
Faculty of Physics and Astronomy

University of Heidelberg

Diploma thesis

in Physics

submitted by

Eric Müller

born in Heidelberg

September 2008

Operation Of An Imperfect
Neuromorphic Hardware Device

This diploma thesis has been carried out by Eric Müller at the

Kirchhoff Institute for Physics

University of Heidelberg

under the supervision of

Prof. Dr. Karlheinz Meier

Operation Of An Imperfect Neuromorphic Hardware Device

This thesis presents the work done towards the characterization and improvement of the
operation of an imperfect neuromorphic hardware device. The hardware system and the
utilized software framework are described. The developed methods for testing and specifying
various chip features and imperfections are introduced, the results and a set of developed
solutions are shown. These include an automated test suite for the digital part of the utilized
chip, specification of its parameter stability, of noise types, of its long-term synaptic plasticity
and of a specific problem with the readout of internal observables. Improvements of the
software framework and of its development flow are presented, including a speedup of the
build process, code profiling techniques and a graphical front-end for interactive operation
of the hardware system. The presented work provides important insights into the functions
and malfunctions of the utilized chip, which will eventually help improve its future revisions.
The contributions to the software environment increase efficiency and transparency of the
development flow and facilitate an experimental usage of the chip.

Betrieb eines unvollkommenen neuromorphen Hardwaresystems

Die vorliegende Arbeit befasst sich mit der Charakterisierung und Verbesserung eines noch
unvollkommenen neuromorphen Hardwaresystems. Zunächst werden das Hardwaresystem
und die verwendete Softwareumgebung beschrieben. Es werden Methoden vorgestellt, ver-
schiedene Eigenschaften des Mikrochips zu testen und Fehlverhalten zu spezifizieren. Ergeb-
nisse der hier entwickelten Methoden und Lösungsansätze werden präsentiert. Diese beinhal-
ten automatisierte Testroutinen für den Digitalteil des verwendeten Chips, die Spezifikation
der Parameterstabilität, des Rauschens, der synaptischen Langzeitplastizität und ein Prob-
lem mit der Auslese interner Größen. Desweiteren werden Verbesserungen zur Softwareumge-
bung und des Entwicklungsprozesses präsentiert. Dazu gehören eine Beschleunigung des
Kompilierungsprozesses, eine Laufzeitanalyse und eine graphische Oberfläche für die inter-
aktive Anwendung des Hardwaresystems. Die präsentierte Arbeit liefert Erkenntnisse über
Wirkungsweise und Fehlverhalten des verwendeten Chips, die zu Verbesserungen in zukün-
ftigen Revisionen beitragen können. Die Beiträge zur Verbesserung der Softwareumgebung
erhöhen die Effektivität und Transparenz des Entwicklungsprozesses und erleichtern die Be-
nutzbarkeit des Chips.

II

Contents

1 Introduction 1
1.1 Neuroscience And Technology . 1
1.2 The FACETS Project . 3
1.3 Outline . 4

2 The FACETS Hardware 5
2.1 Chip Overview . 6
2.2 Neuron Model . 7
2.3 Synaptic Plasticity . 7

2.3.1 Short-Term Plasticity . 7
2.3.2 Long-Term Plasticity . 8

2.4 Towards Stage 2 . 10

3 Software Framework 11
3.1 The Meta Language PyNN . 11
3.2 The PyNN.hardware module . 13

3.2.1 Python Hardware Abstraction Layer 13
3.2.2 Low-level Software . 15
3.2.3 Graph Model . 16

4 Experimental Investigation Of The FACETS Stage 1 hardware 19
4.1 Assertion of Digital Functionality . 19

4.1.1 Link Test . 19
4.1.2 Parameter RAM Test . 21
4.1.3 Event Loopback Test . 21
4.1.4 Conclusion . 21

4.2 Characterization Of The Chip . 22
4.2.1 Noise . 22
4.2.2 Neuron Readout . 22
4.2.3 Parameter Stability . 24
4.2.4 Spike Timing Dependent Plasticity . 25

4.3 Workarounds for Chip Imperfections . 28
4.3.1 Summary Of Main Problems . 28
4.3.2 Neuron Resets . 28

Every nth Input Spike . 28
Fixed Rate . 29
Poisson Distributed . 30
Conclusion . 30

4.3.3 Parameter RAM Update . 32
4.3.4 Parameter Voltage Generator Calibration 35

III

5 Improved Software Flow and Tools 37
5.1 Software Project Management . 37

5.1.1 Build Process . 37
5.1.2 Source Code Management . 37

5.2 Korescope . 38
5.3 Code Profiling . 39
5.4 WinDriver . 39

6 Discussion & Outlook 41

A Appendix 43
A.1 Source Code Locations . 43

A.1.1 General . 43
A.1.2 Further Contributions . 43
A.1.3 Documentation . 44

A.2 Example: KoreScope . 45
A.3 SciPy.Weave Example . 46

Bibliography 47

IV

1 Introduction

1.1 Neuroscience And Technology

To understand the most sophisticated information processing technology nature has come
up with after billions of years of evolution – the human brain – is one of the fundamental
questions of mankind. Scientists of nearly all disciplines have been involved in researching the
human brain for centuries. Until today, many details have been investigated and are now well
understood. However, many unanswered questions remain. Large efforts are made in all three
major directions of neuroscientific research: microscopic studies to investigate the dynamics
and mechanisms of single cells and connections, research at macroscopic scales to investigate
the activity of whole brain regions and brain anatomy, and complexity research to investigate
functionality, information processing and self-organization arising from connectivity, from
complexity and from specific network architectures.
As in nearly all natural sciences, technological advances have always massively boosted

neuroscientific research: For example, at the end of the 1970s the patch clamp technology
provided revolutionary possibilities to measure single or multiple ion channels in neural cells.
Since the 1980s neuroscientific modelers have been using computer simulations in order to gain
new insights into both single cell dynamics and network behavior. Still today, as traditional
computer systems are getting more and more powerful, new facets of research emerge, for
example utilizing cluster technology that allows the simulation of increasingly larger networks.
In the late 1980s, improvements in CMOS1 VLSI2 technology made it possible for a new field
of neuroscientific modeling to emerge: neuromorphic hardware. This field, too, has received
significant benefit from several improvements in the utilized technologies facilitated major
improvements. Today, accelerated3 neuromorphic hardware implements sophisticated cell
models.
But it is not only neuroscience benefiting from technological improvements – the opposite

direction is true as well. The ongoing research within this challenging field has always al-
ways pushed the employed technologies farther and developed new ones. Physiological access
methods, pharmacological agents, simulation architectures and paradigms, micro-electronic
engineering – studying the brain inspires and requires novel approaches that often find useful
implications for other fields.
Of course – in addition to the pure academic interest – one major hope is that the gained

knowledge about the brain will help understand mental disorders and develop effective ther-
apies. Furthermore, from the technological point of view, new computational paradigms may
emerge that could lay the foundation for completely new computer architectures. Brain-
machine interfacing has evolved quite far already, paving the way for future neuro-prostheses
and maybe even for various human enhancement technologies.

1Complementary Metal-Oxide-Semiconductor
2Very-Large-Scale Integration
3Speedup with respect to biological real-time of up to 105.

1

1 Introduction

Many aspects of neuroscientific research are very technical – and so is the focus of this thesis.
It is a work on the study and development of technologies for neuroscience. It describes the
work done on enhancing the software controlling a neuromorphic hardware device, including
the development of appropriate methods and tools, and on the specification of the hardware
system’s imperfections. Every newly developed technology exhibits imperfections along the
way towards a satisfying state, and efficiently dealing with imperfections is an important
scientific competence.
The following short survey shall roughly describe the status quo of the major fields in

neuroscience and their most important techniques of knowledge acquisition.
The human brain comprises about 1011 neurons4, each connected to thousands of its neigh-

bors by dendrites and axons – via so-called synapses. Neurons transmit information in the
form of stereotypical electric signals called spikes. A region in the brain called the cerebral cor-
tex has been identified as playing a key role in our ability to think, remember, communicate,
empathize, and plan for the future.

Biology Biological measuring methods can be divided into non-invasive and invasive, in-
vitro5 and in-vivo6 methods. Examples for non-invasive methods for recording brain activ-
ity are Electro-Encephalography (EEG) and functional Magnetic Resonance Imaging (fMRI)
[Huettel et al., 2004]. The Patch Clamp technique [Kandel et al., 2000], Voltage Sensitive
Dyes (VSD) [Kerr et al., 2005], Micro-Electrode Array (MEA) [Frey et al., 2007], Local Field
Potential (LFP) [Mehring et al., 2003] are invasive measurement methods.

Modeling To classify neural network models according to their computational units, a clas-
sification scheme suggested by Maass [1997] can be applied. These so-called first genera-
tion models are based on McCulloch-Pitts neurons [McCulloch and Pitts, 1943]. Perceptrons
[Rosenblatt, 1958] belong to the same model generation. A characteristic property of these
models is the binary in- and output.
A biological interpretation of neural networks consisting of second generation neurons is

added by interpreting their continuous output as firing rates of biological neurons.
Adding biologically realistic information coding – spatio-temporal patterns of action po-

tentials, in the following also called spikes – yields third generation models employing spiking
neurons as computational units.
A standard model focusing on high biological accuracy is the Hodgkin-Huxley model [Hodgkin

and Huxley, 1952]. Modern versions of Hodgkin-Huxley-type models add additional ion chan-
nel populations based on experimental data, and complex geometries of dendrites and axons
based on microscopy data. More phenomenologically oriented models reduce complexity to
allow for efficient large-scale numerical simulation of groups of neurons 7 and to facilitate
mathematical analysis of neurons as well as network dynamics.
A model often utilized for large-scale simulations is the so-called Leaky Integrate-and-Fire

(LIF) model (e.g. the conductance-based IF models in Destexhe [1997]). Figure 1.1 shows
an illustration of neuron behavior upon the arrival of excitatory post-synaptic potentials
(EPSP). Multiple post-synaptic potentials are temporally integrated and, as the membrane

4A cell type receiving and transmitting signals within the nervous system is called neuron.
5inside or on living tissue of a living organism
6outside of an organism
7For example, the Blue Brain Project (http://bluebrain.epfl.ch) uses 8192 processors of a Blue Gene

Supercomputer to simulate up to 108 simple neurons or 104 complex neurons in real-time.

2

http://bluebrain.epfl.ch

1.2 The FACETS Project

t

Vth

Vrest

V (t)

t1 t3

t2 t4

Figure 1.1: Integrate-and-Fire model: Membrane po-
tential V (t) depending on two pre-synaptic inputs. The
first spike causes an conductance pulse to increase ex-
citatory leakage. Thus, the membrane potential in-
creases and an excitatory post-synaptic potential (EP-
SPs) can be seen on the voltage time course. After
reaching a maximum value, the membrane potential de-
clines due to a leak conductance. Integration of PSPs
induced by incoming spikes can be observed upon ar-
rival of the second and third spikes. A fourth spike
lifts the membrane potential above threshold voltage
Vth. An action potential (spike) is fired. Afterwards
V (t) undergoes a phase of hyper-polarization. Figure
taken from [Brüderle, 2004] with friendly permission
from Daniel Brüderle.

leaks towards resting potential, another spike triggers an EPSP lifting the membrane po-
tential above the threshold voltage. A spike is generated, the neuron undergoes a phase of
hyper-polarization and finally the membrane potential recovers towards resting potential. For
some applications fixed threshold voltages are a oversimplification of the biological spiking
behavior. Thus, various extensions allow for a more realistic spike initiation zone, subthresh-
old resonances or adaptation (e.g. Adaptive Exponential Integrate-and-Fire model in Brette
and Gerstner [2005]).

Neuromorphic Hardware These models can also be implemented in a physical, typically sil-
icon, form, mimicking the structure and emulating the function of biological neural networks.
The first neuromorphic hardware models have been developed as far back as the 1980s [Mead
and Mahowald, 1988; Mead, 1989]. Today, an active community develops analog or mixed-
signal VLSI8 models of neural systems [Renaud et al., 2007; Vogelstein et al., 2007; Merolla
and Boahen, 2006; Hafliger , 2007; Serrano-Gotarredona et al., 2006]. Physically emulating
neural network models instead of numerically simulating them has two main features: the
analog behavior and the inherent parallelism. Therefore, neuromorphic network models are
typically exhibit a high scalability and can be operated in real-time or faster, independently of
the underlying network size. Furthermore, since the analog circuits operate time-continuously,
artifacts which may occur in discrete-time software simulators are avoided.

1.2 The FACETS Project

Since 2006, the author’s group Electronic Vision(s) is member of the European joint re-
search project FACETS9. The FACETS project consists of 15 partner groups, which employ
scientists from various fields, including biology, mathematics, physics and engineering.

“The goals of the FACETS project is to create a theoretical and experimental foun-
dation for the realization of novel computing paradigms which exploit the concepts
experimentally observed in biological systems. The continuous interaction and sci-
entific exchange between biological experiments, computer modeling and hardware

8Very Large Scale Integration
9Fast Analog Computing with Emergent Transient States

3

1 Introduction

emulations within the project provides a unique research infrastructure that will
in turn provide an improved insight into the computing principles of the brain.
This insight may potentially contribute to an improved understanding of mental
disorders in the human brain and help to develop remedies.”10

Together with a team from the Technische Universität Dresden, the Electronic Vision(s)
Group is responsible for designing and building a neuromorphic hardware system. This sys-
tem implements a large number of emulated spiking cortical neuron models, i.e. the electrical
behavior of these simplified neuron models is physically emulated by CMOS11 circuits. Bio-
logically realistic plasticity mechanisms are implemented in every single synapse. The systems
can operate up to 105 times faster than their biological antetypes. Due to its inherent paral-
lelism, this speedup is independent from the number of neurons operated. Thus, the system
represents a potential platform for long-term or statistics-intensive experiments.
For the time being, the so-called FACETS Stage 1 system is used as a prototype for the

Stage 2 system, which is under development. The Stage 1 chip ‘Spikey’ emulates a time-
continuous leaky integrate & fire (LIF) neuron model (p. 7). 384 neurons and about 105

synapses (p. 7 et sqq.) are integrated into a single chip. In the FACETS project, the goal
is a much higher integration density compared to the Spikey based system: the currently
developed Stage 2 system will comprise about 1.8 · 105 neurons and 4.2 · 106 synapses on a
single wafer. Additionally, an improved neuron model including spike-frequency adaption and
exponential voltage threshold [Brette and Gerstner , 2005] will be integrated.
An important aspect of the work done in the group is to make this hardware accessible

to the interdisciplinary community of neuroscience. Therefore, the development of a project-
wide unified meta-language PyNN, the integration of the hardware interface into PyNN (p. 11
et sqq.) and a detailed specification (p. 19 et sqq.) and calibration (e.g. p. 35 et sqq.) of the
hardware are major focuses.

