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Abstract— This paper introduces a novel design of an arti-
ficial neural network tailored for wafer-scale integration. The
presented VLSI implementation includes continuous-time ana-
log neurons with up to 16k inputs. A novel interconnection and
routing scheme allows the mapping of a multitude of network
models derived from biology on the VLSI neural network
while maintaining a high resource usage. A single 20 cm
wafer contains about 60 million synapses. The implemented
neurons are highly accelerated compared to biological real time.
The power consumption of the dense interconnection network
providing the necessary communication bandwidth is a critical
aspect of the system integration. A novel asynchronous low-
voltage signaling scheme is presented that makes the wafer-scale
approach feasible by limiting the total power consumption while
simultaneously providing a flexible, programmable network
topology.

I. INTRODUCTION

A key aspect of neuroscience is the modeling of neural

systems. Modeling is used to test all kinds of hypotheses

derived from the observation of biological nervous tissue in-

vivo and in-vitro. One modeling possibility is the numerical

integration of a mathematical description consisting of a

set of differential equations [1], e.g. performing a computer

simulation. This method is mainly limited by the available

computing power. As a consequence, most simulations are

not performed in biological real-time but up to several orders

of magnitude slower. If one is going to model processes like

learning or development, which already take from minutes to

days in the laboratory, this may seriously affect the modeling

possibilities.

In addition, the statistical nature of the neural code often

requires several repetitions of a simulation, as do parameter

searches. In this paper, a novel concept for the modeling

of large networks is presented. Based on a continuous-time

analog model realized in VLSI technology it allows the

modeling of neural systems with up to several billions of

synapses while maintaining an average acceleration factor

of 104. This speed-up allows to do extensive parameter

searches. Most experiments will last only a few milliseconds

when done on the presented hardware system. In contrast

to most other VLSI implementations (see [2] for a recent

review) the presented neural network is targeted at large-scale

network models which are currently limited by the available

computing resources [3][4].

Compared to previous implementations of highly-

accelerated analog neural networks [5][6][7] the presented
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system increases the maximum network size by three orders

of magnitude. The maximum number of pre-synaptic sig-

nals a neuron can receive changed from 256 to 16k. Just

increasing the numbers of synapses and neurons would not

be sufficient for modeling real neural systems. It is also

necessary to support the diverse neuron properties found in

biology [8] as well as the complex interconnection topologies

formed by their axons and dendrites.

The FACETS system described in this paper is designed to

meet these requirements. It is part of the European research

project FACETS1[9]. To cover the technical and theoretical

aspects of the wafer-scale neural network development done

within this project two papers were submitted: the present pa-

per describes the hardware requirements and implementation

while [10] gives an introduction to the algorithms for routing

and resource allocation developed for the FACETS wafer-

scale system and presents experimental results confirming

the viability of this approach.

The remainder of this paper is organized as follows:

Section II gives an introduction of the FACETS system, while

section III describes the VLSI implementation. The neuron-

to-neuron communication is the topic of section IV.

II. OVERVIEW OF THE FACETS HARDWARE

Basically, the FACETS hardware model consists of a large

number of ASICs containing the analog neuron and synapse

circuits. Due to the high acceleration factor the necessary

communication bandwidth in-between these Analog Network

Chips (ANC) can exceed 1011 neural events per second2. The

textbook solution would have been the utilization of a very

high I/O count which is only feasible in Flip-Chip technology

[11] and leads to complicated and expensive printed-circuit

boards and high packaging costs. Therefore, a different

approach is used in FACETS: wafer-scale integration. In this

technology the silicon wafers containing the individual chips

are not cut into dies, instead, the chips are interconnected

directly on the wafer. This method provides the necessary

connection density. Two prerequisites need to be fulfilled to

make wafer-scale integration feasible: fault tolerance and low

power consumption.

A biological neural network is inherently fault tolerant

against random neuron loss [12]. There are two main reasons

for this: first, all tasks are performed by large populations

of neurons and second, the high plasticity allows healthy

neurons to take over the functionality of deceased ones.

Both mechanisms are also present in the presented analog

1The acronym stands for: ”Fast Analog Computing with Emergent Tran-

sient States”.
2A neural event encodes the transmission of an action potential from one

source neuron to a set of target neurons.



