
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Andreas Grübl

VLSI Implementation of a
Spiking Neural Network

Dissertation

HD-KIP 07-10

KIRCHHOFF-INSTITUT FÜR PHYSIK

DISSERTATION

submitted to

the
Joint Faculties for Natural Sciences and Mathematics

of the
Ruprecht-Karls-Universität

Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

presented by
Dipl. Phys. Andreas Grübl
born in Erlangen, Germany

Date of oral examination: July 4, 2007

VLSI Implementation of a

Spiking Neural Network

Referees: Prof. Dr. Karlheinz Meier
Prof. Dr. René Schüffny

VLSI Implementierung eines pulsgekoppelten neuronalen Netzwerks

Im Rahmen der vorliegenden Arbeit wurden Konzepte und dedizierte Hardware entwickelt, die es er-
lauben, großskalige pulsgekoppelte neuronale Netze in Hardware zu realisieren. Die Arbeit basiert auf
dem analogen VLSI-Modell eines pulsgekoppelten neuronalen Netzes, welches synaptische Plastizi-
tät (STPD) in jeder einzelnen Synapse beinhaltet. Das Modell arbeitet analog mit einem Geschwin-
digkeitszuwachs von bis zu 105 im Vergleich zur biologischen Echtzeit. Aktionspotentiale werden
als digitale Ereignisse übertragen. Inhalt dieser Arbeit sind vornehmlich die digitale Hardware und
die Übertragung dieser Ereignisse. Das analoge VLSI-Modell wurde in Verbindung mit Digitallogik,
welche zur Verarbeitung neuronaler Ereignisse und zu Konfigurationszwecken dient, in einen gemischt
analog-digitalen ASIC integriert, wobei zu diesem Zweck ein automatisierter Arbeitsablauf entwickelt
wurde. Außerdem wurde eine entsprechende Kontrolleinheit in programmierbarer Logik implementiert
und eine Hardware-Plattform zum parallelen Betrieb mehrerer neuronaler Netzwerkchips vorgestellt.
Um das VLSI-Modell auf mehrere neuronale Netzwerkchips ausdehnen zu können, wurde ein Routing-
Algorithmus entwickelt, welcher die Übertragung von Ereignissen zwischen Neuronen und Synapsen
auf unterschiedlichen Chips ermöglicht. Die zeitlich korrekte Übertragung der Ereignisse, welche eine
zwingende Bedingung für das Funktionieren von Plastizitätsmechanismen ist, wird durch diesen Algo-
rithmus sichergestellt. Die Funktionalität des Algorithmus wird mittels Simulationen verifiziert. Wei-
terhin wird die korrekte Realisierung des gemischt analog-digitalen ASIC in Verbindung mit dem zuge-
hörigen Hardware-System demonstriert und die Durchführbarkeit biologisch realistischer Experimente
gezeigt. Das vorgestellte großskalige physikalische Modell eines neuronalen Netzwerks wird aufgrund
seiner schnellen und parallelen Arbeitsweise für Experimentierzwecke in den Neurowissenschaften
einsetzbar sein. Als Ergänzung zu numerischen Simulationen bietet es vor allem die Möglichkeit der
intuitiven und umfangreichen Suche nach geeigneten Modellparametern.

VLSI Implementation of a Spiking Neural Network

Within the scope of this thesis concepts and dedicated hardware have been developed that allow for
building large scale hardware spiking neural networks. The work is based upon an analog VLSI model
of a spiking neural network featuring an implementation of spike timing dependent plasticity (STDP)
locally in each synapse. Analog network operation is carried out up to 105 times faster than real time
and spikes are communicated as digital events. This work focuses on the digital hardware and the
event transport. Along with digital logic for event processing and configuration purposes, the analog
VLSI model has been integrated into a mixed-signal ASIC by means of an automated design flow.
Furthermore, the accompanying controller has been realized in programmable logic, and a hardware
platform capable of hosting multiple chips is presented. To extend the operation of the VLSI model to
multiple chips, an event routing algorithm has been developed that enables the communication between
neurons and synapses located on different chips, thereby providing correct temporal processing of
events which is a basic requirement for investigating temporal plasticity. The functional performance
of the event routing algorithm is shown in simulations. Furthermore, the functionality of the mixed-
signal ASIC along with the hardware system and the feasibility of biologically realistic experiments is
demonstrated . Due to its inherent fast and parallel operation the presented large scale physical model
of a spiking neural network will serve as an experimentation tool for neuroscientists to complement
numerical simulations of plasticity mechanisms within the visual cortex while facilitating intuitive and
extensive parameter searches.

Contents

Introduction 1

1 Artificial Neural Networks 5
1.1 Biological Background . 5

1.1.1 Modeling Biology . 7
1.2 The Utilized Integrate-and-Fire Model . 7

1.2.1 Neuron and Synapse Model . 8
1.2.2 Terminology . 9
1.2.3 Expected Neural Network Dynamics 10

1.3 VLSI Implementation . 12
1.3.1 Neuron Functionality . 12
1.3.2 Synapse Functionality and Connectivity 13
1.3.3 Operating Speed and Power Consumption 14
1.3.4 Network Model and Potential Topologies 15
1.3.5 Overview of the Implementation . 15

2 System on Chip Design Methodology 19
2.1 Prerequisites . 20

2.1.1 Digital Design Fundamentals . 20
2.1.2 Required Technology Data . 23

2.2 Design Data Preparation . 25
2.3 Logic Synthesis and Digital Front End . 26
2.4 Digital Back End and System Integration 27

2.4.1 Design Import and Partitioning . 27
2.4.2 Analog Routing . 30
2.4.3 Top-Level Placement and Routing 31
2.4.4 Intermezzo: Source Synchronous Interface Implementation 32

2.5 Verification . 35
2.5.1 Timing Closure . 35
2.5.2 Physical Verification . 36

2.6 Concluding Remarks . 36

3 Large Scale Artificial Neural Networks 37
3.1 Existing Hardware Platform . 37

3.1.1 The Nathan PCB . 38
3.1.2 The Backplane . 39
3.1.3 Transport Network . 40

3.2 Principles of Neural Event Processing . 43

I

3.2.1 Communication with the Neural Network Chip 44
3.2.2 Inter-Chip Event Transport . 46
3.2.3 Event Processing Algorithm . 47
3.2.4 Layers of Event Processing . 49

3.3 Neural Event Processor for Inter-Chip Communication 51
3.3.1 Event Queues . 51
3.3.2 Event Packet Generator . 54
3.3.3 Implementation Considerations . 56
3.3.4 Estimated Resource Consumption 59

3.4 Simulation Environment . 60
3.4.1 Operation Principle of the Simulation Environment 61
3.4.2 Neural Network Setup . 62

3.5 Simulation Results . 65
3.5.1 Static Load . 65
3.5.2 Synchronized Activity . 67
3.5.3 Drop Rates and Connection Delay 68

3.6 Concluding Remarks . 69

4 Implementation of the Chip 71
4.1 Chip Architecture . 71
4.2 Analog Part . 73

4.2.1 Model Parameter Generation . 73
4.2.2 The Network Block . 75
4.2.3 Event Generation and Digitization 78
4.2.4 Monitoring Features . 79
4.2.5 Specifications for the Digital Part 81

4.3 Digital Part . 81
4.3.1 Interface: Physical and Link Layer 83
4.3.2 The Application Layer . 89
4.3.3 Clock Generation and System Time 91
4.3.4 The Synchronization Process . 93
4.3.5 Event Processing in the Chip . 94
4.3.6 Digital Core Modules . 99
4.3.7 Relevant Figures for Event Transport 102

4.4 Mixed-Signal System Implementation . 104
4.4.1 Timing Constraints Specification . 104
4.4.2 Top Level Floorplan . 105
4.4.3 Estimated Power Consumption and Power Plan 107
4.4.4 Timing Closure . 109

4.5 Improvements of the Second Version . 111

5 Operating Environment 113
5.1 Hardware Platform . 113

5.1.1 System Overview . 113
5.1.2 The Recha PCB . 116

5.2 Programmable Logic Design . 119
5.2.1 Overview . 119
5.2.2 Transfer Models and Organization of the Data Paths 121

II

5.2.3 The Controller of the Chip . 123
5.2.4 Synchronization and Event Processing 127
5.2.5 Communication with the Controller and the Playback Memory 129

5.3 Control Software . 131
5.3.1 Basic Concepts . 131
5.3.2 Event Processing . 133
5.3.3 Higher Level Software . 134

6 Experimental Results 137
6.1 Test Procedure . 138
6.2 Performance of the Physical Layer . 139

6.2.1 Clock Generation . 139
6.2.2 Signal Integrity: Eye Diagram Measurements 140
6.2.3 Accuracy of the Delay Elements and Estimation of the Process Corner 142

6.3 Verification of the Link Layer and Maximum Data Rate 145
6.4 Verification of the Application Layer . 148

6.4.1 Basic Functionality . 148
6.4.2 The Different Core Modules . 149
6.4.3 Maximum Operating Frequency . 150

6.5 Verification of the Event Processing . 150
6.5.1 Synchronization of the Chip . 151
6.5.2 Verification of the Digital Event Transport 152
6.5.3 Maximum Event Rate Using the Playback Memory 153
6.5.4 Event Generation: Digital-To-Time 154
6.5.5 Event Digitization: Time-To-Digital 157

6.6 Process Variation and Yield . 159
6.7 Power Consumption . 160
6.8 An Initial Biologically Realistic Experiment 162

Summary and Outlook 165

Acronyms 171

A Model Parameters 175

B Communication Protocol and Data Format 179

C Implementation Supplements 183
C.1 Spikey Pinout . 183
C.2 Pin Mapping Nathan-Spikey . 187
C.3 Synchronization . 188
C.4 Simulated Spread on Delaylines . 191
C.5 Theoretical Optimum Delay values for the Spikey chip 193
C.6 Mixed-Signal Simulation of the DTC Output 195

D Mixed-Signal Design Flow Supplements 196
D.1 List of Routing Options . 196
D.2 Applied Timing Constraints . 197

III

IV CONTENTS

E Bonding Diagram and Packaging 200

F Recha PCB 203
F.1 Modifications to the Nathan PCB . 203
F.2 Schematics . 203
F.3 Layouts . 206

Bibliography 208

Introduction

Understanding the human brain and the way it processes information is a question that chal-
lenges researchers in many scientific fields. Different modeling approaches have been devel-
oped during the past decades in order to gain insight into the activity within biological nervous
systems. A first abstract description of neural activity was given by a mathematical model
developed by McCulloch and Pitts in 1943 [MP43]. Even though it has been proven that every
logical function could be implemented using this binary neuron model, it was not yet possible
to reproduce the behavior of biological systems. On the way to getting closer to biology, the
introduction of the Perceptron by Rosenblatt in 1960 [Ros60] can be seen as the next ma-
jor step, since this model provides the evaluation of continuously weighted inputs, thereby
yielding continuous output values instead of merely binary information.

The level of biological realism was once again raised by the introduction of neuron mod-
els using individual spikes instead of the static communication inherent to the afore existing
models. Spiking neuron models eventually allow incorporating spatio-temporal information
in communication and computation just like real neurons [FS95].

However, biological realism and the complexity of the model description increased at the
same time. One of the most accurate models available has been already proposed by Hodgkin
and Huxley in 1952 [HH52] and describes the functionality of the neural network by means of
a set of differential equations. Many spiking neuron models are based on this early work and it
is the fast development of digital computers that nowadays facilitates the numerical simulation
of such complex models at a feasible speed, thus, within acceptable time.

To investigate the key aspect regarding the understanding of the brain, namely the process
of development and learning, it is necessary to model the behavior of adequately complex
and large neural microcircuits over long periods of time. Moreover, it is of importance to be
able to tune different parameters in order to test the level of biological accordance and thereby
the relevance for biological research. Both aspects require long execution times, even on the
fastest currently available microprocessors.

Developing a physical model, which mimics the inherent parallelism of information pro-
cessing within biological nervous systems, provides one possibility to overcome this speed
limitation. The hitherto only known system used for these purposes is analog very large scale
integration (VLSI) of complementary metal oxide semiconductor (CMOS) devices, the latter
also being used for the realization of modern microprocessors. Microelectronic circuits can
be developed, which mimic the electrical behavior of the biological example. Thereby, impor-
tant physiological quantities in terms of currents and device parameters like capacitances or
conductances can be assigned to corresponding elements within the physical model.

Several VLSI implementations of spiking neuron models have been reported for example by
Häflinger et al. [HMW96] and Douence et al. [DLM+99]. In both approaches the motivation
is not primarily the operating speed, but rather the accuracy of the continuous time behavior
of the model.

1

2 Introduction

A new approach is based on the research carried out within the Electronic Vision(s) group
at the Kirchhoff Institute for Physics located in Heidelberg [SMM04]. The analog VLSI ar-
chitecture implements a neuron model representing most of the neuron types found within the
visual cortex. Moreover, the synapse model includes plasticity mechanisms allowing the in-
vestigation of long term and short term developmental changes. One important advantage of
the physical model compared with the biological example can be clearly pointed out: its op-
erating speed. Due to device physics, the analog neuron and synapse implementations operate
at a factor of up to 105 times faster than biological real time.

Spikes are communicated between neurons and synapses as digital pulses and no informa-
tion is encoded in their size and shape. Instead, information is encoded in the temporal inter-
vals in which action potentials are generated by the neurons or transported by the synapses.
In particular, the mutual correlation between spikes received and generated by a neuron con-
tributes to plasticity mechanisms that are supposed to be one of the keys towards understanding
how learning processes in the brain work. The digital nature of the spikes enables their trans-
port over long distances using digital communication techniques and does not restrict the size
of the neural network to one single application specific integrated circuit (ASIC).

The fact that information is supposed to be encoded in the spike timing arises high demands
on the digital communication. Neural events are not only to be communicated based on their
location (address) within the network, but also the point in time of their occurrence has to
be correctly modeled by the digital communication to reflect the spatio-temporal behavior of
the biological example. Thereby, the speed-up factor of 105 requires a temporal resolution
in the order of magnitude of less than 1 ns. Long-range digital communication at this level
of accuracy cannot be realized by asynchronous communication techniques as utilized for
example in [HMW96]. For the latter reasons, it is required to operate the entire neural network
in a synchronous system and on the basis of a global system time. As a consequence, the
continuous time operation of the model has to be ensured for a system comprising several
digitally interconnected analog VLSI components. Innovative strategies are required to keep
track of event timing and to transfer events between the continuous time domain of the analog
VLSI implementation and the clocked time domain of the digital communication.

It is especially important that these strategies are not restricted to specific network topolo-
gies. Instead, it should be possible to implement different biological examples in order to
provide flexible modeling. Furthermore, the realization of recurrent networks is of special
interest. Recurrent connections make the network response dependent on its history, allowing
for regulatory cycles as well as short-term memories. Specifically, the essential difference is
that feed-forward networks are static mappings from an input to an output, while recurrent
networks are dynamical systems. While the analog VLSI implementation already features
asynchronous local feedback, recurrent connections between different chips require the de-
sign of carefully timed bidirectional communication channels. To provide this functionality
and facilitate the setup of biologically realistic experiments, the connections provided by these
communication channels have to feature a guaranteed and fixed delay at an appropriate speed.
By this means, also the successful operation of the STDP implementation is assured and the
investigation of temporal plasticity is made possible.

Since the hardware model will only cover cutouts of biological neural systems, biologi-
cal realism requires one more feature: artificial stimuli, e.g. external input, along with back-
ground neural activity from the biological surrounding have to be generated. Furthermore,
the emerging neural activity as well as the outcome of ongoing plasticity mechanisms has to
be recordable to eventually provide ways of analyzing and understanding the activity of the
neural network.

Introduction 3

The aim of the work described within this thesis is the development of the components
that constitute large scale spiking neural networks based on the analog VLSI implementation
of the physical model. In conjunction with the model itself, the presented work will enable
the realization of spiking neural networks comprising multiple chips with a total number of
neurons in the order of magnitude of 104 neurons and more than 106 synapses.

The thesis is structured into six chapters: the first chapter gives a short overview of the bio-
logical background and introduces the analog VLSI model. Thereby, expected communication
demands are introduced defining the requirements on the event communication. Chapter 2 de-
scribes the design methodology that has been developed for the integration of the analog VLSI
model and accompanying digital logic into the entire mixed-signal chip presented within this
thesis.

An algorithm suited for the transport of neural events between different chips is described
in chapter 3, together with a hardware platform for the operation of multi-chip networks. Parts
of this algorithm are realized on the presented chip whose actual implementation is described
in chapter 4 with an emphasis on the event transport and the digital functionality.

The realized operating environment for one chip including hardware platform, programmable
logic and software is described in chapter 5. Finally, chapter 6 deals with the measurements
that have been carried out to characterize the functionality of the developed digital control
logic and the event transport functionality within the fabricated chip. An initial biologically
realistic experiment is presented demonstrating the successful implementation of the chip as
well as the entire framework.

4 Introduction

Chapter 1

Artificial Neural Networks

This chapter describes the neural model and its analog VLSI implementation
within the ASIC presented in this thesis. The first section introduces the bio-
logical background and gives reasons for the selection of the particular model.
In the second section, the neuron model and the synapse model, including
plasticity mechanisms, are described. Furthermore, the physical implementa-
tion is outlined as it serves as a basis for the development of the mixed-signal
ASIC and the neural event transport strategies developed within this thesis.
The third section discusses the analog VLSI implementation, which integrates
conductance based integrate-and-fire neurons operating with a speed several
orders of magnitude larger than real time, whereas the neural events are com-
municated digitally. The dynamics exhibited by bursting neural networks or
networks being in a high conductance state are discussed and important pa-
rameters regarding bandwidth and latency of the communication are derived
as they will serve as constraints for the digital transport of the events.

1.1 Biological Background

The computational power of biological organisms arises from systems of massively intercon-
nected cells, namely neurons. These basic processing elements build a very dense network
within the vertebrates’ brain (in Latin: cerebrum). Most of the cerebral neurons are contained
within the cerebral cortex that covers parts of the brain surface and occupies an area of about
1.5 m2 due to its nested and undulating topology. In the human cortex, the neuron density
exceeds 104 neurons per cubic millimeter and each neuron receives input from up to 10,000
other neurons, with the connections sometimes spread over very long spatial distances.

An overview of a neuron is shown in figure 1.1 a. The typical size of a mammal’s neuronal
cell body, or soma, ranges from 10 to 50 µm and it is connected to its surroundings by a
deliquesce set of wires. In terms of information, the dendrites are the inputs to the neuron,
which has one output, the axon. Axons fan out into axonic trees and distribute information to
several target neurons by coupling to their dendrites via synapses.

5

6 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

a) b)

t1

(f2)
t1

(f1)

t2

(f2)
t2

(f1)

Vrest

V(t)

q

A

B

t

Figure 1.1: a) Schematic drawing of a neuron after Ramón y Cajal; dendrites, soma and axon can
clearly be distinguished. Figure taken out of [Ger99]. b) Membrane potential V (t) (A) depending on
presynaptic inputs (B). Many postsynaptic potentials (PSPs) are superimposed and eventually make
V (t) cross the spiking threshold ϑ . In this case an action potential (which exceeds the scale of the plot)
is fired. Afterwards V (t) runs through a phase of hyper-polarization. Figure adapted from [Brü04].

The synapses act as a preprocessor of the information arriving at a neuron’s dendrite in
terms of modulating the effect on the postsynaptic neuron, which is located after the synapse.
Modulating in this sense means weighting the presynaptic input in terms of its strength and
also its sign. The term sign requires a closer look at the cell membrane of the neuron that
divides the intracellular from the extracellular space and has a certain membrane capacitance
Cm. Without any external input, the potentials on either side of the membrane differ and
the resting potential Vrest is developed over Cm. It represents the steady state of concurring
ion channels increasing, respectively decreasing, the membrane potential which is also called
polarization in neuroscience. External input that increases the membrane potential is said to
be depolarizing, the according synapse with a positive sign is excitatory. The contrary process
is called hyper-polarization and the according synapse is inhibitory.

The functionality of a neural system strongly depends on the configuration of its synapses.
The possibility of dynamically changing the synapse weights is called plasticity. This change
in the effect of a presynaptic signal on the postsynaptic neuron forms the basis of most models
of learning and development of neural networks.

Neurons communicate with action potentials, or spikes, which is illustrated in figure 1.1 b.
Such a spike is a short (1 ms) and sudden increase in voltage that is created in the soma and
travels down the axon. Reaching a synapse, the spike triggers a change in the synapse’s post-
synaptic potential (PSP) which adds to the membrane voltage and then slowly decays with
time. Several PSPs eventually rise the membrane voltage over a threshold ϑ . In this case,
the neuron itself generates an action potential and after some time of hyper-polarization the
membrane returns to the resting potential, if no further input is provided. As the spikes sent

1.2. THE UTILIZED INTEGRATE-AND-FIRE MODEL 7

out by one neuron always look the same, the transported information is solely coded within
their firing times.

1.1.1 Modeling Biology

Modeling of neural systems can be classified into three generations as proposed by Maass in
his review on networks of spiking neurons [Maa97]. These classes of models are distinguished
according to their computational units and the term generations also implies the temporal
sequence in which they have been developed.

The first generation is based on the work of McCulloch and Pitts [MP43] who proposed the
first neuron model in 1943. The McCulloch-Pitts neurons are a very simplified model of the
biological neuron that accept an arbitrary number of binary inputs and have one binary output.
Inputs may be excitatory or inhibitory and the connection to the neuron is also established by
weighted synapses. If the sum over all inputs exceeds a certain threshold, the output becomes
active. Many network models have their origin in McCulloch-Pitts neurons, such as multilayer
perceptrons [MP69] (also called threshold circuits) or Hopfield nets [Hop82]. It was shown
by McCulloch and Pitts that already the binary threshold model is universal for computations
with digital input and output, and that every boolean function can be computed with these nets.

The second generation of neuron models expands the output of the neuron in a way, that
an activation function is applied to the weighted sum of the inputs. The activation function
has a continuous set of possible output values, such as sigmoidal functions or piecewise linear
functions. Past research work done within the Electronic Vision(s) group has focused on multi-
layer perceptron experiments that were performed on the basis of the HAGEN chip [SHMS04]
developed within the group. See for example [Hoh05, Sch05, Sch06].

Both, first and second generation models work in a time discrete way. Their outputs are
evaluated at a certain point in time and the temporal history of the inputs is neglected during
this calculation. For an approximate biological interpretation of neural nets from the second
generation, the continuous output values may be seen as a representation of the firing rate
of a biological neuron. However, real neurons do code information within spatio-temporal
patterns of spikes, or action potentials [Maa97]. Knowing this, a spike-based approach, which
predicts the time of spike generation without exactly modeling the chemical processes on the
cell membrane, is a viable approach to realize simulations of large neuron populations with
high connectivity. The integrate-and-fire model [GK02] follows this approach and reflects the
temporal behavior of biological neurons. The third generation of neuron models covers all
kinds of spiking neural networks exhibiting the possibility of temporal coding. The analog
VLSI implementation of a modified integrate-and-fire model will serve as a basis for the work
described in this thesis. Note that a quantitative neuron model has been developed by Hodgkin
and Huxley in 1952 [HH52]. This model uses a set of differential equations to model the
current flowing on the membrane capacitance of a neuron. It has been shown by E. Mueller,
that it is possible to fit the behavior of the integrate-and-fire model to that of the Hodgkin-
Huxley model with regard to the timing of the generated action potentials [Mue03].

1.2 The Utilized Integrate-and-Fire Model

In this section, the selected model for the VLSI implementation is described. It is based on
the standard integrate-and-fire model and allows the description of most cortical neuron types,
while neglecting their spatial structure. The selection of the model is a conjoint work of E.

8 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

Mueller and Dr. J. Schemmel, whereas the analog implementation was carried out by Dr. J.
Schemmel. The integration within the presented ASIC is one subject to this thesis.

To be able to predict the requirements for the interfaces to the VLSI circuits as well as
the the communicational needs in the entire system, the dynamics of the neural network are
discussed after the model description.

1.2.1 Neuron and Synapse Model

The chosen model, in accordance to the standard integrate-and-fire model, describes the neu-
ron’s soma as a membrane with capacitance Cm in a way that a linear correspondence exists
between the biological and the model membrane potential V . If the membrane voltages reaches
a threshold voltage Vth, a spike is generated, just as in the case of the biological neuron. The
following effect of hyper-polarization is modeled by setting the membrane potential to the
reset potential Vreset for a short time, e.g. the refractory period, where the neuron does not
accept further synaptic input. The simple threshold-firing mechanism of the integrate-and-
fire model is not adequate to reflect the near-threshold behavior of the membrane. The very
near-threshold behavior has been observed in nature [DRP03]. Therefore, the circuit has been
designed such that the firing mechanism not only depends on the membrane voltage, but also
on its derivative.

In biology, spikes are generated by ion channels coupling to the axon. In contrast to this, the
VLSI model contains an electronic circuit monitoring the membrane voltage and triggering the
spike generation. To facilitate communication between the neurons, the spike is transported as
a digital pulse. As it will be described in the following section, these pulses are either directly
connected to other neurons on the same die which preserves the time continuous, asynchronous
operation of the network. Furthermore, the time of spike generation may be digitized and the
spike may be transported using synchronous digital communication techniques. Regardless of
the underlying communication, the digitized neuron outputs are connected to the membrane
of other neurons by conductance based synapses. Upon arrival of such a digital spike, the
synaptic conductance follows a time course with an exponential onset and decay.

Within the selected model, the membrane voltage V writes

Cm
dV
dt

= gleak (V −El)+∑
j

p j(t) g j(t) (V −Ex)+∑
k

pk(t) gk(t) (V −Ei) . (1.1)

The constant Cm represents the total membrane capacitance. Thus the current flowing on
the membrane is modeled multiplying the derivative of the membrane voltage V with Cm.
The conductance gleak models the ion channels that pull the membrane voltage towards the
leakage reversal potential1 El. The membrane finally will reach this potential, if no other
input is present. Excitatory and inhibitory ion channels are modeled by synapses connected to
the excitatory and the inhibitory reversal potentials Ex and Ei respectively. By summing over
j, all excitatory synapses are covered by the first sum. The index k runs over all inhibitory
synapses in the second sum. The time course of the synaptic conductances is controlled by the
parameters p j,k(t). To facilitate the investigation of the temporal development of the neural
network model, two plasticity mechanisms are included in the synaptic conductances g j,k(t),
which are modeled by

g j,k(t) = ω j,k(t) ·gmax
j,k (t) , (1.2)

1The reversal potential of a particular ion is the membrane voltage at which there is no net flow of ions from
one side of the membrane to the other. The membrane voltage is pulled towards this potential if the according ion
channel becomes active.

1.2. THE UTILIZED INTEGRATE-AND-FIRE MODEL 9

with the relative synaptic weight ω j,k(t) and a maximum conductance of gmax
j,k (t). Develop-

mental changes (like learning) within the brain, or generally within a neural network, are
described by plasticity mechanisms within the neurons and synapses. The herein described
model includes two mechanisms of synaptic plasticity: STDP and short term synaptic depres-
sion and facilitation. The actual implementation of these models has already been published
in [SGMM06] and [SBMO07]. To motivate the need for precise temporal processing of neural
events the STDP mechanism will be described in the following.

Spike Timing Dependent Plasticity (STDP)

Long term synaptic plasticity is modeled by an implementation of STDP within each synapse.
It is based on the biological mechanism as described in [BP97, SMA00]. Synaptic plasticity
is herein realized in a way that each synapse measures the time difference ∆t between pre-
and postsynaptic spikes. If ∆t < 0, a causal correlation is measured (i.e. the presynaptic signal
contributed to an output spike of the according neuron) and the synaptic weight is increased de-
pending on a modification function. For acausal correlations the synaptic weight is decreased.
The change of the synaptic weight for each pre- or postsynaptic signal is expressed by a fac-
tor 1 + F(∆t). F is called the STDP modification function and represents the exponentially
weighted time difference ∆t. It is defined as follows:

F(∆t) =

{
A+ exp(∆t

τ+
) if ∆t < 0 (causal)

−A− exp(− ∆t
τ−

) if ∆t > 0 (acausal)
(1.3)

1.2.2 Terminology

Two terms regarding neural activity, which will be used throughout the thesis, shall be defined
in this section: spike train and firing rate

Spike Train

According to the definition in [DA01] action potentials are typically treated as identical stereo-
typed events or spikes, although they can vary somewhat in duration, amplitude, and shape.
Ignoring the brief duration of an action potential (about 1 ms), a sequence of action potentials
can be characterized simply by a list of the times when spikes occurred. Therefore, the spike
train of a neuron i is fully characterized by the set of firing times

Fi = {t(1)
i , ..., t(n)

i } (1.4)

where t(n)
i is the most recent spike of neuron i. Figure 1.2 illustrates the activity recorded (the

spike trains) from 30 arbitrarily selected neurons within the visual cortex of a monkey.

Firing Rate

Considering the large number of neurons in the brain it is nearly impossible to evaluate every
single spike with respect to its exact timing. On this account, it has traditionally been thought
that most, if not all, of the relevant information was contained in the mean firing rate of the
neuron which is usually defined as a temporal average. Within a time window T = 100 ms or

10 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

Figure 1.2: Spatio-temporal pulse pattern. The spikes of 30 neurons (A1-E6, plotted along the vertical
axes) out of the visual cortex of a monkey are shown as a function of time (horizontal axis, total time is
4 seconds). The firing times are marked by short vertical bars. The grey area marks a time window of
150 ms. Within this time, humans are able to perform complex information processing tasks, like face
recognition. Figure taken from Krüger and Aiple [KA88].

T = 500 ms the number of occurring spikes nsp(T) is counted. Division by the length of the
time window gives the mean firing rate

f =
nsp(T)

T
(1.5)

in units of s−1 or Hz. More definitions of firing rates can be found in [DA01], where the
firing rate is approximated by different procedures, e.g. by using a Gaussian sliding window
function. To evaluate the performance of the event processing techniques introduced within
this thesis, the definition in equation 1.5 will be used.

Note that it cannot be all about firing rates. The boxed grey area in figure 1.2 denotes
T = 150 ms and obviously no mean firing rate can be given for this time window. Nevertheless
is the brain capable of performing tasks like face recognition already within this time span.
Consequently, the spatio-temporal correlation of the single spikes has to be considered when
modeling a nervous system. While this is fulfilled by fact for the integrate-and-fire model
itself, it is important to keep in mind that the underlying event transport mechanisms need
to provide transport latencies that preserve the latencies introduced by biological synaptic
connections.

1.2.3 Expected Neural Network Dynamics

The aim to model biological neural systems with dedicated hardware on the one hand requires
the selection of a specific model which has been described in the preceding section. On the

1.2. THE UTILIZED INTEGRATE-AND-FIRE MODEL 11

other hand, the communication of neural events within the system has to be considered. In
the selected model spikes are communicated as digital pulses between the neurons. The de-
velopment of appropriate communication channels requires the knowledge of spike rates that
are to be expected and other temporal constraints that arise from the topology of the biological
system. Three items are selected to serve as basic constraints for the work presented within
this thesis. Regarding spike rates neurons being in a high-conductance state and synchronized
behavior of neural networks are selected to account for average and peak spike rates. Further-
more, connection delays observed in nature are taken as a minimum delay constraint for the
different communication channels.

The High-Conductance State

The term high-conductance state describes a particular state of neurons within an active net-
work, as typically seen in vivo, such as for example in awake and attentive animals. A single
neuron is said to be in the high conductance state, if the total synaptic conductance received
by the neuron is larger than its leakage conductance. First in vivo measurements proving the
existence of the high-conductance state have been performed by Woody et al. [WG78]. In a
review paper by Destexhe et al. [DRP03] the mean firing rate fhc of a neuron being in the high
conductance state is found to be:

5Hz < fhc < 40Hz . (1.6)

Synchronized Behavior

Synchronized behavior is used in this context to describe the coherent spike generation of a
set of neurons. Periodic synchronization has been observed within simulations by E. Mueller
[MMS04] at a rate of 5− 7 Hz within a network of 729 neurons. Stable propagation of syn-
chronized spiking has been demonstrated by Diesmann et al. also by means of software simula-
tions [DGA99]. To estimate the consequences of this behavior on the transport of the digitized
events within a digital network (cf. chapter 3), the synchronized behavior is modeled within
this thesis using a rate-based approach2. For a set of neurons, an average firing rate fav is
assumed for the time toff in between the synchronized spikes and a firing rate of fpeak during
synchronized spiking, which lasts for ton. The values for fpeak and ton will be chosen in a way
that the neuron generates at least one spike within ton.

Connection Delays

The connection delay between two biological neurons comprises the signal propagation delay
along the axon of the neuron and the delay through the synapse with the subsequently con-
nected dendrite. Depending on the spatial structure of a neural network, the delay between
different neurons varies with their relative distance. A physical model that is based on analog
VLSI circuits and the transport of digitized events, exhibits the same behavior and its delay
should be tunable to reflect the biological values.

Specific delay values strongly depend on the spatial structure of the simulated network, i.e.
the benchmark for the hardware model. On the one hand, minimum delay values for synaptic
transmission of 1–2.5 ms have for example been observed during in vitro measurements of
the rat’s cortex by Schubert et al. [SKZ+03]. On the other hand, during software simulations

2Spikes are generated with a probability p at a point in time. p is the average firing rate per unit time. Spike
generation is uncorrelated to previous spikes (intervals are poisson distributed).

12 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

commonly used delay values are in the range of 0.1–1.5 ms for networks with a size of approx-
imately 103 neurons [Mul06]. As a consequence of these figures, it can be said that hardware
simulated delays should continuously cover possible delay values from approximately 0.1 ms
upwards. Considering a speed-up factor of 105 for the hardware, this yields a minimum delay
requirement of approximately 1 ns.

1.3 VLSI Implementation

We will now have a closer look at the actual implementation of the network model in analog
VLSI hardware. It has already been stated in the previous section that parts of the circuits
have already been published. However, a concise description of the whole model and espe-
cially of the neuron and synapse circuits is in preparation by Dr. J. Schemmel et al. and will
therefore be omitted here. The following qualitative description is intended to give an outline
of what served as a basis for the concepts developed, and the ASIC design that has been done
throughout this thesis work.

1.3.1 Neuron Functionality

The operating principle of the neuron and synapse circuits is shown in figure 1.3. Circuits
for synaptic short term plasticity are located within the synapse drivers and are omitted for
simplicity. The circuits implementing STDP are located within each synapse and implement
equation 1.3 all in parallel. They are also omitted for reasons of simplicity. The circuit topol-
ogy is an array of synapses where every column of synapses connects to one neuron circuit.
Each neuron circuit contains a capacitance Cm that physically represents the cell membrane
capacitance. Three conductances model the ion channels represented by the three summands
in equation 1.1. The reversal potentials El, Ex and Ei are modeled by voltages that are common
for groups of several neurons each. This is the same for the threshold and the reset voltages
Vth and Vreset. The membrane leakage current is controlled by gleak which can be set for each
neuron.

Vin Iout

Vin

Iout

excitatory

inhibitory

synaptic
weight ram

e/i

IoutIout

Vmax

trise tfall

Vout

spike in

4-input mux

synapse driver

synapse

neuron

Iin spike out

El Ex Ei
gleak g (Ix)x g (Ii)i

Cm Vreset

Vth
x i

Figure 1.3: Block diagram of the neuron and synapse functionality in
the analog VLSI implementation. Figure taken out of [SGMM06].

1.3. VLSI IMPLEMENTATION 13

In biological systems the synapse conductances are controlled by a chemical process within
each synapse. In contrast to this, the analog VLSI implementation follows a different ap-
proach: the synapses produce a current output and the conductances are separately controlled
for all excitatory and all inhibitory synapses at once. Two conductances, gx(Ix) for the excita-
tory and gi(Ii) for the inhibitory synapses, are located within the neuron. Thereby the current
generated by the active synapses within the array is summed to an excitatory sum Ix and an
inhibitory sum Ii. Two wires exist in each column to collect these current sums. The type of
synapse can be set row wise and the synapses of one row all add their output current to the
same wire.

The spike generation process is triggered by a comparator that compares the membrane
voltage with the threshold voltage. If a spike is generated, the membrane is pulled to the
reset potential for a short period of time which hyper-polarizes the membrane in accordance
with the integrate-and-fire model. In contrast to biology, the axon of the neuron is electrically
isolated from the membrane and carries a digital pulse after the spike has been generated. The
comparator is tuned in a way that its dependency on the derivative of the membrane voltage
makes its behavior resemble that of the Hodgkin-Huxley model [SMM04].

1.3.2 Synapse Functionality and Connectivity

Due to the array structure, the number of synapses determines the area demand of the VLSI
implementation. The size of a single synapse is therefore kept small by relocating some of its
functionality into the row drivers that are placed at the left edge of the array, as illustrated in
figure 1.3. As a result, the presynaptic signal is common for one synapse row and all associated
neurons simultaneously receive the postsynaptic signals generated by the different synapses.
The connectivity inside the array is illustrated in figure 1.4: presynaptic signals are shown as
dotted lines and are horizontally routed through the array. Synapses are drawn as spheres and
connect the presynaptic signal to the postsynaptic signal within each column. The postsynaptic
signals use dashed arrows and are vertically routed to the neuron below. Only one of the two
wires for Ix and Ii is displayed for simplicity.

125 126 127column#

post-synaptic signals to neurons

pre-synaptic signals from synapse drivers

neuron outputs to synapses and synapse drivers

s
y
n
a
p
s
e

d
ri
v
e
rs

neurons

Figure 1.4: Connection scheme used within the synapse array. A cutout of rows 125 to 127 is shown,
which have been selected arbitrarily. Figure adapted from [SMM04].

The axon of the neuron is routed back into the array. On the one hand this allows the STDP
circuits within the synapses to measure the time distance between the presynaptic and the
postsynaptic signal. On the other hand, a horizontal line in each row connects the neuron with
the corresponding number (the connection points are set on the diagonal of the array) to the

14 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

synapse driver at the edge. The input to the synapse driver can be selected out of this signal
or three different external sources which is denoted by the 4-input multiplexer in figure 1.3.
Further details regarding this connectivity will be given in section 4.2.2.

The synapse driver converts a digital spike to a triangular voltage slope with adjustable
rise and fall time and adjustable peak voltage. This ramp is converted to a current slope with
exponential onset and decay by a current sink within each synapse. The current sink consists
of 15 n-type metal oxide semiconductor (NMOS) transistors and the overall strength of the
synaptic current is controlled by a 4 bit static weight memory within each synapse. Depending
on the stored weight, the according number of transistors are activated and add to the synaptic
current. As a result, the synaptic weight can be set with a resolution of 4 bit. A control line
connected to the synapse driver sets the complete row to add its current to the excitatory or the
inhibitory line.

The storage of the synaptic weight within a digital memory requires a larger area than
capacitance based solutions which have been used within a previous ASICs developed within
the Electronic Vision(s) group [SMS01, SHMS04]. Digital weight storage within each synapse
has still been chosen for two reasons:

• The need for a periodic refresh of the capacitively stored weight introduces a significant
communication overhead over the external interface of the chip.

• The implementation of STDP within the chip requires the modification of the synaptic
weights depending on their current value. Weights that have been modified by the STDP
algorithm cannot be reflected by an external memory without transmitting the modified
weight off chip.

1.3.3 Operating Speed and Power Consumption

Operating Speed of the Model The analog VLSI model aims to complement software sim-
ulations and digital model implementations. To justify this demand, the realization in silicon
is designed such that it makes good use of the available resources in terms of area and speed.
Many of the implemented silicon devices (transistors, capacitors, etc.) are close to the mini-
mum size geometry. As a result, almost 100,000 synapses and 384 neurons fit on one die (cf.
section 4.2). The small size results in low parasitic capacitance and low power consumption.
Furthermore, the scaling of capacitances, conductances and currents leads to time constants
in the physical model which lead to a speed-up factor of 105 for the model time compared to
biological real time, i.e. 10 ns of model time would equal 1 ms in real time. The possibility to
adjust parameters like rise and fall time of the synaptic current, membrane leakage current and
the threshold comparator speed allow for a scaling of this factor within one order of magnitude
resulting in a speed-up of 104 to 105.

Power Consumption According to [SMM04] the static power consumption of one neuron
is about 10 µW. It is mainly caused by the constantly flowing bias currents and the membrane
leakage. This low power density demonstrates the advantage of a physical model implemen-
tation compared to the usage of standard microprocessor for digital simulations. The power
dissipation even of large chips with 106 neurons will only reach a few Watts.

No definite value for the overall power consumption of the spiking neural network model
can be given, because the synapse circuits do only consume power during spike generation.
However, a good approximation of the maximum power consumption is to calculate the dy-
namic power consumption of the maximum number of synapses that may be active, simultane-

1.3. VLSI IMPLEMENTATION 15

ously at an average firing rate which reflects the maximum expected rate. A rough estimation
will be given in section 4.4.3.

1.3.4 Network Model and Potential Topologies

The network model is based on the transport of digital spikes from one neuron to multiple
destination neurons reflecting the fan out of the axon of the biological neuron to the dendrite
trees of several destination neurons. Thanks to the digital nature of the spike, the transmission
may take place over large physical distances, also to neurons located on different chips.

One possibility to transmit digital neural events is to use an address event representation
(AER) protocol. An address defining the neuron is asynchronously transmitted together with
an enable signal within this protocol which is for example used in VLSI spiking neural net-
works that operate in real time developed by Douglas et al. [OWLD05, SGOL+06]. Problems
arise for the presented model due to the asynchronous nature of this protocol: if an accuracy
of less than 0.1 ms biological real time is desired for the spike transmission, a maximum skew
of about 1 ns on an AER bus would be required which is not feasible within large VLSI arrays
or between several chips. For this reason, events that are to be transported off chip leave the
continuous time domain and are digitized in time. The digitization process is described in the
following section which also gives an overview of the overall analog VLSI implementation.

The following network topologies can be realized with this model: in principle, a digitally
generated spike can be duplicated any number of times and then be distributed to the synapse
drivers located on several chips. Each synapse driver provides the fan out of its associated
synapse row. Neglecting the signal propagation delay within the row, the axonal connection
delay is the same for all target neurons within one row. One of the two goals of the presented
thesis is the development of a communication protocol and the according hardware which
together enable this event transport between different chips. This concept will be described in
chapter 3.

1.3.5 Overview of the Implementation

A block diagram of the VLSI implementation of the physical model is shown in figure 1.5.
The central synapse array is organized in two blocks, each containing 192 × 256 synapses.
Each synapse consists of its four bit weight memory, the according digital-to-analog converter
(DAC) and the current sink that produces the desired output slope. Furthermore, each synapse
contains circuits measuring temporal correlations between pre- and postsynaptic signal, that
are used for long term synaptic plasticity, e.g. STDP. Synapse control circuitry and the cor-
relation readout electronics have digital interfaces that are part of an internal data bus that is
connected to synchronous digital control logic.

The process of spike generation within the neuron has already been described in the pre-
ceding sections. Digital spikes generated by the neurons are not only fed back to the synapse
drivers but are also digitized in time to be transported off chip. The digitization happens with
respect to a clock signal and involves several steps: the spiking neuron is identified by an
asynchronous priority encoder that transmits the number (address) of the neuron to the next
stage. If more than one neuron fires within one clock cycle, the one with the highest priority3

is selected and transmitted within that cycle. In the following cycle, the number of the next
neuron is transmitted and so on.

3The priority is determined by the address of the neuron. Lower address means higher priority.

16 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

correlation readout

o
u

tp
u

t
b

u
ff
e

rs

3
8
4

m
e
m

b
ra

n
e

v
o
lt
a
g
e

b
u
ff
e
rs

synapse ram control

2 x 192 x 256 synapses

le
ft

s
y
n
a
p
s
e

d
ri
v
e
rs

ri
g
h
t
s
y
n
a
p
s
e

d
ri
v
e
rs

384 neurons

asynchronous priority encoder

time-to-digital converter

d
ig

it
a
l-
to

-t
im

e
c
o
n
v.

external interface

2
9

6
7

b
ia

s
cu

rr
e

n
t
m

e
m

o
ri
e

s
a

n
d

6
4

b
ia

s
vo

lta
g

e
g

e
n

e
ra

to
rs

1
0

B
it

D
A

C

weight
RAM

DAC

controlled
conductance

correlation
measurement

synchronous digital control

p
re

-p
o
s
t

p
o
s
t-

p
re

48 to 1 mux

DLL

digital part

d
ig

it
a
l-
to

-t
im

e
c
o
n
v.

Figure 1.5: Block diagram of the analog VLSI implementation of the physical model. Figure adapted
from [SMM04].

Two actions are carried out by the time to digital converter (TDC): on the one hand, it
registers the number of the selected neuron to synchronize it to the clock signal. The stored
value is the first part of the digitized event’s data, the address. On the other hand, the TDC
measures the point in time of the spike onset. This is done by means of a delay-locked loop
(DLL) dividing one clock cycle into 16 equally spaced time bins. If two neurons fire within
one clock cycle, the second spike will thus have a maximum error of one clock period. In
addition to the time bin information, a system time counter synchronous to the digitization
clock is required. Its value during the digitization process completes the time stamp of the
event and thus the event data. Digitized events are forwarded by digital control logic to be sent
off the chip.

The process of external event generation is initiated by sending an event to the digital con-
trol logic. The event data consequently consists of an input synapse address and a time stamp
which itself consists of the system time and the time bin information. The digital control logic
delivers the event within the desired system time clock cycle to the spike reconstruction cir-
cuits. These contain an address decoder and a digital to time converter (DTC), which operates
based on the same DLL as the TDC. A digital pulse is generated at the input of the addressed
synapse driver within the according time bin.

To account for the high speed-up factor of the model, the event generation and digitization
circuits are designed to operate at clock frequencies of up to 400 MHz. Thus, the precision of

1.3. VLSI IMPLEMENTATION 17

the time measurement theoretically will reach at best 156 ps which equals 1/16 of the clock
period. In biological time, this results in an accuracy of 15.6 µs.

No two biological neurons or synapses are alike. Different surroundings, different physical
size and connectivity lead to varying properties like the membrane capacitance, the leakage
currents or differences in the synaptic behavior. The implementation of the model by means of
analog VLSI has similar implications: no two transistors or generally no two analog devices
are alike. While this deems desirable, it should still be possible to tune model parameters as to
mimic a specific behavior and furthermore to eliminate drastic differences which may occur
due to mismatching of two circuits. The behavior of analog circuits can be tuned by means
of bias voltages or currents or other parameter voltages. This is done by a DAC that connects
to different current memory cells and parameter voltage generators storing parameters like
the leakage conductance or the reversal potentials. A more precise description of the param-
eter generation will be given in chapter 4 and a complete list of parameters can be found in
appendix C.

18 CHAPTER 1. ARTIFICIAL NEURAL NETWORKS

Chapter 2

System on Chip Design Methodology

The implementation of full custom analog electronics in contrast to the design
of digital ASICs is commonly carried out using different design methodolo-
gies. The key aspect covered within this thesis is the implementation of analog
VLSI circuits comprising several millions of transistors together with high-
speed digital logic into one mixed-signal ASIC by the usage of a customized,
automated design flow. This chapter describes this design flow, whereas the
actual implementation and the properties of the ASIC are covered in chapter
4. The necessary data preparation needed for the logical synthesis and the
physical integration is described followed by a general outline of the logical
synthesis process. For the physical implementation, Cadence First Encounter
is used and besides the common implementation process, developed strategies
for the system integration and the implementation of high speed digital inter-
faces are described. As a result, the analog electronics introduced in chapter
1 are seamlessly integratable together with the digital logic detailed in the fol-
lowing chapters. The verification process, including timing closure and physi-
cal verification, closes the chapter.

Generally, the process of designing an ASIC can be divided into two phases called the front
end which is the starting point of the design process, and the back end where the physical
implementation is carried out. Concerning digital logic, the front end design starts with a
behavioral description of the ASIC using a high-level hardware description language, such
as Verilog or VHDL4. The following digital circuit synthesis involves the translation of the
behavioral description of a circuit into a gate-level netlist comprising generic logic gates and
storage elements. For the physical implementation, these generic elements need to be mapped
to a target technology. This technology consists of a library of standard logic cells (AND, OR,
etc.) and storage elements (flip-flops, latches) that have been designed for a specific fabrication
process. This mapped gate-level netlist serves as a starting point for the digital back end.

4Very High Speed Integrated Circuit Hardware Description Language.

19

20 CHAPTER 2. SYSTEM ON CHIP DESIGN METHODOLOGY

Within a purely analog design process, the front end consists of the initial schematic5 cap-
ture of the circuit. It is tuned and optimized towards its specifications by means of analog
simulations. The final schematic subsequently serves as a basis for the physical implementa-
tion using the back end.

The back end in general involves the physical implementation of the circuit, be it analog or
digital. It consists of an initial placement of all components followed by the routing of power
and signal wires. The mixed-signal design process described within this chapter allows for the
automated integration of complete analog blocks into one ASIC together with digital logic in
the back end process.

Different, commonly rather generic design flows for purely digital and even mixed-signal
ASICs are available through the online documentation of the design software vendor [Cad06b]
or are available in text books (see for example [Bha99]). However, the implementation of
large mixed-signal ASIC or system on chip (SoC)6 requires the development of non-standard
solutions throughout a design flow, due to the special demands that arise from the (in many
cases) proprietary interfaces and block implementations.

The novel aspect of the presented flow is the automatic integration of complete, fully analog
VLSI designs together with high speed digital logic into one ASIC. To integrate both analog
and digital circuits, the following approach is used: The analog circuits are divided into func-
tional blocks (later referred to as analog blocks) that together form the analog part of the
chip. A top-level schematic for the analog part is drawn which interconnects these blocks and
contains ports for signals needed for digital communication or off-chip connections. The de-
veloped scripts enable the digital back end software to import this analog top-level schematic
together with the digital synthesis results. By partitioning the design into an analog and a dig-
ital part, each part is separately physically implemented using different sets of rules. The final
chip assembly which involves the interconnection of analog and digital part, connections to
bond pads, final checks and the functional verification finishes the design. It is done together
for both, analog and digital circuitry, by a common set of tools.

