuracies and instabilities presented in section I.5 and chapter IV an
adequate predictability of the emulated network behavior can only be achieved by pro-
viding a substrate on the network level that compensates for chip-inherent variations. An
auspicious and rather universal approach was presented in section III.3 using short term
plasticity. As the computer simulations carried out by [Sussillo et al., 2007] were based
upon larger networks, exceeding Spikey’s capacity by more than one order of magnitude,
it remained unknown whether this paradigm is applicable to the hardware. This section
addresses this issue.

In the first part, it is investigated how such network architectures can be mapped to
the chip, while optimizing the hardware efficiency, and how external stimulation can
be applied such that little correlation is evoked. Following these considerations, the
implementation in PCSIM and the results of the computer simulations carried out by
Klaus Schuch3 and the author under the supervision of Prof. Dr. Wolfgang Maass4 during
a visit at the FACETS member TU Graz are presented. As the basic properties of self-
stabilizing network architectures have been found to be fulfilled in the simulations even
for small networks, the concept was applied to the FACETS Stage 1 Hardware. Even
though the emulations proved elementary features of self-stabilizing networks to be met
on the hardware, not all integral network properties have been investigated so far.

VI.3.1 Experimental Setup and Applied Measures

As shown in figure III.1, any neuron must be capable of projecting on neurons in both
populations simultaneously, whereas the dynamics of the synaptic connections depend
on both the type of the pre-synaptic and the post-synaptic neurons. As stated in section
I.5, any synapse driver of the FACETS Stage 1 hardware only supports one mode of
plasticity at a time. Furthermore, the index of a synapse driver confines the choice of its
pre-synaptic source. Considering these topological restrictions, the largest generic5

network mappable onto the chip comprises 192 neurons. A possible partitioning of the
resources is shown in figure VI.2.
Obviously, any required recurrent synaptic connection can be established with this setup.
But since there only exist 256 synapse drivers per synapse array, 192 of which are used
for recurrent connections, 64 independent inputs must suffice to provide external stim-
uli to all 192 neurons.6 Furthermore, the maximum input bandwidth between Spikey
and the playback memory on the Nathan board is limited as stated in section I.4. This
bottleneck narrows the maximum average rate of 2×64 external Poisson inputs to about

3schuch@igi.tugraz.at
4maass@igi.tugraz.at
5A network connectivity based on probability distributions rather than connections ‘designed by hand’.
6The current software HAL does not allow for projecting different external input spike trains onto the

network via synapse drivers of the same sub-index located at different synapse arrays. Hence, the
input of the left array can only be mirrored to the right array.
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Figure VI.2: Mapping of the recurrent network architecture outlined in figure III.1 onto
the FACETS Stage 1 Hardware. The largest randomly connected networks supported by
the chip comprise 192 neurons, leaving 2×64 synapse drivers for external stimulation.
The software simulations are supposed to consider all known hardware constraints.
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15 Hz per channel7.

Nevertheless, external stimulation ought to be uncorrelated (ideally, individual Poisson
spike trains for each neuron), even if each neuron requires a high total pre-synaptic firing
rate to rise above its threshold voltage Vthresh, when realistic synaptic weights are used.
In order to reduce input driven network correlation, each neuron receives input from
a small randomly chosen subset8 consisting of both excitatory and inhibitory inputs.
Additionally, the neuron resting potential Vrest is set to a higher voltage than in case of
a ‘resting state’, while its membrane time constant τmem = Cmem/gleak is reduced. This
method of modeling stimuli does not disturb the dynamics of conductance-based leaky
integrate-and-fire neurons and is capable of approximating a high-frequent conductive
input stream as presented in section VI.2. Accordingly, the mean value and the variance
of external stimulation will be identified with the resting potential Vrest and the synaptic
weight of the connected inputs winp in the following. In any setup, static synapses are
used for external stimulation.

25% of the neurons are chosen to be inhibitory, yielding 144 excitatory and 48 in-
hibitory neurons. All neurons possess the same mean parameters listed in table VI.1.
These mean values either are spread by drawing them from a probability distribution or
are subject to inherent hardware fluctuations.

Regarding the recurrent connections, two scaling parameters are utilized:

• a global connectivity multiplier cscale affecting the connection probability between
any two neurons and

• a global recurrent weight multiplier wrec adjusting the synaptic weight between any
two neurons.

These scaling parameters are multiplied with a base value of the connection probabil-
ity and the synaptic weight determined by the type of the pre- and post-synaptic neuron.
Altogether, there exist four types of connections: e → e, i → i, e → i, i → e, with the
first pair denoting intra-connections and the latter pair denoting cross-connections.9 The
base values of the connection probabilities are set such that (a) any neuron exhibits as
many excitatory as inhibitory incoming recurrent connections and (b) neurons of the in-
hibitory population receive twice as many incoming connections as excitatory neurons.
Although this rule does not rely on biological evidence, it was found to be suitable for
the considered architecture. It follows the idea that the moderating inhibitory neurons
ought to sense the averaged activities of the entire network and that the influence of a
population on the network can – as a first approximation – be controlled via the synaptic

7with speedup = 105

8Typically, about 8 out of 64 in case of hardware emulations and 5 out of 48 in case of software
simulations.