Fig. 1. A FACETS-wafer with motherboard and mounting bracket. From
top to bottom: top mounting bracket, motherboard containing digital network
chips, FPGAs and passive components, elastomeric connectors, silicon wafer
with analog network chips, seal ring, bottom mounting bracket.

VLSI neural network chips. Several levels of programmable

topology allow replacing defect neurons as well as whole

defect ANCs by fully functional ones. This will always pro-

vide a completely operational network to the experimenter,

similar to the disabling of defect memory blocks in a CPU’s

cache memory [13]. In addition, the disabling of single defect

synapses and neurons will not be necessary for the majority

of experiments, because they will also use population coding

and therefore won’t rely on every single synapse or neuron.

The power consumption is the major issue in realizing

wafer-scale integration for the presented analog neural net-

work. The number of events per second is proportional

to the acceleration3 factor of up to 105 and the event

transmission involves the charging and discharging of the

wire capacitances. To limit the power consumption of the

event transmission a novel asynchronous differential low-

voltage signaling scheme was developed. Also the static

power consumption of all circuits is minimized. Especially

the synapse, which is by far the most frequent circuit in

a neural network, uses no static power at all. Combining

these methods the average power consumption is expected

to stay below 1 kW for a single wafer. An electrical power

dissipation of this magnitude uniformly distributed across the

surface area of a silicon wafer with 20 cm diameter equals a

power-density of 1.6W/cm2. This is well below the limit of

standard air cooling methods and allows to densely mount

the wafer systems in industry standard racks.

Fig. 1 shows an exploded view of a wafer and its accompa-

nying motherboard. Several of these single wafer units fit ver-

tically in a industry standard 9U crate4. A custom backplane

3The acceleration factor is selectable between 10
3 to 10

5. Due to the
bandwidth limitations of the wafer-to-wafer communication, an acceleration
factor above 10

4 is restricted to experiments using predominantly intra-
wafer communication.

4’U’ stands for ’Rack Unit’ and is used to measure the height of a device
mounted in a 19-inch rack. One rack unit is 1.75-inch (44.45 mm).

Fig. 2. A FACETS-Wafer containing 56 complete reticles. The dashed
arrows depict one bundle of horizontal respectively vertical inter-neuron
connections. A single reticle is enlarged showing the arrangement of the
analog neural network chips (ANC). The number of wires is given for each
type of connection created by wafer post-processing.

connects the wafer units to each other. The motherboard

contains Digital Network Asics (DNC) that interface the ANC

chips on the wafer with several FPGA5 on the backplane

interconnecting the wafer boards in the crate. These FPGA

chips implement the necessary communication protocols to

exchange neural events between the different network wafers

and the host computer6.

In Fig. 2 the partitioning of the wafer in 56 reticles7,

containing eight ANCs each, is visible. To achieve the

necessary inter-neuron connection density a dense layer of

horizontal and vertical wires is used. These connections

can not be routed from one reticle to another due to the

limitations of the manufacturing process. Therefore, a post-

processing step is used that deposits and structures an ad-

ditional layer of metal atop the original wafer8. The post-

processing connects the inter-neuron connections across the

gaps between the reticles. It also provides a solution for the

connection between motherboard and wafer. In the center

of the reticle multiple pad rows are placed. They make

contact to their counterparts on the motherboards by industry

standard elastomeric connectors [14] (see Fig. 1). The post-

processing is used to form these pads as well as their

connections to the original pad-windows of the analog neural

network chips on the reticles. These pad-windows can be

of minimum size and placed arbitrarily which simplifies the

chip’s layout.

III. THE HICANN CHIP

The initial version of the ANC is called HICANN (High

Input Count Analog Neural Network). It is the primary build-

5Field Programmable Logic Arrays
6The DNC chips and the FPGA code are developed by the chair of Prof.

Schüffny at the Technical University of Dresden, Germany.
7Due to the high resolution required for the mask it is not possible to

expose a whole wafer at once. Therefore a certain area, called the reticle,
is repeatedly exposed onto the wafer. The reticle has fixed maximum size
of usually 20 to 25 mm which corresponds to the maximum feasible chip
size.

