
A Software Framework for Tuning the Dynamics

of Neuromorphic Silicon Towards Biology

Daniel Brüderle, Andreas Grübl, Karlheinz Meier,
Eilif Mueller, and Johannes Schemmel

Kirchhoff Institute for Physics, University of Heidelberg,
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany,

Email: bruederle@kip.uni-heidelberg.de

Abstract. This paper presents configuration methods for an existing
neuromorphic hardware and shows first experimental results. The uti-
lized mixed-signal VLSI1 device implements a highly accelerated network
of integrate-and-fire neurons. We present a software framework, which
provides the possibility to interface the hardware and explore it from the
point of view of neuroscience. It allows to directly compare both spike
times and membrane potentials which are emulated by the hardware or
are computed by the software simulator NEST, respectively, from within
a single software scope. Membrane potential and spike timing dependent
plasticity measurements are shown which illustrate the capabilities of the
software framework and document the functionality of the chip.

1 Introduction

One branch of neuroscience tries to mathematically model neural networks on
different levels of physiological precision and complexity. Simulation, i.e. the
numerical computation of these models in software, is a field of growing impor-
tance and impact. A recent review of some well known neuro-simulator software
is found in [1]. Another approach is the continuous time, analog emulation of
electro-physiological neuron properties with micro-electronics and application
specific integrated circuits (ASICs) [2, 3]. Compared to pure software solutions,
there is the clear disadvantage of less flexibility within the implemented model
after once being created. Still, advantages like acceleration –the latter typically
being mostly unaffected by scaling due to intrinsic parallelism–, could make
current neuromorphic hardware devices valuable tools for neuroscience.

We propose that a connection between simulation and emulation has become
essential to gain a mutual benefit from their parallel existence, and that the pos-
sibility of a quantitative comparison between results obtained in both domains
is an indispensable part of such a connection. We provide a solution for a specific
pair of platforms, namely the mixed-signal VLSI neural network described in [3,
4] and the software simulator NEST [5]. With this approach, we follow a concept
developed within the FACETS research project [6] which –amongst others– aims

1 Very Large Scale Integration



to create a universal interpreter-based meta-language, allowing the execution of
one network model on arbitrary simulation back-ends. A short outline of this
work is found in [1].

For this purpose, Python [7] was chosen as the top-level glue language, moti-
vated by its large flexibility and the possible benefit from an active community
developing Python applications. A Python-interface to the NEST simulator is
already existing, and in the following we present one for the said neuromorphic
hardware. On the low level, this software framework performs the communication
with the hardware’s control logic and provides a basic, hardware specific API2.
Higher level software modules hide these details from the user by a hierarchy
of abstraction layers. In this work, we focus on the high-level part and its con-
nection to biology. The presented framework allows to define a neural network
experiment for both the hardware and NEST, based on a unified representation
of the applied input and the neural network’s connectivity. All experimental data
shown in this paper has been acquired, analyzed and plotted using this software.

2 Emulation vs. Simulation: Utilized Back-Ends

2.1 Mixed Signal VLSI

For all hardware measurements presented in this paper the same mixed-signal
VLSI neural network was utilized. It has been designed in the authors’ group
and is described in recent publications [3, 4].

Implemented is a leaky integrate-and-fire neuron model with conductance
based synapses, designed with a linear correspondence with existing phenomeno-
logical conductance-based modeling approaches [8]. The existing first prototype
was built using a standard 180 nm CMOS3 process. In networks of up to 384
neurons, the temporal evolution of the weights of 105 synapses can be modeled
on a single 25 mm2 die. The system exhibits an acceleration factor of up to 105

while recording the neural action potentials with a temporal resolution better
than 30 µs biological time. For the experimental data presented, the following
details are of interest.