9Excitatory neurons are marked as e, inhibitory neurons as i.
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parameter mean spread PCSIM spread & noise Spikey

Cm [nF] 0.2 0.3 / 0.5 exact per definition
Rm [MΩ] 25 1.0 / 0.8 –
gleak [nS] 40 – 1.0 / 0.6

Vthresh [mV] -55 0.01 / 0.02 see section IV.4
Vreset [mV] -80 0.1 / 0.2 see section IV.4

Vrev,exc [mV] 0 0 unknown (unstable)
Vrev,inh [mV] -80 0 ≈ 0
τrefrac [ms] 1 0 see section IV.4
τsyn [ms] 30 0.3 / 0.5 ≈ 10 ms

Table VI.1: Neuron parameters used for the self-stabilizing network architectures. The
spread is given relative to the corresponding mean in the form relative standard deviation
/ relative bound. If the value, drawn from a normal distribution, exceeds the bounds,
it is redrawn form a uniform distribution within the bounds. The PCSIM neuron model
uses Rm (= g−1

leak) for defining the membrane leakage conductance. The mean values yield
τmem = Cm ·Rm = Cm/gleak = 5ms, reflecting the approximated high-conductance state.
Regarding the hardware, the variation of some parameters is unknown. Recently, it was
found that the excitatory reversal potential becomes unstable under high load, e.g. in case
of high network activity. Variations in Cm are compensated via a calibration of gleak,
but still affect the size of EPSPs as the ‘weight transformation calibration’ presented in
section II.2 was not used. The current Spikey revision lacks adjustability of τsyn, the
falling time-constant of the exponential synapse.
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weights. For given population sizes, this rule determines the base values of the connec-
tion probabilities (while preserving cscale as a free parameter).10

The base values of recurrent synaptic weights refer to the weight of static synapses
and are chosen differently for the software simulation and the hardware emulation. How
the choice of these values affects the network behavior, and to what amount ‘good’ pa-
rameters depend on the specific Spikey chip used, should be subject to further studies.
In case of dynamic synapses, the short term plasticity mechanism presented in section
I.3 and analyzed in section IV.5 is used. In order to provide the software simulator
with this plasticity mechanism, a synapse model of the FACETS Hardware Synapse was
implemented in PCSIM (see section V.3). The weight conversion between dynamic and
static synapses is determined under an equidistant input of constant firing rate νtarget
as presented in section IV.5.

So, how to measure the performance of such a network architecture in general, and
especially the influence of dynamic synapses?

Regarding the average firing rate of the entire network with respect to different amounts
of external stimulation (see above), a self-tuning recurrent network should increase its
activity compared to a purely input driven network (wrec = 0) for weak stimuli, while
under strong input, yielding a high firing rate in case of input driven networks, activity
should be moderated. Ideally, the total firing rate exhibits a plateau on a medium level11
over a wide range of external stimulation.
Provided that the network is capable of tuning its average firing rate, a closer look
can be taken at the firing rates of the two populations νe and νi. While a homoge-
neously stimulated input driven network yields an equal activity of both populations
νe − νi = 0, a self-tuning network is expected to exhibit a higher-than-average excita-
tory rate νe − νi > 0 when adjusting its activity upwards, and a higher-than-average
inhibitory rate νe − νi < 0 when moderating strong external excitation.
Since for the construction of a network only probability distributions and connection
probabilities are provided, an individual network might exhibit specific and non-typical
properties. Thus, regarding the above measures, only the activity averaged over a mul-
titude of networks, generated from the same probability distributions, is taken into
account.
Having said this, also a different meaning of ‘self-stabilization’ should be considered: To
what extend will the properties of different networks, generated from the same probabil-
ity distributions, vary? This issue touches the predictability of generated networks and
can be quantified by considering not only the activity averaged over multiple entities,
but also the standard deviation of the mean firing rates of different networks.

10Resulting base values of connectivity: ce→e = 4, ci→i = 24, ce→i = 8, ci→e = 12. The connection
probability between any two neurons is obtained by multiplying the respective base value with the
scaling factor cscale.

11Referring to section III.3, a rate of about 5Hz < ν < 20Hz can be assumed as a medium level.
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VI.3 Self-tuning through Short Term Plasticity

A network architecture featuring both of the above meanings of self-stabilization may
be applicable in order to reliably counterbalance hardware specific variations and thus,
provide a substrate on the network level for ambitious computational tasks, like those
applying the concept of liquid computing.

As stated above, the external Poisson input spike trains are intended to stimulate the
network such, that as little correlation, caused by the small number of independent
channels, as possible is transferred to the neurons. But this does not guarantee that
a recurrent network will not synchronize. In fact, it can be suspected that a network,
being capable of self-tuning its average firing rate, tends to correlate its activity. Such
correlation, not induced by the input stream, could impair computational power as
processed information might be overwritten by internal dynamics. Hence, network cor-
relation should be taken into account when investigating recurrent network architectures.