8Since this is done with a much lower feature size (about 5µm) than the
VLSI manufacturing (180 nm) a wafer-scale mask can be used.



Fig. 3. Block diagram of a HICANN chip.

ing block for the FACETS wafer-scale system. It contains

the mixed-signal neuron and synapse circuits as well as the

necessary support circuits and the host interface logic. Fig. 2

shows the arrangement of the HICANN chips on the wafer.

Eight HICANN chips will be integrated on a single reticle.

The size of the HICANN chip is chosen to be 5x10 mm2.

This allows to fully qualify the HICANN in silicon using

MPW9 prototyping only, thus limiting cost. The necessary

pitch of the post-processing metal layer that connects the

individual reticles directly on the wafer is about 10 µm,

allowing for a connection density of 100 wires/mm between

adjacent edges of neighboring reticles. This is sufficient for

the maximum connection density which occurs at the short

edges of the HICANN die, where 512 wires are used to

interconnect 256 differential bus lanes (see section IV).

In Fig. 3 the main functional blocks can be identified. The

largest one is the Analog Neural Network Core (ANNCORE)

containing 128k synapses and 512 membrane circuits which

can be grouped together to form neurons with up to 16k

synapses. The interconnections between the HICANN chips

run vertically and horizontally through the chip, with cross-

bar switches at their intersections. Additional switch blocks

give the synapses inside of the ANNCORE access to these

signals.

Eight HICANN dies are combined to form the reticle of

the wafer-scale system. Fig. 2 shows the connections between

adjacent reticles which have to be created by post-processing

the wafer. The reticle is larger than the area occupied by eight

HICANN dies (grey border) to accommodate the contact

pad windows for the post-processing. Inside the reticle the

inter-neuron signals of the HICANN dies are edge connected

by the topmost metal layer. To achieve the fault tolerance

necessary for wafer scale integration each HICANN has

individual power supplies as well as an individual connection

to the Digital Network Chip on the printed circuit board.

These connections are also realized by post-processing which

rearranges the pads of the eight HICANN dies into regular

spaced contact rows inside the reticle suitable for the elas-

tomeric connectors.

9Multi Project Wafer

Fig. 4. Block diagram of the analog network core. The enlarged portion
shows the connection pattern between synapses and strobe resp. address
lines.

A. ANNCORE circuits

Fig. 4 shows the main elements of the ANNCORE. Its

geometry is designed for a maximum input count of 16k

pre-synaptic inputs per neuron. In this case an ANNCORE

block will implement eight neurons. In contrast, using the

maximum neuron number of 512 limits the number of inputs

per neuron to 256. The high number of different input signals

required for a neuron with 16k synapses leads to an excessive

bandwidth demand: considering the case of a mean firing rate

of 10 Hz, an acceleration factor of 105 and 16k inputs this

equals to an average event rate of 164 Giga-events/s, easily

crossing the Tera-event/s barrier in periods of bursty neural

activity. Using traditional digital coding techniques an event

packet would use about 16 to 32 bit, containing target address

and delivery time. To make this communication demand

feasible the ANNCORE uses a combination of space and

time multiplexing. Due to the high density of the connections

between the reticles and the on-die wiring between the

HICANN chips inside the reticle a large number of signals

can be multiplexed spatially. The presented implementation

uses 256 bus lanes, consisting of two wires each, running

alongside the synapse drivers (see Fig. 3).

Temporal multiplexing is used as the final step to reach

the necessary numbers. Each wire pair carries the events

from 64 pre-synaptic neurons10 by serially transmitting 6 bit

neuron numbers. For historic reasons, this protocol is called

the Layer 1 or short L1 routing11. A widely used protocol

for temporal multiplexing in VLSI neural networks is the

Address Event Representation (AER) [15][16]. It is based

on a request-grant scheme to allocate the shared resource.

In the presented system this is not possible for spatially

separated neurons since the additional power consumption of

10This could be extended to 256 neurons in future implementations.
11This is opposed to the non-multiplexed local connections used in

previous systems in our lab which are called Layer 0. Layer 2 is the discrete-
time event based inter-chip communication layer used between ANC and
DNC as well as between DNC and FPGA.



the request and grant signals would be prohibitive. Therefore,

temporal multiplexing always combines the signals from a

local group of neurons located in a direct neighborhood

within a single ANNCORE. A maximum of 64 adjacent

neurons share a priority encoder which is used to allocate

the time slots on the serial L1 bus.