Hardware neuron model The emulated membrane potential V (t) is designed to
be governed by the following differential equation:

−Cm

dV

dt
= gm(V −El) +

∑

j

pj(t)gj(t)(V −Ex) +
∑

k

pk(t)gk(t)(V −Ei) . (1)

The constant Cm represents the total membrane capacitance. The first term on
the right models the contribution of the different ion channels that determine
the potential El the membrane will eventually reach if no other currents are
present. The synapses use different reversal potentials, Ei and Ex, to model

2 Application Programming Interface
3 Complementary Metal Oxide Semiconductor



inhibitory and excitatory ion channels. The index j in the first sum runs over all
excitatory synapses while the index k in the second covers the inhibitory ones.
The individual activations of the synapses are controlled by the synaptic open
probability pj,k(t) [9]. The synaptic conductance gj,k is modeled as a product of
the synaptic weight ωj,k(t) and a maximum conductance gmax

j,k (t). The weights
are modified by the implemented long-term plasticity algorithm and thus vary
slowly with time t.

Long Term Synaptic Plasticity The correlation measurement for spike timing
dependent plasticity (STDP) is part of every synapse. It is based on the biological
mechanism as described in [10, 11]. For each occurrence of a pre- or post-synaptic
action potential, the synapse circuit measures the time ∆t that has passed since
the last occurrence of the respective other action potential. A positive value of ∆t

denotes a possible causal correlation. The exponentially weighted time difference
is called the STDP modification function F and is defined as follows:

F (∆t) =

{

A+ exp(−∆t
τ+

) if ∆t > 0 (causal)

−A
−

exp(∆t
τ
−

) if ∆t < 0 (acausal) .
(2)

2.2 NEST Simulator

The Neural Simulation Technology Initiative provides a software ’simulation sys-
tem for large networks of biologically realistic (spiking) neurons’ called NEST [5].
NEST allows to use self-defined point-neuron models and serves as a verification
tool for the VLSI model described above.

The NEST neuron model utilized for all simulations shown in this paper is
described in detail in [12] and exactly implements Eq. 1. We kept to all parame-
ter values given in [12], assuming that they are biologically realistic. The model’s
optional mechanisms of spike frequency adaptation as well as relative refractori-
ness haven’t been used for the experiments shown here, since these features are
not supported by the hardware.

3 Unified Front-End

For the operation of the neuromorphic hardware, higher level software modules
connected to the system’s basic API hide the hardware specific details that are
not necessary to operate the chip in a biologically sensible way and translate all
other parameters and values into their corresponding biological quantities.

Our high-level software development follows two branches. On the one hand,
we provide a C++-based graphical user interface (GUI) for intuitive exploration
of the hardware with immediate visual feedback. On the other hand, we provide
an interpreter-based interface for neuroscience modelers similar to other software
simulation environments in wide-spread use. We developed a Python-based soft-
ware module accessible from the interactive interpreter, allowing to keep to the
established efficient style of developing complex experiments via a mixture of



dynamically loaded scripts and command-line interaction. This tool together
with the already existing Python interface to the NEST simulator provides the
framework for a unified processing of the data from both domains. For hardware
operation, it is planned to use the GUI and the Python-based software in the
same experiment in parallel, as such gaining the benefit from both interfaces.

Graphical User Interface The GUI allows to set up and interactively operate
smaller networks in a modelers’ terminology. Neurons, external input signals
to the network, synaptic connections and further relevant parameters can be
displayed and manipulated. In its upper left, Fig. 1 shows the GUI’s network
editor, providing visualization and configurability for all synaptic connections in
the network. The software handles hardware specific configuration limitations
like, for example, a set of neurons sharing one single parameter value. The GUI
transparently catches such constraints by visibly adjusting all dependent values
after one of them has been manipulated. Warning messages avoid the creation
of impossible configurations that can not be mapped onto the hardware.

In addition to the purely manual configuration, the GUI framework also
provides routines and statistical parameters to generate large networks and input
patterns automatically. For a continuous observation of the membrane potentials
on an oscilloscope, each configured experimental setup can be embedded into a
looping algorithm. During an iterated execution, all action potentials generated
and digitized by the hardware are instantly visualized by the GUI. All parameters
can be manipulated during the iterative process, providing immediate feedback
to the changes and enabling the user to develop an intuition for the hardware
dynamics.

The GUI-based hardware interface is integrated into the HANNEE frame-
work described in [13]. It is written in C++, the graphical features are mainly
programmed with the Trolltech Qt toolkit. The software follows an object-
oriented approach, and due to its modular, hierarchical structure as well as
its dedicated interfaces and documentation, users can easily extend it to their
own demands.