1.3 Outline

The present document is structured into two main parts:

• The description of the utilized experimental environment, i.e. the hardware system
(chapter 2) and the software framework (chapter 3).

• The investigation of the utilized hardware system consisting of measurements of chip
characteristics (sec. 4.2), workarounds for existing problems (sec. 4.3) and improvements
made to software flow (chapter 5).

Contributions by the author to existing software, concepts and measurements are covered in
chapter 4. Chapter 5 covers further technical contributions.

10http://facets-project.org/
11Complementary Metal-Oxide-Semiconductor

4

http://facets-project.org/

2 The FACETS Hardware

The FACETS Stage 1 hardware system emulates a leaky integrate & fire, time-continuous
neuron model [Schemmel et al., 2004]. The conductance based synapses offer both a short-
term plasticity and a long-term plasticity mechanism [Schemmel et al., 2007, 2006]. Its design
is based on existing phenomenological models [Destexhe, 1997]. Exploiting the possibility to
implement very small capacitances and resistances in CMOS VLSI technology, high accel-
eration factors of up to 105 relative to biological real-time can be achieved. Almost 5 · 104

synapses and 384 neurons are integrated into a single chip. Figure 2.1 shows the experimental

Oscilloscope

Analog Output

Spikey

Recha

Backplane Nathan

Figure 2.1: Photograph of the FACETS Stage 1 hardware setup. FACETS Stage 1 chip (called
Spikey) on Recha support board and Nathan plug-in card; Nathan connected to a so-called Backplane;
Backplane connected to host PC. In the background: Oscilloscope showing membrane trace.

setup: the FACETS Stage 1 hardware chip (called Spikey) connected to a Nathan board car-
rying an FPGA1 (below cooler) for experimental control. Up to 16 Nathans can be plugged
into a backplane, which is connected to a host computer running x86 GNU/Linux.

1Field-programmable gate array

5

2 The FACETS Hardware

2.1 Chip Overview

The FACETS Stage 1 hardware is produced using standard 180 nm technology with 1
poly-silicon and 6 metal layers and a 5 × 5mm2 die size. Two synapse arrays contain 49152
synapses (256×192) each and occupy most of the chip area. Located below, there are 192×2
neurons each containing a capacitance Cm that corresponds to the membrane capacitance.
Three separate conductances model different ion channels (cf. figure 2.2 in the lower right
corner):

• membrane leakage: gleak, individually controllable for every neuron
• excitatory synapse conductance gx(t) and its reversal potential Ex
• inhibitory synapse conductance gi(t) and its reversal potential Ei

iq ps r t

uw v x y � �� � � � �

|� } ~ �# �3 � �̄ �� �(�C �

�r � �# � �r �

�ı � ` ´ ˆ̄ ˜̇ �̆ ¨ �# ˚

¸ �̨ �̋ ˇ ¡

¢ £ ¤ ¥w ¦� ¥‘ §

Iin

Iout

Iout

spike in

Vout

Vmax

trise tfall

input mux

synapse driver

synapse

inhibitory

excitatory

neuron

synaptic
weight
RAM

2
5
6

192

exc
inh

Vin

Vin

spike out

El Ex Ei

gleak gx gi

Cm

Vth

Vreset

Figure 2.2: Operating principle of the FACETS Stage 1 hardware device. Synapse drivers, synapses
and neurons are marked by different boxes. A column corresponds to a neuron with up to 256 pre-
synaptic inputs. Schematic based on Schemmel et al. [2004].

The leakage reversal potential El, the excitatory Ex and inhibitory Ei reversal potentials, as
well as the threshold and reset voltages Vth and Vreset can be set for groups of 96 neurons.
Synaptic weights are stored in a static RAM whose content is converted into a current by a
4-bit multiplying DAC in each synapse.

6

2.2 Neuron Model

2.2 Neuron Model

The membrane potential V is determined by the following differential equation:

− Cm
dV

dt
= gl(V − El) +

∑

k

pk(t)gk(t)(V − Ex) +
∑

j

pj(t)gj(t)(V − Ei) (2.1)

gk,l(t) = ωk,l(t) · g
max
k,l (t) (2.2)

The constant on the left side Cm defines the total membrane capacitance. The first summation
term represents the contribution of the different ion channels that define the leak potential
El. The reversal potentials for inhibitory and excitatory ion channels are determined by
Ei and Ex. Excitatory synapses are covered by the second summation term, inhibitory
synapses by the third summation term. The synaptic conductance gk,j is expressed as a
product of a maximum conductance gmaxk,j (t) and the synaptic weight ωk,j(t) (cf. eq. 2.2).
Short-term plasticity is modeled (cf. section 2.3.1) as individual synaptic open probabilities
pk,j(t) that control the individual activations of the synapses [Dayan and Abott, 2001]. Long-
term plasticity is incorporated into the model by assigning gj and gk weak time dependence
gk = gk(t) and gj = gj(t) (cf. section 2.3.2).

2.3 Synaptic Plasticity

Synaptic Plasticity is the ability of a synapse to change its strength over time i.e. to change
the weight of the connection between two neurons. The weight of a synapse describes the
ability of the pre-synaptic neuron upon arrival of action potentials to influence the post-
synaptic neuron (i.e. the effect on the post-synaptic potential).

2.3.1 Short-Term Plasticity

The FACETS Stage 1 hardware implementation of Short-Term Plasticity [Schemmel et al.,
2007] is based on ideas developed in Tsodyks and Markram [1997] and Markram et al. [1998]:
an absolute synaptic efficacy ASE is introduced, distributed between a recovered (R) and an
inactive (I) partition. Upon the arrival of an action potential (tAP), a conductance pulse is
generated, with a maximum gmax proportional to the fraction R of the recovered partition.
After the transmission of the post-synaptic action potential, a fixed fraction USE of the
recovered partition R is moved to the inactive partition I. A time-continuous reversal process
reloads R, its time constant is trec. Figure 2.3 shows a NEST (cf. section 3.1) simulation
of depressing and facilitating synapses. Incoming spikes are represented by bars. In the left
panel, a depressing synapse is shown. With every incoming spike, its impact on the membrane
is reduced. Depressing synapses obey:

dI

dt
= −

I

trec
+ USE · R · δ(t− tAP) (2.3)

R = 1− I

gmax = ASE ·R

7

2 The FACETS Hardware

static synapse facilitating synapse depressing synapse

Figure 2.3: Equidistant spikes arriving at a hardware synapse cause a chain of post-synaptic po-
tentials on the membrane. Demonstrated is the influence of a static (left), facilitating (center) and
depressing (right) synapse configuration. In the upper half, the trace was averaged over 100 runs.
With friendly permission of Johannes Bill [Bill, 2008].

To model facilitating synapses, R is replaced by I. Thus: gmax = ASE · I.

2.3.2 Long-Term Plasticity

The FACETS Stage 1 hardware chip implements STDP2 as a mechanism for long-term
plasticity. It is based on physiological measurements presented in Bi and Poo [1997] and on
corresponding models as for example described in Song et al. [2000]. For every occurrence
of a pre- or post-synaptic action potential (with ∆t = tpre − tpost) the synapse changes the
synaptic strength by a factor of 1 + F (∆t). F is called the STDP modification factor and is
defined as follows:

F (∆t) =

{
A+ exp(∆t

τ+
) if ∆t < 0 (causal)

−A− exp(−∆t
τ
−

) if ∆t > 0 (acausal)
(2.4)

Whereas A+, A−, τ+ and τ− are constant.
The FACETS Stage 1 hardware chip implements STDP in every synapse [Schemmel et al.,

2006]. Since each hardware synapse contains its own STDP circuit, all correlation mea-
surements are performed in parallel. Every synapse adds up these exponentially weighted

2Spike timing dependent plasticity

8

2.3 Synaptic Plasticity

time difference ∆t [AU]

sy
n
ap

ti
c
ch
an

ge
[%

]

A+

A−

A+exp
∆t/τ+

100

50

0

-50

Figure 2.4: The STDP curve:
pre-synaptic minus post-synaptic
spike time yields time difference
∆t (negative time difference im-
plies causal, positive time dif-
ference implies acausal relation-
ship between pre-synaptic neuron
and post-synaptic neuron). Typ-
ical biological measurement rou-
tines use spike time differences of
0 . . . 100ms.

correlation measurements F (∆t) individually for causal (pre-post) and acausal (post-pre)
spike pairs. Thus eq. 2.4 transforms to:

Fc(∆t) = A+ exp(∆t
τ+

) Fa = 0 if ∆t < 0 (causal)

Fa(∆t) = A− exp(
−∆t
τ
−

) Fc = 0 if ∆t > 0 (acausal)
(2.5)

Fc and Fa are added to
∑
Fc and

∑
Fa respectively. If the absolute difference between these

sums exceeds a threshold Vthreshold, a significant correlation is flagged. To mark a causal
correlation

∑
Fc has to be larger than

∑
Fa and vice versa.

|
∑
Fc −

∑
Fa| > Vthreshold (2.6)

∑
Fc −

∑
Fa > 0 (2.7)

If eq. 2.6 evaluates to true and automatic updating is enabled, the weight is updated. This is
done by replacing the current weight (4 bit resolution) ω of the synapse with the corresponding
value obtained from either the causal or the acausal programmable look-up table. Which table
gets used is determined by the result of eq. 2.7. That is, if

∑
Fc >

∑
Fa is true, the causal

look-up table is used and vice versa. Subsequently the accumulating values Fa,c are reset. As
long as eq. 2.6 evaluates to false, the summations continue.
However, the STDP controller works sequentially. Therefore, the weight update is delayed

until the STDP controller processes the particular synapse. The following formula can be
used to calculate the worst case3 delay for updating the synaptic weights:

tupdate = (2Nupdates/(6×row) + trow delay) · 2tclk ·Nrows (2.8)

Every two clock cycles up to six weights can be updates. Each row access must be done twice,
for causal and acausal measurements. Using the default operating parameters (at the time
of writing) row access trow delay requires typically 50 cycles; tclk is set to 200 MHz; speedup
relative to biological real-time is 105. Thus (2 · 64 + 50) · 2 · 5 ns · 256 ≈ 456 µs are needed for
updating all 192 · 256 synapses within a block. Considering a speedup of 105, this represents
45.6 s in biological time. This clearly limits the speed of synaptic weight adaptation via
STDP in the hardware system. Therefore, depending on the experimental setup, biologically
realistic learning behavior involving STDP cannot be guaranteed [Morrison et al., 2008].

3Assumptions: all synapses are plastic and all synapse rows used (cf. figure 2.2)

9

2 The FACETS Hardware

2.4 Towards Stage 2

The next step towards the emulation of large neuronal networks is the FACETS Stage
2 hardware. Comparable to the Stage 1 system, the hardware model consists of circuits
implementing an Integrate-and-Fire neuron model and synapses providing short-term and
long-term plasticity.
In contrast to the FACETS Stage 1 hardware device, the hardware neuron models spike-

frequency adaptation and an exponential voltage threshold. The new design is based on
Brette and Gerstner [2005], a so-called adaptive exponential integrate-and-fire (aEIF) model.
Furthermore, the FACETS Stage 2 hardware system aims at a much higher integration density
in comparison to Stage 1 hardware: the challenging idea of scaling up the system to a whole
silicon wafer.
A building block called HICANN 4 is being developed: it consists of the ANNCORE5

which contains 1.2 · 105 synapses and up to 512 neurons and other support circuits. 64 of
these neurons can be combined to increase the input count to 1.5 · 104.
Eight HICANN dies are combined to form an individual reticle on the wafer-scale system

[Schemmel et al., 2008]. For the time being, there will be enough space for ca. 44 reticles
per wafer. Thus, 1.8 · 105 neurons and 4.2 · 106 synapses will fit onto a single wafer. Due to
the high acceleration factor of about 104 compared to the biological real time, the necessary
communication bandwidth in-between these Analog Neural Network blocks can exceed 1011

neural events per second, each encoding the transmission of an action potential from one
source neuron to a set of target neurons [Fieres et al., 2008].
To achieve this communication bandwidth we use wafer-scale integration. In this technol-

ogy, the silicon wafers containing the individual chips are not cut into dies. Instead, the wafer
will be post-processed by depositing and structuring an additional metal layer on top of the
whole wafer interconnecting individual reticles directly on the wafer. This method provides
the necessary connection density. Furthermore, support for multi-wafer interconnections is
planned.

4High Input Count Analog Neural Network
5Analog Neural Network Core

10

3 Software Framework

The control of the FACETS Stage 1 hardware, the so-called Spikey chip, is based on a
multi-layer software framework. In the following sections the software layers are explained
from top to bottom (from the experimenter’s point of view):

PyNN is the Python package for simulator-independent specification of Neuronal Network
models. It is an universal interpreter-based API1 for simulator-independent specification
of neural network models developed within the FACETS project as an unified simulation
interface. [Ensemble, 2008]

PyNN.hardware The PyNN module for the FACETS Stage 1 hardware system, which in-
cludes the hardware abstraction layer (PyHAL [Brüderle et al., 2007]) and the so-called
PyScope. The latter provides access to digitizing oscilloscopes with a TCP/IP network
connection.

Low-level C++ The low-level code provides abstract C++[Stroustrup, 1997] interfaces for
the existing hardware modules, thus providing an object-oriented interface to the FACETS
Stage 1 hardware device. Another module written in C++ is the core of PyScope which
may be used to record analog data from an oscilloscope.

PyNN

PyNN.hardware

PyHAL

Spike Train In

Communication Spike Train Out

Chip Model

C++ (Boost.Python wrapper)

PyScope

C++

Chip Config

PyNN.neuron

HOC

NEURON

PyNN.nest

SLI

NEST

Socket Comm

Trace Manager

PyN

SLI

N

Figure 3.1: Software overview showing the software structure of the FACETS Stage 1 hardware
system.