The complexity at the sender as well as the receiver side of

the serial L1 link is further reduced by transmitting the event

in continuous time, i.e. the time of a pre-synaptic event is

determined by the moment of its arrival at the synapse driver.

The drawback here is the potential timing error introduced

in the case of heavy simultaneous firing12. The average

probability of such a collision happening is determined by

the duration of the transmission of an event, the acceleration

factor, the number of neurons sharing a wire and the joint

firing probability of these neurons. The user can always

adjust the first three parameters in a way to accommodate

his requirements.

1) Synapse drivers: The synapse drivers are the interface

between the serialized event data and the synapse array (see

Fig. 4). Every two synapse rows share a L1 receiver and

synapse driver. Since they are alternately mounted left and

right from the synapse array, there is one L1 input every

four rows, totaling in 64 inputs per side and block. They

contain the deserializer and data capture circuits which will

be described in detail in section IV-B.4. The received 6 bit

pre-synaptic neuron address is split in two parts. The upper

two bits are compared to stored address patterns for a set of

strobe lines for the synapse address decoders. The length of

these strobe pulses, τSTDF, can encode for the momentary

value of the synaptic transconductance if it is modulated by

short term plasticity mechanisms (short term depression or

facilitation: STDF) [7]. The lower four bit of the sampled

6 bit neuron address are subsequently transmitted into the

synapse array. Each synapse driver can address all 256

membrane circuits in its ANNCORE half. As illustrated in

Fig. 4 there are always two synapses connected to the same

membrane circuit sharing a synapse driver, i.e. a group of 64

possible pre-synaptic neurons.

2) Synapses: The synapse circuits are an enhanced ver-

sion of the ones reported in [6]: the synaptic weight is

stored in a 4 bit static RAM cell. A 4 bit digital-to-analog

converter (DAC) translates the stored weight into an output

current. The major change is the inclusion of a four bit

address decoder replacing the single pre-synaptic signal used

previously. Each synapse has a fixed connection to one of the

strobe signals from the synapse driver and a programmable

four bit address. This allows for a much higher mapping

efficiency in the case of sparsely connected random networks

[10]. The fixed maximum conductance gmax which deter-

mines the scale for the synapse DAC can still be set row-wise

by a programmable analog parameter. The output signal of

a synapse in the case of an input event matching its address

is a square current pulse with the amplitude weight× gmax

12In a packet-based solution there would be FIFO-memories available to
equalize the event rate.

Fig. 5. Operating principle of the circuit modeling the synaptic ion
channels.

and the length τSTDF controlled by the synapse driver.

The correlation measurement circuits in each synapse used

to implement spike-time dependent plasticity (STDP) are

similar to [6]. Since plasticity is not a topic of this paper

they will not be discussed further.

3) Membrane Circuits and Neuron Builder: A neuron

is formed by connecting together an arbitrary number of

dendrite membrane circuits, called denmem. Each denmem

contains a set of ion-channel emulation circuits connected to

the membrane capacitance. These ion-channel circuits repre-

sent the following membrane currents: excitatory synapses,

inhibitory synapses, leakage, adaptation and spike genera-

tion, the latter including the reset current. These circuits

allow the implementation of the adaptive exponential inte-

grate and fire model [17] as well as a simple conductance-

based integrate and fire model implemented in [6], thereby

maintaining compatibility with experiments designed for that

system. All analog parameters are stored in non-volatile

single-poly floating-gate analog storage cells developed for

the FACETS project [18].

The synapses are connected to the denmem circuits by

two lines running orthogonal to the pre-synaptic inputs. Each

synapse has an output multiplexer selecting which line to use.

The current pulses from all synapses connected to a denmem

circuit add up to two time-varying total input currents. The

denmem circuit converts these currents into time-varying

conductances emulating two different groups of synaptic ion

channels. One can be programmed as excitatory and the other

as inhibitory, for example. In larger neurons incorporating

multiple denmem circuits the types of ion channels are not

limited to two. It is possible to use two different types of ion

channels in each denmem circuit.