Python Interface The low-level hardware API is written in C++. In order to
access it via Python, wrapper code to some of the API’s classes has been created
utilizing the open source C++ library Boost.Python. Connected to this Python
API, we developed a pure Python class hierarchy which orients towards inte-
gration into the FACETS meta language. It allows to operate the hardware and
read out all data provided by its low-level API in a biological context. In terms of
network activity, this is all digitally available information, i.e. the spike-times of
every neuron and the evolving synaptic weights, but not the analog sub-threshold
membrane potentials. The latter can be retrieved by connecting an oscilloscope
to dedicated pins on the chip, which are programmable to output every neuron’s
voltage trace. In its lower right, Fig. 1 shows a simple code snippet that illus-
trates how an experiment setup for the hardware and NEST within the Python
interface can look like.



Fig. 1. Upper left: Screen-shot of the C++-based graphical network editor. Networks
can be set up manually using biological terminology and parameters, but with direct
feedback regarding the hardware constraints. Lower right: Example code snippet for
the unified Python interface, executable on both hardware and NEST.

In order to integrate the analog information into the Python framework, we
created a Python front-end for digitizing oscilloscopes with a network connection.
The so-called PyScope software connects to the physical scope via Ethernet and
provides, in addition to acquisition of the raw data, visualization and some basic
operations for trace manipulation. It can be integrated into scripts or can be
operated interactively.

4 Experiments

In this section, we present first results for experiments exploring the properties
of the single neurons on the hardware platform. Network experiments have yet
to be implemented, as the described hardware is not ready to be operated in net-
work mode. For example, the implementation of calibration routines to balance
out chip-inherent process variations is still in progress. We compare membrane
potentials generated by hardware and software and analyze the measured STDP
curves to verify they implement the desired exponential character as described
above.

4.1 Membrane Potential Traces

The membrane potential of a single neuron was recorded under Poisson process
input. For both hardware and software, the same script was used to define the
experiment, utilizing the Python interfaces described above. The neuron receives



200 excitatory and 50 inhibitory inputs, the total number being limited by the
hardware. For each input, a randomly generated Poisson process spike train with
a fixed rate of 3 Hz is applied for two seconds, with all dimensions given in bi-
ological time. Synaptic weights have been adjusted such that the output firing
rate of the bombarded neuron approximately fits the rate of a single input chan-
nel. As a quality criterion for the hardware runs we chose the distance measure
proposed in [14], relating the hardware spike trains to the NEST reference.

Fig. 2 illustrates the benefit of the unified data acquisition. It shows the input
data applied to the neuron, the digitally retrievable output spikes of the bom-
barded hardware neuron over 50 runs with identical setup, the analog membrane
potential acquired via PyScope during the worst run, averaged over all runs and
the best run, and the simulation result of NEST fed with the same input. The
correspondence between the voltage traces is compelling, and the plotted spike
times highlight this correspondence.

Fig. 2. Poisson process input to a neuron and its resulting output. Top to bottom: The
spike times of excitatory and inhibitory inputs applied to the neuron, the output spikes
of the hardware neuron during 50 identical experiments, the membrane potential trace
of the hardware neuron during the worst run, averaged over all 50 runs and the best
run, the voltage trace of the NEST simulation under the same input.

4.2 STDP Curves

Since the hardware’s synaptic weights have a limited resolution of four bits,
the implemented modification function does not affect the weights directly, but
an analog memory located at each synapse accumulates small modifications. If



this accumulation reaches a configurable threshold, the discrete weights will be
updated. To access the continuous modification function, we triggered a neuron
to fire a post-synaptic action potential via auxiliary synapses and sent another
pre-synaptic spike into the synapse to be studied. The number Ncorr of correlated
spike pairs necessary to trigger a change in the discrete weights was recorded as
a function of the time difference ∆t between the pre- and post-synaptic spike.