3.1 The Meta Language PyNN

The PyNN project [Ensemble, 2008] started in 2007 with the aim to develop both a generic
API and bindings to different simulation environments using the Python programming lan-
guage. For small networks, the low-level, procedural API provides functions to create (PyNN

1Application Programming Interface

11

3 Software Framework

function create()) neurons or spike sources, connect (PyNN function connect()) neurons
to neurons or spike sources to neurons, record (PyNN function record()) spikes from neu-
rons, record neuron membrane traces (PyNN function record_v()) and set (PyNN function
set()) neuron, input or synapse parameters. For ease of use, a high-level API exists, that
provides an object-oriented view of populations of neurons (PyNN class Population), sets
of connections between populations called projections (PyNN class Projection). This al-
lows for a simplified experimental setup, hiding the details and bookkeeping. Moreover, the
FACETS Stage 2 hardware system will require a thin-layered and parallelized interface to take
advantage of the highly accelerated emulation of networks in the order of 106 neurons. Thus
an object oriented approach using populations and projections to encapsulate experimental
details is favorable.
Figure 3.2 shows the unifying functionality of PyNN. Thus, PyNN is a common language

for setting up neuronal experiments on various back-end simulators. The simulator is specified
once at the beginning of the script and can be replaced by any of the supported simulation
back-ends at any time later. It is for this reason, that exchanging the simulation back-end
requires just a change in a single line of source code (import pyNN.SIMULATOR as pynn is
replaced by import pyNN.ANOTHERSIMULATOR as pynn). This allows for portable experiment
specification, easy simulator comparison and data verification.

hardware*nest neuron pcsim moose* brian*

SLI HOC C++ C++ PythonC++

MooseNEST NEURON PCSIM Facets HW −

PyNEST nrnpython pypcsim PyHAL PyMOOSE Brian

PyNN

Figure 3.2: Schematic of the structure of PyNN. From top to bottom: PyNN modules, Python
based interface, native interpreters and simulation kernels. Starred (*) PyNN modules are under
development and presently not part of the distributed PyNN releases.

The following simulation back-ends are supported by PyNN:

nest The (NEural Simulation Tool) Initiative [The Neural Simulation Technology (NEST)
Initiative, 2007] develops the NEST Simulator. PyNN scripts are translated via PyNEST,
a Python based interface language, to the native SLI interpreter language. The NEST
simulation kernel is written in C++.

neuron NEURON [Hines et al., 2008] is a simulation environment for modeling individual

12

3.2 The PyNN.hardware module

neurons and networks of neurons. PyNN support is based on a native Python interface
to NEURON called nrnpython. Statements in HOC (native interpreter language of
NEURON) are still supported from within nrnpython.

pcsim PCSIM is the successor of CSIM, the Parallel neural Circuit SIMulator. It is written
in C++ with a primary interface to the programming language Python called pypcsim.

moose MOOSE is a simulation environment compatible with GENESIS. The native Python
based interface to MOOSE is called PyMOOSE and a first step to interface it from
PyNN was taken at FACETS CodeJAM Workshop #22 in May 2008.

brian Brian [Brette and Goodman, 2008] is a simulator for spiking neuronal networks written
in Python. It aims to be easy to learn and use, while at the same time being highly
flexible and easily extensible.

hardware The FACETS Stage 1 hardware interface is based on PyHAL, a hardware abstrac-
tion layer written in the Python programming language. Low level code is written in
C++. See section 3.2.

A short outline of NEST, NEURON, CSIM (predecessor of PCSIM) and GENESIS can be
found in Brette et al. [2006].

3.2 The PyNN.hardware module

In order to make the FACETS Stage 1 hardware system accessible by PyNN, a multi-layered
approach was developed. On the top are the high-level PyNN modules (e.g. Populations
or Projections), followed by the procedural PyNN functions (cf. section 3.1), descend-
ing through PyNN.hardware and its main component PyHAL to the low-level C++ code.
PyNN.hardware itself is a very thin translation layer to map the PyNN API to the hardware
abstracting PyHAL layer. In the following sections its primary component PyHAL and the
low-level C++ code are introduced. A detailed schematic is shown in figure 3.3. The currently
developed software framework shown in figure 3.5 is being prepared for the future FACETS
Stage 2 system.
PyNN is primarily3 an API specification to enable and encourage researchers to write

simulator-independent code. The creation of a new PyNN wrapper supporting a new sim-
ulator back-end requires creating functions and classes calling underlying existing code. In
this case, the PyNN.hardware module uses the PyHAL infrastructure. Another part is the
PyScope module, which supports remote control and acquisition of analog output from the
chip using a specific oscilloscope type.

3.2.1 Python Hardware Abstraction Layer

PyHAL is the Python Hardware Abstraction Layer supporting the FACETS Stage 1 hard-
ware4. It provides access to the FACETS Stage 1 hardware via Python.

2http://www.neuralensemble.org/meetings/CodeJam2.html
3By now, there are ongoing efforts to create generic high-level class implementations. Thus, implementing

a new PyNN wrapper is easier, as only the simple procedural PyNN interfaces must be translated. Most
high-level classes can fall back on the generic implementation.

4To simplify the transition to the FACETS Stage 2 hardware, Stage 2-specific software requirements such as
the Graph Model (cf. section 3.2.3) are being integrated.

13

http://www.neuralensemble.org/meetings/CodeJam2.html

3 Software Framework

pyNN.hardware

pyNN

pyNN.hardware.stage1

pyhal

config buildingblocks more...

Boost.Wrapper

PySpikey PySpikeyConfig PySpikeTrain more...

Spikey SpikeyConfig SpikeTrain much more...

C++−Python

C++−low level

Python HAL

wrapper

Neuron Synapse NetworkHWAccess

Figure 3.3: Schematic of PyNN.hardware (Stage 1). Modules (i.e. functions and classes grouped by
namespace) are written in italics, classes in monospaced font.

14

3.2 The PyNN.hardware module

PyHAL consists of two submodules called buildingblocks and config.
The former groups logical units into Python classes like Neuron, Synapse and Network. The

Neuron class provides a modularized view of hardware neurons, holding essential hardware
parameters like threshold voltages and a connection array. The Synapse class is designed for
combining properties of the hardware implementation of synaptic plasticity(cf. section 2.3)
mechanisms. The Network class is the top-level class, creating Neurons, connecting Neurons
to external spike sources or each other. Connections between Neurons are of type Synapse

which is a class derived from float (the weight).
PyHAL’s second submodule config provides the class HWAccess. The purpose of this class

is to translate all model parameters (e.g. weights or threshold voltages) from the biological
terminology and the mostly continuous and in principle unlimited values defined within the
PyNN scope down to the discrete and device specific domain of hardware configuration pa-
rameters. For example, discretizeWeight converts the continuous model parameter synapse
weight into a discretized 4-bit hardware weight. In order to keep the setup as close as pos-
sible to biological reality, weights differing from legal hardware values are evenly distributed
between the two5 discrete hardware values close to the original value. Another feature is the
acquisition of analog membrane potentials using an external module called PyScope. However,
the main functionality is to offer a mapping from the high-level PyNN network specification
to the low-level hardware device in terms of connectivity and grouping of neurons/synapses
sharing the same parameter sets. A good mapping algorithm reduces the need for manually
tuning the PyNN script to support a larger network with higher connectivity (see section
3.2.3).
The PyHAL top-level joins these submodules into a conglomerate of intermediate interface

functions for wrapping hardware access with upper-level PyNN. Therefore it mostly passes
calls to the submodule config while administrative work is done using classes of the submodule
buildingblocks.
As the FACETS Stage 1 hardware system does not support inter-chip networking yet, the

largest mappable network consists of 384 neurons. Network support will raise the need for
sophisticated mapping algorithms. Furthermore, the upcoming FACETS Stage 2 hardware6

will require a fast and mapping-efficient7 translation of a given PyNN network specification
to the hardware system. Thus, an optimized software structure called Graph Model is under
development. As figure 3.5 shows, almost all parts of the Python Hardware Abstraction Layer
will be replaced by the so-called Graph Model. A basic introduction to the Graph Model is
given in section 3.2.3.
For documentation related to this module see A.1.3 (p. 44).

3.2.2 Low-level Software

To call C++ from Python, multiple approaches exist: the maximum flexibility can be
achieved with the C API 8, but this is rather complex and error-prone, as most work has
to be done manually. A second method is SWIG9 which is a tool to create wrapper code

5If the initial value lies outside the representable range of values, it is replaced by the largest (or smallest)
allowed hardware value and a warning is issued.

6Up to 1.8 · 105 neurons and 4.3 · 107 synapses will be supported.
7To maximize network size and minimize synapses dropped.
8http://docs.python.org/api/api.html
9http://www.swig.org/

15

http://docs.python.org/api/api.html
http://www.swig.org/

3 Software Framework

automatically for a number of different interpreted and compiled programming languages.
The main disadvantage of SWIG is that as soon as complex10 data structures are transferred
between Python and C++, special interface code has to be written. A third wrapper interface
is Boost.Python11. It is designed to wrap C++ interfaces as uninvasively as possible12. In
most cases the underlying C++ code does not need extra editing in order to be wrapped
by Boost.Python. Its support extends from references and pointers13, function overloading,
exception translation14 to iterator translation. As Boost.Python satisfies all performance and
memory usage requirements plus provides a convenient interface, it has been chosen as the
wrapper interface for the FACETS Stage 1 and 2 hardware system.
The wrapped low-level C++ layer15 already provides a somewhat abstracted view of the

hardware system. Hardware modules are modularized in an object-oriented manner but do
not offer network-level abstraction.
The most important functions accessed by PyHAL are config() to configure the system,

sendSpikeTrain() to send a spike train to the configured system and recSpikeTrain() to
read a spike train from the chip. These functions are encapsulated into a single class called
Spikey. This is the top-level class utilizing further support classes for communication with
the chip (e.g. SpikenetComm and its descendant classes respectively) and configuration of
different modules (e.g. PramControl for the parameter RAM setup).
For documentation of the low-level software see A.1.3 (p. 44).

3.2.3 Graph Model

In this context, the process of translating biological networks models as defined by PyNN
into neuromorphic hardware configurations is from now on simply referred to as mapping.
Connections in small networks can be represented as a weight matrix. Non-zero entries rep-
resent synapses, the column index corresponds to pre-synaptic neurons and the row index
corresponds to post-synaptic neurons. If larger networks are involved and connectivity is
sparse, arrays are needlessly memory consuming as their size grows quadratically with re-
spect to number of neurons. Instead of that, sparse matrix techniques [Pissanetzky, 1984]
may be used. But neuromorphic hardware systems add additional constraints such as limited
connectivity, grouped units sharing a single parameter, differing latencies for off-chip con-
nections and limited bandwidth. The time required to create a mapping between biological
network specification and hardware configuration is another important point. A slow mapping
process reduces the overall speedup the system can achieve.
In the face of the presently developed FACETS Stage 2 hardware system (cf. section 2.4),

the FACETS project partner group of the Technische Universität Dresden developed a Graph
Model to solve these tasks. A graph comprises a set of vertices (or nodes) V 6= ∅ and a set
of edges E that connect pairs of nodes. A hypergraph may also contain edges which connect
more than two nodes (E ⊂ V N , N ≤ dimV). A biological network consists of neurons and
synapses, each of them characterized by a set of parameters. These types of units (e.g. neurons,
synapses, parameters) are represented as nodes of the BioModel. Parameter assignments to

10non built-in data types
11 http://www.boost.org/doc/libs/1_34_0/libs/python/doc/index.html
12Typically Boost.Python wrapper interface code requires a single line of source code to wrap a C++ function.
13Therefore most data structures can be transferred without copying data.
14C++ exceptions are translated to Python exceptions, thus allowing for more safe programming. Error

conditions can be handled in a cleaner way.
15A more detailed overview can be found in [Grübl , 2007]

16

http://www.boost.org/doc/libs/1_34_0/libs/python/doc/index.html

3.2 The PyNN.hardware module

neurons are represented by directed edges, connections between neurons are represented by
directed multi-edges (triples consisting of two neurons and a synapse). These two types of
directed edges are called named edges. To indicate hierarchical dependencies undirected edges
called hierarchical edges are added (e.g. connecting individual (instantiated) neurons to its
base node). Besides these two edge types, a third one, called hyper edge, is used. These
edges are created by a mapping algorithm and map biological units to hardware units. The
Hardware Graph is constructed in a similar fashion: a top-level node points to Wafer nodes
pointing to functional blocks et cetera. Figure 3.4 shows a simplified overview of the Graph
Model after mapping a given biological network successfully.

Neuron
Neuron

Biological

Model

Neurons

Neuron

Parameters Synapse

Parameters

FACETS

Stage 2

Hardware

System

Wafer
Bus

HICANN

Connection

HICANN

Wafer
Wafer

Connection

Connection

Neuron

M
a
p
p
in

g

A
s
s
ig

n
m

e
n
t

hierarchical edges

hyperedge

named edges

Figure 3.4: Graph Model: representations of the biological network (left) model and the hardware
system (right). The mapping between these graphs is represented as dashed edges.

The primary task is to create a good mapping. Good may be characterized as: a) mini-
mize neurons and synapses dropped (i.e. achieve a high utilization); b) minimize violations
of parameters; c) minimize timing violations; d) realize low mapping time. These partly con-
tradictory requirements form a multi-objective optimization problem that is hard to solve.
An iterative mapping algorithm creates a mapping, calculates a score with the help of a cost
function and tries to maximize the score. The details of the used mapping algorithms and
cost functions are not described here in detail. A more detailed introduction to the Graph
Model is given in Wendt et al. [2008], whereas parallelization efforts are discussed in Ehrlich
et al. [2008].

17

3 Software Framework

C++ Graph

pyNN.hardware

pyNN

pyhal

FACETS Stage 1 hardware system

more...

C++−Python

Python HAL

wrapper

Boost.Wrapper

Model

Graph Model

Bio Graph Hardware Graph

Mapping Routing

pyNN.hardware.stage2 pyNN.hardware.stage1gm

Figure 3.5: Currently developed schematic of PyNN.hardware (Stage 1) with Graph Model and
future Stage 2 schematic. An exemplary call to pynn.run() is shown (dashed line). The configuration
process is marked in red, returning data in green.