Fig. 5 shows the operating principle of the synapse ion

channel circuit. Operational amplifier OP1, together with

capacitor C and tunable resistor R, forms a leaky integrator

for the synapse output current. The non-inverting input of

OP1 is held at a fixed reference potential, which is set to

the optimal output voltage for the synapse current sources.

The amplifier clamps the synapse current output to this

voltage through the feedback capacitor C. This clamping

action of the integrator has two benefits: first, it enhances the

precision of the synapse current sources since they always

see a constant voltage. Second, it speeds up the network

operation by reducing the input voltage swing at OP1 to a

minimum.

Operational transconductance amplifier OTA1 converts the



output voltage of OP1 which corresponds to the integrated

synapse current to a proportional output current. The conver-

sion gain can be set by its bias current. The output current

from OTA1 is directly used as the bias current for OTA2,

which implements the ion channel conductance. OTA2 trans-

lates the voltage difference between the membrane voltage

and the reversal potential to a proportional current, thereby

emulating a conductance. The resistor R parallel to the

integrating capacitor C implements the exponential decay of

the synaptic conductance by continuously discharging C. It

can be tuned to adjust the time constant of this decay to the

type of ion channel emulated.

The neuron builder (see Fig. 4) is a switch matrix connect-

ing groups of denmem circuits together. The spike generation

circuit is disabled in all connected denmem circuits but one.

The connections made in-between the denmem circuits by

the neuron builder are two-fold: first, the membrane potential

is shorted and second, the back-propagating action potential

generated by the single active spike generation circuit is

distributed from the denmem propagating the spike to all

synapses belonging to the neuron. This is necessary for the

STDP correlation measurements performed by the synapses

[6].

Eight asynchronous priority encoders with 64 inputs each

determine which action potential is transmitted back into

the network. There are two kinds of signals generated from

these neural events: an asynchronous signal compatible to the

L1 inter-neuron protocol and a synchronous version which

is transferred to the digital control of the HICANN and

distributed further by the packet-based network implemented

by the DNC and FPGA on the motherboard.

IV. NEURON-TO-NEURON COMMUNICATION

A. Continuous-Time Event Transmission Protocol

The length of a wire traversing a HICANN die is about

10 mm. Depending on separating distances this wire will

see a total capacitance to its surrounding of about 2 pF13.

Considering a simple square pulse as code for an event the

power consumption pwire can be calculated as follows:

pwire = C · V 2
· Events/s [W] (1)

If this wire is driven with the full CMOS swing of 1.8 Volts

using an acceleration factor of 105 and a mean firing rate

of 10 Hz, pwire equals to 6.5 µW . If one scales this up

to a whole wafer containing 230k Neurons on about 450

HICANN chips the total power is 1.7 kW for the transmission

of the neural event signals alone14.

A serial event coding using a single low-voltage differen-

tial signal to transmit the events from up to 64 pre-synaptic

neurons was introduced to limit the power consumption. An

event is encoded using two frame bits and 6 data bits. Fig. 6

13The considered metal lines had the following parameters: 500 nm width,
800 nm spacing, metal 6, metal 5 orthogonal and only sparsely used, full
coupling to metal 4. The dominating capacitance is the coupling capacitance
within the layer which accounts for more than 90% of the total capacitance.

14In this calculation an event bus uses 6 address bits and 1 strobe bit, the
address bits toggle with half the frequency of the strobe signal.

Fig. 6. Timing of a serial L1 data frame. Shown is the differential signal
Vl1 pos −Vl1 neg. The output signals of the delay-locked loop (DLL) used
for timing recovery are shown beneath. If the falling-edge of output 15 is
aligned with the rising edge of the L1 signal, the DLL is locked.

shows a single serial L1 data frame. The timing parameters

for the typical process corner are: tframe=4 ns, tbit=500 ps

and the differential DC amplitude Vl1=150 mV. The average

number of transitions per event is 5.5, a rounded number of

6 will be used in further discussions. This reduces the total

power consumption to 5.6 watts (in the case of a differential

voltage swing of 100 mV). This is a 300-fold reduction

compared to the parallel CMOS case.