Fig. 3 (a) and (b) shows two measured STDP curves with exponential fits
to the data. The fits were added right after acquisition of the data in the same
software scope as the experiment itself and show a good matching. For the
hardware, both amplitude and time constants for the causal and acausal function
branch are adjustable. Fig. 3 (c) compares the STDP curves of different adjacent
synapses on the chip with identical settings, also exhibiting good homogeneity.

(a) (b)

(c)

Fig. 3. (a) and (b): STDP curves measured at the same synapse with different values
of A+, τ+, A

−
and τ

−
. The large dots denote real data points, the small-dotted line

connects them for clarity. Exponential fits (solid lines, cross for acausal, plus for causal
branch) exhibit a good correspondence with the data. (c): STDP curves with the same
settings as in (b), but across a 2x3 matrix of adjacent synapses on the chip.

5 Conclusion

We presented a software framework which allows to explore a highly accelerated
neuromorphic hardware from the point of view of neuroscience4. It provides the

4 The work presented in this paper is supported by the European Union under the
grant no. IST-2005-15879 (FACETS).



possibility to verify the hardware’s neuron model by comparing it with results
obtained with the software simulator NEST. Utilizing this platform, we showed
experimental results demonstrating that the chip can be operated in a biologi-
cally realistic regime. We deployed the benefits arising from the meta-framework
like a unified analysis and outlined further advantages, e.g. the possible exploita-
tion of any open source scientific programming in Python worldwide. This per-
spective is essential, because for the next generation of hardware currently under
development within the FACETS project, the required software will have to cope
with a size and complexity increase of many orders of magnitude.

References

1. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Dies-
mann, M., Morrison, A., Goodman, P.H., Harris Jr, F.C., Zirpe, M., Natschlager,
T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville,
T., Muller, E., Davison, A.P., Boustani, S.E., Destexhe, A.: Simulation of networks
of spiking neurons: A review of tools and strategies (2006)

2. Indiveri, G., Chicca, E., Douglas, R.: A VLSI array of low-power spiking neurons
and bistable synapses with spiketiming dependent plasticity. IEEE Transactions
on Neural Networks 17(1) (2006) 211–221

3. Schemmel, J., Grübl, A., Meier, K., Mueller, E.: Implementing synaptic plasticity
in a VLSI spiking neural network model. In: Proceedings of the 2006 International
Joint Conference on Neural Networks (IJCNN’06), IEEE Press (2006)

4. Schemmel, J., Brüderle, D., Meier, K., Ostendorf, B.: Modeling synaptic plasticity
within networks of highly accelerated I&F neurons. In: Proceedings of the 2007
IEEE International Symposium on Circuits and Systems (ISCAS’07), IEEE Press
(2007)

5. The Neural Simulation Technology (NEST) Initiative: Homepage.
http://www.nest-initiative.org (2007)

6. Fast Analog Computing with Emergent Transient States (FACETS): Homepage.
(http://www.facets-project.org)

7. The Python Programming Language: Homepage. http://www.python.org (2007)
8. Destexhe, A., Contreras, D., Steriade, M.: Mechanisms underlying the synchroniz-

ing action of corticothalamic feedback through inhibition of thalamic relay cells.
Journal of Neurophysiology 79 (1998) 999–1016

9. Dayan, P., Abott, L.F.: Theoretical Neuroscience: Computational and Mathe-
matical Modeling of Neural Systems. The MIT press, Cambride, Massachusetts,
London, England (2001)

10. Song, S., Miller, K., Abbott, L.: Competitive hebbian learning through spiketiming-
dependent synaptic plasticity. Nat. Neurosci. 3 (2000) 919–926

11. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: De-
pendence on spike timing, synaptic strength, and postsynaptic cell type. Neural
Computation 9 (1997) 503–514

12. Muller, E.B.: Markov Process Models for Neural Ensembles with Spike-Frequency
Adaptation. PhD thesis, Ruprecht-Karls University Heidelberg (2006)

13. Fieres, J.: A Method for Image Classification Using Low-Precision Analog Com-
puting Arrays. PhD thesis, Ruprecht-Karls University Heidelberg (2006)

14. van Rossum, M.C.W.: A novel spike distance. Neural Computation 13(4) (2001)
751–763


