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Analyse der Chromatinfaserkonformation durch Monte Carlo Simulationen:   
Im Zellkern von Eukaryoten wird die DNA durch Histon-Proteine in eine Kette 
von Nukleosomen gepackt, in denen 146 oder 147 Basenpaare von DNA um 
Histon-Oktamer Proteinkerne gewickelt sind. Diese einer Perlenkette ähnliche 
Struktur assoziiert unter physiologischen Bedingungen in eine kondensierte 
Chromatinfaser mit einem Durchmesser von 30 nm. Der Effekt der DNA-
Nukleosomen-Geometrie auf die Konformation dieser Chromatinfaser wurde mit 
Monte-Carlo-Simulationen unter Verwendung des Metropolis-Algorithmus 
untersucht. Ein bereits entwickeltes „zwei-Winkel-Modell“ für die Konformation 
der DNA am Nukleosom wurde verwendet, um den Effekt der Nukleosomen-
Geometrie auf die Organisation der Faser bei physiologischer Ionenstärke zu 
untersuchen. Eine Reihe von Fasern mit je 100 Nukleosomen wurde erstellt, bei 
denen zwei zentrale Parameter, der DNA Eintritts-Austrittswinkel und die Länge 
der Verbindungs-DNA systematisch variiert wurden. Es konnte gezeigt werden, 
dass kleine Änderungen der Winkel, die den DNA-Pfad bestimmen, zu 
überraschend grossen Änderungen von einer kompakten Faserkonformation mit 
hoher Massenbelegungsdichte zu einer ausgedehnten Konformation führen. 
Dieser Übergang könnte mit der Bildung von Zuständen zusammenhängen, bei 
denen der Zugang der DNA für biologische Prozesse erleichtert wird. 

Analysis of the chromatin fiber conformation by Monte Carlo simulations:  
In the cell nucleus of eukaryotes the DNA is packaged by histone proteins into a 
chain of nucleosomes, in which 146 or 147 base pairs of DNA are wrapped 
around octameric histone protein cores. This “beads on a string” like structure 
associates under physiological conditions into a condensed chromatin fiber with a 
diameter of about 30 nm. The effect of the DNA-nucleosome geometry on the 
conformation of these chromatin fibers was studied by Monte Carlo simulations 
using the Metropolis algorithm. A previously developed “two angle” model for 
the conformation of the DNA at the nucleosome was used to explore the effect of 
the nucleosome geometry on the organization of the chromatin fiber at 
physiological ionic strength. A series of fibers with 100 nucleosomes were created 
for which two of the central parameters, the DNA entry-exit angle and the linker 
DNA length, were systematically varied. It is shown that small changes in the 
angles that determine the DNA paths lead to surprisingly large changes from a 
compacted fiber conformation with high mass density into an extended 
conformation. This transition might be related to the formation of a state where 
access to the DNA is facilitated for biological processes. 
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1 Introduction 

The large amount of genetic information of a cell is contained in the linear order 

of the nucleotides in the DNA. In recent times we have gained some knowledge 

about the way this information is copied, its data integrity is ensured and the 

information is coded. Also the principles of how the information is retrieved and 

then translated into sequences of amino acids are understood. So the next 

challenge has been to find out more about the highly complex mechanisms of how 

all these processes are regulated. What we know is that regulation may take place 

at any step of gene expression - from the DNA-RNA transcription step to post-

translational modifications of a protein. 

One additional layer of the control of gene expression is the organization of DNA 

in a protein-DNA complex called chromatin [1]. The histone proteins in this 

complex can compact the DNA chain of ~2 m in humans so it can get packed into 

a nucleus with 10 μm diameter. In addition the cell must also be able to 

selectively grant access to genes for those DNA binding factors that are involved 

in processes of replication, transcription, repair and recombination. Thus, the 

histone proteins have to accomplish the somewhat contradictory task of both 

compacting and opening specific regions of the DNA in a defined manner. 

In fact the organization of chromatin in the cell is an important factor for the 

regulation of transcription. For a number of genes it has been shown that 

chromatin conformation and gene expression are directly linked [2, 3]. The 

octameric protein complex of histones H2A, H2B, H3 and H4 all in two copies is 

responsible for the packaging of the DNA, and the histone complexes can be 

modified by acetylation, methylation and phosphorylation of certain amino 

acids [1]. These kinds of modifications are considered to be important regulators 

of DNA packaging and with it the gene expression levels. 
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Furthermore, changes to these factors that affect the chromatin conformation have 

been related to several forms of cancer and neurodegenerative diseases [2, 3]. It is 

also essential for the expression of recombinant genes for experimental or 

therapeutic purposes that the relevant chromatin region is in a transcriptionally 

competent state. There is, therefore, an urgent need to derive a complete 

understanding of the relationship between chromatin organization and gene 

expression.  

When having a look at the levels of the chromatin organization we see that the 

histones together with DNA wrapped around them (together constituting a so 

called nucleosome) lead to a "beads on a string" structure which in turn coils into 

a 30 nm diameter helical structure known as the 30 nm fiber or filament. So the 

nucleosome is the basic building block of the chromatin fiber and changes of its 

conformation are likely to modulate the organization of the whole fiber. However, 

the structural principles that come into play during the transition from the loose 

chain of nucleosomes to a compact 30 nm chromatin fiber have been difficult to 

establish, and the arrangement of nucleosomes and linker DNA in condensed 

chromatin fibers has not been fully resolved. 

One way of trying to find an answer is through numerical modeling the 30 nm 

chromatin fiber. The size of the molecule and its complexity does not allow for 

atom-scale molecular dynamics and therefore any model of the chromatin fiber is 

necessarily “coarse-grained”. The zig-zag-structure of nucleosomes and DNA can 

be modeled with elastically connected beads and their configurations in thermal 

equilibrium can be sampled using a Monte Carlo algorithm. 

The aim of this thesis was it to reveal local properties of the chromatin fiber as 

well as its higher order structural organization by building on an established 

simulation software [4, 5]. It was examined how the organization of the fiber was 

dependent on the local nucleosome geometry. We hoped to identify mechanisms 

of DNA compaction which are based on geometrical transformations of the 
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nucleosome that could be related to structural changes of the fiber geometry. 

These are of potential relevance for the regulation of gene expression. 

1.1 Biological Background 

The genome of a human cell comprises 6 x 109 DNA base pairs corresponding to 

a DNA chain with a total length of about two meter. Free in solution a DNA 

duplex of this length would occupy the volume of a sphere with a diameter of 

approximately 400 μm as estimated from its calculated radius of gyration. This 

amount of DNA is packaged into a nucleus with a typical diameter of 10-20 μm. 

The required compaction of the genome is obtained via complexation of the DNA 

with small strongly positively charged proteins, the histones, into a large 

nucleoprotein complex that is referred to as chromatin (Figure 1.1). 

 

Figure 1.1: Different levels of chromatin packing. From left to right: The free DNA double 
helix becomes the 10-11 nm wide ‘beads-on-a-string’ form when coiled around the 
nucleosome cores. This string is then coiled into a fiber of about 30 nm diameter. In the 
higher order organization chromatin is folded into loops and further into distinguished 
domains which are subunits of the (in this case metaphase) chromosome. 

1.1.1 DNA 

DNA is a nucleic acid molecule that contains the instructions needed to construct 

other components of cells, such as proteins and RNA molecules. The main role of 

DNA is the long-term storage of information. The DNA segments that carry this 
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genetic information are called genes. Other DNA sequences have structural 

purposes or are involved in regulating the use of this genetic information.  

DNA is a long polymer made from repeating units called nucleotides. The DNA 

chain is 2.2 to 2.4 nanometers wide, and one nucleotide unit is 0.33 

nanometerslong [6]. Although each individual repeating unit is very small, DNA 

polymers can be enormous molecules containing millions of nucleotides. For 

instance, the largest human chromosome, chromosome number 1, is 220 million 

base pairs or ~7.5 cm long, when fully extended. 

 

 

Figure 1.2: The chemical 
structure of the DNA double 
helix. Four complementary 
base pairs are shown. The 
two strand run in opposite 
directions. Each base pair is 
held together by either two 
or three hydrogen bonds. 

 

 

In living organisms, DNA does not usually exist as a single molecule, but instead 

as a tightly-associated pair of two chains. These two long strands intervine, in the 

shape of a double helix [1]. The nucleotide repeats contain both the segment of 

 

http://upload.wikimedia.org/wikipedia/commons/e/e4/DNA_chemical_structure.svg
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the backbone of the molecule, which holds the chain together, and a base, which 

interacts with the other DNA strand in the helix (Figure 1.2). In general, a base 

linked to a sugar is called a nucleoside and a base linked to a sugar and one or 

more phosphate groups is called a nucleotide. The backbone of the DNA strand is 

made from alternating phosphate and sugar residues. The sugar in DNA is 2-

deoxyribose, which is a pentose (five carbon) sugar. The sugars are joined 

together by phosphate groups that form phosphodiester bonds between the third 

and fifth carbon atoms of adjacent sugar rings. These asymmetric bonds mean a 

strand of DNA has a direction. In a double helix the direction of the nucleotides is 

antiparallel. The asymmetric ends of a strand of DNA bases are referred to as the 

5′ (five prime) and 3′ (three prime) ends (also Figure 1.2). 

The DNA double helix is stabilized by hydrogen bonds between the bases 

attached to the two strands. The four bases found in DNA are adenine 

(abbreviated A), cytosine (C), guanine (G) and thymine (T). 

The double helix is a right-handed spiral. As the DNA strands wind around each 

other, they leave gaps between each set of phosphate backbones, revealing the 

sides of the bases inside. There are two of these grooves twisting around the 

surface of the double helix: one groove, the major groove, is 22 Å wide and the 

other, the minor groove, is 12 Å wide.  

1.1.2 Chromatin 

The basic repeat element of chromatin is the nucleosome, linked by sections of 

linker DNA. The nucleosome consists of 1.67 turns of DNA (146 or 147 base 

pairs), which are wrapped around the histone octamer complex in a left-handed 

superhelix [7-9]. There are four different types of core histone proteins which 

form the octamer, which is made up of two copies each of H2A, H2B, H3 and H4. 

The structure of the free histone octamer and that of the nucleosome complex 

have been determined by high resolution x-ray diffraction [7-9]. The nucleosome 

has a cylindrical shape with a diameter of about 11 nm and a height of 5.5 nm. 
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This small diameter around which the DNA bends is far smaller than can be 

reached by DNA in solution.  

The nucleosomes bind DNA non-specifically, as required by their function in 

general DNA packaging. There is, however, some preference in the sequences the 

nucleosomes will bind. This is largely through the properties of DNA, adenosine 

(A) and thymine (T) bases are more favorably compressed into the inner minor 

grooves. This means nucleosomes bind preferentially at one position every 10 

base pairs - where the DNA is rotated to maximize the number of A and T bases 

which will lie in the inner minor groove (Figure 1.3). 

Figure 1.3: The crystal structure 
of the nucleosome core particle 
consisting of the histones H2A 
(yellow) , H2B (red) , H3 (blue) 
and H4 (green), two of each. 
Minor grooves of the DNA 
double helix are compressed on 
the inside of the turn.  