The resistance of said exemplary wire is 36mΩ/� ×

20k� = 720Ω and the time constant therefore τ = RC/2 =
0.7ns 15. To reach a bit rate of 2 GBit/s a certain amount of

overdrive is needed. The overall geometry of the L1 busses

in the HICANN chip shows that the effective length is more

than 10 mm. If repeaters are placed along the edges of the

chip the worst case for an unbuffered L1 line is 5 mm vertical

up to the central crossbar, 5 mm horizontal and 5 additional

mm vertical after the crossbar plus two times about 3 to

4 mm input lines to the ANNCORE (see Fig. 3 for reference),

branching off the vertical segments. To reduce the total RC-

time constant of such a network to a value that can sustain

2 GBit/s the metal width must be increased from the previous

example. Simulations have shown that a metal width and

spacing of 1.2 µm using the 2.2 µm thick top metal layer

gives satisfactory results for all process corners and worst

case routing scenarios. Only one additional provision has

to be made: the total parasitic capacitance of de-selected

switches in the central crossbars as well as the synapse driver

switch matrices must be limited. Therefore, these structures

are only sparsely populated with switch transistors. See the

accompanying paper [10] about the routing algorithms for

further details of the switch arrangement.

B. Serial L1 Components

1) Neuron→L1 Interface: Fig. 7 shows an exemplary

connection from the neuron labeled N1 to the neuron N2

located on a different HICANN die. The signal starts at

the output of the neuron builder (see section III-A.3) as

a standard digital CMOS signal, encoding the time of the

neuron’s firing by its rising edge. An asynchronous priority

encoder with 64 inputs determines which neuron’s action

potential will be transmitted back into the network. The

15Using a simple model which distributes the total wire capacitance
equally at both ends of the wire.



Fig. 7. Schematic diagram of a neuron-to-neuron connection crossing several HICANN chips.

neuron with the highest priority of all simultaneously firing

neurons connected to the same priority encoder is selected

for transmission. Each neuron has a programmable 6 bit

identification number assigned to it which will be sent to

the serializer in this case. The serializer generates the bit

stream from the parallel neuron number.

The serial CMOS-level data stream is sent through a driver

which converts it to the L1 voltage levels. It uses strong

pre-emphasis to overcome the large RC time constant. To

conserve energy both differential lines are shorted to equalize

their potential before the new differential voltage is applied.

If the data stream is constant for more than one bit period is

is connected to a differential voltage of 100 to 150 mV and a

common mode voltage of about 750 mV. The common mode

voltage can be adjusted by the external L1 power supply

to compensate any PMOS/NMOS imbalance introduced by

process variations. This assures that the effective common

mode applied by the pre-emphasis driver is the same than

the common mode in the DC case.

Each neuron→L1 interface is connected to a fixed

horizontal L1 lane using the following scheme:

i(nterface) 1→l(ane) 1, i2→l33, i3→l17, i4→l49, i5→l9,

i6→l25, i7→l41 and i8→l57. At each HICANN boundary

all vertical and horizontal L1 busses are rotated by one

bus lane, i.e. for the horizontal case this results in the

following mapping: 1→2,2→3,. . . ,64→1. This scheme has

the advantage that all bus lanes are equally used without

switching the L1 driver outputs between different L1 bus

lanes. Due to the low output impedance necessary for

the pre-emphasis signal inserting switch transistors in the

differential output path would lead to a large increase in the

power consumption.

2) Repeaters: The signal now travels on the horizontal

and vertical L1 busses from chip to chip, using special

repeaters for signal and timing restoration at the chip bound-

aries. Their components are shown in Fig. 8: receiver, timing

restoration circuit and driver. A repeater is bi-directional.

Its data flow direction can be set according to the routing

requirements. It can also be switched off to isolate the bus

lane it is connected to.

The receiver consists of a differential amplifier restoring

CMOS levels from the serial L1 signal. Since this receiver is

the only circuit consuming a significant amount of static bias

Fig. 8. Schematic diagram of a repeater. A 24-tap DLL locks on the input
frame and acts as timing reference for the multiplexer which generates the
serial output stream.

current without any L1 activity it is optimized for a minimum

power consumption with a positive input (Vl1 pos > Vl1 neg),

which is the inactive line level of the L1 bus. Simulations

show that in this case its current consumption stays below

100 µA at a speed still sufficient for an operation with

2 Gbit/s. This is a crucial detail of the L1 implementation

since the number of receivers on a wafer is about 260k.