The design flow is illustrated in figure 2.1 as an initial reference. In the following section,
some prerequisites are introduced to clarify the terminology used throughout this chapter. The
subsequent description of the design flow will intermittently refer to figure 2.1.

2.1 Prerequisites

Two very basic concepts of digital design are explained to clarify the strategies described later
on. Following this, the data necessary for the implementation of hierarchical blocks using an
automated design flow is explained. While this data is commercially available for the digital
design, the corresponding analog design data is generated by a set of scripts which have been
developed throughout the presented work.

2.1.1 Digital Design Fundamentals

Static Timing Analysis The static timing analysis (STA) allows for the computation of the
timing of a digital circuit without requiring simulation. Digital circuits are commonly charac-
terized by the maximum clock frequency at which they operate which is commonly determined
using STA. Moreover, delay calculations using STA are incorporated within numerous steps

5Schematic will be used as the short form of schematic diagram, the description of an electronic circuit.
6System on chip design is an idea of integrating all components of an electronic system into a single chip. It

may contain digital, analog and mixed-signal functions.

2.1. PREREQUISITES 21

Place & Route
First Encounter

synth_top.v

Synthesis
Synopsys

GDSII pnr_top.v

macro inst.
Verilog

RTL
Verilog

sim. model

abstract

timing lib

timing constr.

SPICE
netlist

abstract

full custom
layout schematic

GDSII

Cadence
Virtuoso

GDSIIGDSII

LVS DRC

submission

timing constr.

Simulation
NCSIM

Simulation
NCSIM

Simulation
NCSIM

STA
PrimeTime

STA
PrimeTime

floorplan,
create partitions

analog
implementation

digital
implementation

unpartition

FE design flow

analog front & back end

Figure 2.1: Illustration of the developed design flow for the implementation of large mixed-signal
ASICs. Solid arrows denote subsequent steps in the flow. Dashed arrows show dependencies on input
data and constraints.

throughout the (SoC) design process, such as logic synthesis and the steps performed during
physical implementation in the digital back end. The speed-up compared to a circuit simu-
lation is due to the use of simplified delay models and the fact that its ability to consider the
effects of logical interactions between signals is limited [Bha99].

In a synchronous digital system data is stored in flip-flops or latches. The outputs of these
storage elements are connected to inputs of other storage elements directly or through com-
binational logic (see figure 2.2). Data advances on each tick7 of the clock and in this system
two types of violations are possible: a setup violation due to the signal arriving too late to be
captured within the setup time tSU before the clock edge. Or a hold violation due to the signal
changing before the hold time tHD after the clock edge has elapsed.

The following terms are used throughout the design flow in conjunction with STA:

7The flip-flops may be triggered with the rising, the falling or both edges of the clock signal.

22 CHAPTER 2. SYSTEM ON CHIP DESIGN METHODOLOGY

C

D Q

C

D Q
combinational

logic

clk

D1 Q1 D2

Q2

Figure 2.2: Illustration of a synchronous digital system. Ideally, the
clock signal clk arrives simultaneously, data is delayed by the clock to
output time Tco and the delay through the combinational logic.

• The critical path is defined as the path between an input and an output with the maxi-
mum delay. It limits the operating frequency of a digital circuit.

• The arrival time is the time it takes a signal to become valid at a certain point. As
reference (time 0), the arrival of a clock signal is often used.

• The required time is the latest time at which a signal can arrive without making the clock
cycle longer than desired.

• The slack associated with a path between two storage elements is the difference between
the required time and the arrival time. A negative slack implies that the circuit will not
work at the given clock frequency.

clock signal

according
data signals

tSU tHD

data valid
window

Figure 2.3: Timing specification for the source synchronous HyperTransport interface
[Hyp06]. To maximize the data valid window, tSU and tHD are to be maximized.

Source Synchronous Data Transmission In contrast to synchronous digital systems, where
one clock is distributed to all components of the system, in a source synchronous system a
corresponding clock signal is transmitted along with the data signals. Source synchronous data
transmission is commonly used for high-speed physical interfaces such as the HyperTransport
interface [Hyp06] or the double data rate SDRAM (DDR-SDRAM) interface [Mic02]. Source
synchronous interfaces are point-to-point connections where only the relative timing of the
clock signal and the corresponding data signals need to be specified. One advantage is that
these signals may be routed throughout the system with equal delay and no care has to be taken
about the clock distribution to other parts of the system as in synchronous systems. Moreover,
the circuits generating clock and data signals are located on one die. As a consequence, delay

2.1. PREREQUISITES 23

experienced by the data through a device tracks the delay experienced by the clock through
that same device over process variations. Figure 2.3 illustrates the timing specified for the
HyperTransport physical interface which is implemented in the presented chip.

2.1.2 Required Technology Data

The technology data needed for the integration of analog blocks using the digital back end is
described in this section.

The Standard Cell Library The standard cell library consists of a set of standard logic el-
ements and storage elements designed for a specific fabrication process. The library usually
contains multiple implementations of the same element, differing in area and speed, which
allows the implementation tools to optimize a design in either direction. Basis for each stan-
dard cell is an analog transistor circuit and the corresponding layout. To make use of this cell
for a digital design flow, it is characterized regarding its temporal behavior on the pin level
and its physical dimensions. A behavioral simulation model written in a hardware description
language (HDL), the timing information and the physical dimensions are stored within sep-
arate files that together define the standard cell library. The integration of analog blocks as
macro cells that are to be placed and routed using primarily digital back end tools requires the
availability of this very data.

The Technology Library A technology library describing standard cells contains four types
of information (the format introduced by Synopsys is used and a complete description of the
technology library format is given in [Syn04b]):

• Structural information. Describes the connectivity of each cell to the outside world,
including cell, bus, and pin descriptions.

• Timing information. Describes the parameters for pin-to-pin timing relationships and
delay calculation for each cell in the library. This information ensures accurate STA and
timing optimization of a design.

• Functional information. Describes the logical function of every output pin depending
on the cell’s inputs, so that the synthesis program can map the logic of a design to the
actual ASIC technology.

• Environmental information. Describes the manufacturing process, operating tempera-
ture, supply voltage variations, all of which directly affect the efficiency of every design.

For the implementation of analog blocks only the structural information and the timing infor-
mation are important. The environmental information is predefined by the vendor within the
standard cell library and functional information is not required as the block is to be imple-
mented as-is and no optimization is to be performed on it.

Different delay models are available for the description of the timing. Two commonly used
ones are the CMOS linear and the CMOS non-linear delay models. For cells with a straight
forward functionality like standard cells there are tools available8 that automatically character-
ize the cells using methods described for example in [SH02]. If no automatic characterization

8No such tools are available at the Kirchhoff Institute. One example is SiliconSmart from Magma.
(http://www.magma-da.com)

24 CHAPTER 2. SYSTEM ON CHIP DESIGN METHODOLOGY

a)

pin(clk400) {
clock : true ;
max_transition : 0.15 ;
direction : input ;
capacitance : 0.319 ;

}

b)

PIN clk400
DIRECTION INPUT ;
USE CLOCK ;
PORT
LAYER ME2 ;
RECT 10.03 0.01 10.31 0.29 ;
END

END clk400

Figure 2.4: a) Description of a clock pin using the Synopsys Timing Library Format and the linear
delay model. b) Geometric description of the same pin using LEF.

tool is available, the linear model should be used. Therein the delay through a cell or macro is
calculated based on the transition time of the input signal, the delay through the cell without
any specific load and the RC-delay at the corresponding output that results from the output
resistance of the cell’s driver and the capacitive load [Syn04b]. The intrinsic cell delay as well
as the output resistance can be obtained by means of analog simulations. Values obtained this
way are then embedded as timing information into a technology library. Several technology
libraries are usually made available to reflect the best, worst and typical fabrication process
variations. Figure 2.4 a shows a very simple example for the definition of a clock pin using the
linear delay model.

The Abstract View The layout data of an analog block cannot directly be used by the digital
back end. Therefore, for the physical implementation, an abstract view is generated which
reduces the analog layout to a block cell like it is the case for the cells within the standard cell
library. The abstract view provides information like the cell name or its boundary. Pin names,
locations, metal layers, type and direction (in/out/inout) are included and besides the pins the
locations of all metal tracks and vias in the layout are included as obstructions. The abstract
view is generated in the Cadence analog environment using the Cadence Abstract Generator.
It is then converted to a text file in library exchange format (LEF) which is being read by
the digital back end. An example for the LEF syntax is shown in figure 2.4 b. Obviously
this text file becomes very large if all metal geometry of an analog VLSI block completely
would be included. Especially inside analog VLSI blocks this information is surplus. The
amount of information is reduced by merging small geometries (in the order of magnitude of
the minimum width) to few large obstructing geometries. Merging is done in two ways:

• Use the resize option provided by the software. All geometry data is first being widened,
closing small gaps and then shrunk, thereby leaving over only coarse geometries.

• Many overlapping shapes exist after this process and to further reduce the amount of
data, these shapes are automatically merged by scripting the Virtuoso layout environ-
ment.

Pins are generated automatically within the abstract view at locations labeled accordingly
within the layout. To support non-quadratic or rectilinear pin geometries, the developed scripts
support so called shape pins9 that override the automatically extracted pin information. This is
especially useful for the generation of multiple connections to large power grids or connections
to heavily loaded signal pins requiring a wide metal routing. To ease pin access for the router,
the pins are preferably to be placed near the cell boundary.

9This is a geometry that s natively supported by the layout tool.

2.2. DESIGN DATA PREPARATION 25

2.2µm

5
.0

4
µ

m

268µm

6
8
µ

m

Figure 2.5: Layout view of a standard cell inverter compared to the layout of an analog block. The
inverter is comparably easy to access by an automated router, because only one metal layer is occupied
by its layout. In contrast, care has to be taken to retain this accessibility at the complex layout of the
multi-metal layered analog block to keep the automatic integration feasible.

On its left side, figure 2.5 shows the standard cell implementation of an inverter compared to
the layout of an exemplary selected analog block (it is the block containing both the DTCs and
the TDCs). The standard cell is designed to occupy only one metal layer and to have end-to-
end rails for power connections at the top and the bottom side. Pins can easily be connected by
an automatic router by directly connecting to one of the pins from the second metal layer. Five
of the six metal layers available in the utilized United Microelectronics Corporation (UMC)
fabrication process are available for routing. In contrast to this, the analog block has many pins
distributed on different metal layers over the whole area. To still enable an automatic router to
connect to these pins, it has to be ensured that they are accessible from at least one direction.

The Technology LEF File The process details relevant to the digital back end are specified
in this text file. Preferred routing directions are defined for the different metal layers within
this file10 as well as minimum metal wire width and routing pitch, physical parameters like
thickness and sheet resistance, slotting and antenna rules, and rules for the via generation
among the layers. According to these rules, the router performs routing at minimum width and
pitch. Analog nets that require wider spacing or wider metal, require the manual specification
of non-default rules additional to the standard rules. These non-default rules at least include the
redefinition of the routing width, the spacing and the via generation - for reasons of simplicity,
the reader may refer to the LEF language reference for details [Cad05a].

2.2 Design Data Preparation

The following paragraphs will briefly describe the steps that are taken from data preparation
to the final submission of the layout data to fabrication according to figure 2.1.

Analog Design Data The analog design includes the schematic capture and the physical
layout of the macro blocks using the Cadence Virtuoso and AMS Designer platform. Each
block is designed by hand and a physical check including design rule check (DRC)11 and
layout versus schematic (LVS)12 is performed. The blocks may comprise small building blocks

10Routing direction is either horizontal or vertical. The router tries to route wires in the preferred direction first
and only routes short segments in the other direction.

11Checks for geometric errors.
12Verifies the matching between devices in the layout and the schematic.

26 CHAPTER 2. SYSTEM ON CHIP DESIGN METHODOLOGY

as for example single neuron or synapse circuits. In the case of the presented chip, VLSI blocks
are implemented that already contain the connections among these small building blocks.

To integrate a whole set of analog blocks including their interconnections automatically,
the library data and abstract view described in the preceding section and a Verilog netlist are
required. This netlist is generated by the following steps:

• Create a schematic of the whole analog part including block interconnections and re-
quired ports.

• Create empty behavioral descriptions of the analog blocks including only port descrip-
tions. These are needed for correct instantiation and are generated automatically.

• Make use of the netlisting functionality provided by the Cadence AMS Designer suite
and create a Verilog netlist only consisting of the block instances. This is done script
based within the presented flow to avoid errors after design changes.

Digital Design Data The digital design includes the RTL13 or behavioral description of the
digital part of the chip. Above all it includes the very top-level of the hierarchical design that
is to be implemented using the proposed SoC design methodology. This top-level module is a
Verilog netlist with ports representing physical pins of the chip instantiating digital and analog
top-level modules (of course, several are possible). No glue logic must be used at this level
as it only defines the connectivity and no optimization by the digital front end or back end is
performed.

For top-level verification purposes, the top-level module may be integrated into different
simulation testbenches, be it behavioral or RTL descriptions of the controller, and simulated
using either Cadence NCSIM for mixed-signal simulations or Mentor Graphics ModelSim for
solely digital simulations14. If digital macros like memory arrays are present in the design, the
according library data has to be available before proceeding with the flow.

2.3 Logic Synthesis and Digital Front End

The task of the digital front end is to transform the RTL or behavioral description of an ASIC
into a gate-level netlist. This process is called synthesis. After the initial translation into a
netlist consisting of generic logic functions and storage elements (compile phase), this netlist
is then mapped to the target technology using the elements available in the standard cell library
(mapping phase). The design is then optimized for area, speed and design rule violations like
maximum transition time or maximum capacitance violations (optimization phase). Especially
the timing optimization requires the definition of consistent constraints to the software tools.
Synopsys Design Compiler is used for the digital front end within this flow [Syn04a]. The tim-
ing constraints are defined using the tool command language (TCL) syntax which is supported
by all other software throughout the flow that requires the specification of timing constraints
for the design. This ensures consistent STA results at every stage of the flow.

The synthesis is divided into two major steps within the presented design flow. First, the
digital part is synthesized and optimized to meet its timing requirements. The correct spec-
ification of the timing is crucial for the correct functionality of the synthesized netlist. The
periods of all clock signals need to be specified, thereby defining the maximum delay between

13Register Transfer Level: coding style that describes registers using a hardware description language.
14Analog blocks are treated as black boxes using only the empty modules in this case.

2.4. DIGITAL BACK END AND SYSTEM INTEGRATION 27

two clocked elements. Apart from these synchronous constraints, asynchronous paths have to
be identified and constrained with minimum or maximum delay, whichever is appropriate. To
avoid unnecessary optimizations, paths that do not underly any timing constraints are marked
manually as well. In a second step, the digital netlist obtained in the first step is combined
with the analog netlist to form the top-level netlist of the chip. Only interface signals between
analog and digital modules are optimized during this step.

The top-level netlist is evaluated for timing problems using Synopsys PrimeTime and a
functional verification is performed using the simulation tools ModelsSim or NCSIM, de-
pending on the setup of the testbench. The purpose of the verification at this stage of the
flow is to identify faulty timing constraints that lead to incorrect implementations. The final
implementation is subject to the digital back end.

2.4 Digital Back End and System Integration

For the digital back end and the system integration, Cadence SoC Encounter is used. This
software provides a complete hierarchical design solution, including features like floorplan-
ning and virtual prototyping, hierarchical partitioning and block placement, logic optimiza-
tion, timing optimization, signal wire and power routing, geometry verification, connectivity
and process antenna verification and the generation of stream data (GDSII15). During the phase
called virtual prototyping, it is possible to estimate the design’s performance very quickly by
means of a fast trial-route algorithm, a built in RC-extraction and delay calculation algorithm,
and a built-in STA algorithm. As SoC Encounter can be run in batch mode, the whole back
end flow has been set up using scripts that are executed from within a make file. Reports are
written at each step of the flow and the design process is fully reproducible.

2.4.1 Design Import and Partitioning

Apart from the data that is supplied by the standard cell vendor like LEF data and technology
libraries for I/O cells and standard cells, the following data has to be generated respectively
specified and imported into First Encounter:

• The synthesized gate-level netlist of the chip (output of digital front end).

• Consistent LEF data for the standard cells, digital macros and the analog blocks as well
as the according technology library information. Besides the LEF and technology data
for the standard cells, the same data has to be available for I/O cells that are to be used
for the pad connections of the chip. These cells are also supplied by the standard cell
vendor.

• A timing constraint file. The constraint file used by the digital front end is included
by this file to ensure the usage of identical constraints. Moreover, constraints that only
apply to the back end can be given here.

• A capacitance table file which serves as a basis for the RC calculations. This file is
comprised of metal-metal capacitances and resistances for various configurations which
are stored within look-up tables (LUTs). This file has to be generated separately and
can have different levels of accuracy (the lower the accuracy, the faster the calculation).

15GDSII is a hierarchical file format to exchange 2D design data. It contains only geometry information for the
physical layers of an ASIC and is used to transfer the design data to the foundry.

28 CHAPTER 2. SYSTEM ON CHIP DESIGN METHODOLOGY

• An I/O assignment file which defines the positions of the I/O cells. If the pinout is
not fixed prior to the design start, this file may be changed iteratively during the initial
floorplanning stages.

• A very initial floorplan specifying the coordinates of the die boundary, the I/O ring and
the core area.

• A list of power and ground net names that are globally valid for the design. Power
routing can only be done for these nets. This list is very important as the imported
Verilog netlist does not contain any power connections and the power connections for
the analog blocks are later on performed using this list.

The sum of this data is called the configuration for SoC Encounter.

Floorplan Floorplanning involves the definition of placement regions for modules, defining
boundaries for top-level modules that will serve as partition boundaries, and macro cell place-
ment. In the presented flow, the macro cell placement is done semi-automatic by placing macro
cells with relative coordinates. One example is given in the following code snippet where a set
of macros no_<0:3>_ is placed relative to another, absolutely placed macro nb_0_ with a
pitch of 100 µm in x-direction:

placeInstance analog_chip/nb_0_ 381.4 1800 MY

for {set i 0} {$i<4} {incr i} {
relativeFPlan --relativePlace analog_chip/no_{$i}_ TR \

analog_chip/nb_0_ BR [expr 100+($i*100)] 0.0 R0
}

The use of the for-loop allows for the automatic placements of large arrays of custom macro
cells. Provided that a suitable algorithm exists, even the single compartments of a complex
neural network array could be placed using this technique. Particularly regarding the digital
part of the chip, the quality of the floorplan and the macro cell placement is crucial to the
result of the following timing driven placement of the standard cells and the subsequent timing
optimizations. An optimal macro cell and block floorplan not only speeds up this placement,
but also guarantees superior results in terms of timing and reduced congestion [Bha99].

Power Plan After the floorplan is complete, the power distribution network (PDN) for the
complete chip is generated. At the beginning, the global power nets defined in the configu-
ration are assigned to power pins of standard cells and macros in order to prepare the semi-
automatic and automatic power routing. To ensure a correct power netlist, this is to be done
as in the following example where the pins vdda of all present macros are connected to the
global power net avdda:

globalNetConnect avdda -module analog_chip -inst * \
-type pgpin -pin vdda -override -verbose

It is especially important to clearly separate analog and digital power domains in this step.
In the following, filler cells are placed within the IO-Ring to form a closed power ring16. Wide
metal structures are generated around the core (core rings) and around macro cells to predefine
a coarse structure for the PDN. These structures should be planned such that the final automatic

16If the chip requires different power supplies, it is possible to leave open gaps in the I/O-Ring to separate these
power domains from each other (see section 4.4.3 for the implementation on the presented chip).

2.4. DIGITAL BACK END AND SYSTEM INTEGRATION 29

power routing only has to perform rather obvious connections (from a human point of view)
because these are supposed to be routed in a straight manner without excessive via insertion
by the power routing software17. Figure 2.6 illustrates the predefined power structures in the
area of an exemplary analog block before and with the power routing done.

a) b)

digital part

analog part

1
2

3

4

5

6

3

4 4
6

Figure 2.6: a) Power structures before automatic power routing and b) after automatic power routing.
Note the automatically generated connections to the macros in the analog part and the power rails for
the standard cells in the digital part. 1, 2: script generated structures in the digital part. 3: script
generated structures in the analog part. 4: pre-placed analog blocks. 5: automatically generated power
grid within the digital part. 6: automatically generated power connections within the analog part.

Partition the Design The design is subdivided into partitions that are then implemented
separately. Partition boundaries are drawn as module boundaries in the top-level floorplan and
the connectivity, more precisely the location of the different partition pins is determined by two
steps. First, a timing driven placement of the whole design is performed. It has to be ensured
that the software is allowed to place standard cells only within the foreseen digital areas by
inserting placement blockages in the analog areas. Second, a trial-route run is performed and
the partition pins are generated where the signal wires hit the partition boundary. The result of
the trial routing may not lead to optimal pin placement. Therefore, critical signals should be
investigated manually and the according pins should be placed like in the following example
for a clock pin (clk200[0]):

preassignPin analog_chip {clk200[0]} -loc $c20_xpos 0.0 -layer 6

During the partitioning process itself, the timing of all signals crossing partition boundaries
is analyzed and the timing budget within the partitions is derived by estimating parasitic ca-
pacitances and routing delays based upon the results of the initial placement and trial routing.
The design data of each partition, including the derived timing constraints, the netlist of the
partition, macro cell placement and power routing is then stored within separate directories for
implementation. The top-down design flow recommended by Cadence [Cad06b] recommends
the partitioning of all modules present at the top-level of the design such that no optimization
is necessary there and the modules just have to be routed together. For two reasons this strat-
egy cannot be followed for the presented chip within which the digital part is not partitioned
separately:

17The power structures have to be capable of delivering the required current to the circuits. Furthermore, voltage
drop on metal lines has to be considered. A very good chapter on the estimation of power consumption and the
design of the power distribution system can be found in [CBF00].

30 CHAPTER 2. SYSTEM ON CHIP DESIGN METHODOLOGY

• To correctly derive the timing budget for synchronous signals that cross partition bound-
aries, it is necessary to know the latency of the according clock signal generating these
signals. As the clock tree18 of these clock signals has not been synthesized yet within the
according partition, no wire delays or buffer delays can be assumed. The actual delay
after clock tree synthesis therefore invalidates the timing budget, and for example the
implementation of the synchronous signals to and from the DTCs/TDCs in the analog
part would become erroneous.

• The I/O signals of the chip are distributed over the whole left and right edges of the chip
(cf. section 4.1). As the digital part is located within the bottom third of the floorplan,
the routing delays among these signals need to be exactly known to achive correct in-
terface timing which is not the case after the trial routing but only after the final routing
step. Furthermore, the clock trees of the interface clocks have to be synthesized which
imposes the same problem as in the first point.

Consequently, after partitioning there are two subdesigns: the analog part and the top-level of
the design including the digital part. Important details for the implementation of the two will
be described in the following two subsections.

2.4.2 Analog Routing

The analog partition comprises the placement of the analog blocks, the predefined power rout-
ing, the partition boundary and the pin locations on the boundary. The only step to perform
is the routing of the signal wires among the macro cells, which is crucial due to the analog
nature of the signals. To gain good routing results, the following steps are performed prior to
automatic routing:

• Check for the connection directions of signal busses with minimum pitch (horizon-
tal/vertical). If the metal layer the bus is located on has a different routing direction
defined in the technology LEF file, the design will probably be not routable because the
routing algorithms are biased in the wrong direction (cf. section 2.1.2). In this case, the
preferred routing directions in the technology LEF file could be modified appropriately
which has been done for the analog part of the presented ASIC.

• Assign appropriate non-default rules to analog nets requiring wide metal routing or wide
spacing.

• To improve the quality of the analog routing, reasonable routing blockages are defined
in areas where routing is undesirable, as for example above sensitive analog circuits.

• Although the routing software supports signal integrity (SI) driven routing, the routing
of very sensitive signals is performed in a directed, script based manner. In the case of
the presented chip, several analog signals are to be routed in parallel with the maximum
available spacing over a distance of approximately 3 mm. To ensure straight parallel
routing these signals can be manually routed in the following way:

18The clock tree, or clock distribution network, distributes the clock signal(s) from a common point (the clock’s
root) to all the elements that need it (leafs).

2.4. DIGITAL BACK END AND SYSTEM INTEGRATION 31

for {set i 0} {$i<4} {incr i} {
setEdit -nets vmemout\[$i\] -shape None -force_regular 1 \

-layer_horizontal M6 -layer_vertical M6 -snap_to_track_regular 1 \
-width_horizontal 0.280 -width_vertical 0.440 \
-spacing_horizontal 0.280 -spacing_vertical 0.440

editAddRoute [expr $startx + $i*$pitch] $boty
editCommitRoute [expr $startx + $i*$pitch] $topy

}

Four vertical wires are drawn on metal layer 6 with a pitch of $pitch from $boty to
$topy. In the following routing stage, these wires are left unchanged and the router
connects to either end of the wire.

Signals requiring the routing with non-default rules are routed first using the Cadence Ultra
Router. In contrast to the recommended digital back end software (NanoRoute), this router
correctly connects to wide metal pins - NanoRoute tapers to minimum width just before the
pin [Cad06b]. The remaining wires are routed using NanoRoute.

The completely routed design is verified for geometry, antenna and connectivity errors and
two output files are generated: a GDSII stream for inclusion in the top-level GDSII, and a data
exchange format (DEF) file of the design which is later on used to un-partition the design and
perform full-chip timing analysis.

2.4.3 Top-Level Placement and Routing

The following steps are preformed to establish the final placement and routing of the standard
cell netlist and the connectivity to the IO-pads:

1. Timing driven placement: Due to the digital part being spacial restricted to a certain area
of the chip (i.e. the lower third on the presented chip), placement blockages are created
within the remaining areas prior to the actual placement. After placement, a trial-route
run is performed to determine if the placement leads to highly congested areas19. Bad
trial-route results indicate a poor placement and require an iterative optimization of the
floorplan.

2. Pre-clock tree synthesis in-place optimization (Pre-CTS IPO): Nets that violate max-
imum transition time and/or maximum capacitance design rules are fixed in this step.
Furthermore, the timing is optimized for positive slack by means of gate resizing (chang-
ing the drive strength of standard cells) or buffer insertion (buffers are inserted if the
max. drive strength is not sufficient).

3. Clock tree synthesis: Clock networks are heavily loaded by the clock pins of the flip-
flops they are driving. For synchronous designs, the propagation delay through the
clock network to the clock pins needs to be the same for all destination pins (i.e. the
clock skew has to be minimized20) which requires the buildup of a balanced buffer tree.
This is done by a dedicated algorithm in this step21. The capabilities of this algorithm

19The congestion output is the percentage of wires that could not be routed due to high routing density. Rule of
thumb: as of the experience of the author, values of more than approx. 1.5 % will later on lead to unroutable areas.

20In the literature, skew is mainly defined as the difference between actual and nominal interarrival times of a
pair of clock edges in integrated circuits or printed circuit boards (PCBs), or as the difference between a pair of
data and clock signals in parallel data transmissions. It depends on process variations, environmental variations
(voltage and temperature), wire RC delay, and clock loading.

21The algorithm also supports a useful skew mode to improve very tight timing. The clock signal at a receiver
flip-flop is delayed with respect to the clock at the sender to increase the required time. This feature should be used
with care when optimizing clocks that cross partition boundaries [Cad06b].

32 CHAPTER 2. SYSTEM ON CHIP DESIGN METHODOLOGY

include the definition of clock groups where a set of clocks is balanced for equal delay.
On the one hand this is used to synthesize different clock signals on the presented ASIC
with equal delay and on the other hand this is exploited to balance the routing of the
source synchronous link signals (cf. section 2.4.4).

4. Post-CTS IPO: The design containing the synthesized clock tree is again in-place op-
timized, as in the first IPO step. To gain good routing results the optimization is also
performed for hold violations in this step, after setup violations have been fixed (positive
slack). The outcome of this step is the pre-final placed but not routed design.

5. Routing: The design is now being routed in detail while taking into account the timing
constraints. The complete set of options specified to the router can be found in appendix
D.1. The completion of this step without any design rule or process antenna violations
finalizes the design of the digital part.

6. Post-Route IPO: This step only slightly improves the timing, as the routing is not sub-
stantially changed, anymore. What makes this step necessary is that hold violations
possibly introduced by the router could be fixed.

7. Stream Out: The top-level GDSII file is generated by including GDSII files for all in-
stantiated standard cells, macro cells, and the one for the analog part into the top-level
design. The generated GDSII file is then read into the Cadence analog environment
again (stream in) to have the chance of visually inspecting the design. An automated
stream out of this data yields the final GDSII file for the design.

8. Sign-off RC-extraction: For each process corner available in the technology libraries,
a detailed extraction is performed. Delay calculation and STA are performed and fi-
nal timing reports are written. The final verification of the timing is performed using
Synopsys PrimeTime (see section 2.5.1).

2.4.4 Intermezzo: Source Synchronous Interface Implementation

The strict interface timing of source synchronous interfaces as shown in figure 2.3 arises chal-
lenges on the implementation. On the one hand, STA based timing optimization software
optimizes a design for positive slack, regardless of the exact slack values. On the other hand,
the implementation of a source synchronous interface requires the slack for all signals to be
the same in order to maximize the data valid window.

Another requirement of the HyperTransport specification is the 90◦ phase relation between
clock and data which ensures the clock to be always in the center of the data valid window. A
representative configuration of a transmitter and receiver configuration is shown in figure 2.7.
The transmitter uses a phase-locked loop (PLL) to generate the clock for the output data and
a phase shifted version for the output clock. The receiver uses a phase recovery first-in first-
out (FIFO) for the data capture. To achieve reliable phase recovery for variable frequencies,
DLL circuits are commonly used. These systems are also called clock recovery circuits or
bit synchronization circuits [Raz96] because they perform the function of generating clock
signals in synchronization with the data incoming to a receiver circuit allowing the recovery
of the data. The fact that neither a PLL with the required outputs, nor a DLL have been
available for the development of the presented chip, together with the demand for equal slack
on the signal lines, led to the implementation technique that is described in the following. On
the one hand, the capabilities of the CTS software are exploited, and on the other hand, delay
elements are manually placed.

2.4. DIGITAL BACK END AND SYSTEM INTEGRATION 33

TX

PLL

Phase

recovery

FIFO

Reference

PLL

RX

PLL

Reference Clock Transmitter Interconnect Receiver

TX

PLL

Phase

recovery

FIFO

Reference

PLL

RX

PLL

Reference Clock Transmitter Interconnect Receiver

Data

Clock

0°

90°

Figure 2.7: Representative transmitter and receiver configuration according to the HyperTransport
specification. The “TX PLL” provides two clocks with a 90◦ phase shift to separately generate clock
and data signals. Figure adapted from [Hyp06].

Figure 2.8: Illustration of the desired functionality for the skew reduction at the input
interface. Adjustable delay elements are used to minimize the skew and to introduce
appropriate delay on the data signals.

Input At the input of the chip it is first of all desirable to reduce the skew among the input
signals to increase the size of the data valid window. Furthermore, to forward the clock-data
phase relation present at the chip boundary to the input registers, the data signals require a de-
lay which is equal to that of the clock network. The solution is to use adjustable delay elements
that introduce the necessary delay and can be controlled to minimize the skew. The desired
timing at the pads of the chip and the input registers is illustrated in figure 2.8. To achieve
identical routing delays on all input signals, the CTS software of First Encounter is used in the
proposed implementation technique. The basic idea is illustrated in figure 2.9 a. However, the
latency tct of the input clock tree strongly depends on the number of clocked registers and can
initially not be predicted [Cad06b]. Therefore, the following steps are necessary:

• From an initial First Encounter run, the value tct that the software has achieved for the
clock tree of the input clocks is determined.

• Using a delay element for each data signal, the additional delay required for each signal
is calculated as

tadd = tct− tdel, (2.1)

with tdel being the default delay through an (adjustable) delay element.

34 CHAPTER 2. SYSTEM ON CHIP DESIGN METHODOLOGY

delay element
buffers inserted

by CTS
delay element

buffers inserted
by CTS

buffers inserted
by CTS delay element

buffers inserted
by CTS delay element

buffers inserted
by CTS delay element

input clock
tree

data

clock

input pads
to receive
flip-flops

tadd tdel

tct

delay element
buffers inserted

by CTS

buffers inserted
by CTS

output
data

core
clock

output pads

clock

data

tdel tequal

tbuf

a) b)

Figure 2.9: Concept for the implementation of source synchronous interfaces. a) receive side b) trans-
mit side. The output data is meant to originate at flip-flops clocked with core clock.

• All input signals are defined as clocks to the clock tree synthesizer where the physical
pad is the root pin and the input to the delay element is the only leaf to the respective
clock. Combining the signals of one link into one clock group ensures that the clock
tree synthesizer routes these signals with equal delay and minimum skew. The borders
for the allowable delay should be set within±100ps of tadd to not overconstrain the CTS
software.

As a result, the clock tree synthesizer inserts buffers as required into the routing of the input
data signals as illustrated in figure 2.9 a:. The straight forward approach using this strategy
would be to let the clock tree synthesizer analyze the whole path from the input pad to the
D-input pins of the input registers. However, the clock tree synthesizer will in most cases not
be able to analyze the path through the delay element. For this reason, the input pins to the
delay elements are set as leaf pins to the respective clock trees as described above and CTS
stops tracing at the input.

Output The routing of output signals with identical delay tequal again is achieved by means
of the CTS software. The generic setup is illustrated in figure 2.9 b. Delay elements are on the
one hand used to compensate for external or internal skew. On the other hand, they introduce
a fixed time shift tdel on the data signals with respect to the clock. The buffer depicted within
the clock path serves as an endpoint (leaf pin) to the core clock and as a root to the artificially
introduced output clock connected to the pad. The time shift tshift and thus the output phase
can be calculated as

tshift = tdel + tcto− tbuf , (2.2)

with tcto being the clock to output delay of the flip-flops generating the output data (not shown
in the figure). This technique results in implications for the interface timing:

• No real phase relation exists between clock and output data but rather a fixed delay.
This limits the maximum data rate in a way that no valid data transmission would be
possible if one bit time22 would be smaller than tshift—provided that the receiver meets
the specifications and cannot tune it’s link in the right direction.

22A bit time is the time needed to transmit one bit of data. In the case of double data rate, one bit time equals
one half of the clock period.

2.5. VERIFICATION 35

• The shift between clock and data for the typical process corner is approximately −90◦

and not 90◦ as specified. To still capture the data with the correct edge of the clock,
the clock needs to be shifted by 180◦ which is done within the receiver of the presented
ASIC and the controller respectively.

The correct functionality of the interface as well as the successful implementation of this
methodology is demonstrated in section 6.2.3 by means of the measured performance.

2.5 Verification

2.5.1 Timing Closure

Achieving timing closure on a design is the process of creating a design implementation that
is free from logical, physical, and design rule violations and meets or exceeds its timing speci-
fications. For a production chip, all physical effects, such as metal fill and coupling, have to be
taken into account before it can be confirmed that timing closure has been achieved [Cad06a].

The timing of the design is verified throughout all stages of the presented design flow by
means of RC-extraction, delay calculation, STA and timing report generation. By monitoring
the results of the different optimization steps it can be determined already in the early de-
sign phase whether the final implementation will meet the timing specifications or not. Large
negative slack values require a redesign of the causing logic in the Verilog description. Over-
constraining the timing yields worse results than relaxing the constraints if an improvement
by redesign is not possible [Bha99].

The final timing closure is based on the detailed RC-extraction data of the design flow and
requires two steps:

• Import the final gate-level netlist and the extracted parasitic data into PrimeTime. On the
one hand, STA is performed on the data using the globally defined timing constraints.
In contrast to the STA engine built into First Encounter, PrimeTime performs a detailed
analysis on unconstrained paths and thus may reveal erroneous constraints. On the other
hand, PrimeTime is used to generate delay data for the back annotated simulation of the
gate-level netlist in standard delay format (SDF23).

• Perform back annotated simulation. The gate-level netlist is simulated using the SDF
file. The timing specifications are met if the behavior of the gate-level netlist matches the
behavior of the RTL description of the design for the targeted clock frequency using the
worst process corner. This is verified by means of automated test procedures included
within the software that produces the input test data (cf. section 5.3). Potential hold
violations are detected by performing the simulation with the best process corner SDF
data. The correct timing on the interface to the analog part has to be verified manually
by means of a mixed-signal simulation, as the design flow in the current state does not
support automatic verification of this interface.

23The Verilog simulation models for the standard cells contain parameterized delay values for the signal paths
through the cell as well as for setup and other timing checks. Based on the process corner, the technology library
and the extracted parasitics, these values are calculated and written to the SDF file. Interconnect delays are also
written to the SDF file. The simulator loads the SDF file together with the gate-level netlist and replaces the
parameters’ default values. Erroneous library data required modifications to the simulation models and the SDF
file after generation. These modifications are executed in a script based manner as to have reproducible data.

36 CHAPTER 2. SYSTEM ON CHIP DESIGN METHODOLOGY

2.5.2 Physical Verification

The physical verification involves three steps, namely the DRC, the process antenna check and
the verification of LVS. All checks are performed using Mentor Graphics Calibre.

• DRC: The complete design is verified for accordance to the topological design rules
of the fabrication process. Digital macro cells for which no GDSII data is available are
excluded from the checks and their GDSII data is inserted by the manufacturer. To avoid
wide metal spacing violations in the periphery of these macros, in the technology LEF
file, the options OBSMINSPACING OBS/PIN have to be set to OFF24.

• Antenna check: The design is verified for large metal structures connected to isolated
gates (antennas). In the digital part these are repaired by the place and route software.
However, antennas generated by automatic routing of analog blocks are not detected by
First Encounter due to the abstraction of the VLSI structures and require manual rework.
The method used for the presented chip is the insertion of diodes to provide alternative
discharge paths.

• LVS: This check is performed by first extracting the devices present in the layout and
generating an according SPICE netlist which represents the layout view of the ASIC.
The source netlist, i.e. the schematic view, is generated with the following steps special
to this flow:

– The top-level solely exists as Verilog netlist. It is converted to SPICE syntax first.
– The netlist of the analog part including all hierarchical instances down to the tran-

sistor level is automatically exported from the Cadence environment using CDL
export.

– Include statements are inserted into the top-level netlist for the analog netlist as
well as for cells that were not present in the Verilog netlist, like power pads.

– Global power net names are inserted into the top-level netlist.

Both the layout netlist and the complete source netlist are compared. If the layout netlist
and the source netlist match, the design is ready for fabrication and the GDSII data can
be sent to the manufacturer.

2.6 Concluding Remarks

A design flow has been introduced allowing for the integration of complex analog circuits to-
gether with high speed digital logic into one ASIC by means of a modified traditional digital
back and design flow. Thereby, a technique for the implementation of source synchronous
interfaces has been presented. What has not been explained in detail is the simulation environ-
ment that is being used for the analog, digital and mixed-signal verifications. The verification
of the analog circuits is performed using Cadence AMS Designer [Cad05b]. This software
is also capable of performing full-chip mixed-signal simulations which are carried out using
the digital testbench. The digital simulation environment will be described in chapter 5. The
extensive simulation of the design together with the timing closure and the physical verifica-
tion during and after implementation provide an elaborate design flow that reliably yields fully
operational ASICs.

24These violations occurred in the first version of the neural network chip after macro insertion. The technology
LEF file was corrected manually.

Chapter 3

Large Scale Artificial Neural
Networks

This chapter describes the developed concept for the transport of digitized
neural events. The concept relies on a hardware platform that is introduced
first. It allows the connection of multiple ASICs using high speed serial links.
The strategies applied in the following are closely related to the physical im-
plementation of the neural network ASIC and therefore some of the hardware
specific details will need to be anticipated throughout this chapter. The pro-
tocol for the communication with the chip is introduced. A generic setup for
single chip experiments is shortly outlined, followed by a detailed description
of the communication between different neural network ASICs using the con-
figurable logic resources of the hardware platform. The key aspect here is the
sorting of different event streams targeted for one chip. As the implementation
of this concept has not been finished throughout this thesis, implementation
considerations are given and simulation results are presented that demonstrate
its functionality. Resource estimations that support the feasibility of this inte-
gration are given.

3.1 Existing Hardware Platform

The hardware platform serving as a basis for the construction of large scale artificial neural
networks (ANNs) has been developed by the Electronic Vision(s) group prior to the develop-
ment of the neural network ASIC presented in this thesis [Grü03, FGP+04, Sch06, Sch05].
It has generally been designed for the parallel operation of mixed-signal ANN ASICs. In
particular, research has been done based on the Perceptron based ANN ASIC HAGEN25 that
has also been developed within the group [SHMS04, Sch05]. The hardware platform consists

25The acronym stands for Heidelberg Analog Evolvable Neural network.

37

38 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

of 16 network modules26 interconnected by a high-speed backplane. Each individual Nathan
module hosts one ANN ASIC with the according infrastructure, a programmable logic device
field programmable gate array (FPGA), and local memory resources. The backplane hosts the
modules and allows high-speed digital communication between them. The platform can thus
be used to digitally transport neural events between different neural network ASICs which
supports the implementation of the neural network model described in section 1.3.4.

FPGAFPGA

memorymemory

FPGAFPGA

memorymemory

shared memory

transport

network

network

chip
network

chip

neural
network

chip

neural
network

chip

axonal connections
via transport network

synapse
drivers

neurons

Figure 3.1: The transport network spanning several Nathan modules. Note the distinction between the
neural network data transmitted between the network chips and the shared memory data.

In order to operate the Nathan modules in parallel, strategies are necessary to coordinate
their distributed resources: the neural network model constantly requires input spikes and
generates output spikes in a time continuous way. Since the spikes are transferred digitally,
they can easily be transported by digital communication technologies, and the spikes generated
by one ANN ASIC can be fed to the synapses of another one to scale up the size of the neural
network. Maintaining the continuous communication between the ASICs requires a carefully
designed connectivity.

The necessary high connectivity between the Nathan modules is realized by a high-speed
transport network which links the modules via the backplane. This network is capable of
transporting data, e.g. neural events, between the Nathan modules with a fixed and guaranteed
latency which eventually enables the realization of axonal connections between neurons and
synapses on different neural network ASICs as these require this very fixed connection delay
(cf. section 1.2.3). To give a first glance this is illustrated in figure 3.1.

Furthermore, the transport network provides the exchange of large amounts of data between
the Nathan modules to a high-level controlling software and the programmable logic. For this
purpose the same transport network is used to create a large shared memory [HP95] which
allows the remote access to memory resources on any Nathan module by means of a global
shared memory address space.

3.1.1 The Nathan PCB

Figure 3.2 illustrates the main components of the Nathan module as well as the control PC
needed for user interaction. The Nathan module contains a socket for the afore mentioned

26The network modules will be called Nathan modules in the following, not to confuse with the terms network
module and neural network ASIC.

3.1. EXISTING HARDWARE PLATFORM 39

Control
PC

FPGA

SRAM

DDR-SDRAM

HAGEN

Clocking

Slow Control

Network
Module 1

Local Clock
Generation Power Supplies

FPGA

Virtex II-Pro
SRAM

DDR-SDRAM

ANN
ASIC

DAC12

MGT

M
G

T

BACKPLANE

Module 16

Diff. conn.

Diff. conn.

S
M

T
c
o

n
n

.

Figure 3.2: Overall schematic of the hardware platform showing the Nathan modules connected to the
backplane. Figure adapted from [Grü03].

Perceptron based ANN ASIC as well as daughter card surface mount technology (SMT) con-
nectors where the carrier printed circuit board (PCB) for the chip presented in this thesis will be
mounted on. The FPGA can be configured to control all connected components and in addition
to its configurable logic features eight embedded multi-gigabit transceivers with a data rate of
up to 3.125 Gbit/s that are used for the high-speed transport network [Xil02a]. Four of them
are routed to the backplane over a differential connector and the remaining four are available
at the top of the module over an additional connector that is also suitable for wire based inter-
connects. The multi-gigabit transceivers (MGTs) require an accurate reference clock which is
globally generated on the backplane.

For the operation of mixed-signal ANN ASICs, analog support circuitry and dedicated
power supplies are required and provided on the Nathan modules. As the communication
interface with the presented ANN ASIC is kept digital, it will directly be connected to the
FPGA using a daughter card plugged into the SMT connectors.

To store configuration data for the ANN ASIC and experiment data, the FPGA has been
connected to two 64 bit wide memory interfaces: a designated DDR-SDRAM socket which
carries one memory module with an addressable capacity of up to 2 Gbyte, and two static
random access memory (SRAM) chips with an overall capacity of 512 kbyte.

3.1.2 The Backplane

The backplane provides the infrastructure necessary for the Nathan modules, a serial inter-
face to a control PC (the Slow Control) and the physical connections between the different
Nathan modules, thereby enabling data transport using the MGTs located within the FPGAs
on the Nathan modules. Four of the MGTs are used for the backplane connectivity and on one
backplane 16 Nathan modules are connected in a 2D-torus manner. The resulting topology
of the transport network is illustrated in figure 3.3. Due to the realization as a 4× 4 ma-
trix, the communication of two non-adjacent modules requires routing functionality within the
intermediate modules, and in the worst case routing has to take place over three nodes. To sat-
isfy higher connectivity demands, the Nathan modules may be connected using the additional
MGTs available at the top of the Nathan modules by means of appropriate cables.

40 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

16151413

1211109

8765

4321

Figure 3.3: Illustration of the 2D torus topology present on the backplane. The
worst case routing over passing three intermediate nodes is highlighted.

3.1.3 Transport Network

The transport network described within this section has been developed within the Electronic
Vision(s) group by S. Philipp [Phi07, PGMS07] with the aim to realize a general purpose
transport network among the Nathan modules located on either one or multiple backplanes
and to provide the required quality of service (QoS)27 to the transport of different types of data
in this distributed system. To keep the transport network as flexible as possible and yet suited
for the underlying hardware, the data to be transported is classified into two different levels
as illustrated in Figure 3.1. The different needs regarding QoS depend on the particular level;
therefore, a short description of these levels of data transport is given in the following.

Neural network data is referred to as level 1 data or high priority traffic. This data consists
of neural events that are to be transmitted between the neural network chips. The biolog-
ical counterpart of connections transporting these data are the axonal connections to target
synapses which results in the following QoS requirements:

• Constant and small delay for all connections. The constant delay is necessary to realize
the desired neural network model which assumes axonal connections with fixed delay.
Another requirement is to make the connection delay as small as possible to achieve
biologically realistic connection delays while maintaining the desired speed-up factor
of 105.

• Spiking neural networks are expected to exhibit synchronized or bursting behavior (cf.
section 1.2.3). The transport network needs to provide the appropriate high bandwidth to
handle these peak event rates. To achieve this, a fixed fraction of the overall bandwidth
needs to be reserved for each interconnection between neural network chips.

• Error correction cannot be performed for this type of data as the retransmission of an
event would presumably exceed the allowable latency on the particular connection. Of
course, error detection is needed and false data should be discarded.

27Quality of service generally refers to the quality of data transmission in terms of bandwidth, latency and
reliability for a specific type of network traffic.

3.1. EXISTING HARDWARE PLATFORM 41

• The overall setup and the routing within the transport network depend on the type of
neural network to be implemented and are therefore known prior to experiments. During
the experiment the topology does not change.

Shared memory data is referred to as level 2 data or best-effort traffic. The content in
the case of a multi-chip spiking neural network could be configuration data for the analog
parameters or the synapse configuration data for the network chip. Level 2 traffic exhibits the
following demands on the QoS:

• Connections are constantly set up and closed with different endpoints during operation
and the bandwidth needs can hardly be predicted. This requires an intelligent routing
algorithm to transport this type of data in the system.

• To keep the performance of the system on a convenient level the latency for the level 2
data should be as small as possible and the data throughput should be maximized.

• Error correction is needed, since the loss of e.g. neural network configuration data can-
not be accepted.

clock
counter

scheduler

routing tableANN control &
switch interface

ANN

switching &
routing logic

tranceivers MGT MGT MGT MGT

crossbar

Figure 3.4: Illustration of the transport network related FPGA logic at one Nathan module. The MGT
ports are external inputs and outputs to the network. The ANN chips and the shared memory (not
shown) are sources and sinks of data. Figure adapted from [PGMS07].

Figure 3.4 shows an overview of the logic implemented to build up the transport network.
Communication among the FPGAs, thus, the Nathan modules takes place over the Gigabit
connections supplied by the built-in MGT transceivers with up to 3.125 Gbit/s. The interface
to the FPGA fabric is a parallel bus with an internal width of 16 bits and a clock rate of up to
156.25 MHz28 for the parallel interface.

Data coming from the transceivers and going to the transceivers is treated as external inputs
and outputs to the transport network, whereas the data produced by the logic assigned to the
network chip (ANN control) logic is treated as internal sources and sinks. The same applies
for the level 2 data, which is not shown in figure 3.4. Data is transferred to and from the switch
via switch ports that are symbolized by arrows pointing to and from the crossbar switch fabric.
All of these ports operate at the rate of the MGT links with 16 bit at up to 156.25 MHz.

Depending on the switching it has to be decided during each clock cycle, which output
gets its data from which input. These connections are physically made by the crossbar switch
fabric whereas the scheduler configures the crossbar dynamically in each clock cycle. The task
of scheduling requires an intelligent algorithm, especially for the level 2 data connections,

28Depending on the global clock source it is possible to adjust this frequency to up to 156.25 MHz

42 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

which have to be established dynamically on the arrival of the respective data packets. An
algorithm suited for this task called iSLIP [McK99] has been customized for the transport
network [Phi07]. In this case, data is being stored within queue memories at the input of the
switch and the scheduler takes its decisions based on the content of these input queues. As
a consequence of this, an optimal configuration for the crossbar can be determined with a
latency of down to two clock cycles.