18

4 Experimental Investigation Of The FACETS
Stage 1 hardware

4.1 Assertion of Digital Functionality

As neuromorphic hardware systems are getting increasingly complex, a multitude of poten-
tial sources of error arise inevitably. While most errors disrupt higher-level functionality and
can thus be detected quite easily, some errors may stay unnoticed for a long time. Therefore,
test charts are introduced to avoid hidden errors. As manual testing is cumbersome, auto-
matic test procedures are essential. In the following, three tests of the PyHAL hardware test
module which has been implemented by the author are described.

Low-level Tests Both the communication with the chip and its basic functionality can be
tested by so-called test modes. These tests were developed originally for command line access
by Grübl [2007, p. 133]. On top of this, the author integrated the following tests into the
PyNN.hardware framework1:

• the link test to verify the connection to and from the Spikey chip
• the parameter RAM test to verify the functionality of the parameter RAM
• the event loopback test to test event (spike) processing in the digital part of the chip

Thus, basic functionality can be asserted by automatic means before running PyNN scripts.
In case of error, an instructive message is displayed. Thus, the need for hardware specific
knowledge is reduced.
For documentation of the low-level tests see A.1.3 (p. 44).

4.1.1 Link Test

The verification of the physical links to and from the Facets Stage 1 Hardware chip is
the most basic test for digital functionality. The physical layer (cf. fig. 4.2) of the interface
consists of two unidirectional links per direction, each transporting 8 bits of data and one
frame bit. To verify the functionality of the physical links to and from the chip, a special
Bypass Operation mode may be used. In this mode, the chip acts like a shift register, pushing
received data into a FIFO queue. The same queue is used as source for output data. On
the software side a testmode has been developed by Dr. A. Grübl [Grübl, 2007, p. 87]. After
setting the control interface testmode via SpikeNet::setChip()2, all input data (called data
out) is forwarded to the output buses (called data in3). The principle of operation is shown in
figure 4.2. The link test fails if input data and output data differ4. To test different patterns,

1Instructions on how to start the tests from within a Python scope can be found in the Softies’ Trac (see
section A.1).

2A special chip input pin called CI_MODE is pulled to high. This activates the Bypass mode
3Variable denomination has been done from an FPGA point of view.

19

4 Experimental Investigation Of The FACETS Stage 1 hardware

PyNN

PyNN.hardware

PyHAL

Spike Train In

Communication Spike Train Out

Chip Model

C++

Chip Configuration

HWTest

C++
link

parameter RAM

event loopback

PyScope

C++

Socket Comm

Trace Manager

Figure 4.1: Hardware test and hierarchy of software abstraction layers

�VVV�VVV�VVV�VVV�Dataout (Link 0) �VVV�VVV�VVV�VVV�Dataout (Link 1)

D1
a D2

a D3
a D4

a

D1
b

D2
b

D3
b

D4
b�HHH�LLLLLLLLLLLLLLLFrame Bit (CTL) �HHH�LLL�HHH�LLL�Link Clock �HHHHHHHH�LLLLLLLL�Packet Clock bBbbbbBbbbbBbbbbBbbbbBTime [2.5 ns/div]

Figure 4.2: Operation principle of the link test: Bit time 0 (D1) starts at a rising edge of the link
clock, whereas bit time 1 (D2) starts at the following falling edge. As a result, 16 data bits are
transmitted within a link clock cycle. Thus, both links combined yield 64 bits of data per packet clock
cycle.

20

4.1 Assertion of Digital Functionality

a random number generator creates input data in a loop (103 runs by default).

4.1.2 Parameter RAM Test

The values of the various model parameters are stored within current memories, that are
refreshed periodically. A controller addresses each memory cell (with address cadr) in a
programmable sequence and a DAC writes the value to the corresponding cell. The write
timing parameters are:

• number of clock cycles to activate boost write mode (4 bit)5

• number of clock cycles needed to activate normal write mode (4 bit)
• optional automatic increment of the physical write address (8 bit) with default value 1
• optional step size (4 bit) with default value 1

These parameters are stored within a look-up table containing 16 different possible setups.
Along with this 4 bit look-up table address, the physical address (12 bit) and the value applied
to the DAC (10 bit) are stored in the parameter RAM.
The utilized chip versions (Spikey 2 and 3) make use of almost 3000 parameters.
To test the basic functionality of the parameter RAM, a testmode has been developed by

Dr. A. Grübl. This testmode writes random (but legal) values to the parameter RAM. After
filling up the RAM, it is readout again. If the readout differs from the input, the test fails.

4.1.3 Event Loopback Test

The purpose of the event loopback test is to verify the functionality of the event (i.e. spikes
coming from outside the chip and spikes going off-chip) processing modules in combination
with the synchronization of the chip. In principal, the event loopback works as pipeline
register. Events from the input links pass through input event buffers, then bypass the
analog part, pass through output event buffers, finally arriving at the output links [Grübl,
2007, p. 99]. A setup to compare a random set of input spike events with the output spikes
received from the chip is given by the event loopback testmode, which has been developed by
Dr. A. Grübl. If the test succeeds, this indicates that the digital part of the chip is working.

4.1.4 Conclusion

The author worked through the source code, documenting it and adding meaningful er-
ror messages. With the help of Boost.Python, these three tests were integrated into the
PyNN.hardware software framework. To further improve the automatic hardware tests, an
analog test is under development.

4The delaylines [Grübl , 2007, p. 89] must be calibrated before.
5The output of the DAC drives a large capacitive load, as it is connected to all current memory cells in

parallel. Thus, the RC time constant at the output is quite large and the output settling time becomes
large, too. To solve this problem, a boost mode is implemented. The target memory cell and nine internal
dummy cells are connected in parallel. The output current is increased tenfold, so the current to the target
cell remains the same, but the settling time is reduced. The drawback is the decreased resolution (10 bit
in normal mode), as the target to dummy cell ratio is different for every target cell.

21

4 Experimental Investigation Of The FACETS Stage 1 hardware

4.2 Characterization Of The Chip

4.2.1 Noise

20

40

60

80

100

0

120

0.492 0.493 0.4940.491 0.495

co
u
nt

[t
ot
al

=
10
00
]

membrane potential [V]

Figure 4.3: Distribution of the resting
potential. A gaussian function is fitted to
the data. µ = 0.493 mV, σ = 0.995 mV

Operating a mixed-signal VLSI device always in-
voles dealing with electronic noise. Several physical
sources exist – like thermal (or Johnson-) noise [Dally
and Poulton, 1998, p. 267–268] caused by thermal ag-
itation of charge carriers or shot noise which is caused
by the fact that the current is carried by discrete
charges. This type of noise is typically categorized by
its relation between power density and frequency. E.g.
white noise is characterized by a constant spectral den-
sity. Another important type is pink noise with 1/f .
Noise caused by an ongoing process is called deter-
ministic noise, as its occurrence is generated by some
circuit. For example crosstalk is typically caused by
capacitive, inductive or conductive coupling from one
circuit to another. While investigating the FACETS
Stage 1 hardware analog behavior, noise is a com-
mon effect. Figure 4.4 shows the resting potential
of a Spikey 3 chip and its power spectrum (orange
in the upper half). Multiple peaks can be identified:
330 kHz which can be traced back to the power supply

and multiples of 100MHz – which is the clock frequency of the digital part of Spikey.
Figure 4.5a shows another Spikey 3 resting potential while a parameter update of so-called

membrane voltage output buffer bias currents occurs. Nine digital spikes can be seen through
crosstalk from the update circuits. As the spiking behavior is not affected, it is assumed to be
limited to the readout chain. A histogram of the resting potential distribution can be seen in
figure 4.3. The fit of a gaussian function to the data yields a σ of ca. 1mV. The contribution
from the readout chain is unclear.
While calibrating the synapse drivers a method called STA6 is used. This method extracts

analog membrane traces triggered by output spikes. After averaging over several (up to 105)
samples the gaussian noise is small enough to unveil membrane structures as small as the
typical noise on the analog output pin. In figure 4.5b an EPSP is shown. A digital spike7 can
be seen just before the EPSP starts. This is caused by crosstalk from digital circuits upon
the arrival of the digital information of the spike.

4.2.2 Neuron Readout

First tests of Spikey 28 indicated spike readout problems. As soon as two neurons within
certain subsets of a readout group9 are recorded, the readout is prone to deadlock after a short
time. The deadlock seems to occur most likely when two neurons fire in quick succession.
Thus, a typical setup locks after only a handful of output spikes (see figure 4.6). If multiple

6Spike-Triggered Averaging
7In this case an action potential is not meant.
8FACETS Stage 1 hardware chip version 2
964 neurons are grouped together. Three groups form a block.

22

4.2 Characterization Of The Chip

Figure 4.4: Resting potential (Channel 1, green) and its power spectrum (orange). Peaks can be
seen at multiples of 100 MHz (centered on 200 MHz, 50 MHz/div).

40
.0

m
V

0.1 ms

(a) Crosstalk on read out (resting) mem-
brane potential due to parameter up-
dates to the nine membrane voltage out-

put buffer bias currents.

0 50−50

0.469

0.475

0.472

V
ol
ta
ge

[V
]

Biological time [ms]
(b) A digital spike (t ≈ 5 ms) can be seen before the EPSP
(spike-triggered averaged over 50000 runs)

Figure 4.5: Crosstalk on Spikey 3

23

4 Experimental Investigation Of The FACETS Stage 1 hardware

replacements
n
eu
ro
n
N
o.

0

1

200 400 600 800ms

Figure 4.6: Rasterplot showing two recorded neurons. Artificial setup to sustain maximum fire rate
over experiment runtime (1000 ms bio. time). After 100 ms bio. time, readout enters a deadlock state.

neuron readout is not required, a workaround is possible: to read out every neuron, the
experiment is repeated for each neuron recorded. This is a viable solution if single neuron
statistics suffice or if the spike output is highly correlated between multiple runs of the same
experimental setup. Another approach is to map neurons that are to be recorded to different
readout groups. Thus, up to six10 neurons can be read out in parallel. During the process of
high-level testing, the author discovered that on most chips up to 9 neurons per group can be
read out. The exact number depends on the individual chip11. Five out of six tested Spikey
2 chips, are able to record an arbitrary neuron and the last 8 neurons within a group of 64
neurons. Thus, up to

3
groups

block
· 9

neurons

group
· 2 blocks = 54 neurons

can be recorded in parallel. In the process of pre-production testing for chip version 3, a
possible routing bug that generated a high RC time constant on some circuits was suspected
of being responsible for the readout bug. Unfortunately, after testing the finally produced
chip version 3, the problem remains the same. Further analysis of the chip layout is necessary
to hunt down the bug.
A workaround for this problem – developed by the author – is presented in section 4.3.2.

4.2.3 Parameter Stability

A whole set of programmable voltage parameters within the first two versions of the
FACETS Stage 1 hardware show a significant voltage drift. This drift – especially on thresh-
old parameters – causes an unstable spiking behavior as firing rates under identical settings
change within an experimental run. Additionally, as the periodical update process of most
essential parameters on the chip runs asynchronously with respect to the start of an ex-
periment, identical setups yield different behavior. This introduces a systematic error on
all measurements (cf. figure 4.7). Typical durations for experiments are 1 . . . 20 s (biological
time) which corresponds to 10 . . . 200 µs real-time. As can be seen in figure 4.7, the drift shows
approximately linear dependency on time. The typical refresh period is 2 ms, which results in
ca. 13mV peak-to-peak voltage drift. This corresponds to 5% . . . 10% of the dynamic range.
Other voltage parameters were tested and the drift was confirmed. The parameter drift in
comparison to noise is ca. 10 times larger – more details can be found in section 4.2.1
A workaround for this problem – developed by the author – is presented in section 4.3.3.

10384 neurons in 6 groups comprising 64 neurons each
11This implies an RC timing problem, as different chips from different wafers yield different deadlock charac-

teristics.

24

4.2 Characterization Of The Chip

1.5ms =̂ 75 s biological time

35mV ≈̂ 1.5mV

biological voltage difference

Figure 4.7: Drift dynamics of a membrane potential in rest. Second version of the Stage 1 hardware.
The resting potential parameter is periodically refreshed, but during one period (T = 2 ms up to 8 ms)
its value is decreased by parasitic leakage currents.

4.2.4 Spike Timing Dependent Plasticity

To test the STDP functionality (see 2.3.2 for a description) of the FACETS Stage 1 hard-
ware, the following measurement method was developed by Dr. A. Grübl, D. Brüderle and
the author (a schematic of the experimental setup is given in figure 4.8a).

Within each (excitatory) synapse (as described in section 2.3.2), two variables Fc and Fa
are accumulated to

∑
Fc and

∑
Fa respectively. To measure correlations, the only way to

acquire any correlation data is to read out the correlation flags which indicate if |
∑
Fc−

∑
Fa|

is significant12 and whether
∑
Fc was greater (causal) or smaller than

∑
Fa (acausal). To

generate correlations, a pre-synaptic spike sent into an observed synapse has to arrive at
a spiking neuron. Now, the correlation measurement takes place, and if the correlation was
large enough, the corresponding flag is set. Typically (as in biological measurements) multiple
correlated spikes are necessary for

∑
Fa (or Fc) to be sufficiently large to raise the correlation

flag.
The idea is to decouple pre-synaptic input spikes (of the observed synapse) from post-

synaptic firing, thus avoiding a causal correlation: strong synapses trigger post-synaptic firing.
A single weak13 synapse called observed synapse is used for correlation measurement by means
of sending a pre-synaptic spike with an offset in time ∆t with respect to the pre-synaptic spike
of the trigger synapses. If ∆t is negative, a causal correlation between observed synapse and
post-synaptic firing is created and vice versa. Figure 4.8a shows a schematic of the measuring
method.
To trigger a single output spike at a fixed time, various constraints of the hardware have to

be considered: first, only one simultaneous input spike is possible per synapse driver group,
thus only one out of 64 synapse drivers may be used. Second, as a single synapse driver
typically is not strong enough to initiate a post-synaptic firing, multiple strong synapses have
to be used (trigger synapses). The weight of the observed synapse is set to minimum (max-min
ratio 15 : 1) thus minimizing its effect on the post-synaptic neuron. As 256 synapse drivers
split up into four groups, three trigger synapses with maximum weight plus one observed

12This threshold is a configuration parameter.
13Therefore, this synapse shall not influence the neuron membrane potential.