In the following, the above concepts are applied to both purely input driven (i.e. wrec = 0)
and recurrent networks, while for the latter the performance of static and dynamic
synapses is compared. All setups are realized in both PCSIM and hardware, with certain
differences in the configuration that turned out to be indispensable.

VI.3.2 Implementation in PCSIM

The implementation and simulation of the described network architecture was performed
with assistance of Klaus Schuch during a six-week visit at the FACETS member TU
Graz in May / June 2008. As the pypcsim software layer provides additional modules
for setting up and analyzing neural networks, all scripts were written in this python-
based, but back-end-specific, programming language.
The neuron and synapse models suggested in section V.3 were used, which have partly
been written for simulating the dynamics of the FACETS Stage 1 Hardware.12 All
calculations simulated 5 sec of biological time with a simulation time step of 0.1 msec.
For measuring both firing rates and network correlation, only the last 4 sec of each trial
were taken into account, since the network needs some hundreds of msec for leveling
out.
The applied short term plasticity parameters (cf. section I.3, section V.3 and section
IV.5) and synaptic weights are listed in table VI.2.
The network was stimulated with 48 Poisson spike trains (24 exc. & 24 inh.) with rates
drawn uniformly from the interval [8 Hz, 12 Hz]. Each neuron received input from 1− 3
excitatory and 1 − 3 inhibitory spike sources. In order to model analog noise on the
neuron membrane that is not covered by the spread of other parameters, each neuron
was subject to an additional current input randomly drawn from a normal distribution
in every simulation time step. In accordance to the measured noise level of the hardware,
its standard deviation was set to Inoise = 5pA.

12For the sake of simplicity, simple exponential synapses were used not modelling the exponentially
rising edge. As the rise time is very short in the synapse drivers, such an approximation is feasible.
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parameter mean spread

depression
max dep 0.3 0.5 / 0.5
tau [ms] 50 0.3 / 0.5

step 0.27 0.3 / 0.5

facilitation
max fac 0.5 0.5 / 0.5
norm 0 0

tau [ms] 50 0.3 / 0.5
step 0.27 0.3 / 0.5

weights mean [nS] spread

recurrence
e→ e 0.35 0.6 / 0.7
i→ i 1.00 0.6 / 0.7
e→ i 0.25 0.6 / 0.7
i→ e 1.50 0.6 / 0.7

input
excitatory 6.0 0.6 / 0.7
inhibitory 20.0 0.6 / 0.7

Table VI.2: Short term plasticity parameters (left) and weights (right) used for the soft-
ware simulations. The spread is given relative to the corresponding mean in the form
relative standard deviation / relative bound. If the value, drawn from a normal distri-
bution, exceeds the bounds, it is redrawn form a uniform distribution within the bounds.
The given weights reflect the base values for static synapses that are multiplied with wrec
and winp, respectively. The conversion to the weight of dynamic synapses is performed
as described in section IV.5 with the reference rate chosen to be ν = 50Hz.

Numerous parameter sets, each consisting of Vrest, winp, wrec, cscale and syns13, reflecting
different probability distributions and connection probabilities, were investigated. For
each parameter set, 25 different recurrent networks (each with a different stimulus) were
simulated yielding an overall simulation time of almost 2.3 million biological seconds.
The simulation was performed on the cluster of the TU Graz.

VI.3.3 Evaluation of the PCSIM-Simulation

In the following, the results of a subset of the 9152 simulated parameter sets are pre-
sented. In order to quantify the network correlation, a measure was developed by the
author with assistance of Michael Pfeiffer.14

A Measure of Network Correlation

The intent of the following correlation measure lies in quantifying simultaneity of the
spike activity of a set of neurons. Its development was guided by the idea, that as little
arbitrary constants as possible should be used. Discretizations for numerical calculations
(e.g. bin sizes, time steps, ...) should not impose any meaning on the result, which needs
to converge to the exact value when increasing numeric precision. The regarded spike
13whether dynamic or static synapses were used for recurrent connections.
14pfeiffer@igi.tu-graz.ac.at
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trains should not be restricted to equal size or firing rate. Furthermore, the measure
should reflect both collective activity and inactivity. Finally, it is assumed that if a num-
ber of spike trains, resulting from a certain set of conditions and yielding a correlation c,
is expanded to even more spike trains, generated from the same condition set, a measure
of correlation should converge towards a finite value, reflecting the inherent correlation
caused by the underlying conditions. As stated above, the following suggestion has not
yet been elaborated completely.

First, all spike trains are pre-processed separately, following a concept used in [Maass
et al., 2002] for describing network states. An exponentially decaying linear filter is
applied to the spike trains, i.e. each spike adds 1 and decays exponentially in time re-
flecting the trace of the spike in the network. A reasonable decay time constant τ is
the membrane time constant τmem or the synaptic time constant τfall, depending on
which effect lasts longer. Then, each filtered spike train is normalized such that (a)
its mean value equals zero (by subtracting τ ·#spikes/time from the filtered trace) and
(b) its standard deviation over all time points equals one (by dividing the trace by its
standard deviation15). Finally, for each time point the standard deviation is calculated
over the set of such prepared spike trains. ‘One minus the mean value of these standard
deviations’ is taken as the correlation of the set of spike trains.