 

 

A fifth histone, the so called linker histone H1 or H5, binds to the nucleosome 

core complex [10-13] and contacts the exit/entry of the DNA strand on the 

nucleosome. Although its exact binding site and orientation is still unknown, it 

seems to affect the trajectory of the DNA at the nucleosome and a structure 

derived from modeling has been published recently [14]. A nucleosome with one 

bound linker histone or in other words a histone octamer, one molecule of H1 and 
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166 bp of DNA is known as a chromatosome (Figure 1.4). Chromatosomes, 

connected by about 20 to 60 base pairs of linker DNA, form an approximately 

10nm "beads-on-a-string" fiber. 

 

Figure 1.4: Schematic of a 
chromatosome. Histone H1 
determines the way the 
incoming and outgoing DNA 
is attached to the 
nucleosome core complex 
consisting of 8 histones.  

----

------
 

The "beads-on-a-string" structure in turn coils into a 30nm diameter helical 

structure known as the 30nm fiber or filament [15]. The precise structure of the 

chromatin fiber in the cell is not known in detail, and there is still some debate 

over the exact structure. 

This level of chromatin structure is thought to be the form of euchromatin, which 

contains actively transcribed genes. Electron microscopy studies have 

demonstrated the 30 nm fiber is highly dynamic such that it unfolds into a 10 nm 

fiber ("beads-on-a-string") structure when transversed by a RNA polymerase 

engaged in transcription. 

In most of the fiber models the nucleosomes lie perpendicular to the axis of the 

fiber, the linker histones lie on the inside of the structure and the chain can 

unwind into the 10nm "beads-on-a-string" fiber [1]. 

The formation of a 30 nm fiber requires the regular positioning of nucleosomes 

along the DNA. The mechanical properties of DNA are such that the linker DNA 

is relatively resistant to bending and rotation. This makes the length of linker 
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DNA critical to the stability of the fiber. Nucleosomes must be separated by linker 

DNA which allows them to rotate and then fold into the required orientation 

without significant stress to the DNA. 

Several lines of evidence indicate that the chromatin fiber adopts a higher order 

folding that organizes the interphase chromosome into domains containing 

roughly 1 MB of DNA [16, 17] 

1.2 Numerical Simulations of chromatin 

The first model describing the 30 nm fiber as a solenoid structure [18] was 

derived from low resolution diffraction data and many other models have been 

suggested since then on the basis of various types of experiments (Table 1.1). 

 Model Reference Experimental Data 

1 solenoid [18]  x-ray scattering 

2 zig-zag [19]  cryo-electron microscopy 

3 zig-zag [20]  scanning force microscopy 

4  [21]  analytical ultracentrifugation data 

5  [22]  stretching single chromatin-molecules 

6 DCL [5]  linear mass density, persistence length, linear dicroism 

Table 1.1: Models of the chromatin fiber conformation and the experimental data they 
explain. For older models see ref. [1] 

The DCL model (Dynamic Cross Linker model, Table 1.1 entry 6), developed by 

Gero Wedemann [4] seems at the moment to be consistent with a number of 

different experimentally derived parameters for the chromatin fiber and is also in 

agreement with a recently presented crystal structure of a tetranucleosome [23].  

Chromatin fiber models 1 to 3 in Table 1.1 are static models, while models 4 to 6 

describe the fiber in thermal equilibrium. Model 4 is based on Brownian 

Dynamics simulations while model 5 and 6 involve Monte Carlo simulations. For 

larger systems the Brownian Dynamics approach is computationally too 
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expensive. Models 4 and 5 describe the nucleosomes as spheres. Since spheres 

can not be packed as well as cylinders, these models fail to reproduce the 

experimentally observed linear mass density. The DCL model describes the 

nucleosomes as oblate ellipsoids which is a better approximation of the true 

nucleosome shape. While model 5 computes the electrostatic interaction of the 

linker DNA by a Lennard-Jones potential, models 4 and 6 calculate this 

interaction explicitly by a Debye-Hückle potential including effects of the 

orientation of the DNA segments to each other and of different ionic strength of 

the solvent. 

 





2 Methods 

2.1 The Dynamic Cross Linker model 

The Dynamic Cross Linker (DCL) model describes the chromatin fiber as a 

polymer with cylindrical units for DNA and oblate ellipsoids for chromatosomes 

[4, 5]. The units interact by stretching, torsion and bending forces modeled by 

harmonic potentials. The interaction of DNA by its negatively charged phosphate 

backbone is described by a Debye-Hückel potential, the interchromatosomal 

interaction is described by a Gay-Berne-potential. Data from experiments are used 

to parameterize these potentials.  

The geometry of the connection between the DNA and the chromatosome is 

sketched in Figure 2.1. We assume that the linker DNA is either connected 

directly to the chromatosome (defining the chromatosome as a histone core with 

exactly two superhelix turns) or alternatively to a nucleosome stem, which is 

rigidly coupled to the rest of the chromatosome (and Figure 3.3). In the following, 

we first analyze the situation where the linker DNA is connected via a stem 

(Figure 2.2). The entry and exit points of the DNA have a vertical distance (in the 

direction of the cylinder axis) of 3.1 nm and a radial distance of d = 8 nm from the 

symmetry axis of the core particle [24]. 
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Figure 2.1: The geometric parameters that 
describe the model. These are the DNA 
entry-exit angle α, the twisting angle between 
two nucleosomes (or respectively 
chromatosomes if linker Histone H1 is 
bound) β and the linker DNA length L. 

Figure 2.2: The core particle contains 146bp 
DNA in a superhelix with 1.65 turns, thus 
two turns correspond to 177bp. The 
nucleosome stem ends at a distance of 
d=8nm from the center of the core particle 

 

2.1.1 Discretization 

DNA that is not bound to the chromatosome is described by segments. They are 

chosen much smaller than the persistence length, so they are approximately 

straight. For linker DNA which is 3.4 nm long or shorter, one segment was used 

to connect the chromatosomes. For longer linker DNAs, the length was divided 

into two segments. The position of each segment is determined by a position 

vector  and a local coordinate system ir ( )i i if , u , v describing its orientation in 

space. The coordinate vector corresponds to segment vector iu iri i 1u r+= − . The 

segment length is i ib u=  
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The position of a chromatosome is described by a vector to its center of mass and 

a local coordinate system where iu  points from the center of mass to the 

geometrical center of connection points of the linker DNA , and  is parallel to 

the axis of the nucleosome core. 

iv

Linker DNA is coupled to the chromatosome at two distinct points at a distance d. 

A chromatosome therefore forms a short segment by itself. The distance of the 

two DNA coupling points to the symmetry axis of the cylinder is d. If the linker 

DNA is coupled directly to the nucleosome, the value of d is equal to the radius of 

the nucleosome. In the case of a nucleosome stem this radius is larger. Figure 2.3 

and Figure 3.3 demonstrates the difference between the two ways DNA segments 

and nucleosomes can be connected. 

with stem no stem  

Figure 2.3: A Schematic showing the difference in the model of having a stem motif or not. 

2.1.2 Elastic Energies 

The potentials of the elastic interactions are assumed to be harmonic. The strength 

constants of the interactions are named ( )
( )X
Yα  in which X denotes the type of 

interaction, with s for stretching, b for bending and t for torsion. Y denotes the 

type of interacting partners, DNA or nucleosome. 

The stretching potential of one segment is computed as 

(2.1) 
( )

( )
s

Y
stretch 20 0

i i i

U
b b b

α
=

−
 . 
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The bending angle is computed between the segment vector ii 11u ++  and its 

equilibrium position  relative to the connected segment. iB iB  is defined by the 

angles and . iθ iφ

(2.2) i i i i i i iB f sin cos v sin sin u cos= θ φ + θ φ + iθ  

In the case of no intrinsic bending i i 0θ = φ =  thus iB ui= . The bending potential 

is then 

(2.3) 
( )b
Y

bend 0 2
i i

U
b
α

=
θ

  . 

The coordinate systems of the two connected segments i and i+1 can be mapped 

on each other by an Euler-transformation with the angles ( )i i i,  ,α β γ  in which the 

rotation of the first angle is around iu . Then i i iα + γ − τ  is the total torsion.  is 

the intrinsic torsion. The torsion potential is then 

iτ

(2.4) 
( )

( )

t
Y

tors 20
i i i i

U
b

α
=

α + γ − τ
  . 

2.1.3 Electrostatic interactions of DNA 

The electrostatic interaction between free DNA double helix segments is 

described by integrating the solution of the Debye-Hückel equation for a point 

charge over two charged line segments. 

(2.5) ( )
ijr2

e
ij tors i

ij

eE d
D r

−κν
= λ

⌠ ⌠
⎮ ⎮

⌡⌡
 

D is the dielectric constant of water, and κ the inverse of the Debye length. rij is 

the distance between the current positions at the segments to which the integration 

parameters λi, λj correspond. The charge per unit length ν is chosen such that the 

potential at the radius of the DNA coincides with the solution of the Poisson-
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Boltzmann equation for a cylinder with charge per length *
0ν . For DNA in the 

presence of the Gouy layer of immobile counterions, this can be computed as 

 in which  is the charge per length of the naked DNA [25] 

with e as the proton charge, and Δ = 0.34 nm as the distance between base pairs. 

Following Stigter, the value of q is 0.73 [26]. To save computation time, a 

tabulation of the double integral 

*
0 qν = ν0

*
0 2e /ν = − Δ

(2.5) is used. The table is parameterized by the 

distance of the segments and three values describing its relative orientation. 

During the simulation a linear interpolation of the tabulated values was used. 

2.1.4 Internucleosomal interactions 

The internucleosomal interaction is modeled by a Gay-Berne potential with 

modifications by Kabadi [27-29]. The interaction energy of two particles with a 

center-to-center distance  is r

(2.6) ( ) ( ) ( ) ( )

12 6

0 0
1 2 1 2

1 2 0 1 2 0

ˆ ˆˆ ˆ ˆ ˆV u , u , r 4 u , u , r
ˆ ˆˆ ˆ ˆ ˆr u , u , r r u , u , r

⎛ ⎞⎛ ⎞ ⎛ ⎞σ σ⎜ ⎟= ε −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−σ +σ −σ +σ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 . 

The vectors ûi and û2 point into the direction of the symmetry axis of the particles. 

σ0 scales the potential width, and ε0 scales the potential depth. The parameter χ 

defines the anisotropy of the potential width, χ´ defines the anisotropy of the 

potential depth. 

(2.7) ( ) ( )
( )

( )
( )

1 22 2
1 2 1 2

1 2 0
1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆru ru ru ru1ˆˆ ˆu ,u , r 1
ˆ ˆ ˆ ˆ2 1 u u 1 u u

−
⎛ ⎞⎧ ⎫ ⎧+ −⎪ ⎪ ⎪⎜ ⎟σ = σ − χ +⎨ ⎬ ⎨⎜ ⎟+ χ −χ⎪ ⎪ ⎪⎩ ⎭ ⎩⎝ ⎠

⎫⎪
⎬
⎪⎭

 

(2.8) 
( )
( )

2 2

2 2

⊥

⊥

σ −σ
χ =

σ +σ
 

(2.9) ( ) ( ) ( )1 2 1 2 1 2ˆ ˆˆ ˆ ˆ ˆ ˆ ˆu ,u , r u ,u u ,u , rν μ′ε = ε ε  

(2.10) ( ) ( )
1 222

1 2 0 1 2ˆ ˆ ˆ ˆu ,u 1 u u
−

⎡ ⎤ε = ε −χ⎣ ⎦  
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(2.11) ( ) ( )
( )

( )
( )

2 2
1 2 1 2

1 2
1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆru ru ru ru1ˆˆ ˆu ,u , r 1
ˆ ˆ ˆ ˆ2 1 u u 1 u u

⎡ ⎤+ −
′ ′ε = − χ +⎢ ⎥

′ ′+ χ −χ⎢ ⎥⎣ ⎦
 

(2.12) 
( )
( )

1 1
s e

1 1
s e

μ μ

μ μ

ε − ε
′χ =

ε + ε
 

σ is the relative potential width for particles oriented parallel and ⊥σ  for particles 

oriented orthogonal. εs defines the relative potential width for particles in lateral 

(s, side-to-side) and εe in longitudinal (e, end-to-end) orientation. ν and μ are 

dimensionless parameters; generally one uses ν = 1 and μ = 2 [27]. For other 

values of ν and μ see [30]. 