25

4 Experimental Investigation Of The FACETS Stage 1 hardware

synapse with minimum weight are created.
A spike train consisting of equidistant spikes is generated. This spike train is transmitted

to all trigger synapses and to the observable synapse with an offset in time ∆t. The post-
synaptic neuron receives three strong EPSPs and one weak EPSP of the observed synapse.
Subsequently, the neuron fires a single output spike and the correlation flag of the observed
synapse is read out. Typically, a single correlation measurement is insufficient. Thus, the
process is repeated with multiple equidistant spikes within the input spike train until the
correlation flag indicates a correlation. The number n of input spikes needed is recorded. It is
inversely proportionally to Fc(∆t)14. If an arbitrary limit of the number of spikes is reached,
F (∆t) is defined as zero. Therefore, defect synapses reporting no correlations are handled in
a deterministic way.
Thus, starting with a negative value ∆tmin, step size tstep and ∆tmax the function F (∆t)

(eq. 2.4) is scanned. To discover a valid configuration of the hardware, multiple parameters
controlling the amplitude of Fc(t), the amplitude of Fa(t) and the significance threshold15

(eq. 2.6) have to be sweeped. However, as most hardware neurons do not fire reliable enough
when triggered by only three pre-synaptic input spikes a weight calibration routine is needed.
The weights of the trigger synapses are calibrated to trigger exactly one post-synaptic spike.
Further improvements accelerate the measurement: first, to detect if correlations can be
found at all for a given ∆t, the routine starts with a high number of correlated spike pairs
– if no correlation flag is set, F (∆t) is set to zero. Second, a multi-neuron measurement is
implemented. Therefore, multiple synapses connected to different neurons can be tested in
parallel.
Figure 4.8b shows F (∆t) for multiple neurons (∆t = −25 . . . 10ms) and different hardware

parameters. The resulting functions resemble roughly the implemented model (see fig. 2.4 on
page 9) and on all three tested chips, synapses can be found which work correctly. However,
many synapses show erratic behavior signaling unstable correlation flags in consecutive (iden-
tical) runs. To find multiple synapses on a single chip working equally well with the same
set of parameters has not been possible yet. Only possible errors in low-level code remain as
possible reasons for this problem beyond a fundamental misbehavior of the hardware itself.

14∆t includes a hardware specific offset in time – which is a configurable spike delay. Thus, the resulting
F (∆t) is shifted in time.

15In hardware two values are used to allow for both, a significance offset V loct and a significance difference
V
hi

ct − V
lo

ct between causal and acausal correlations.

26

4.2 Characterization Of The Chip

neuron
∆t

trigger synapses

observed synapse

(a)causal?

(a) Measuring principle: multiple synapses get the same pre-
synaptic input and trigger a post-synaptic spike. A single ob-

served synapse transmits a time shifted spike train to induce
a time difference between its pre-synaptic input and the post-
synaptic firing of the neuron.

V
hi

ct
= 1.00

V
hi

ct
= 1.00

V
hi

ct
= 0.95

V
hi

ct
= 0.95

V
hi

ct
= 0.90

V
hi

ct
= 0.90

V
lo

ct
= 0.80

V
lo

ct
= 0.80V

lo

ct
= 0.80

V
lo

ct
= 0.85V

lo

ct
= 0.85

V
lo

ct
= 0.90

Vm = 0.00

Vm = 0.00Vm = 0.00

Vm = 0.00Vm = 0.00

Vm = 0.05

(b) A clipped view of an STDP parameter
sweep. Three different colors represent three
synapses.

Figure 4.8: Measuring STDP curves: setup (left) and extract of a parameter sweep (right)

27

4 Experimental Investigation Of The FACETS Stage 1 hardware

4.3 Workarounds for Chip Imperfections

4.3.1 Summary Of Main Problems

In previous sections, various problems in operating the Spikey chip were described:

• Neuron Readout: if two or more neurons are being recorded, a deadlock may occur.
• Parameter Drift: on Spikey 2 essential voltage parameters show a significant drift, thus

adding a systematic error on most measured variables.
• Long-term plasticity: if multiple synapses are to be used, STDP16 cannot be set up to

work for all.

For the first two problems, workarounds were developed by the author which are described in
the following sections. In addition, the existing routine for calibration of voltages generated
on-chip was improved. The calibration mechanism is explained in section 4.3.4.

4.3.2 Neuron Resets

As demonstrated in section 4.2.2, a deadlock can be triggered by recording more than two
neurons. More neurons can be recorded, if one uses the eight neurons at the end of a neuron
group. But a comprehensive workaround for recording is preferable. Dr. A. Grübl and the
author tested and developed a software solution that uses so-called neuron resets to clear the
lock. A neuron reset disables the spiking mechanism and resets the so-called priority encoders
which handle, among other things, event (spike) delivery. The analog membrane time course
is not affect – integration continues. However, to trigger a spike, the membrane potential
has to stay above threshold until the reset is over. These three effects – lost spikes, delayed
spikes and distortion of the membrane potential – may significantly change the dynamics of
a experimental setup. A crosscheck verifying the dynamics of representative neurons without
this workaround is essential. This has to be done for every unchecked experimental setup.
As a first test, a single neuron reset was triggered after different time intervals (relative

to the start of the experiment). It turned out that a single neuron reset is insufficient: a
reset neuron remains prone to deadlock. In the following, different stages of the workaround
are described. Figure 4.9 illustrates the insertion of neuron resets. The membrane potential
recovers toward resting potential.

A reset every nth Input Spike

As a first approach, a straightforward implementation was tested. The function that sends
a spike train was modified to insert a neuron reset after every nth spike. However, as the low-
level packet generation algorithm lies below this layer, detailed control cannot be guaranteed.
The package generation algorithm tries to maximize the bandwidth to the Spikey chip. This
is achieved by sending spikes as early17 as possible to the chip. As the exact timing difference
between chip and control program is not accessible by higher-level functions, this solution
is not universally suited. However, because of its simplicity, it was implemented for testing
purposes. First tests showed that the deadlocks could be released. But to obtain a solution
that is robust with regard to varying input/output rate ratios, a more controllable solution

16Spike timing dependent plasticity
17typically 128 clock cycles ahead

28

4.3 Workarounds for Chip Imperfections

Neuron reset begins

Neuron reset ends

Vthreshold

Vrest

200.0 ns/div

10.0mV/div

Figure 4.9: Artificial setup (Vrest > Vthreshold, therefore the neuron fires at a high rate; reset duration
set to a large value for demonstration purposes) to illustrate the insertion of neuron resets. As the
spike mechanism is disabled during neuron resets, the membrane potential recovers towards Vrest. To
zoom in on the interesting part of the membrane trace, the majority of the trace is below the plotted
y range.

is needed. A solution that allows for a distinct control of reset density independent of input
spike train density is crucial for recurrent networks or sparse input. Figure 4.10 shows a
rasterplot of two neurons (cf. section 4.6) being reset multiple times.

n
eu
ro
n
N
o.

0

1

2000 4000 6000 8000ms

Figure 4.10: Rasterplot showing two recorded neurons. Artificial setup to sustain maximum fire
rate over experiment runtime (10000 ms bio. time). Readout locks multiple times, with neuron resets
(shorter than 1 ms bio. time) in between. As the high output rate increases the deadlock probability,
a higher reset rate should have been chosen.

Fixed Rate

The second approach alters the low-level event packing algorithm. This algorithm generates
the program18 that is played back by the FPGA (for a detailed description see Grübl [2007,
p. 136]). To avoid lost input spikes, a neuron reset may only be inserted after completed

18The so-called playback memory program. Typically a vector of spike trains is passed to function
SC_Sctrl::pbEvt, which generates the program. At this level the system’s real time, including event
time stamps, is known.

29

4 Experimental Investigation Of The FACETS Stage 1 hardware

event commands (i.e. input spikes) and if the following event is late enough19. A variable20

controlling the distance between two neuron resets is defined. Thus, the neuron resets are
inserted at a fixed rate if no spikes are to be delivered. Figure 4.11 shows the membrane

resets
continuous firing

200.0 ns/div

Figure 4.11: Artificial setup to trigger continuous firing (cf. fig. 4.9). The membrane potential
recovers to resting potential if the neuron reset is held. The resets are inserted at a fixed rate.

potential of an artificial setup (neurons firing continuously) to demonstrate the insertion of
neuron resets. As the neuron reset disables the spike mechanism the neuron recovers towards
the rest potential as long as the reset is held.

Poisson Distributed

As neuron resets disable the spike generation mechanism, the neuron recovers towards
resting potential. Thus, a change in neuron dynamics occurs. To avoid possible artifacts,
another sophistication of the reset insertion is needed: the poisson distributed reset insertion.
Like poisson sources in neural networks, a poisson process generates a number n with a
given number of expected occurrences λ. Then, n numbers are picked out of a flat (uniform)
distribution. Numbers thus obtained are sorted and inserted into a vector. The entries within
this vector are spread to the experimental runtime. Now the vector contains times, at which
neuron resets are inserted if the previously mentioned distances to real events (spikes) are
large enough. Figure 4.12 shows an artificial setup to demonstrate the insertion of resets.

Conclusion

Figure 4.13 shows the measured output rate of an arbitrary neuron plotted against the
mean distance between two neuron resets. In this setup, no input spikes were sent to avoid
dropping of resets. To force continuous firing, the resting potential was set above threshold
voltage. For a reset duration ≥ 2 bus clock cycles, the output rate is significantly higher than
zero21. Inserting neuron resets with a mean distance of 64 maximizes the output rate. If only
one neuron is recorded, the output rate is about 800 Hz (in biological time). However, while
analyzing the analog membrane dynamics, a bug was found: some input spikes are delayed
by 512 cycles. As this bug does not occur without the neuron reset workaround and the
length of delay suggests a wraparound of the 8 bits internal Spikey time, it is assumed to be
located within the event packing algorithm where the timing is calculated. It is for this reason

19A neuron reset takes time – the reset duration plus the time for reset deactivation.
20resetdist, defined in bus clock cycles
21Without neuron resets, the mean output is close to 0 as typically just one spike is recorded.

30

4.3 Workarounds for Chip Imperfections

resets

continuous firing

200.0 ns/div

Figure 4.12: Artificial setup to trigger continuous firing (cf. fig. 4.9). The membrane potential
recovers to resting potential if the neuron reset is held. Neuron resets are inserted in a random
fashion.

0

50

100

150

200

250

300

8 32 128 512 2048 8192

o
u

tp
u

t
ra

te
[H

z,
b

io
]

mean poisson distance [bus cycles]

duration 1

3

3

3
3 3 3 333333 33 3 3 3 3

3

duration 2

+
+

+ + +

+

+

+
+
++

+
+

+

+
+ + +

+
duration 3

2
2

2
2

2

2

2

2

2
2

22

2
2

2

2 2
2

2

duration 4
× ×

× ×

×

×

×

×

×
×
×
×

×
×

×
× × ×

×

duration 5△ △
△
△ △

△

△

△

△
△
△
△

△
△

△

△
△ △

△

duration 6

⋆ ⋆
⋆
⋆

⋆

⋆

⋆

⋆
⋆

⋆

⋆
⋆
⋆
⋆

⋆

⋆ ⋆ ⋆

⋆

duration 7
duration 8
duration 9

duration 10
duration 11
duration 12
duration 16

3 3 3
3

3

3

3
3

3

3
33

3

3

3
3 3

3

3

duration 20

+ + + + +

+

++

+
+
++

+
+

+
+

+ +

+

Figure 4.13: Output firing rate is plotted against the mean distance of neuron resets. Different lines
mark different resets durations. A single recorded neuron fires at about 800 Hz (bio. time).

31

4 Experimental Investigation Of The FACETS Stage 1 hardware

that this promising workaround is not usable yet. Low-level code analysis did not reveal an
obvious bug. Therefore, a low-level system simulation is needed to further investigate this
case. It is not part of the author’s field of activity, the responsible group is occupied by other
work.

4.3.3 Parameter RAM Update

As introduced in section 4.2.3, FACETS Stage 1 hardware version 2 shows a voltage drift on
a whole set of programmable voltage parameters. To deal with this effect, a combined hard-
ware and software solution was developed. For different parameters and write sequences the
optimal write timing was measured. An implementation in pseudocode is given in algorithm
1 and in the following paragraph:
The parameter RAM periodically updates the current memory cells. A global refresh

time can be defined by summing up the write time for all addressed cells. To decrease
the global refresh time and thus minimize the drift effect, an optimal write timing has to
be determined. As the preceding value written by the DAC influences the following write
process22 the measurement has to take into account combinations of two values: a precurser
and a successor value
Most parameters on the chip are built identically as current cells. While these parameters

have probably an insignificant drift with respect to other sources of noise [Schemmel, 2008]
(cf. section 4.2.1), they form the vast majority23 of all parameters.
Furthermore, the measurement of most of these cells is not possible directly. Therefore

an indirect measurement method has been developed by the author. For the current cells
the parameter drviout [Grübl, 2007, p. 177] can be measured indirectly. Drviout controls
the amplitude of the conductance time course generated by a pre-synaptic spike. Thus, the
measured amplitude of a conductance pulse is related to the parameter drviout.
For a given target value and increasing write time, the parameter should converge24 towards

a saturation value. Therefore, while increasing the write time, the height of a EPSP25 satu-
rates as the DAC output converges. Thus, the best timing for a given target value drviouttarget
immediately succeeding another value drvioutprecursor can be identified by measuring all write
configurations (consisting of write mode (normal or boost), write time (2N with 1 ≤ N ≤ 16),
target, and its preceding value). These measurements were performed manually, a plot of the
data is shown in figure 4.14 (measuring points are green). The estimated optimal write times
have been exported into a C++ matrix.
The parameters are sorted by ascending value, as high-to-low writes are slower (yellow in

figure 4.14). For each parameter the optimal timing can be determined by accessing the matrix
(x1 = preceeding value, x2 = target value). This procedure yields a good write time while
minimizing the global refresh time. The implemented code accelerates the global parameter
update rate by a factor of approximately 4. As the drift shows a nearly linear dependency
on time (cf. fig 4.7), the corresponding parameter drift is reduced by a factor of 4 as well.