Isochronous Connections

The isochronous29 transport of level 1 data is guaranteed by the transport network by sorting
the different data streams to be routed prior to the operation of the network. Based on the
assessable maximum bandwidth requirements of each connection and the overall number of
connections that have to be routed through the switch, this sorting is accomplished by dividing
the time axis into periods of the same size. Each period consists of a globally equal number
of time slots. Each connection gets a certain number of such time slots assigned depending
on the percentage of the overall bandwidth this connection will presumably need30. Each
time slot is assigned to only at most one source at a time. Now the scheduling is reduced to
a mere timetable problem and an optimal input-output assignment has to be found for each
time slot. This assignment is stored in a routing table configuring the scheduler within each
time slot (cf. figure 3.4). The length of one such period is set in a way that it sums up to the
transmission delay introduced by the MGT connections between the Nathan modules. As a
result, isochronous network operation is achieved, and a packet assigned to a time slot s2 and
a starting time tsource at the source switch will arrive at

tdest = tsource +∆tperiod with ∆tperiod = ∑
i

∆t(si)+∆t(ssync)

at the destination switch and will still be assigned to time slot s2 (cf. figure 3.5). Thereby,
∆t(si) is the time required for one time slot, ∆t(ssync) the duration of one synchronization slot
and i loops over all time slots within one period. As a consequence, a constant delay of ∆tperiod
is achieved on all connections, thereby fulfilling the definition of an isochronous network.

0 1 2 3 4 5 6 7 8 9

A

destinationsource

sync character

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

MGT transmission delay

�tperiod

�t(s)0

time

Figure 3.5: Illustration of two periods of time of the switch operation. In this case, the overall trans-
mission latency of the MGT connection requires the time of 11 time slots. A single time slot is used to
constantly check the state of synchronization. All slots but s3 and s7 are assigned to level 1 connections
in this example and only s2 is actually used for transmission.

29Network connections with nearly constant bandwidth and delay between two network nodes are called
isochronous connections.

30A fraction of the time slots will be reserved for level 2 data, thus reducing the overall bandwidth available for
the level 1 traffic.

3.2. PRINCIPLES OF NEURAL EVENT PROCESSING 43

To ensure that the time slots at the source and at the destination are the same, the system
needs to be globally synchronized. This synchronization strategy does only work for systems
having a global clock source as even small deviations in frequency lead to a divergency of the
counters and therefore a loss of synchronization within split seconds [Phi07]. A global clock
source is available for an entire set of 16 Nathan modules hosted on one backplane (cf. section
3.1.1). Different backplanes cannot be supplied with one global clock source in the current
version. A successor PCB is currently being developed by D. Husmann [HdO06] which sup-
ports the distribution of one global clock among different backplanes. Once synchronization
has been achieved, it is continuously checked by inserting a special synchronization slot after
each switch period.

A Word on Event Rates and Bandwidths

On the one hand, the MGTs and thus the whole transport network operate at a maximum
internal clock frequency of fmax = 156.25 MHz and with a granularity g = 16 bit. Based upon
this, the following formula can be used for calculating the net data rate that is achievable with
one port of the switch:

Rd,net = f ·g · ndata

ndata +nsync
[
bits

s
], (3.1)

where ndata is the number of time slots reserved for data transmission and nsync is the number
of synchronization characters required.

On the other hand, an event consists of at least 9 address bits and 12 bits for the time stamp
in the current implementation (cf. section 4.3.2). Therefore, the transmission of an event will
require two 16 bit slots. The achievable event rate is thus given as

Re,net = f · (nevent)−1 · ndata

ndata +nsync
[
events

s
], (3.2)

where nevent is the number of time slots needed for one event.

3.2 Principles of Neural Event Processing

The construction of large scale artificial neural networks as it is presented in this thesis is
based on the analog VLSI hardware implementation described in chapter 1 and the hardware
platform described in section 3.1. Basically, events that are generated by the neuron circuits
on one neural network ASIC are either directly fed back to local synapse drivers or shall be
transported off chip and communicated to other neural network ASICs to form larger net-
works. Regarding the demands on the communication channels between the different chips,
the digitized events are treated as a data stream that has to be processed with a fixed delay.
This demand is derived from the biological specimen, where inter neuron connections are
established by the axons having a certain fixed delay (cf. section 1.2.3).

The communication of neural events is subdivided into two domains within the system: on
the one hand, events need to be physically sent to and received by the chip. The bundling of
event streams within this domain requires the definition of a communication protocol with the
chip itself and an according controller which is shortly described in section 3.2.1. On the other
hand, the distribution of the events between the chips requires another protocol that accounts
for the processing of events received from the controller and the transmission of these events
to a target controller using the isochronous transport network. This inter-chip event processing
is described in section 3.2.2.

44 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

Furthermore, the correct timing of the events within the neural network ASIC and through-
out the system has to be assured as all information carried by a digitized spike is contained
within the point in time of its digitization or creation. Event processing in the analog VLSI
implementation is carried out synchronous to a clock signal that is available in the digital part
of the chip (see section 4.3.3). Counters are provided within the chip as well as within the
controller that serve as a time base for the event processing and are globally synchronized.
The according event processing algorithm is described in section 3.2.3.

3.2.1 Communication with the Neural Network Chip

Communication that is directly related to the chip is subdivided into the chip internal commu-
nication and the external communication. The data flow is illustrated in figure 3.6.

Controller

ANN ASIC

e
v
e

n
t_

in
_

b
u

ff
e

r

e
v
e

n
t_

o
u

t_
b

u
f f
e

r

ANN

DTC/TDC

... daisy chain of ANN ASICS...

inter chip
networking

Figure 3.6: Illustration of the daisy chain of ANN ASICs. The ANN block in the ASIC comprises the
full analog VLSI circuitry including TDC, DTC, synapses and neurons.

Internal Event Processing Events need to be transported to the DTCs and from the TDCs.
Figure 3.6 illustrates the very basic concept. Two modules are realized accomplishing this
task:

• event_buffer_in: Events are sent to the chip by a controller and are stored temporarily
within this module. One at a time is associated to a DTC. It comprises a FIFO memory,
for the following reason: the bandwidth requirement for peak event rates may exceed the
bandwidth of the interface to the chip. In this case, events are sent earlier, are distributed
to the different event_buffer_in modules and are stored there until generation. By the
time the time stamp of an event matches the current system time, it is sent over to the
DTC with the address of the according synapse driver and the time bin information
for its generation. The controller has to ensure that events arrive in time by means of
comparing their time stamp with the current system time, calculating the transport delay,
and scheduling the transmission of the events.

• event_buffer_out: One of these modules at a time is associated to a TDC. Events that are
digitized by the TDC are captured and are stored temporarily within the module until
their transmission off chip. This module also comprises a FIFO memory, for similar
reasons as in the case of event_buffer_in. During peak event rates, events are stored
until sufficient bandwidth is available on the interface of the chip. The capture of a
digitized event involves the generation of the event’s time stamp (the current system
time) and the generation of its address (with respect to the overall number of TDCs).

External Communication Event data as well as configuration data for the chip is trans-
ported via the physical interface of the chip, from the controller and to the controller. To allow

3.2. PRINCIPLES OF NEURAL EVENT PROCESSING 45

the implementation of larger neural networks it is desirable to operate more than one ASIC
with a common controller. Generally spoken, different topologies are possible for the connec-
tion to a common controller. Several ASICs may be connected in an astral manner, connected
to a common bus or in a daisy-chained fashion. The star topology requires a complete interface
for each chip at the controller which limits the number of chips by the maximum available I/O
pins at the controller. The implementation of high-speed bus topologies arises challenges to
the layout of the carrier PCB as well as it requires a rather complex communication protocol
and arbitration scheme (see e.g. [SA99, JG93]).

For these reasons, the daisy chain topology was chosen. The connections between the
chips and the controller are point-to-point connections and the communication is packet based.
Packets are generated by the controller; they contain a chip address and are handed around by
the chips. Each chip gets an address in the chain and only acts upon a matching address in
the packet. In this case, the chip processes the data contained in the packet and is allowed
to fill the packet with its own data (i.e. events). The continuous data flow through the daisy
chain reflects the streaming nature of the event data, and the electrical interface is due to its
point-to-point connections suited for high-speed digital data transmission. Furthermore, the
arbitration among the different chips is easy to implement by means of a suited address order
in the packet stream.

The full implementation of the communication protocol will be described in chapter 4. For
the following considerations these facts are of importance: to achieve a higher event rate on the
interface events are stored within the data packets in a compressed fashion. This is possible,
since at high event rates events will have similar time stamps. For this reason, the upper
nibble31 of the time stamp is stored only once for all events within a packet. Some figures
that reflect the specific implementation of the protocol for the presented chip are summarized
in table 3.1. They serve as a basis for the following considerations which are nevertheless of
general nature.

Parameter Value
events per packet 3

width of event time stamp 8 bit
compressed bits 4 bit

time bin resolution 4 bit
event address width 9 bit

Table 3.1: Figures related to the event packet format. Anticipated from chapter 4.

Furthermore, the latencies introduced by the daisy chain communication are of relevance
for the temporal processing of neural events. Particularly, the following latencies are of interest
for the following considerations:

nctrl = from controller to first chip in chain

nch = through 1 chip

neg = from chip input to earliest event generation.

Unless otherwise noted, all latencies are given in clock cycles of the clock signal used for
digital event generation and digitization.

31A nibble is a four-bit aggregation or half a byte.

46 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

3.2.2 Inter-Chip Event Transport

The protocol described in the preceding section is only capable of transporting events between
the controller and one specific chip in the daisy chain at a time. No further processing re-
spectively routing can be performed there, not even among the chips within one daisy chain.
Therefore, an event processor has been developed, which implements an event processing al-
gorithm and accounts for the transmission of events using a protocol, which is based on the
features provided by the isochronous transport network. The basic setup of this system is
illustrated in figure 3.7 for one Nathan module.

E
ve

n
tI

n
Q

u
e

u
e

E
ve

n
tO

u
t

Q
u

e
u

e

controller

playback
memory

events

data

both

switch

To other
Nathan
modules

From other
Nathan

modules

Nathan
module

GigaBit
link

GigaBit
link

local
port

local
port

netw.
chip

EvtPctGen

E
v
e
n
tR

o
u
te

r

Figure 3.7: Overview of the system used for inter-chip event transport. The arrows denote the direction
of data flow. The daisy chain of network chips, the controller and the EventRouter module form one
unit connected to a switch that transports data among several Nathan modules. Several of these units
may be connected to one switch if larger neural networks are desired. The playback memory is used to
locally generate and record events as well as to send configuration data to the chip, and store data read
back from the chip.

Keeping to figure 3.7, the following elements provide the inter-chip event transport:

• The switch realizes the isochronous transport network. Communication with the event
processing logic takes place solely via local ports of the switch. Thereby, the protocol
used for this communication has to ensure the receipt and delivery of event data within
the correct time slot of the isochronous network, as inter-Nathan module connections
are defined by these pre-sorted time slots (cf. section 3.1.3).

• Events generated by the chips in the chain are processed within the EventRouter and
the corresponding destination events have to be produced. This is done within the
EventOutQueue module. Events arriving from external sources are merged into the
data stream sent to the daisy chain which is handled by the modules EventInQueue and
EventPctGen. More concise descriptions of these modules will be given in section 3.3.

3.2. PRINCIPLES OF NEURAL EVENT PROCESSING 47

• The controller accounts for the communication with the connected daisy chain of neu-
ral network chips. Furthermore, it merges the data streams coming from the playback
memory and from the event processing modules. It will be described in detail in section
5.2.3

• The playback memory serves as a local source and sink of event data as well as auxil-
iary configuration data for the neural network chip. It uses the local memory resources
and can also be used for single chip experiments which will shortly be outlined below.

Generic Single Chip Experiments

As indicated above, the playback memory has been developed to serve as a local source and
sink of event data as well as configuration data to the neural network chip. For this purpose,
the local DDR-SDRAM is used as a mass storage device for both directions of transmission. A
program sequence can be stored in the DDR-SDRAM which contains the data to be sent to the
chips and the playback memory logic executes this program while keeping to a deterministic
timing with respect to the system time counter. In parallel, the data received from the chips
is written to the DDR-SDRAM and can be retrieved to the control PC after execution of the
playback memory program.

The capability of real time event generation and recording is used to locally provide back-
ground activity to the neural network chips and to record their event output for later evaluation.
Obviously this can also be used without the isochronous transport network present and with
only one single chip in the daisy chain. This very constellation is the generic single-chip
experiment setup which will also be the basis for the results presented in chapter 6.

The playback memory not only can be used to record events but it is also possible to in-
termittently read back the results of correlation measurements to evaluate ongoing plasticity
developments within the active neural network.

3.2.3 Event Processing Algorithm

Basic Concept

The isochronous connections of the transport network are ideally suited as a basis for the
fixed-delay axonal connections of the neural network to be implemented. The data flow of
such a fixed-delay connection is depicted in figure 3.8. After an event has been digitized on
the neural network chip, it is sent to the off-chip controller via the digital interface. Based on
this source event, one or more target events are generated. The target event is addressed to a
synapse row in the destination neural network chip. Depending on the synapse configuration
it can therefore be routed to all neurons associated with one synapse row. In biological terms,
the transmission of the event represents the axon of the source neuron, whereas the dendrite
tree is realized by the synapse column associated to one neuron on the destination chip.

The time stamp of the destination event td is obtained by adding the according axonal delay
tdel,ax of the connection to the time stamp of the source event, ts:

td = ts + tdel,ax . (3.3)

Depending on the current state of the network, this new event is either stored in an output
FIFO of the EventOutQueue module, which is described in section 3.3.1, or it may be dropped.
Consequences of event dropping are discussed in section 3.4.2.

48 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

source event
from

network chip

look-up
destination

destination
event

can event
be sent?

store
and delay

event

merge
event streams

drop
event

event
packet

send (via MGT
network)

store
event

EvtPctGen

EventOutQueue

EventInQueue

ANN ASIC controller ANN ASIC controller

store in
playback
memory

generate in
playback
memory

yes

no

Figure 3.8: Data flow in the EventRouter. The modules EventOutQueue, EventInQueue and EventPct-
Gen will be described in the following sections. The symbol for the MGT network implies source and
destination switch and the MGT connections.

Depending on the configuration of the switch the events stored in the output FIFO memory
are fetched during the according time slot and are then sent via the isochronous network.
At the output of the destination switch the event is stored in the input FIFO memory of the
EventInQueue module which will be described in section 3.3.1. Events available at the front
of the FIFO memories within the EventInQueues are then merged into one event packet by the
EventPctGen module which is described in section 3.3.2. Finally, the generated event packet
is sent to the connected controller and subsequently to the neural network chips.

Implementation

Event streams originating at different neural network chips are processed as described above
and result in event streams that have to be merged at the corresponding destination. In contrast
to commonly applied methods for data stream processing (see [MAG+02] for an overview)
where the number of data packets in a stream and their order is normally known or defined by
special packets, this system has to handle event streams with a rather random rate and random
relative timing. As the randomness of the event data is an inevitable fact, an algorithm has
been developed that minimizes the sorting effort at the destination and guarantees an optimum
network bandwidth utilization. To minimize the sorting effort, the following steps have to be
taken:

• Introduce virtual connections that combine several neuron-neuron connections with
equal axonal delay. Since one neural network chip produces events with ascending time

3.2. PRINCIPLES OF NEURAL EVENT PROCESSING 49

stamps, the time stamps of target events will still be in ascending order, provided that
the connection delay is the same for all combined connections. This first step greatly
reduces the number of event streams that have to be merged at the target. One virtual
connection is made up of a pair of one EventOutQueue and one EventInQueue.

• Events have to be delayed at the source before sending them to the switch until the
latest possible time slot of the switch’s transmission cycle. As illustrated in figure 3.9
all events arriving at a particular destination are only valid within a certain time window
and thus have only to be sorted within this time window. In section 3.3.3 it is shown
that this is a viable way of sorting as the sorting task can be fulfilled with a manageable
number of comparators as long as the time window is small enough, thereby requiring
small comparators for the time stamps.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

A A

B B

BA

cycle 1 cycle 2 cycle 3

A A

B B

cycle 1 cycle 2

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

delay

send immediately

time

Figure 3.9: Illustration of the strategy to delay events at the source. Events A and B are both due for
generation in cycle 3. Event A arrives too early and is thus delayed. Event B is actually ready for
sending on arrival but it is sent in time slot s4, because s3 is not assigned to level 1 connections in this
case. Events A and B need to be temporally sorted in cycle 3 only.

An important aspect of the presented event processing algorithm is the handling of high
event rates, especially in case the event rate exceeds the available bandwidth of the isochronous
network. Different solutions to this problem can be found in [Tan03]. One generic approach
to handle peak rates would be to provide FIFO memories that are large enough to temporarily
store the data at the source until sufficient bandwidth is available. The problem with neural
events is that their time stamp may become invalid during the storage in the FIFO which would
require the events to be dropped. Even worse, if this situation occurs and the event rate stays
at a high level, all events after the first one with an invalid time stamp may have to be dropped
because they have been stored at the source for too long. A solution to this problem is the
implementation of an extended Leaky Bucket algorithm [Tan03].

Before the afore mentioned submodules and the event processing algorithm itself are de-
scribed in more detail in section 3.3, the following section deals with different possible topolo-
gies for the event processing.

3.2.4 Layers of Event Processing

One virtual connection basically consists of one EventOutQueue and one EventInQueue. In
principle, the connection between them can be made arbitrarily and is not bound to the usage
of the MGT connections. This suggests the categorization of the event transport into four
layers32:

32The term layer is used here to distinguish the description from the categorization of the transport network
traffic into levels.

50 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

• Layer 0: Local feedback connections on the neural network chip. These connections
feature a fixed delay which may vary from approximately 0.5 ns to 2 ns depending on
the position within the network_block of the involved neuron and synapse circuits.

• Layer 1: Connections within one daisy chain hosted by one controller. The switch
is not needed for these connections and the output and input of the corresponding
EventOutQueue and EventInQueue can directly be connected. The latency of this layer
depends on the known latencies of the neural network chip, the controller, and the laten-
cies of the event processor logic. The latter will be estimated in section 3.3.3.

• Layer 2: Connections between network chips hosted by different controllers that are
connected to one single switch. The latency of this layer is the sum of the layer 1 latency
and the latency of the isochronous network. If this type of connection is used, the
latency of the isochronous network will be reduced to the time it takes the event data to
propagate through the local switch on one Nathan module.

• Layer 3: Connections between chips that are located on different Nathan modules and
are connected via the MGT network. This is the connection with the longest physical
range and with the highest delay. In this case, the MGT network latency is included into
the overall latency. As the current hardware only supports single-chip operation on one
Nathan module (cf. section 5.1.1), this is the layer on which the focus of the simulations
performed in section 3.5 is set.

The minimum axonal connection delay for a layer 3 connection can be calculated as

td,min = (nco +nfi +npo +nin +npi +nfo +nci)/ f , (3.4)

where nco,ci = cycles needed for event digitization and generation

in the neural network chip including daisy chain delay

nfi,fo = input and output latency of the controller

npi,po = input and output latency of the EventRouter

nin = latency of the isochronous network

f = clock frequency.

The clock frequency f is always given in terms of the clock used for event generation and
digitization as this defines the lowest granularity in clock cycles. The actual values for nco,ci
can be found in section 4.3.1, the values for nfi,fo are given in section 5.2.3. The delays of the
local feedback connections on the network chip are excluded from these considerations. Delay
values for layers other than layer 3 can be obtained by setting the appropriate number of clock
cycles to zero.

Table 3.2 summarizes the latencies of the different layers in terms of biological real time.
The latency values of the event processing logic have been anticipated from section 3.3.3.
Layer 0 has a fixed axonal delay of approx. 0.1 ms in terms of biological real time whereas
the latency of the other layers starts with a minimum of 4.5 ms. Whereas the gaps between
layers one and above may be bridged by setting the actual delay of the respective virtual con-
nection to an appropriate value, the gap between layer 0 and layer 1 is inherent to the system
and cannot be bridged. The resulting gap of min. 4.5 ms leads to inconsistencies of the neural
network model and a variety of problems: as described in section 1.2.3 and [MMS04], one of

3.3. NEURAL EVENT PROCESSOR FOR INTER-CHIP COMMUNICATION 51

layer nmin [Cycles] tmin,312 [ns] tmin,400 [ns] tbio,312 [ms] tbio,400 [ms]
0 - 1 1 0.1 0.1
1 9 57.6 45 5.76 4.5
2 11 70.4 55 7.04 5.5
3 37 236.8 185 23.68 18.5

Table 3.2: Minimum connection delays of the different layers of event processing. Number of cycles is
given in terms of the event clock of the neural network chip and times are calculated for 312 MHz and
400 MHz respectively. The according biological axonal delays are calculated for both clock frequencies
and a speed-up factor of 105 is assumed compared to biological real time.

the key aspects in the dynamics of spiking neural networks is the development of synchronized
activity over time. This activity is supposed to be mainly caused by very short range excitatory
connections with axonal delays td in the range 0 ms < td ≤ 5 ms. Even with very high develop-
mental effort, the latency of the layer 1 event processing cannot be made much smaller as the
latency is mainly caused by the already implemented neural network chip and the optimization
of the controller logic would gain a maximum improvement of a total of possibly 4 clock cy-
cles. Another possibility to decrease this gap is to decrease the operating speed of the analog
neural network circuits in a way that the time constants of the model described in equation
1.1 are increased. The following parameters would have to be modified (cf. section 1.3.2 and
1.3.1): the rise and fall times of the spike reconstruction circuitry have to be increased and the
leakage current of the membrane as well as the comparator speed for the spike generation have
to be decreased. The lowest possible speed-up factor is approx. 104 compared to biological
real time [Scha] which would result in a minimum latency of 0.45 ms for a layer 1 connection
and 0.01 ms for a layer 0 connection. In this setup, the gap is decreased by one order of mag-
nitude. The investigation of the consequences of the very presence of this gap are subject to
future work and will be done by D. Brüderle [Brü07].

3.3 Neural Event Processor for Inter-Chip Communication

In this section, the implementation of the previously described event processing algorithm
within the different modules EventInQueue, EventOutqueue, and EvtPctGen is described.
Packet size and data widths are chosen according to the values given in table 3.1 and could be
adapted to different scenarios without loss of generality .

3.3.1 Event Queues

EventOutQueue

The functionality of this module can be divided into two parts: first, the destination events are
generated and a customized version of the leaky bucket algorithm is implemented. Second,
the destination event is delayed and not sent before the latest possible time slot.

Figure 3.10 shows the data flow within the module in detail. Events received from the neural
network chip are stored by the controller, keeping the original packet structure with up to three
events per packet. The output of this register is applied to all EventOutQueues in parallel. As
the module has to be able to process up to one event packet per clock cycle, it is necessary to
generate the destination events for all three event slots in parallel. In a first step, the destination
event is generated based on the mapping described in section 3.4.2. The mapping of source

52 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

Figure 3.10: Data flow in the EventOutQueue module. Systime has to be connected to the controller’s
system time counter. The logic connected to event_0 is the same for event_1 and event_2.

neuron addresses to target synapse addresses is stored within a LUT and if an entry exists,
the source address of the event will be replaced by the target address. Source chip address
and destination chip address are equal for all of these connections as well as the axonal delay.
Consequently, this information only needs to be stored once per EventOutQueue.

In a second step, the events will be stored within the FIFO memory, if the size of the leaky
bucket is not exceeded. This size is calculated based on the maximum allowable delay tstor,max
imposed by the storage of the event in the FIFO memory,

tstor,max = tdel,ax− tlat , (3.5)

where tdel,ax is the axonal delay and tlat is the transmission latency of the virtual connection.
Values for tlat are given in section 3.2.4.

Using the event rate Re,net from equation 3.2 and the number of events currently stored in
the FIFO nev, the storage time within the FIFO is

tstor =
nev

Re,net
. (3.6)

Using equations 3.5 and 3.6, the maximum number of events and thus the size of the leaky
bucket can be calculated as

nev,max = (tdel,ax− tlat) ·Re,net . (3.7)

3.3. NEURAL EVENT PROCESSOR FOR INTER-CHIP COMMUNICATION 53

If the additional storage of an event exceeds this number, the event will be dropped. nev,max
has a constant value and only requires the number of events within the FIFO to be calculated
during operation.

tsys tlatest tearliest
te0 te1 te2

t + t(s)lat sync� �tperiod,net

drop send delay

time

Figure 3.11: Time window used to delay events at the output of EventOutQueue. An event with time
stamp te0 would arrive too late and needs to be dropped. An event with time stamp te2 would arrive too
early regarding the time window allowed for sorting at the destination and is delayed. The event with
time stamp te1 is sent.

If an event packet appears at the output of the buffer, the connected logic first has to deter-
mine the contained event with the smallest time stamp. The strategy to delay the events at the
source is the following: only if its time stamp occurs within a sliding time window, the event
will be sent. Figure 3.11 illustrates this window which is calculated as

tlatest ≤ te < tearliest , (3.8)

with tlatest = tsys + tlat +∆t(ssync)
tearliest = tlatest +∆tperiod,net

and tsys being the current system time. Furthermore, tlat is the overall latency from trans-
mission of the event until event generation within the neural network chip (cf. equation 3.4).
∆tperiod,net is the net time of one switch period excluding the time for synchronization frames
∆t(ssync) and tlatest is the latest possible point in time a particular event can be generated
within the neural network chip. Hence, events with a time stamp smaller than tlatest need
to be dropped. According to the window size, events with time stamps greater than tearliest
are temporarily delayed. Dropping does actually not happen at this point as the leaky bucket
algorithm prevents the storage of events that would arrive too late.

Depending on the mapping of the neural network to the hardware there may be more than
one virtual connection assigned to one switch port and the bandwidth is shared by these con-
nections. In this case, several EventOutQueues are assigned to dedicated time slots and only
transmit data within appropriate time slots. The according fraction of the maximum event rate
Re,net has then to be used for the calculation of equation 3.7.

EventInQueue

The EventInQueue module is the counterpart of the EventOutQueue module within one virtual
connection. As in the case of EventOutQueue, several EventInQueues can be connected to one
switch port and can be assigned to different time slots. Events are only processed during time
slots that a particular EventInQueue is assigned to. The need for data storage at the destination
arises from the fact that several event streams need to be merged (see the following section
3.3.2) and not all incoming events may be immediately packed into an event packet. Storing
events at the destination leads to a delayed delivery and might lead to invalid time stamps just
like in the case of the EventOutQueue. This becomes particularly problematic when many

54 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

streams with high rates have to be merged and the overall rate exceeds the data rate of the link
to the neural network chips. To avoid the invalidation of all following events, the size of the
buffer memory is also limited and as a result, another leaky bucket is implemented. The actual
optimum size depends on the specific setup. Example results will be given in section 3.5.

For downstream event processing, the time stamp of the foremost event in the FIFO needs
to be normed on the system time in terms of its daisy chain delay:

tev,norm = tev− (a · tlc + tle + tpg) , (3.9)

where tev is the time stamp of the event, a is the destination chip address in the daisy chain, tlc
is the latency through one chip in the chain, tle the latency from the input of the neural network
chip until event generation and tpg is the latency of the EventPctGen module.

3.3.2 Event Packet Generator

The EventPctGen module finally merges incoming event streams at the destination, chrono-
logically sorts the events and generates event packets that are then sent to the connected daisy
chain of neural network chips by the controller. Besides these tasks this module also has to
avoid deadlocks of the event_buffer_in modules on the neural network chip as described for
the software generating the playback memory program in section 5.3.2. Since no software is
involved in the event processing, the evaluation of the event time stamps and the state of the
event_buffer_ins has to be done in hardware.

select
smallest

network
chip
FIFO
event
time

stamps

drop

+

pipe_reg0pipe_reg1pipe_reg2

++

select
smallest

fits in
packet?

fits in
packet?

fits in
packet?

valid
2

event_2 valid
1

event_1 valid
0

event_0

MUX

E
v
e
n
tI
n
Q

u
e
u
e

outgoing
event packet

pipeline
register

from switch
port

-

>=0 ?
increment
time stamp

Figure 3.12: Data flow in the EventPctGen module. Logic connected to the pipeline registers pipe_reg1
and pipe_reg2 has been omitted for clarity.

For clarity, the following description refers to a setup with only one neural network chip in
the daisy chain. Figure 3.12 shows the data flow within the EventPctGen module. To minimize

3.3. NEURAL EVENT PROCESSOR FOR INTER-CHIP COMMUNICATION 55

the number of multiplexers and the routing complexity, fixed assignments of EventInQueues
to slots within the event packet are made. All EventInQueues present in the system should be
distributed over the packet slots with respect to the expected event rate while providing equal
overall rates for all slots.

The first step is to determine the event with the smallest time stamp within all EventIn-
Queues connected to one packet slot. This event is then stored in a pipeline register.

In the second step, the time stamps of the stored events are compared with the time stamps
of the most recently stored events within the according event_buffer_in module on the neural
network chip33. A possible deadlock of this module will be avoided by incrementing the time
stamp of the stored event, if it is equal to the most recently stored one. If the time stamp of the
stored event is smaller than the most recent one, it would have arrived too late and would need
to be dropped34. According to this correction, the valid event with the smallest time stamp is
determined which defines the common upper nibble of all time stamps within the packet (cf.
section 3.2.1). If the remaining pipeline registers also contain valid events, those will also be
transmitted—provided that their time stamp matches the upper nibble of the packet and that
the events need not to be stored within identical event_buffer_ins on the neural network chip.
Such collisions are avoided by a simple priority scheme:

• The event with the smallest time stamp is always sent.

• If the above condition is not true and the same buffer is addressed, then slot i will be
prioritized over slot (i+1) mod 3 with i ∈ {0,1,2}.

This checking is done in the box denoted by “fits in packet?” in figure 3.12.
Subsequently, the event packet is assembled and a decision has to be made on whether to

send it immediately or not. A straight forward implementation would be to store the events in
the FIFO memories within the EventInQueues until the very latest possible time and to transmit
them only then. However, this implies the problem that even very short peak rates cannot be
handled by the system as there might be many events with equal time stamps arriving within
the same clock cycle and only three of them can be transmitted in one packet. The chosen
solution to avoid this problem is to set the latest possible time for event transmission for a few
clock cycles earlier as to gain some headroom to handle peak rates. The packet is then sent as
soon as the following condition is met:

tsys ≤ tev,norm < tsys +∆twindow , (3.10)

where tev,norm is the value obtained from equation 3.9 and ∆twindow is the allowed timing margin
into the future. Here, the problem arises that, if transmission starts too early (∆twindow is too
large), events arriving after the early transmission will run late and will have to be dropped at
the pipeline register stage. For the simulations presented in section 3.5, a value of

∆twindow =
10
f

with f being the clock frequency,

has been proven to yield the best results.
If n > 1 neural network chips are attached to the daisy chain, the logic described in this

subsection should be implemented in a parallel manner for each of them. n event packets are

33These time stamps are monitored by registers in the box “network chip FIFO event time stamps”.
34To catch the case the most recently stored time stamp has also been corrected, the developed algorithm offers

the option to increase expired time stamps within a certain margin. This can be done with the logic used for the
regular correction with only marginal modifications.

56 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

then available, each with its own value for the smallest tev,norm. In this case, the packet with
the overall smallest tev,norm is to be sent first. The time stamps of the events sent are finally
marked as most recently sent to the according event_buffer_in module on the neural network
chip.

3.3.3 Implementation Considerations

The implementation of the EventRouter is subject to future work and therefore—within the
presented thesis—only the concept and recommendations for the final implementations are
shown. In the first version, the EventRouter will presumably be implemented in the FPGA
of the Nathan module whose resources have to be shared among the logic needed for the
implementation of the logic modules comprising the whole system: the basic environment
of the FPGA consists of a memory controller and an external control interface (see section
5.2.1). For the operation of large scale spiking neural networks, four additional components
are required: the controller logic, the playback memory, the switch and the EventRouter. This
section gives first recommendations on the HDL35 implementation of the EventRouter and
based upon these, the resource consumption of the final design is calculated to have an estimate
whether the design will fit into the FPGA or not.

Concerning the whole system, the following points can already be predefined:

• The maximum clock frequency for the MGTs is 156.25 MHz. This should also be cho-
sen as the operating frequency for the controller and the neural network chip itself be-
cause asynchronous operation would introduce additional delay.

• As described in section 3.1.3, a single neural event consists of at least 12 bit of timing
information and 9 bit for the neuron/synapse address. As a result, two 16 bit switch time
slots at a time are required to transmit one event and the resulting rate for the resulting
event time slots within one switch period is 78.125 MHz.

Recommendations for the Different Modules

EventOutQueue The EventOutQueue module (cf. figure 3.10) has to provide three inter-
faces. For the incoming events this should be a direct connection to the registers located
within the controller, where incoming events are stored for the first time. On the output side,
an adaption to the data structure expected by the VHDL implementation of the switch will be
necessary for two reasons: first, data is being exchanged between the two synchronous clock
domains which differ by a factor of two in frequency. Second, the current time slot of the
switch has to be evaluated and a decision has to be made whether the module is addressed
within this time slot or not. Besides the interfaces needed for event communication, an inter-
face for configuration purposes and for monitoring features is needed which connects to the
global FPGA infrastructure (cf. section 5.2.1).

As the virtual connection to which an EventOutQueue is assigned automatically defines the
destination chip address and the axonal delay, these two values need only to be stored once
inside the module. The mapping of a source neuron address to a destination synapse row
address has to be stored within a LUT. The Block SelectRAM resources of the Virtex-II Pro
FPGA [Xil02a] are ideally suited for this task when storing the value of the destination address
at the Block SelectRAM memory address representing the source neuron. This look-up has

35The EventRouter could be implemented using either Verilog or very high speed integrated circuit (VHSIC)
hardware description language (VHDL) as a HDL.

3.3. NEURAL EVENT PROCESSOR FOR INTER-CHIP COMMUNICATION 57

Component # required BRAMs Flip-Flops LUTs Slices
Comparator a < b, 8 bit 3 – – 32 16
Subtractor, 2 bit 1 – – 40 25
Adder/Subtractor, 8 bit 3 – – 40 25
Adder, 12 bit 3 – 60 60 30
Smallest out of 3, 8 bit 1 – – 30 15
Multiplexer 3-in-1, 21 bit 1 – – 21 21
FIFO 66×64, BRAMs 1 2 153 78 96
Register for data path 100 – 100 – 50
Memory for constants 20 2 20 – 10
Total 4 309 221 241

Table 3.3: Logic components needed for the implementation of EventOutQueue. The resource con-
sumption has been either obtained by synthesizing exemplary VHDL code or is based on the informa-
tion supplied by the Xilinx CORE Generator [Xil05c] for generic components like comparators.

to be done for up to three incoming events in parallel. One Block SelectRAM features two
independent address ports, so three LUTs will consume two such modules. The calculation of
the destination time is done based on the delay value stored globally for the EventOutQueue
module and requires a 12 bit adder. Destination time and address are stored after calculation
which requires another 21 registers.

The calculation of the number of events currently stored within the FIFO memory requires
one 2 bit subtracter, one adder with a width of max. 8 bit and an according comparator. The
subsequent storage of the events could then be done in a FIFO memory based on two Block
SelectRAMs that account for the data width of 66 bit which is needed to store up to three
events in parallel.

On the pop-interface of the FIFO memory suitable asynchronous logic is needed that de-
termines the event with the smallest time stamp. A suggestion for the implementation of this
circuitry is the Parallel Rank Computer described by Hirschl et al. in [HY04]. The event with
the smallest time stamp is then multiplexed to the output by a 21 bit 3-to-1 multiplexer. Finally,
equation 3.8 needs to be calculated and the event can then be sent. Along with the multiplexer
logic, this requires one comparator, one adder and one subtracter. Based on these considera-
tions, the required components and their estimated resource consumption are summarized in
table 3.3.

EventInQueue This module basically acts as a FIFO memory. The depth of this FIFO may
be relatively small as described in section 3.3.1. In particular it has been proven by simulations
that depths over 16 entries are not required (data not shown). Knowing this, another feature of
the Virtex-II Pro FPGA can be exploited: each LUT of the FPGA fabric may be configured as
16 bits of distributed SelectRAM+ which can be seen as memory resources equally distributed
over the FPGA fabric. The implementation of FIFO memories using distributed SelectRAM+
resources is described by Xilinx, Inc. in [Gop05] and a customized version of this FIFO has
exemplarily been synthesized for the purpose of resource estimation. The only arithmetics
required within EventOutQueue is the calculation of the front event’s time stamp normed on
its transmission latency in the daisy chain based on equation 3.9 which requires one 8 bit
subtracter. As in the case of EventOutQueue, some glue logic to interface to the switch ports

58 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

is additionally needed. The required components and their estimated resource consumption
are summarized in table 3.4.

Component # required BRAMs Flip-Flops LUTs Slices
Adder/Subtractor, 8 bit 1 – – 8 5
FIFO 21×16, BSRAMs 1 – 34 38 20
Register for data path 45 – 45 – 23
Memory for constants 20 – 20 – 10
Total – 99 46 58

Table 3.4: Logic components needed for the implementation of EventInQueue. The resource con-
sumption has been either obtained by synthesizing exemplary VHDL code or is based on the informa-
tion supplied by the Xilinx CORE Generator [Xil05c] for generic components like comparators.

EventPctGen In section 3.3.2 the structure of the event packet generation logic (EventPct-
Gen) has been described (see also figure 3.12). As indicated there, the actual implementation
strongly depends on the number of virtual connections terminating at this module. If this num-
ber exceeds the number of events that can be packed into one data packet for the network chip,
the EventInQueue modules are clustered at the single packet slots. Pipelining is necessary
and in the first cycle, the EventInQueue containing the event with the smallest time stamp for
delivery has to be determined. Resource consumption is estimated using the Parallel Rank
Computer that has been used to select an event out of EventOutQueue in section 3.3.3. After
this comparison, the three selected events are stored within three 21 bit pipeline registers.

The next step involves the comparison of the time stamps of the selected events with the
time stamps of the events that have most recently been stored in the event_buffer_in modules
on the neural network chip. In figure 3.12 it is indicated, that this requires one 8 bit comparator
and one 8 bit adder for each event slot in the data packet. The elements used for the storage
of the time stamps within the event_buffer_ins depend on the timing margin left during im-
plementation. Regarding timing (e.g. positive slack), the most promising approach would be
an implementation using flip-flops but this requires # event_buffer_ins · width = 16 · 8 = 128
registers per neural network chip. If timing is not an issue, an implementation using Block
SelectRAM or Distributed SelectRAM would be most resource efficient.

VHDL code implementing the event packing algorithm described in section 3.3.2 has been
written and synthesized to estimate the resource consumption of the afore described logic as
well as the logic needed for the selection of the event with the smallest time stamp. Depending
on the timing margin that results from the implementation, it might become necessary to in-
troduce another pipeline stage between the existing pipeline registers and the registers for the
final event packet. To have a conservative estimate, this is considered in the resource consump-
tion of the module. Simulation results are not supposed to change due to this pipeline stage,
since it only increases the minimum transmission latency that can be achieved on one virtual
connection and has no influence on the other stages of the event processing. Table 3.5 sum-
marizes all these components including the additional pipeline stage and the 128 additional
registers. The numbers are calculated for three EventInQueues connected to the module.

This module needs to be adapted to the existing FPGA modules at two points. Data sent by
the playback memory and the event packets generated herein need to be merged. This integra-
tion can be done seamlessly as the output data path of the controller is already implemented in
a way that prioritizes event packets (see section 5.2.3). Therefore, event processing should be

3.3. NEURAL EVENT PROCESSOR FOR INTER-CHIP COMMUNICATION 59

Component # required BRAMs Flip-Flops LUTs Slices
Comparator a < b, 8 bit 3 – – 24 12
Adder/Subtractor, 8 bit 3 – – 24 15
Smallest out of 3, 8 bit 1 – – 30 15
Multiplexer 3-in-1, 21 bit 1 – – 21 21
Fits-in-Packet logic 3 – – 57 33
Register for time stamp storage 128 (3) 128 – 64
Register 2 × pipeline 132 – 132 – 66
Register for event packet 70 – 70 – 35
Memory for constants 64 – 64 – 32
Total – 394 156 293

Table 3.5: Logic components needed for the implementation of EventPctGen. The resource consump-
tion has been either obtained by synthesizing exemplary VHDL code or is based on the information
supplied by the Xilinx CORE Generator [Xil05c] for generic components like comparators.

disabled during the initialization and configuration phase of the chip to make sure all data are
completely transmitted.

Background Activity for the Neural Network As described in chapter 1 the simulation of
neural networks either in software or in hardware will always be restricted to a very small
fraction of the biological system. Thus, to develop a most realistic scenario, it is important to
stimulate the set of simulated neurons with some sort of background activity that mimics the
context of the biological network for the modeled neural network. In particular, this is required
to induce the high-conductance state of the simulated neurons [DRP03, MMS04]. This back-
ground activity is provided locally on each Nathan module by events that are generated by the
playback memory. This concept is also being used to provide the entire input for single-chip
experiments with the presented chip by D. Brüderle [Brü07] and can easily be implemented
together with the EventRouter logic.

The respective outputs of the playback memory are connected to a corresponding EventIn-
Queue within the EventRouter as shown in figure 3.7. Events providing the background activ-
ity are then sent by the playback memory in a way that their timing is equal to the timing of the
incoming event streams. To accomplish this, the algorithm to generate the playback memory
program (see section 5.3) needs to be modified in a way that it does not use the earliest pos-
sible point in time to transmit an event, but rather the latest possible point in time. Doing so,
the events supplied by the playback memory will have similar time stamps as the ones coming
from the switch.

3.3.4 Estimated Resource Consumption

An exact estimation of the resource consumption of the final design is not possible. Several
factors need to be considered for a rough estimation: to begin with, the estimations given
above only consider the components that are supposed to consume the most resources and
neglect the functionality required for the integration into the existing logic framework. It is
also not predictable to what extent the routing will consume resources. For reason of these
considerations it has been decided to include a certain overhead into the calculations. Only a
small error is expected for the number of needed flip-flops, the overhead is set to 20 %. The

60 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

overhead for LUT and slice utilization is set to a conservative value of 40 % as these values
are harder to predict.

Table 3.6 lists the resource consumptions including the overhead for the EventRouter. The
values for the controller are taken from the final mapping report and correspond to the com-
plete design including the external interface and the memory controller. The values for the
switch represent a complete design including the synchronization logic with two switch ports
to the MGT network and two to the EventRouter36. No overhead has been calculated for the
usage of Block SelectRAMs.

Component BRAMs Flip-Flops LUTs Slices
EventRouter 11 1571 1064 1345
Controller 22 3451 3911 3203
Switch 0 319 768 500
Total Available 44 9856 9856 4928
Util. EventRouter 25.0% 15.9% 10.8% 27.3%
Util. Total 75.0% 54.2% 58.3% 102.4%

Table 3.6: Compilation of the resource consumption of the switch, the controller and the estimated
overall resource consumption of the module EventRouter including an overhead. The numbers are
calculated relative to the resources of the Virtex-II Pro FPGA XC2VP7 that is being used on the Nathan
module [Xil02a].

The most reliable numbers in this calculation are the numbers of registers that will be used
by the final design because it became obvious in the preceding sections how many data will
have to be stored within one clock cycle. Logic functions that need to be implemented have
been pre-synthesized and the calculated numbers include a conservative overhead. The final
value for the occupied slice resources does not only depend on the logic functions to be imple-
mented but will also be strongly affected by the routing of the design as the router often has to
use entire slices as mere route-through logic. In contrast to this, the placer is able to combine
storage elements and logic functions independent of each other into one slice which is referred
to as resource sharing [Xil05b]. Due to resource sharing, the slice utilization is supposed to
drop below 100% for the final design. This argument is supported by the exemplifications in
[Xil05b].

To conclude, it can be stated that a design which is able to transport the data of a neural net-
work consisting of four neural network chips and one random event source (e.g. the playback
memory) per Nathan module should fit into the logic resources provided by the local FPGA.

3.4 Simulation Environment

The presented event routing algorithm has been developed to transfer event data between sev-
eral neural network chips that constitute one large scale neural network. In the previous sec-
tions the concept and the ideas behind this algorithm were introduced and a complete descrip-
tion of the algorithm was given. To be able to assess the quality of the presented algorithm, the
functionality of all modules is implemented in an object-oriented manner using C++ [Str97].
Based upon this, a complete simulation environment has been developed that includes behav-

36The values have been obtained by S. Philipp [Phi07], whose PhD thesis work is the implementation of the
isochronous transport network.

3.4. SIMULATION ENVIRONMENT 61

ioral models of the presented network chip as well as models of the switch and for the physical
layer of the transport network.

3.4.1 Operation Principle of the Simulation Environment

In figure 3.7 an overview of the whole system for the event routing is given. For the simulation,
each depicted module is realized as a separate C++ class. Each class provides appropriate
access functions and methods for the communication with other modules and for internal data
processing. Communication with other modules is solely done via container classes that do
only contain interface-specific data payload and auxiliary functions for verification purposes.
Thereby, it is ensured that the functionality of each module has no dependency on data, other
than the data that is planned to be exchanged via the physical interface between the modules.
The communication data structures are:

• Event contains the full address and time information of one event. The address includes
the address of the switch, the connected controller and the neural network chip within
the corresponding daisy chain. For events generated by the network chip the neuron
address field means the neuron number that generated an event. In all other cases the
destination synapse row is addressed.

• SpikeyPacket contains up to three Event structures. According to the actual format of
the packets processed by the network chip (cf. section 4.3.1), the identical upper nibble
for all events is stored additionally.

• RouterPacket is the data processed by the switch and the MGT network. Besides some
status bits that resemble the physical interface of the switch, this structure stores the time
slot within which it has been sent. The data payload of RouterPacket may be defined
arbitrarily but in the current setup it only carries Event structures.

The neural network chip is internally modeled by six neuron blocks according to the real
structure described in subsection 4.3.5. Each of these blocks can randomly generate events
for up to 64 neurons. Output event packets are assembled in the same way as in the real chip.
Additionally, the ability to read text files is implemented for the neuron blocks to inject the
activity yielded from a software simulation into the network. No such data is available so far,
so the simulations are run with randomly generated events.

To model the physical layer of the transport network, the transmission latencies of all in-
volved modules starting from the input of an MGT transmitter on the FPGA and ending at
the output of an MGT receiver are modeled using a double ended queue from the C++ stan-
dard template library (STL)37. The length of this double ended queue is fixed and matches
the overall transmission latency of the physical layer in clock cycles. The data stored within
this container is of type RouterPacket. All other data structures, either FIFO-like queues of
EventInQueue, EventOutQueue or other array structures, are also implemented using the STL
containers where possible.

37The STL provides a ready-made set of common classes, such as containers and associative arrays that can
be used with any built-in type and with any user-defined type that supports some elementary operations (such as
copying and assignment). The container introduced here, the double ended queue, can be treated as a shift register
if it is used with fixed length. The length can be kept constant by simultaneously executing a push and a pop
operation within the same cycle after an initialization with a certain length. FIFO operations like pop and push are
supported by almost all STL containers.

62 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

The simulation of the system is done cycle-accurate in order to have an accurate simula-
tion of the timing of the network. Cycle-accurate simulation means the negligence of ana-
log timing properties. The system is thereby only evaluated at discrete points in time (clock
edges). Due to the isochronous nature of the transport network and the clock-cycle wise dig-
itization/generation of events in the neural network chip, this strategy gains reliable results
regarding the departure and arrival times of single events within the system. Registers are
in this case simply modeled as variables that are updated at most once per simulation cycle.
Delay stages or points where latency is introduced due to pipelining or data path delays are
modeled with an appropriate number of these register pendants. A more detailed description
of cycle-accurate simulation strategies can be found in [RD06].

Pseudo code of the developed behavioral simulation is shown in the following algorithm 1.
The presence of a global clock signal is simulated by an outer loop triggering the execution
of the single modules for a certain number of times until the desired simulation duration has
been reached. To achieve results that are comparable to the HDL simulation of the final im-
plementation, the cycle-accurate simulation mimics the behavior of an RTL-design for each
cycle: the output of the previous cycle is first read at each level of the hierarchy before the
respective data is being updated.

Algorithm 1 Pseudo code for the event routing simulation. The outer loop simulates the
presence of a global clock signal by triggering all contained actions. All data is evaluated
backwards with respect to the direction of data flow. This simulates the behavior of registers
updating their outputs with the result of the previous clock cycle.

for i← 0 to number o f cycles−1 do
for n← 0 to number o f switches−1 do

mgtdelays[n]← result of switch->switchOut()[n] from prev. cycle
function NATHAN->EXECUTENATHAN() . execute one Nathan module

SWITCH->SWITCHIN() . process EventOutQueue output from prev. cycle as input to the switch
for s← 0 to number o f daisy chains−1 do

function CONTROLLER->EXECUTECONTROLLER() . executes EventRouter and neural network chips
popOutQueues() . process EventOutQueues
pushOutQueues()
for s← 0 to number o f chips in daisy chain−1 do

function SPIKEY->EXECUTESPIKEY() . execute neural network chip
NetworkBlock->fire()
genEvPacket()

end function
end for
genEvOutPacket() . evaluate EventInQueues and generate SpikeyPacket for the next cycle
pushInQueues() . read switch output into EventInQueues

end function
end for
SWITCH->SWITCHOUT() . execute the crossbar switch and generate switch output data
setTime() . increment system time

end function
end for

end for

3.4.2 Neural Network Setup

Plenty of research is being done in the field of neuroscience using software simulators for the
neural network like NEST38 or NEURON39. One of the first goals for the experiments done

38NEST [The07a] is a software provided by the Neural Simulation Technology Initiative and is intended as a
’simulation system for large networks of biologically realistic (spiking) neurons’. It allows the custom definition
of point-neuron models and is used as a verification tool for the model implemented within the Spikey chip.

39NEURON is a simulation environment for modeling individual neurons and networks of neurons [HC97].

3.4. SIMULATION ENVIRONMENT 63

with the chip presented in this thesis would presumably be the comparison of the obtained
results with the results of software simulations. First results for single-neuron experiments
will be given in section 6.8. The comparison of simulations of complex neural networks
would demonstrate the correct functionality of the implemented model. Even more important,
it would demonstrate the speed advantage of the hardware model, which operates 105 times
faster than biological real time, compared to software simulations. These barely simulate
networks with a complexity in the order of 103 neurons in real time with a simple integrate-
and-fire model and conductance based synapses [Mue03].