In the following, some examples point out the basic properties of this measure.

Figure VI.3 shows three Poisson spike trains with rates 10 Hz, 20 Hz and 50Hz and the
corresponding normalized and filtered traces. This set of spike trains yields a correlation
c = 0.247. 1000 Poisson spike trains with a mean rate of 20 Hz lasting for 1 second
exhibited c = 0.0097. Generally, the correlation of randomly generated spike trains
tends to zero for large samples (i.e. long duration, high firing rate, many neurons). Any
spike train’s autocorrelation is one.
Figure VI.4 shows four spike trains, each emitting a spike every 200 ms. In the upper
case, the spike trains are clearly shifted yielding a correlation of c = 0.145. In the lower
case, they are almost conjunct resulting in c = 0.775.
As the synaptic time constant exceeds the membrane time constant in the simulations,
it is set τ = τfall = 30 ms for preprocessing the spike trains, in the following. Since
this measure has not yet been systematically studied, the presented results should be
accepted with caution.

Results

Figure VI.5 and figure VI.6 show the results of the software simulation. For clarity,
only two network types (wrec, cscale) = (0.5, 0.01) – parameter sets yielding almost input
driven networks – and (3.0, 0.03) – strong recurrence – are presented, as they offer all
essential properties. The remaining configurations fit smoothly in this frame.
15If no spike occurred – being equivalent to a vanishing standard deviation – no normalization is neces-

sary.
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Figure VI.3: Three Poisson spike trains with rates 10 Hz, 20 Hz and 50 Hz and their
normalized and filtered traces (τ = 30 ms). The correlation of this set of spike trains is
c = 0.247.
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Figure VI.4: Four spike trains firing equidistantly every 200 ms. For maximal distant
spike trains (top) the correlation c = 0.145 is significantly lower than for almost conjunct
spike trains (bottom) yielding c = 0.775.
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VI.3 Self-tuning through Short Term Plasticity

All figures follow the same design: The axes reflect different strengths of the stimuli:
Vrest models the influence of the average stimulation, winp varies the strength of the
fluctuations. The colors display one of the measures introduced above. Although the
arrangement of the figures follows a clear pattern, each plot is additionally super-scribed
with essential parameters used. Each pixel represents 25 simulated networks that had
been generated from the same probability distributions and connection probabilities.

The first row of figure VI.5 proves that input driven networks exhibit no difference be-
tween dynamic and static synapses. Both a higher mean value and a larger variance of
the external stimulation lead to an increased network activity.
This statement is confirmed by the population disparity νe−νi

νi
16 shown in the second

row.
The third row shows the overall mean activity for recurrent networks, connected with
dynamic synapses (left), and static synapses (right). While the latter easily diverge to
permanent firing – mind the color bar ranges! – the recurrent networks tune their activ-
ity to about 30 Hz: For weak stimuli activity is raised, for strong stimuli it is moderated,
compared to input driven networks.
This property of dynamic synapses is reflected in the population disparity (fourth row).
The stronger the input is, the more the networks respond with inhibitory activity. In
contrast, networks with static synapses ignore changes in the input. Since after every
spike, a neuron is reset to −80 mV the maximum firing rate is limited.
These results prove network architectures recurrently connected with dynamic synapses
to be capable of self-tuning their activity.

The second intent of ‘self-stabilization’ is addressed in figure VI.6. For each 25 simulated
networks of a parameter set, the average activity was determined separately. The upper
row shows the standard deviation of these 25 network activities (normalized to the mean
of the parameter set). This inter-network variation is a measure of the steadiness or pre-
dictability of a network architecture. Obviously, dynamic synapses allow for generating
networks with rather predictable properties. Static synapses exhibit significantly larger
fluctuation from network to network.
The lower row of figure VI.6 shows the mean of the correlation within each of the 25
networks of a parameter set. In terms of the above described measure, networks based
on dynamic synapses yield a lower synchronization than those based on static synapses,
but still exceed the correlation of input driven networks (not shown).

In summary, the presented network architecture fulfills the basic requirements on a
reliable and balancing ‘substrate on the network level’ even for rather small networks.

16Reading: ‘The excitatory population fires at X percent higher / lower frequency than the inhibitory
population.’
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Figure VI.5: Results of the software simulation. Comparison between dynamic (left) and
static (right) synapses. For almost input driven networks (upper half) and recurrent
networks (lower half) the overall activity (odd rows) and the population disparity (even
rows) are shown.
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Figure VI.6: Results of the software simulation. Comparison between dynamic (left) and
static (right) synapses. The inter-network variation in units of the mean firing rate of
the respective parameter set (top) and the mean network correlation (bottom) are shown.
The regarded parameter sets correspond to those shown in the lower half of figure VI.5.