2.2 Monte Carlo Simulation using the Metropolis Algorithm 

When examining systems with many degrees of freedom we may describe the set 

of all possible states or configurations as the parameter space. Monte Carlo 

simulations use random moves to explore and characterize this parameter space. 

In statistical physics the expected value <A> of an observable A is of interest, in 

hope to derive a value for a measurable physical property of the observed system. 

The expectation value of A for a system described by the Hamiltonian H and a 

temperature T is given by 

(2.13) ( )
( )

( ) ( ) ( )B

H x
k T1A x e A x dx p x A x

Z

−

= =⌠⎮
⌡ ∫  . 

Here  

(2.14) 
( )
B

H x
k TZ e d

−

= ⌠⌡ x  

is the partition function and  

(2.15) ( )
( )
B

H x
k T1p x e

Z

−

=  
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is the probability of finding the system in the particular state x at temperature T in 

thermal equilibrium. The interesting values for this study are the space of 

geometric configurations C with respective energies ε(C) and properties A(C). 

2.2.1 Simple Sampling 

When at each step a different region of the parameter space is sampled by 

randomly generated independent configurations C1, C2…, CN in a way that they 

are equally probable, it is referred to as simple sampling. Because in this kind of 

simulation all random moves are accepted configurations can be generated at 

random and (2.13) approximated by the expression 

(2.16) 
( )

( )

( )

( ) ( )

i

B

CN
k T

i
i 1d

N

i i
i 1

1A C e A C
Z

p C A C

ε
−

=

=

≈

≈

∑

∑
 , 

replacing (2.14) by the discrete partition function 

(2.17) 
i

B

(C )N
k T

d
i 1

Z e
ε

−

=

= ∑  . 

Although simple sampling is easy to implement it has an important disadvantage. 

The property A is weighted statistically with the probability 

(2.18) 
i

B

(C )
k T

i
d

1p(C ) e
Z

ε
−

=  . 

When calculating the expected value <A(C)>. But since the configurations Ci are 

generated randomly and with equal probabilities most of them will make a 

negligible contribution to the sum in (2.16). Therefore in order to simulate 

efficiently and with sensible resources it is vital to use the idea of importance 

sampling. 
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2.2.2 Importance Sampling 

The method gets its name from emphasizing the statistically more "important" 

values by sampling them more frequently. Instead of moving to equally probable 

configurations Ci in the parameter space they shall be chosen according to a 

probability distribution P(Ci). Then to take this into account (2.16) would have to 

be modified to 

(2.19) ( )
( )

( ) ( )
i

B

C
k TN

i
i 1d i

1 eA C A C
Z P C

ε
−

=

≈
′ ∑  

with  

(2.20) 
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ε
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=

′ = ∑  

A good solution is to sample configurations with a probability given by the weight 

( )
i

B

(C )
k T

iP C e
ε

−

∝ . Then the expression (2.19) for the expectation value would 

reduce to 

(2.21) ( ) ( )
N

i
i 1

1A C A C
N =

≈ ∑  . 

So the question is how to generate configurations with a distribution P(Ci) that 

suits our needs [31, 32]. 

2.2.3 Metropolis Algorithm 

In 1953, Nicholas Metropolis and coworkers proposed a new sampling procedure 

[33]. It is a realization of importance sampling and therefore allows to easily 

calculate the expected value of a property using (2.21). This modified Monte 

Carlo method is known as a Metropolis Monte Carlo simulation.  
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Rather than generating statistically independent configurations at random in this 

procedure new configurations are derived from existing ones. Configurations 

obtained by this fictitious dynamics constitute a so-called Markov chain of 

configurations. 

To describe this dynamics we need to introduce considerations about transition 

probabilities. Let PA(t) be the probability of being in configuration A at time t. Let 

WA B be the probability per unit time, or transition probability, of going from A 

to B. Then 

(2.22) ( ) ( ) ( ) ( )A A B B A A A
B

P t 1 P t P t W P t W→ →B⎡ ⎤+ = + −⎣ ⎦∑  

Here t is marking the number of iterations of the procedure, not real time - our 

statistical system is considered to be in equilibrium, and thus time invariant.  

A sufficient (but not necessary) condition for a equilibrium, i.e. time independent, 

probability distribution is the so-called detailed balance condition  

(2.23) ( ) ( )A A B B BP t W P t W→ →= A  

In thermal equilibrium using the Boltzmann distribution this yields 

(2.24) 
( )
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B
B

B

(B)
k T

B k TA B
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B A A k T

P tW e e
W P t

e

ε
− Δε

−
→

ε
−→

= = =  

There are many possible choices of the transition probabilities W which will 

satisfy detailed balance. A very simple one is: 

(2.25) Bk T

A B
e if   W
1 if  

Δε
−

→

⎧⎪ 0
0

Δε >= ⎨
⎪ Δε ≤⎩

 

So, if ( ) ( )B Aε > ε  
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(2.26) 
B
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It was proven that the arbitrary probability distribution generated with this 

dynamic method fulfills the condition that allows using (2.21) to compute the 

expected value for an observable. 

To describe a Metropolis Monte Carlo simulation, it is first necessary to define 

some notation. At any given time the current state of the system is denoted State0. 

It has an energy of ε0 and a property value of A0. After a random move it will be 

in State1 with energy of ε1 and a property value of A1. 

At the beginning of a Monte Carlo simulation two parameters are set to zero: 

N (the number of Monte Carlo attempts) and Asum (the sum of the property 

values). The system is currently in some State0 and a temperature T, and the 

simulation proceeds as follows.  

Step 1: Randomly change the system so that it is now in State1, making sure that 

the configurations of both State0 and State1 are saved.  

Step 2: Increment N by one. To determine what else happens you need to compare 

the energies of the two states and you need to generate a random number ξ which 

has a value between 0.0 and 1.0. The possible choices are given in the table 

below. 
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1 0ε > ε  

1 0ε < ε  
1 0

B

( )
k Te

− ε −ε

> ξ  
1 0

B

( )
k Te

− ε −ε

< ξ  

The energy of State1 is 
less than or equal to 
State0. This means that 
the new state is accepted 
and becomes the new 
State0. In addition, the 
property of the new state 
is added to the sum 
(Asum=Asum+A1). 

 

The energy of State1 is 
greater than State0, but 
the energy difference is 
small enough that it is 
probabilistically 
accepted. This means 
that the new state is 
accepted and becomes 
the new State0. In 
addition, the property of 
the new state is added to 
the sum (Asum=Asum+A1). 

The energy of State1 is 
greater than State0, and 
the energy difference is 
large enough that it is 
probabilistically rejected. 
This means that the 
system stays in State0. In 
addition, the property of 
the old state is (again) 
added to the sum 
(Asum=Asum+A0). 

 

Step 3. To continue the simulation, simply return to Step 1. 

It is important to emphasize that every Monte Carlo attempt increases the value of 

N by 1 and adds a value to Asum (either A1 if the step is accepted or A0 if it is 

rejected).  

There are two factors that control how well the simulation samples the available 

search space of the system; the size of each Monte Carlo step and N the number of 

Monte Carlo steps attempted. If the size of a given Monte Carlo step is too large, 

the change in the energy between State0 and State1 may become very large and 

virtually all of the attempts will be probabilistically rejected. This causes the 

simulation to get "stuck" at a particular point in search space. Conversely, if the 

Monte Carlo step size is too small, the system may have a hard time sampling all 

of the available search space. In either case, the total number of attempts may 

have to become exceedingly large.  

It is important to emphasize that proper statistics can only be obtained from a 

Metropolis or simple Monte Carlo simulation if the procedure allows that every 

configuration can be reached from every other configuration in a finite number of 
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iterations. If regions of search space are separated by an infinitely high barrier that 

is wider than the maximum allowed step size, it will be impossible to travel from 

one region to the other, and the resulting average of any property will be incorrect. 

A simulation that allows for the sampling of all finite regions of search space is 

called ergodic.  

2.2.4 Monte Carlo Steps 

The task is to effectively sample all of the states of the system that are accessible 

at the given temperature. To accomplish this a simulation step consisting of to two 

transformations is used. These are a pivot and a rotation move (Figure 2.4 and 

Figure 2.5). As has been pointed out finding a good average step size at a 

particular temperature depends upon the system being modelled. In practice, the 

number of accepted Monte Carlo steps can be used as a guide. The Intervals for 

the rotation angles δ and φ were chosen to yield acceptance rates of 30% and 50% 

respectively [4]. 

  

Figure 2.4: The pivot move: One segment is 
selected randomly as the origin of a rotation.  
of a random angle of the interval [-δ, δ] 
around a random axis. 

Figure 2.5: For a rotation move, a segment is 
chosen randomly. The end point of this 
segment is rotated around an axis through 
the start point of this segment and the end 
point of the next segment by an angle chosen 
randomly from the interval [-φ, φ] 
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2.3 Tools for the evaluations 

The Monte Carlo simulation software is based on an elaborate object oriented 

design and implemented in C++ [34]. The implementation of the model described 

in ref. [4] has since then been improved by optimization of the code and 

incorporation of new C++ standards. 

Additional software was created to systematically produce and analyze ensembles 

of fiber conformations. In the beginning this was done by using shell scripts 

which included the batch editing tools sed and awk [35]. These solutions proved 

to be not suited for the increasing complexity. Thus another scripting language 

was needed that would serve future developments in a better way. It was decided 

to use a contemporary programming language called Ruby. It combines syntax 

inspired by Perl with object-oriented features and is a single-pass interpreted 

language (i. e. it is not compiled before executing). Its official implementation is 

free [36]. Ruby supports running parallel tasks by splitting them into multiple 

threads within the program. This was implemented to use a 7 dual-core processor 

cluster more efficiently. 

Starting simulations 

Starting a simulation consists of calling the programs ‘chromCreat’, 

‘createDNATable’ and ‘backebackekuchen’ in this order. ‘chromCreat’ takes the 

parameters for the fiber geometry and produces a starting configuration. Based on 

this configuration ‘createDNATable’ writes a table with interpolated values for 

the DNA electrostatic interactions (used to save calculation time). 

‘backebackekuchen’ is the implementation of the Metropolis Monte Carlo 

Algorithm described in section 2.2.  

The program ‘runsim’ consists of two parts. In the first part a stack is filled with 

all the combinations of start parameters needed for the particular set of 

simulations. The second part starts the simulation processes on the remote clients. 
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When a client finishes a simulation it gets assigned the next process in line. The 

source code for this is included in the appendix (heading ‘runsim.rb’). 

Analyzing the simulation outcomes 

All information the simulations yield are contained in so called trajectory-files. To 

process all this files a program with an object-oriented design was created. It 

consists of the four objects illustrated in Figure 2.6. 