22The DAC writes values sequentally. So for each value a preceding value exists. The output of the DAC drives
a relatively large capacitance, therefore different preceding values – as well as address blocks – change the
writing chacteristics.

23Current cells outnumber parameter voltage generators by a factor of 50. Thus the timing of these cells is
crucial to the global refresh time. The parameter voltages can be multiplexed to an analog output pin and
are easy to measure.

24After a sufficiently long write time, the DAC output settles at a value.
25Excitatory Post-Synaptic Potential

32

4.3 Workarounds for Chip Imperfections

1: procedure setValue(pos, value)
2: write value at pos ⊲ manipulating playback memory program at position pos
3: end procedure

4:

5: procedure setTiming(pos, n)
6: set new write timing at pos to 2n ⊲ for playback memory position pos
7: end procedure

8:

9: function getPos(s) ⊲ s: synapse driver index
return pos ⊲ pos: position of s

10: end function

11:

12: for s in considered drviout parameters do

13: pos← getPos(s)
14:

15: for f ← 0 to 1023, step← 128 do

16: setValue(pos-1, f)
17:

18: for d← 0 to 1023, step← 128 do

19: setValue(pos, d)
20: n← 1
21:

22: while height of EPSP changes do

23: setTiming(pos, n)
24: n← n+ 1
25: if n > 15 then

26: break ⊲ EPSP did not saturate for s
27: ⊲ predecessor f , target d
28: end if

29: end while ⊲ 2n is minimum required write timing
30: end for

31: end for

32: end for

Algorithm 1: Pseudocode describing measurement of write timings.

33

4 Experimental Investigation Of The FACETS Stage 1 hardware

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 256 512 768 1024

 0

 256

 512

 768

 1024

 0 256 512 768 1024

 0

 256

 512

 768

 1024

target value

p
re

c
e
e
d
in

g
 v

a
lu

e

w
ri

te
 t

im
e
 e

x
p
o
n
e
n
t

Figure 4.14: Optimal write timing (for current cells on FACETS Stage 1 hardware version 2) depend-
ing on value pair (preceding and target value) plotted. DAC write time is given in 2n=1···10 cycles. The
measured points are green, the underlying grid is generated by next-neighbor interpolation. Especially
small values are hard to reach (yellow color).

34

4.3 Workarounds for Chip Imperfections

As the large drift only affects the 46 voltage parameters, in a final version the corresponding
parameters were written three times per refresh cycle, thus effectively increasing their refresh
rate by an additional factor of 3. It is for this reason that the effect of parameter drift on
essential model voltages was reduced by a factor of 12. The reduced drift was in the same
order as the system inherent noise (cf. section 4.2.1).
A third version of the Stage 1 hardware was submitted in late 2007, redesigned to fix that

bug such that no workaround would be necessary at all anymore. The first run which was
delivered by the producing company was erroneous due to a mistake during production. The
company found their mistake and so the second trial sent in late April 2008 was functional.
Tests show that the previously seen drift has vanished due to a better parameter storage
design (see Figure 4.15).

1.5ms =̂ 75 s biological time

35mV ≈̂ 1.5mV

biological voltage difference

Figure 4.15: Drift dynamics of a membrane potential in rest. The resting potential parameter is
periodically refreshed, but during one period (T = 2 ms up to 8 ms) its value is decreased by parasitic
leakage currents. Red: Second version of the Stage 1 hardware (Spikey 2) Blue: Third version of the
Stage 1 hardware (Spikey 3). The drift has vanished.

4.3.4 Parameter Voltage Generator Calibration

Several model parameters (e.g. reversal potentials, threshold voltage, resting potential)
require the supply of voltages rather than currents. On the Spikey chip, these voltages26

are generated on-chip by converting an output current of a DAC to a voltage by means of
a poly silicon resistor of R = 10kΩ. Typical resistor mismatch reaches up to 30%, thus a
calibration is needed to ensure precise parameter values. In total, a Spikey chip contains
46 voltage parameters (so-called vouts). The relation of DAC value applied and measured
output voltage has to be measured. Based on this curve a bĳective correction function can
be determined. Here, a linear function yields a good approximation of the measured curve.
A previously implemented calibration routine [Ostendorf , 2007] dealing with this task was
improved by the author to allow for more robustness with respect to hardware varieties.
Instead of manually choosing Vmin and Vmax, a plateau detection algorithm was added and
the linear fitting method was replaced by a more robust library implementation using the
GSL27. Thus, varying plateaus and slopes can be automatically calibrated. Finally, after

26A few voltages are generated externally.
27GNU Scientific Library

35

4 Experimental Investigation Of The FACETS Stage 1 hardware

calibrating all voltage parameters, a unit test to detect failed calibrations was added. Figure
4.16 shows a calibration run of Spikey 3 #27 28. In the upper figure, an outlying voltage
parameter (9) can be seen. The lower figure demonstrates the plateau detection and the
resulting fit to the linear part.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 128 256 384 512 640 768 896 1024

m
ea

su
re

d
va

lu
e

[V
]

10-bit dac target value

33 3 3 3 3 3 3
3

3
3

3
3

3
3

3
3

3
3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

++ + + + + + +
+

+
+

+
+

+
+

+
+

+
+

+ + + + + + + + + + + + + +

22 2 2 2 2 2 2
2

2
2

2
2

2
2

2
2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

×× × × × × × ×
×
×
×
×
×
×
×
×
×
×
×
× × × × × × × × × × × × ××

△△△△△△△△
△
△
△
△
△
△
△
△
△
△
△
△△△△△△△△△△△△△△

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

vout #9

33 3 3 3 3 3 3
3

3
3

3
3

3
3

3
3

3
3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

++ + + + + + + +
+

+
+

+
+

+
+

+
+

+ + + + + + + + + + + + + + +

22 2 2 2 2 2 2
2

2
2

2
2

2
2

2
2

2
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

×× × × × × × ×
×
×
×
×
×
×
×
×
×
×
×
× × × × × × × × × × × × ××

△△△△△△△△
△
△
△
△
△
△
△
△
△
△
△
△△△△△△△△△△△△△△

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

33 3 3 3 3 3 3
3

3
3

3
3

3
3

3
3

3
3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

++ + + + + + + +
+

+
+

+
+

+
+

+
+

+
+ + + + + + + + + + + + + +

22 2 2 2 2 2 2
2

2
2

2
2

2
2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

×× × × × × × ×
×
×
×
×
×
×
×
×
×
×
×
× × × × × × × × × × × × ××

△△△△△△△△△
△
△
△
△
△
△
△
△
△
△
△△△△△△△△△△△△△△

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

33 3 3 3 3 3 3
3

3
3

3
3

3
3

3
3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

++ + + + + + +
+

+
+

+
+

+
+

+
+

+
+ + + + + + + + + + + + + + +

22 2 2 2 2 2 2
2

2
2

2
2

2
2

2
2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 128 256 384 512 640 768 896 1024

m
ea

su
re

d
va

lu
e

[V
]

10-bit dac target value

vout #8

33 3 3 3 3 3 3
3

3
3

3
3

3
3

3
3

3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3

vout #9

Figure 4.16: Calibration of parameter voltage generators on Spikey 3 chip id #27. The first figure
shows a measurement of the output voltage versus DAC value. Most curves are similar, whereas
parameter voltage #9 is outside the common range. For calibration, the lower and higher plateau
have to be found, as well as a linear function fitted in between. Measurements were extremely precise,
thus for better visibility all error bars are enlarged by a factor of ten.

28FACETS Stage 1 hardware version 3

36

5 Improved Software Flow and Tools

5.1 Software Project Management

5.1.1 Build Process

The PyNN.hardware software framework (including low level code) consists of ca. 40, 000
source lines of code (SLOC). Most of it (ca. 30, 000) is C/C++ code or Python (ca. 5, 000).
The low level interface is written in C++ and in the course of development frequent recom-
pilations (make clean; make) are needed, hence short build cycles are desired. Some small
modifications to eight major make files1 yielded a speedup of 4.2 after the first compilation
(table 5.1). A prefix has been added to every C/C++ compile command. The following
paragraph describes this prefix called ccache.

make with ccache [s] unoptimized [s]

first run 119.4 ± 0.2 112.7 ± 0.2
nth run 26.6 ± 0.3 112.7 ± 0.2

Table 5.1: Running PyNN.hardware make on a P4, 2.4GHz, 2GiB, Ubuntu 8.04.

Ccache is a tool to speedup recompilation of source code. It caches the output of (C/C++)
compilation to avoid recompilation of the unchanged source code. To ensure that the source
is unchanged, the -E compiler flag is used, which prints preprocessed code. In addition to this
output, the command line options, the size and modification time of the compiler is hashed
using MD42 . A first-time compilation triggers the creation of a cache file, which contains
all compiler output including stdout and stderr messages. When the compilation is done a
second time — using the same sources, same command line options and the same compiler
— ccache is able to provide matching compiler output (including messages) from the cache.
Ccache can be used in conjunction with distcc, which is a tool for distributed compilation

across multiple computers. Real compilation will be done using distcc. In case of a cache hit,
ccache will supply the local compiler output.

5.1.2 Source Code Management

As multiple developers work together on the same source code, during the normal workflow
bugs are found, missing features are identified and incompatible changes are being worked on.
A tool organizing development efforts is beneficial for all involved. Therefore an application
called Trac3 was set up by the author for the PyNN.hardware project.

1Among other things, make is a utility for automatically building large applications. Make is part of POSIX
[IEEE , 2004].

2message digest algorithm (implements a cryptographic hash function)
3http://trac.edgewall.org/

37

http://trac.edgewall.org/

5 Improved Software Flow and Tools

Trac is a web-based tool for bug tracking and project management. It also includes access
to an underlying source code repository within a version control system, like Subversion. For
documentation purposes, a wiki is also embedded. Bugs can be assigned to, and commented
by, a developer in charge of the related source module.

At the time of writing, 37 bug reports and 32 wiki pages (mostly documenting how to get
PyNN.hardware running) can be found4.

5.2 Korescope

Figure 5.1: Screenshot of Korescope showing test data. The generated example plot is controlled by
the sliders controlling amplitude, frequency and phase of the plotted sinus.

When operating a complex hardware device, there is often need for a graphical interface
for parameter configuration. The Facets Hardware enables a low-latency response to input
changes and therefore intuition-guided exploration of parameters is possible. Based on Qt
4.2 [Trolltech, 2006], PyQt 4 [Riverbank Computing Limited, 2007] and PyQwt 5 [Colclough
and Vermeulen, 2007], Korescope is a GUI (figure 5.1 to use on top of an arbitrary PyNN
[Ensemble, 2008] script. It is inspired by Borescope [Bill, 2008], that provides similar features,
but requires a major restructuring of the underlying PyNN script into a fixed class hierarchy.
The use of callback5 functions minimizes otherwise necessary changes to the PyNN script.
Exemplary code is shown in listing A.1.

4https://cetares.kip.uni-heidelberg.de/cgi-bin/trac.cgi (KIP-intern, LDAP login required)
5A callback is executable code passed to other code. This allows a low level software layer to call high level

code, reducing the need for high level code changes.

38

https://cetares.kip.uni-heidelberg.de/cgi-bin/trac.cgi

5.3 Code Profiling

5.3 Code Profiling

A high conductance state [Destexhe et al., 2003; Kumar et al., 2008] test developed within
the group [Kaplan, 2008] revealed serious performance problems for long experimental run
times. Using the Python cProfile6, the author analyzed the distribution of elapsed times
within different code blocks. The performance issue was traced back to a function sorting
long spike trains too slowly. To improve the performance of the relevant source code, the time
critical section was rewritten using C++. An easy approach for optimizing small snippets of
Python code is scipy.weave7 [SciPy, 2008]. Table 5.2 shows typical runtimes for different
functions using the unoptimized (upper half) or optimized (lower half) code section. The
optimized function setInput achieves a speedup of 20, the total runtime was reduced by a
factor of 3 for the given setup8.

5.4 WinDriver

Running large network experiments on a neuromorphic hardware device generates large
amounts of data. For an efficient data analysis, a modern computer system is desirable.
However, as computer development advances, new technologies are being integrated into off-
the-shelf computers. But new hardware requires new drivers and state-of-the-art operating
systems. Some of the hardware to access the FACETS Stage 1 system was developed in
2001. In particular, the host interface is implemented as a PCI9 card developed within the
author’s group [Becker , 2001]. A proprietary driver (WinDriver by Jungo Ltd [2007]) provides
a userspace interface which the low-level software framework utilizes. As the Linux kernel
driver interface does not provide any stable API10, drivers being out of the kernel tree tend
to stop working after some releases. The same holds for the WinDriver module. The author
adapted the utilized WinDriver kernel module several times to newer kernel versions. After
installing a new lab computer the necessity to use Linux kernel version 2.6.24 arose. This
kernel version changes the traditional scatterlist structures which are used in various DMA11

operations. A new so-called chained scatterlist API 12 was introduced. The author modified
the driver source code to use the new API.

6http://docs.python.org/lib/module-profile.html
7Weave is a subpackage of SciPy, which itself is a package for scientific computing that uses the Python

programming language. Using OpenMP, Weave can be parallelized (GCC ≥ 4.2.4).
8Coincidence detector: simulation time was 10 s, 100 synapses with 1 · · · 14 Hz input rate each (in biological

units). See Kaplan [2008].
9Peripheral Component Interconnect

10http://www.kernel.org/doc/Documentation/stable_api_nonsense.txt
11Direct Memory Access
12http://lwn.net/Articles/256368/

39

http://docs.python.org/lib/module-profile.html
http://www.kernel.org/doc/Documentation/stable_api_nonsense.txt
http://lwn.net/Articles/256368/

5 Improved Software Flow and Tools

calls ttotal [s] filename:linenumber function

1 88.52± 0.99 pyhal.py:289 setInput

1 12.50± 0.99 pyhal_config.py:638 run

3451471 6.03± 0.09 __init__.py:634 lambda x,y: fcmp(x[0],y[0])

12 3.59± 0.02 method ’sort’ of ’list’ objects
3451471 3.29± 0.09 __init__.py:144 fcmp

202 2.70± 0.30 numpy.core.multiarray.array
1 1.53± 0.02 __init__.py:590 generateHardwareSpikeTrain

2 0.78± 0.00 pyhal_config.py:605 applyConfig

1 0.62± 0.02 __init__.py:329 run

390607 0.38± 0.01 pyhal.py:410 startOffset

.