VI.3.4 Transfer to the Hardware

As the above simulation results prove that even small generically generated recurrent net-
works can reliably stabilize their activity, the concept was transcribed to the FACETS
Stage 1 Hardware. All scripts are written in the common meta language PyNN (see
section II.1) except for the configuration of short term plasticity, since no low-level
PyNN-interface has yet been defined. Thus, the preliminary ‘PyNNesque’ implementa-
tion presented in section V.2 was used.

As stated in section I.4, Spikey III suffers from an erroneous spike readout, limiting
the number of arbitrary simultaneously recordable neurons to three for the considered
network topology. But since every hardware neuron reveals an individual behavior, it is
indispensable to record subsets randomly drawn throughout the entire network in order
to avoid systematic errors when determining the average network activity. Therefore,
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every network was run repeatedly with 20 randomly chosen sets of recorded neurons.
Additionally, each such setup (network + recorded neurons) was run 5 times to regard
analog fluctuations. This method is rather efficient on the hardware, since no reconfigu-
ration must be applied to the chip. Hence, only the emitted spikes need to be read back
reducing the serious configuration overhead.17

Due to these issues, 100 hardware runs are needed to acquire the average firing rate
of a single network. Therefore, the number of networks generated for each parameter
set was reduced to 20 and the density of the scanned parameter grid was diminished.
Furthermore, only firing rates are considered for the evaluation of network properties,
as spike trains recorded in different runs do not allow for measurements of the network
correlation. In total, more than 2.8 million biological seconds were emulated on Spikey
III no. 25.

Adjustments Influencing the Network Dynamics

If not stated otherwise, the configuration used in the computer simulation was main-
tained for the hardware emulation. But some parameters were changed for different
reasons. A fundamental change had to be applied to the short term plasticity mecha-
nism: As found in section IV.5, restrictions on the range of the vout voltages impede a
precise adjustment of the STP circuitry. While the presented workarounds allow for a de-
cent operation, control and knowledge over some parameters, e.g. Vfac, are lost. Hence,
all STP-parameters needed to be re-adjusted. Particularly, it was impossible to perform
an analytical conversion between the weights of static and dynamic synapses. Therefore,
the correct weight transformation factors were measured directly on the oscilloscope for
the applied STP configuration.18 Measured membrane voltage traces, showing the used
synapse dynamics, are presented in figure I.5. The applied setup is found in the caption
of this figure.
Furthermore, as the experimental synapse driver calibration algorithm introduced in
section IV.2 was used, the discrete hardware weights have not yet been mapped to their
biological counterparts. Accordingly, new base values for all synaptic weights had to be
set. An estimation of the synaptic efficacies suggests that the applied values – listed in
table VI.3 – clearly differ from the weights used in the computer simulation.19

Finally, the external stimulation was slightly modified, as it was found to yield only
low firing rates in case of purely input driven networks: The average rate of the input
channels was increased to 12 Hz. The total number to inputs was raised to 64 and
17The actual emulation of 5 biological seconds takes only 50µs with a speedup of 105. The upcoming

Gigabit Ethernet connection will drastically lower the time needed for configuration and readout
allowing for an immense acceleration of the presented experiments.

18Reference rate ν = 30Hz, measured multipliers for dynamic synapses: 1.125 (fac) and 1.375 (dep).
19Anyhow, the used hardware configuration is not the result of extensive parameter tuning. Essential

improvements, used in the emulation, counteract the instability of the VREST voltage (see section
IV.1) discovered in November 2008. Hence, no deep investigation of the hardware behavior was
possible. Thus, the results presented below give rise to the assumption that a wide range of network
configurations yields self-stabilizing properties.
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weights mean spread

recurrence
e→ e 3 0.6 / 0.7
i→ i 2 0.6 / 0.7
e→ i 1 0.6 / 0.7
i→ e 1 0.6 / 0.7

input
excitatory 1 0.6 / 0.7
inhibitory 1 0.6 / 0.7

Table VI.3: Weights used for the hardware emulation in units of discrete hardware
weights w. The spread is given relative to the corresponding mean in the form relative
standard deviation / relative bound. If the value, drawn from a normal distribution,
exceeds the bounds, it is redrawn form a uniform distribution within the bounds. The
given weights reflect the base values for static synapses that are multiplied with wrec
and winp, respectively. The conversion factors to the weight of dynamic synapses were
measured directly on the oscilloscope. For Vmem ≈ −60 mV, excitatory and inhibitory
synapses yield similar EPSP- / IPSP-integrals (absolute values) when the same hardware
weight is used.

the fraction of excitatory channels to 75%. Each neuron received input from 3 − 6
excitatory and 3− 6 inhibitory spike sources. Hence, the concept of equipollent stimuli
was maintained.