Evaluation objects controls the program and holds the information concerning the 

way the evaluation should be conducted, most importantly the location of the 

trajectory files. A result object ‘reads’ the analysis outcomes via an Analyzer 

object which is the interface to the information contained in the trajectory files. It 

also stores the data, and sorts and prepares it for output. This output can be in 

terms of diagrams via a plotter object or in the form of tabulated text files. 

Thus a typical evaluation looks like this. 
require 'evaluation' 
require 'analyzer' 
require 'result' 
require 'plotter' 
 
eval = Evaluation::new 
eval.name = "other" 
eval.traj_names =Dir['a*_l*.res'] 
eval.allfilesinonedir = true 
eval.run_analysis_execs = %w(energies compEffAlpha) 
eval.start 
 

The first block loads the files containing the source code for the four objects and 

the second block starts the evaluation after setting all the attributes that control the 

way how. 
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Figure 2.6: UML chart showing the attributes, methods and relationships of the four classes 
created to evaluate the data read from the trajectory files. The source code for these objects 
can be found in the appendix 

For getting an expectation value the mean of results obtained from a trajectory-file 

has to be taken according to (2.21). This is done by the “get_”-methods of the 

Analyzer class. To calculate the deviations for the N=400 observations the 

formula for running sums  

(2.28) 

2N N
2

i i
i 1 i 1

N x x
s

N(N 1)
= =

⎛ ⎞
− ⎜ ⎟
⎝ ⎠=
−

∑ ∑
 

is used.  

 

 





3 Results 

The pictures in Figure 3.1 show some chromatin fibers that are the result of the 

simulations carried out for this thesis. These are visualizations of a set of 

coordinates which are produced by the simulation software. In fact Figure 3.1 

does not resemble four distinct fibers but different Monte Carlo steps of a 

simulation and hence different conformations of the same fiber. 

As described in detail in the methods section the simulation is based on a model 

for the chromatin fiber which uses only two building blocks: Nucleosomes and the 

connecting DNA. Only by approximating the interactions of single atoms by 

effective potentials the number of interacting components for a fiber becomes 

computable. Therefore the connecting DNA is reduced to linear segments with a 

cylindrical Debye-Hückel-potential while the nucleosomes are described by 

ellipsoid Gay-Berne-potentials. Figure 3.2 shows a fiber section with three 

nucleosomes. It illustrates the three parameters that characterize how consecutive 

nucleosomes are connected with each other in this particular model. Later these 

parameters are varied in order to observe their influence on the whole of the fiber. 

Furthermore we wanted to observe the influence of linker histone H1 on the fiber. 

To distinguish between the cases with and without H1 being present two different 

local geometries for the nucleosomes have been designed as illustrated in Figure 

3.3 (details regarding the fiber model see chapter 1.2). The visualization tool uses 

plain cylinders to display the nucleosome cores. The stem is not drawn, which 

may sometimes be confusing when examining the pictures. 

Figure 3.1 A shows a typical start conformation for a simulation. To create it a 

separate program called chromCreate is used which generates a fiber with regular 

geometry. The start conformations reflect the “ground state” values of the 

simulation parameters (i.e. entry-exit angle, torsion-angle and linker DNA length, 

temperature, parameters for the potentials, etc.). 
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A B

C D

after 10,000 simulation steps after 2,500,000 simulation steps

after 5,000 simulation stepsstarting conformation

 

Figure 3.1. Monte Carlo Simulation of a chromatin fiber (A) Starting conformation with 
very regular arrangement of nucleosomes . (B)-(D) Changes in conformation of the same 
fiber as it is transformed by the indicated simulation steps. (D) Demonstrates a 
representative equilibrium conformation. 

Figures 3.1 B,C,D demonstrate how the conformation of the fiber changes with 

progressing simulation steps. A simulation step is a geometrical transformation of 

the fiber which generates new conformations. After each simulation step the total 

of these energies is calculated and the new conformation then is either rejected or 

accepted according to the rules of the metropolis algorithm (see section 2.2) 

which at the end delivers an ensemble that represents the equilibrium distribution. 
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nucleosome linker DNA

nucleosome stem

top view side view

177 bp

190 bp

nucleosome stem

3.1 nm

 

Figure 3.2. The geometric parameters that 
define the fiber structure: The red cylinders 
describe the nucleosome core with , 5.5 nm 
height and 11nm diameter. The blue tubes 
are the DNA and have a diameter of 2 nm. 
The DNA entry-exit angle α, the length of the 
linker DNA, L and the angle β that describes 
the torsion between two adjacent 
nucleosomes.  

Figure 3.3. The two types of coupling of DNA 
to nucleosomes are shown. A nucleosome 
without stem corresponds to 177 bp (2 full 
turns of DNA) while adding the stem 
increases the attached base pairs to 190. 
According to this definition the repeat length 
is the linker DNA length divided by 0.34 nm 
plus the number of base pairs contained in 
the chosen nucleosome coupling type. 

Therefore during the ongoing simulations conformations with either lower or 

similar energies are selected preferably. This can be seen when looking at the 

change from Figure 3.1 A to Figure 3.1 B. Because of the repelling forces 

between the constituents of the fiber they are obviously further apart from each 

other such that the fiber in Figure 3.1 B has a lower energy than the starting 

conformation in Figure 3.1 A. Obviously there are still enough attractive forces to 

hold the structure of a fiber. Although in Figure 3.1 D it seems like the order has 

collapsed and we only have a chunk of unarranged matter a more detailed 

examination reveals that it is as a U-shaped fiber which in addition is twisted 

along the symmetry axis of the “U”. 

Figure 3.4 shows a typical progression of the interaction energies for the Monte 

Carlo simulations. It can be seen that the process starts with high total energies for 
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the starting conformation and then very quickly descends (note the logarithmic 

scale) for the following conformations. All evaluations were made in a way that 

this equilibrium state was reached by running the simulations until the energies 

remained constant. 

When talking of a trajectory a set of fiber conformations is meant that were picked 

out in regular intervals during the ongoing simulations. The interval for picking 

out conformations was chosen such that they could be considered uncorrelated. 

All the results presented here were obtained from fibers consisting of 100 

nucleosomes. Simulations of 2,500,000 Monte Carlo steps each were done and 

conformations were saved every 5000 steps. That makes 501 ‘snapshots’ in a 

trajectory (including the starting conformation). For evaluation the first 101 

(= 101 x 5,000 steps = 505,000 steps) of these were ignored so we could be sure 

to have reached the equilibrium state. This is evident from Figure 3.4 where after 

100,000 monte carlo steps, which corresponds to the first 20 conformations of the 

associated trajectory, the equilibrium state is clearly reached. 

3.1 Initial observation and motivation 

This work was initiated by simulations made by Dietrich Foethke. His analysis of 

chromatin fibers indicated the existence of a local maximum of the mass density 

for a specific combination of entry-exit angle and linker DNA length (see Figure 

3.5 A). Because the mass density is considered an indication for the accessibility 

of chromatin regions the suggested relation to the geometric parameters of the 

model seemed worth further investigation. 
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Figure 3.4. The contributing energies reach a steady state quickly. This graph shows the 
typical behavior of the interaction energies in the course of a simulation. The simulation 
steps are plotted on a logarithmic scale. After approximately 10,000 simulation steps, which 
is small compared to the total of 2.5 million steps, the total energies reach a steady state from 
which the energies of the following conformations don’t deviate much. As can be seen in this 
case the component that is mainly responsible for the decay is the repulsive electrostatic 
force between the negatively charged parts of DNA. Also it can be seen that regarding 
bending and torsion of the DNA the starting conformation is very relaxed, although 
depending on the input parameters that are chosen to construct the starting conformation 
the distribution of these energies may vary.  

In order to achieve a more detailed and quantitative description of the 

phenomenon we next intended to study the effect of the variations of the entry-

exit angle α and the linker DNA length L had on other parameters. Therefore 

procedures that handle this task were integrated into the analysis programs. The 

results can be seen in Figure 3.5 (B-F) 

For reasons of reproducibility as well as to confirm the former analysis new 

computer programs were created based on the methods used earlier. These 

analysis tools were then applied to the existing and new data sets. 
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To characterize the fiber conformation we chose six parameters and arranged 

them in panels corresponding to the ones in Figure 3.5. This style of display is 

kept throughout all the following diagrams for reason of consistency and clarity. 

The parameters are: 

A. Linear mass density. This is the amount of nucleosomes per 11nm contour 

length of the fiber. 

B.  The total energy, which is the sum of the interaction, bending and torsion 

energies described earlier in connection with Figure 3.4. 

C. The average fiber diameter.  

D. Persistence length: Defined as the length over which correlations between 

the tangent vectors of the fiber segments is reduced by the factor 1/e. It 

quantifies the stiffness of a polymer. 

E. Effective entry-exit angle. While undergoing the electrostatic and entropic 

forces the entry-exit angle changes during a simulation. The measured αeff 

reflects the true entry-exit angle, while α is the input parameter.  

F. Average nucleosome tilt angle. The tilt angle is the angle between the axis 

of a nucleosome and the fiber axis. 

It should be noted that one point in the diagrams is not the result of one singular 

fiber but represent an ensemble of 400 fibers with similar energies. For the 

persistence length, the mass density, and the total energy the final values are 

obtained straight forward by first computing the respective value for one fiber and 

then calculating the mean of the 400. As the diameter, the effective entry-exit 

angle and the nucleosome tilt are not the same along a fiber, these parameters are 

calculated by first taking the average over each fiber. So the final result obtained 

for a trajectory is actually an average of an average. 
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Figure 3.5. Systematic analysis of several parameters for miscellaneous combinations of 
entry-exit angle and linker DNA length. Fibers were simulated in the range from α = 20° to 
α=90° in steps of 10° and L= 3.4 nm to L=10.2 nm in steps of 0.85 nm, β =110° (A) The initial 
observation (D. Foethke, G. Wedemann and K. Rippe, unpublished). For a DNA linker 
length of 6nm and an entry-exit angle of 40° a steep increase of the chromatin fiber mass 
density occurs. (B) Total energy. (C) The diameter of the fiber grows proportional with the 
linker DNA length and shows no dependency on the effect seen in the other parameters. 
(D) Persistence length. (E) Effective entry-exit angle. (F) Average nucleosome tilt. Except for 
the fiber diameter the parameters retrieved from the same data indicate that the transition 
might not only occur at one specific combination but at contiguous combinations of entry-
exit angle and DNA linker length. 
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3.2 Simulations with higher resolution  

To confirm the significance of the peak in the mass density new simulations with 

higher resolution in the particular region were conducted.  

The elastic and interaction parameters as well as the temperature from the initial 

observations were kept constant. Also for the geometric parameter β the formerly 

used value was used. This was defined due to tests [5] that showed that for 

β=110° the mass density of the fiber is in agreement with the experimental value 

of 6 nucleosomes/11 nm [37]  

Scripts in the Ruby programming language were written for running 

multithreaded simulations on a cluster with 7 dual-core processor. 

In previous simulations the entry-exit angle α was scanned between 20° and 90° in 

steps of 10 degrees and for each α the linker DNA lengths of L= 3.4 nm to L=10.2 

nm in steps of 0.85 nm were simulated (which makes 81 trajectories) . For the 

higher resolution sampling the step sizes were reduced to 2.5° for α and 0.85 nm 

for L. Also the range for α was narrowed to the interval of 20° to 50° (resulting in 

369 trajectories). 

After analyzing and plotting the results (see Figure 3.6) the one peak from the 

initial observation transformed into multiple peaks which together can be 

identified as an edge. The other parameters support this observation by showing 

characteristic transitions for the same combinations of input parameters α and L. 