Commonly used neural network topologies for software simulations can be found for ex-
ample in the work of Mueller et al. [MMS04] or Maass et al. [MNM04]. The neural networks
modeled there feature approximately 1000 neurons and are only small portions of cortical
areas. Neurons are arranged on a lattice and synaptic connectivity between these neurons is
supposed to be random and uniformly distributed without any spatial preference. The number
of output synapses per neuron is parameterized by the connection factor rcon with values be-
tween 5 % and 20 % of the neuron number. Figure 3.13 shows the connectivity of one example
neuron within a 9×9×9 lattice.

Figure 3.13: Schematic drawing of the synaptic connections made by
a representative neuron (center, red) in the lattice. Figure taken out of
[MMS04] with kind permission.

Mapping of the Neural Network to the Hardware

Prior to simulation, this network needs to be mapped to the resources available in hardware,
e.g. the neural network chip and the accompanying event transport network. This mapping
process is a major challenge due to the biological diversity of parameters and the comparably
limited or quantized features of the hardware. The development of a mapping software is
subject to the collaborative work within the FACETS project and the mapping process will
shortly be outlined in the following. For more specific details, please refer to [EME+06].

Two input sets of data to the mapper can be identified. On the one hand, there is a netlist
of neurons and synaptic connections. This netlist can be generated using a scripting language
like Python that is commonly used for programming neural network simulators like NEST.
On the other hand, there is the description of the hardware system including the topology and

64 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

the bandwidth information of the transport network and constraints regarding connectivity on
the neural network chips. Furthermore, the hardware description covers the parameters for the
neural circuits on the network chip with all constraints in terms of grouping of parameters and
quantization (cf. section 4.2.1). Based on this input data the mapping process takes place in
two steps:

1. Map the netlist of the neural network to a number of chips. To facilitate this process,
the number of chips and the number of neurons to be used on each chip has to be de-
fined before the mapping starts. The input netlist is then reordered as to maximize local
connections on the neural network chips. As an outcome, the inter-chip connections
and thus the required bandwidth on the transport network are minimized. At the end of
this step all connections between two neural network chips that have an identical or al-
most identical axonal delay are combined to virtual connections. The number of axonal
connections contained within one virtual connection then allows the estimation of the
bandwidth required for this connection by summing up the estimated maximum firing
rates of all involved neurons. Another outcome of this step is the content for the LUTs
of each EventOutQueue and the configuration of the on-chip feedback connections of
the neural network chips.

2. Map the virtual connections onto the resources provided by the transport network. To
facilitate this process the user has to take two decisions before the mapping starts: first,
the actual Nathan modules that will be part of the transport network have to be chosen.
Second, the size of the switch has to be chosen based on the available logic resources in
terms of the number of ports to the controller and to the MGT links. This configuration
predefines the available bandwidth between the Nathan modules and the bandwidth to
and from the controllers. The mapper then allocates one or more time slots of the switch
period to each virtual connection and distributes the virtual connections over the avail-
able switch ports. Route-through connections over several hops will also be considered
if necessary (cf. section 3.1.2). The result of this step is the configuration table for the
scheduler with an input-output assignment for each time slot.

It turned out that a randomly connected network, even with a low connection density of
rcon = 5%, after the first mapping step still requires one axonal connection between a neuron
on one network chip and at least one neuron on all other network chips in the system. Con-
sequently, each virtual connection needs to transport all events generated by neurons on the
attached source neural network chip and in this case, identical bandwidth is required for the
communication between all neural network chips. Since the mapping tool is in a very prelim-
inary stage of development and due to the fact that a detailed mapping result is not supposed
to have any impact on the performance of the event routing algorithm, it has been decided to
manually create a rather simple netlist for a neural network for the benchmark simulations.

Assuming the viability of an implementation using two virtual connections per Nathan mod-
ule, the second step of the mapping process has been performed with this netlist consisting of
1000 neurons distributed over four neural network chips. An illustration of the (transport) net-
work topology is given in figure 3.14. The Nathan modules are arranged in a square topology
that matches one square out of the transport network on the backplane of the hardware plat-
form. Each Nathan module has two active MGT connections that serve one virtual connection
each, thus each switch has two ports to the MGT links. To have the full MGT bandwidth
available at the controller, two user ports are allocated to this module on each switch.

The reduction of the communication between two network chips to exactly one virtual con-
nection is due to the limited resources that are available on the currently available FPGA. It

3.5. SIMULATION RESULTS 65

Figure 3.14: Topology of the neural network used for the benchmark tests of the event routing algo-
rithm. In addition to the virtual connections shown, each network chip gets one EventInQueue con-
nected to the local Playback Memory to inject background activity into the neural network.

has one severe implication for the realizable neural network models: all axonal delays between
two chips are required to have the same delay. This limitation may only be overcome by the
usage of an FPGA with large logic resources that might enable the implementation of more
than one virtual connection per network chip connection. However, this number will still be
small compared to the diversity of axonal delays within biological systems. To what extent
this restricts the quality of the simulations of large scale neural networks cannot be quantified
at the moment and will be subject to future research.

3.5 Simulation Results

Extensive simulations were performed in order to verify the functionality of the event routing
algorithm with different configurations and under various load conditions. In the following,
characteristic simulation results are shown that prove the functionality of the algorithm and
also show some drawbacks resulting from bandwidth limitations within the system. First, the
performance under static load conditions is shown. Second, simulations of networks with
synchronized activity follow and finally the expected drop rates against the axonal delay of a
virtual connection are shown.

It has to be noted that the results were obtained with the very simple neural network de-
scribed in the previous section. As only the firing rates of the neurons are of interest, this
should not restrict the validity of the results. Axonal delays for the virtual connections have
been chosen randomly between 40 ms and 60 ms biological time for the following simulations.

3.5.1 Static Load

The goal of an analysis with a static load mainly is to verify that the event drop rates yield no
unacceptable values for all activity that might occur within the neural network. Firing rates
are kept constant for a biological time of about 6.5 seconds. At the chosen speed-up factor of
nspeedup = 105 and an assumed clock frequency of f = 156 MHz, this corresponds to 2 · 104

clock cycles for the simulation.
If all 250 neurons of one chip are firing at the same rate fn, the overall firing rate ft can be

superimposed to ft = 250 · fn. Using equation 3.2 the maximum achievable firing rate in terms
of biology can be calculated as

66 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6

dr
op

 r
at

e,
 li

nk
 u

til
iz

at
io

n

biological firing rate [Hz]

input drop rate
output drop rate

total drop rate
link utilization

Figure 3.15: Drop rates at EventInQueue (input drop rate), EventOutQueue (output drop rate) and the
resulting total drop rate (total drop rate) against the average firing rate of all neurons. Firing rates are
kept constant for approx. 6.5 seconds of biological real time.

fn,bio =
Re,net

nspeedup ·250
' 3Hz . (3.11)

Figure 3.15 shows the response of the system for static firing rates from fn,bio = 0.07Hz to
5.2Hz. The simulation is carried out with the setup described in the previous section. Four
chips with 250 neurons each were simulated, where the average firing rate is the same for all
neurons. Each EventPctGen module has one additional source for random events connected
that is constantly sending events to 64 synapse rows at an average rate of 3 Hz per synapse
row. The plotted results are the mean values of all modules in the system.

Within the EventOutQueues the first drops occur at 2.5 Hz and the drop rate then increases
linearly with the firing rate. At the expected maximum of 3 Hz it has reached 2.5 %. This drop
rate is due to the fill level of the queue memory operating near the maximum. Short peaks
in the firing rate immediately lead to an overflow and thus to dropped events. Nevertheless,
the implemented leaky bucket algorithm performs well and the link utilization almost reaches
100 % at the expected maximum firing rate. No decrease of the link utilization is observed
even if the link is heavily overloaded.

At the destination, events yet need to be discarded by the EventPctGen module at compara-
bly low firing rates. These drops occur due to events arriving with a time stamp smaller than
the one of an event that has already been sent to the neural network chip. The algorithm that
checks for collisions within the event_buffer_ins on the network chip does not correct the time
stamp of these events and discards them. The fact that this drop rate does not exceed an ac-
ceptable value of 0.7 % shows two things: first, the strategy to start the transmission of events
to the network chip within a certain time window (cf. section 3.3.3) leads to low drop rates
as expected. Second, the leaky bucket algorithm at the source performs well because it does
not send events that would arrive too late at the destination. These events would be dropped
immediately by the EventInQueues and would show up as an increase of the input drop rates
under heavy load conditions.

The above setup is simulated with an average firing rate for all neurons that is slowly in-
creased over time in order to evaluate the performance under moderate load transients. Start
and stop values for the firing rate are chosen equal to the static analysis. The result is shown
in figure 3.16. In this case, only the drop rate averaged over the whole system and the link

3.5. SIMULATION RESULTS 67

 0.001

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

 0 1 2 3 4 5
dr

op
 r

at
e,

 li
nk

 u
til

iz
at

io
n

biological time [s]

biological firing rate [Hz]

drop rate
link utilization

Figure 3.16: Drop rates described in figure 3.15 for a transient, constant increase of the firing rate of
all neurons.

utilization are plotted. The overall behavior confirms the above results. For firing rates well
below the expected maximum of 3 Hz, the overall drop rate does not exceed 2 %. Furthermore,
it can be seen that the link utilization has reached 100 % at about 2.75 Hz while the drop rate
has a peak value of about 8 %. This shows that the transport network may become overloaded
for short times due to fluctuations in the event rate if it is operating close to the maximum rate.
This fact recurs in the results presented in the following section and will have to be taken into
account during the planning of neural network experiments using this system.

 0.001

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

dr
op

 r
at

e,
 li

nk
 u

til
iz

at
io

n

bi
ol

og
ic

al
 fi

rin
g

ra
te

 [H
z]

biological time [s]

drop rate
link utilization

biol. firing rate

Figure 3.17: Simulation of a network with synchronized activity and peak rates that can be handled by
the transport network.

3.5.2 Synchronized Activity

This section describes generic simulations of a neural network exhibiting synchronized activity
aimed to evaluate the functionality of the event routing algorithm under heavy load transients
as they are expected for this kind of neural network activity. The basic setup is identical to
the setup used in the previous sections. Four network chips, all with 250 active neurons, are
interconnected via next-neighbor connections and each chip has a local source of randomly
generated events that serve as background activity and are injected into 64 dedicated synapse

68 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

rows on the network chip. The average biological firing rate for this background activity is
3 Hz.

As a basis for the network simulations, simulation results obtained with NEURON for a
set of 729 neurons are taken [MMS04]. Based on this data, the neural network is expected to
develop a synchronized behavior. These synchronized bursts are in the following modeled as
an increase of the firing rate of all involved neurons, over periods of 25 to 50 ms on biological
time scale, at a rate of 2 to 5 Hz. At a speed-up factor of 105 the system is intrinsically not able
to handle event rates over 3 Hz. As a consequence of this, this factor is reduced to 104 for the
following simulations which matches the minimum operating speed of the analog circuitry of
the neural network chip. The duration of the synchronized burst was 25 ms at a rate of 3.5 Hz
for all simulations.

 0.001

 0.01

 0.1

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

D
ro

p
R

at
e,

 L
in

k
U

til
iz

at
io

n

B
io

l.
F

iri
ng

 R
at

e
[H

z]

Biol. Time [s]

Drop Rate
Link Utilization

Biol. Firing Rate

Figure 3.18: Simulation of a network with synchronized activity and peak rates that exceed the capacity
of the transport network.

The result for an idle firing rate of 3 Hz and a burst firing rate of 28 Hz is shown in figure
3.17. At a speed-up factor of 104, the system is expected to handle peak rates close to 30 Hz on
the basis of the previous simulation results which is approved by this simulation. The overall
drop rate does not exceed approximately 1.2 % during a burst.

For an idle firing rate of 5 Hz, a burst firing rate of 48 Hz and a speed-up factor of 104,
the simulation results are shown in figure 3.18. As expected in this case, up to 40 % of the
events need to be dropped during a burst. The advantage here is, that the system immediately
recovers from the overload and continues to reliably transport events. As a consequence of
this, if the enabling of bursting activity at high rates is desired, either the number of axonal
connections per virtual connection will have to be decreased or the physical bandwidth will
have to be increased.

3.5.3 Drop Rates and Connection Delay

In the preceding subsections, the simulated axonal delay is randomly chosen between 40 ms
and 60 ms biological time which is well above the minimum value of 24 ms for a layer 3
connection at a speed-up factor of 105 (cf. section 3.2.4). The dependency of the output drop
rates against the axonal delay shall now be investigated. The simulated network is again the
four-chip system with 250 active neurons per chip. Firing rates are kept at different constant
values for each chip: 1.125 Hz for all neurons on chip 0, 1.5 Hz for chip 1, 2.25 Hz for chip 2

3.6. CONCLUDING REMARKS 69

 0.001

 0.01

 0.1

 1

 0.02 0.025 0.03 0.035 0.04 0.045

D
ro

p
R

at
e

Axonal Delay [s]

Average Firing Rate: 1.125 Hz
1.5 Hz

2.25 Hz
3 Hz

Figure 3.19: Dependency of drop rates at EventOutQueue from the axonal delay for different average
firing rates. The speed-up factor is 105 compared to biology for this simulation.

and 3 Hz for chip 3. Figure 3.19 shows the result of a simulation where the axonal delay was
globally swept from 22 ms to 45 ms for all virtual connections.

At delay values below the minimum of 24 ms the drop rate is 100 %, as expected. For values
slightly above this minimum delay, the drop rate does not decrease immediately to a certain
minimum but rather approaches this minimum with a slope proportional to the average event
rate that is transmitted by the corresponding EventOutQueue. This minimum drop rate equals
zero for firing rates below 2 Hz and otherwise approaches constant values of up to 1-2 %, as it
is expected. As a consequence, if a virtual connection is supposed to operate at the maximum
possible event rate, the minimum feasible axonal delay for this connection will sum up to
about 40 ms for drop rates below 2 %.

3.6 Concluding Remarks

An algorithm suited for the transport and routing of neural event data between several neural
network chips, based on the transport network of the FACETS40 Stage I hardware system, is
presented. To evaluate the performance of the proposed system, a C++ simulation environment
has been developed and the algorithm has been tested under various conditions. The results
show that the bandwidth resources of the transport network are optimally utilized under static
and transient load conditions.

By means of the simulation of a network of 1000 neurons comprised of four network chips
it was shown that the algorithm can handle the traffic of a neural network exhibiting syn-
chronized behavior. This proves the presented concept for building large scale spiking neural
networks based upon the hardware presented in this thesis. Besides the simulation results, an
estimation on the resource consumption of the final implementation of the algorithm has been
given. It turns out that with the current hardware, at least the implementation of the simu-
lated four-chip network should be feasible. Maybe even three virtual connections per Nathan
module are possible, which would allow the realization of a fully connected neural network.

Some drawbacks arise due to the constraints imposed by the presented hardware system.
Due to the ever limited logic resources, only a comparably small number of virtual connec-

40FACETS: Fast Analog Computing with Emergent Transient States. An Integrated Project funded by the EU
[Mea05].

70 CHAPTER 3. LARGE SCALE ARTIFICIAL NEURAL NETWORKS

tions per neural network chip is feasible. This basically restricts the number of inter-network
chip connections and thus the overall number of neural network chips in the system. Addi-
tionally, the diversity of axonal delays is restricted to one discrete value per virtual connection.
Moreover, within the current system, the size of this delay will presumably be greater or equal
to 40 ms in biological terms at a speed-up factor of 105. The bandwidth requirements of a
bursting network operating with this speed-up factor cannot be satisfied using only one virtual
connection for the transmission of the whole event data produced by one chip.

There are two possible solutions to these problems: the first possibility is to build a new ded-
icated hardware substrate facilitating the operation of several neural network chips connected
to one large FPGA. Depending on its logic resources, this would enable the implementation
of layer 1 and layer 2 connections. Their availability would introduce the ability to implement
shorter and more diverse axonal delays among the neurons distributed over the neural network
chips. The second possibility to achieve a more biologically realistic behavior of the network
is the reduction of the speed-up factor to 104. This would shrink the minimum axonal delay by
a factor of 10 to about 4 ms on the currently available hardware system and would furthermore
provide enough free bandwidth to possibly enable synchronized behavior with only few virtual
connections.

Future work will integrate the developed simulation environment into a convenient frame-
work for the system simulation and the development of the FACETS hardware. Mainly the
mapping tool, which is currently being developed [EME+06], will provide the actual neural
networks to be realized in hardware. Prior to the final implementation, the performance of
the system may then be estimated using the presented simulation environment. A planned
integration into a SystemC-based simulation environment will in the future also enable system
simulations that integrate the actual hardware models.

Chapter 4

Implementation of the Chip

This chapter describes the implementation of the neural network ASIC by
means of the design flow described in chapter 2 while incorporating the analog
VLSI components described in chapter 1. An overview of the chip architecture
is given and the analog and the digital part are separately discussed. The ana-
log part implements the functionality of the neural models and is described
on a functional level. The features of the digital part are introduced in the
following sections with, on the one hand, a special emphasis on the interface
of the chip. On the other hand, the implemented logic for the event transport
is explained in detail. The physical implementation using Cadence First En-
counter is described and the performance of the final chip is estimated based
on results obtained from the timing closure using Synopsys PrimeTime. Two
versions of the chip have been fabricated which will be referred to as Spikey 1
and Spikey 2. Unless otherwise noted, this chapter refers to Spikey 2 and it
closes with an overview of improvements of the second version.

The presented chip has been fabricated in a standard UMC 180 nm CMOS process [Cor]
with one layer of poly silicon and six metal layers. A complete set of standard cell and I/O pad
libraries as well as generators for customized static memory arrays and a PLL are available
for this process. Moreover, multi-project wafer (MPW) runs for the UMC 180 nm process are
made available by the Dutch research institute IMEC which renders possible the low priced
production of ASIC prototypes in quantities of tens to hundreds.

4.1 Chip Architecture

In figure 4.1 a micro photograph of the Spikey chip is shown and the essential functional blocks
are marked with arrows. The chip comprises two identical network blocks, each consisting of
the synapse array, 256 according synapse drivers and 192 leaky integrate-and-fire neurons,
resulting in 49,152 synapses per network block, hence, 100,000 synapses per Spikey chip.
The synapses have a size of about 10×10 µm2 which made it possible to integrate the circuits
on a die size of 5×5mm2. The models described in chapter 1 are implemented in the neuron

71

72 CHAPTER 4. IMPLEMENTATION OF THE CHIP

and synapse circuits and the intrinsic time constants result in a speed-up factor between 104

and 105 compared with biological real time. DTCs and TDCs generate and digitize events at a
digital clock rate of nominal 400 MHz and a time bin resolution of 1/16 clock period (156 ps).
About 3000 analog parameters can be set to allow for a rich model diversity as well as for
calibrating the analog circuits.

5
m

m

analog output buffers,
analog power supply,

direct event inputs

LVDS receivers

synapse drivers

LVDS transmitters

neurons and STDP
circuitry

parameter SRAM

event buffer SRAM

core power supply,
digital I/O: clock, reset,

configuration, etc.

synapse array

DAC
DTC/TDC Vparam

analog part

digital part

Figure 4.1: Micro photograph of the Spikey chip.

As already indicated, the chip is divided into an analog and a digital part and the analog
part occupies the upper two thirds of the core area. The synapse array, the synapse drivers
and the neuron circuits are combined in one block which will be referred to as network_block.
Two network_blocks are present on the chip and thus all blocks that are directly related to
their functionality are implemented twice. Both blocks that are placed in the center below
each network_block provide 20 parameter voltages Vparam and the TDC and DTC circuits are
integrated into one block at a time. The DAC that is globally used for the model parameter
generation is placed between the network_blocks. Analog supply voltages, external biasing,
the membrane voltage outputs and other auxiliary signals for the analog part are confined to
the top edge of the chip.

The digital part occupies the lower third of the core area. Requirements for its functionality
are derived in the following sections. In the micro photograph, the memory arrays for the
event processing logic and the model parameter storage are marked. The I/O pad cells of the
digital interface are placed along the right and the left edges of the chip in a way to facilitate
the physical interconnections of the daisy chain topology with the data flowing through the
chip from right to left (cf. section 3.2.1). Auxiliary pads that are required for the digital part

4.2. ANALOG PART 73

are confined to the bottom edge and include power pads, daisy chain address and reset pins,
the external core clock input and pads of the JTAG41 interface.

correlation readout

o
u
tp

u
t
b
u
ff
e
rs

3
8
4

m
e
m

b
ra

n
e

v
o
lt
a
g
e

b
u
ff
e
rs

synapse ram control

2 x 192 x 256 synapses

le
ft

s
y
n
a
p
s
e

d
ri
v
e
rs

ri
g
h
t
s
y
n
a
p
s
e

d
ri
v
e
rs

384 neurons

asynchronous priority encoder

time-to-digital converter

d
ig

it
a

l-
to

-t
im

e
c
o

n
v.

LVDS external interface

2
9

6
7

b
ia

s
cu

rr
e

n
t
m

e
m

o
ri
e

s
a

n
d

6
4

b
ia

s
vo

lta
g

e
g

e
n

e
ra

to
rs

1
0

B
it

D
A

C

weight
RAM

DAC

controlled
conductance

correlation
measurement

synchronous digital control

p
re

-p
o
s
t

p
o
s
t-

p
re

48 to 1 mux

DLL

digital part

d
ig

it
a

l-
to

-t
im

e
c
o

n
v.

Figure 4.2: Illustration of the analog part of the Spikey chip that contains the neuromorphic circuits.
The realization of the digital part, which occupies the lower third of the core area, together with the
integration of the analog blocks into the final chip, is a main aspect of this thesis work.

4.2 Analog Part

The functionality of the neuromorphic circuits is outlined in chapter 1. Within this section,
the model parameter generation is briefly described and the relevant data for the automatic
integration of the different blocks is collected.

4.2.1 Model Parameter Generation

The ability to control the diversity of the neuromorphic circuits is an important aspect of the
presented chip, as it is desired to model the variability observed in nature [AGM00]. Control
of diversity is implemented by means of manipulating certain parameters of the analog circuits
either group wise or for single circuits. As it is not possible to manipulate geometrical proper-
ties of silicon devices, the parameters have to be adjusted in the form of currents or voltages.
One example is the leakage current Ileak, which can be set for each neuron individually. A
complete list of available analog parameters can be found in appendix A.

41The joint action test group (JTAG) interface is a four-pin serial interface. It is implemented for testing purposes
and provides backdoor access to the I/O pads of the chip.

74 CHAPTER 4. IMPLEMENTATION OF THE CHIP

Current Memory Cell The total amount of parameters sums up to 2967 and therefore a
custom current memory cell has been implemented [SMM04]. Two types of this cell are
available: a current source and a current sink. It is used within the circuits and replaces bias
current sources or sinks where they are relevant for the model parameter generation. The
current memory is implemented as a voltage controlled current source/sink, and the control
voltage is stored on a capacitance within the cell. Due to leakage currents, this capacitance
requires periodic refresh. For this purpose, all current memories are connected to the output
of the 10 bit DAC and a common address bus along with the digital control logic constantly
loops over the current memories refreshing their values. The cell is designed such that it
keeps its old output current while it is being refreshed, thereby avoiding output glitches during
programming.

10 Bit DAC The 10 bit DAC has a current steering output and requires the supply of an
external reference current Irefdac and an external bias voltage Vcasdac. The output current can
be set from 0 to Irefdac/10 with a nominal resolution of 10 bits. The interface to the DAC is
fully asynchronous: the five least significant bits of the value have to be supplied as binary
value whereas the five upper bits are thermometer coded. In contrast to the remainder analog
and digital circuits, which operate from 1.8 V supply voltages, the DAC operates from a 3.3 V
supply to facilitate the realization of a rail-to-rail output within the 1.8 V domain [Scha].

The output of the DAC drives a large capacitive load as it is connected to all current memory
cells in parallel. Therefore, the RC time constant at the output and thus the output settling time
becomes relatively large, especially for small output currents. To overcome this issue, the DAC
features a boost input which in parallel connects the output to 9 dummy current memory cells
located within the DAC. To achieve the desired current at the output of the DAC, the input
value has to be multiplied by 10 when using this pin. This increased output current shortens
the settling time. Therefore, the boost pin can be used to shorten the refresh time for small
current values.

output voltage quiescent current

input voltage (V)

V
(V

)

I(
m

A
)

input voltage (V)

Figure 4.3: DC response of the buffer used for the parameter voltage generation to an input voltage
sweep from 0 V to 1.8 V at a bias current of 0.2 µA. Left: output voltage. The rails are not reached
on purpose. Right: quiescent current. The large quiescent current of up to 1.1 mA has to be taken into
account during power planning.

4.2. ANALOG PART 75

Current to Voltage Converter Several model parameters, e.g. the reversal potentials El, Ex
and Ei, require the supply of voltages rather than currents. These voltages are generated by
cells called vout_block located below the network_blocks. These cells are addressed by the
same bus as the current memories but they convert the output current of the DAC to a voltage
by means of a poly silicon resistor of Rcv = 10kΩ. The voltage developed at the resistor is
first stored as a charge on a capacitance C1. After programming, the DAC is disconnected
and C1 is connected to a second capacitance C2. C1 and C2 share their charge and after a
sufficient number of programming cycles the desired output voltage is developed over C2. As
a consequence, the output of the cell operates glitch free. C2 is connected to a low-impedance
output buffer that is capable of driving up to 5 mA by means of a push-pull output stage
with equally sized transistors (L = 240nm and W = 250 µm). The output impedance and the
quiescent current of this buffer are also controlled by a current memory cell. Figure 4.3 shows
the DC response of the output buffer to its input swept from 0 to 1.8 V with a bias current of
0.2 µA (the regime in which the buffer is supposed to operate). The rails are not reached on
purpose which limits the voltage parameter range to

0.45 V≤Vparam ≤ 1.7 V . (4.1)

As a consequence, parameter voltages requiring lower voltages are supplied externally. These
voltages are listed in appendix A together with an explanation of their purpose.

The quiescent current reaches up to Iqv =1.1 mA. This value may be reduced by a lower bias
current. However, this is not desirable due to the increased output impedance. For this reason,
the power supply for vout_block needs to be designed appropriately (cf. section 4.4.3). The
large quiescent power dissipation increases the self-heating of the chip near the network_block.
It was chosen to still use this buffer and to tune the bias currents in order to reduce power
consumption.

The space requirement of the poly silicon resistor and the output buffer prohibits the in-
tegration of the current to voltage converters into every neuron or synapse circuit. For this
reason, groups of neurons and synapses share parameter voltages. All available parameters as
well as a list of grouped parameters is given in appendix A. A more concise description and
the characterization of the current to voltage converters can be found in the diploma thesis of
B. Ostendorf [Ost07].

4.2.2 The Network Block

Figure 4.4 shows a block drawing of the network_block. Its core is formed by the synapse
array of 256×192 synapses. This size has been iteratively determined during the layout phase
of the synapse array. A maximum of 384 columns fit into the available core area of the chip
after placement of the I/O cells and bond pads. To reduce the wire capacitance, thus, the signal
propagation delay and the required drive strength for the row drivers, the array of 384 columns
is split into two network_blocks. Another advantage of the splitting is the availability of twice
as much synapse drivers per chip (only half the synapses share one common driver) resulting
in an increased flexibility for the mapping of neural networks to the hardware.

Row Circuitry The row circuits beneath the synapse array contain the spike reconstruction
circuitry to drive an input spike into the associated synapse row. Moreover, circuits imple-
menting short term synaptic plasticity are integrated common for one row. Available analog
parameters for one row are listed in table 4.1. The input of the synapse driver can be selected

76 CHAPTER 4. IMPLEMENTATION OF THE CHIP

0

63

64

127

128

191

192

255

0 63 64 127 128 191

DTC DLL TDC

Vin

Iout

e/i

Vin

Iout

e/i

Vin

Iout

e/i

Vin

Iout

e/i

a
d
d
ri
n
0
<

5
:0

>
a
d
d
ri
n
1
<

5
:0

>

tb
in

in
0
<

3
:0

>
tb

in
in

1
<

3
:0

>

a
n
a
c
lk

a
n
a
c
lk

b

a
d
d
o
u
t<

5
:0

>

tb
in

o
u
t<

3
:0

>

v
a
lid

0

v
a
lid

1

a
n
a
c
lk

h
i

dll_block_complete

network_block

4
x

6
4

in
p
u
ts

-
a
n
a
c
lk

4
x

6
4

in
p
u
ts

-
a
n
a
c
lk

b

3 x 64 neurons - anaclkhi

192 x 256 synapses

4
x

3
x

4
x

6
4

s
y
n
a
p
s
e

d
ri
v
e
rs

a b

addr.
enc.

priority
enc.

Figure 4.4: Block diagram of the analog blocks network_block and dll_block_complete. The illus-
tration is reduced to the event generation and digitization functionality. The DTCs are implemented
fourfold for each of the two clock domains chip_clk and chip_clkb, resulting in eight address in-
terfaces. The TDCs are implemented threefold for the clock domain clkhi, resulting in three address
interfaces. The according valid signals are not shown for reasons of simplicity.

either from an external source, local feedback on the network_block, feedback from the ad-
jacent network_block, or from an adjacent row to group two synapses into one with double
precision [SGMM06]. Feedback from an adjacent network_block and grouped synapses are
symbolized with a and b in figure 4.4. The selected input is stored by means of two config-
uration bits for each row. Six necessary row configuration bits and the column configuration
bits are summarized in section 4.3.6. The row configuration bits as well as the associated row
within the synapse array are accessed by a common address bus. The data bus carrying the
row configuration bits is implemented separately from the column data bus and is bidirectional
[Scha] which requires the implementation of tri-state signals within the digital part.

Regarding event generation, the rows are divided into four blocks of 64 rows with the fol-
lowing consequences:

• Each block has two 6 bit address busses addrin*<5:0>42 plus enable bits valid*
that are used for external event input. The outputs of the two address decoders and
the enable bits are connected such that they may produce events simultaneously. Input
events are generated from within two clock domains chip_clk and chip_clkb.
Event generation from within the digital part will be described in section 4.3.5. It is
the parasitic capacitance of the address lines, which extend over the whole height of

42The asterisk * replaces possible numbers, in this case 0 and 1.

4.2. ANALOG PART 77

Address Parameter
0x0 synapse output driver
0x1 delay element before synapse driver
0x2 pulse shape rise time
0x3 pulse shape fall time
0x0 neuron membrane leakage (gleak)
0x1 neuron Vth comparator speed

Table 4.1: List of analog parameters available in each column and row circuit. All parameters are bias
currents supplied by a current memory. The actual physical addressing is given in appendix A.

the network_block, that limits the operating speed of the event input and made this
separation necessary.

• Externally supplied model parameters relevant for short term synaptic plasticity are
shared among alternating blocks of 64 rows (cf. appendix A).

Column Circuitry Besides the neuron circuit containing the membrane capacitance Cm and
the conductances modeling the ion channel currents, the columns below the array also contain
the following functionality (not shown in figure 4.4):

• Two column configuration bits which enable or disable the analog output of the mem-
brane voltage Vmem and the spike digitization. Spikes of disabled neurons are neither
digitized nor are they sent to the local feedback connections. Four 50Ω output buffers
per network_block are available at the top edge of the chip. Every fourth Vmem is con-
nected to one of them, thereby enabling the monitoring of a single neuron’s membrane
potential, or an average of a set of membrane potentials.

• Column address decoders that either decode the address for the configuration bits within
the column circuits or the column address within the synapse array.

• Associated with the column address decoders is the bit line control of the according
synapse memory column including the readout sense amplifiers.

• The STDP readout circuitry. The results of ongoing correlation measurements are read
out for one row at once and are processed in each column.

• The neuron parameter storage (see table 4.1 for a list), the neuron comparator and event
readout circuits (cf. figure 1.3) and the asynchronous priority encoders together with the
neuron address encoders (cf. figure 4.4).

The network_block is organized in three blocks of 64 columns with the following conse-
quences:

• A memory access to the configuration memory or a column within the synapse array
affects the three blocks simultaneously. Each block has a data bus with a width of
4 bit43 and consequently a column access has an address space of 64 entries (6 bit) and
an overall data width of 24 bit for two network_blocks.

43Only two bits are actually used within the column configuration memory.

78 CHAPTER 4. IMPLEMENTATION OF THE CHIP

• Every 64 neurons are associated to one priority encoder, which is implemented in several
stages44. The number of a spiking neuron is determined and its address is sent to the
TDC module to code the spike into an event. In the case where more than one neuron
fires at the same time (within one clock cycle), the one with the highest priority (lowest
address) is transmitted first and the remaining spikes are delayed and then transmitted
in subsequent clock cycles. This provides a total of six event digitization channels per
chip reducing the probability of a quantization error due to collisions by a factor of six.

Synapse Array Together with the linear voltage ramp generated by the row driver each
synapse produces an exponentially increasing and decreasing input current to the connected
neuron (cf. section 1.3). As described in section 1.3, each synapse connects the presynap-
tic row signal to its associated postsynaptic column. Action potentials that are generated by
the neuron are routed back into the column and are used within each synapse for correlation
measurement. Furthermore, each synapse having the same physical address as its associated
neuron connects to a horizontal line available at the row driver (see the afore described row
circuitry), which is indicated by the dark blue arrows in figure 4.4. The synaptic weight is
stored in a 4 bit static memory located within the synapse. It is accessed by the row and col-
umn address lines, which are also used to address the respective configuration bits. The same
data bus as for the column configuration bits is used resulting in an address space of 64 × 256
entries and a data width of 24 bit for two network_blocks.

Power Connections and Distribution The synapse array as well as the directly connected
neuron circuits and the synapse drivers are connected to a power grid inside the synapse array,
which is to be connected to the external power supply at the top edge of the chip. For this
purpose 20 µm wide power and ground pins with a pitch of 70 µm have been defined on the top
edge to ensure equally distributed power grid connections. This analog power is also available
at power outlets at the bottom edge of the network_block. Power structures supplying the
remaining analog circuitry will be connected there. A separate power supply is required for
the digital event input and output to and from the network_block.

Technology Library Information

The TDCs and DTCs, which are described in the following section, solely account for the
synchronization of the event generation and digitization process to the digital clock signal.
Furthermore, all data, address and control signals to the internal memory resources are oper-
ated directly by a synchronous controller, which is located within the digital part of the chip.
Therefore, no clock-synchronous interface timing is to be defined for the technology library of
the network_block. Nevertheless, the grouping of signals to busses is defined to obtain equal
automated routing lengths. Moreover, constraints like maximum capacitive load and minimum
input transition times are obtained as described in section 2.1.2 and are defined for input and
output pins to ensure an adequate signal quality.

4.2.3 Event Generation and Digitization

The analog block dll_block_complete, which is located below the network_block, performs
the neural event generation and digitization. The central component is a DLL comprising a

44Parts of the priority encoder logic are located outside the network_block within the neuronout_pe_top module.
As this module solely contributes to the priority encoder functionality, it will not be described separately.

4.2. ANALOG PART 79

delay line of 16 delay elements that are realized with current starved inverters. It is designed
to operate at a frequency of up to 400 MHz and the delay of the single elements is controlled
by a voltage Vctrl, which can be initially set to a fixed value by means of a reset pin45, and an
according voltage parameter Vresetdll (Vresetdll = Vctrl, if reset = 1). If the DLL is locked to the
applied clock period, the outputs of the 16 delay elements will serve as a time base for event
generation and digitization within dll_block_complete. To achieve the locked state, Vctrl is
automatically fine tuned. For monitoring purposes, Vctrl is connected to a buffer whose output
can be driven off chip by the circuits described in the following section.

Time-To-Digital Converter The TDCs are implemented threefold, reflecting the group struc-
ture of the network_block. Time to digital conversion takes place within the 400 MHz domain.
Digital spikes that arrive from the last priority encoder stage are represented by a 6 bit neuron
address and a valid signal. The address, together with the number of the active delay element
upon the arrival of the spike, are synchronized to the 400 MHz clock. In the subsequent clock
cycle they are provided to the digital part at registered outputs and represent the raw event
data. The specification of the interface timing will be given in section 4.3.5.

Digital-To-Time Converter The DTCs are implemented twofold for each group of 64 syn-
apse drivers which results in 8 DTC units per dll_block_complete. The twofold implementa-
tion is reflected by two independent clock interfaces that are to be operated with two clocks
running at half event clock speed (200 MHz) and with a phase shift of 180◦. As event data
input, the DTCs require a valid bit together with the 4 bit time bin information. Within the
400 MHz clock cycle following the cycle of an event receipt, the spike is generated within the
associated synapse block by triggering the enable signal within the desired time bin. The ac-
tual synapse address has to be supplied directly to the according address lines within this clock
cycle by the digital control logic. It has to be noted that no address processing is performed by
the DTCs.

Technology Library Information

To ensure correct implementation of the synchronous interfaces of dll_block_complete, its
interface timing has been determined by means of analog simulations [Scha] and the timing
on input pins and output pins has been constrained accordingly. The clock pins related to the
input signals are the pins clk200 and clk200b that are internally connected to the DTCs
and externally to the signals anaclk and anaclkb (cf. figure 4.4). The internal DLL as
well as the output signals operate synchronous to the 400 MHz clock anaclkhi, which is
connected to the pin clk400.

4.2.4 Monitoring Features

Monitoring of Membrane Voltages Four membrane voltage outputs are present in each
network_block and are driven off chip for monitoring purposes. The fastest transient expected
on these signals is the membrane voltage being pulled to Vreset after a spike has been generated.
The fall time of this signal is approximately tf = 1 ns [Scha] which results in a bandwidth
requirement of fcutoff ' 300MHz for the output driver. To accommodate these requirements,
a 50Ω output buffer has been designed which fits into the I/O pad ring at the top edge of the

45The reset pin of the DLL is connected to a control register output within the digital part and can be activated
by setting the control register appropriately. See section 4.3.6.

80 CHAPTER 4. IMPLEMENTATION OF THE CHIP

chip. It is capable of driving a 50Ω transmission line due to its matched output impedance,
which is realized by means of a 50Ω series poly silicon resistor at the output.

The bias currents for the off-chip drivers is stored within eight current memory cells that are
located above the network_blocks. One additional current memory cell is present there whose
output is connected to the pin IBTEST of the chip for characterization purposes.

x i

4-input mux

network_block

from
DTC

to
OSC

I
B
T
E
S
T

p
in

internal feedback

vout_block

to TDC

half of the
analog part

Figure 4.5: Illustration of the IBTEST pin connectivity for one half of the analog part. On out of all
buffers within vout_block can be selected to drive the IBTEST pin. Besides the parameter voltages,
also the digital output of one synapse driver’s input multiplexer is available. On this account, parameter
voltages as well as the input signal to the synapse driver can be recorded by an oscilloscope.

Monitoring of Parameter Voltages Each output buffer within vout_block has an attached
transmission gate, which is controlled by a local flip-flop’s Q and Q outputs. The outputs of all
transmission gates are shorted to one wire, common for all outputs within both vout_blocks.
The flip-flops are connected in series as a 1 bit shift-register and by shifting a bit string con-
taining exactly one active bit into the chain, the output of a specific buffer is multiplexed to
the common output wire. This wire is connected to the IBTEST pin parallel to the current
memory cell, thus enabling the monitoring of either a parameter voltage or the output of the
current memory. Three buffers are available in vout_block in addition to the ones for the
voltage parameter generation:

• Digital monitor outputs, available at the network_block: the output of the multiplexer
that selects one out of the four possible input signals to the synapse driver with physical
address 0x1 (the second synapse row) and the output of the adjustable delay element
within this synapse driver that is connected to the output of the multiplexer. Both signals
are connected to additional output buffers within vout_block and may be multiplexed to
IBTEST in the same way as the parameter voltages.

• The third output buffer is connected to the control voltage node of the DLL within
dll_block_complete. Hereby, it is possible to verify if the DLL has achieved its locked
state (the voltage is stable, then). This is especially useful as there is no other way
provided to verify this state.

The connectivity is illustrated in figure 4.5 neglecting the transmission gate circuitry. For
reasons of readability, only one parameter voltage buffer and the output of the synapse driver’s
multiplexer is shown.

4.3. DIGITAL PART 81

4.2.5 Specifications for the Digital Part

Based on the functionality of the analog blocks, specifications for the digital control logic are
derived.

• Clock Frequency: Two 200 MHz clocks (anaclk and anaclkb) are required for the
DTC operation. Therefore, the clock frequency for the core logic is set to fc = 200 MHz
which allows for synchronous operation with the nominal operating frequency of the
DTCs. To provide synchronous interfaces to the TDCs as well, an additional 400 MHz
clock (anaclkhi) is required for the synchronous operation of these interfaces.

• Event Delivery and Capture: An overall of eight DTCs is available per dll_block_com-
plete with four of them assigned to one of the 200 MHz clocks at a time. On the output
side of dll_block_complete digitized events supplied by three TDCs need to be stored
and processed. Having two dll_block_complete blocks on the chip, 16 event_buffer_in
modules for the event delivery to the DTCs and 6 event_buffer_out modules for the event
processing after the DTCs are needed (cf. section 3.2.1).

• System Time Counter: The time base for the events’ time stamps in the sense of 400 MHz
clock cycles needs to be provided by a system time counter. The previously addressed
modules for event delivery and processing process events based on this counter. It has
to be loadable to synchronize the chip with its environment.

• Parameter Storage and Refresh: Local memory resources are required that hold the
digital value for all of the current memories. Additional logic has to periodically apply
the stored values to the DAC and address the according current memory.

• Synapse Ram Controller: The static memory distributed over the synapse array and
holding the synapse weights has an asynchronous interface which requires the control
signals, address and data lines to be operated in the correct order. Moreover, the config-
uration memory located within the synapse drivers and the neuron circuitry needs to be
accessed over shared data and address lines.

• Communication: Apart from the physical interface, a high level communication protocol
is required that allows for packet-based communication with the packet content being
decoded by the digital part. Furthermore, the proposed daisy chain topology has to be
supported by the protocol (cf. section 3.2.1).

4.3 Digital Part

According to the initial specifications that have been collected in the previous section, a short
overview of the single modules in the digital part and the data flow through the chip will now
be given. The following subsections explain these modules in more detail.

Figure 4.6 shows an overview of the presented chip, which is focused on the digital part.
Data flows through the chip from bottom to top and the clock domains operating at 200 MHz
and 400 MHz frequency are separated by light grey boxes and marked with the respective
frequency value.

A communication protocol has been developed that specifies the communication with the
chip. The communication is based on data packets with a size of 64 bit and the protocol is
classified into three layers:

82 CHAPTER 4. IMPLEMENTATION OF THE CHIP

loopback

status,
control

synram
control

event
loopback

analog
readout

param.
ramD

A
C

b
ia

s
,

p
a

ra
m

.
g

e
n

e
ra

ti
o

n

ht_deframer0ht_deframer1

delaylinesdelaylines

command_reg

result_reg

event_reg data_out_reg

ht_framer0ht_framer1

delaylinesdelaylines

e
v
e
n
t_

b
u
ff
e
r_

in

e
v
e
n
t_

b
u
ff
e
r_

in

e
v
e
n
t_

b
u
ff
e
r_

in

e
v
e
n
t_

b
u
ff
e
r_

in

e
v
e
n
t_

b
u
ff
e
r_

o
u
t

e
v
e
n
t_

b
u
ff
e
r_

o
u
t

event_buffer_in_mux

event_buffer_out_mux

MUX

MUX

16 DTCs

6 TDCs

2
n

e
tw

o
rk

_
b

lo
c
k
s

2
x

2
5

6
x

1
9

2
s
y
n

a
p

s
e

s

4
0

0
M

H
z

2
0

0
M

H
z

4
0

0
M

H
z

2
0

0
M

H
z

4
0

0
M

H
z

c
o

m
m

a
n

d
d

e
c
o

d
e

6
x

re
q

6
x

a
c
k

rw
b

a
n

a
lo

g
p

a
rt

p
h

y
s
.

la
y
e

r

lin
k

la
y
e

r
a

p
p

lic
a

ti
o

n
la

y
e

r
p

h
y
s
.

la
y
e

r

lin
k

la
y
e

r

P
L

L
P

L
L

_
R

E
S

E
T

P
L

L
_

B
Y

P
A

S
S

R
E

S
E

T
C

I_
M

O
D

E
C

_
D

E
L

A
Y

ti
m

e
b

a
s
e

c
lo

c
k
s

s
y
n

c

c
lo

c
k
_

g
e

n

2
0

0
/4

0
0

M
H

z

LVDS interface

LVDS interface

E
X

T
_

C
L

K

c
o
re

m
o
d
u
le

s

C
H

IP
_

ID
<

3
:0

>

Figure 4.6: Simplified architecture of the presented chip focused on the digital part. The illustration
of the clock signals and auxiliary signals is omitted for clarity. A detailed illustration of the analog
components is given in figure 4.2.

4.3. DIGITAL PART 83

• The physical layer, which is solely used to transport data to and off the chip through low
voltage differential signaling (LVDS)46 I/O pads. It comprises the modules delaylines
and parts of the modules ht_deframer* and ht_framer*. The physical layer will be
described in section 4.3.1.

• The link layer. Assembly and disassembly of data packets is performed by this layer.
The chip also features a bypass mode (not displayed in figure 4.6) that is controlled by
the pin CI_MODE and will be explained together with the link layer in section 4.3.1.

• The application layer, which resembles the digital core logic and the analog part of the
chip. It accounts for data packet decoding and encoding and the digital control function-
ality. The different types of packets will be described in section 4.3.2 and the realization
of the core modules connected to the command decoder is described in section 4.3.6.

The way data is processed by the chip results in 64 bit packets continuously being clocked
through the chip, hence, through a daisy chain of chips. Data packets are addressed to a
specific chip and each chip in the daisy chain is only allowed to transmit its own data (be it
events or data packets) within a packet slot that contains a packet addressed for this chip.

External inputs to the chip that are relevant for the digital part are shown in figure 4.6 and
their functionality is described in table C.1. Auxiliary modules depicted in figure 4.6 include
a PLL which is used for the generation of internal clocks and the clock_gen module where
derived clocks are generated (see section 4.3.3). The sync module includes the system time
counter with synchronization functionality which is described in section 4.3.4.

4.3.1 Interface: Physical and Link Layer

Physical Layer

The physical layer of the interface consists of two 8 bit, source synchronous and unidirectional
links that physically comply to the HyperTransport I/O Link Specification defined in [Hyp06].
Each of the links transports 8 bit of data and one frame bit; the complete pinout of the chip
can be found in appendix C.1. To transport the 64 bit content of one data packet within one
200 MHz clock cycle, the link clock frequency is set to 400 MHz and data is transmitted with
double data rate (DDR) at both clock edges resulting in a data rate of 800 Mbit/s on each
data signal and overall 1.6 Gbyte/s for both the input and the output of the chip. Signals are
transmitted differentially using the LVDS signaling standard [lvd00] to account for the high-
speed requirements arising from this high data rate. The used LVDS pads have been designed
by Wegener et al. [sup03] and convert the differential signal levels to the CMOS signal levels
used inside the chip and vice versa.

As described in section 2.4.4, custom strategies have been developed to realize the interface
timing required by the HyperTransport specification. For clarity, figure 2.9 is redisplayed here
illustrating the required components (cf. figure 4.7). So far, a generic delay element has been
assumed. In the following, the delay element that has been realized to deskew the signals at
the input and the output of the chip will be described.

The Delay Line Figure 4.8 illustrates the design of one delayline which consists of specific
standard cells. Seven delay stages are realized resulting in eight possible signal delay values.

46LVDS is a signal standard that exploits coupling and cancelation of electromagnetical fields by transmitting
data over two inversely driven signal lines for one bit. A concise description of the application of LVDS on the
PCB level has been given in [Grü03] and can also be found in [ANS96].

84 CHAPTER 4. IMPLEMENTATION OF THE CHIP

delay element
buffers inserted

by CTS
delay element

buffers inserted
by CTS

buffers inserted
by CTS delay element

buffers inserted
by CTS delay element

buffers inserted
by CTS delay element

input clock
tree

data

clock

input pads
to receive
flip-flops

tadd tdel

tct

delay element
buffers inserted

by CTS

buffers inserted
by CTS

output
data

core
clock

output pads

clock

data

tdel tequal

tbuf

a) b)

Figure 4.7: Concept for the implementation of source synchronous interfaces. a) receive side b) trans-
mit side. The output data is meant to originate at flip-flops clocked with the core clock.

0 3 7

delayline

buf

HDINVD1 HDINVD2

HDBUFTD2

HDBUFD4

C

D Q

R

C

D Q

R

C

D Q

R

in

del<2:0>

load_del

rst

out

d
e

c
o

d
e

3
->

8

Figure 4.8: Functionality of the delayline. The instantiated cells are named as in the library. Upon
reset the tri-state buffer with address 3 is activated.

Two inverters HDINVBD1 and HDINVBD247 have been used per stage to compensate for
remaining differences in the signal propagation delay for rising and falling signal edges. In
between each of these delay stages the signal is tabbed out by a tri-state buffer of type HD-
BUFTD2 and the outputs of these tri-state buffers are shorted to one single output signal. To
ensure equal output load for all tri-state buffers (and thus an equal output RC-delay), this sig-
nal is buffered by a buffer of type HDBUFD4. The selection of a certain delay value is done
by enabling the appropriate tri-state buffer. Three flip-flops store the binary value for the stage
to be enabled and an address decoder constantly applies the appropriate enable signals to the
tri-state buffers. The procedure to store the values within the flip-flops is explained in section
4.3.1.

The reset signal rst is connected to the external pin PLL_RESET in a way that optimized
delay values are not reset by the global reset pin (RESET). Upon reset, delay stage 3 (counted
from zero) is selected to have maximum headroom for tuning to both directions. In this setup,
the delay sums up to about tdl,3 = 550ps for the typical process corner. The two inverters of
each stage are selected as to have a total propagation delay of approximately 80 ps in the typical
process corner which results in possible delay values theoretically ranging from 0 ps to 640 ps.
At the desired link clock rate of 400 MHz, this is enough to deskew signals with a maximum
skew of half a bit time. A more exact value for the delay is not given here as the actual delay

47The names correspond to the standard cell terminology [Vir04d]. These cells are Balanced INVerters with a
Drive strength of 1 and 2 respectively. Drive strength 1 corresponds to an inverter with W/LNMOS =500 nm/180 nm
and W/LPMOS =1200 nm/180 nm.