7460957 121.80± 1.68 full run

(a) unoptimized

calls ttotal [s] filename:linenumber function

1 15.19± 1.95 pyhal_config.py:638 run

3451471 6.10± 0.04 __init__.py:634 lambda x,y: fcmp(x[0],y[0])

1 4.24± 1.11 pyhal.py:289 setInput

14 3.61± 0.05 method ’sort’ of ’list’ objects
3451471 3.15± 0.04 __init__.py:144 fcmp

202 2.49± 0.02 numpy.core.multiarray.array
1 1.55± 0.03 __init__.py:590 generateHardwareSpikeTrain

2 0.78± 0.01 pyhal_config.py:605 applyConfig

1 0.62± 0.01 __init__.py:329 run

17632 0.29± 0.01 arrayprint.py:192 array2string

.

7135199 39.99± 1.67 full run

(b) setInput() optimized.

Table 5.2: Profiler output sorted by total time spent in function. 10 largest contributors shown.

40

6 Discussion & Outlook

The robust operation of a neuromorphic hardware device is a challenging task. Identifying
error sources in such complex and novel hardware systems is difficult, however, at the same
time, essential to provide feedback to hardware developers, allowing them to fix design flaws.
Additionally, designing software environments for future users and developers to build upon
is equally important and worthwhile.
In the course of this work multiple hardware malfunctions were found. After diagnosing

these bugs, workarounds have been developed to provide a solution for the existing systems,
since redesigns cannot be expected to be available within short terms and might still be faulty.
The readout deadlock of neurons was investigated. Groups of neurons available for readout

were found: ca. 50 neurons can be read out per chip at the same time. A workaround resetting
both neurons and the readout repetitively has been developed together with Dr. A. Grübl.
Unfortunately, a bug in low-level code outside of the author’s domain prevents the usage of
the promising workaround.
The stability and correctness of parameters generated on-chip was inspected. Subsequently,

an indirect measuring method was developed to verify write operations of the parameter values
on-chip. Using this method, optimal write times were determined. An algorithm optimizing
the writing order of parameters was designed and put into successful operation on Spikey 2.
Measurements to specify STDP functionality were carried out and have revealed various

problems, especially the impossibility to find a consistent configuration which works for all
synapses. Within the temporal scope of this diploma thesis a fully conclusive specification of
the problems could not be achieved.
All presented measurements and resulting workarounds were essential steps towards a use-

ful and well controllable experiment framework based on the FACETS hardware system.

Further contributions were made improving the software work flow within the group. We
aim for integrating our PyNN.hardware module into the open-source PyNN project. Open-
source software is in the spirit of science: progress is shared, reviewed, criticized and trans-
parent.
For us, establishing connections to open-source projects is desirable as it reduces redundant

work. Another favorable effect is the broadening of standardized tools and methods.
The other way around, various open-source tools were integrated in our software framework

facilitating and improving the software flow. First, as developing software is an iterative pro-
cess, a fast build process is desirable. This process has been improved by applying a compiler
cache. Second, as users start employing a complex software suite – like the PyNN.hardware
module – so far unknown bugs may be detected. Multiple developers work within the same
software project and might commit conflicting changes. In these cases a centralized tool to
report, discuss and handle fixes or other solutions is beneficial. This has been set up in terms
of Trac – a source code management tool.
Established software was enhanced, ported to newer operating system environments or

extended. The so-called WinDriver kernel module has been adapted to work with newer

41

6 Discussion & Outlook

Linux kernels (2.6.24). Various low-level hardware tests were documented and integrated into
the PyNN.hardware framework. Some code profiling was done on the PyHAL layer yielding
improvements in long-running experiments. To allow for a more robust calibration of the
parameter voltages generated on-chip, a new routine has been developed.
A GUI for intuition-guided manipulating of experimental parameters and graphical repre-

sentation of experimental data in real-time was developed.
These rather disjoint pieces of optimization represent the effort of aiming at a consistently

well documented and well chosen set of harmonizing tools. Software should not be an addi-
tional source of complexity and errors as hardware itself is complex enough.

A possible future Stage 1 version with several improvements implemented, could solve
many problems described in this thesis. First of all, a fixed neuron readout bug would
eventually permit larger experimental setups. However, as the existing connection to and
from the Spikey chip is at the moment neither fast nor robust, two changes would be helpful,
too: a decreased speedup factor (from 105 to 104 with regard to biological real-time) and a
Gigabit Ethernet connection replacing the old, electrically error-prone SCSI-like connection.
A decreased speedup would pose several advantages: first, the biological bandwidth would
increase by the same factor by which the speedup would decrease. This would allow for a
larger margin to higher biological firing rates. The present speedup and connectivity support
an average rate of 10 Hz Poisson firing – a tenfold decrease in speedup would enable 100 Hz
Poisson firing, resulting in a major difference in many experimental setups. Second, relative
mismatch of circuit components would decrease, which could facilitate all calibrations. The
most important change which will allow such a decrease in speedup would be an enlarged
membrane capacitance. As the present conductances controlling the membrane voltage are
typically too large, the time constant of the membrane is too small. A reduced speedup
without an enlarged membrane capacitance would make this problem even worse.
To increase the STDP time constants modifications of transistor geometry are probably

needed. However, these are likely to lead to further changes in the behavior in the chip which
are difficult to predict at the moment. Possibly this could also solve some of the erratic
behavior seen in previous sections.
The FACETS Stage 2 hardware system will raise challenging tasks. The high number of

neurons and synapses requires large amounts of configuration data – as the input and output
data streams have to transport up to 1TeraEvent/s during runtime. Complex biological net-
works have to be mapped onto the hardware system using the previously introduced Graph
Model. However, optimizing the mapping process and data flow to and from the system will be
inevitable. In order to avoid bottlenecks which massively affect overall system performance,
experiments have to run asynchronously, i.e. pipelined. During experiments, new configura-
tion, in- and output data have to be transmitted. Thus, all parts of the software framework
taking part in the configuration process, spike train generation and output data analysis have
to be parallelized. A future connection via HyperTransport allowing for real-time interaction
between software and neuromorphic hardware will impose further constrains on the software
environment.
The last year’s progress in the development of neuromorphic hardware encourage continuing

our efforts, which will most certainly yield major contributions to the spectrum of neural
network simulators.

42

A Appendix

A.1 Source Code Locations

The following sections contain links to internal (FACETS/Electronic Vision(s) Group)
source code repositories. For external access please contact the author: mailto:mueller@kip.

uni-heidelberg.de.

A.1.1 General

• PyNN.hardware/PyHAL Source Code:

– http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/

hardware/stage1/

• Low-Level C++ Code:

– http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/

A.1.2 Further Contributions

• Automatic Low-Level Tests:

– http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/

hardware/stage1/pyhal/pyhal_hwtest.py

– http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/

hardware/stage1/pyhal/wrappers/pyhwtest.h

– http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/

hardware/stage1/pyhal/wrappers/pyhwtest.cpp

• Neuron Resets:

– http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/

sc_sctrl.cpp

• Parameter RAM Update Optimization:

– http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/

genTimeLut.py

• Parameter Voltage Calibration:

– http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/

spikeyvoutcalib.h

– http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/

spikeyvoutcalib.cpp

• Build Process:

43

mailto:mueller@kip.uni-heidelberg.de
mailto:mueller@kip.uni-heidelberg.de
http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/
http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/
http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/pyhal/pyhal_hwtest.py
http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/pyhal/pyhal_hwtest.py
http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/pyhal/wrappers/pyhwtest.h
http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/pyhal/wrappers/pyhwtest.h
http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/pyhal/wrappers/pyhwtest.cpp
http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/pyhal/wrappers/pyhwtest.cpp
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/sc_sctrl.cpp
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/sc_sctrl.cpp
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/genTimeLut.py
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/genTimeLut.py
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/spikeyvoutcalib.h
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/spikeyvoutcalib.h
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/spikeyvoutcalib.cpp
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/spikey/src/tb/spikeyvoutcalib.cpp

A Appendix

– http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/

hardware/stage1/pyhal/Makefile

• Source Code Management (Trac):

– https://cetares.kip.uni-heidelberg.de/cgi-bin/trac.cgi

• KoreScope:

– http://kip1.kip.uni-heidelberg.de/repos/VISION/project/facets/scripts/

python/tools/KoreScope/

• WinDriver:

– https://cetares.kip.uni-heidelberg.de/cgi-bin/trac.cgi/wiki/WinDriver

A.1.3 Documentation

A link to the full documentation for the PyNN.hardware module and all submodules follows:

• http://kip1.kip.uni-heidelberg.de/repos/VISION/user/mueller/Documentation_

PyNN.hardware_20080909/

44

http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/pyhal/Makefile
http://kip1.kip.uni-heidelberg.de/repos/FACETSHDDD/software/trunk/src/hardware/stage1/pyhal/Makefile
https://cetares.kip.uni-heidelberg.de/cgi-bin/trac.cgi
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/facets/scripts/python/tools/KoreScope/
http://kip1.kip.uni-heidelberg.de/repos/VISION/project/facets/scripts/python/tools/KoreScope/
https://cetares.kip.uni-heidelberg.de/cgi-bin/trac.cgi/wiki/WinDriver
http://kip1.kip.uni-heidelberg.de/repos/VISION/user/mueller/Documentation_PyNN.hardware_20080909/
http://kip1.kip.uni-heidelberg.de/repos/VISION/user/mueller/Documentation_PyNN.hardware_20080909/

A.2 Example: KoreScope

A.2 Example: KoreScope

Listing A.1: PyNN script with KoreScope interface

import time , math

x , y = range (0 , 1024 , 1) , range (0 , 1024 , 1)
frequency , amplitude , phase = 1 . 0 , 1 . 0 , 0 . 0

def work () : # pyNN. run ()
for i in xrange (1) :

for i in xrange (2) :
time . s l e ep (0 . 1)
print ’ . ’ ,
sys . s tdout . f l u s h ()

print ’ ’
for j in xrange (l en (y)) :

y [j] = math . s i n (1/ fr equency ∗ j /(2∗math . p i) \
+ phase /(2∗math . p i)) ∗ amplitude

update v a r i a b l e s from gui (c a l l b a c k f u n c t i on s)
def updateAmplitude (va lue) :

global amplitude
amplitude = va lue

def updateFrequency(va lue) :
global f r equency
frequency = va lue

def updatePhase (va lue) :
global phase
phase = va lue

r e g i s t e r some s l i d e r s
CSwin . r e g i s t e r S l i d e r (updateAmplitude , 0 , 10)
CSwin . r e g i s t e r S l i d e r (updateFrequency , 1 , 100 , 50)
CSwin . r e g i s t e r S l i d e r (updatePhase)

def CSrun () : # o b l i g a t o r y funct ion , c a l l e d by gu i
work ()

45

A Appendix

A.3 SciPy.Weave Example

Listing A.2: Code snippet showing SciPy.Weave usage for a time critical section.

1 # t r y to use SciPy . Weave
2 try :
3 # using a C++ for−l oop
4 import s c ipy . weave as weave
5 numPresyns = in t (conf . numPresyns)
6 numExternalInputs = in t (conf . numExternalInputs)
7 code = \
8 " " "
9 f o r (i n t i = 0 ; i < o l d s i z e ; ++i) {

10 // determin ing synapse d r i v e r f o r t h i s input
11 myC(1 , i) = myC(1 , i)/ numPresyns ∗ numPresyns +
12 numPresync − 1 − (myC(1 , i) % numPresyns) ;
13 }
14 " " "
15 weave . i n l i n e (code , [’ o l d s i z e ’ , ’myC ’ , ’ numPresyns ’] ,
16 type_conver ters = weave . conve r t e r s . b l i t z)
17

18 # using Python as SciPy . Weave did not work
19 except :
20 for i in xrange (o l d s i z e) :
21 index = myC [1] [i]
22 i f index > conf . numExternalInputs :
23 raise ’ Index o f ex t e r na l input source too high ! ’
24 # determin ing synapse d r i v e r f o r t h i s input
25 b l o c k o f f s e t = in t (index / conf . numPresyns)∗ conf . numPresyns
26 syndr iv e r = b l o c k o f f s e t + conf . numPresyns − 1 −
27 (index%conf . numPresyns)
28 myC[1] [i] = syndr iv e r

46

List of Abbreviations

ANNCORE Analog Neural Network Core
CMOS Complementary Metal-Oxide-Semiconductor
DAC A Digital to Analog Converter converts a digital value to an analog

signal.
DMA Direct Memory Access allows certain computer subsystems to access

system memory independently of the CPU.
EPSP Excitatory Post-synaptic Potential
FACETS Fast Analog Computing with Emergent Transient States
FIFO First-In First-Out
FPGA Field-programmable gate array
GbE Gigabit Ethernet, IEEE 802.3-2005. Transmitting Ethernet frames at

a rate of a gigabit per second.
GiB 1 GibiByte refers to 230 bytes; close to 1 gigabyte (= 109 bytes).
GUI Graphical User Interface
HICANN High Input Count Analog Neural Network
LIF Leaky Integrate-and-Fire
MD4 message digest algorithm (implements a cryptographic hash function)
NEST NEural Simulation Tool
PSP Post-synaptic Potential
PyHAL Python Hardware Abstraction Layer
PyNN Python package for simulator-independent specification of Neuronal

Network models
RAM Random Access Memory – a type of computer data storage
SCSI Small Computer System Interface, standard for physical connection

data transfer between computers and peripheral devices.
StdErr Standard Error; default stream where error messages are written to
StdOut Standard Output; default stream where output is printed to
STDP Spike timing dependent plasticity
SVN Subversion is a version control system and de-facto successor to Con-

current Versions System (CVS)
TCP/IP Internet Protocol Suite including the Transmission Control Protocol

(TCP) and the Internet Protocol (IP)
VLSI Very-Large-Scale Integration
Vout Parameter voltages generated on-chip are called vouts.

47

Bibliography

Becker, J., Ein FPGA-basiertes Testsystem für gemischt analog/digitale ASICs, Diploma
thesis (german), University of Heidelberg, HD-KIP-01-11, 2001.