Thus the existence of the transition was confirmed in the analysis. To see how 

steep the transition effect is a series of chromatin fibers that ‘slice’ through one of 

the major peaks in a once higher (16 times) resolution was simulated (see Figure 

3.7). 

To illustrate the sudden change in the mass density some fibers from the 

trajectories near the region of major effect are visualized (Figure 3.8) and their 

measured properties are displayed in Table 3.1. It is clear that the simple visual 
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inspection of the fiber geometry can provide only a first impression of the 

difference. 
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Figure 3.6. Output parameters of trajectories obtained from simulations in the region 
sampled from α=20° to α=50° in steps of 2.5° and from L=3.4 nm to L=10.2 nm in steps of 
0.85 nm; β =110°. (A) Linear mass density. Multiple peaks in the chromatin fiber mass 
density constitute an edge rather than a peek. The observed scattering suggests that the 
extraordinary peek from the initial observation was one of these outliers, but still a 
transition effect is detected and confirmed by the behavior of the other parameters (B) Total 
energy. (C) Fiber diameter. (D) Persistence length. (E) Effective entry-exit angle. (F) Average 
nucleosome tilt.  
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Figure 3.7. Simulations with starting parameters α=40° and β=110°. L= 3.4 nm to L=10.2 nm 
in 129 steps of 0.05 nm. Plotted are the output parameters as functions of the linker DNA 
length L. (A) Linear mass density. For L ~ 6 nm a steep increase a mass density of ~ 7.5 
nucleosomes/11 nm is seen. (B) Total energy. (C) Fiber diameter. The diameter grows linear 
to the linker DNA length. (D) Persistence length. (E) Effective entry-exit angle. αeff is around 
the input angle α = 40° for linker DNA lengths shorter then ~ 6 nm . There it decreases to 
approximately 10°. For bigger L it grows to ~17° for 10 nm linker DNA length (F) Average 
nucleosome tilt. It has a sharp increase from an average of ~47.5° to an average of 115° at 
~ 6 nm 
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Ia IIa

Ib IIb

Ic IIc

6.34 nuc./11nm 7.43 nuc./11nm

5.94 nuc./11nm5.87 nuc./11nm

5.58 nuc./11nm 6.12 nuc./11nm

α=42.5°α=30°
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Figure 3.8 (opposite side). Examples from trajectories with parameters before, inside and 
after the linker DNA length interval where the transition occurs. The linear mass density of 
the corresponding trajectory is shown for each snapshot. It is difficult to detect the 
differences in the density, length or distances by pure sight. (Ia-Ic) linker DNA lengths: 7.9 
nm → 8.1 nm → 8.3 nm; α = 30° (IIa-IIc) linker DNA lengths:5.3 nm → 5.5 nm → 5.7 nm; α 
= 42.5° 

α [°] 30 42.5 

L [nm] 7.9 8.1 8.3 5.3 5.5 5.7 

ε [MJ/mol] 1.7 ± 0.1 1.7 ± 0.1 1.6 ± 0.1 2.1 ± 0.1 2.2 ± 0.1 1.9 ± 0.1 

λ [1/11nm] 5.9 ±0.3 6.3 ±0.3 5.6 ±0.5 5.9 ± 0.6 7.4 ± 0.4 6.1 ±0.5 

δ [°] 58.8 ± 4.2 93.8 ± 3.7 113.4 ± 3.6 46.7 ± 1.1 60.4 ± 3.4 111.4 ± 1.9 

αeff [°] 38.7 ± 1.0 25.5 ± 1.2 16.2 ± 1.3 37.3 ± 1.3 32.9 ± 1.3 9.6 ± 1.9 

Ø [nm] 25.3 ± 0.7 25.0 ± 0.7 26.0 ± 0.6 22.8 ± 0.5 22.6 ± 0.4 23.1 ± 0.5 

lP [nm] 66.1 60.2 62.3 74.8 36.4 68.1 

lC [nm] 185.4 ± 6.3 172.3 ± 5.4 191.3 ± 5.7 158.1 ± 3.8 146.1 ± 4.2 153.2 ± 4.5 

Nnucl 98.8 ± 3.9 99.3 ± 2.2 97.0 ± 6.6 85.3 ± 8.0 98.5 ± 4.0 85.2 ± 6.0 

Table 3.1. Output parameters of the trajectories from Figure 3.8. Abbreviations: α = entry-
exit angle; L = linker DNA length; ε = total energy; λ = linear mass density; δ = average 
nucleosome tilt angle; αeff = effective entry-exit angle; Ø = Fiber Diameter; lP = persistence 
length; lC = contour length of the fiber. Nnucl = number of nucleosomes used to calculate λ.  

3.3 Comparing versions of the simulation software 

To be able to analyze the complete parameter space the simulation software has 

been enhanced in collaboration with G. Wedemann, Rene Stehr and Nick Kepper 

by adding a method to heat up the system between simulation steps. This 

approach ensures that the complete conformation space is sampled as required for 

obtaining an equilibrium ensemble from the Monte Carlo simulation. Because this 

costs computing time the algorithm for computing interaction energies needed to 

be optimized further. To see whether results are still reproducible, and in 

particular to test if the new cube algorithm affected the results, simulations from 

different programs were compared (Figure 3.9 and Figure 3.10). MC2 refers to the 

newest version with the cube algorithm and MC0 to the version with which the 
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initial observation was made. Changes between MC0 and MC1 were 

optimizations of the code. 
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Figure 3.9. Comparison of data created with MC0 and MC2. Starting parameters for these 
simulations were an entry-exit angle of α=40° and β=110°. The length of the linker DNA was 
changed in steps of 0.05 nm between 3.4 nm and 10.2 nm. The corresponding parameters for 
same linker DNA lengths are plotted. (A) Linear mass density. (B) Total energy. (C) Fiber 
diameter. (D) Persistence length. (E) Effective entry-exit angle. (F) Average nucleosome tilt. 
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Figure 3.10. Comparison of data created with two consecutive versions of the simulation 
software (MC1 and MC2). Starting parameters for these simulations were an entry-exit 
angle of α=40° and β=110°. The length of the linker DNA was changed in steps of 0.85 nm 
between 3.4 nm and 10.2 nm. The corresponding parameters for same linker DNA lengths 
are plotted (A) Linear mass density. (B) Total energy. (C) Fiber diameter. (D) Persistence 
length. (E) Effective entry-exit angle. (F) Average nucleosome tilt. 
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3.4 Influence of the stem  

In an additional set of simulations the effect of the stem motif, which substitutes 

for the linker Histone H1 including the attached linker DNA (see Figure 3.3 and 

Figure 2.3) was studied. We recognized that by only making a slight alteration in 

our simulations the tetranucleosome structure proposed by Schalch et. al. [23] (see 

Figure 3.15 B) could be incorporated. This structure has no associated H1 and its 

geometry corresponds to using the parameters α = 23° and L = 6nm and β = -85° 

in our chromatin model. Thus by changing the torsion angle β between 

consecutive nucleosomes additional information about a fiber conformation in the 

absence of H1 could be obtained.  

We did simulations for the same combinations of parameters α and L as in section 

3.2 but without a stem motif and with β changed to -85°. The results can be seen 

in the 3d-plots from Figure 3.11. When comparing this with Figure 3.6 it can be 

detected that the edge with the strong change in parameters is now missing but 

that except for the energies and the persistence length the overall tendencies seem 

to agree with each other. Therefore a more detailed look at a section with α = 40° 

for β = - 85° is plotted in Figure 3.12. In addition simulations for α = 40° but with 

β = 110° were made too (Figure 3.13). This was done to rule out the possibility 

that the peak had only disappeared because of the changed torsion angle. The 

result of this analysis showed again no hint of a transition and no difference 

between β = -85° and β = 110° was apparent (Figure 3.14). 

Figure 3.15 shows the qualitative and quantitative outcome for the trajectory with 

the parameters taken from the tetranucleosome geometry. 
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Figure 3.11. Results of simulated fibers without stem and β=-85°. Output parameters of 
trajectories obtained from simulations in the region sampled from α=20° to α=50° in steps of 
2.5° and from L=3.4 nm to L=10.2 nm in steps of 0.85 nm. (A) Linear mass density. No edge 
or peak to be detected. Also for the shorter linker DNA lengths the density doesn’t seem to 
grow as fast as seen for fibers with stem. (B) Total energy. Shows inverse properties in 
relation to results from simulations with stem – lower energies for shorter linker DNAs 
(C) Fiber diameter. Because of the missing stem the diameters are smaller in average. 
(D) Persistence length. The scattering is striking compared to Figure 3.6 D because here the 
axis is half as high. (E) effective entry-exit angle. the measured output angle decreases with 
increasing input angle (F) average nucleosome tilt. 
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Figure 3.12. Simulations without stem using starting parameters α=40° and β=-85°. Plotted 
are the output parameters as functions of the linker DNA length L. (A) Linear mass density. 
Decreases linearly with increasing linker DNA lengths. (B) Total energy. lower energies for 
longer linker DNA lengths (C) Fiber diameter. The diameter grows linear to the linker DNA 
length. (D) Persistence length. (E) Effective entry-exit angle. the measured output angle 
decreases with increasing input angle (F) Average nucleosome tilt. 

 



46 Results 

 

 

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 3  4  5  6  7  8  9  10  11

ef
fe

ct
iv

e 
en

try
−e

xi
t a

ng
le

 α
ef

f [
°]

linker DNA length [nm]

Effective Entry−Exit Angle

 14

 16

 18

 20

 22

 24

 26

 3  4  5  6  7  8  9  10  11

di
am

et
er

 [n
m

]

linker DNA length [nm]

Fiber Diameter

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 3  4  5  6  7  8  9  10  11
en

er
gy

 [M
J/

m
ol

]

linker DNA length [nm]

Total Energy

 3

 3.5

 4

 4.5

 5

 5.5

 6

 3  4  5  6  7  8  9  10  11

m
as

s 
de

ns
ity

 [n
uc

le
os

om
es

/1
1n

m
]

linker DNA length [nm]

Linear Mass Density

 20

 40

 60

 80

 100

 120

 140

 160

 3  4  5  6  7  8  9  10  11

pe
rs

is
te

nc
e 

le
ng

th
 [n

m
]

linker DNA length [nm]

Persistence Length

 56

 58

 60

 62

 64

 66

 68

 70

 3  4  5  6  7  8  9  10  11

nu
cl

eo
so

m
e 

til
t a

ng
le

 [°
]

linker DNA length [nm]

Average Nucleosome Tilt

A

FE

D

B

C

 

Figure 3.13: Simulations without stem using starting parameters α=40° and β=110°. Plotted 
are the output parameters as functions of the linker DNA length L. (A) Linear mass density. 
Decreases linearly with increasing linker DNA lengths. (B) Total energy. lower energies for 
longer linker DNA lengths (C) Fiber diameter. The diameter grows linear to the linker DNA 
length. (D) Persistence length. (E) Effective entry-exit angle. the measured output angle 
decreases with increasing input angle (F) Average nucleosome tilt. 
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Figure 3.14: Results of simulations without stem and α=40°. Comparing values for β=-85° 
with those for  β=110°. Results with matching linker DNA length L were plotted. (A) linear 
mass density. (B) total energy. (C) fiber diameter. (D) persistence length. (E) effective entry-
exit angle. (F) average nucleosome tilt. No significant differences can be observed except for 
(D) which comes from the scattering of the persistence length. In (A) the outlier (right side 
above) seems to falsify the value of the slope (F) Reasonably the different torsion angles lead 
to an offset in the nucleosome tilt angle. 
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A

B C

α [°] 22.5
L [nm] 5.95
β [°] 85
ε [MJ/mol] 0.97 ± 0.05
λ [1/11nm] 4.27 ± 0.38
δ [°] 49.30 ± 1.65
αeff [°] 44.38 ± 0.91
Ø [nm] 19.40 ± 0.96
lP [nm] 74.84

 
Figure 3.15: (A) A fiber conformation from simulations with nearly tetranucleosome 
parameters (α = 23° and L = 6nm and β = -85°). (B) tetranucleosome structure according to 
Schalch et. al. [23] (C) enlarged section from (A) showing  similarities to (B).  