4.3. DIGITAL PART 85

varies due to slight differences in the placement of the cells and the routing, and also varies
massively with the process corner. The implementations of the delay lines slightly differ at
the receive and transmit size, particularly regarding the applied timing constraints. Therefore,
the implementation will be described together with the implementation of the physical layer
of each side in the following sections.

Receive Side Figure 4.9 illustrates the circuitry implemented for the data capture at the
receive side. For the physical layer only the first register stage is relevant which captures
the link data. Data signals and the frame bit are treated the same by the physical layer and are
registered at both edges of the link clock. The resulting output data of the physical layer is the
18 bit bus rx_word*<17:0>, which is forwarded to the link layer at 400 MHz, synchronous
to rx_clk.

delayline

C

D Q

C

D Q

rx_word*<8:0>

rx_word*<17:9>

CAD*_IN<7:0>
CTL*_IN

CLK*_IN

ddr_in

rx_clk*

Figure 4.9: DDR input registers with delayline. The squares denote the input pads of
the chip, the signals are labeled according to the pinout of the chip given in appendix
C.1. The clock phase is inverted for the two halves of rx_word to account for the
transmit side output timing.

Equal signal propagation delay is required for both clock and data signals to comply to
the interface timing defined in figure 2.3. To accomplish a delay on the data signals equal to
the clock tree latency of rx_clk, the methodology described in section 2.4.4 is used for the
physical implementation; implementation results are given in section 4.4.4. One implication
of the applied methodology is the modified phase shift of −90◦ of the link clock with respect
to the data signals (cf. section 2.4.4). To capture the data with the correct phase of 90◦, the
clock is inverted and thereby shifted by the required 180◦.

Transmit Side The implementation of the transmit side of the physical layer is shown in
figure 4.10. Again, data bits and control bit are not distinguished as this is only relevant for
the link layer. Data to be transmitted (tx_word<17:0>) is provided by the link layer with a
width of 18 bit. It is transmitted synchronous to the 400 MHz core clock clkhi. Double data
rate transmission is achieved by triggering the select pin of the multiplexer with clkhi; after
a rising edge of clkhi, tx_word<8:0> is available at the output of the multiplexer and
after a falling edge tx_word<17:9> is available respectively. The clock tree is balanced
only up to the clock pins of the two flip-flops and the input pin of the first buffer before the
multiplexer. To avoid race conditions between the clock to output time of the flip-flops and the
select to output time of the multiplexer, all components are selected such that the multiplexer
switches shortly after the output of the flip-flops is stable.

To compensate skew that is introduced either internally or by external signal routing, a de-
layline is used for each output data signal and the frame bit. The required interface timing is
likewise obtained by applying the strategy described in section 2.4.4: when using the default

86 CHAPTER 4. IMPLEMENTATION OF THE CHIP

C

D Q

C

D Q

1
0

clkhi

tx_word*<8:0>

tx_word*<17:9>

ddr_out

delayline CAD*_OUT<7:0>,
CTL*_OUT

CLK*_OUT

Figure 4.10: DDR output register with output multiplexer and delayline. The squares denote the output
pads of the chip, the signals are labeled according to the pinout of the chip given in appendix C.1. The
buffer selected for output is set by dedicated signals that are connected to the input data lines of the
chip.

delay tdl,3 of the delay lines, data signals are valid at the output pads with a shift of −640 ps
relative to the link clock signal which closely matches a phase shift of −90◦ at a clock fre-
quency of 400 MHz (clock period of 2.5 ns). The results of the physical implementation of the
transmit side will also be given in section 4.4.4.

CTL1_IN

CAD1_IN<7:0>

3232

ht_framer1ht_deframer1

p
u
s
h

control
FSM

rx
_
w

o
rd

_
b
u
f

physical
layer

CTL0_IN

CAD0_IN<7:0>

physical
layer

clkhi

data_out_we control
FSM

CLK0_IN

CI_MODE

deframer
fifo

bypass
fifo

18

18

32 16

16

18

18

32

M
U

X

M
U

Xtx
_
w

o
rd

_
2
o
u
t

16

16

16

rx
_
w

o
rd

tx
_
w

o
rd

rx
_
c
lk

bypass_data0

top level

application
layer

s
y
n
c
_
v
a
l

8

sync

8

ht_deframer0 ht_framer0

CTL0_OUT

CLK0_OUT

CAD0_OUT<7:0>

18bypass_data1

CTL1_OUT

CLK1_OUT

CAD1_OUT<7:0>

CLK1_IN

Figure 4.11: Block diagram of the modules ht_deframer and ht_framer that together comprise the link
layer. The squares denote the I/O pads of the chip, the signals are labeled according to the pinout of the
chip given in appendix C.1. Only the signals relevant for the data flow are shown.

Link Layer

The link layer of the developed protocol translates requests issued by the application layer into
requests for the physical layer and vice versa. More precisely, data packets received by the
physical layer are decoded and handed on to the application layer and data packets generated
by the application layer are sent to the physical layer. Figure 4.11 shows the data flow through
the chip reduced to the functionality of the link layer, which is basically implemented within
the modules ht_deframer and ht_framer.

Besides the interfacing between the physical and the application layer, another fundamen-
tally different functionality is implemented within the link layer. The switching between these

4.3. DIGITAL PART 87

different behaviors is not part of the communication protocol and is done by an external pin to
the chip, CI_MODE (cf. figure 4.11). They are described in the following.

Regular Operation CI_MODE = low. The ht_deframer module performs the decoding of
data packets, whereas three types of packets are distinguished on the link layer: idle packets,
synchronization packets and regular packets. In table 4.2 the content of these types of packets
is summarized. From right to left the bit position within the respective 8 bit link is shown and
the leftmost bit denotes the frame (CTL) bit of this link. From top to bottom the bit time for
each link is shown in ascending order. Bit time 0 always starts at a rising clock edge of the
link clock and as a consequence, within each link clock cycle, 18 bit of data are delivered by
the physical layer. Packets other than the idle packet are marked by a change of the frame bit
from 1 to 0 in the first two bit times and require four bit times on both links to be transmitted.
The frame bit stays 0 for the last two bit times of these packets. Each link receives 32 bits of
data during one packet cycle which sums up to the whole 64 bits of data transmitted within
one packet.

Bit Pos:

CTL 7 6 5 4 3 2 1 0

Bittime Bit nr.

Link 0: 0 1 0 1 0 1 0 1 0 1 0

1 1 1 0 1 0 1 0 1 0 8

Link 1: 0 1 0 1 0 1 0 1 0 1 0

1 1 1 0 1 0 1 0 1 0 8

Link 0: 0 1 spare event 0

1 0 8

2 0 16

3 0 24

Link 1: 0 1 32

1 0 40

2 0 48

3 0 56

Link 0: 0 1 D/C D/C 0 0

1 0 8

2 0 16

3 0 24

Link 1: 0 1 0

1 0 8

2 0 16

3 0 24

cmd = 0x0

D/C

D/C

Id
le

S
y
n

c
R

e
g

u
la

r data payload

chipid 4bit

chipid 4bit

D/C

sync value 8bit

data payload

D/C

D/C

D/C

Table 4.2: The three types of packets that are distinguished on the link layer.

Incoming data is processed by a finite state machine (FSM) inside ht_deframer, which
is implemented straight forward and therefore not described in detail. Idle packets carry no
information and no action is triggered within ht_deframer when receiving this packet. To avoid
the development of static DC voltages on the data lines of the link, the idle packet contains a
data pattern that ensures continuous toggling of each data line during idle periods48.

Upon reception of a regular packet, the 16 data bits received in the first clock cycle are
temporarily stored within the register rx_word_buf. In the second clock cycle of the packet
cycle the content of this register is stored within a FIFO memory together with the current
content of rx_word. The frame bit is solely needed for the detection of a packet start and is
therefore not stored in the FIFO along with the data. The FIFO is taken out of the Synopsys
DesignWare [Syn04d] and has two independently clocked interfaces with a width of 32 bits

48A discharge of a physical line to a DC voltage due to a constant binary value of e.g. 0 causes jitter in the signal
edges which in turn reduces the width of the data valid window. This effect reduces the maximum achievable data
rate on the link.

88 CHAPTER 4. IMPLEMENTATION OF THE CHIP

each, whereas the push interface is operated synchronous to the 400 MHz clock belonging to
the respective input link and the pop interface is clocked by the 200 MHz chip_clk. The
pop interface represents the interface to the application layer. Communication is managed by
handshake signals that are omitted in figure 4.11 for simplicity.

Synchronization packets are introduced for the purpose of setting the system time counter
of the chip (cf. section 4.2.3). This action actually is part of the application layer functionality;
it is still implemented within the ht_deframer module because the application layer decodes
commands at the speed of the 200 MHz core clock and the system time counter runs within
the 400 MHz domain. The very clock cycle within which the counter is to be synchronized
can therefore not be determined and the synchronization is initiated from the link layer which
operates at 400 MHz. A synchronization command is detected during the first clock cycle of
a packet cycle on link 0 if the input data conforms to table 4.2. In the second clock cycle of
the packet, the 8 bit value for the system time counter is transmitted, which is then stored in
the register sync_val. The signal sync is issued in parallel to the core logic where the actual
synchronization takes place (cf. section 4.3.4).

Generally, received data is pushed into the FIFO regardless of the type of packet and the
synchronization packets are not processed by the application layer. It has to be ensured that
link 1 also detects a packet (content is “don’t care”) during synchronization.

The ht_framer module performs the encoding of data packets that are to be transmitted.
Data generated by the core logic is already formatted as 64 bit packet and 32 bit at a time are
assigned to each ht_framer from within the 200 MHz domain. Transmission to the physical
layer takes place within the 400 MHz domain of clkhi (see figure 4.11) and the lower 16 bit
of data_out are directly multiplexed to the physical layer during the first clock cycle. The
upper 16 bit are stored for one clock cycle within data_out_reg. In the second clock cycle,
data_out_reg is multiplexed to the physical layer and the packet cycle is complete. In parallel
to the multiplexing of the data, the frame bits are generated according to table 4.2 making the
output data tx_word totally 18 bits wide.

Bypass Operation CI_MODE= high (cf. figure 4.11). The purpose of this mode is to verify
the functionality of the physical layer and to provide the possibility of adjusting the delay
value of the single delaylines present in the physical layer. In this mode, the link layer is
disconnected from the application layer and the chip acts like a shift register. Data received by
the physical layer is constantly pushed into the FIFO bypass_fifo. The same basic FIFO is used
as in the case of deframer_fifo but with a width of 18 bit and the complete data of the physical
layer including the frame bits is pushed within each cycle of rx_clk. The pop interface is
also continuously read using the 400 MHz clkhi and the output data is multiplexed to the
transmit side of the physical layer.

The functionality of this mode does not depend on the content of the transferred data and
it is thus ideally suited for thorough testing of the physical layer. The test procedure will be
outlined in section 5.3.

Bit Pos:

CTL 7 6 5 4 3 2 1 0

Link 0

Link 1

address of delayline 6bitdelay value 3bit

chipid 4bitD/C

Table 4.3: Bit meanings on both links during configuration of the delaylines. Bits marked with D/C
are “don’t care” and are not used.

4.3. DIGITAL PART 89

During bypass operation, the delay of the delaylines can be set using the external pin
C_DELAY. In order to load a certain delay value into one of the delaylines, static data has
to be applied to the LVDS input pads of the chip according to table 4.3. A specific delay-
line is addressed by six address bits and four bits for the daisy chain address of the chip.
The decoded enable signal is AND’ed together with C_DELAY and is then connected to the
load_del input of the delaylines (cf. figure 4.8). New values are then loaded on the rising
edge of C_DELAY. All signals used for the configuration of the delaylines are buffered with
the smallest available buffer HDBUFDL in order to minimize the additional capacitive load
on the input data lines (operating at a bit rate of 800 Mbit/sec).

4.3.2 The Application Layer

The following description of the application layer refers to figure 4.6. Besides alien packets
addressed for different chips in the daisy chain, the application layer distinguishes between
event packets and control interface packets. The generic content of these packets is shown in
table 4.4. Data flow through the application layer takes place with a delay of one 200 MHz
clock cycle per packet. Depending on the type of an incoming packet, either event_reg or
data_out_reg (cf. figure 4.6) is updated in the subsequent clock cycle and the according data
is multiplexed to the link layer.

Bit Pos:

CTL 7 6 5 4 3 2 1 0

Bittime Bit nr.

Link 0: 0 1 valid1 valid0 spare event=1 0

1 0 valid2 8

2 0 16

3 0 24

Link 1: 0 1 32

1 0 40

2 0 48

3 0 56

Link 0: 0 1 R/W spare event=0 0

1 0 8

2 0 16

3 0 24

Link 1: 0 1 32

1 0 40

2 0 48

3 0 56

C
o

n
tr

o
l
In

te
r
fa

c
e

control interface data

time high nibble

time low nibble 0address0

address0timebin1

address1

address1

timebin0

chipid 4bit

address2

chipid 4bit

control interface data

command 4bit

time low nibble 1

time low nibble 2 timebin2

E
v
e
n

t

Table 4.4: Generic definition of event packet and control interface packet. The type of packet is
determined by bit 0. The chipid which addresses a particular chip and a spare bit that may be used
for protocol extensions within future revisions are common to both types.

Event Packet Data Flow Event packets may contain the data of up to three events. The
event_buffer_in_mux module decodes this information and stores the events in the according
modules event_buffer_in. Sixteen event_buffer_in modules are present on the chip, two at a
time connected to two DTCs serving 64 synapse drivers.

Spikes generated by the neurons are digitized in time by the TDCs which pass the time bin
information and the spiking neuron’s address to the event_buffer_out module, where the event
is temporarily stored. Event packets are assembled within the event_buffer_out_mux module
and are temporarily stored within the register event_reg until transmission. Valid events are
marked by means of bits <12:10> of the event packet. 9 bits for the neuron address49, the
lower nibble of the events’ time stamp and the 4 bit for the time bin are separately stored

49For incoming packets, this is the address of a synapse row to drive and for outgoing packets it is the address
of the neuron that has fired.

90 CHAPTER 4. IMPLEMENTATION OF THE CHIP

for each event. The upper nibble of the time stamps is the same for all three events. This
compression technique makes it possible to store three events within one 64 bit packet.

Using this format, three different types of event packets are defined which trigger the fol-
lowing actions:

• Regular event packets are defined as described above and the contained events are de-
livered to the analog part as described in section 4.3.5. As an answer to this packet, the
chip may either transmit own event data that have been assembled within event_reg or,
if none are available, send an empty event packet.

• Empty event packets are indicated by the reserved chipid 0xf and the valid bits
<12:10> are set to 0. If an empty event packet is received, the chip may fill this
packet with pending event data or forward the packet to the daisy chain. By this means,
unused packet slots may be occupied by subsequent chips that do have event data avail-
able. This packet can also be used to empty the FIFOs in event_buffer_out of all chips
in a chain.

• Error event packets are defined by a valid chipid and the valid bits <12:10> set to 0.
They are generated by the chip if an overflow of either the FIFOs within event_buffer_in
or event_buffer_out occurred and are evaluated by the controller for monitoring pur-
poses.

Command Meaning
0x0 sync (reserved, used by link layer)
0x2 control interface loopback
0x4 parameter storage and control
0x6 chip control and status register
0x8 synapse memory control
0xa analog readout module
0xc event loopback module
0xe dummy (reserved, reset state of result_reg)
0x1 control interface error if OR’ed with one of the above

Table 4.5: Available commands within the control interface packet. If the LSB of the command is set
("0x1"), this indicates an error for the actual command.

Control Interface Packet Data Flow The term “control interface” covers all functionality
of the application layer but the event processing. The according data packets contain the ad-
dress of one of the six core modules depicted in figure 4.6 as a command. This command is
stored in bits <10:7> of the packet and bit <6> indicates a read (1) or write (0) access. The
available commands are listed in table 4.5 and a complete description of these commands is
given in appendix B. The content of a control interface packet is stored in the register com-
mand_reg for further processing by the top level command decoder and also serves as input
data to the core modules. The top level command decoder is implemented as a FSM that issues
a request (signal req) to the addressed module along with the signal rw which indicates read
or write access. It basically has three states: SN_idle, SN_read and SN_write and after
leaving the idle state it only resumes from the active state if the addressed module issues its
acknowledge signal ack.

4.3. DIGITAL PART 91

chip_clk

req

ack

rwb

module_din<63:0>

module_dout<63:0>

result_reg<63:0>

data_out_we

data_out

write access answered
with empty event packet

read access answered
with prev. content of result_reg

Figure 4.12: Timing diagram for a write and a read access on the interface of the modules present
within the application layer at the top level of the chip.

The timing diagram for a write access followed by a read access is shown in figure 4.12,
thereby illustrating the answer of the chip:

• Write: Write accesses are executed immediately and are not being acknowledged by
the chip. Hence, the thereby available packet slot will be used to transmit event data if
available. An error will occur if a previous request is not finished and a write command
is issued while the FSM is not idle. In this case, the least significant bit (LSB) of the
command is set to indicate the error and the packet is transmitted along with the original
content.

• Read: Read requests are also directly issued to the addressed module but the result is
soonest available within result_reg after the next clock cycle. To still comply to the
specified protocol, the content of result_reg is nevertheless written to data_out_reg and
transmitted immediately which effectively causes the result of a previous read access to
be transmitted. For this reason, a single read access requires two read commands to be
sent and consequently n consecutive read accesses require n + 1 read commands. The
error condition is the same as for the write access and the error bit is set when a read
command arrives during the FSM not being idle.

Depending on the functionality of the single modules an access may last over several clock
cycles. To avoid errors, the according controller has to take this into account and issue com-
mands with an appropriate distance.

4.3.3 Clock Generation and System Time

The Clock Signals Present on the Chip

The clock_gen module (cf. figure 4.6) generates five clock signals that are listed in table 4.6.
An external clock source is connected to the differential input pads EXT_CLK_(P/N) and
subsequently to the PLL which has a 4×multiplier50. As a consequence, the chip needs to
be supplied with an external clock at 100 MHz which imposes weaker demands on the signal
routing on the board level than a 400 MHz clock distribution. In case of malfunction, the PLL
may be deactivated with the external pin PLL_BYPASS. The external clock is then directly
forwarded by the PLL.

50The PLL was generated with a PLL compiler supplied by Virtual Silicon Technology, Inc. [Vir04a] and is
parameterized to an input frequency of 100 MHz and an output frequency of 400 MHz.

92 CHAPTER 4. IMPLEMENTATION OF THE CHIP

Clock Frequency Purpose
chip_clk 200 MHz core clock for dig part
clkhi 400 MHz dig event time base, transmit clock
anaclk 200 MHz DTC: event generation
anablkb 200 MHz DTC: event generation, 180◦ phase shifted
anaclkhi 400 MHz TDC: event digitization

Table 4.6: Clock networks within the digital part of the Spikey chip.

The 200 MHz chip_clk is generated from the 400 MHz PLL output by means of a
standard cell flip-flop (cell HDDFFPB2) that has its inverting output fed back to its input,
thereby dividing the applied clock frequency by two at its Q output. To still ensure that both
chip_clk and clkhi are generated with negligible phase shift, a replica cell has been
realized with same internal structure as the HDDFFPB2 flip-flop, but toggling its output syn-
chronous to both edges of the input clock. Thanks to the equal propagation delay within
both cells, both clocks are generated in phase and the clock tree can reliably be built for both
clocks. The clocks used for event generation are derived from chip_clk and clkhi which
are AND’ed together with an according control signal to offer the possibility to switch off all
clock signals relating to the analog part.

0000 0001 0010 0011 0100

000 001

000 001

010

clkhi

chip_clk/anaclk

anaclkb

clkhi_pos<7:0>

clk_pos<6:0>

clkb_pos<6:0> 111

0001 0010 0011 0100 0101

000 001

001 010

010

000

a) b)

Figure 4.13: The system time counters relevant for event generation. The counters clk_pos and
clkb_pos together account for the LSB information of the actual system time, clkhi_pos. Four
consecutive clock edges for event generation at system times 0000 to 0100 are marked with red arrows
at the according clock edge in both figures. a) events with even time stamp are assigned to "anaclk". b)
events with odd time stamp are assigned to "anaclk". The upper nibble of all binary values is omitted
for reasons of readability.

System Time Counters

The sync module contains the system time counters that serve as a time base for the event
generation and digitization on a clock cycle basis within the chip. Three event-related clock
domains are present on the chip (cf. table 4.6). To prevent timing arcs crossing these clock
domains, three system time counters are implemented and the related logic will operate based
on the respective counter:

• clkhi_pos<7:0>: This 8 bit counter is used as a time base for digitized events within
the clkhi domain. Its value during event capture from the TDCs completes the time
stamp of the digitized event. As clkhi is the fastest clock in the chip, this counter is
the reference time for the other counters running at lower frequencies.

4.3. DIGITAL PART 93

• clk_pos<6:0>, clkb_pos<6:0>: These two 7 bit counters are associated with the
chip_clk domain and together account for the LSB value of the system reference
time. Their purpose is defined such that events that are to be generated within the first
half of chip_clk are related to clk_pos and events due in the second half are related
to clkb_pos. The relevant clock edges for the generation of four consecutive events
are illustrated in figure 4.13.

Assignment of the event_buffer_in modules to the DTCs

While the event digitization relating to clkhi is performed deterministically, the LSB value
of clkhi_pos during the first and second half of chip_clk is not fixed. Therefore, a
decision has to be made on which events (time stamp LSB = 0/1) to assign to which of the
two counters. For this reason, the processing of events is now qualitatively described first, to
derive the requirements on the synchronization which will then be detailed.

SRAM

FIFO control FSM

adr

tbin

time =?

adr
reg

push

clk_pos<6:0>

event_in<16:0>

chip_clk

pop
empty

yes

valid

tbin<3:0>

addr<5:0>

event_buffer_in

valid

tbin<3:0>

addr<5:0>

d
e

la
y
_

re
g

DTC

clkb

anaclkb
anaclk

push

DIN DOUT

addr, enable, etc.

enable

DTC

clk

clkb_pos<6:0>

a
n
a
lo

g
p
a
rt

Figure 4.14: Data flow in the event_buffer_in module. The module is either directly connected to a
DTC which is clocked by anaclk, which is the gated version of chip_clk, or its output is registered
once with the 180◦ phase shifted anaclkb and then shipped to a DTC clocked by anaclkb.

Figure 4.14 shows the implementation of the event_buffer_in module which delivers in-
coming events to the analog part, precisely the DTCs. The input to all modules is synchronous
to chip_clk and eight of these modules are assigned to the anaclk domain and to the
anaclkb domain respectively with the according counter values (denoted by the two boxes
in figure 4.14). The output of the event_buffer_ins associated with anaclkb is transferred to
this clock domain by means of one register stage and as a consequence, events stored within
these modules are delivered half a clock cycle after the events stored in the other domain with
respect to one cycle of chip_clk.

It is decided during the synchronization of the counters, whether to store events with an even
time stamp (LSB = 0) in the modules associated to anaclk or to anaclkb. Synchronization
is described in the following.

4.3.4 The Synchronization Process

Synchronization is required to provide a consistent global time base for systems consisting
of several chips. Moreover, the system time counters need to be synchronized to the time
of the controller to provide correct temporal processing of events (cf. section 5.3.2). The
sync module contains a FSM that loads the counters when a synchronization command is
captured by the link layer. The sync signal issued by the link layer is generated in the link
clock domain and is synchronized by two consecutive registers to the clkhi domain to avoid

94 CHAPTER 4. IMPLEMENTATION OF THE CHIP

metastable register states. Subsequently, the system time counters are loaded with their new
values and the assignment to the clock domains is determined. This decision is stored in a
register evt_clk_select and is valid until the next synchronization or reset.

chip_clk Phase Sync time LSB evt_clk_select even time stamp→
low 0 1 anaclk
low 1 0 anaclkb
high 0 0 anaclkb
high 1 1 anaclk

Table 4.7: Possible scenarios during the synchronization process. The value of the evt_clk_select
register and the according assignment of events with even time stamps to the respective clock domain
is shown.

Table 4.7 lists four possible scenarios for evt_clk_select during the synchronization process
which depend on the following conditions:

• Does the synchronization occur in the low phase or in the high phase of chip_clk

• The LSB value of the time to synchronize to.

Depending on the value of evt_clk_select events with an even time stamp (LSB = 0) are stored
within the modules event_buffer_in associated to the clock as listed in table 4.7. The same
holds true for events with an odd time stamp in an inverted manner.

Another issue is the initialization of the 200 MHz system time counters during synchroniza-
tion. Two of the four possible scenarios are illustrated in the timing diagrams in figure 4.13.
They will be valid if chip_clk is low during the arrival of the synchronization command.

In figure 4.13 a, clk_pos needs to precede clkb_pos by one clock cycle to deliver the
events within the correct cycle of clkhi because the LSB of clkhi_pos toggles on the
rising edge of chip_clk. In this case, the counters are initialized as follows (in Verilog
syntax):

clk_pos <= sync_val<7:1> + 1;
clkb_pos <= sync_val<7:1>;

the register sync_val stores the synchronization time transmitted along with the synchro-
nization command (cf. figure 4.11). In figure 4.13 b the LSB of clkhi_pos toggles on the
falling edge and the two 200 MHz counters need to count synchronously. Therefore, they are
initialized with identical values:

clk_pos <= sync_val<7:1>;
clkb_pos <= sync_val<7:1>;

The two remaining scenarios occur if chip_clk is high during arrival of the synchroniza-
tion command. In this case, the afore described initialization is carried out inversely relative to
the LSB toggling of clkhi_pos. The reader may refer to appendix C.3 for the commented
Verilog source code of the sync module.

4.3.5 Event Processing in the Chip

This section deals with the event processing modules within the chip. They complement the
external modules that are required for the setup of large scale spiking neural networks as
described in section 3.3.1.

4.3. DIGITAL PART 95

Digital Event Input

The structure of the event_buffer_in module which performs the event generation has been
shown in figure 4.14. The input signals eventin<16:0> (the complete event data) and
push are generated by the event_buffer_in_mux module which demultiplexes the incoming
events according to the upper three bit of the target synapse and the LSB of the time stamp,
as described in the preceding subsection. Therefore, the eventin signal consists of a 6 bit
address selecting one out of 64 associated synapse row drivers, a 7 bit time stamp, since the
LSB information of the system time is contained in the clock domain where the event is being
stored, and 4 bit for the time bin information.

Events are stored in a dual ported static memory acting as a FIFO. The FIFO control logic
has been taken from the Synopsys DesignWare library [Syn04e] and the dual-port SRAM has
been generated using a compiler by Virtual Silicon Technology, Inc. [Vir04c] with a width of
18 bit (only even widths are allowed by the compiler) and a depth of 64 words, which also is
the depth of the FIFO.

IDLE

PREF

WAITW_PREF

empty

�empty

valid &
empty

valid &

empty�

valid &
empty

empty
�empty

�

�

valid &

empty

valid &

empty�

�valid &
empty

Figure 4.15: State diagram of the FSM in the event_buffer_in module. Transitions depend on the
empty status bit of the FIFO and the signal valid, which is active when clk_pos has reached the
value of the current event’s time stamp.

The operation at the output of the FIFO, thus, the event generation is controlled by a FSM
(see figure 4.15). If the FIFO contains data, the FSM will leave the IDLE state and stay in the
prefetch state PREF for one cycle in which the FIFO is immediately popped. The event popped
out of the FIFO is stored in the register stage illustrated in figure 4.14 within the subsequent
clock cycle and depending on the fill level of the FIFO, the FSM simultaneously goes into
either of these two states:

• WAIT: No more events are present in the FIFO. If clk_pos matches the time stamp
of the event, the event is generated. A state transition takes place according to the state
diagram in figure 4.15. It may be triggered either by the event generation or by the FIFO
changing to not empty.

96 CHAPTER 4. IMPLEMENTATION OF THE CHIP

• W_PREF: This is the “prefetched wait” state where the content of the register stage is
valid and the FIFO contains valid data which is already popped. The FSM will reach
this state if more than one event is due and the only possible transition to leave this state
is through the WAIT state in which only one event is due and the FIFO is empty.

The actual event generation requires the address signals to be delayed by one clock cycle.
The DTC synchronously registers the valid and the tbin signals and generates the event
within the appropriate time bin of the following clock cycle. The delayed address signals are
therefore valid within the correct clock cycle.

sys_clk

push

event_in<17:0>

empty/pop_n

FIFO_out<17:0>

event_time<6:0>

clk_pos<6:0>

valid

State

States: 1: IDLE
2: PREF
4: WAIT
8: W_PREF

1st event generated
by event_buffer_in

1st event received 2nd event received

DTC output
1st event generated by
DTC, connected to syn. driver

Figure 4.16: Timing diagram for the interface of event_buffer_in and the event generation. Two events
are received by this module and the timing until the generation of the first one is shown. Note: the
output of the DTC is generated within the clkhi cycle following the clock cycle of event generation
by event_buffer_in. The labels for the states correspond to figure 4.15.

Figure 4.16 illustrates the arrival of two events and finally the generation of the first event.
It can be seen that the minimum latency through the event_buffer_in module sums up to four
chip_clk cycles. Three cycles are introduced by the FIFO, which is the minimum possible
latency using a standard synchronous FIFO together with the SRAM and another cycle is
introduced by the register stage. This stage is necessary because of the SRAM having a clock
to output delay of up to 2.2 ns in the worst process corner. Alongside with the comparator for
the time stamp this exceeds the required time of 2.5 ns for the potential path from chip_clk
to chip_clkb.

Digital Event Output

DTC Output Timing A spike that is generated by the neuron circuits is digitally forwarded
to the TDC, along with the address of the spiking neuron. The timing diagram for the following
event digitization process is shown in figure 4.17. The digitization is carried out synchronous
to the 400 MHz anaclkhi and involves the storage of the DLL’s current time bin during
the spike occurrence. As illustrated in the timing diagram, the wrap around of these time
bins is shifted by ∆tDLL with respect to anaclkhi, which is due to intrinsic component and
routing delays caused by the physical layout of the DLL circuitry. For this reason the actual
digitization is not directly carried out within the clock cycle preceding the output clock cycle n,
but rather between the two falling edges of anaclkhi preceding the output clock cycle.
To determine whether the spike occurred within clock cycle n− 1 or n− 2, the early bit
is generated together with the value of the time bin. This bit is generated synchronous to
anaclkhi and is 0 if the spike occurred within n− 2 and 1 if it occurred in n− 1. As the
time window for the generation of the early bit is shifted by 180◦ with respect to the time

4.3. DIGITAL PART 97

0 1 2 3 4 5 6 7 8 9 10 1112131415 0 1 2 3 4 5 6 7 8 9 10 1112131415

time window for digitization

early=0 early=1
spike

clkhi

DLL time bin

valid

early

tbin<3:0>

neuronaddr<5:0>

nn-1n-2

addr

7

�TDLL

x

xx

0

x

early bit generation event captured by
digital part

inside TDC

interface to
digital part

Figure 4.17: Timing diagram of the event digitization process. The event denoted with “spike” will be
stored with tbin= 7 and the system time value of clock cycle n− 2. Note: the time window for the
early bit generation is shifted by 180◦ relative to the digitization time window.

tbin MSB early Clock Cycle Clock Cycle (impl.)
0 0 n−2 n−2
0 1 n−1 n−1
1 0 n−2 n−2
1 1 n−2 n−1

Table 4.8: Determining a digitized event’s time stamp by its time bin’s MSB and the early bit. The
actual implementation for both versions of the Spikey chip is shown in the rightmost column. In the
last line, n−1 is implemented instead of n−2 (see main text).

window for the digitization, the clock cycle the event occurred in can reliably be determined
using the truth table 4.8.

The event_buffer_out module This module mainly serves as a FIFO memory that stores
events generated by the TDCs as described above until they are sent off chip. As the input to
the FIFO is clocked with anaclkhi and the output is operated with the chip_clk, a FIFO
controller from the Synopsys DesignWare library is used that supports two independently
clocked interfaces [Syn04c], along with a dual ported static memory that is again generated
using the compiler from Virtual Silicon Technology, Inc. [Vir04c]. The FIFO has a width of
18 bit and a depth of 128 entries. This large depth will be required to handle peak event rates
even if the chip cannot immediately send the stored events off chip51.

The signals valid, early, tbin<3:0> and neuronaddr<5:0>, which are ge-
nerated by the TDC within the analog part (see figure 4.18), are the input to the module. If
valid is active, the appropriate system time52 will be selected according to table 4.8 and
the FIFO is pushed storing the newly generated event. It consists of the address of the firing
neuron, the time bin, and the system time when it occurred.

51This situation will possibly occur if the daisy chain is occupied with packets for another chip in the chain.
This prevents the remaining chips from using packet slots and sending their event data (see section 4.3.2).

52clkhi_pos (used as time stamp for n− 1) is the 400 MHz system time counter discussed in section 4.3.4.
prev_clkhi_pos (used as time stamp for n− 2) is generated by registering clkhi_pos once with clkhi.
As a result, prev_clkhi_pos = clkhi_pos −1 and a subtraction is avoided.

98 CHAPTER 4. IMPLEMENTATION OF THE CHIP

DTC

clkhi
SRAM

FIFO control
pop

empty
push

DIN DOUT

addr, enable, etc. =?LUT
count
4bit

clkhi_pos<7:0>

prev_clkhi_pos<7:0>

tbin<3:0>

neuronaddr<5:0>

valid

early

tbin<3:0>

neuronaddr<5:0>

time_stamp<7:0>

yes

<7:4>

event_avail

event_buffer_out

buf_count_up

register_evt

e
v
e

n
t_

b
u

ff
e

r_
o

u
t_

m
u

x

a
n

a
lo

g
p

a
rt

Figure 4.18: Data flow in the event_buffer_out module. Events digitized by the TDC within the analog
part are stored within the FIFO. The right side is connected to the event_buffer_out_mux module, which
finally assembles the event packets. Events are requested via the signal register_event.

64 Neuron-Blocks Packet Slot Resulting Addresses
0, 3 0 <63:0>, <319:256>
1, 4 1 <127:64>, <383:320>
2, 5 2 <191:128>, <447:384>

Table 4.9: Assignment of 64 neuron-blocks to event slots in the event packet and the resulting neuron
addresses. Neuron blocks 0 to 2 are located on the left network_block, starting from the middle of
the chip. Addressing of blocks 3 to 5, which are located on the right network_block starts with 256
in analogy to the synapse addresses. The addresses are also incremented from the middle of the chip
outwards.

At the output to the digital part, the pop interface of the FIFO is combined with a 4 bit
counter. This counter operates synchronous to chip_clk and stores the current high nibble
of the event packet to be generated. It is incremented by the signal count_up generated
within the event_buffer_out_mux module, which is described in the following paragraph. Since
all event_buffer_out modules only would indicate valid event data if the value of this counter
matches the high nibble of their currently available event’s time stamp, the high nibble for the
subsequently assembled event packet is already fixed and assembly is facilitated. The FIFO is
popped upon request via the signal register_event.

The event_buffer_out_mux module This module is not separately illustrated; its position
in the data flow is illustrated in figure 4.6. It outputs the data for an event packet. Six
event_buffer_out modules are connected to it where two at a time are assigned to one of the
three event slots of the packet. The global 9 bit neuron address of the events is herein created,
based on the 6 bit address stored with the event and the address of the according 64 neuron
block. The assignment of the 64 neuron blocks to the packet slots and the resulting addresses
are given in table 4.9.

During operation, the count_up signal will always be issued until the first event_buffer_out
flags a valid event, if this is not already the case. The presence of the 4 bit counters ensures
correct time stamps for all events flagged valid. These are multiplexed into the packet. If two
concurring event_buffer_outs should indicate valid events simultaneously, they are read out
alternately, and no special priority scheme is used here.

The count_up signal will only be issued if the value of the 4 bit counter does not ex-
ceed the upper nibble of the current system time. This precaution has not been taken within
Spikey 1. Therefore, more recent events with a larger time stamp might be transmitted before

4.3. DIGITAL PART 99

older events in case of a wrap around of this 4 bit counter. This beaks down the correct func-
tionality of the event processing algorithm outside the chip (cf. section 3.2.3), which assumes
that events arrive with ascending time stamps.

Shortcomings in the Implementation Instead of the third column in table 4.8, the rightmost
column has wrongly been implemented in both versions of the Spikey chip. This results in
events that potentially have time stamps with an error of +1 LSB. The probability for this
error within one clock cycle is

perror =
∆TDLL

∆Ttbin ·16
, (4.2)

with ∆TDLL being the phase shift of the DLL time bins’ wrap around point with respect to
chip_clk, as illustrated in figure 4.17, and ∆Ttbin being the length of one time bin. The
total number of time bins within one clock cycle equals 16. The occurrence of this error is
demonstrated by measurements presented in section 6.5.5.

4.3.6 Digital Core Modules

In this subsection, the Verilog modules within the application layer are described (they are
illustrated in figure 4.6). The interface to the top level command decoder is standardized for
all modules and follows the timing diagram given in figure 4.12.

The Status and Control Register

This module basically consists of a set of registers the either control parts of the functionality
of the chip or hold the status of certain other modules inside the chip. For example, the status
of the FIFO controllers within event_buffer_in and event_buffer_out can be read out using this
module. One read command is defined for all FIFOs relating to one of the three clock domains
at a time. The status bits transmitted for each FIFO are listed in appendix B. Thereby it is
possible to monitor the status of the event generation logic during continuous operation. For
each of the clock domains, the current values of the associated system time counters are also
transmitted and the read answer for the clkhi domain additionally contains the common high
nibble of the current event packet and the state of the PLL_LOCKED signal.

The content of global control registers is modified by writing to this module and the func-
tionality associated with these registers is also listed in appendix B.

The Loopback Module

This module is implemented to verify the basic functionality of the application layer. Upon
a read request, it registers the inverted version of the data at its data_in port for one clock
cycle and acknowledges the read access in the following clock cycle, thereby sending the
stored data to the result_reg. By using the loopback command it can be verified whether
the command decoder at the top level is working correctly and whether read and write accesses
are answered correctly by the chip.

The Event Loopback Module

The purpose of this module is to verify the functionality of the event processing modules
event_buffer_in and event_buffer_out along with the synchronization of the chip. As illustrated
in figure 4.6, event data generated by the event_buffer_in modules is additionally connected to

100 CHAPTER 4. IMPLEMENTATION OF THE CHIP

the event_loopback module. The module basically acts as a pipeline register and its output is
connected to the input of the event_buffer_out modules which process the pipelined events as
if they were generated by the analog part.

First, the pipeline registers are clocked with the source clocks anaclk and anaclkb in
order to minimize the number of flip-flops in the pipeline clocked with clkhi. Second, the
content of the registers with the source clock currently being in its low phase is multiplexed to
the output, depending on the phase of clkhi relative to the source clocks. To test all of the
event_buffer_ins, the output of two of these modules is multiplexed to the same upper pipeline
and the select input of these multiplexers is constantly driven by a control register. Likewise,
a constant value for the early bits, sent along with each event output can be set (no early
information is generated at the input). Finally, to minimize power consumption if the module
is not active, all pipeline registers are connected to one global clock enable signal. This signal
also serves as the select input to the multiplexers at the input of the event_buffer_out modules.

No timing constraints have been set on this enable signal in order to relax the timing. There-
fore, the output of the pipeline presumably contains invalid data for several clock cycles after
activation of the event loopback. For this reason, the reset of all event_(in/out)_buffers has to
be pulsed after each change of the enable signal by means of sending the appropriate com-
mands to the control register.

Parameter Ram Control

The purpose of this module is to digitally store the values of the various model parameters that
are applied to the neural network circuits described in section 4.2. These parameters are stored
within current memories and need to be periodically refreshed. Therefore, a controller ad-
dresses each current memory in a customizable sequence and applies the according parameter
value to the DAC.

The storage is accomplished by the usage of a single ported static memory which is genera-
ted using the SRAM compiler from Virtual Silicon Technology, Inc. [Vir04b]. The following
data is stored for each parameter: the physical address of the parameter within the analog part
(12 bit), the value to apply to the DAC (10 bit), and the information about how long to apply
the value to the respective current memory (4 bit). The mapping of the physical addresses to
the model parameter addresses is listed in appendix A. The DAC can be set from 0 to Irefdac/10
with the according 10 bit resolution (cf. section 4.2.1).

In particular, the 4 bits defining the update duration of the parameter contain the 4 bit address
of a LUT which actually defines the procedure used to apply the DAC value. One LUT entry
contains four values: the number of clock cycles to activate the boostb pin of the DAC (4 bit)
and the number of clock cycles during which it is inactive (4 bit). The two remaining values
are optional and allow for the definition of the number of automatic increments of the physical
address (8 bit) with a certain step size (4 bit) while keeping the parameter value and the time
unchanged. The default is to set the number of increments to 1.

Functionality The complete configuration of the module requires to correctly set at least one
of the LUTs, which can be used as a the update duration for all parameters. To ensure correct
operation of the chip, a value for every physical parameter has to be given while the amount
of entries in the memory can be reduced by using the described auto-increment functional-
ity. The total number of valid entries within the parameter memory is stored in the register
numparameters (12 bit). Refresh cycles are performed by a FSM which periodically reads the

4.3. DIGITAL PART 101

memory content from address 0 to numparameters−1 and generates the appropriate address
signals and DAC values.

The update functionality is controlled by the signal update_en, set within the control
register. Unless this signal becomes active, all parameters are periodically updated to zero
current to prevent the current memories from drifting to their maximum output current [Scha].

The Analog Readout Module

The read out chain for the analog parameter voltages generated within the analog blocks
vout_block is controlled by this module (cf. section 4.2.1). With a write command, the module
(left or right vout_block) is addressed and the bit pattern to clock into the flip-flops of the read
out chain is transmitted. The update of one chain is initialized by resetting all chains and then
serially shifting the bit pattern into the flip-flops of the addressed chain. This way it is ensured
that only the addressed chain does contain an active output and shorts between the outputs of
both chains to the common IBTEST pin are omitted.

While the new bit pattern is shifted into the chain, the output of the chain is stored within a
register stage of the module. Its content can be read back to verify the correct functionality of
the flip-flop chain within each vout_block.

Synapse Ram Control

Several static memory resources are distributed over the network_block. The synapse_control
module mainly acts as a memory controller to these resources by means of a FSM which
triggers the data, address and control signals associated with the respective memories in the
correct order. The memory resources are divided into four groups:

• Row and Column Configuration Bits: The row circuits are configured with eight bits,
two bits are needed for the column circuit configuration. The interface to the column
circuits has a width of 4 bit because of the width of the synapse memory. Only bits 1 and
2 are used for the column configuration bits. All configuration bits and their meanings
are listed in table 4.11.

• Synapse Memory: This is the 4 bit weight memory located within each synapse. Solely
the weight is stored for each synapse, the distinction between excitatory and inhibitory
behavior is made within the row drivers.

• Correlation Readout: Reads out the current result of the correlation measurement per-
formed within the synapses (1 bit per synapse). The data width again is 4 bit and four
contiguous columns are read out at once. As a consequence, the lower two column ad-
dress bits are “don’t care” for this access. Please refer to [SGMM06] for further details
regarding the correlation measurement.

Note that always several memories are addressed at once and thus accessed with one com-
mand. For a row configuration access, the data of both network_blocks is transmitted, resulting
in 16 bits of data for one access. All other accesses involving column addresses are aligned
to the grouping of 64 neurons into one sub block. The two network_blocks consist of six
of these blocks with each having a 4 bit data bus resulting in 24 bits of data for one access.
To summarize, the address space for all accesses covers 256 row addresses and 64 column
addresses.

102 CHAPTER 4. IMPLEMENTATION OF THE CHIP

Bit Meaning

row
config. bits

0
0x0: ext. event source (event_buffer_in)
0x1: local feedback adjacent network_block

1
0x2: combine 2 synapses to gain 8 bit resolution
0x3: local feedback this network_block

2 1: row is excitatory
3 1: row is inhibitory
4 1: enable short term depression/facilitation
5 1: short term depression, 0: facilitation
6

set time constant for short term circuits
7

column 1 1: output Vmembrane via 50 Ω driver
config. bits 2 1: enable digital event output

Table 4.11: Description of the configuration bits for row and column circuits. The row configu-
ration bits 0 and 1 together define the functionality described in the last column.

4.3.7 Relevant Figures for Event Transport

Transmission Latencies

The different modules described in the preceding sections as well as the data transport within
the physical and the link layer do introduce latencies to the (event) data, which shall be sum-
marized in this section. The data is compiled in table 4.12 and discussed in the following. It
has been verified by means of back annotated simulations to ensure correct values for different
phase relations between the interface clocks and the core clocks of the chip.

clkhi cycles
receive transmit

interface layers
physical layer 2 2
link layer 4(5) 1

application layer
control interface 2
event generation 6(7)
event digitization 6(7)

total latencies

sync. of internal counters 10(11)
earliest event generation 12(14)
earliest event digitization 9(10)
daisy chain delay 1 chip 11(12)

Table 4.12: Latencies in terms of clkhi cycles, which are relevant for the event transport and the
synchronization of the chip.

Interface layers The actual latency of the link layer depends on the phase difference be-
tween the link clocks rx_clk* and chip_clk. The minimum of 4 cycles is determined by
the two-stage synchronization registers clocked by chip_clk of the FIFO within ht_deframer.

4.3. DIGITAL PART 103

Application layer Control interface data takes one chip_clk cycle to pass through the ap-
plication layer. The latency for event generation is introduced by the synchronous FIFO within
event_buffer_in (two clock cycles) and the downstream register stage (one cycle, cf. section
4.3.5). Digitized events are stored within an asynchronous FIFO within event_buffer_out,
which accounts for three chip_clk cycles. The additional clkhi cycle present in both
cases is introduced depending on whether chip_clk is in its low or high state during event
generation/digitization within the clkhi domain.

Total latencies The uncertain value for the internal counter synchronization requires a care-
ful synchronization method, which is performed by the controller and is described in section
5.2.4. For the setup of large scale neural networks as described in section 3.4.2, the maximum
values are considered.

Achievable Event Rates

The event rates achievable by the digital part are an important performance measure, as they
indicate the maximum neural activity that can be achieved on both the digital event input
and the digital event output of the chip. Since the digital part operates fully synchronous,
these rates are best declared in units of events per clock cycle. The according firing rate
in biological terms can then be calculated using the speed-up factor s and the digital clock
frequency fc. Based on the architecture of the digital part, these rates are summarized in
table 4.13 for s = 105, a chip_clk frequency of fcc = 156 MHz, and a clkhi frequency of
fch = 312 MHz, which represents the actual operating frequency of the Spikey chip within its
operating environment (cf. section 5.2.2).

events per events s−1 events s−1 biol. rate
clkhi cycle chip [Hz] element [Hz] element [Hz]

rev,max,peak
inp. synapse 8 1.25 ·109 2.44 ·106 24.4
outp. neuron 6 9.36 ·108 2.44 ·106 24.4

rev,max,theo
inp. synapse 1.5 4.68 ·108 9.14 ·105 9.14
outp. neuron 1.5 4.68 ·108 1.22 ·106 12.2

Table 4.13: Maximum achievable average event rates. The first column gives the rate in events per
clkhi cycle for the whole chip. The second column contains the afore rate in Hz for fch = 312 MHz.
The values are calculated as an average for one single synapse/neuron out of all available within the
third column. The last column contains the biological firing rate for one single element at a speed-up
factor of s = 105.

The theoretical maximum rate is determined by the number of DTCs and TDCs. Within
one anaclkhi cycle, eight events can be generated simultaneously by the available DTCs
while the TDCs are capable of simultaneously digitizing 6 events at once. On the input, these
rates can be achieved for short periods of time by early enough filling the FIFO memories
within event_buffer_in (maximum 64 entries) before generating the first event, whereas on the
output the duration of the peak rate is limited by the size of the FIFOs within event_buffer_out
(maximum 128 entries).

On average, the event rate is limited by the physical interface of the chip which transports
at maximum one event packet containing up to three events per chip_clk cycle. As a result,
rev,max,theo = 1.5 events can be transported per clkhi cycle. The values given in table 4.13 are

104 CHAPTER 4. IMPLEMENTATION OF THE CHIP

based on this value and represent the average event rate for one input synapse and one output
neuron, out of 512 input synapses and 384 output neurons respectively.

Note that the maximum average biological rate for one single synapse or one neuron can be
calculated as fch/s = 3120 Hz using the above values. This hypothetical value will not be used
for experiments. Therefore, all values are averaged over the totally available synapses and
neurons. During operation of the chip, the rates will presumably range between the average
and the theoretical maximum. This is feasible, since on the one hand, not every input synapse
or output neuron will require external event transmission. On the other hand, peak rates are
expected due to potential synchronized behavior of groups of neurons.

4.4 Mixed-Signal System Implementation

This section deals with the physical implementation of the Spikey chip, which is based on
the design methodology described in chapter 2. The RTL-based Verilog description of the
complete digital part as well as the set of scripts used for the implementation is available as a
SVN53 repository [EVg].

4.4.1 Timing Constraints Specification

Initially, the clocks chip_clk and clkhi are specified for a clock period of 5 ns and 2.5 ns
respectively. Unfortunately, this timing requirement could not be met for the worst process
corner specified in the technology libraries. For optimal implementation results, it is recom-
mended to slightly overconstrain designs by a maximum of 10 % [Bha99]. For this reason,
the period constraints were relaxed for the actual implementation. The clocks present in the
design and the according period constraints are listed in table 4.14. An uncertainty of 0.1 ns
has been set by means of the set_clock_uncertainty command for all clocks .

clock name purpose period [ns]
rx_clk0 link clock, input link 0 3.2
rx_clk1 link clock, input link 1 3.2
ext_clk ext clock, input to PLL 12.8

pll_clk400 PLL output clock 3.2
chip_clk core clock 6.4
clkhi time base, event dig., output links 3.2

del_conf load value into delaylines 20
jtag_clk JTAG tap controller clock 200

Table 4.14: Clock signals present in the chip with the according period constraints. The clocks to
the analog part are covered by these definitions as they are traced through the inserted AND gates (cf.
section 4.3.3).