Bi, G., and M. Poo, Synaptic modifications in cultured hippocampal neurons: Dependence
on spike timing, synaptic strength, and postsynaptic cell type, Neural Computation, 9,
503–514, 1997.

Bill, J., Diploma thesis, Diploma thesis, University of Heidelberg, presumably published in
late 2008, 2008.

Brette, R., and W. Gerstner, Adaptive Exponential Integrate-and-Fire Model as an Effective
Description of Neuronal Activity, J. Neurophysiol., 94, 3637 – 3642, 2005, article.

Brette, R., and D. Goodman, Brian, 2008, a simulator for spiking neural networks based on
Python.

Brette, R., et al., Simulation of networks of spiking neurons: A review of tools and strategies,
2006.

Brüderle, D., Implementing spike-based computation on a hardware perceptron, Master’s
thesis, Heidelberg University, 2004.

Brüderle, D., A. Grübl, K. Meier, E. Mueller, and J. Schemmel, A software framework for
tuning the dynamics of neuromorphic silicon towards biology, in Proceedings of the 2007 In-
ternational Work-Conference on Artificial Neural Networks (IWANN’07), vol. LNCS 4507,
pp. 479–486, Springer Verlag, 2007.

Colclough, M., and G. Vermeulen, PyQwt – a set of Python bindings for the Qwt C++ class
library, http://pyqwt.sourceforge.net/, 2007.

Dally, W. J., and J. W. Poulton, Digital systems engineering, Cambridge University Press,
New York, NY, USA, 1998.

Dayan, P., and L. F. Abott, Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems, The MIT press, Cambride, Massachusetts, London, England,
2001.

Destexhe, A., Conductance-based integrate-and-fire models, Neural Comput., 9, 503–514,
1997.

Destexhe, A., M. Rudolph, and D. Pare, The high-conductance state of neocortical neurons
in vivo, Nature Reviews Neuroscience, 4, 739–751, 2003.

48

http://pyqwt.sourceforge.net/

Bibliography

Ehrlich, M., K. Wendt, and R. Schüffny, Parallel mapping algorithms for a novel mapping &
configuration software for the facets project, in CEA’08: Proceedings of the 2nd WSEAS
International Conference on Computer Engineering and Applications, pp. 152–157, World
Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA,
2008.

Ensemble, N., PyNN – a python package for simulator-independent specification of neuronal
network models, http://www.neuralensemble.org/trac/PyNN, 2008.

Fieres, J., J. Schemmel, and K. Meier, Realizing biological spiking network models in a
configurable wafer-scale hardware system, in Proceedings of the 2008 International Joint
Conference on Neural Networks (ĲCNN), 2008.

Frey, U., et al., Cell recordings with a cmos high-density microelectrode array, in Engineering
in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference
of the IEEE , pp. 167–170, Lyon, 2007.

Grübl, A., VLSI implementation of a spiking neural network, Ph.D. thesis, Ruprecht-Karls-
University, Heidelberg, 2007, document No. HD-KIP 07-10.

Hafliger, P., Adaptive WTA with an analog VLSI neuromorphic learning chip, IEEE Trans-
actions on Neural Networks, 18, 551–72, 2007.

Hines, M., J. W. Moore, and T. Carnevale, Neuron, 2008.

Hodgkin, A. L., and A. F. Huxley, A quantitative description of membrane current and its
application to conduction and excitation in nerve., J Physiol, 117 , 500–544, 1952.

Huettel, S. A., A. W. Song, and G. McCarthy, Functional Magnetic Resonance Imaging,
Sinauer Associates, 2004.

IEEE, Standard for information technology - portable operating system interface (POSIX).
shell and utilities, Tech. rep., IEEE, 2004.

Jungo Ltd, WinDriver , 1 Hamachshev Street, P.O.Box 8493, Netanya 42504, Israel, 2007.

Kandel, E. R., J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, 4 ed., McGraw-
Hill, New York, 2000.

Kaplan, B., Preliminary working title: Tuning the dynamics of a highly accelerated neuro-
morphic hardware towards biology and exploiting its speed for systematic self-organisation
experiments, Diploma thesis, University of Heidelberg, presumably published in late 2008,
2008.

Kerr, J. N., D. Greenberg, and F. Helmchen, Imaging input and output of neocortical networks
in vivo., Proc Natl Acad Sci U S A, 102, 14,063–14,068, 2005.

Kumar, A., S. Schrader, A. Aertsen, and S. Rotter, The high-conductance state of cortical
networks, Neural Computation, 20, 1–43, 2008.

Maass, W., Networks of spiking neurons: the third generation of neural network models,
Neural Networks, 10, 1659–1671, 1997.

49

http://www.neuralensemble.org/trac/PyNN

Bibliography

Markram, H., Y. Wang, and M. Tsodyks, Differential signaling via the same axon of neocor-
tical pyramidal neurons., Proceedings of the National Academy of Sciences of the United
States of America, 95, 5323–5328, 1998.

McCulloch, W. S., and W. Pitts, A logical calculus of the ideas immanent in nervous activity,
Bulletin of Mathematical Biophysics, pp. 127–147, 1943.

Mead, C. A., Analog VLSI and Neural Systems, Addison Wesley, Reading, MA, 1989.

Mead, C. A., and M. A. Mahowald, A silicon model of early visual processing, Neural Net-
works, 1, 91–97, 1988.

Mehring, C., J. Rickert, E. Vaadia, S. C. de Oliveira, A. Aertsen, and S. Rotter, Inference
of hand movements from local field potentials in monkey motor cortex, Nat. Neurosci., 6,
1253–1254, 2003.

Merolla, P. A., and K. Boahen, Dynamic computation in a recurrent network of heterogeneous
silicon neurons, in Proceedings of the 2006 IEEE International Symposium on Circuits and
Systems (ISCAS 2006), 2006.

Morrison, Abigail, Diesmann, Markus, Gerstner, and Wulfram, Phenomenological models of
synaptic plasticity based on spike timing, Biological Cybernetics, 98, 459–478, 2008.

Ostendorf, B., Charakterisierung eines Neuronalen Netzwerk-Chips, Diploma thesis (german),
University of Heidelberg, HD-KIP 07-12, 2007.

Pissanetzky, S., Sparse Matrix Technology, Academic Press, London, 1984.

Renaud, S., J. Tomas, Y. Bornat, A. Daouzli, and S. Saïghi, Neuromimetic ics with analog
cores: an alternative for simulating spiking neural networks, in Proceedings of the 2007
IEEE Symposium on Circuits and Systems (ISCAS2007), 2007.

Riverbank Computing Limited, PyQt – Python bindings for Trolltech’s Qt application frame-
work, http://www.riverbankcomputing.co.uk/software/pyqt/intro, 2007.

Rosenblatt, F., The perceptron: a probabilistic model for information storage and organiza-
tion in the brain, Psychological Review, 65, 386–408, 1958.

Schemmel, J., WP7 STDP implementation, 2006, university of Heidelberg.

Schemmel, J., personal communication, 2008.

Schemmel, J., K. Meier, and E. Mueller, A new VLSI model of neural microcircuits including
spike time dependent plasticity, in Proceedings of the 2004 International Joint Conference
on Neural Networks (ĲCNN’04), pp. 1711–1716, IEEE Press, 2004.

Schemmel, J., A. Grübl, K. Meier, and E. Mueller, Implementing synaptic plasticity in a VLSI
spiking neural network model, in Proceedings of the 2006 International Joint Conference
on Neural Networks (ĲCNN’06), IEEE Press, 2006.

Schemmel, J., D. Brüderle, K. Meier, and B. Ostendorf, Modeling synaptic plasticity within
networks of highly accelerated I&F neurons, in Proceedings of the 2007 IEEE International
Symposium on Circuits and Systems (ISCAS’07), IEEE Press, 2007.

50

http://www.riverbankcomputing.co.uk/software/pyqt/intro

Schemmel, J., J. Fieres, and K. Meier, Wafer-scale integration of analog neural networks,
in Proceedings of the 2008 International Joint Conference on Neural Networks (ĲCNN),
2008.

SciPy, Weave, http://www.scipy.org/Weave, 2008.

Serrano-Gotarredona, R., M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-Vicente,
F. Gomez-Rodriguez, H. K. Riis, T. Delbrück, and S.-C. Liu, AER building blocks for
multi-layer multi-chip neuromorphic vision systems, in Advances in Neural Information
Processing Systems 18, edited by Y. Weiss, B. Schölkopf, and J. Platt, pp. 1217–1224, MIT
Press, Cambridge, MA, 2006.

Song, S., K. Miller, and L. Abbott, Competitive hebbian learning through spiketiming-
dependent synaptic plasticity, Nat. Neurosci., 3, 919–926, 2000.

Stroustrup, B., The C++ Programming Language, Addison Wesley, Reading, MA, 1997.

The Neural Simulation Technology (NEST) Initiative, Homepage, http://www.

nest-initiative.org, 2007.

Trolltech, Qt cross-platform application framework 4.2.0, http://trolltech.com/

developer/resources/notes/changes/changes-4.2.0/, 2006.

Tsodyks, M., and H. Markram, The neural code between neocortical pyramidal neurons de-
pends on neurotransmitter release probability, Proceedings of the national academy of sci-
ence USA, 94, 719–723, 1997.

Vogelstein, R. J., U. Mallik, J. T. Vogelstein, and G. Cauwenberghs, Dynamically reconfig-
urable silicon array of spiking neuron with conductance-based synapses, IEEE Transactions
on Neural Networks, 18, 253–265, 2007.

Wendt, K., M. Ehrlich, and R. Schüffny, A graph theoretical approach for a multistep mapping
software for the facets project, in CEA’08: Proceedings of the 2nd WSEAS International
Conference on Computer Engineering and Applications, pp. 189–194, World Scientific and
Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 2008.

51

http://www.scipy.org/Weave
http://www.nest-initiative.org
http://www.nest-initiative.org
http://trolltech.com/developer/resources/notes/changes/changes-4.2.0/
http://trolltech.com/developer/resources/notes/changes/changes-4.2.0/

Index

Boost.Python, 16, 21
Brian, see PyNN
Build Process, 37

Ccache, 37
Code Profiling, 39

Event Loopback Test, see Tests

FACETS Hardware Stage 1, 42
FACETS Hardware Stage 2, 42
FACETS Stage 1, 5
FACETS Stage 2, 10

Graph Model, 16

Integrate-and-Fire, see Neuron

Korescope, 38

Link Test, see Tests
Low-level Software, 15
LTP, see Plasticity

Makefile, 37

NEST, see PyNN
NEURON, see PyNN
Neuron

Model, 7
Readout Deadlocks, 22
Resets, 28

Noise, 22

Parameter RAM
Test, see Tests
Update, 32

Plasticity
LTP, 8
STDP, 8
STP, 7
Synaptic Plasticity, 7

PyHAL, 13
PyNN, 11

Brian, 13
hardware, 13
MOOSE, 13
NEST, 12
NEURON, 12
PCSIM, 13

PyNN.hardware, see PyNN

SciPy.Weave, see Code Profiling
SCM, 37
Software Framework, 11
Spikey, 5, 6
STDP, see Plasticity

seePlasticity, 42
STP, see Plasticity
Synaptic Plasticity, see Plasticity

Tests
Event Loopback, 21
Link, 19
Low-level, 19
Parameter RAM, 21

Trac, 37

Vout Calibration, 35

WinDriver, 39, 41

gggqG, 53

52

Acknowledgments
(Danksagungen)

Ich möchte mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. Dies
sind insbesondere:

Herrn Prof. Dr. Karlheinz Meier für die freundliche Aufnahme in die Arbeitsgruppe und die
stets hilfreiche Unterstützung.

Herrn Prof. Dr. Thomas Ludwig für die Übernahme der Zweitkorrektur.

Daniel Brüderle für die intensive und hilfreiche Betreuung.

Bernhard Kaplan, Daniel Brüderle, Johannes Bill, Mihai Petrovici und Olivier Jolly – auch
wenn er mittlerweile Vollblut Hardy ist – für die persönliche Büroatmosphäre.

Dres. Grübl & Schemmel für die Antworten auf meine vielen Fragen zur Hardware.

Vim & xJump

Allen Visionären für Hilfsbereitschaft und stets angenehme und freundschaftliche Arbeit-
satmosphäre.

Meiner Familie für allumfassende Unterstützung.

Dem M. C. für zackige Mittagessen.

Allen Korrekturlesern – insbesondere Börni, Daniel, Johannes, Kathi, Maike und Mihai.

Brutal B, Dirty D, Jigsaw J, Merdi, Mighty M und Olivier für Spaß (& Frust!) am Kickertisch.

Katharina.

:xa!

53

54

Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of my own
work. Any ideas or quotations from the work of other people, published or otherwise, are
fully acknowledged in accordance with the standard referencing practices of the discipline.

Ich versichere, daß ich diese Arbeit selbständig verfaßt und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Heidelberg, September 10, 2008
.......................................

(signature)

	Introduction
	Neuroscience And Technology
	The FACETS Project
	Outline

	The FACETS Hardware
	Chip Overview
	Neuron Model
	Synaptic Plasticity
	Short-Term Plasticity
	Long-Term Plasticity

	Towards Stage 2

	Software Framework
	The Meta Language PyNN
	The PyNN.hardware module
	Python Hardware Abstraction Layer
	Low-level Software
	Graph Model

	Experimental Investigation Of The FACETS Stage 1 hardware
	Assertion of Digital Functionality
	Link Test
	Parameter RAM Test
	Event Loopback Test
	Conclusion

	Characterization Of The Chip
	Noise
	Neuron Readout
	Parameter Stability
	Spike Timing Dependent Plasticity

	Workarounds for Chip Imperfections
	Summary Of Main Problems
	Neuron Resets
	Every nth Input Spike
	Fixed Rate
	Poisson Distributed
	Conclusion

	Parameter RAM Update
	Parameter Voltage Generator Calibration

	Improved Software Flow and Tools
	Software Project Management
	Build Process
	Source Code Management

	Korescope
	Code Profiling
	WinDriver

	Discussion & Outlook
	Appendix
	Source Code Locations
	General
	Further Contributions
	Documentation

	Example: KoreScope
	SciPy.Weave Example

	Bibliography