 



4 Discussion 

The aim of this project was it to examine the relation between the local geometry 

of the nucleosome and the organization of the chain of nucleosomes into a 

chromatin fiber. This is an important question as the packaging of the DNA into 

the fiber and its higher order organization has long been recognized as a 

mechanism to control the accessibility of the DNA. It is furthermore highly 

relevant for protein-DNA interactions involved in processes like transcription, 

replication repair and recombination [38, 39]. To examine this point a computer 

model of the 30 nm chromatin fiber was used. In this model the nucleosomes and 

DNA are modeled with elastically connected ellipsoids. Their configurations in 

thermal equilibrium are sampled using a Monte Carlo algorithm extending a 

previously used approach [4, 5]. In the simulations the units interact by stretching, 

torsion and bending forces modeled by harmonic potentials. The interaction of 

DNA by its negatively charged phosphate backbone is described by a Debye-

Hückel potential and the interchromatosomal interaction by an ellipsoid potential. 

A classical Metropolis Monte Carlo procedure was then used to sample a 

statistical relevant set of configurations with pivotal and rotational moves at a 

certain temperature. 

In Figure 4.1 two examples are shown from simulations of a chain with 100 

nucleosomes as described in section 3.2. They represent ensembles with high 

(Figure 4.1 A) and low (Figure 4.1 B) linear mass densities. As evident from the 

results obtained here these large changes in compaction and mass density are 

achieved by relatively small changes of the entry-exit angle and the linker. The 

opening of the structure in Fig. 4.1 might reflect structural transitions in the fiber 

organization relevant for biological processes. The systematic analysis of the 

parameter space conducted here (Figure 3.6, 3.11) demonstrates that the 

dependence of the mass density on the entry-exit angle and the linker length show 

a peak for a specific combination of values. This observation indicates a 
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mechanism by which factors like histone acetylation/methylation, DNA 

methylation and linker histone H1 binding could modulate a conformational 

transition of the 30 nm fiber between two conformations. An inactive compacted 

state and a more flexible and an “open” conformation, in which the DNA can be 

transcribed [40, 41].  

A

 

Figure 4.1. Two fibers of representative trajectories with high and the low mass density (see 
Figure 3.6). (A) entry-exit angle αeff=32.9, linker DNA length L=5.5 nm, mass density 7.4 
nuclesosomes/11 nm (B) αeff=15.7°, L=10.2 nm, mass density 4.5 nuclesosomes/11 nm.This 
means that the average contour length of fibers from trajectory B is approximately 1.6 times 
greater than that of fibers from trajectory A.  
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While the mass density is an important parameter to describe the overall fiber 

organization also other parameters like the total energy, fiber diameter, 

persistence length, effective entry-exit angle and the nucleosome tilt angle were 

analyzed to identify their relation with the fiber compaction state. The highest 

correlation with changes in the mass density were observed for the effective entry-

exit angle (Figure 3.7E) and the nucleosome tilt angle (Figure 3.7F). Interestingly, 

these two parameters do not show a peak like behavior but a true transition at the 

regime where large changes of the mass density occur. Furthermore the transition 

occurred around α ~35 °, which is exactly the value of the entry-exit angle 

determined experimentally by cryo-electron microscopy [24]. The diameter of 

30 nm, which is regarded as the standard value for the chromatin fiber in vivo, is 

reached only for fibers with a stem (~28 nm diameter)(Fig. 3.7 C). For 

simulations without stem structure the fiber diameter was significantly smaller 

and below 25 nm (Fig. 3.12 C). This points to a role of linker histone H1 for 

establishing a fully compacted fiber structure. As expected the fiber diameter 

increased in a continuous manner as shown in Figure 3.7 and 3.12. For the 

persistence length of the chromatin fiber a decrease from a value of ~265 nm for 

200 base pair repeat length to ~50 nm for 212 base pair repeat lengths was 

observed (Figure 3.7 D). This relatively large variation correlates with values 

obtained experimentally [42]. By fluorescence in situ hybridization (FISH) 

experiments the distance of dye labeled probes in fixed human fibroblast cells was 

measured by confocal laser scanning microscopy and compared to the genomic 

distance [43]. Analysis of the data provided values of l = 137 - 440 nm [44] and 

l = 196 - 272 nm [45], with an average value of l ≈ 250 nm. The analysis of single 

chromatin fibers in vitro yielded a higher flexibility of l = 60 nm [46] that was 

also derived from in vivo cross-linking experiments [47]. 

In accordance with previous results the maximum values for the fibers with a 

nucleosome stem [37] are around 6 nucleosomes per 11 nm fiber. This is in good 

agreement with experimental values of the fiber mass density [5]. It suggests that 
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the nucleosome model and associated interaction energies are adequate for a 

faithful description of the global fiber structure. However, significant differences 

between theory and experiment are observed for the dependency of the linear 

mass density on the ionic strength of the solution (G. Wedemann, unpublished). 

This suggests that the electrostatic potential of the DNA shielded by salt ions as 

described by the Debye-Hückel approximation is not suitable to describe the 

interactions at short distances. In addition, a dependence of the nucleosome-

nucleosome interaction potential with ionic strength needs to be implemented into 

the model. 

The strong dependence of the fiber organization on the local nucleosome 

geometry observed here raises the question if the current model is sufficiently 

accurate to model the nucleosome. Some limitations are evident from a 

comparison of the Monte Carlo simulation model and the tetranucleosome 

structure derived from x-ray crystallography [23], as well as the results of single 

molecule stretching experiments [22, 46]. First, the nucleosome-nucleosome 

interaction energy used here was kept at a relatively low constant value (~3 RT) 

and the effect of higher interaction energies on the fiber conformation needs to be 

examined. Second, the nucleosome is modeled as an ellipsoid in the simulations 

but its actual shape is that of a cylinder with 11 nm diameter and 5.5 nm height. It 

is expected that certain aspects of the mass density behavior of the fiber cannot be 

reproduced with the ellipsoid model due to geometric differences that become 

significant for close packaging of nucleosomes. Third, the geometry of the DNA 

at the nucleosome is much more flexible than it can be represented by the simple 

two-angle model. Accordingly, this description needs to be extended by additional 

degrees of freedom so that the trajectory of DNA entering and leaving the 

nucleosome can be described in a more realistic manner. This would allow us to 

study nucleosome and chromatosome conformations predicted from model 

building at atomic resolution [48, 49]. In continuation of the work presented here, 

the above points will be addressed in the development of improved chromatin 
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fiber models currently in progress. As shown in this thesis the use of numerical 

simulations provides valuable insights for identifying parameters that determine 

the dynamic conformation of the chromatin fiber. These are potential targets for 

biological factors that affect the conformation of the fiber and thus change 

transcription activity. Thus, the Monte Carlo simulations allow us to make 

predictions on how these would have to interact with the chromatin fiber to exert 

their biological function. 
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6 Appendix 

runsim.rb 
 
#!/usr/local/bin/ruby -w 
 
#set field- and record-separators used by print method 
$,="\t" 
$\ = "\n" 
 
SimSteps = 2_500_000 
SaveAfterSteps = 5000 
 
CLIENT_NUM=7 
CLIENT_NUM_START=0 
PROCESSES_PER_CLIENT=2 
 
joblist = Array.new 
 
20.step(50.5) do |alpha| 
 3.4.step(10.2,0.2125) do |llength| 
   job = [] 
 
   strAlpha = alpha.to_s 
   strLlength = llength.to_s 
 
   dirname1 = 'a' + strAlpha 
   dirname2 = '_l' + strLlength 
   dirname = dirname1 + dirname2  + '_rl' 
 
   job << dirname 
   job << strAlpha 
   job << strLlength 
   joblist << job 
 end 
end 
 
joblist.sort! {|a,b| a.values_at(1,2) <=> b.values_at(1,2)} 
 
#open client_num*processes_per_client threads 
 
threads = [] 
 
(CLIENT_NUM_START..CLIENT_NUM+CLIENT_NUM_START-1).each do 
|client_num| 
 1.upto(PROCESSES_PER_CLIENT) do |proc_num| 
   threads << Thread.new(client_num, proc_num) do 
     until joblist.empty? 
        job = joblist.pop 
        unless client_num==0 
          client = "kn" + format("%02d",client_num) 
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        else 
          client = "master" 
        end 
        print "Start thread #{client}_#{proc_num} with", job 
        rundir = "~/runningsims/" 
        dirname = job[0] 
        strAlpha = job[1] 
        strLlength = job[2] 
        Dir.mkdir(dirname) 
        `rsh #{client} "~/Manie/bin/chromCreat t 100 #{strLlength} 
                #{strAlpha} 85 gb > #{rundir + dirname  
                +"/"+dirname}.trj"` 
        `rsh #{client} "cp #{rundir + dirname +"/"+dirname}.trj 
                #{rundir +dirname +"/"+dirname}_start.trj"` 
        `rsh #{client} "~/Manie/bin/createDNATable #{rundir  
                +dirname +"/"+dirname}.trj"` 
        `rsh #{client} "cp estatdna_* #{rundir + dirname}"` 
        `rsh #{client} "~/Manie/bin/backebackekuchen mc  #{rundir  
                +dirname +"/"+ dirname}.trj cube #{SimSteps}  
                #{SaveAfterSteps}" > #{rundir +dirname +"/" 
                + dirname}.msgout ` 
        print "End thread #{client}_#{proc_num}" 
     end 
   end 
 end 
end 
 
threads.each {|th| th.join} 

 

evaluation.rb 
class Evaluation 
  attr_accessor :name, :run_analysis_execs, :traj_names, 
    :allfilesinonedir, :gnuplot_version, 
    :filenamextensions, :no3d 
 
  def initialize 
    @name =  "evaluation" 
    @run_analysis_execs = false 
    @allfilesinonedir = false 
    @traj_names = Dir['a*_l*_*'] 
    @filenamextensions = Hash.new 
    @no3d = false 
  end 
 
  def start 
    analyzer = Analyzer.new 
    analyzer.filenamextensions.merge!(self.filenamextensions) 
        #...set analyzer attributes  
 
    unless run_analysis_execs == false 
      @traj_names.each do |trajName| 
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      Dir.chdir(trajName) unless @allfilesinonedir == true 
      analyzer.traj_name = trajName 
      @run_analysis_execs.each do |progr| 
        analyzer.run_analysis_exec(progr) 
      end 
      Dir.chdir('..') unless @allfilesinonedir == true 
      end 
      exit 
    end 
 
    res = Result.new(analyzer,self) 
    res.read(traj_names) 
 