VI.3.5 Evaluation of the Hardware-Emulation
Figure VI.7 exemplary shows the spike trains of a subset of 30 neurons of a randomly
chosen trial of the hardware emulation. Only neurons emitting at least one spike are
shown. The red line separates inhibitory (above the line) and excitatory neurons (be-
low). While in the network with static synapses many neurons fire at maximum, dynamic
synapses yield a rather sparse pattern. It is noticeable that only few neurons feature a
‘Poisson-like’ behavior, but neurons tend to emit bursts lasting for about 100ms. Similar
patterns were also observed in the software simulation and do not describe a hardware
characteristic. As explained above, no systematic measurement of the network correla-
tion was possible on the hardware. But manually observed spike pattern suggest that
the emulations do not exhibit serious synchronization.

Figure VI.8 shows the results of the hardware emulation. As per the presentation of
the software simulation results, just a subset of the parameter sets is shown. For all
measures applied, only spikes emitted in the period t ∈ [1 s, 4.5 s] were considered. The
arrangement of the figures follows the above used pattern.
The first row shows the average activity of purely input driven networks. The configu-

91



VI Realizing Network Paradigms on the Hardware

0 1000 2000 3000 4000 5000
time [ms]

0

5

10

15

n
e
u
ro

n

0 1000 2000 3000 4000 5000
time [ms]

0

5

10

15

20

25

n
e
u
ro

n

Figure VI.7: Exemplary spike trains of recurrent networks with dynamic (left) and static
(right) synapses emulated on the hardware. 30 randomly drawn neurons were recorded,
but only those actually spiking are shown. The red line separates the inhibitory from
the excitatory population. Both networks were generated from a parameter set, also
considered for other evaluations: Vrest = −57 mV, winp = 7.0, wrec = 2.5 and cscale =
0.03.

ration of the recurrent synapse driver dynamics has no influence on the network when
all weights are cleared.20
More interestingly, the population disparity shown in the second row reveals a chip in-
herent discrepancy between the neurons assigned to the excitatory and the inhibitory
population. As both populations are stimulated similarly, no systematic preference of
excitatory activity should occur. Since for the applied external weights, the network
emits almost no spike over a wide range of stimulation strength, the population dispar-
ity has not been normalized. Instead, the difference between both population’s activities
is shown.
The third row shows the mean firing rate of networks with rather strong recurrent con-
nections. Particularly, the connection probabilities equal those of the referred computer
simulated networks. Again, different ranges were used for the color bars of dynamic
and static synapses. Clearly, short term plasticity allows for self-tuning of the networks
towards about 15 Hz, while static synapses lead to a high activity.
When the recurrent networks raise activity, compared to the input driven setup, a higher-
than-average excitatory rate is observed in case of dynamic synapses, as shown in the
fourth row. This disparity continuously changes towards an increased inhibitory firing
rate, as the external stimulation gets stronger. Remarkably, the networks are capable
of compensating for the chip inherent preference of excitatory activity. In contrast, the
vast majority of spikes arises from excitatory neurons, when using static synapses.

20While sounding trivial, such facts should be checked at the current state of development. Many
inaccuracies have been discovered under similar conditions, when a specific network configuration
was applied.
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Figure VI.8: Results of the hardware emulations. Comparison between dynamic (left)
and static (right) synapses. For purely input driven networks (upper half) and recurrent
networks (lower half) the overall activity (odd rows) and the population disparity (even
rows) are shown.
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As the ‘self-tuning property’ of the averaged values is proven to be fulfilled, figure VI.9
compares the similarity of networks generated from the same probability distributions
for the software simulation (left) and the hardware emulation (right). Only a comparable
subset of parameter sets is considered. Especially, input driven networks are sorted out.

10
0

10
1

10
2

mean rate [Hz]

0

10

20

30

40

50

60

70

80

in
te

r-
n
e
tw

o
rk

 v
a
ri

a
ti

o
n
 [

H
z]

dynamic
static

10
0

10
1

10
2

mean rate [Hz]

0

10

20

30

40

50

60

70

80

in
te

r-
n
e
tw

o
rk

 v
a
ri

a
ti

o
n
 [

H
z]

dynamic
static

Figure VI.9: The inter-network variation plotted versus the mean activity. Each dot cor-
responds to one parameter set. Only parameter sets, yielding a mean firing rate of more
than 1 Hz, are shown. Furthermore, only a comparable subset of network configurations is
considered. Software (left): All networks with wrec ∈ {2.0, 4.0} and cscale ∈ {0.02, 0.03}
are used. Hardware (right): All networks with wrec ∈ {1.25, 2.5} and cscale ∈ {0.02, 0.03}
are used.

For each parameter set (one dot in the figure), the standard deviation of the mean firing
rates of all 20 emulated networks21 is plotted versus the overall mean activity of the
respective parameter set. Particularly, for dynamic synapses the similarity regarding
the steadiness of the network architecture is remarkable. In the regime of moderate ac-
tivity, not a single configuration template features a predictable network behavior, when
applying static synapses – the fluctuations clearly exceed the average firing rates.

Hence, the presented network architecture, using dynamic recurrent synapses, provides
a ‘substrate on the network level’ for reliably counterbalancing inherent variations of
hardware components. The practicability of the concept was prepared by extensive
computer simulations and verified on the hardware. Further investigations are needed
to reveal whether this approach can be employed for other network architectures without
interfering with their specific properties. Possibly, the application of short term plasticity
can serve as a foundation when exploring computational paradigms on the FACETS
Hardware.