The timing restoration consists of a de-serializer and a

serializer, both controlled by a single delay-locked loop with

24 delay elements (DLL). The single-ended CMOS L1 signal

is used as an input to six dynamic data capture latches and

the DLL. The DLL captures the frame timing by aligning the

delayed falling edge of the start bit with the original rising

edge of the stop bit, thereby dividing the frame in 16 time

bins (see Fig. 5).

The training phase of the receiver DLL is divided in two

phases. In the startup-phase only L1 frames with neuron

address zero are transmitted, allowing all DLLs an initial

lock. During normal network operation, a special input circuit

masks all transitions of the reference signal that lie outside of

the expectation window around the rising edge of the stop bit.

The timing information for this mask signal is derived from

the DLL itself. Therefore, in the locked case, the DLL can

compensate small timing variations caused by temperature

drift or leakage from the control voltage storage capacitor

without being disturbed by the additional transitions in the

signal caused by the random data payload of the frame.

For each data bit exists a time bin which lies exactly in the

middle of its data eye and which is used to trigger the capture

latch. The serialization is done by a multiplexer. The DLL

outputs controlling this multiplexer are selected in a way that

each bit is sent in the time-bin directly following its capture.



Fig. 9. Simulation results for an L1 bus lane running through a chain of 10 HICANN chips with repeaters at the chip boundaries. See Fig. 10 for an
illustration of the setup used. The dashed circles indicate some examples of crosstalk. Note the strong crosstalk supression in the differential mode.

Fig. 10. Configuration used for the simulation shown in Fig. 9.

This keeps the delay through the repeater as short as possible.

Simulations have shown that the total delay is 2.3 ns for

the typical process corner. The differential output driver for

the L1 bus is identical to the driver of the sender described

previously. Fig. 9 shows some results from an exemplary

simulation. Three L1 bus lanes are modeled in 10 connected

HICANN chips. The setup is depicted in Fig. 10. The center

lane is the one to be examined, the outer lanes model the

crosstalk between neighboring L1 busses. At the beginning

of each lane a repeater is placed. To examine the signal at

the end of the chain an 11th repeater is added there. Fig. 9

shows, from top to bottom, the following signals: the serial

CMOS level signal at the output of the differential receiver

of the first HICANN chip in the chain, the positive as well as

the differential signal at the output of the first L1 driver, the

positive as well as the differential input of the 11th repeater

and the CMOS level output of its receiver.

At the input of the first HICANN chip in the test chain

three random spike trains are fed into the three repeaters.

The occurrence of the neural events in each spike train is

Poisson distributed with randomly assigned neuron numbers.

The mean inter-spike interval is 15 ns. This is a worst case

scenario resembling a situation where the total 64 neurons

sharing an L1 bus are firing at a mean rate of 100 Hz each

(using an acceleration factor of 104).

The L1 bus lanes are modeled by a Gaussian quadrature

model including the capacitive and inductive coupling be-

tween all six individual wires and a ground plane below.

The wires have a width of 1µ and a thickness of 2.2µm. The

spacing between adjacent wires is 1.2µm and the ground

plane distance is 2.2µm. The capacitive coupling between

neighboring wires leads to strong crosstalk. Since this cou-

pling is strongest between direct neighbors it introduces a

voltage difference between the lanes of a differential pair.

This will lead to false transitions seen by the receiver. A

reduction of this crosstalk signals is achieved by twisting

every second L1 bus in the middle of the HICANN chip,

i.e. the positive and negative wires are swapped. This is

illustrated in Fig. 10. By this method the positive wire of

one bus lane runs in equal lengths in parallel to the positive

and the negative wire of the neighbor. This cancels most of

the crosstalk.

The results show that despite the signal distortions caused

by crosstalk each repeater can restore the original signal.

After traversing a distance of 10 cm and 10 HICANN chips

the signal has accumulated 23 ns delay but is otherwise

unchanged. Due to the high capacitive loading of the 10 mm

long bus wires the strong pre-emphasis at the driver is

necessary to ensure the build-up of a sufficient input level at

the receiver within the bit-period of 500 ps.