    begin 
      eval_dir = Dir.mkdir(@name) 
    rescue SystemCallError 
      if $!.class == Errno::EEXIST then 
      puts "An evaluation named '#@name' already exists!" 
      puts "If you want to overwrite it press enter or else" 
      puts "enter another name for the evaluation:" 
      eval_name = gets 
      unless eval_name == "\n" 
        @name = eval_name.chomp 
        retry 
      end 
      else 
      $stderr.print "System Call Error: " + $! 
      raise 
      end 
    end 
    Dir.chdir(@name) 
    res.write_all 
 
    unless @no3d 
      res.write3d("alpha", "llength", "len_avg") 
      res.write3d("alpha", "llength", "dia_avg") 
      res.write3d("alpha", "llength", "mbd_avg") 
      res.write3d("alpha", "llength", "mbdActual_avg") 
      res.write3d("alpha", "llength", "nucsInTube_avg") 
      res.write3d("alpha", "llength", "tiltavg_avg") 
      res.write3d("alpha", "llength", "perslen") 
      res.write3d("alpha", "llength", "alphaeffavg_avg") 
      res.write3d("alpha", "llength", "energy_avg") 
      res.write2d("llength", "alphaeffavg_avg", 
            "energy_avg", "energy_dev") 
      res.write2d("llength", "alphaeffavg_avg", 
            "dia_avg", "dia_dev") 
      res.write2d("llength", "alphaeffavg_avg", 
            "mbd_avg", "mbd_dev") 
      res.write2d("llength", "alphaeffavg_avg",  
            "len_avg", "len_dev") 
      res.write2d("llength", "alphaeffavg_avg",  
            "mbdActual_avg","mbdActual_dev") 
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      res.write2d("llength", "alphaeffavg_avg",  
            "tiltavg_avg", "tiltavg_dev") 
      res.write2d("llength", "alphaeffavg_avg", "perslen") 
      res.write2d("llength", "alphaeffavg_avg",  
            "alphaeffavg_avg", "alphaeffavg_dev") 
      res.write2d("llength", "alphaeffavg_avg",  
            "nucsInTube_avg", "nucsInTube_dev") 
    end 
 
    res.write2d("alpha", "llength", "energy_avg", "energy_dev") 
    res.write2d("alpha", "llength", "dia_avg", "dia_dev") 
    res.write2d("alpha", "llength", "mbd_avg", "mbd_dev") 
    res.write2d("alpha", "llength", "len_avg", "len_dev") 
    res.write2d("alpha", "llength", "mbdActual_avg", 
            "mbdActual_dev") 
    res.write2d("alpha", "llength", "tiltavg_avg", "tiltavg_dev") 
    res.write2d("alpha", "llength", "perslen") 
    res.write2d("alpha", "llength", "alphaeffavg_avg",  
            "alphaeffavg_dev") 
    res.write2d("alpha", "llength", "nucsInTube_avg", 
            "nucsInTube_dev") 
    Dir.chdir("..") 
  end 
end 
 
 

analyzer.rb: 
class Analyzer 
  attr_accessor :traj_name, :filenamextensions 
   
  def initialize(nucsInTubeDefault = 80, ignoredConfigs = 101) 
    @ignored_config_count = ignoredConfigs 
    @nucsInTubeDefault = nucsInTubeDefault 
    @filenamextensions =  
       Hash['trajectory','.trj','chromLengthDiameter','.lendia', 
      'persistenceLength','.pers', 'nucleosomeTilt','.tilt', 
      'energies','.energy','compEffAlpha','.effAlpha', 
      'compEffAlpha','.effAlpha','energy', '.energyOutput'] 
  end 
 
  def run_analysis_exec(progname) 
    res_file = @traj_name + @filenamextensions[progname] 
    traj_file =  @traj_name + @filenamextensions['trajectory'] 
    print "running '#{progname}' on:", traj_file 
    `#{progname} #{traj_file} > #{res_file}` 
  end 
 
  def get_length_diameter 
    h = Hash.new 
    a=%w(mbd_avg mbd_dev len_avg len_dev mbdActual_avg  
    mbdActual_dev nucsInTube_avg nucsInTube_dev dia_avg dia_dev) 
    a.each {|key| h[key]=0} 
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    res_file = @traj_name +  
    @filenamextensions['chromLengthDiameter'] 
    #start the block for error handling 
    begin 
      f = File::open(res_file) 
      #read data into an array  
      a = f.readlines 
      len=0; lenSq = 0; mbd = 0; mbdSq = 0; rad=0; radSq = 0 
      lmd_actual=0; lmd_actual_sq=0; nucs_in_tube = 0; 
      nucs_in_tube_sq = 0 
      #loop through the results file and sum up values 
      a[@ignored_config_count..-1].each do |l| 
        lenRad = l.split  
        length = lenRad[0].to_f 
        radius = lenRad[1].to_f     
        radiusMax = lenRad[2].to_f 
        nucsInTube = lenRad[3].to_i 
         
        len += length 
        lenSq += length*length 
        mbd += @nucsInTubeDefault/length*11 
        mbdSq += (@nucsInTubeDefault/length*11)**2 
        lmd_actual += nucsInTube/length*11 
        lmd_actual_sq += (nucsInTube/length*11)**2 
        nucs_in_tube += nucsInTube 
        nucs_in_tube_sq += nucsInTube**2  
        rad += radius 
        radSq += radius**2 
      end 
      configCount = a.size 
 
      #calculate the averages and standard deviations 
      #mass-density 
      mbdAvg = mbd/(configCount-@ignored_config_count) 
      mbdDev = Math.sqrt(((configCount-@ignored_config_count) 
            *mbdSq-mbd**2)/(configCount-@ignored_config_count)/ 
            ((configCount-@ignored_config_count)-1)) 
      lenAvg = len/(configCount-@ignored_config_count) 
      lenDev = Math.sqrt(((configCount-@ignored_config_count) 
            *lenSq-len**2)/(configCount-@ignored_config_count)/ 
            ((configCount-@ignored_config_count)-1)) 
      #mass density the 'supposed to be' way 
      lmd_actual_avg = lmd_actual/ 
            (configCount-@ignored_config_count) 
      lmd_actual_dev = Math.sqrt(((configCount- 
            @ignored_config_count)*lmd_actual_sq-lmd_actual**2)/ 
            (configCount-@ignored_config_count)/ 
            ((configCount-@ignored_config_count)-1)) 
      nucs_in_tube_avg = nucs_in_tube.to_f/(configCount- 
            @ignored_config_count) 
      nucs_in_tube_dev = Math.sqrt(((configCount- 
            @ignored_config_count)*nucs_in_tube_sq- 
            nucs_in_tube**2)/(configCount-@ignored_config_count)/ 
            ((configCount-@ignored_config_count)-1)) 
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      rad_avg = rad/(configCount-@ignored_config_count) 
      rad_dev = Math.sqrt(((configCount-@ignored_config_count)* 
            radSq-rad**2)/(configCount-@ignored_config_count)/ 
            ((configCount-@ignored_config_count)-1)) 
 
      dia_avg = rad_avg*2 
      dia_dev = rad_dev*2 
 
      h["mbd_avg"] = mbdAvg.round(6) 
      h["mbd_dev"] = mbdDev.round(6) 
      h["len_avg"] = lenAvg.round(6) 
      h["len_dev"] = lenDev.round(6) 
      h["mbdActual_avg"] = lmd_actual_avg.round(6) 
      h["mbdActual_dev"] = lmd_actual_dev.round(6) 
      h["nucsInTube_avg"] = nucs_in_tube_avg 
      h["nucsInTube_dev"] = nucs_in_tube_dev.round(6) 
      h["dia_avg"] = dia_avg.round(6) 
      h["dia_dev"] = dia_dev.round(6) 
 
    rescue 
      if $!.class == Errno::ENOENT then 
          $stderr.print "There is no file called '#{res_file}'" 
      else 
          $stderr.print "Standard Error: " + $! 
      end 
      $stderr.print "Still a record with zeros instead of the  
            expected values will be returned!"    
    ensure 
      return h 
    end 
  end 
   
 
  def get_nucleosome_tilt 
    h = Hash.new 
    h["tiltavg_avg"] = 0 
    h["tiltavg_dev"] = 0 
 
    res_file = @traj_name + @filenamextensions['nucleosomeTilt'] 
    begin 
      f = File::new(res_file) 
      a = f.readlines 
      sum = 0; sumSq = 0 #--; sumDev = 0; sumDevSq = 0 
      a[@ignored_config_count..-1].each do |l| 
 
      angle = l.split  
      angleAvg = angle[0].to_f 
      #angleDev = angle[1].to_f 
 
      sum += angleAvg 
      sumSq += angleAvg**2 
      #--sumDev += angleDev 
      #--sumDevSq += angleDev*angleDev 
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      end 
      configCount = a.size 
      avg = sum/(configCount-@ignored_config_count) 
      dev = Math.sqrt(((configCount-@ignored_config_count) 
            *sumSq-sum**2)/(configCount-@ignored_config_count)/ 
            ((configCount-@ignored_config_count)-1)) 
 
      avg = avg/Math::PI*180 
      dev = dev/Math::PI*180 
 
      h["tiltavg_avg"] = avg.round(4) 
      h["tiltavg_dev"] = dev.round(4) 
    rescue 
      if $!.class == Errno::ENOENT then 
          $stderr.print "There is no file called '#{res_file}'" 
      else 
          $stderr.print "Standard Error: " + $! 
      end 
      $stderr.print "Still a record with zeros instead of the 
           expected values will be returned!"    
    ensure 
      return h 
    end 
  end 
 
  def get_alphaeff 
    h = Hash.new 
    h = Hash["alphaeffavg_avg", 0,"alphaeffavg_dev", 0] 
 
    res_file = @traj_name + @filenamextensions['compEffAlpha'] 
    begin 
      f = File::new(res_file) 
      a = f.readlines 
        sum = 0; sumSq = 0 #--; sumDev = 0; sumDevSq = 0 
        a[@ignored_config_count..-1].each do |l| 
 
        angle = l.split  
        angleAvg = angle[0].to_f 
        #angleDev = angle[1].to_f 
 
        sum += angleAvg 
        sumSq += angleAvg**2 
      end 
      configCount = a.size 
      avg = sum/(configCount-@ignored_config_count) 
      dev = Math.sqrt(((configCount-@ignored_config_count) 
            *sumSq-sum**2)/(configCount-@ignored_config_count)/ 
            ((configCount-@ignored_config_count)-1)) 
      avg = avg/Math::PI*180 
      dev = dev/Math::PI*180 
 
      h["alphaeffavg_avg"] = avg.round(4) 
      h["alphaeffavg_dev"] = dev.round(4) 
    rescue 

 



66 Appendix 

      if $!.class == Errno::ENOENT then 
        $stderr.print "There is no file called '#{res_file}'" 
      else 
        $stderr.print "Standard Error: " + $! 
      end 
      $stderr.print "Still a record with zeros instead of the 
            expected values will be returned!"    
    ensure 
      return h 
    end 
  end 
 
 
  def get_energy 
    h = Hash.new 
    h = Hash["energy_avg", 0,"energy_dev", 0] 
 
    res_file = @traj_name + @filenamextensions['trajectory']+  
            @filenamextensions['energy'] 
    begin 
      f = File::new(res_file) 
      a = f.readlines 
      a.shift #discard first line 
      sum = 0; sumSq = 0 
      a[@ignored_config_count..-1].each do |l| 
 
      values = l.split  
      value = values[1].to_f 
 
      sum += value/1000 
      sumSq += (value/1000)**2 
 
      end 
      configCount = a.size 
      avg = sum/(configCount-@ignored_config_count) 
      dev = Math.sqrt(((configCount-@ignored_config_count) 
            *sumSq-sum**2)/(configCount-@ignored_config_count)/ 
            ((configCount-@ignored_config_count)-1)) 
 
      h["energy_avg"] = avg.round(4) 
      h["energy_dev"] = dev.round(4) 
    rescue 
      if $!.class == Errno::ENOENT then 
        $stderr.print "There is no file called '#{res_file}'" 
      else 
        $stderr.print "Standard Error: " + $! 
      end 
      $stderr.print "Still a record with zeros instead of the  
            expected values will be returned!"    
    ensure 
      return h 
    end 
  end 
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  def getPersistenceLength 
    perslength = 0 
    res_file = @traj_name+ @filenamextensions['persistenceLength'] 
    begin 
      #read output from persistenceLength into an array 
      f = File::new(res_file) 
      pers = f.readlines   
 