2125 networks per set, in case of the software simulation.
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VI.3.6 Further Tasks
To expand the investigation of the above described network architectures’ properties,
further studies – regarding single network dynamics as well as characteristics of the un-
derlying probability distributions – need to be carried out.

For instance, the same parameter sets should be applied to different Spikey chips, in
order to fathom the universality of the concept. During all simulations performed, the
relative synaptic weights of the different connection types were fixed. Knowledge of the
parameter ranges yielding a stable operation is essential, when adopting this approach
to other network architectures.

Furthermore, the dynamics of individual networks should be examined, for determining
their applicability. Thus, the variation of firing rates over time and the response to
temporal changes in the input are crucial network properties. Will a network’s average
behavior be affected, if single synapses or neurons are reconfigured? And how do per-
mutations in the mapping process influence the emulation results on the hardware?

Finally, the (auto-)correlation between consecutive hardware emulations of the same
network stimulated with identical input touches the reproducibility of experiments. In
case of a high (auto-)correlation, the measurement of the overall network correlation
from data, acquired from different runs, would be possible.

Some of the functions, being needed to analyze the above issues, have already been
implemented by the author, and are likely to be applied in the near future.
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Conclusion

As discussed at the outset, every approach of neural network simulation features differ-
ent benefits and disadvantages. For instance, the precision of the implemented neuron
model either limits the network size or requires high computational efforts. The emula-
tion of large networks on a highly accelerated analog hardware substrate takes a position
at one extreme of the spectrum of available back-ends. The integration of the FACETS
Hardware into the set of established simulation back-ends, will primarily depend on the
successful reduction of inaccurate emulation results.

On this account, various types of inhomogeneity on the Spikey III chip were investigated.

A major issue addressed was an interference of the synapse drivers. Depending on their
configuration, a chip-wide synaptic voltage was affected. Caused by the instability of
this voltage, an erroneous permanent synaptic leakage conductance seriously shifted the
neurons’ resting potentials. Thus, the usage of one unit disturbed the dynamics of other
units. Temporarily, this problem can be dealt with by limiting the range of the synaptic
time constants. Furthermore, a workaround was presented that could minimize this
error.
In order to reduce the dependency of network behavior on permutations in the mapping
process, a well-performing routine aiming at the equalization of synaptic efficacy was
developed. Additionally, the used concept allowed an approximation of the maximal
performance calibration algorithms could possibly achieve. Variations within the synapse
array define a lower boundary for the synaptic homogeneity the emulator can provide.
Similarly, variations of neuron parameters were discovered. Namely, the threshold volt-
age and the reset mechanism differed from neuron to neuron. In combination with the
erroneous synaptic leakage conductance, the effective resting potential of some neurons
exceeded the effective threshold voltage resulting in permanent firing. A calibration
concept, introduced by the author and upgraded by Daniel Bruederle, allows to reduce
these variations. Since the threshold comparator and the reset mechanism are correlated,
such that a positive adjustment of one results in a worsening of the other, the possible
performance of any calibration approach is limited.
Finally, Spikey’s temporal homogeneity was investigated – more precisely, the correlation
between temperature and network behavior. It was found that the chip configuration has
no significant influence on its temperature. This is in contrast to the ambiance, which
highly affects chip temperature and causes serious fluctuations in the network activity
of some chips. Long term investigations yielded an increased activity during the night,
which is likely to be caused by a drop of temperature. Multiple approaches, aiming
at the stabilization of the chip temperature, were presented, none of which delivers a
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VI.3 Self-tuning through Short Term Plasticity

satisfactory performance.

The reduction of such variations to a moderate extent is necessary for a reliable opera-
tion of the hardware.

The short term plasticity mechanism of the FACETS Stage 1 Hardware was included in
the configuration flow from the low-level software to the PyNN-API. The dynamics of
facilitating and depressing synapses were analyzed theoretically in order to gain control
over the applied configuration. As it was found that a decent operation of dynamic
synapses is hindered by a too narrow range of achievable programmable voltages, two
workarounds were utilized to provide appropriate dynamics.

Following the credo of the PyNN-project to provide portable experiment descriptions,
the pyNN.hardware.stage1 module was improved and maintained. For the same pur-
pose, hardware specific synapse models were added to the PCSIM simulation back-end.

Finally, two fundamentally different network architectures were emulated on the FACETS
Stage 1 Hardware. Synfire chains exhibit a rather high tolerance to variations in synapse
properties, allowing the emulation of closed-loop chains of remarkable stability. Since
Spikey’s topology does not offer the connectivity for multiple interconnected chains, the
synchronization of synfire chains could not be studied.