The achievable speed is limited by the path with the worst negative slack. According to
the STA performed on the synthesis results, this path is located in the event packet genera-
tion logic. The pop interface of the FIFO memories within the event_buffer_out modules is
controlled by asynchronous logic within event_buffer_out_mux, which itself evaluates the out-
put of event_buffer_out to assemble the event packets. Depending on the optimization during
synthesis, this path has a length of up to 21 logic levels. It has been decided not to split up

53SVN, also called Subversion, is the versioning system used at the Kirchhoff Institute for Physics.

4.4. MIXED-SIGNAL SYSTEM IMPLEMENTATION 105

this path by means of a register stage to keep the latency of one clock cycle required for the
event packet generation. A period of 6.4 ns on chip_clk results in a clock frequency of
156.25 MHz which matches the desired speed of the FPGA controller (cf. section 3.3.3) and
is therefore determined to be sufficient.

The complete set of timing constraints is given in appendix D.2. The following constraints
are noteworthy:

• No phase relation exists from the link clocks to chip_clk and clkhi due to the
usage of asynchronous FIFOs. Therefore STA is disabled for all paths crossing these
clock domains. The same holds true for all paths from the JTAG clock and the delayline
configuration clock to the remaining clocks in the design.

• The majority of the FSMs present in the design accepts an asynchronous reset. There-
fore, timing analysis is also disabled for all static and slow inputs, such as RESET,
CI_MODE or CHIP_ID. The reset signal is synchronized locally by means of two flip-
flops, where required.

• The delaylines are constrained as described in section 2.4.4.

4.4.2 Top Level Floorplan

A brief overview of the chip’s floorplan has already been given in figure 4.1. Now that the
components of the chip have been described, the top level floorplan shall be described in more
detail by means of figure 4.19, where also the power structures are displayed.

I/O Ring The integration of the large analog VLSI arrays and the manageable number of
required I/O and power bond pads make the design of the presented chip rather area limited
than pad limited. Therefore, the bond pads are implemented in one single row and not stag-
gered. The I/O ring is split into two parts: first, the top edge which solely comprises power
and signal pads related to the analog part. The regular I/O cells supplied by Virtual Silicon
Technology (VST) are used in this row as to save space in the die core area. Second, the re-
maining I/O ring is u-shaped and composed of LVDS and according power pads on the right
and left edges. On the bottom edge, miscellaneous single ended signal pads, power pads, one
LVDS input pad for the EXT_CLK signal and the PLL are placed in the I/O ring. The LVDS
cells as well as the PLL were designed for the staggered I/O cells supplied by VST and there-
fore the u-shaped part of the I/O ring uses the more area consuming staggered pads. The top
row is separated from surrounding corner cells by a 5 µm wide gap which thereby also acts as
a power cut.

Analog Part The two network_blocks are placed such that the synapse drivers in the middle
are opposite to the adjacent network_block. By this means, automatic routing of corresponding
spike output signals to the inputs of the synapse drivers of adjacent blocks is facilitated. The
space that has been saved at the top is mainly used for power distribution and also for signal
routing. Six neuronout_pe_top modules are placed below the network_blocks. Two at a time
make up the last stage of the priority encoders for one 64 neuron block. They are placed near
the corresponding 64 neuron block for optimal routing. The two dll_block_complete blocks
containing the DTCs and TDCs are placed in a manner that, on the one hand, the output of the
DTCs is close to the address inputs of the synapse driver columns and on the other hand, the
wires from the priority encoders’ outputs are routable with acceptable lengths. The DAC is

106 CHAPTER 4. IMPLEMENTATION OF THE CHIP

CHIP_ID
mode,
reset

mode,
reset P

L
L

E
X

T
_
C

L
K

VDD/
VSS
VDD/
VSS

JTAG

L
V

D
S

R
X

L
V

D
S

R
X

L
V

D
S

T
X

digital partdigital part

analog partanalog part

VDD/
VSS
VDD/
VSS

VDD/
VSS
VDD/
VSS

VDD/
VSS
VDD/
VSS

avdda, agndavdda, agnd ext. param. and
bias voltages

ext. param. and
bias voltages FIREIN<9:0>VMEMOUT<7:0>VAD/VAS VAD/VAS avdda, agndavdda, agnd

VDD/
VSS
VDD/
VSS

dig. power for
analog part

3.3V
DAC suppl.

power cut power cut

network_block

curmem_vout
dll_block_complete DAC dll_block_complete

curmem_vout

network_block

input event
storage

input event
memories

input event
memories

input event
memories

output event memoriesinput event
memories

parameter
memory

Figure 4.19: Floorplan view of the Spikey chip with power routing done.

placed at a central position, to minimize the wire capacitance of its output signals that need to
be routed to all current memory inputs in parallel.

Digital Part The placement of the digital macros has been optimized iteratively and follows
two objectives: first, the blocks should be placed in a regular manner to allow for straight
forward power connections. Second, the timing of critical signals has been considered while
leaving enough room for standard cell placement. For this reason, the memory blocks used
for the storage of digitized events are placed within the upper area of the digital part. They
receive their input directly from the TDCs and the system time counters within the digital
part (cf. section 4.3.5). The area above these macros is needed for the buffers that drive high
capacitance nets within the analog part and the registers directly related to the event input. The
very presence of these registers allows for the placement of the memory blocks used for the
storage of incoming events with larger distance to the DTCs, thereby leaving more space for
standard cell placement throughout the core area. The static memory used for the parameter
storage is not critical in terms of timing and it is placed in the bottom middle of the digital part
to facilitate the access of the application layer logic to its ports.

4.4. MIXED-SIGNAL SYSTEM IMPLEMENTATION 107

Net name Purpose Supplied from
avdda 1.8 V analog power top edge
avddhi 3.3 V analog DAC supply bottom edge
VAD 1.8 V I/O power for 50Ω outputs top edge
VDD 1.8 V digital power bottom edge
VDDL 1.8 V LVDS transmit power left edge
VDDR 1.8 V LVDS receive power right edge
V3IO 3.3 V IO power left, right, bottom edge

Table 4.15: Power nets that are present on the chip.

4.4.3 Estimated Power Consumption and Power Plan

Seven different power domains are present on the chip. They are listed in table 4.15 and the
names correspond to the pin names in the top level layout. VAD and avdda are confined to the
top edge and are isolated by the above mentioned power cuts. VDDL and VDDR are confined
to the LVDS pads within the according edges. They are separated from the core power ring
by means of cuts near the bottom corner pads. V3IO is the 3.3 V supply for the I/O cells and
electrostatic discharge (ESD) protection structures. It is common for the whole u-shaped I/O
ring.

The skeleton of the power structure (stripes and rings) is generated by a script to set up
initial anchor points for the following automatic power routing.

Analog Part Given a worst case dynamic power consumption for one network_block of
Pnb,worst = 300mW according to [Scha] and a worst case quiescent current within the parameter
voltage output buffers of Iq,worst = 1.2mA, the analog power consumption can be estimated
as54

Pana,worst = 2 ·Pnb,worst +2 ·VDD · Iq,worst ' 700mW and (4.3)

Iana,worst ' 390mA . (4.4)

Note that the power drawn by dll_block_complete, the DAC and the auxiliary priority encoder
modules is thereby neglected.

Above the network_blocks, two 20 µm wide stripes are inserted in order to connect to the
power and ground pads of avdda and analog ground respectively, and the power pins of the
network_blocks. Six pairs of power pads supply these stripes and they are placed in a way that
the current flowing in either direction of one stripe equals approximately Istripe = 1/8 · Iana,worst.
With a maximum allowable DC current of Imax,dc = 3.25mA/µm55 for the metal stripes, the
worst case power can be sustained by this network.

At the bottom edge of the network_blocks, the analog power and ground outlets are collected
by means of two additional stripes. The analog power supply for the vout_blocks and the
other blocks located there is drawn from these stripes. Two power nets for the analog part
are supplied from the bottom edge of the chip as it is not possible to route them through the
network_blocks:

54Pnb,worst is assumed for a reasonable setup of the synapse array. In the worst case, given pathologic values for
the leakage conductances, the synapse weights and the differences between the different reversal potentials, the
current could drastically increase to values even damaging the bond wires.

55This value is given for a die temperature of 80◦C. Assumed an adequate cooling, the die will in no case heat
up above this value.

108 CHAPTER 4. IMPLEMENTATION OF THE CHIP

Component # power [mW] total power [mW]
gate equivalent 83191 0.00628 417
event_in_ram 16 4.3 69
event_out_ram 8 9.9 79
parameter_ram 1 3.3 3.3
Total power Pcore [mW] 568.3

Table 4.16: Estimated core power consumption.

• VDD/VSS: One digital power/ground pad pair is reserved for the supply of the digital
circuits within the analog part. VDD and VSS are distributed below the network_blocks
in the same way as the analog stripes and are connected to the power pins of the neuron
circuits. The connection between the pads and the stripes is realized on metal 6, only.
Thereby, they are not connected to power structures within the digital part to avoid
coupling of switching noise into this supply.

• avddhi: The 3.3 V supply of the DAC is implemented with a separate power pad in
the bottom row.

Digital Part The digital power consumption is estimated by determining the gate count of
the design by means of an initial First Encounter run and calculating the power dissipation
Pdiss using the following formula [Vir04d]:

Pdiss = ((Erise + f allE +Cfanout ·V 2) · fsw · psw +Pstat) ·ngate , (4.5)

where E is the energy for a rise or fall transition, Cfanout is the capacitive load at the output,
V is the supply voltage, fsw is the switching frequency, psw is the toggle probability, Pstat is
the static power dissipation and ngate is the number of gates. The gate count of the design is
reported by First Encounter as a multiple of the smallest standard cell (gate equivalent count).
The values used refer to this smallest cell (HDBUFBDL). Conservatively, an average load
capacity of Cfanout = 0.02pF and an average toggle probability of psw = 0.2 are assumed56.

The power consumption of the static memory cells has been estimated using worst case val-
ues from the according data sheets and a toggle rate of 16 % for the event rams and 5 % for the
parameter ram. The resulting values for a core frequency of fsw = 200MHz are summarized
in table 4.16.

Experience at the Kirchhoff Institute proves that one bond wire tolerates a maximum current
of 100 mA [Ach]. Nine power and ground pads supply the core with VDD and VSS from the
bottom edge, which is sufficient for the expected power consumption. Power is distributed
over the core area by means of a surrounding metal ring (width: 20 µm) and 12 vertical stripes
(width: 10 µm) on metal 2. In a bad scenario (highest standard cell density at the top of the
core), it is assumed that half of the estimated current will flow through the whole stripe. The
voltage drop for one stripe is calculated using the current through one stripe

Istripe = (0.5 ·Pcore/1.8 V)/14 = 11.5 mA

56The low value for psw is based on the nature of the communication protocol. Only one of the core modules
will be active at a time, or in the case of events, three of the 16 input buffers.

4.4. MIXED-SIGNAL SYSTEM IMPLEMENTATION 109

one cell [mW] 20 cells [mW]
dynamic power 1.6 32
static power 6.3 126
total power 158

Table 4.17: Estimated LVDS transmit pad power consumption.

and the stripe resistance (sheet resistance of metal 2: R2 = 0.062mΩ/2)57

Rstripe =
1350
10
·R2 = 8.37Ω :

Vdrop = Istripe ·Rstripe = 96mV .

At an early design stage, this has been chosen to be sufficient to supply the digital core of
the Spikey chip. Transient loads are buffered by the capacitances within filler cells that are
automatically inserted after routing is complete.

I/O power The power consumed by the I/O circuitry is dominated by the LVDS transmit
pads. The input pads do only marginally contribute and they are neglected as well as the static
single ended pins. The static power consumption of the transmit pads is calculated with the
LVDS quiescent current Iq,tx = 3.5mA (see [ANS96]) and results in Pq,tx = 6.3mW per pad
neglecting other currents in the cell. Dynamic power consumption with full toggling rate is
calculated using the following equation [TMG02]:

Pdyn,tx = Ctot ·V 2 · fsw , (4.6)

with Ctot being the driven capacitance, V the switched voltage and fsw the switching fre-
quency. Ctot is estimated to be 25 pF including line capacitance and the receiver pin capac-
itance, fsw = 400MHz (the link clock frequency) and V = 400mV differential signal swing.
The resulting power dissipation is given in table 4.17. The transmit side is supplied by three
pairs of power and ground pads equally distributed among the total number of pads.

4.4.4 Timing Closure

In this section, relevant results of the timing closure of the final design are given. These results
affect the maximum core operating frequency and thereby the maximum event rate achievable
on the digital interface of the chip.

rx_clk0

ht_datain0<8:0>

rx_clk1

ht_datain1<8:0>

cursor - baseline = 267 ps

Figure 4.20: Back annotated simulation of the timing at the input DDR registers.

57The sheet resistance R2 is given in Ohms per square, which is indicated by the square 2 symbol.

110 CHAPTER 4. IMPLEMENTATION OF THE CHIP

Interface Implementation: Input The fulfillment of the timing requirements on the phys-
ical inputs and outputs of the chip cannot be verified by means of STA (cf. section 2.4.4).
Therefore, the interface timing is verified with a back annotated simulation of the chip. The
timing at the clock and data pins of the DDR input registers is shown in figure 4.20. The clock
frequency is 400 MHz and data is sent to the chip with the ideal phase relation of 90◦. This
simulation has been performed for the typical mean process corner and all delaylines are set
to default delay. The skew on the data signals equals 267 ps and can easily be compensated
by tuning the according delaylines. The arrival times of the clock signals differ by about 90 ps
and the clocks arrive almost simultaneously with the data. As a result, the data would not be
registered correctly at the input. This is a serious implication which either requires the con-
nected sender to change its interface timing or an additional delay of the clock signals on the
carrier PCB.

The cause of this erroneous implementation are the minimum and maximum delay values
that have to be defined for the interface clock tree constraints. These have to be set with a
large gap from tmin = 1500 ps to tmax = 2300 ps as the CTS software otherwise fails to build the
clock tree58. As the link clocks and the data signals are defined within different clock groups
(cf. section 2.4.4), the implementation of equation 2.1 likely fails.

CLK0_OUT_P

CAD0_OUT_P<7:0>

CLK1_OUT_P

CAD1_OUT_P<7:0>

cursor - baseline = 191 ps

Figure 4.21: Back annotated simulation of the timing at the output pins of the chip.

Interface Implementation: Output The timing of the output signals is shown at the physi-
cal pads of the chip in figure 4.21 with the same setup as for the input. In this case, clock and
data signals of one link belong to one clock group and it can be seen that the expected −90◦

phase relation is well fulfilled for both interfaces. The skew among the data signals of one link
equals about 191 ps which can again be compensated by tuning the delaylines. The time shift
between the two links equals about 200 ps. This is of no concern due to the source synchronous
nature of the interface. The fact that the compensation of internal skew only requires the usage
of one delay element on both input and output interface shows that the interface is tunable to
compensate externally introduced skew in the order of magnitude of 200 ps per signal and still
provides a maximum data valid window opening.

Static Timing Analysis The critical path identified during synthesis is still the limiting fac-
tor for the digital back end implementation. Timing closure has been achieved in the typical
mean process corner and the best case process corner for the specified clock frequencies of
156 MHz and 312 MHz respectively. The slack values for the different clock domains are
listed in table 4.18. Despite an optimized placement of all FIFO memory cells, the worst case
slack is negative. A closer look at the violating paths shows that besides the known critical
path, synchronized reset signals within the clkhi domain have negative slack. To improve

58This is at least true for the version 5.2 of First Encounter which was used for the design.

4.5. IMPROVEMENTS OF THE SECOND VERSION 111

schip_clk [ns] sclkhi [ns] srx_clk0/1 [ns] max core frequency [MHz]

worst case −0.71 −0.31 −0.25 145
typical case 0.91 0.63 0.39 180
best case 1.48 1.01 0.62 211

Table 4.18: Worst slack values for the different clock domains on the chip. The values are obtained
from the post-layout STA and correspond to a target period of Tclkhi = 3.1 ns and Tchip_clk = 6.2 ns. The
expected maximum core operating frequency of the chip is given in the last column.

their slack, they should be treated as clock trees constrained to a delay that is smaller than the
clkhi period Tclkhi. However, as this increases the required buffer area and does not reduce
the worst negative slack, this solution has not been realized.

A consequence of the reduced maximum core frequency is a reduced accuracy of the event
digitization and generation. In the worst case process corner the resolution is 216 ps (equal to
21.6 µs biological time) instead of the originally specified 156 ps. This results in a quantization
error of 4 % for the shortest expected axonal delays of 0.5 ms (biological time). This error is
chosen to be acceptable as it lies well below the maximum variability of 0.25 ms of spike
times required for stable neural network activity. The latter values have been obtained in in
vivo measurements [MS95].

Furthermore, the event transmission delay is increased due to the increased clock period of
the physical communication with the chip. The scenario with a clock frequency of 156 MHz
has already been discussed in section 3.2.4. It is not expected to get back a true worst case
sample since the fabrication process is already used for quite a long time (about 5 years) and
thus is supposed to be well elaborated.

4.5 Improvements of the Second Version

The first version of the Spikey chip has been taped out in August 2005. Its functionality has
been proven by a large series of tests that have been performed on the interface, the digital part
and the analog circuits. Some of the results presented in chapter 6 have been obtained with
this first version. Nevertheless, there were some shortcomings regarding wiring and the digital
logic that justified a second tape out including the corrections and improvements described in
this section.

Parameter Voltage Generation In the first version, the parameter voltages are generated by
means of a switched capacitor circuit. The voltage is generated by charging a capacitor for
a certain period of time with the constant current of one current memory cell. The required
control lines and the voltage on the switched capacitor itself introduce crosstalk to the current
memory cell that leads to a random error of approximately ±150 mV on the parameter volt-
ages. The current memory is replaced by a 10kΩ poly silicon resistor in the second version
and the control lines are removed. Both circuits are described in more detail and characterized
in the diploma thesis of B. Ostendorf [Ost07]. Thereby, the successful redesign is proven and
the random error does not occur anymore.

Parameter Voltage Readout The capability to read out every voltage parameter did not
exist in the first version. Instead, probe pads connected to one dedicated voltage are placed on
the die that are used for characterization.

112 CHAPTER 4. IMPLEMENTATION OF THE CHIP

C

D Q

C

D Q

QB

QB

from PLL

dummy

clkhi

chip_clk

Figure 4.22: Clock generation circuitry used within Spikey 1. The XOR connected to dummy ensures
symmetrically loaded flip-flop outputs.

Internal Clock Generation Within Spikey 1, the clocks chip_clk and clkhi are gene-
rated using the circuit shown in figure 4.22. The flip-flops are symmetrically loaded to achieve
an equal propagation delay through the XOR gates. Differences in the gate propagation delays
for rising and falling input transients result in two period values differing by 250 ps for the
clkhi output depending on the input of the according XOR. This behavior could be repro-
duced in the back annotated simulation of the design (data not shown). As a result it can be
said that the circuit is not suited to generate two clocks with a speed difference of a factor of 2,
if a clock period smaller than 10 ns is desired. Instead, the circuit described in section 4.3.3 is
used within the second version.

The Event Loopback Module This module was added to the design in the second version.
Using Spikey 1, it is only possible to verify the digital event generation and digitization by
means of comparing the expected results to a selected membrane voltage on an oscilloscope.

Besides these modifications and additional features, the experiences collected during the
design of Spikey 1 were of great benefit for the design of Spikey 2. Especially the automated
abstract generation and routing of the analog part have been improved and now gain more
predictable results in terms of general routability and crosstalk.

Chapter 5

Operating Environment

This chapter describes the hardware, programmable logic, and software setup
that is designed for the test and the operation of the neural network ASIC and
has been developed throughout this thesis. An overview of the hardware plat-
form has already been given in chapter 3. Additional hardware hosting the
Spikey chip is shown. The programmable logic design of the FPGA acting as
a controller to the chip is described together with the implementation of the
communication protocol described in chapter 4 followed by a description of
the control software which provides the low level access to the chip as well as
an abstraction layer for the high level software access. The system is suited
for the test and the operation of a single chip and it is shown how the mo-
dules needed for the communication of events among several of these can be
integrated into this framework.

5.1 Hardware Platform

5.1.1 System Overview

The hardware platform was introduced in chapter 3 with an emphasis on the transport net-
work which facilitates communication between different Nathan modules hosted by a back-
plane. Figure 5.1 shows a photograph of this platform with two Nathan modules plugged into
the backplane. Each Nathan module carries a daughter card that hosts one Spikey chip and
provides the necessary infrastructure like a DAC, an analog-to-digital converter (ADC) and
voltage regulators for the operation of the chip.

The Nathan Module (Revised)

The Nathan module has a size of 13× 8 cm2 and is fabricated in an eight layer build-up Mi-
croVia process with a minimum feature size of 100 µm. It is designed as a general-purpose
platform for the distributed operation of mixed-signal ANN ASICs. All required components
for the local execution of experiments as well as the interconnection of several modules are

113

114 CHAPTER 5. OPERATING ENVIRONMENT

Figure 5.1: The setup currently used for the test and operation of the Spikey chip. Two Nathan mo-
dules, each hosting one chip, are plugged into the backplane, which establishes the connection to the
control PC. A waveform generator is used for the generation of clock signals with variable frequencies.
The oscilloscope on the right is used to record analog output signals.

available on the Nathan module. Figure 5.2 shows a photograph of the top side of the Nathan
module. The left half is covered by the Recha PCB hosting the Spikey chip (see section 5.1.2).
It is plugged into the according SMT connectors on the Nathan module. A block diagram
illustrating the functionality of the Nathan module has been shown in figure 3.2. The design
of the Nathan module is described in detail in [Grü03]. In the following, the facts relevant for
the operating environment of the Spikey chip are shortly outlined.

FPGA Each Nathan module contains a Virtex II-pro FPGA of type XC2VP7 as the central
element to the module [Xil02b]. It provides 11,088 logic cells, a PowerPC processor core,
396 configurable user I/O pins, eight MGTs and four digital clock managers (DCMs), which
can be used for clock frequency multiplication and division, and for clock phase shifting. The
PowerPC is not used within this setup. However, a Linux kernel has been ported to run on
this processor [Sin01], thereby in principle enabling the local execution of neural network
experiments including the necessary control software [Sch05].

Memory Two types of memory resources are available on the Nathan module. Two SRAM
chips [Int00] with an access latency of two clock cycles are directly soldered on the board
allowing the parallel access to 2×512 KB of memory over a 2×32 bit bus at up to 200 MHz.
For applications requiring larger memory resources, a socket for one DDR-SDRAM module
is available on the back side of the module59. The interface is implemented such that memory
modules with a capacity of up to 2 GB are addressable.

Analog Circuitry One four-channel 10 bit DAC with a serial interface is available on the
Nathan module [Max96]. The serial interface operates at clock frequencies in the order of
magnitude of 1 MHz and the DAC is thus not suited to produce fast transients, but rather to
supply constant bias voltages to the neural network ASIC. It operates from a 3.3 V dedicated

59The socket physically fits to standard 200 pin small outline dual inline memory modules (SODIMM), which
are commonly used in laptop computers [Mic02].

5.1. HARDWARE PLATFORM 115

FPGA

under

heat sink

DDR-SDRAM
(bottom)

Recha, mounted on two
daughter card SMT connectors

power
supplies

analog MUX ADC DAC

high-speed
differential connector

Spikey, directly
bonded

plexiglass
cover

LEMO
connectors

CQFP208
footprint

Figure 5.2: Photograph of the Nathan module with the attached Recha carrier board hosting the Spikey
chip. The Recha board contains additional active analog circuitry, which is not available on the Nathan
module. The leftmost LEMO connector is connected to the IBTEST pin of the Spikey chip. Two
membrane potential monitor output pins are equipped with the connectors.

power supply and a reference voltage of 1.25 V. Three of its buffered outputs are connected
such that they can be set from 0 V to 3.3 V with 10 bit resolution and the fourth output con-
trols a current sink [Grü03]. Furthermore, a temperature sensor is available, which is placed
inside of the ANN ASIC socket. It is capable of measuring the FPGA temperature and its
own temperature. The local temperature may be used as a clue for the neural network ASIC
temperature in thermal equilibrium.

Connectivity The Nathan module is connected to a Slow-Control token ring network (cf.
section 5.2.1) and to the MGT network on the backplane by means of a high-speed differ-
ential connector. Regarding on-board connectivity, about 2/3 of the I/O pins available at the
FPGA are used for the memory connections. The remaining I/O signals are available for the
interface to the ANN ASIC and are completely routed to the SMT connectors while a frac-
tion is connected to a local ANN ASIC socket (which is not used for this setup) in parallel.
All signals available at the SMT connectors are routed pairwise differentially on the Nathan
module with a differential impedance of Zdiff = 100Ω, thereby supporting the implementation
of high-speed digital interfaces using the LVDS signaling standard. Altogether, the following
signals are available at the SMT connectors:

• Overall 64 differential pairs. Besides some unassigned pairs, these differential pairs are
grouped into five busses comprising nine pairs each that are routed with equal lengths
to the connectors to support the implementation of 8 bit data links plus clock signal.

• The three DAC output voltages and the input to the current sink are available at the
connectors. Furthermore, the serial interface of the DAC is forwarded to the connectors
to connect further DACs in a daisy chain topology.

116 CHAPTER 5. OPERATING ENVIRONMENT

• Two dedicated 3.3 V low-dropout linear voltage regulators [Nat01] on the backplane ex-
clusively supply analog and digital supply voltages to the ANN ASIC and these voltages
are available at the connectors. The regulators are capable of delivering up to 1.5 A of
supply current.

5.1.2 The Recha PCB

The Recha PCB serves as a carrier board for one Spikey chip. Two revisions have been de-
veloped: the first version implements all basic functionality for the testing and operation of
the chip. The second version (will be called V2) was a conjoint work with B. Ostendorf who
added analog readout functionality. The generic functionality of both versions is identical and
as the first version is deprecated, the following text refers to the V2 version. A photograph
of Recha V2 attached to the Nathan module is shown in figure 5.2. The Spikey chip can be
mounted on the board in two ways: a footprint for a 208-pin ceramic quad flat pack package
is available to solder a packaged version of the chip onto the board. Furthermore, all signals
connected to the package pins are continued to the center of the board, where the chip may be
directly wire bonded onto the board (cf. figure 5.3). The data flow direction through the chip is
from left to right. This is reflected by the input links to the chip being connected via the SMT
connector on the right, and the signals of the output links being routed to the SMT connector
on the left.

pcb traces
from/to solder pads
of CQFP208 package

Figure 5.3: Photograph of the Spikey chip being directly bonded on the Recha carrier
board.

Features and Functionality

Detailed schematics as well as the layout drawings of the Recha board can be found in ap-
pendix F, while figure 5.2 shows a photograph of the top view. The mapping of the Spikey
pins to the signal names used on Nathan is given in appendix C.2. Relevant functionality of
the Recha board will be described in the following.

Four different power domains are present on the board. The two 3.3 V supplies delivered
by the Nathan module are used for the digital I/O power supply of the Spikey chip and for
the (analog) supply of the Spikey-internal DAC respectively (cf. section 4.2.1). Two dedicated
low-dropout linear voltage regulators generate the separate 1.8 V supply voltages for the ana-
log and the digital part of the Spikey chip. The 3.3 V analog supply is furthermore used to
supply the active analog components present on the board. These include:

5.1. HARDWARE PLATFORM 117

• A four-channel 10 bit DAC which is identical to the DAC on the Nathan module. On the
one hand, this DAC is required to provide the reference voltage Vcasdac to the Spikey-
internal DAC. On the other hand it generates the analog parameter voltages VM, VREST
and VSTART. These parameter voltages require low-impedance, buffered outputs at volt-
ages below 500 mV and could not be generated on-chip (cf. section 4.2.1). The DAC
uses the same reference voltage Vref=1.25 V as the DAC on Nathan and due to the iden-
tical interfaces it is possible to keep the existing VHDL code for the DAC control with
minor modifications to support the operation of two devices60. In addition to the four
buffered voltage outputs, each buffer’s negative input is available to allow for specific
gain adjustments. The according circuit is shown in figure 5.4 a, and the output voltage
can easily be calculated as

Vout = Vref · (1+
R1

R2
) . (5.1)

With R1 = 43kΩ and R2 = 100kΩ, identical to all four DACs, the outputs can be set
from 0 V to 1.79 V which covers the full range of the connected Spikey inputs.

+

-
DAC

OP

R1

R2

R3

M1

M2

Vout
+

-

to current mirrors
inside the chip

IREFDAC

DAC

4-channel
serial DAC

VDD

VN

a) b)

Spikey chip

Figure 5.4: a) non-inverting amplifier configuration used at the output of the DAC to adjust the output
voltage swing. b) schematic diagram of the current source circuit generating the reference curren Irefdac
for the Spikey chip.

• A current source to provide the reference current Irefdac to the internal DAC of the Spikey
chip. The circuit is shown in figure 5.4 b. The OP is controlled by the DAC located on
Nathan, which can be set from VN = 0∼ 3.3V. It adjusts its output such that the voltage
at the node connected to its negative input equals VN and consequently Irefdac writes

Irefdac =
VDD−VN

R3
. (5.2)

The maximum achievable current depends on the threshold voltage Vth of the transistor
M2, the on resistance Ron of M1 and the value of R3 and can be calculated as

Irefdac,max =
VDD−Vth

R3 +Ron
. (5.3)

With R3 = 5.1kΩ, Ron = 50Ω (conservative estimate based on the output characteristics
of the transistor) and Vth =0.51 V [UMC03], this sums up to Irefdac,max = 25.0 µA and
consequently a maximum parameter current of 2.5 µA on the Spikey chip.

60The serial interfaces of the DACs are wired together in a daisy chain. The implemented VHDL code follows
the MicroWire protocol; a description of this protocol can be found in [Max96].

118 CHAPTER 5. OPERATING ENVIRONMENT

• A four-channel 10 bit serial ADC to facilitate the automatic monitoring of selected out-
put pins of the Spikey chip. Three of the ADC inputs are connected to the IBTEST
pin of the Spikey chip and the first membrane potential monitor output of each net-
work_block respectively, thus enabling the automated readout of all on-chip parameter
voltages (via IBTEST) and the membrane voltages of 2× 48 neurons located on each of
the network_blocks. In particular, this feature is used for the calibration of the different
parameter voltage generators present on the chip [Ost07].

Other features include an analog multiplexer which either selects the IBTEST pin or one of
the eight membrane potential outputs to one common output for global monitoring purposes, a
set of four jumpers to set the CHIP_ID pins of the Spikey chip, and a differential clock input,
which is connected to a global clock input of the FPGA via the SMT connectors.

Layout Details

The high-speed digital signals of the digital interface to the chip require a careful board layout.
On the one hand, it is necessary to layout the differential traces with a differential impedance
of 100Ω to avoid impedance discontinuities, which would cause signal reflections, and thus
a degraded signal integrity [JG93]. On the other hand, it is necessary to compensate for the
differing routing delays between the signals of each link. Both requirements are fulfilled by
means of the layout tool61 that has been used.

Nevertheless, the electrical parameters of the PCB substrate and the geometries required
to achieve the differential impedance of 100Ω have been obtained in cooperation with the
manufacturer [wue] and are listed in appendix F.3. To achieve this controlled impedance on
the whole area, the stack-up of the Recha board has been chosen such that the two internal
layers are realized as massive copper planes used for power and ground network distribution.
On the one hand, this ensures a low-inductance power network, and on the other hand, the
continuous copper planes serve as reference planes to the differential microstrip lines on the
top and the bottom side of the Recha PCB.

The routing of the differential signals has been realized with the aid of board- and system
level simulations that are available within the layout tool62. The setup of these simulations
has been described in [Grü03] for the DDR-SDRAM bus on the Nathan PCB. They allow to
interactively check the propagation delays of the signals during manual routing. As a result,
the delay of every single signal could be optimally set by its routing length, which is noticeable
in the meander-like routing of many of the signals (cf. figure 5.2).

The membrane monitor outputs require a controlled single-ended trace impedance of 50Ω

to match the output impedance of Spikey’s on-chip drivers. These are routed on the bottom
side of Recha and are connected to eight LEMO connectors at the top edge of the board. The
ninth Lemo connector on the left hand side of the board is connected to the IBTEST signal.

61Cadence Allegro PCB Designer suite in conjunction with the SpecctraQuest signal integrity suite have been
used [SQ 04].

62IBIS (Input/Output Buffer Information Specification) models are required for these simulations. While these
models are available from the manufacturer for the I/O drivers/receivers of the FPGA, generic models provided by
the software have been used to model the LVDS pads in the Spikey chip. As the simulation is mainly targeted at
the signal propagation delay and only secondary on the signal integrity, this has been chosen to be sufficient.

5.2. PROGRAMMABLE LOGIC DESIGN 119

5.2 Programmable Logic Design

During the design of the hardware platform consisting of the backplane and the Nathan modu-
les, a modular approach has been followed which allows for the distributed operation of ANN
ASICs of different types [Sch05, Grü03]. Central to this concept is the FPGA, which can be
configured to control all connected components. To provide reusable components and a com-
mon infrastructure to all functional modules realized in the programmable logic of the FPGA,
a modular framework has been developed in [Sch06] and [Phi07]. Within the programmable
logic design, three communication channels are of importance for the operation of the whole
system: the local memory access, the external communication via the token ring network on
the backplane, and the high-speed communication via the MGTs of the FPGA. For the oper-
ation of the Spikey chip, the components for the external communication and for the memory
access are used and the following section shortly describes these entities, namely the memory
controller and the Slow-Control.

5.2.1 Overview

To illustrate the topology of the existing framework and the integration of the programmable
logic needed for the Spikey chip into this framework, an overview on the logical compo-
nents present on one network module is given in figure 5.5. The modules spikey_control and
spikey_sei encapsulate all functionality related to the chip and process both event and control
interface data. Remote access to the software is established via the Slow-Control while the
local DDR-SDRAM severs as a mass storage device for experimental and configuration data.
The MGT connections required for inter-module communication are omitted for clarity. They
are not used for testing and single chip experiments.

Neural
Network

ASIC

DAC
ADC
Ctrl.

Slow-Control manager

spikey
control

spikey_sei

ramclient
read

ramclient
write

ramclient
read/write

RAM manager & control unit

DDR-SDRAM

Slow-Control
memory
access

neural network ASIC access

DAC/ADC

Nathan

Recha

interface to backplane & control PC

S
lo

w
-C

o
n
tro

l
m

a
s
te

r

Figure 5.5: Block diagram of the functional modules within the programmable logic design. The light
grey boxes denote components of the already existing framework. The modules needed for the neural
network ASIC access have been developed within this thesis in collaboration with Dr. J. Schemmel.
The bold arrows denote communication channels that are relevant to the communication of data packets
with the neural network ASIC.

120 CHAPTER 5. OPERATING ENVIRONMENT

Memory Access: The Memory Control

Several components within the FPGA may simultaneously require access to the local memory.
These components will be called ramuser in the following. The memory control realizes the
interface between the DDR-SDRAM module and all ramusers inside the FPGA. It has been
developed by T. Schmitz [Sch06] within the Electronic Vision(s) group and is comprised of
three independent modules:

• The ramclient provides an interface with a common protocol to all ramusers. A ram-
client buffers requests issued by the ramuser within a FIFO memory of parameterizable
depth and forwards them to the manager.

• The manager receives requests by the ramclients and grants access to specific ramclients
based upon a priority scheme. Requests are forwarded to the memory control unit.

• The memory control unit encapsulates the physical interface to the DDR-SDRAM and
implements the according access protocol.

Relevant to the ramuser is that the memory controller does not guarantee fixed response
latencies. The ramuser issues write requests to the ramclient which buffers the request and
forwards it to the manager without further notice to the ramuser. In case of a read request,
the ramuser receives the requested data an undefined number of cycles after the actual request.
Read data is delivered in the order it was requested. The access latencies strongly depend on
the number of ramusers in the system and the traffic that they produce—the overall bandwidth
of the DDR-SDRAM interface is shared among all ramclients.

Interface Specification and Clocking The interface to the ramclient consists of a 64 bit data
bus, an according address bus and the necessary handshake signals. To accommodate different
clock speeds, the ramclient can be configured to use asynchronous FIFO control logic. On this
account, the clock frequency of the ramuser can be selected independently from the memory
clock. The memory has been verified to work with frequencies of up to 140 MHz (280 MHz
DDR). For a concise description, performance measures and the resource consumption of the
memory controller the reader may refer to [Sch06].

Register and Control Access: Slow-Control

The Slow-Control is originally developed to allow for backdoor and configuration access to the
functional modules. It is organized similar to the memory control: several clients can be con-
nected to a central manager that, on the one hand, distributes and collects the clients’ requests
(cf. figure 5.5) and on the other hand, encapsulates the physical interface to the token ring
network on the backplane. One Slow-Control master, which is capable of initiating transfers
to the connected clients and to the token ring network, can be instantiated per module.

Implementation Each Slow-Control client has a 32 bit address space with a data width
of 32 bit. The serial interface to the control PC can be operated with frequencies of about
40–80 MHz and the protocol is kept simple to limit the resource consumption of the Slow-
Control components. The achievable bandwidth for an atomic access from the control PC to
the Nathan module at a clock frequency of 78 MHz is 1.38 Mbyte/s for write accesses and
reaches 0.83 Mbyte/s for read accesses. Data on the resource consumption of implementa-
tions with different numbers of clients can be found in [Sch06] and a final description of the
functionality will be given in [Phi07].

5.2. PROGRAMMABLE LOGIC DESIGN 121

Slow-Control Clients Three Slow-Control modules shall be described, that are of impor-
tance to the infrastructure inside the FPGA and are displayed in figure 5.5. One client is used
to connect the DDR-SDRAM to the Slow-Control. By accessing this client, the control PC can
access the external memory module on the Nathan module. This path will be used to transfer
experimental data to the Nathan modules and read out experimental results stored there.

Both the DACs and the ADC, and the temperature sensor are connected to a common inter-
face and are accessed by one Slow-Control client to allow for convenient access via the control
PC.

The Slow-Control master is not part of the physical FPGA implementation, but is rather
implemented as a behavioral module to initiate Slow-Control transfers during simulation of
the control logic. The behavioral description of this module allows to read and write test
vectors from and to text files, thereby enabling the simulation of the whole system—including
the Slow-Control access from a control PC and the full functionality of the Spikey chip (cf.
section 5.3).

Clock Generation Resources

The four DCMs provided by the FPGA are of importance for the internal clock generation and
for the synchronization with the neural network ASIC and the memory module. For reasons
of simplicity, the clocking is not graphically illustrated but the partitioning of the DCMs is
nevertheless of interest for the further reading:

• DCM1 receives an external clock signal as an input. It derives all required clock signals
for the Slow-Control, the memory controller and the Spikey controller from this clock.

• DCM2 is reserved for the synchronization of the external DDR-SDRAM to the internal
clocks [Sch06].

• DCM3 is used to introduce the required phase shift on the link clocks to the Spikey chip.

• DCM4 generates the external clock to the PLL of the Spikey chip.

Two external clock sources are available and can be selected as an input to DCM1: first, the
156 MHz clock signal, which is globally available on the backplane. Second, a clock signal
that is fed to the FPGA from the connectors available on the Recha board. Clock signals can be
injected by an oscillator facilitating the verification of the chip for different clock frequencies.

5.2.2 Transfer Models and Organization of the Data Paths

The basic setup for the communication with the presented chip is illustrated in figure 5.5. The
Spikey chip is hosted by the Recha board and is connected to the controller and the DAC
and ADC respectively. The access to the Spikey chip is performed by two modules: first,
the spikey_control module, which accounts for the low-level hardware access and contains the
functionality of the physical layer and the link layer of the communication protocol. Second,
the spikey_sei module acting as a data source and sink to the application layer functional-
ity. For this reason, the application layer functionality is distributed among both modules.
Thereby, no data sources or sinks are present within spikey_control but it rather implements
two different transfer models for the control interface data, merges event data streams with
control interface data (cf. chapter 3) and contains the required functionality for the synchro-
nization of the Spikey chip with a local system time counter. The spikey_sei module serves

122 CHAPTER 5. OPERATING ENVIRONMENT

both as a source and a sink of data to spikey_control and it processes data depending on the
selected transfer model, which is described in the following.

Transfer Models

The term “transfer model” refers to the way, in which control interface data is communicated
with the chip. To clarify the functionality, the communication protocol is shortly recapitulated
(cf. section 4.3.2): each control interface access is directly acknowledged by the chip with an
according packet. In case of a read access, this is the result of the previous read command
and in case of a write command, this is an empty event packet. If the command execution
was unsuccessful, because the command decoder is busy executing the preceding command,
an error packet is sent.

Two types of transfer models are distinguished by the controller: non-posted and posted
requests.

• Non-posted requests: Data is sent to the chip with no instantaneous verification of the
success of the different commands. As the answer of the chip is not evaluated, the
data source has to generate the data packets (commands) within the correct order and
with appropriate intervals according to the time required for the command execution
within the chip. Furthermore, the controller assumes an always-ready data sink where
the answer packets of the chip can be stored. This transfer model is realized with the
playback memory, which is described in section 5.2.5.

• Posted requests: A command is sent to the chip by the controller and no further action
is allowed until completion of this command. The spikey_control module cares for the
correct completion. This transfer model is implemented to allow for direct Slow-Control
access to the digital core modules of the Spikey chip. The timing of this transfer model is
non-deterministic, especially because the access via the Slow-Control has no guaranteed
or fixed latency [Sch06]. Posted requests effectively block the access to control interface
data during execution and are mainly implemented for initial testing purposes that do
not require the functionality of the playback memory.

Event data is processed separately from the control interface data (cf. chapter 3). The im-
plementation of the transport network is not yet included within the test setup described in this
chapter. Therefore, the only source and sink of event data is the local playback memory.

Clocking and Data Paths

All logic related to the Spikey chip, along with the future implementation of the transport net-
work, is operated synchronous with the externally supplied clock. This setup is selected for
two reasons: first, the synchronous operation of all components reduces the number of asyn-
chronous elements which are needed to cross different clock domains. Second, the Spikey
does not reach a maximum operating frequency of 200 MHz (cf. chapter 4) and on this ac-
count, the 156 MHz provided on the backplane is sufficient. The external clock signal is called
chip_clk in the following; for the DDR operation of the physical layer to the Spikey chip,
clkhi is available with double frequency. The memory interface needs to be operated at
lower clock frequencies, since the controller implementation only works for up to 140 MHz
[Sch06]. In fact, it is operated at half the speed of chip_clk and the according clock signal
is called sdram_clk.

5.2. PROGRAMMABLE LOGIC DESIGN 123

2
x

3
6

B
it,

c
h

ip
_

c
lk

,
S

D
R

2
x

9
B

it,
c
lk

h
i,

D
D

R

d
a

ta
_

o
u

t
(7

2
B

it)
d

a
ta

_
in

(7
2

B
it)

ramclient
read

2
x

3
6

B
it,

c
h

ip
_

c
lk

,
S

D
R

2
x

9
B

it,
rx

_
c
lk

,
D

D
R

9

9

9

9

9

36

36

36

36

72

64

Spikey

a
p

p
lic

a
tio

n
la

y
e

r

event in

data in

data out

event out

from add.
event ports

to add.
event ports

s
p

ik
e

y
_

s
e

i

ramclient
write

4x18

4x18

Slow-Control interface

FPGA

spikey_control playback memory

event
ports

event
ports

Figure 5.6: Illustration of the data paths within the controller and to/from the Spikey chip. The only
source and sink for data on the application layer is the spikey_sei module, whereas link layer data is
directly accessed through the registers data_in and data_out in bypass operation.

The data paths related to the communication with the Spikey chip are illustrated in fig-
ure 5.6. Data generated within spikey_sei is forwarded to spikey_control synchronous to
chip_clk as well as the event streams, either generated by the playback memory or from
the transport network. The application layer of spikey_control merges data and event streams
and forwards a ready formatted 72 bit word to the link layer, which is stored in the register
data_out. This data already contains the correct values for the frame bits of the packet and is
forwarded to the physical layer which sends the data to the Spikey chip via two links. Output
data is generated synchronous to clkhi. To achieve the required phase shift between the
output link clocks and the according data, DCM3 is used, whose output phase shift can be
controlled via the Slow-Control.

Data received from the chip is captured by the physical layer, the packet is decoded and
stored within the register data_in including the frame bits. In this direction, only the 64 bit
data payload is forwarded to the application layer, synchronous to chip_clk. The module
spikey_sei is the sink for all control interface data; events may also be forwarded to additional
event ports of the transport network.

5.2.3 The Controller of the Chip

The realization of the different protocol layers within the controller module spikey_control is
described in this section. The structure in conjunction with the playback memory is illustrated
in figure 5.6.

Physical Layer

In analogy to the implementation within the Spikey chip, the physical layer is only comprised
of the DDR input and output registers. The implementation benefits from the fact that the
Virtex-II pro offers native DDR registers within its I/O cells. The I/O cells are located directly

124 CHAPTER 5. OPERATING ENVIRONMENT

beneath the physical I/O pins of the FPGA and as a result, the routing delay to the registers
only slightly differs with the location on the FPGA.

Receive Side The most critical part of the physical layer is the data capture on the input
links to the FPGA. On the one hand, this is facilitated by the source synchronous nature of
the data transmission and the well-matched phase relation between clock and data signals at
the Spikey outputs (cf. section 4.3.1). On the other hand, the implementation suffices from the
limited FPGA resources: no more DCM is available to align the input clocks’ phases to the
routing delay from the I/O cells of the FPGA to its input registers. For this reason, a feature
of the FPGA fabric is exploited, which is called local clocking. Dedicated resources are used
to locally distribute clock signals to input registers located within the input cells [xil05a]. To
accomplish this, dedicated input pins have to be used as clock inputs and the related input
cells need to be placed in the direct periphery of the input clock pins. This results in a skew
of approximately 800 ps between the input signals’ propagation delays and the propagation
delay of the according clock signal (exact values for each pin are given in appendix C.5). As a
result, this remaining skew can be almost eliminated by the delaylines on the Spikey chip and
the input timing is correctly realized.

9
18

18 18

18
18

rx
_
w

o
rd

d
in

0

d
in

1
8
0

d
a
ta

_
in

CAD0_IN<7:0>,
CTL0_IN

CLK0_IN

clkhi

physical layer

18
to link layer

Figure 5.7: Input data capture in the physical layer of the FPGA. The registers din0 and din180 sample
data at both edges of clkhi, but with inverted phase for the upper and the lower half of rx_word. A a
consequence, at least one of them always samples valid data from rx_word.

The implemented logic for one input link is shown in figure 5.7. It benefits from the fact that
both the FPGA clocks and the Spikey clocks originate from the same source, thereby having
identical frequencies and a fixed phase relation. For this reason, no FIFO logic is required
and data can directly be captured from the rx_word registers. The only register clocked by
the input clock is rx_word. Depending on the phase relation between clkhi and CLK0_IN,
either din0 or din180 will sample valid data from rx_word and the one containing valid data is
selected63 to data_in, which is the final output of the physical layer to the link layer.

Transmit Side On the transmit side, the physical layer only consists of the DDR registers
within the according output cells. These are connected to the output of the link layer which
accounts for the output of the packet stored within data_out in the correct order. As mentioned
above, the phase of the link clocks relative to the data signals can be tuned using DCM3.

Placement of the I/O Cells As a consequence of the requirement to place the data input
cells near the corresponding clock input cell within the FPGA, the grouping into busses of the

63This has to be done by a dedicated Slow-Control command.

5.2. PROGRAMMABLE LOGIC DESIGN 125

differential signals on the Nathan module could not be maintained for the Spikey connections.
Instead, the input cells are placed as described above and the output cells are placed such that
the routing on the Recha board could be done as straight forward as possible. The confinement
of the output signals to the SMT connector next to the FPGA requires the output cells to be
spread over one complete edge of the FPGA fabric due to the configuration of the signals on
this connector. In turn, this fact requires the placement of the link layer output registers clocked
with clkhi to be spread over the whole FPGA, which complicates the timing closure for these
registers. Indeed, these paths within the link layer clocked with clkhi limit the maximum
achievable clock frequency for the whole design.

Timing closure on the FPGA design is achieved for a clock frequency of 156 MHz by the
manual placement of registers directly connected to DDR output registers within the output
cells, thereby alleviating the automated placement effort.

Link Layer

In contrast to the Spikey chip, which processes data on the link layer, this very data is generated
and read back within the FPGA’s link layer. The two modes of operation of the link layer are
controlled by the control register corresponding to the CI_MODE pin.

Normal Operation During normal operation, the link layer either forwards data from the
application layer to the physical layer and vice versa, or generates idle bus packets, if currently
no data is available. The output of the link layer can be switched to send idle event packets
instead of idle bus packets. This option allows the Spikey chip to transmit its event packets
immediately (cf. section 4.3.2) and is the normal mode of operation during experiments.

Bypass Operation The application layer is disconnected from the lower layers in this mode
and the link layer constantly sends the content of the register data_out while constantly writing
received data to data_in, regardless of the content. The content of both registers is subdivided
into four 18 bit words (cf. figure 5.6), which can directly be accessed via the Slow-Control
interface. This mode of operation provides the lowest level access to the Spikey chip. It does
neither require the functionality of the application layer, nor the data generation by spikey_sei
and the playback memory. Thus, it is ideally suited for initial testing of a chip and for opti-
mizing the delaylines on the chip64.

Application Layer

The following tasks are carried out by the application layer: first, requests issued by spikey_sei
are executed while providing both posted and non-posted operation. Second, the synchroniza-
tion of the system time counters within the FPGA and the Spikey chip is carried out. The
data paths involved are described within this section while the synchronization process will be
described in the following section.

The data paths within the application layer are shown in figure 5.8. Both the path on the
transmit side and the path on the receive side are controlled by a FSM which handles the data
flow based on the packet content and on the requests issued by spikey_sei. The flow of event
data is decoupled from the control interface data flow and is described in section 5.2.4.