      #the last line (=the last Object in the array) 
      #is the value of the persistence length 
      perslength = pers[pers.length-1].chomp[1..-1].to_f.round(4) 
    rescue 
      if $!.class == Errno::ENOENT then 
        $stderr.print "There is no file called '#{res_file}'" 
      else 
        $stderr.print "Standard Error: " + $! 
      end 
      $stderr.print "Still a record with zeros instead of the  
            expected values will be returned!" 
    ensure 
      return {"perslen" => perslength} 
    end 
  end 
end 
 
class Float 
  def round(nachkomma) 
    tmpfloat = self*10**nachkomma 
    return (tmpfloat+0.5).floor.to_f/10**nachkomma if 
            tmpfloat > 0.0 
    return (tmpfloat-0.5).ceil.to_f/10**nachkomma if 
            tmpfloat < 0.0 
    return 0.0 
  end 
end 
 

result.rb: 
class Result 
  attr_reader :analysis, :analyzer 
  def initialize(analyzer,eval) 
    #A hash instead of an array is used to store the data in  
    #case of need to access a record by its key. Though it wasn't 
    #necessary yet. 
    @analysis = Hash::new 
    @analyzer = analyzer 
    @eval = eval 
  end 
 
  #Write all results into a file 
  def write_all 
    f = File::new(@eval.name + ".dat","w") 
    results = self.sort_x_y("alpha","llength") 
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    f.print results[0].keys 
    results.each {|hauraus| f.print(hauraus.values)} 
  end 
 
  def sort_x_y(x,y) 
    #'@analysis' is a hash with a hash holding the results: 
    #discard the keys of the hash with 'analysis.values'. 
    #This will return 
    #a hash with elements that are the result and a  
    #corresponding key 
    #Then sort the array by the values assigned to alpha  
    #And the linker length 
    analysis = @analysis.values 
    analysis.sort! {|a,b| a.values_at(x,y) <=> b.values_at(x,y)} 
    return analysis 
  end 
 
  def write2d(const, x, y, y_error=0) 
    #für jeweils const konstant 
    konst = nil 
    f = nil 
    plotname2d = nil 
    folder2d = @eval.name+"-2d" 
    Dir.mkdir(folder2d) unless (FileTest.exists?(folder2d) &&  
            FileTest.directory?(folder2d)) 
    Dir.chdir(folder2d) 
 
    name2d = folder2d + "_" + x + "-" + y + "-" + const + "_const" 
    Dir.mkdir(name2d) unless (FileTest.exists?(name2d) &&  
            FileTest.directory?(name2d)) 
    Dir.chdir(name2d) 
 
    plotter = Plotter.new(@eval) 
    result_hash = self.sort_x_y(const,x) 
    result_hash.each_with_index do |res,idx| 
      #when value of res[const] changes then close file  
      #and plot it (skip first time changing) 
      # and create next file 
      if konst!=res[const] 
 
        unless idx==0 
          #close (or at least flush) the connection so  
          #gnuplot can read the data 
          f.close unless f.closed? #means unless the first time or  
                                   #h is closed already 
          plotter.plot(f.path,plotname2d,x,y)   
        end 
 
        plotname2d = name2d + "-" + res[const].to_s  
        filename2d =  plotname2d + ".dat"  
        f = File::new(filename2d,"w")     
        #first adding a  Header Line  
        #(with # at the beginning so  
        #gnuplot will ignore that line) 
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        f.write("#" + x + "\t" + "\t" + "\n") 
         
        konst = res[const] 
      end 
      f.print(res.values_at(x,y,y_error)) unless res[y]==0 
      #if that was the last result then don't go back to start  
      #but close and plot file 
      if idx == result_hash.length-1   
        f.close unless f.closed? #means unless the first time  
                                 #or f is closed already 
        plotter.plot(f.path,plotname2d, x,y)   
      end 
    end 
    Dir.chdir("../..") 
  end 
 
  #Write Data into file for 3-d plotting  
  #(formatted to be read by gnuplot) 
  #and start plotting  
  def write3d(x, y, z) 
 
    folder3d = @eval.name+"-3d" 
    name3d = folder3d + "_" + x + "-" + y + "-" + z 
    filename3d = name3d + ".dat"  
    Dir.mkdir(folder3d) unless (FileTest.exists?(folder3d) &&  
            FileTest.directory?(folder3d)) 
    Dir.chdir(folder3d) 
 
    #first adding a  Header Line  
    #(with # at the beginning so gnuplot will ignore that line) 
    g = File::new(filename3d,"w") 
    g.write("#" + x + "\t" + y + "\t" + z + "\n") 
    x_res = 0 
    results = self.sort_x_y(x,y) 
 
    #then writing the results into the file, printing a blank line 
    #everytime alpha changes 
    results.each do |res| 
      g.print("") if x_res!=res[x] && x_res!=0 
      g.print(res.values_at(x, y, z)) #unless res[z]==0 
      x_res = res[x] 
    end 
    g.close 
 
    plotter = Plotter.new(@eval) 
    plotter.plot3d(filename3d,name3d, x, y, z) 
 
    Dir.chdir("..") 
  end 
 
  def read(traj_names) 
    counter = 1 
    traj_names.each do |trajName| 
      result = Hash::new 
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      puts "processing file(s): " + trajName 
      Dir.chdir(trajName) unless @eval.allfilesinonedir == true 
 
      params =  trajName.scan(/\d+\.?\d*/).collect  
                  {|param| param.to_f } 
      result = {"alpha" => params[0], "llength" => params[1]} 
 
      @analyzer.traj_name = trajName 
 
      result.merge!(@analyzer.get_length_diameter) 
      result.merge!(@analyzer.get_nucleosome_tilt) 
      result.merge!(@analyzer.getPersistenceLength) 
      result.merge!(@analyzer.get_alphaeff) 
      result.merge!(@analyzer.get_energy) 
 
      Dir.chdir('..') unless @eval.allfilesinonedir == true 
 
      counter += 1 
       
      #Append results to the hash 
      @analysis[trajName] = result 
       
      #empty the hash 
      result = nil 
    end 
  end 
end 
 

plotter.rb: 
class Plotter 
 
  def initialize(eval) 
    @gnuplot_version = eval.gnuplot_version 
  end 
   
  def plot(datafile, title, xlabel, ylabel)  
    outputfile_eps = title + ".eps" 
    outputfile_png = title + ".png" 
    outputfile_gnuplot = title + ".gnuplot" 
    gnuplot = IO.popen("gnuplot -persist","w+") 
 
    if @gnuplot_version == 3.7 
      plotcommand =<<-END_OF_COMMAND 
      set title '#[50]' 
      set xlabel '#{xlabel}' 
      set ylabel '#{ylabel}' 
      set mxtics 2 
      set mytics 2 
      set terminal png 
      set output '#{outputfile_png}' 
      plot '#{datafile}' notitle with errorbars, '#{datafile}'  
                  title '' with lines 
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      set terminal postscript eps enhanced color 
      set output '#{outputfile_eps}' 
      replot 
      set terminal x11 
      replot 
      END_OF_COMMAND 
    else 
      plotcommand =<<-END_OF_COMMAND 
      set style data lines  
      set title '#[50]' 
      set xlabel '#{xlabel}' 
      set ylabel '#{ylabel}' 
      set mxtics 2 
      set mytics 2 
      set terminal png  
      set output '#{outputfile_png}' 
      plot '#{datafile}' with errorbars , '#{datafile}' notitle  
                  with lines 
      set terminal postscript eps enhanced color 
      set output '#{outputfile_eps}' 
      replot 
      set terminal x11 
      replot 
      END_OF_COMMAND 
    end 
 
    g = File::new(outputfile_gnuplot,"w") 
    g.write(plotcommand) 
    g.close 
 
    gnuplot.puts plotcommand 
 
  end 
 
  def plot3d(datafile, title, xlabel, ylabel, zlabel)  
 
    #wd = Dir.getwd 
    #datafile = wd + "/" + datafile 
    outputfile_eps = title + ".eps" 
    outputfile_png = title + ".png" 
    outputfile_gnuplot = title + ".gnuplot" 
    gnuplot = IO.popen("gnuplot -persist","w+") 
 
    if @gnuplot_version == 3.7 
      plotcommand =<<-END_OF_COMMAND 
      set hidden3d 
      set contour 
      set grid 
      set view 60,220,1 
      set title '#[50]' 
      set ylabel '#{ylabel}' 
      set xlabel '#{xlabel}' 
      set zlabel '#{zlabel}' 
      set mxtics 2 
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      set mytics 2 
      set terminal x11 
      splot '#{datafile}' notitle with lines 
      set terminal png 
      set output '#{outputfile_png}' 
      replot 
      set encoding iso_8859_1 
      set terminal postscript eps enhanced color 
      set xlabel 
      set ylabel 
      set zlabel 
      set label 1 '{/Arial entry-exit angle}&{s}{/Symbol a  
            [\260]}' at screen 0.2,0.17 font 'Arial'  
            rotate by -15 
      set label 2 'linker DNA length [nm]' at screen 0.66,0.11  
            font 'Arial' rotate by 20 
      set label 3 '#{zlabel}' font 'Arial' at screen 0.05,0.4  
            rotate by 90 
      show label  
      set output '#{outputfile_eps}' 
      replot 
      END_OF_COMMAND 
    else 
      plotcommand =<<-END_OF_COMMAND 
      set style data lines 
      set hidden3d 
      set contour 
      set grid 
      set view 60,220,1 
      set title '#[50]' 
      set xlabel '#{xlabel}' 
      set ylabel '#{ylabel}' 
      set zlabel '#{zlabel}' 
      set mxtics 2 
      set mytics 2 
      #set pm3d 
      set terminal x11 
      splot '#{datafile}' notitle 
      set terminal png 
      set output '#{outputfile_png}' 
      replot 
      set encoding iso_8859_1 
      set terminal postscript eps enhanced color 
      set xlabel 
      set ylabel 
      set zlabel 
      set label 1 '{/Arial entry-exit angle}&{s}{/Symbol a  
            [\260]}' at screen 0.2,0.17 font 'Arial'  
            rotate by -15 
      set label 2 'linker DNA length [nm]' at screen 0.66,0.11  
            font 'Arial' rotate by 20 
      set label 3 '#{zlabel}' font 'Arial' at screen 0.05,0.4  
            rotate by 90 
      show label  

 



Appendix 73 

      set output '#{outputfile_eps}' 
      replot 
      END_OF_COMMAND 
    end 
 
    g = File::new(outputfile_gnuplot,"w") 
    g.write(plotcommand) 
    g.close 
 
    gnuplot.puts plotcommand 
  end 
end 
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