By employing a generic self-stabilizing recurrent network architecture, it was investi-
gated whether the above efforts to reduce hardware inhomogeneities are sufficient to
provide a substrate on the network level with reliable properties. As a necessary prepa-
ration, a concept for external stimulation, with respect to various hardware constraints,
was developed, allowing the emulation of high-conductance states while keeping stimulus
correlation low.
To prove the applicability of the architecture to small-sized networks, extensive computer
simulations were carried out during a research visit at the FACETS member TU Graz.
As the concept was found to be feasible, it was applied to the chip. Like the PCSIM
simulation, the hardware emulation featured two different aspects of self-stabilization of
recurrent architectures: On average, the networks adjusted their activity to a certain
level. Furthermore, the individual networks, generated from probability distributions,
exhibited only small differences in their mean firing rates.
For both the PCSIM simulation and the hardware emulation, the performance of static
and dynamic synapses was compared. While on both back-ends networks using static
recurrent synapses were subject to large fluctuations, the dynamically connected archi-
tecture featured the above self-stabilization properties in either case. Thus, network
substrates that are recurrently connected with dynamic synapses are likely to be able to
reliably counterbalance inherent variations of hardware components.

In the end, the efforts which were invested in the reduction of unintended inhomogeneities
of the Spikey chip were rewarded with success. However, finding these problems – and
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understanding them – required once again a descent to technical details.
It remains a subject for further exploration, to what extent the above architectures
are able to serve as a universal network substrate. For the presented first investiga-
tion, all possible requirements to a network were subordinated to the property of self-
stabilization. But most concepts, which provide a high computational power or feature
other characteristics, come along with specific requirements and constraints. Therefore,
a universal substrate on the network level needs to be adaptable to a wide range of pa-
rameters and connection densities. Obviously, the lower the necessity to counterbalance
back-end specific inhomogeneities is, the more universal any balancing network architec-
ture becomes.
Moderating chip inherent variations of Spikey III required not only the application of
all available calibration algorithms and several workarounds, but also the avoidance of
critical hardware configurations. Thus, it is unlikely that the current revision of the
FACETS Stage 1 Hardware is able to serve as a common back-end for the emulation of
neural networks.

Being aware of this issue, it will be essential to both understand the causes of the current
instabilities and to recheck the success of the applied improvements thoroughly. Eventu-
ally, the path from the discovery of erroneous network behavior to the comprehension of
interactions on a highly technical level turns out to be both demanding and inefficient.
However, the efforts undertaken during the last months, including the specification of
numerous imperfections and the search for possible solutions, can pave the way towards
an appreciable improvement of Spikey IV.
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Outlook

Assuming that Spikey IV will exhibit a higher degree of homogeneity as well as a wider
range of parameter adjustability than the current system, it can be assumed that a rather
precise emulation of neural networks will be possible. But in practice, the FACETS Stage
1 Hardware currently lacks another issue that was supposed to be one of its major ad-
vantages: speed. The high acceleration of the emulation is compensated by two different
problems. First, the communication to the hardware – in particular, sending and read-
ing of spike trains – is much too slow and takes most of the runtime. Presumably, this
problem will be solved soon via an Ethernet connection. Secondly, as not all neurons
can be recorded at the same time, the identical setup has to be run repeatedly to gain
sufficient information of the network state. But even if this fault can be fixed, the limited
bandwidth of the Nathan bus requires a reduction of the hardware speedup from 105 to
approximately 104. To slow down the neuron dynamics it is suggested to increase their
membrane capacitance by the respective factor.

So, what tasks could a fast and rather homogeneous Spikey IV possibly solve better than
other simulation back-ends? Relating to a suggestion of Prof. Dr. Wolfgang Maass, the
computational power of sparsely connected recurrent networks could be investigated sys-
tematically. It is supposed that such architectures are able to perform computations of
almost any degree of complexity. An yet unanswered question is how recurrent networks
should be set up to yield optimal performance. One auspicious approach could be the
comparison of ‘better’ and ‘worse’ networks in terms of statistical measures regarding,
e.g. connection probabilities. Therefore, many different networks need to be generated
from specified probability distributions and trained to several tasks. By an iterative
procedure, well-performing construction principles can be dissected.
Since successful experiments have been carried out with rather small networks, consist-
ing of about 100 neurons, Spikey provides a sufficiently large substrate. Furthermore, it
is stated that it is diversity that makes this approach powerful. So, a limited amount
of inhomogeneity of the substrate, can be assumed to not interfere with the results.
Therefore, this could be an application like tailored for the FACETS Hardware.

Looking a bit further into the future, the same concepts should be applied to much
larger networks using the upcoming Stage 2 wafer-scale integration system. This device
is designed to allow the emulation of entire cortical domains, like the primary visual
cortex V1. Furthermore, the spike-time dependent plasticity mechanism renders long-
term learning experiments possible, utilizing the full acceleration of the hardware.
Finally, due to the reliable and constant speed of generated output accompanied by a
low power consumption, analog hardware emulators might find a technical application
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as embedded systems. Furthermore, such devices might provide a chance to exploit
the computational potential of upcoming, very small structures of electronic units –
which are prone to high production error rates – since network architectures are able to
self-adjust to imperfections of the substrate.
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