64A dedicated Slow-Control address is available for the configuration of the delaylines. An FSM automatically
applies the configuration data to the outputs and activates the pin C_DELAY to load the new delay value into the
addressed delayline.

126 CHAPTER 5. OPERATING ENVIRONMENT

data_out (72 Bit) data_in (72 Bit)

TX_FSM RX_FSM

SYNC_FSM

sys_time
(32 Bit)

hand-
shake

posted valid

event_out_reg data_out_reg event_in_regdata_in_reg

EventProcessor
RX

EventProcessor
TX

spikey_control, application layer

spikey_sei, playback memory
from other

event ports
to other
event ports

Figure 5.8: Block diagram of the application layer implementation within the spikey_control module.

Posted requests are indicated by the signal posted, which stays active until completion
of the request. All requests are processed by TX_FSM, which solely transmits data to the
chip during non-posted requests while it needs to evaluate the state of RX_FSM during posted
requests. Therefore, the functionality on the receive side is now described prior to the transmit
side.

The receive FSM has three states:

• rx_idle: Always reached upon reception of bus or event idle packets. Valid data
triggers one of the two following states.

• rx_data: Incoming data is stored in the register data_in_reg. The state of posted is
evaluated, and valid data is flagged with the signal valid during non-posted requests.

• rx_event: Events are stored in the register event_in_reg. On the one hand, the content
of this register is connected to the input of the EventProcessor. On the other hand, all
incoming events are forwarded to spikey_sei and thus to the playback memory which
stores them for evaluation with the control software.

The state diagram of TX_FSM is shown in figure 5.9 a. After reset, it starts in tx_idle
and goes to tx_send upon request. In this state, the data provided by spikey_sei is sent to the
chip regardless of the transfer model or type of access (read/write)—provided that no events
are to be transmitted. The automat returns to tx_idle in the case of a non-posted request,
and goes to tx_du_read in case of a posted request. Within this state, a loopback command
is issued to the chip acting as a dummy command with the purpose to verify the successful
completion of the actual command. Again, the command is only sent if no events are to be
transmitted, and the automat reaches the state tx_check where it stays until RX_FSM is in
the state rx_data. If the received data would be flagged with the error bit, the command has
not been completed within Spikey and the loopback command is re-issued until valid data is
received65.

65The command execution within the chip takes at least two clock cycles. By issuing the dummy loopback
directly after the actual command, the first answer always contains the error flag. By this means, also the correct
generation of errors is/can be verified.

5.2. PROGRAMMABLE LOGIC DESIGN 127

Read requests need to be issued twice to provide the result of the first read command (cf.
section 4.3.2). As a consequence, the first valid data that is received does not yet contain the
actual read result and the loopback command is re-issued to gather this actual result (the num-
ber of successful reads is stored in read2, see figure 5.9 a. After completion of the request,
the state tx_complete is reached which acknowledges the request and subsequently leads
back to the idle state.

sy_fpga

sy_calc

sy_read

sy_compare

sy_complete

sy_idle

sy_chip

sync

tx_complete

tx_complete

exp_time read_time�

exp_time = read_time

sync. FPGA

sync. chip to
calculated time

read back
chip time

check correct
synchronization

tx_du_read

tx_check

tx_complete

tx_idle

tx_send

req

�event
posted

�event

maxlat

rx_data

error

read2�

�error
read2

send data
to chip

send dummy
to produce error
or valid answer

check for answer
on tx_du_read

a) b)

�posted

Figure 5.9: State diagrams of: a) TX_FSM and b) SYNC_FSM .

Note that posted requests are acknowledged to the calling module spikey_sei. In contrast
to this, non-posted requests are not acknowledged, but incoming data is rather always sent to
spikey_sei by issuing the valid signal.

Sideband Data

In addition to the protocol implementation, the spikey_control module contains control regis-
ters whose outputs are connected to the various single ended inputs of the Spikey chip, such as
RESET, CI_MODE etc. This data is called sideband data and includes besides the mentioned
pins the FIREIN pins of the Spikey chip and the direct access to the registers data_out
and data_in during bypass operation of the link layer (see below). Sideband data is written
to and read back from the controller via its Slow-Control interface. A finite state machine
accounts for the handshaking on this port and the register access.

5.2.4 Synchronization and Event Processing

The process of synchronizing the system time counters within the FPGA and the Spikey chip
is crucial to the correct processing of neural events within the system. Especially, if several
Spikey chips are to be operated in parallel, their counters need to run synchronously to ensure
correct event generation and digitization. Moreover, the synchronicity to the FPGA’s system
time is required for the operation of large scale neural networks, as described in chapter 3.
This is also essential for single-chip configurations, as the FPGA time serves as an absolute
reference to the time stamps of the events received from the chip which only have a width of
8 bit.

128 CHAPTER 5. OPERATING ENVIRONMENT

Synchronizing the System

Due to the unknown phase relation between the chip_clk signal within the FPGA and
the clkhi signal within the Spikey chip, the actual number of clock cycles tlat,sync, which
are required from the dispatch of the synchronization command by the controller until the
synchronization of the Spikey chip’s counters has an uncertainty of one clock cycle (cf. section
4.3.7). To still ensure correct synchronization, the current value of the system time counter
within the Spikey chip is read back after synchronization and the process is repeated iteratively
until correct synchronization is achieved. As this verification cannot be done in software66, an
additional FSM performs the synchronization. The state diagram is shown in figure 5.9 b.

The FSM captures synchronization commands issued by spikey_sei and leaves its idle state
sy_idle. The time to synchronize to is loaded into the FPGA’s system time counter in the
state sy_fpga which is immediately left for the next state sy_calc. In this state, the value
to synchronize the Spikey chip to is calculated using the following figures:

tsync = tsys + tlat,sync , (5.4)

where tsys is the current FPGA’s system time and for tlat,sync the minimum delay until synchro-
nization of the Spikey chip is assumed. Following this state, the synchronization command
is sent to the chip within sy_chip, which is done by issuing a posted request to TX_FSM.
After completion of this command, the current value tspi of the chip’s system time counter is
read back by another posted request. The value of tspi and the expected value texp are com-
pared within the state sy_compare, while the the expected value is calculated during the
sy_chip state using the following numbers:

texp = tsys + tlat,read , (5.5)

where tsys is the system time value during dispatch of the read command and tlat,read is the
latency elapsing from the dispatch until the actual execution of the read command within the
Spikey chip.

In case texp equals tspi, the first synchronization has been successful and the synchroniza-
tion process is finished by going to sy_complete and back to idle, subsequently. In the
other case, the phase shift has led to a latency of tlat,sync + 1 and the synchronization process
is repeated while using tsync = tsys + tlat,sync + 1 in the state sy_chip. After the following
completion of the previously described steps, the synchronization is finally complete. This
way, it is achieved that the maximum difference between the FPGA system time and the chip
system time equals half a clkhi cycle.

In order to facilitate precise analog recordings of the membrane potentials using an oscillo-
scope, it is desirable to provide a trigger signal to the oscilloscope, which defines the point in
time of synchronization relative to the subsequently generated events on the membrane. For
this reason, the FSM performing the synchronization additionally generates an output signal
which is active during the synchronization. It is mapped to a signal on the Nathan module
which can consequently be used as a trigger signal for the recordings.

Event Processing

The data path for event data is also shown in figure 5.6. Events that are to be sent to the
chip originate either from the interface to spikey_sei and thus from the playback memory,

66The only possibility to access the Nathan module is the Slow-Control. It does not provide a guaranteed access
latency which is required in this case.

5.2. PROGRAMMABLE LOGIC DESIGN 129

or from one or more ports of the transport network (cf. section 3.2.3). As the latter is not
yet implemented, the EventProcessor module only forwards the data received by the ports to
spikey_sei. Three ports are realized and events that are available at these ports are packed into
an event packet, regardless of their content. Therefore, it has to be assured that events delivered
simultaneously by spikey_sei together fit into one packet. This is done by the software which
generates the content of the playback memory (cf. section 5.3). Events are always transmitted
immediately and are thereby prioritized over control interface data. To assure correct delivery
of control interface packets, event processing can be disabled by means of a control register.

The data path for the receive direction is simple for events that are forwarded to the Event-
Processor (cf. section 3.3.1). However, to record events in the playback memory, some ad-
ditional functionality is required to catch the case, where only sparse events occur and the
difference in their time stamps becomes larger than the maximum value of the Spikey system
time counter (which has a width of 8 bit). In this case, the software that evaluates the received
events would not be able to correctly track the absolute time of the events’ generation without
further information.

The absolute time stamp of received events is calculated by the software by adding the
tracked system time to the time stamps of the received events (see also section 5.3). Thereby,
the tracked system time counts in multiples of the maximum value of the Spikey chip’s system
time value, precisely in multiples of 256 clock cycles. During the processing of received
events, the high nibble of the currently processed event is compared to that of the previous
one. If the current high nibble is smaller than the previous, the Spikey counter has wrapped
around and the system time is increased by one. This only works if the distance between the
arrival of two events is smaller than 128 clock cycles (the seventh bit of the system time wraps
around) because otherwise, the MSB between both time stamps necessarily has flipped. In
this case, it is not clear how often this flip has occurred, e.g. by how much to increment the
absolute system time.

To solve this issue, the current value of the system time counter of the FPGA is written to
the playback memory directly before the according event packet if the previous event packet
has been received at a point in time tlast < tsys− tdiff with tsys being the current system time and
tdiff being the maximum time difference between two events (128 clock cycles).

5.2.5 Communication with the Controller and the Playback Memory

The module spikey_sei acts as source and sink of data to spikey_control. It is capable of gener-
ating posted or non-posted requests and event data. Posted requests are used to communicate
with the Spikey chip via the Slow-Control interface to the Nathan module. Two Slow-Control
write accesses are necessary to transmit the content of one 64 bit packet to spikey_sei. After
these have been received by spikey_sei, the posted request is automatically initiated and exe-
cuted by spikey_control as described above. In case of a read request, the result delivered by
spikey_control is stored and needs to be read back by means of two additional Slow-Control
read accesses.

Non-Posted Requests: The Playback Memory

Consecutive non-posted requests are required to be sent with sufficient intervals, since their
completion is not verified as in the case of posted requests. Moreover, the generation of exter-
nal (artificial) event input to the Spikey chip requires the event packet generation with deter-
ministic timing to ensure correct event delivery. To fulfill these needs, the playback memory

130 CHAPTER 5. OPERATING ENVIRONMENT

has been implemented. It consists of a controlling FSM and according memory resources. The
FSM executes (plays back) a sequence of commands that is consecutively stored within the
memory (the DDR-SDRAM) and is capable of simultaneously recording received data into
that same memory. As a consequence, no user interaction is possible during the execution
of the playback memory. Instead, the data to be sent has to be stored in memory prior to an
experiment while results can be read back at once after completion of the experiment. The
memory access is realized using ramclients as illustrated in figure 5.6.

Four types of commands are implemented for the playback memory FSM to generate the
data stream to the Spikey chip, with the following functionality:

• Control interface transfer: Directly send the data read from memory to spikey_control
as a non-posted request. The according data is contained within the command.

• Event command with delay time: The playback memory sends a number of event pack-
ets, which follow the command in the memory content, to the event ports and thereupon
waits for a programmable period of time (number of clock cycles) until execution of the
next command.

• Event packet: Is not recognized as command, but rather as payload to the preceding
event command.

• Delay command: Only wait for a certain number of clock cycles contained within the
command.

The execution of one command takes one clock cycle plus the programmed delay for the
event commands. The software, which generates the data to be sent to the chip accounts for the
correct order of commands, the correct insertion of delay commands between control interface
transfers and the packing of event data into packets preceded by the appropriate command.

On the receive side, non-posted request answers and incoming event packets are written
to the memory and are read out by the controlling software after execution of the complete
playback memory content.

In the simple setup with no additional event processing logic present, collisions between
control interface data and event packets are not possible as the playback memory only gen-
erates one after another. The same holds true for the receive side: data is sequentially re-
ceived from the Spikey chip and forwarded to either the data interface or the event ports within
spikey_control. As both paths have the same latency to the playback memory interface, both
data can be recorded without collisions.

Implementation The DDR-SDRAM interface operates at half the clock speed of the FPGA’s
chip_clk and is thus not capable of delivering 64 bit data packets to the Spikey chip at the
rate of chip_clk. To at least provide the possibility of providing the full rate over a certain
period of time, the FIFO memory of the two ramclients has been parameterized to use 10 of
the FPGA’s BlockSelect RAM memory blocks each. This results in a depth of 2048 entries
for each ramclient, which are available to buffer the data.

On the transmit side, this is used as follows: when the playback memory is started, the
command decoder first goes into a “prefetch” state and issues read commands to the ramclient
until either the FIFO of the ramclient is full or no more data is to be played back. Following
this, the content is played back while having the maximum buffer capacity of the ramclient’s
FIFO available.

5.3. CONTROL SOFTWARE 131

It is important to keep this fact in mind during the setup of experiments with the system. If
continuous data flow at an average of more than half the maximum rate is to be transferred, the
FIFOs within the ramclients will eventually starve and the command timing can no longer be
deterministic. The command decoder in this case cancels the execution and sets an error flag,
which can be read back by the control software. Consequently, the maximum average event
rate that can be achieved using the playback memory equals half the theoretical maximum rate
obtainable on the interface to the chip (c. section 4.3.7):

rev,max,pb = 0.5 · rev,max,theo = 0.75
events

clock cycle
. (5.6)

5.3 Control Software

5.3.1 Basic Concepts

A very important part in an ASIC test system are interactive monitoring capabilities of the
physical chip as well as the off-line generation of test vectors used for the simulation and
verification of the design prior to fabrication. The control software can be executed on a
standard PC, thereby allowing a high flexibility since high-level programming languages and
according functional libraries, e.g. for the graphical user interaction, are readily available.
This also enables the development of high-level interfaces to software frameworks that are
used to set up complex neural network experiments, thereby exploiting the full functionality
of the Spikey chip and using the connectivity provided by the previously described hardware.
Furthermore, the generation of test vectors and their verification is an essential task of the
control software and it allows for a seamless migration from the simulation environment to the
actual test system.

As for now, a complete hardware abstraction layer (HAL) of the Spikey chip including its
operating environment is available which provides high level functionality for the integration
of the system into a software framework, which has been developed within the Electronic
Vision(s) group. The functionality of this framework will be outlined shortly at the end of this
section.

hardware abstraction layer

control interface abstraction

hardware access,
transfer models

Slow-Control

calibration data configuration data

testmodes
command line interf.
control chip and
generate test vectors
for simulation

application
GUI or
command line interf.,
execute complex
experiments

h
a

rd
w

a
re

Figure 5.10: Hierarchy of abstraction layers in the software. The hardware abstraction layer loads
calibration and configuration data from text files. Software accessing the chip is classified into the two
boxes on the right. The software is executed on the control PC and low level hardware access is always
executed by the Slow-Control. This access can be replaced by writing/reading to/from text files, which
are used for the control of behavioral simulations of the entire setup.

132 CHAPTER 5. OPERATING ENVIRONMENT

Figure 5.10 shows a schematic overview of the control software. It is implemented using
C++ [Str97] and object-oriented programming. The initial class structure of the abstraction
layers originated from Dr. J. Schemmel and the current functionality is the result of the collab-
oration with the author. In the following, some of the classes present at the different abstraction
layers are introduced.

The direct access to the chip is encapsulated by an abstract base class SpikenetComm. It
serves as a base class for the realization of the different transfer models and provides virtual
methods to send and receive data. These methods are actually implemented depending on the
specific transfer model by the descendant class67. These descendent classes are:

• SC_Sctrl implements posted requests using direct access via the Slow-Control in two
ways: either direct communication with the Slow-Control or the generation of a text file
that is read by the Slow-Control master module during simulation of the FPGA code
and serves as an input test vector to the simulation. Furthermore, this class exclusively
provides the access to sideband data (cf. section 5.2.3).

• SC_PbMem implements non-posted requests and the generation of event data, hence,
the communication using the playback memory. The playback memory content is au-
tomatically assembled depending on the requests issued by the higher-level parts of the
software. Consecutive accesses including events are collected by the software and are
not sent to the chip until the first request to actually receive data from the chip. The
collected requests are then transmitted to the DDR-SDRAM and the playback memory
program is started. The obtained results are read back from the DDR-SDRAM and are
evaluated by the software.

• SC_Trans implements a transfer model that has not yet been mentioned. It models
the functionality of a behavioral controller that has been realized in Verilog and allows
for an efficient simulation of the Spikey chip while omitting the simulation of the full
FPGA code68. The communication with the simulator is also done based on text files.

The control interface communication with the Spikey chip is abstracted by the base class
ControlInterface which provides virtual functions to transmit and retrieve data to and
from the core modules within the digital part of the Spikey chip respectively. Using these
functions, the descendant classes implement the functionality of the different core modules,
such as the access to the parameter memory, the synapse memory controller, or the control
register. All descendant classes are instantiated by the class Spikenet which as a result
encapsulates the complete functionality of the digital part.

The very top level of the HAL is represented by the class Spikey which combines the
functionality provided by Spikenet with a convenient set of functions for the high-level
access. Configuration data for one chip including parameter data, synapse configurations
and weights, neuron configuration, etc. can be sent to the chip by calling one single method
config(). Furthermore, two methods for the transmission and reception of spike trains
are implemented: sendSpikeTrain() and receiveSpikeTrain(). Details regard-
ing event (spike) transmission will be explained in the following section.

67The actual access to the Nathan modules is always realized via the Slow-Control (cf. figure 5.10). Access
functions to the Slow-Control have been developed by S. Philipp [Phi07] and are included in the form of a link
library. At the lowest abstraction level, all communication is carried out using this library regardless of the transfer
model.

68Simulation of the full FPGA code significantly slows down simulation speed, as the complete framework
needs to be simulated including behavioral models of the DDR-SDRAM module.

5.3. CONTROL SOFTWARE 133

Communication with the Chip: Test Modes

The communication with the chip can be established on all levels of abstraction using the com-
mand line based access illustrated in figure 5.10. The command line based software accepts
the bus model to be used and any number of test modes that are to be executed as input ar-
guments. The test modes are realized as separate classes implementing a method test(),
which is called during runtime for each specified test mode.

At runtime, the desired transfer model is selected by the user and during initialization,
the descendant of SpikenetComm implementing this transfer model is constructed, thereby
providing read/write functionality to the hardware. In case of the playback memory transfer
model, the access to the DDR-SDRAM is fully transparent and the user does not have to care
for this.

Based on the representing descendant of SpikenetComm, the interface to the digital part
of the chip is instantiated by constructing Spikenet which itself instantiates the classes
representing the digital core modules and the afore constructed bus model class. The user can
access all layers of abstraction from within the test mode which is desirable especially for the
precise generation of test vectors and for initial testing of the chip.

5.3.2 Event Processing

Time Tracking and Synchronization

To correctly accomplish the system synchronization and event processing, the software tracks
the system time during the generation of the playback memory content, off-line69. The system
time is initialized to 0 at start up and the delay of each command is added to the system
time. The system time counters within the Spikey chip and the FPGA remain uninitialized
until the first synchronization command which synchronizes them to the current system time
(cf. section 5.2.4). From this point in time onwards, events can be generated by the playback
memory. This process will be described in the following section.

Generating an Event Playback Memory Program

The generation of event data in a playback memory program is somewhat detached from the
generation of control interface data because additional processing steps are required. As the
programmable logic does not yet support the packing of events into event packets with three
events each, this needs to be realized in software. Furthermore, the software has to keep track
of event and system time and decide, whether to transmit or discard an event because it would
arrive on the chip, too late. Another issue to be solved in software is the fact that simultaneous
events within one event_buffer_in module would block event generation by this module for
one Spikey system time counter wrap around (cf. section 4.3.5). All of this basically is the
functionality that is realized in the EventPctGen module for the implementation of large scale
neural networks described in chapter 3. The slightly differing artificial event generation works
as described in the following.

The method sendSpikeTrain accepts an STL vector of events as an argument. This
vector contains events for a certain number of synapses with their time stamps sorted in as-
cending order. After dispatch of a synchronization command, this vector is passed to the
method pbEvt() provided by SC_Sctrl which generates the playback memory program.

69This is done in the same way for the SC_Trans transfer model. The SC_Sctrl transfer model does not
provide deterministic timing and timing is not tracked, there.

134 CHAPTER 5. OPERATING ENVIRONMENT

Since the playback memory is the only source of events in the current operating environ-
ment, the method pbEvt() does not have to care for events arriving late from remote sources.
This would be required with the transport network present (cf. section 3.3). It is therefore pro-
grammed to optimally utilize the bandwidth of the Spikey chip’s physical interface. This is
achieved by packing as much event packets as possible into one playback memory event com-
mand, thereby reducing the overhead introduced by too many event commands. This practice
is illustrated in figure 5.11. It is desirable to send the events to the chip as early as possible
to gain headroom for potentially following peak event rates. This is taken into account by the
packing algorithm which is explained by means of algorithm 2 at the end of this chapter.

sent to Spikey

generated on Spikey

time

event commands event packets

Figure 5.11: Relation of playback memory event commands to events generated on Spikey. Each
event command is immediately followed by a certain number of event packets. To gain maximum
event throughput, the number of event commands needs to be minimized. This is achieved by the early
transmission of as many events as possible. These are stored within the according event_buffer_in on
Spikey until being generated.

5.3.3 Higher Level Software

As illustrated in figure 5.10, the HAL hides hardware specific details from the application
software. To use the Spikey chip in a biologically sensible way, all parameters and values are
translated to their biological quantities by a higher level software, which is developed as a joint
project within the Electronic Vision(s) group [BGM+07].

Two branches are followed for the high-level software development. On the one hand, a
C++ based environment with a graphical user interface (GUI) is provided allowing for visual
configuration of the chip and the setup of experiments with an immediate visual feedback. On
the other hand, an interpreter-based interface is available which allows for the script-based
setup of experiments and thus supports the methodology commonly used by neuroscience
modelers.

To bring both worlds together, Python [The07b] has been chosen as the top level glue
language motivated by its large flexibility and the possible benefit from an active commu-
nity developing Python applications. A Python-based software module has been developed
[BGM+07] to interface to the afore mentioned interpreter. This tool together with the existing
Python interface to the NEST simulator provides the framework for a unified processing of the
data from both domains.

Graphical User Interface The GUI allows to set up and interactively operate smaller net-
works in a modeler’s terminology. The configuration of neurons, synapses, their connectivity
and all relevant analog parameters are displayed either in biological or technical terms and
can be manipulated. In figure 5.12, the network editor is shown providing visualization and
configurability for all synaptic connections in the network. In the left pane, input activity can
be generated either manually or by modularly implementable routines, whereas the genera-
ted output spikes are immediately displayed in the right pane after execution of an experiment.

5.3. CONTROL SOFTWARE 135

Figure 5.12: Upper left: screen shot of the C++ based graphical network editor. Networks can be
set up manually using biological terminology and parameters, but with direct feedback regarding the
hardware constraints. Lower right: example code snippet for the unified Python interface, executable
on both the Spikey chip and the NEST simulator. Figure taken out of [BGM+07].

The group-wise assignment of parameter voltages as well as constraints regarding connectivity
and local feedback are governed by the software.

To intuitively explore different parameters, the GUI provides a loop functionality for a
loaded experiment. The response of the chip is immediately displayed after each run and all
parameters can be varied during looping. The GUI-based hardware interface is integrated into
the object-oriented C++ based HANNEE70 framework, which has been developed within the
Electronic Vision(s) group and is described in [Hoh05].

Python Interface Wrapper code for the Spikey class utilizing the open source C++ library
Boost.Python accesses the abstraction layer described in section 5.3.1 via Python. This
Python application programming interface (API) is connected to a pure Python class hierarchy
which aims to integrate the hardware into a meta language developed within the FACETS
project. It allows to operate the hardware and read out all data provided by the HAL in a
biological context. A simple experiment setup is illustrated by the code snippet in the lower
right of figure 5.12.

PyScope While in accordance to the neural network model, the afore generated information
is all digital (digitized spike times and digital values for the parameters), the analog membrane
voltages can be recorded by connecting an oscilloscope to the membrane potential monitor
outputs of the Spikey chip. A Python front-end for digital oscilloscopes with a network con-
nection integrates this analog information into the Python framework. The so-called PyScope
software provides access to the oscilloscope via Ethernet and in addition to the acquisition
of the raw data, the data can be visualized and some basic operations for trace manipulation
are available. The PyScope software can be integrated into the scripts and is used for the
event-related measurements presented in the following chapter.

70HANNEE: Heidelberg Analog Neural Network Evolution Environment

136 CHAPTER 5. OPERATING ENVIRONMENT

Algorithm 2 Pseudo code to describe the implemented algorithm to convert a vector of events
into a playback memory program. The outer loop runs over all events within the vector. Within
the while loop it is checked whether the currently processed event fits into an event command
together with previously processed events. If yes, it is stored in a temporary vector together
with the previous events. If not, an event command is generated sending the previously stored
events and the current event will then be the first one in the temporary vector. The first if
statement within the while block checks for deadlock conditions within event_buffer_in.

sync:
send synchronization command
lasttstamp[15 : 0] = 0 : stores last time stamp within each event_buffer_in

procedure SC_SCTRL::PBEVT(vector of events)
for i← 1 to sizeofvector do

buf ← event_buffer_in corresponding to event[i]
tstamp← time stamp of event[i]

if systime < tstamp then
EXIT: “event time overtakes system time!”

end if

while true do
if tstamp 6= lasttstamp[buf] then

gencmd← false
while tstamp > earliest possible delivery do

insert delay commands
increment systime by inserted delay

end while

if no wraparound since last event and this one then
check whether event fits into currently assembled packet
this includes checking for same buffer collision
and the time stamp’s upper nibble
if yes then

store event in temporary vector, gencmd stays false
else

gencmd← true
end if

else
gencmd← true

end if

else
increase tstamp to avoid deadlock in event_buffer_in
continue while loop

end if

if gencmd← true then
generate event command from previously stored events
continue while loop

else
break while loop - event is stored within temporary
vector and will be sent with the next event command

end if
end while

end for
end procedure

Chapter 6

Experimental Results

Measurements performed for the characterization of the implemented chip are
presented in this chapter. The strategies for the implementation of the physical
interface of the chip are verified by means of a comparison of the results ex-
pected from the timing closure with the measured performance of the physical
interface. The results of the timing closure are furthermore verified by deter-
mining the maximum operating frequency of the digital core logic. The suc-
cessful system integration is demonstrated and the system is characterized by
testing the event generation and digitization on the chip with different setups,
thereby determining the maximum achievable event rate using the operating
environment described in chapter 5. Additional results obtained with more ad-
vanced setups of the neural network prove the functionality of the analog part
and the entire framework.

The first version of the Spikey chip was taped out in August 2005 in a MPW run and the
samples were obtained four months later. To reduce the risk of errors introduced by direct
bonding of the chip onto the Recha board, 10 dies were ordered to be packaged into a 208-pin
ceramic quad flat pack. This package has been chosen due to its low parasitic pin capaci-
tance and its homogeneous layout71. The same holds true for Spikey 2 which was taped out
in August 2006 and was delivered in December 2006. The controller code for the chip was
developed during the testing of the first version based on the behavioral Verilog code (which
implements the SC_Trans transfer model) that was used for the verification of the first de-
sign. During this testing, the whole operating environment developed to its current state. Due
to the seamless interchangeability of the software simulation used for verification and the op-
eration of the physical hardware, the verification as well as the tests of the second version of
the chip were drastically eased.

71In contrast to ceramic quad flat pack (CQFP) packages, where the pins are distributed over the edge of the
package, e.g. pin grid array (PGA) packages have their pins distributed over the area of the package which results
in different routing lengths and skew to the pins.

137

138 CHAPTER 6. EXPERIMENTAL RESULTS

6.1 Test Procedure

Following the step of verification of the successful soldering and bonding of the chip, the
system is powered up. The FPGA is configured and the connection between the Slow-Control
and the control software is established. In the following, the generic procedure for the initial
operation of a new chip is described:

1. Verification of the physical layer: The input clock signals are checked and the correct-
ness of internal clock generation is verified by measuring the output link clocks. The
signal integrity of the LVDS signals generated by the FPGA and the Spikey chip is in-
vestigated. While verifying the functionality of the delay elements, the process corner
is extrapolated based on these results (see section 6.2).

2. Verification and setup of the link layer: The basic functionality in bypass operation is
verified and the delay elements are tuned to gain a maximum data valid window, thus,
maximize the operating clock frequency (see section 6.2.3).

3. Verification of the application layer: The digital core modules are thoroughly tested with
random data. The results from timing closure are verified by determining the maximum
error-free operating frequency (see section 6.4).

After successful completion of these tests, more advanced features of the chip are tested:

4. Event generation and digitization: By sending and producing single events/spikes, the
synchronization process and the basic functionality is proven. Following this, more
complex and biologically realistic experiments are set up (see section 6.5).

Additional measurements characterizing the power consumption are performed. Unless
otherwise noted, the presented results are obtained with two chips of the second version: the
packaged Spikey # 2, which will be referred to as chip 2, and the directly bonded Spikey # 5,
which will be referred to as chip 5.

Besides the operation environment and equipment described in the preceding chapter, the
following measurement equipment has been used:

• The LVDS signals on the physical interface are measured using the Tektronix oscillo-
scope TDS 7254 which has an analog bandwidth of 2.5 GHz and a maximum sample rate
of 20 GSamples per second. The according active differential Tektronix probes P7330
have a bandwidth of 3.5 GHz and are suited to characterize the LVDS signals with a
clock frequency of up to 400 MHz and expected rise and fall times in the range of a few
hundreds of picoseconds.

• All membrane potential traces shown are recorded using the LeCroy oscilloscope wa-
veRunner 44Xi with a bandwidth of 400 MHz and a maximum sample rate per channel
of 5 Gsamples per second. The monitored membrane outputs are terminated by internal
50Ω termination resistors to ground. Compared with the Tektronix model, this oscil-
loscope features larger memory on each channel to record signals over time with the
maximum sample rate. This is especially required for the recording and automated read
out of membrane voltage traces over several hundreds of microseconds.

6.2. PERFORMANCE OF THE PHYSICAL LAYER 139

6.2 Performance of the Physical Layer

6.2.1 Clock Generation

The correct functionality of the internal PLL, the clock generation circuitry, and the clock
tree is verified by solely applying the clock signal EXT_CLK to the chip. The RESET pin is
kept active and CI_MODE, PLL_BYPASS and PLL_RESET are successively turned off in the
stated order. By keeping the reset active and CI_MODE inactive, it is ensured that none of the
FIFOs within the link layer is active and the only activity produced is the bus idle patterns on
the physical output layer.

100 mV

1.25 ns

histogram for
jitter measure

Figure 6.1: Output clock on link 0 of Spikey 1, 200 MHz link clock frequency. The jitter described in
section 4.5 can be observed introducing a period error of up to 250 ps.

Figure 6.2: Output clock on link 0 of Spikey 2, 200 MHz link clock frequency. The jitter has vanished,
proving the functionality of the improved clock generation circuits.

140 CHAPTER 6. EXPERIMENTAL RESULTS

The output clock signals of link 0 on version 1 and 2 of the Spikey chip are shown in figure
6.1 and figure 6.2 respectively. In order to measure the peak-to-peak jitter, data acquisition
is performed in fast acquisition mode72 and a histogram is generated for the number of data
points within the box around the x-axis. It is displayed at the top corner of each plot. The
first conclusion is that the duty cycle distortion present on the first version has vanished in the
second version which proves the successful implementation of the changed clock generation
circuits (cf. section 4.5). Second, a jitter of about 100 ps is observed in figure 6.2, which
is above the PLL’s specification of ±93 ps [Vir04a]. As it is not possible to test the clock
without the idle activity on the output link and the signal is not distorted by heavy reflections,
this increased jitter value is considered to be caused by internal crosstalk from the data signals
on the link. The measured jitter reduces the required times for signals within the clkhi
domain by approximately 1.6 % at a period of 3.2 ns. Since an uncertainty of the clock of
100 ps, thus, a reduction of the required time for all signals to 3.1 ns has been considered while
constraining the design (cf. section 4.4.1), this deviation has already been included during
timing closure and the observed jitter is not supposed to significantly reduce the achievable
operating frequencies.

200 mV

250 ps

1.2 ns

Figure 6.3: Eye diagram measured on input data bit 7 on link 0 of chip 2 at 312 MHz clock frequency.
The measurement covers one bit time with a duration of 1.6 ns.

6.2.2 Signal Integrity: Eye Diagram Measurements

A measure that allows the estimation of the achievable performance of the physical interface
is the integrity of the signals on the PCBs. In order to verify the system-level simulations and
the impedance calculations for the PCB traces, eye diagram measurements are performed. A
differential probe was attached to the link clock which was used to trigger the eye diagram
recording. Selected data signals were recorded differentially as well. The recording was done
with the chip being in bypass mode for 2.5 · 105 random sets of data for the 72 bit data_out

72In fast acquisition mode, the waveform capture rate is increased up to 400.000 waveforms per second. The
points of highest sample density appear in warmer colors.

6.2. PERFORMANCE OF THE PHYSICAL LAYER 141

200 mV

250 ps

signal edge reflection

approx. 250 ps

Figure 6.4: Eye diagram measured on output data bit 5 on link 1 of chip 2 at 312 MHz clock frequency.
The measurement covers one bit time with a duration of 1.6 ns.

register within the FPGA, thereby assuring the occurrence of the 16 possible patterns on the
measured interface signal itself73 and random crosstalk scenarios on the neighboring signals.

Input signals The eye diagram for one bit time of the input signal CAD0_IN<7> on chip 2
is shown in figure 6.3. It is recorded with the probe directly attached to the package pin and
at a link clock frequency of 312 MHz, which corresponds to a bit time of 1.6 ns. The specified
DC levels of ±440 mV [Xil02b] are reached for static signals and a slight ringing is present
for the 0-1 or 1-0 transitions. As no further distortion of the signal is present and the ringing
level will not affect input switching behavior, good signal integrity is achieved at the input,
resulting in a data valid window with a width of ∆ti = 1.2 ns at 312 MHz.

Output signals To determine the signal integrity on the transmit side, the signal should
be measured at the FPGA’s receiver input pins. However, these are not accessible due to
the high routing density on the Nathan module. The measurement of the selected signal
CAD1_OUT<5> (see figure 6.4) is therefore conducted at a via pair with a distance of approxi-
mately 2 cm to the die of the FPGA. A strong degradation of the signal level about 250 ps after
the signal edge can be observed which is due to a reflection with phase jump of 180◦ at the
FPGA’s input pin pair. This is supported by the time difference of approximately 250 ps be-
tween the signal edge and the reflection. Given a signal propagation delay of 60 ps/cm on the
PCB, this time delay almost matches the total length of the signal return delay to the probed
via pair, which is expected to be 240 ps.

These reflections are observed on all output signals and due to the proximity to the FPGA
pins, it is assumed that the data valid window at the inputs of the FPGA is reduced to approx-
imately ∆to = 0.6 ns at 312 MHz. Increasing the operating frequency will further decrease
this value and thus, the maximum achievable clock frequency is limited by these signals. In
particular, a period value of 2.5 ns (400 MHz) for the link clock could not be reached, as
the lower limit of this clock period is determined by the data valid window which closes at

73The content of the data_out register is continuously being transmitted in bypass mode. As a consequence,
four bit times are repeated on each data signal resulting in 16 possible bit patterns on each interface signal.

142 CHAPTER 6. EXPERIMENTAL RESULTS

Tlimit = 3.2 ns−∆to = 2.6 ns. The achievable interface clock frequency is therefore limited to
about 385 MHz.

The reason for the reflections with phase jump is the FPGA’s receiver impedances being
smaller than the impedance of the differential transmission line on the PCB (according to
[DP01], pp. 95). On the one hand, the internal termination resistors of the FPGA are specified
to a value of 100Ω and the correct DC level of 440 mV is not fully reached on the signals (cf.
figure 6.4) which indicates a smaller termination resistance. On the other hand, the differential
traces on the Nathan module have not yet been characterized, and the trace impedance of
the Nathan module is possibly above 100Ω. Therefore, for future PCB developments, it is
suggested to measure this trace impedance using a network analyzer.

100 mV

125 ps

Figure 6.5: Sweep of the delay values on output signal 0 on link 0 of chip 2 (blue traces). The oscillo-
scope records in infinite persistence mode showing all recorded traces; the link clock signal serves as a
reference for the delay measurements (brown trace).

6.2.3 Accuracy of the Delay Elements and Estimation of the Process Corner

The functionality of two delaylines at the output is verified together with the mutual timing
of clock and data signals. The measured delay values are compared with the back annotated
simulation. On the one hand, this allows for the verification of the accuracy of the RC-extractor
that is used for STA. On the other hand, the process corner of the fabricated chip can be
estimated.

Measurement Setup The output signals with the shortest default delay CAD0_OUT<0> and
the longest default delay CAD1_OUT<5> are measured. This gives the largest distance in ref-
erence values for the comparison with the RC-extraction results. The rising edge waveforms
at a clock frequency of 312 MHz are shown in figures 6.5 and 6.6 respectively. The according
link clock signal is used as the trigger signal and the chip is in reset state during measure-
ments to minimize side effects due to internal activity. Time differences are measured as the
difference between the rising edge of the clock signal and the data signal by the oscilloscope
for a period of 10 s for each delay value while the mean value and its standard deviation is
calculated automatically by the oscilloscope.

6.2. PERFORMANCE OF THE PHYSICAL LAYER 143

50 mV

125 ps

Figure 6.6: Sweep of the delay values on output signal 5 on link 1 of chip 2 (blue traces). The oscillo-
scope records in infinite persistence mode showing all recorded traces; the link clock signal serves as a
reference for the delay measurements (brown trace).

Signal Integrity The standard deviation for all delay values varies between 4–7 ps. It can be
seen that the width of the superposed clock signals adds up to about 40 ps, which is considered
to be the trigger uncertainty of the oscilloscope. The width of the superposed data signal traces
is caused by this uncertainty; this argument is supported by the small value of the standard
deviation of the relative delay values. The signal edges for all delay values are monotonic with
no distortion and a delay range of approximately 650 ps is covered in both cases. This proves
the successful implementation of the delaylines with a delay of 80 ps per delay stage and an
entire delay range of 640 ps for the typical mean process corner.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4 5 6 7

de
la

y
[p

s]

selected delay value

Delays Swept on CAD0_OUT0

simulated delay
measured delay Spikey2
measured delay Spikey5

Figure 6.7: Comparison of simulated output delay vs. measured output delay
of the signal CAD0_OUT<0> against the selected delay value.

Accuracy of the Delay Elements To quantify the two delaylines, this measurement is per-
formed for chip 2 and chip 5 and the results compared with the back annotated simulation are
shown in figures 6.7 and 6.8 respectively. In both plots, the delay values are normed on the
zero delay value to quantify the spread for larger delays. Lines have been drawn for better
visibility—no data is present between the data points. Error bars are omitted due to the small

144 CHAPTER 6. EXPERIMENTAL RESULTS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4 5 6 7

de
la

y
[p

s]

selected delay value

Delays Swept on CAD1_OUT5

simulated delay
measured delay Spikey2
measured delay Spikey5

Figure 6.8: Comparison of simulated output delay vs. measured output delay
of the signal CAD1_OUT<5> against the selected delay value.

standard deviation of the single delay values. For delay values up to 4 only small deviations
of 15 ps at maximum from the typical mean simulation are present for both chips. For delay
values above 4, the deviation increases to up to 75 ps for CAD1_OUT<5> on chip 2. Further-
more, the deviation of the measured delay values from the simulation results increases slightly
stronger than linearly with increasing delay value. Since the simulated delay is the sum of the
delay through the inverter chain of the delayline plus the extracted interconnect delays, this
suggests that the gate delay is correctly calculated in simulation, but the interconnect delays
(whose portion of the overall delay increase with the selected delay value) are calculated to
be too short. This leads to too optimistic results in STA and is considered for the following
discussions.

A reason for the deviation of the interconnect delays is the inaccuracy of the RC-extraction
software used for the delay calculation. The employed extraction software is shipped with
First Encounter and operates based on a table-lookup RC-model (cf. section 2.5.1). It has
been executed in high accuracy mode using extended capacitance tables [Cad06b]. Based
on the presented results it is suggested to verify the extracted values by means of a stand-
alone extraction software providing more accurate extraction results with a self-contained field
solver. For reasons of data compatibility this could be done with Cadence Fire & Ice74.

Estimation of the Process Corner Both chips perform slightly worse than the simulated
typical mean which is manifested in a slightly increased slope in figures 6.7 and 6.8. The
deviation of chip 2 is used for a worst-case estimation and by using the values for the signal
CAD1_OUT<5> the deviation results in 12 %. This value will be used as a basis for the
performance estimates throughout this chapter.

Due to package parasitics and thereby an increased RC-delay, the LVDS output drivers of
chip 2 are expected to exhibit a constant, larger delay. According to the raw data this delay
equals 10–15 ps comparing chip 2 and chip 5 (data not shown, as the plots are normed to zero
delay). Nevertheless, the still deviating measured delay values indicate a small variation of the
process corner between the two chips which will be neglected for the following discussions.

Output signal timing To demonstrate the successful implementation of the required phase
relation at the output by tuning the according delaylines, the delay values of the previously

74This step is originally included in the design methodology described in chapter 2. It has not been performed
due to missing Fire & Ice licenses. This problem is presently solved.

6.3. VERIFICATION OF THE LINK LAYER AND MAXIMUM DATA RATE 145

200 mV

500 ps

Figure 6.9: Relative timing of the link 0 output
clock and the according data signal 0 at 156 MHz.
Optimum relative timing is achieved with a delay
value of 7.

200 mV

500 ps

Figure 6.10: Relative timing of the link 1 output
clock and the according data signal 5 at 156 MHz.
Optimum relative timing is achieved with a delay
value of 4.

characterized data signals CAD0_OUT<0> and CAD1_OUT<5> are set to 7 and 4 respec-
tively. This results in a delay between clock and data signals of 791±5 ps (cf. figure 6.9) and
796±8 ps (cf. figure 6.10) which corresponds to the desired phase shift of−90◦ at the applied
interface clock frequency of 312 MHz.

6.3 Verification of the Link Layer and Maximum Data Rate

The correct functionality of the link layer implementation within the chip is first investigated in
bypass operation. Random patterns are written to the data_out register of the FPGA, thereby
testing both the physical and the link layer of the Spikey chip and the FPGA as well as the
clock generation circuitry within the Spikey chip. To get an optimum data valid window at
both receive and transmit side, the following steps are carried out:

• Based on the assumption of identical routing delays on the PCBs (see section 5.1.2)
optimum values for each delayline are calculated based on the back annotated signal
delays within the FPGA and the Spikey chip. The results are given in appendix C.5 and
are used for the initial setup of the delaylines.

• In order to optimize the receive side of the Spikey chip, a test bench has been developed
that automatically sweeps the phase of the link clocks relative to the link data while
checking for correctness of the data in bypass operation. The phase shift values at the
first occurrence of an error is recorded for each data signal which results in a distribution
of the first point of failure over the phase shift value for all signals. The delaylines are
then modified towards the mean point of failure according to the distance to the mean
value and the link clock is shifted away from this point by 90◦ to set the optimum phase
relation. The optimum result of this algorithm would be all signals failing at one phase
shift value which would yield a maximum data valid window. However, the quality
of this result varies slightly with the chip under test, and yields better (smaller) delay
distributions for directly bonded chips compared to packaged versions. Therefore, the
optimum setting needs to be separately determined for each chip. It can be automati-
cally loaded during initialization of the chip when using the constructor of the hardware
abstraction layer (cf. section 5.3.3).

146 CHAPTER 6. EXPERIMENTAL RESULTS

• After optimum delay values have been set, the phase of the link clocks is shifted into the
middle of the data valid window to yield maximum headroom for both setup and hold
times.

To determine the latter phase and the size of the data valid window, the correct functionality
of the link layer in bypass operation is measured in dependence of the design variables link
clock frequency flink and link clock phase shift φlink relative to the link data signals. The
expected results for this measurement are determined using the example simulation shown in
figure 6.11 which yields the expected clock-to-data delay at the input flip-flops of the physical
layer: at a clock frequency of 200 MHz data should be valid for absolute clock shifts of 572 ps
to 2841 ps relative to the link data. For higher frequencies, the value of ’TimeB’ in figure 6.11
decreases with the clock period, whereas ’TimeA’ is frequency independent. Therefore, the
size of the data valid window decreases linearly with the clock period.

TimeA - Baseline = 572 ps
TimeB - Baseline = 2841 ps

CAD0_IN_P<7:0>

CLK0_IN_P

input data at flip-flops <7:0>

rx_clk at flip-flops

sampling window for rising edge of rx_clk

Figure 6.11: Back annotated simulation of input link 0 at 200 MHz link clock frequency for the typical
mean process corner. The signals at the chip boundary along with the signals at the clock input and
D-input pins of the input flip-flops are shown. The phase shift between input clock and data signals is
0◦ which theoretically yields valid data for clock shifts reaching from 572 ps to 2841 ps.

The measured functionality of the input links with respect to the afore mentioned variables
is shown by means of the schmoo plots in figure 6.12 for chip 2 and in figure 6.13 for chip 5
respectively. For each data point both links were tested with 106 random patterns; the light
gray points denote at least one error on each link and thus failure. The solid colored points
denote pass and thus a bit error rate (BER) < 2.78−8 for each link.

For both chips the data valid window of link 1 is about 250 ps larger than that of link 0
which is contrary to the expectation, since inside the chip more crosstalk would be expected
on the signals of link 1 running in parallel along the edge of the chip to the digital part. It
can still be explained by the external routing on the PCBs: the link 1 signals are taken out of
a parallel routed bus on the Nathan module, whereas the link 0 signals are patched together
from non-corresponding signals on the PCB. In particular, some of the signals are additionally
connected to the surplus PGA-socket on the Nathan module which degrades the integrity of
these signals compared to the directly connected signals75.

The upper border of the data valid window of chip 5 is close to the expected 2841 ps. Fur-
thermore, at 320 MHz it matches the expected value of 1900 ps. This value results out of
subtracting the period difference from the original value at 200 MHz.

75Note that the presence of this socket is not correctly covered by the system-level simulations due to the lack
of correct simulation models provided by the vendor.

6.3. VERIFICATION OF THE LINK LAYER AND MAXIMUM DATA RATE 147

200 220 240 260 280 300 320 340 360
0.5

1

1.5

2

2.5

3

link clock frequency [MHz]

ab
s

cl
oc

k
sh

ift
 [n

s]

Input Link Test − Spikey2 #3

link1 invalid
link0 invalid
link1 valid
link0 valid

Figure 6.12: Schmoo plot of the link functionality of Spikey #3 in dependence
on the design variables clock frequency and shift of the link clock relative to
the link data.

Potential reason for shift of lower border The lower border of both measured data valid
windows misses the expectations by approximately 700 ps for chip 2 and 900 ps for chip 5. As
the upper border could be verified, this behavior indeed suggests that data is not valid inside
the chip before this point in time. For the following reason this could be due to metastable
states of the input registers: the buffers inserted into the input data signals by CTS do all have
considerably large drive strengths and are concentrated on the top right edge of the digital part,
along with the actual clock tree buffers of the link clocks and the according input registers. For
this reason, the current required during simultaneous switching of these buffers potentially
leads to a voltage drop which could produce meta stable states within the input registers.
These would result in false input data. This peak current decreases when the switching point
of the clock signal is moved away from the data signals’ switching point, and data is sampled
correctly. The observed behavior supports this assumption.

To get a more quantitative result, the power distribution system could be analyzed with the
methods provided by First Encounter [Cad06b]. Due to incomplete library data, this analysis
has not been set up so far and this analysis is subject to future work. A positive result is that for
both chips the link layer has been successfully tested at 156 MHz with 160 ·106 random 72 bit
patterns. To conclude, the link layer reliably works at the desired system clock frequency of
156 MHz and a link clock frequency of 312 MHz with a BER of≤ 8.7 ·10−11. In spite of being
smaller than the originally specified system clock frequency of 200 MHz, this matches the
maximum operating frequency of a system consisting of several Spikey chips interconnected
via the MGT network on the backplane. As described in section 5.2.2, the maximum operating
frequency for this system will presumably be 156 MHz, provided that all components are
operated synchronous to the same clock.

The following sections will verify this operating frequency for application layer of the
Spikey chip.

148 CHAPTER 6. EXPERIMENTAL RESULTS

200 220 240 260 280 300 320 340 360
0.5

1

1.5

2

2.5

3

link clock frequency [MHz]

ab
s

cl
oc

k
sh

ift
 [n

s]

Input Link Test − Spikey2 #5

link1 invalid
link0 invalid
link1 valid
link0 valid

Figure 6.13: Schmoo plot of the link functionality of Spikey #5 in dependence
on the design variables clock frequency and shift of the link clock relative to
the link data.

6.4 Verification of the Application Layer

After the correct functionality of the physical and the link layer is verified by the above tests,
the digital core modules and the event processing logic in the application layer is tested. The
success of these tests requires communication with the chip on the control interface abstraction
layer.

6.4.1 Basic Functionality

In order to provide basic test functionality of the command decoder and the packet processing
within the application layer, the loopback register is implemented on the Spikey chip (cf.
section 4.3.6). The access to the loopback register transports data on all available bits of the
64 bit packet. Hence, it is well suited for thorough testing of the chip’s internal data paths with
randomly generated data. The test mode performing this test sends random data to the chip
which is answered by the chip with the inverted version of this data. The test mode compares
this data with the expected result; it is run both for posted requests and non-posted requests.
The initial testing of the link layer and the loopback test have been successfully completed
with all, but one (see section 6.6) chips tested so far. The results of these tests are summarized
in section 6.4.3. With the implications on the data valid window this demonstrates:

• The successful implementation of the physical and the link layer in the Spikey chip as
well as in the FPGA. Thereby, the correct asynchronous operation between the link
clocks and the core clocks is demonstrated.

• The functionality of the top level command decoder and the correct protocol imple-
mentation is verified. This functionality is required to proceed with the measurements
described in the following, which include the remaining digital core logic, the event
processing logic, and the mixed-signal interface.