3) Crossbar Switches and Synapse Driver Switch Ma-

trices: At each intersection of a horizontal and a vertical

L1 segment a crossbar switch (see Fig 3) is located which

allows connections between the horizontal and vertical L1

bus lanes. The vertical lanes run in parallel to the synapse

driver columns located at both sides of the ANNCORE. A

sparse switch matrix allows the coupling of any L1 lane

to a synapse driver. To control the capacitive loading of

the vertical L1 busses only a certain number of switches

and activated connections to the synapse drivers is allowed.

To share these signals between adjacent rows, neighboring

synapse drivers have a bypass switch between their inputs.

This allows forming vertical chains of drivers sharing one

common connection to the vertical L1 busses.

The routing algorithm allocates certain neuron groups to

vertical L1 buses and needs to selectively connect synapse

drivers with L1 lines as well as horizontal and vertical

L1 buses. The best solution from a routing point of view

would be a fully connected crossbar at these locations. The

signal levels of the L1 busses allow the use of NMOS-



only switches at the cross-over points. Space considerations

permit a fully connected crossbar but the capacitance of the

de-selected transistors increases the RC-time constant too

much. Therefore a sparse matrix is used for all cross-over

points. The exact number of switches is a result of routing

simulations and documented in [10]. Electrically about 32

out of a maximum of 256 switches per horizontal line are

feasible for the main crossbar. Similar ratios apply for the

synapse drivers.

4) Synapse Driver: The synapse driver uses the same

receiver and DLL as the repeater. After the hold time of

bit 6 has passed the data capture latches contain the parallel

data word. The receiver DLL provides the necessary timing

information to reliably control the strobe pulse length τSTDF

which controls the synapse output current (see section III-

A.1).

To limit the power consumption and crosstalk of the

parallel L1 data a reduced voltage swing of 1/2 Vdd (0.9 V)

is used inside the synapse array. The lower four address bits

are decoded in the synapses. They are therefore transmitted

pseudo-differentially which also reduces crosstalk signifi-

cantly.

5) External Event Inputs: There are two possible sources

for an L1 bus: a neuron from ANNCORE or an external

event arriving at a DNC→L1 converter. The DNC→L1

converter translates the synchronous event packet into an L1

frame. The digital controller of the HICANN uses a clock

frequency of 1/tframe generated by an internal PLL from the

external reference clock transmitted via the DNC→HICANN

link. This link uses a synchronous packet-based protocol to

transmit neuron number and event time in a single packet.

An internal memory is used in HICANN to store the received

external events until the event time matches the local time

of the digital controller. The serializer and driver of an

DNC→L1 converter are the same as in the neuron→L1

interface.

6) L1 Merging Repeaters: A problem arises with the

geometry of the HICANN chips described so far. When

using the maximum number of inputs by connecting large

numbers of denmem circuits through the neuron builder, the

total neuron number becomes quite low. In the most extreme

configuration a single HICANN implements eight neurons

with 16k synapses each. With eight neurons a 6 bit L1 bus

can not be fully utilized. To overcome this problem, each

HICANN contains a special L1 repeater that is able to merge

the output of a local neuron into a partially filled horizontal

L1 bus lane. A hidden horizontal L1 lane is implemented for

that purpose to avoid complications in the routing algorithm.

In the middle of the HICANN chips it is interrupted and

the L1 Merging Repeater is inserted. The driving direction

is from left to right. At the rightmost HICANN, which is

the HICANN that completes the L1 bus, the output of the

L1 Merging Repeater is switched from the hidden horizontal

lane to horizontal lane 1. Therefore it appears like the whole

L1 bus with all its 64 neurons originates in the rightmost

HICANN of such a chain.

V. SUMMARY

This paper gives an overview of the circuit techniques

necessary to implement a wafer-scale analog neural network

with a programmable topology. The presented architecture

solves the three main issues of wafer-scale integration:

power consumption, fault tolerance and the transferability

of biological networks. At the time of this writing the circuit

design for the HICANN chip is completed and all the circuits

presented in this paper have been proven in simulation. The

tape-out of the first prototype is planned for the first half of

2008.
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