6.4. VERIFICATION OF THE APPLICATION LAYER 149

6.4.2 The Different Core Modules

The core modules within the application layer include the status and control registers, the pa-
rameter storage, the synapse memory and STDP controller, the analog readout controller, the
event loopback module and the event processing modules event_buffer_in and event_buffer_out
(cf. figure 4.6). The digital logic within these modules is almost fully synchronous, with the
exception of the FIFOs within the modules event_buffer_out. Furthermore, no complex arith-
metic functionality is present within the digital core modules. For these reasons, most of the
functionality contained within the application layer can be verified by testing the access to
registers or static memory resources.

In contrast to the loopback command, test data first has to be written to the chip in order
to perform these tests; it is then verified after read back. The available memory and register
resources have been thoroughly tested with random data and random intervals between the
commands. During testing for bit errors, these intervals have only been chosen with reasonable
values greater or equal than the minimum required delay.

Mixed-Signal Interface to the Synapse Memory

The access to the distributed static memory resources within the network_blocks is carried out
by a controller FSM within the module synapse_control. This module plays a special role,
insofar as it operates a large part of the mixed-signal interface between digital and analog part.
The correct functionality of the module itself as well as the access to the memory resources has
been verified for the first version of the chip. Moreover, initial experiments prove the correct
functionality of the correlation measurement circuitry located within each synapse and have
been published in [SGMM06]. The readout of these circuits is also part of the functionality of
the synapse_control module as described in section 4.3.6.

During the tests performed with Spikey 2, intermittent errors were observed for accesses to
these memory resources. The errors occur at a low rate: on average, 20–30 single-bit errors
are encountered for one test covering the complete memory including the row and column
configuration memories. Corresponding to a total number of approximately 105 4 bit synapses,
this yields a BER of about 8 · 10−5. Unfortunately, no more exact data can be given at the
moment. Nevertheless it turns out that these rare errors do not hinder the setup of experiments
with the chip. The correct access to the resources used for the measurements presented in
section 6.5 proves the basic functionality of the interface. Further measurements regarding the
synapse memory will not be presented.

As stated above, the reason for this behavior is not clear at the point in time of writing
the present thesis. It could be verified that it is neither clock frequency dependent (within
the accessible range of frequencies, see section 6.4.3), nor could a definite dependency on
the supply voltage be observed. Since neither the controller design, nor the design of the
network_block has changed in the second version, no obvious reason for the errors could be
identified. Furthermore, the drive strengths of the standard cells operating the interface is
sufficient for all involved signals and the power distribution system has not been changed in
the second version.

To conclude, the errors occurring within the memory resources do not generally hinder the
setup of (biologically realistic) experiments with the chip. Intermittent errors could lead to
erroneously configured synapse weights which alter the neural network’s behavior. This has
to be taken into account during the experiment setup and the utilized memory resources have
to be verified before an experiment is initiated. Finding the cause of these errors is subject
to future work and on the one hand, requires more intensive testing of the memory resources.

150 CHAPTER 6. EXPERIMENTAL RESULTS

On the other hand, mixed-signal simulations of the back annotated digital netlist together
with the analog circuits including parasitics could possibly reveal timing issues that were not
encountered during the digital simulations performed prior to submission of the chip76.

6.4.3 Maximum Operating Frequency

The previously described verifications are carried out for various clock frequencies. Thereby,
potential resonance scenarios within LC-circuits of the power distribution system could be
identified, which are not covered by the performed system simulations. No such effect was
observed during testing. However, the main goal is to determine the maximum operating
frequency for each part of the chip, thereby verifying the results of the timing closure given in
section 4.4.4. Table 6.1 summarizes the obtained values, together with the maximum BER of
the according test and the expected frequency value. The expected value for the core modules
equals half the link clock frequency because it is limited by the expected value of the link
clock frequency—the actual values obtained by STA are slightly larger (cf. section 4.4.4).

Mode Expected [MHz] chip 2 [MHz] chip 5 [MHz] max BER
Link 324 330 320 8.7 ·10−11

internal loopback 162 156 150 1.9 ·10−9

event loopback 162 160 160 9.5 ·10−11

parameter memory 162 156 156 6.5 ·10−10

synapse memory 162 – – –

Table 6.1: Maximum core clock frequency in MHz that has been measured for tests of the respective
module with random data and the according maximum BER, in comparison to the expected clock
frequency values. The expected values are set to be 12 % worse than the typical mean result of the
timing closure (cf. section 6.2.3). Results for the synapse memory access cannot be given due to
intermittent errors at all frequencies (cf. section 6.4.2). The operating frequency was swept with step
sizes of 5 MHz in an interval of {100,170}MHz on chip_clk for each test with one extra measure
at 156 MHz.

The performance of the link layer matches the expectation within an error of 2 %. The re-
maining results for the application layer match within 4 %, with the exception of the internal
loopback on chip 5. With the implication of intermittent errors during synapse memory ac-
cesses, these results prove the functionality of all circuits relevant for the event transport at an
operating frequency of 156 MHz.

6.5 Verification of the Event Processing

The correct processing of events, e.g. the correct synchronization of the chip time to the system
time, the accurate generation of events as well as the accurate digitization, are essential for the
setup of single chip experiments and for the implementation of multi-chip large-scale neural
networks. This section describes the measurements performed to verify this functionality.

Measurement Setup Unless otherwise noted, the presented results were obtained with chip 5
and the LeCroy oscilloscope. All measurements involve the processing of either absolute or

76Due to the large number of analog devices within the network_block, it was not yet possible to set up this
simulation.

6.5. VERIFICATION OF THE EVENT PROCESSING 151

relative time differences which have been obtained with the following technical setup: the
oscilloscope is triggered by the dedicated FPGA output indicating the start of the synchro-
nization process (cf. section 5.2.4). As the time the system is synchronized to is known, this
serves as an absolute time reference. Furthermore, the oscilloscope records the output of the
IBTEST pin in order to directly measure the point in time of spike generation or digitization.
The IBTEST pin is configured to output the monitoring signal available for synapse # 1 on the
left network_block (cf. section 4.2.4, figure 4.5). By appropriately configuring the according
synapse input multiplexer, it is possible to record either the generated presynaptic input signal
coming from the DTC, or the spike generated by the associated neuron which is in addition
digitized by the TDC77.

Using the PyScope software (cf. section 5.3.3), the IBTEST-signal is read from the oscil-
loscope and after low-pass filtering the data by averaging each data point over a window of
15 samples, the onset of the digital pulses is determined by the point in time where the signal
crosses a threshold. Following this, either the relative distance of two pulses or the absolute
distance to the trigger signal is compared to the digital input or output of the chip.

The analog parameters used for the Synapses and neurons are set such that the neuron under
test would produce exactly one output spike on the simultaneous input of four synapses. The
exact parameters can be found in appendix A.

6.5.1 Synchronization of the Chip

The synchronization process is investigated, in order to ensure the correct temporal processing
of events. The test involves the verification of the correct initialization of the chip’s coun-
ters which are clocked with an unknown phase relation to the FPGA controller clock signal.
Furthermore, during synchronization it is decided which group of eight event_buffer_ins to
associate to one of the 200 MHz event clocks, anaclk and anaclkb. The correct interplay
of the synchronization logic implemented in the Spikey chip and the FPGA is verified with the
following setup:

The chip is synchronized to time tsync and only one event is sent to synapse # 1 at time
tevent = tsync +∆t. Therefore, the theoretical distance between the trigger time and the mea-
sured event generation is ∆t. The times are chosen in a way that the according time stamps
lie in time bin 0 of a clock period. By keeping tevent and incrementing tsync by one clock
cycle (thus decrementing ∆t by one clock cycle), on the one hand, the two possible scenar-
ios for synchronization are covered and on the other hand, the event needs to be stored in
two different buffers, thereby testing both functionalities. The measurement is repeated for
tevent +384 clock cycles to include one Spikey counter wrap around and simultaneously verify
the correct transmission of the events by the playback memory. The difference between the
measured distance ∆tOSC and the expected distance ∆tOSC between synchronization start and
event generation is plotted in figure 6.14, with the experiment repeated 100 times for each data
point. The constant offset of approximately 7.8 time bins is due to the delay introduced by the

77The oscilloscope is limited to a minimum signal rise time of 875 ps at a sampling rate of 5 GSamples/s. On
the one hand, the rise time limitation will flatten the response to the originally digital pulse coming from IBTEST.
However, as this modifies the shape of all measured pulses equally, this is considered to not add as much of an
error as the comparably low sampling rate. At a clkhi frequency of 200 MHz, which has been chosen for the
experiments, one time bin of the DTCs/TDCs comes up to 312 ps, whereas the resolution of the oscilloscope is
200 ps. Thus, the digitization error of the oscilloscope is 2/3 LSB of the DTC/TDC circuits and will dominate
the measured error for fluctuations smaller than this value. Nevertheless, as the main objective of the presented
measurements is the verification of the digital functionality at a resolution of 5 ns, this resolution was chosen to be
sufficient for these measurements.

152 CHAPTER 6. EXPERIMENTAL RESULTS

0 1 384 385
]selcycihklc[tesffo.cnys

7.4

7.5

7.6

7.7

7.8

7.9

8.0

8.1
oe

ht
C
S

O
]s

ni
bt[

t
∆

−
t

∆
tneve cnystotevitalert,tsetnoisicerpCTD

Figure 6.14: Comparison of the measured time differences ∆tOSC between a synchronization command
and one single event with a fixed time stamp against the expected theoretical distance ∆ttheo for different
synchronization times. By increasing the time of synchronization (values on the x-axis), the difference
between synchronization and the event is effectively reduced. The constant offset between the theoret-
ical distance and the measured distance is below half a clkhi cycle (8 time bins) which proves the
correct synchronization of the chip with even and odd time values (see main text).

analog readout chain, from the multiplexer at the synapse driver through the IBTEST pin of
the chip, to the oscilloscope.

The fact that the difference stays constant within the error margin (which is well below
one clkhi period) proves the correct synchronization and event generation. Furthermore,
the basic communication between the event_buffer_ins located within the digital part and the
DTCs within the analog part is verified successfully.

6.5.2 Verification of the Digital Event Transport

The digital event transport inside the chip is verified by using the event_loopback module
which basically acts as a multi-stage pipeline register for incoming events. which are captured
at its output after a certain delay nel. Neither analog functionality, nor the event related logic
within the analog part are required for this test. It is therefore ideally suited to fully verify
the functionality of the event-related part of the application layer within the digital part. The
successful verification of the chip using the event_loopback module with random events yields
three results:

• Correct functionality of the event generation and capture logic within the application
layer including the static memory blocks used for event buffering.

• Correct functionality of the system time tracking algorithm described in section 5.2.4.

• Maximum achievable event rate using the playback memory with random events. This
rate is hard to predict because on the one hand, it depends on the known depth of the
playback memory ramclients and the occurrence of refresh cycles of the DDR-SDRAM
(which slows down memory access and has no temporal correlation to the playback
memory). On the other hand, it depends on the compressibility of the random events

6.5. VERIFICATION OF THE EVENT PROCESSING 153

into event packets, which in turn depends on the high nibbles of the according time
stamps and the addresses of the target synapses (only one event per event_buffer_in can
be transferred per packet). T

The test using the event_loopback module uses the number nel of clkhi cycles that are in-
troduced between event_buffer_in and event_buffer_out by the event_loopback module. Each
event with a time stamp t, that is sent to the chip and is correctly generated, is captured at time
t + nel and subsequently sent off chip. The test algorithm compares sent and received events
against each other, searches for matching pairs and succeeds, if every received event can be
matched with a sent event.

The activation of the event loopback module separates the event-related logic of the digital
part from the analog part and connects it to the pipeline registers. As the timing of the ac-
cording multiplexer and clock enable pins is unconstrained for the implementation, this results
in potentially invalid data at the output of the event loopback module for up to nel clkhi
cycles. Thus, to prevent the generation or capture of invalid event data, the reset signal of all
event_buffer_in and event_buffer_out modules is held active during the appropriate time by
means of sending the according command to the control register. Following this procedure,
the chip is synchronized and the test is performed.

Both, chip 2 and chip 5 have been successfully tested at a chip_clk frequency of 156 MHz
(clkhi and link clock frequency: 312 MHz). One test run consisted of 5 ·106 randomly ge-
nerated events on 384 input synapses78 and is repeated 100 times for each chip. This results
in an event error rate of ≤ 2 · 10−9, and a BER of ≤ 9.5 · 10−11 respectively on the interface.
This result is obtained with an average event rate of 0.1 · rev,max,theo = 0.15 events/clock cycle
to prevent the read and write ramclient from being starved or overloaded respectively. The
maximum achievable rate is determined in the following section.

6.5.3 Maximum Event Rate Using the Playback Memory

To determine the maximum achievable event rate with the playback memory, the above test
has been performed in a loop with 105 events per loop while increasing the event rate on all
input synapses within each loop until one of the ramclients flagged an error during execution
of the playback memory cycle79. The test was then repeated 10 times for the last error-free
event rate with an event count of 2 · 106. The result is given in events per clock cycle and is
clock frequency independent due to the fixed frequency relation between DDR-SDRAM and
spikey_control and the fixed number of refresh cycles for the DDR-SDRAM. The test yields

rev,max =
0.36

Ni,max
[events per clock cycle] (6.1)

for the maximum number Ni,max = 384 of input synapses which can simultaneously be tested.
With the speed-up factor s = 105 and the clock frequency fc =156 MHz, this can be trans-
formed to an average rate in biological real time:

rev,max,biol = rev,max ·
fc

s
[Hz] (6.2)

= 1.5 Hz per input synapse (6.3)

78This is the maximum number of input synapses, since the event_loopback module introduces a one-to-one
mapping from input synapses to output neurons.

79Either the DDR-SDRAM delivers data too slow and the read ramclient starves or the write ramclient overflows
due to the insufficient write speed of the DDR-SDRAM (cf. section 5.2.5).

154 CHAPTER 6. EXPERIMENTAL RESULTS

for Ni,max = 384 input synapses.
The theoretical maximum average rate using the playback memory is (measured in events

per clock cycle)

0.5 · rev,max,theo = rev,max,pb =
0.75

Ni,max
, (6.4)

since the DDR-SDRAM is operated at half the clock frequency of the Spikey chip (cf. section
5.2.5). Only about 50 % of this rate is reached which is due to the following reasons: on the
one hand, communication overhead is introduced by the necessary event commands preceding
the event data. On the other hand, it is not always possible to pack three consecutive events
into one packet due to the random nature of the data. Therefore, event packets containing only
one or two valid events additionally reduce the net throughput of events.

The packing algorithm is supposed to perform better at increased event rates due to the
increased probability for three events having identical high nibbles in the time stamp. To
further investigate this, the obtainable maximum event rate is determined with spike trains of
no more than 2048 events which definitively fit into the FIFO memory of the ramclients. By
this means, all event event data can be prefetched in the beginning of the playback memory
program and events can be generated at the full clock rate (maximum interface rate) without
starving the read ramclient (cf. section 5.2.5).

While using the algorithm described above with the event count of 2048, the test yields

rev,peak =
1.2

Ni,max
[events per clock cycle] (6.5)

for Ni,max = 384 input synapses. Using the above transformation, this results in an average
peak rate in biological real time:

rev,peak,biol = rev,peak ·
fc

s
[Hz] (6.6)

= 4.9 Hz per input synapse (6.7)

for Ni,max = 384 input synapses and fc =156 MHz. In relation to the theoretically achievable
maximum interface rate of rev,max,theo = 1.5 events per clock cycle, this yields a maximum
interface utilization of 80 % using random event data with the playback memory.

6.5.4 Event Generation: Digital-To-Time

As the DTCs convert a digital to an analog value, just as in the case of a voltage DAC, a
common measure for the quality of a DAC, the differential nonlinearity (DNL) is determined
for the DTCs. It is defined as the maximum deviation of the analog value changes caused by
an LSB change from its ideal size of 1 LSB [GAS90]. To include both clocks used for event
generation within the measurement, the DNL is measured over four clock cycles, or 64 LSBs
of time bin resolution. Two events are generated on the input synapse # 1 with a time difference
of 6401 time bins which equals 400 clkhi cycles plus 1 LSB of the DTC. The chip_clk
frequency is set to 100 MHz for reasons given at the end of this section. These two events are
shifted in time by one LSB for 64 times. The difference between the analog recordings ∆tOSC
and the theoretical distance ∆ttheo = 6401 time bins is plotted in figure 6.15.

Each data point represents the mean of 100 measurements and the error bars give the stan-
dard error of the mean value. The statistical error is below the systematic error of 2/3 LSB
introduced by the oscilloscope and as a consequence, the maximum DNL is estimated as
DNLmax = ±0.6 LSB. In the first instance, it can be stated that the functionality of the event

6.5. VERIFICATION OF THE EVENT PROCESSING 155

0 10 20 30 40 50 60
]snibt[tesffotrats

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

oe
ht

C
S

O
]s

ni
bt[

t
∆

−
t

∆

ytiraenilnonlaitnereffid,tsetnoisicerpCTD

Figure 6.15: Measurement of the differential nonlinearity of the DTCs. The measured time difference
∆tOSC between two events generated with a distance of 6401 time bins is subtracted from this theoretical
value, while the start event is shifted by one time bin for each data point. The subtraction yields the
deviation from the theoretical LSB change for each time bin value.

generation from playback memory down to the synapse drivers works correctly on a cycle
basis, since DNLmax is well below 16 LSB which represents one clock cycle.

The maximum DNL value is caused by peak values occurring with a periodicity of 16 time
bins, first in negative, then in positive direction. To find reasons for this systematic behavior,
the analog trace of a special event pattern is investigated, as shown in figure 6.16.

200 mV

5 µs

membrane potential of neuron #1

output of synapse driver #1 (with according time bin values)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.16: Measuring the signal generated by the digital output of the monitored synapse driver
(lower trace). The upper trace shows the analog membrane potential of the neuron stimulated by this
synapse. Sixteen events are generated with increasing time bin value, starting at zero. The output signal
of the synapse driver becomes smaller with increased time stamp which is due to the shortened digital
pulse within the chip (see main text). The peak on the membrane voltage corresponding to the last event
is smaller than the previous ones which indicates that the synapse driver does not correctly operate due
to the shortened pulse length.

Sixteen events are generated with a distance of 6401 time bins starting with time bin zero for
the first event and incrementing the time bin value by one with each event. It can be seen that
the peak becomes smaller—which is expected—as the event enable signal is only active from
the beginning of the time bin of event generation until the end of the clock cycle. Therefore, it
becomes shorter resulting in a smaller peak recorded by the oscilloscope after being low-pass
filtered by the readout RC-network as the time bin is increased. Additionally, the slope of the

156 CHAPTER 6. EXPERIMENTAL RESULTS

pulse becomes smaller and threshold crossing is accordingly detected by the readout software
a bit later. This difference becomes larger with increasing time bins.

For this reason, a discontinuity at time bins 15 to 16 is observed in figure 6.15 indicating
a wrap around of the 4 bit time bin value to 0. Identical behavior is observed at time bins 31
and 47. This inherent measurement error cannot be compensated with the current setup. As
a consequence, more precise measurements are not possible with the current setup, and the
DNL has to be assumed to DNLmax =±0.6 LSB. Note that this is measured at fc =100 MHz
which yields an achievable temporal resolution of 312.5±187.5 ps. For higher frequencies, no
data could be taken. The reason is explained in the following.

network_block0 network_block1

DAC
dll_block_complete0 dll_block_complete1

enable signals to
synapse drivers

Figure 6.17: Illustration of the automated routing of the event enable signals between
dll_block_complete and network_block. Each corner requires a via adding 6.5 Ω of resistance to the
connection.

Shortcoming in the Implementation

In spite of the expected behavior, a problem is encountered during these measurements: the
output driver of the DTC seems to be a bit too weak to drive the combined output load of the
synapse address lines, the synapse driver gate capacitance within the network_block, and the
RC-network added by NanoRoute during automated routing. As a result, the input of the syn-
apse driver may not be driven over its threshold and consequently no event is generated. The
reason for this error is that the driver has originally been designed to drive the load introduced
by the network_block neglecting the RC-network added by automated routing. As no IPO op-
erations are performed during automated routing of the analog part, also the timing checks are
not performed and these violated paths are not discovered by the tools in spite of the correct
definition of the according technology libraries. An illustration of the implementation result
showing the automated routing is given in figure 6.17. A mixed-signal simulation confirming
these conclusions is provided in appendix C.6. This shortcoming is already present on the first
version of the chip. It was not observed until the testing of the second version because the
interplay of the digital part and the DTCs was only tested up to fc =100 MHz at this point in
time.

Since the event generation, in principle, is operational, correct event generation is possible
at fc =100 MHz resulting in the temporal resolution determined above. The achievable event
rates scale accordingly with a factor of 1/1.56 compared to the results obtained in section
6.5.3. Different workarounds are possible to obtain higher operating frequencies: first, the
time bin information could be neglected and all events be generated at time bin 0 which results

6.5. VERIFICATION OF THE EVENT PROCESSING 157

in a temporal resolution of (2 · fc)−1. Second, the maximum achievable time bin tbin,max could
be determined depending on fc. Thereupon, the software generating the playback memory
content or the EventRouter module could cut off time bin values to this maximum which
would introduce a maximum error of tbin,max time bins.

6.5.5 Event Digitization: Time-To-Digital

The following setup has been used to measure the accuracy of event digitization. The digital
spike output of neuron # 1 in the left network_block is fed back as an input to synapse # 1
and is recorded as a presynaptic signal in the same manner as the external event input signal.
Analog parameters are set as described in appendix A. Four excitatory synapses are used to
generate one spike: Synapses # 0, # 64, # 128, and # 192. The error in the event capture logic
renders a time bin accurate measurement of the TDCs DNL impossible because it cannot be
deterministically said, whether the read back time stamp is correct, or not80. On this reason, the
functionality of the mixed-signal interface between TDCs and the event_buffer_out modules
is measured on a clock cycle basis in order to at least verify the correct functionality of the
readout chain from TDCs to playback memory and software processing.

0 2 4 6 8 10
]selcycihklc[tesffotrats

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

pi
hc

C
S

O
]selc

yc
i
h
klc[

t
∆

−
t

∆

tsetnoisicerpCDT

Figure 6.18: Measurement of the TDC precision on a clock cycle basis. Two events are induced by
external input with a distance of 400 clock cycles. Both events are shifted 10 times by one clock cycle.
The difference between the time difference measured by the chip and the time difference measured
by the oscilloscope is plotted against this offset. The correct tracking of the system time during event
digitization is proven by this result.

In this case, two events have been generated with a time distance of 6400 time bins. These
events have been shifted by 16 time-bins 10 times (each shift equalling one clkhi cycle); the
result is shown in figure 6.18, where the axes are now labeled in terms of clkhi cycles and
error bars give the standard deviation of the mean. Potential errors due to false time stamps
are supposed to be stochastically eliminated in this measurement because the input spikes are

80As described in section 4.3.5, the captured time stamp is too high by one clkhi cycle with a certain proba-
bility. This probability depends on the clock frequency, the process corner and the environmental conditions. To
reliably work around this issue, the distribution of read back time stamps could be measured, and the erroneous
time bins could be identified. However, this measurement requires an elaborate algorithm which has not been
implemented so far. Therefore, no precise digitization of events is possible with the current setup.

158 CHAPTER 6. EXPERIMENTAL RESULTS

generated with equal time stamps and thus the difference at the output will on average either
contain the error for both events, or none. The results show an error well below one clock cycle
with a maximum error of 0.07 clock cycles which equals 0.9 time bins. It is concluded, that the
mixed-signal interface of the event capture logic on a clock cycle basis is fully functional. The
functionality of the purely digital event capture under heavy load conditions has already been
verified in section 6.5.2 with random event data using the event loopback test functionality.
The event digitization is characterized on a time bin basis in the following measurement. It
has been performed with the first version of the chip, Spikey 1, but the results are nevertheless
valid for the second version, since neither the TDC implementation, nor the event_buffer_out
module have been changed.

Checking for the Known Event Capture Error

The presence of the event capture error is demonstrated by a measurement performed with the
first version of the chip. In this case, a different setup was used, since direct monitoring of
the synapse driver’s input is not available on Spikey 1. Two neurons N1 and N2 associated to
different TDCs on the right network_block with physical addresses 321 and 387 are activated to
measure the time distance between events generated by both of them. One excitatory synapse
per neuron is used to generate exactly one output spike per input spike: synapse # 510 is
used for neuron N1 and serves as a reference for the time measurements. Synapse # 446 is
connected to neuron N2 and is used for the measurement event. The measurement starts with
the two input events being generated simultaneously within time bin 0 of an arbitrary clock
cycle. To cover two clkhi periods, the time stamp of the measurement event is increased 32
times by one time bin.

It is expected that digitized events having a time bin of approximately 13 . ttbin,th < 16 get a
time stamp too large by one clkhi cycle. As a result, the expected measured time difference
writes:

∆ttbin,out = ∆toffset +

{
tN1− (tN2 +16) if ttbin,N2 & ttbin,th

tN1− tN2 else.
(6.8)

The value of ∆toffset depends on the actual firing times of the two neurons, which slightly
differ since no calibration routine for the different neuron circuits is yet available. It could
without loss of generality be set to zero. The measured time distance of the digitized events
is plotted against the theoretical input distance in figure 6.19. The error bars represent the
standard deviation of the mean of the measured values; approximately 800 event pairs have
been measured per data point81. A linear fit with unity slope has been placed through the data
points proving the validity of the second row in equation 6.8.

Two points differ from the fit by several time bins. As indicated in the figure, the deviation
equals 16 time bins within the error margin. The raw event data read back from the chip was
not stored for this measurement, but the mean values were rather calculated by the software
and recorded. Therefore, it is not possible to trace the exact time bins of tN1 and tN2 and on
that account the location of the expected dips is random and cannot be predicted. Neverthe-
less, the existence of the error is supported by the good compliance with equation 6.8, when
setting ttbin,th = 15, since the distance of the dips equals 16 time bins. The data points directly
following the dip do not fit to the unity slope; this is most likely caused by fluctuating events
that are also digitized within time bin 15 for the respective data point.

811000 runs have been performed per point, and not always both neurons produced an output spike.

6.6. PROCESS VARIATION AND YIELD 159

0 5 10 15 20 25 30
35

40

45

50

55

60

65

70

75

80

85

∆ = 16 tbins

∆ = 16 tbins

∆t
bi

n
(o

ut
pu

t)

∆tbin (input)

Difference in time−bins at output vs. input

measured distance
unity slope

Figure 6.19: Producing the event capture error present in both versions of the Spikey chip. Two events
are generated by external input and the difference between the digitized events is plotted while their
difference is increased by one time bin for each data point. The occurrence of both dips with a distance
of 16 time bins proves erroneously digitized events for one time bin value of ttbin,th = 15.

To further investigate the occurrence of the error and determine an exact value for ttbin,th, it
would be required to record the raw event data and plot the observed frequency of the different
clock cycle values in a histogram. Two peaks would be expected in this histogram with the
peak of erroneously captured events begin shifted relative to the other, thereby determining all
time bins above ttbin,th.

The knowledge of the erroneous time stamps enables a workaround of this error: the time
stamps can be corrected by subtracting one LSB of the clock cycle time stamp from every
digitized event with a time bin value greater or equal ttbin,th. This can either be done within the
data path of incoming events within the spikey_control module when operating several chips
within a system. For single chip experiments, this subtraction can automatically be done by
the software tracking the global time of events read back from the playback memory. The
accurate implementation first requires an automated determination of the faulty time bins for
the desired clock frequency. It is subject to future work and with the current setup, a value of
ttbin,th = 15 can be assumed at a chip_clk frequency of 100 MHz.

6.6 Process Variation and Yield

The comparison of the measured delay of the delaylines against the simulated values already
has shown that on the one hand, the delivered samples perform only slightly worse than it
would be expected for the typical mean process corner—with the restrictions stated in section
6.2.3. A total of six out of the 60 obtained chips of the second version have been tested
so far, and besides the thoroughly tested chips 2 and 5, the chips 3 and 4 exhibit the same
performance. Because the dies were taken from random locations out of different covering
boxes (waffle packs) these six samples at least give a glance on the process variations and

160 CHAPTER 6. EXPERIMENTAL RESULTS

yield which are to be expected for the entire lot. This leads to the conclusion that the majority
of the samples will be in the typical range.

Nevertheless, the first tested chip had a defect within the digital part. It was not possible
to even get the link layer in bypass mode to work; the data transmitted by the chip was not
correlated to the data present at its inputs. This behavior indicates a defect within the FIFO
control logic which could not be investigated more precisely, since no direct access to this logic
is possible. Another possible defect has been observed within chip 6 which deterministically
produces false digitized output time stamps on bit # 3 of neurons <63:0> and <255:192>.
This behavior is clock frequency independent and is therefore likewise interpreted as a defect.
Neglecting the problems encountered with the synapse memory, this results in a yield of 67 %
based on six samples.

Common to all functional samples are the intermittent errors encountered during testing of
the synapse memory. As discussed in section 6.4.2, the reason is not yet clear. The behavior
is frequency independent and only slightly improves with increased supply voltages. This
also indicates problems with the power distribution to the according drivers. However, this
cannot be said for sure, until a precise analysis of the power distribution network, along with a
mixed-signal simulation of the interface have been performed. The intensive analysis of these
intermittent errors is therefore required before considering a redesign of the chip, together with
a review of the power distribution system.

Yield of the first version The measurements described above have likewise been conducted
with the first version of the Spikey chip of which four samples have been tested. All of them
were fully functional up to 160 MHz core and 320 MHz link clock frequency. The fact that
the power distribution system as well as the average drive strength of the standard cells in-
volved in the mixed-signal interface to the synapse memory did not change between the two
versions is, on the one hand, in contrast to the assumptions made regarding insufficient power
distribution. On the other hand, the power consumption introduced by the additional buffers
within the interface data signals is to be considered. This power consumption could possibly
lead to a voltage drop within the power distribution system which subsequently could cause
the malfunction of the synapse memory.

6.7 Power Consumption

Digital Part

To verify the assumed power consumption of the digital part, which is estimated in section
4.4.3, it is measured under various conditions using chip 2 which are listed in table 6.2. The
core clock frequency has been set to 156 MHz, and the link operates at 312 MHz double data
rate. The voltage developed at a 1 Ω resistor is measured with a root mean square (rms)
voltmeter82 which has previously been calibrated by a test current through the resistor. This
results in an error below 0.1 mA for all DC current measurements.

Immediately after power on, no termination resistors are active inside the FPGA, and only
quiescent current is drawn by the chip. The 20 LVDS outputs of the Spikey chip get terminated
after the FPGA has been configured and the current is raised by 75 mA, as expected based on
the specified 3.5 mA per differential pair [ANS96] and the estimations given in table 4.17.

82The Philips PM 2525 digital multimeter has been used with an averaging period of 2 sec and an accuracy of
±0.01 mV for all but the all off measurement.

6.7. POWER CONSUMPTION 161

Mode Current Drain [mA]
all off −0.03µA
power on 16
FPGA configured (terminations on) 91
FPGA clocked, Spikey not clocked 137
Spikey clocked, reset off, bus idle 186
CI_MODE on, static data 171
CI_MODE on, random data 197
CI_MODE on, worst toggle rate 205
event loopback, bus idle packets 224
event loopback, event idle packets 218

Table 6.2: Current consumption of the digital part. Core clock frequency: 156 MHz, link clock fre-
quency: 312 MHz. The different modes correspond to the power-up process for the chip.

When only clocking the FPGA while resetting the internal PLL of the chip, the current
drawn solely by the input data lines and the link clock trees sums up to 46 mA. This supports
the assumptions made on the large power consumptions of those elements and on the potential
power distribution issues in section 6.3.

Within bypass mode (CI_MODE on) a strong dependence on the data pattern is observed.
The current consumption varies by up to 34 mA depending on the activity on the data signals.
The worst toggle rate is achieved by applying the bus idle pattern in bypass mode (every data
signal toggles twice within one link clock cycle). Comparing to the case Spikey clocked, reset
off, bus idle it can be concluded that the internal flip-flops contribute a current consumption of
19 mA.

The event loopback measurements are performed to estimate the maximum power con-
sumption of the digital part, as this mode provides activity on all pipeline registers of the
event_loopack module. No other access to the chip using random data makes more registers
toggle simultaneously. The test is performed with the maximum achievable peak event rate (cf.
section 6.5.2) and a playback memory setup that continuously looped over one cycle that was
stored in memory. This results in a link utilization of approximately 80 %. The two measure-
ments show the current consumed with bus idle packets or event idle packets in the remaining
15 % of the packet slots. The overall current consumption does not exceed 224 mA (403 mW)
which is in accordance to the assumptions made in section 4.4.3. Compared to the bus idle
packets, event idle packets introduce a slightly decreased toggle rate, which is the reason for
the difference in current consumption.

To summarize: the power consumption of the digital part is dominated by the quiescent cur-
rent of the LVDS transmitters and the dynamic power required by the large number of buffers
required for the interface implementation. While the termination power is a matter of fact, the
latter is a drawback from the source synchronous interface implementation. Since this imple-
mentation has proven to be a viable way of implementing a high-speed source synchronous
interface it should be kept for further designs, but its power consumption could possibly be
dropped by constraining the clock tree synthesizer to use smaller buffer cells than the currently
used ones. In case a redesign is considered, also the power structures supplying these buffers
should be revised to eliminate the potential problems described in section 6.3.

162 CHAPTER 6. EXPERIMENTAL RESULTS

Analog Part

Regarding the analog power consumption, two parameters are of major interest: on the one
hand, the quiescent current drawn by the buffers within the curmem_vout blocks83. On the
other hand, there is the current drawn by the circuits connected to the current memory cells
which drift to high values when not being refreshed [Scha].

Mode Vcasdac [V] Irefdac [µA] Current Drain [mA]
reset inactive, autom. refresh to 0 µA 0 0 32
parameters correctly configured 1.6 25 78

Table 6.3: Current consumption of the analog part.

The measured values are listed in table 6.3. The DAC has been biased with the values also
used for regular operation, Vcasdac = 1.6 V and Irefdac = 25 µA. After releasing the reset, all
current memories are automatically refreshed to 0 µA by the digital part and the current con-
sumption sums up to 32 mA with the internal DAC being switched off. This quiescent current
is caused by the output buffers within curmem_vout and could be reduced by an optimized
design. The current obtained for correct configuration has been measured after configuring
the chip for the experiments described above with no network activity present. In this case, the
quiescent current through the buffers could rise to up to 1.1 mA per buffer depending on the
input voltage (cf. section 4.2.1). Moreover, the quiescent current drawn by the 50 Ω membrane
potential output buffers reaches 2.8 mA when biased with 0.5 µA and no external termination
resistors present (data not shown). A total of 46 voltage output buffers and eight off-chip
drivers are active—assuming a quiescent power of 10 µW per neuron, the analog power con-
sumption is obviously dominated by the buffers present on the chip.

Remark When configuring the parameter_ram module within the digital part in a way that
it only refreshes a subset of the available current memories, one has to be aware that the
remaining current memories will exhibit drifting behavior, which results in an unwanted power
consumption and resulting self-heating of the chip. Therefore, care should be taken to always
correctly—and completely—set up the parameter memory.

6.8 An Initial Biologically Realistic Experiment

The preceding sections dealt with the test and the verification of the Spikey chip in conjunction
with its operating environment. In this section, a first experiment demonstrating the desired
functionality of the neural network model is presented. The properties of a single neuron under
Poisson distributed input bombardment are explored by comparing the membrane potentials
generated by the chip and obtained by a simulation using NEST as a simulator under identical
input. The setup of this experiment is a conjoint work with D. Brüderle, and the results have
already been published in [BGM+07].

The Python interface described in section 5.3.3 has been utilized to configure both hardware
and software, each with the same script. To fully exploit the capabilities of the hardware, the
neuron has been set up to be connected to 200 excitatory and 50 inhibitory input synapses, and
a randomly generated Poisson process spike train is applied to each synapse for a duration of
two seconds with a fixed average rate of 3 Hz. These quantities are given in biological time.

83They cannot be biased to consume zero quiescent current, see section 4.2.1.

6.8. AN INITIAL BIOLOGICALLY REALISTIC EXPERIMENT 163

The synapses have been tuned such that the output firing rate of the neuron under bombard-
ment approximately fits the 3 Hz input firing rate of one single input synapse. To compare
the results obtained by the hardware recordings against the membrane trace generated by the
NEST reference simulation, the distance between the output spike times of both models has
been chosen as a measure as proposed in [vR01].

0
.2

V

5 secμ

Best

1
0

m
V

0.5 sec

Avg

Worst

Hardware membrane potentials

Simulated membrane potential (NEST)

Hardware output spikes (50 runs)

External input spikes

200 inputs

50 inputs

excitatory

inhibitory

0
5
0

Figure 6.20: Poisson process input to one neuron and its resulting output. The output spike times of 50
identical experiments run on the hardware are compared to the output of the NEST software (see main
text). Figure taken out of [BGM+07].

Figure 6.20 illustrates the results, thereby exposing the benefits of the high-level interface
allowing for data acquisition from both the software and the hardware domain. The input data,
as applied to the synapses is shown at the top, followed by the digitized and automatically
recorded output spikes generated by the bombarded neuron on the Spikey chip over 50 runs
with identical setup. Below, the analog membrane traces recorded with the PyScope software
during the worst run, averaged over all runs, and during the best run are shown. The last trace
illustrates the simulation result obtained with NEST, where the neuron was fed with the same
input. An obvious correspondence between the membrane potential traces can be seen which
is further supported by the plotted spike times.

This is a very promising result, as it shows, that the Spikey chip can be operated in a
biologically realistic regime. More complex experiments will be conducted in the near future,
in spite of the issues that have been unraveled by the measurements presented in the preceding
sections.

164 CHAPTER 6. EXPERIMENTAL RESULTS

Summary and Outlook

Within the scope of this thesis, a digital communication interface to the analog VLSI imple-
mentation of a spiking neural network model has been developed and integrated in a mixed-
signal ASIC. Moreover, a hardware system enabling the transport of neural events between
several neural network ASICs has been presented. While the inter-chip event transport has
been verified by means of simulations, two versions of the ASIC were actually fabricated and
their functionality has been successfully demonstrated.

The representation of the model within a single ASIC consists of 384 leaky integrate-and-
fire neurons connected to 256 conductance based synapses each. Due to a large variety of
adjustable parameters, the neuron model can be tuned to reflect the behavior of most cortical
neuron types. Furthermore, the synapse models include an implementation of spike timing
dependent plasticity (STDP) and short term synaptic depression and facilitation. Large scale
neural networks composed of these elements are supposed to reach a sufficient complexity to
enable the investigation of information processing in real brains, and especially the investiga-
tion of adaption mechanisms, or even learning processes within cortical areas. The emergence
of these processes not only requires the correct modeling of the neural constituents, namely
neurons and synapses, but also the correct modeling of the axonal interconnections between
neurons and synapses.

On the one hand, the model equations given in section 1.2.1 cover the behavior of the
synapses, the dendritic tree, and the neuron itself. They are realized by the analog VLSI imple-
mentation of the model. On the other hand, axonal connections are modeled by treating output
spikes as stereotyped digital pulses. These can either be locally fed back to synaptic inputs,
thereby providing constant axonal delay, or they can be digitized in time and be processed by
digital logic. The need for arbitrary axonal connections and—even more important—arbitrary
axonal delays required the development of appropriate routing techniques which account for
the correct spatio-temporal processing of the events within the modeled neural network.

Thereby, one advantage of the VLSI model from biology especially challenges the realiza-
tion of large scale neural networks: its operating speed. Since silicon devices like capacitors
and transistors, which serve as a basis for the physical model, are realized close to the min-
imum feature size of the utilized 180 nm CMOS process, time constants of the model are
shrunk resulting in a speed-up factor of 105 for its continuous-time operation. Asynchronous
digital communication techniques like the address event representation (AER) protocol do not
provide the required temporal accuracy of 0.1 ms biological time or 1 ns model time respec-
tively. For these reasons, events get a time stamp along with their physical address facilitating
the temporal processing of events relative to a global system time.

The presented achievements are twofold covering the transport of events between several
chips and the implementation of the mixed-signal ASIC Spikey. Both aspects will be summa-
rized in the following.

165

166 Summary and Outlook

Event Routing The isochronous transport network utilized for the event transport provides
fixed-delay connections with a guaranteed latency. Since these connections are set up prior to
the network operation, no handshaking is required and event data is directly forwarded by the
transport network with constant throughput. Based upon this connectivity virtual connections
have been introduced between different neural network chips in order to model axonal con-
nectivity. All connections between two chips sharing identical axonal delays are bundled into
one virtual connection. This bundling has to be performed by a suitable algorithm which maps
the neural network to be simulated to the hardware topology. For these purposes, a mapping
algorithm is currently being developed [EME+06, Phi07]. A drawback of this realization is
the limitation of the diversity of axonal delays to the number of feasible virtual connections in
the entire network. Four major features of this algorithm can be summarized:

• Optimum Bandwidth Utilization:
A customized version of the leaky bucket algorithm has been implemented at the source
of each virtual connection. For each event the algorithm determines, whether it will be
delivered in time or not and drops the event accordingly. By this means unnecessary
event transmissions are avoided during overload scenarios and the bandwidth of the
transport network is optimally utilized (cf. section 3.5.1).

• Temporal Sorting:
The problem of temporal sorting the event streams of multiple virtual connections at the
destination is partly already solved at the source: the dispatch of events is delayed until
the latest possible point in time, thereby assuring arrival of events at the destination with
only slightly differing time stamps. It has been shown that temporal sorting within a
small window can be accomplished using only few programmable logic resources and
event drop rates below 1 % are achieved at the destination even under maximum load
conditions (cf. section 3.5.1).

• Scalability:
Connections can be established between chips within a daisy chain and between chips
connected to different daisy chains. Thereby, several daisy chains of chips may be
connected to a single switch of the transport network and to switches located on different
Nathan modules interconnected by the MGT network. The maximum number of virtual
connections is only limited by the available logic resources and the feasibility of a first
experiment comprising four chips has been demonstrated by simulations and a resource
estimation.

• Axonal Delay:
While the maximum axonal delay is only limited by the memory resources required
for delaying the events, the minimum axonal delay td,min depends on the topology of
the transport network, the clock frequency and the speed-up factor of the model. At a
clock frequency of 156 MHz and a speed-up of 105, minimum biological delays in the
range 5.76 ms ≤ td,min ≤ 23.68 ms are feasible. More biologically viable values can be
obtained by reducing the speed-up to 104: 0.58 ms ≤ td,min ≤ 2.37 ms.

In section 3.5.2 it has been shown that the algorithm performs stable and handles peak
event rates expected during synchronized or bursting network activity. The simulated network
comprises 1000 neurons spread over four chips interconnected by the MGT network. Average
event rates of 3 Hz and 30 Hz per neuron are handled by the network for speed-up factors of
105 and 104 respectively. This is a drawback arising from the bandwidth currently available

Summary and Outlook 167

from the MGT network: the speed-up factor of the model operation has to be reduced to 104

by means of tuning analog parameters, since the event rates during synchronized activity could
not be transported at a speed-up of 105.

Mixed-Signal Chip Design The digital event processing logic and the physical interface of
the Spikey chip, along with auxiliary digital control functionality, have been developed to meet
the specifications from the analog VLSI model. The digital functionality was successfully ver-
ified in section 6.4 and the according specifications are met with the following restriction: due
to a critical path within the event capture logic, the speed of the entire design is limited to
operating frequencies of 156 MHz for the digital part and 312 MHz for the event generation
and digitization logic. This is below the actual specification of 200 MHz and 400 MHz respec-
tively. As explained in section 4.4.4, no additional registers were inserted into the critical path
in order to achieve a low latency for the event capture in terms of number of clock cycles. A
positive result is that the chip can still be operated at the maximum operating frequency of the
MGT network which equals 156 MHz.

Regarding the interface to the chip itself, peak event rates of 24.4 Hz per synapse/neuron are
feasible utilizing all synapses and neurons present on the chip (cf. section 4.3.7). Average event
rates of 9.14 Hz and 12.2 Hz can be achieved per synapse and per neuron respectively when
using all synapses/neurons in parallel with identical rates (all in biological time considering a
speed-up of 105). Assumed that a fraction of the synapses will be reserved for local feedback,
this bandwidth can be shared among fewer synapses. As a satisfying result, the specification
to allow for an average biological firing rate of 10 Hz has been met. The following three items
have been emphasized during development:

• Mixed-Signal Design Flow:
A design flow for purely digital ASICs has been customized. Using a convenient and
flexible set of scripts, the entire mixed-signal chip assembly is carried out automatically
and reproducible resulting in a “Make Chip” design flow. It comprises the integration
of the analog VLSI design data, digital front and back end, and the physical as well as
the functional verification. The design flow yielded functional ASICs during two design
cycles while greatly facilitating the second tape-out due to the gained experience. Minor
improvements to the design flow will be suggested below.

• Physical Interface Design:
A new method for the implementation of high-speed source synchronous interfaces has
been proposed and tested in silicon. Without phase adjusting elements like a PLL or
DLL, bit rates of 640 Mbit/s could be achieved (cf. section 6.3). In order to deskew
the interface data signals, delay elements have been realized that could automatically be
realized using the automated design flow. A simple standard cell based approach has
been chosen and its functionality has been verified in section 6.2.3.

• Event Transport Logic and Digital Design:
A protocol has been introduced accounting for the packet based communication of event
and control interface data with the chip. The chip can be synchronized to a global
system time and correct event delivery was verified up to the DTCs within the analog
part. Unfortunately, the incorrect implementation of the interface between TDCs and
digital part potentially causes the digitized events to have a temporal error of one clock
cycle (cf. section 6.5.5). A possible workaround has been proposed. By means of this

168 Summary and Outlook

workaround correct event generation and digitization is assured and the temporal error
will be reduced to the nonlinearities of the DTCs and TDCs.

Operating Environment In order to operate the chip a controller has been implemented in
programmable logic and the according hardware substrates have been described in chapter 5.
Low level software has been presented encapsulating the access to the hardware, thereby pro-
viding a convenient high-level interface to the user. In section 6.5.1 it has been demonstrated
that time tracking for the entire system is successfully implemented and the generation and
recording of neural events is possible by means of the introduced playback memory. Along
with a high-level software interface, it has been shown in section 6.8 that the chip can be
operated in a biologically realistic regime.

Outlook Based upon the obtained results, it can be stated that the Spikey chip as well as the
entire system provides now the possibility to tackle first single chip experiments exploiting the
full potential of the Spikey chip. Nevertheless, a total of three issues have been encountered
which would suggest the design of a third version of the chip. First, there is the error within the
event capture logic; it is easily resolved by correcting the according Verilog source. Second,
there are the errors encountered sporadically during synapse memory testing. These require
further testing and are potentially related to the third issue which is the reduced width of the
data valid window at the input of the Spikey chip. In section 6.3 it has been supposed that a
reason for this behavior could be an undersized PDN.

Apart from the logic error, these issues are due to the automated design flow being imperfect
in two aspects: first, the mixed-signal interfaces between analog and digital part could not
automatically be tested. Second, the PDN of the chip could not be verified for dynamic power
dissipation. In the opinion of the author, both have to be integrated into the design flow before
starting a redesign. Moreover, STA results should be verified using a third party RC-extraction
software (cf. section 6.2.3).

The most important step towards large-scale spiking neural networks will be the actual
implementation of the event routing algorithm within programmable logic. During the writing
of this thesis parts of the algorithm have been realized in VHDL [Schb]. Timing closure
could be achieved on the EventOutQueue module and it has been nice to see that the resource
consumption was over-estimated. Therefore, even larger network topologies can possibly be
realized on the existing hardware platform. However, two approaches are conceivable to scale
the network to more than presumably six chips: first, different neural network topologies
could be selected requiring fewer global connections resulting in fewer virtual connections.
Second, larger FPGAs would provide the required logic resources, which could for example
be implemented on a future daughter card to the Nathan module carrying multiple Spikey
chips hosted by an additional FPGA.

Both approaches will enable the setup of neural networks consisting of several thousands
of neurons and more than a million of synapses. Consequently, the presented system will
eventually become a tool to complement software simulations of moderately sized cortical
microcircuits including synaptic plasticity and cellular diversity. Comparably new aspects of
modeling recurrent neural networks like liquid state machines, as proposed for example in
[MNM02], could be realized in real neuromorphic hardware. Moreover, the system consti-
tutes the Stage I hardware of the FACETS project, an interdisciplinary research project aiming
to model neural microcircuits from the primary visual cortex in analog VLSI as well as in

Summary and Outlook 169

numerical simulations. Thereby, the goal of the FACETS project is to create a theoretical and
experimental foundation for the realization of novel computing paradigms which exploit the
concepts experimentally observed in biological nervous systems [Mea05].

However, the size of neural microcircuits that can be realized with the FACETS Stage I
hardware will still not exceed approximately 104 neurons, even when using huge FPGAs,
due to the resource consumption of the required virtual connections. Therefore, a different ap-
proach is followed for the Stage II hardware: in order to obtain the necessary high connectivity
between the analog VLSI models, the crossover of the digital signals from the die to a PCB is
avoided by performing wafer-scale integration of the circuits. The wafer is not cut into single
dies but the circuits on the wafer are rather directly interconnected by postprocessing the wafer
as a whole. A pitch of 4 µm is feasible providing the required high connectivity, even for local
routing of the network traffic. Parts of the presented system will be reused for the Stage II
hardware. Besides the analog circuitry, it is especially the experiences gained regarding the
design flow that will be of benefit for the wafer-scale integration techniques. Furthermore,
parts of the event routing algorithm will be used for the long-range communication between
wafers and peripheral components required for monitoring the entire system.

New challenges and possibilities will arise from the Stage II system: one wafer will presum-
ably integrate more than 105 neurons and 108 synapses and it is even planned to interconnect
several wafers. Fault-tolerance mechanisms have to be developed and new techniques for the
postprocessing will have to be explored. Together with the speed-up of 104 which is aimed for
the operation, this system will be a powerful information processing device. It will enable the
biologists to perform experiments at great speed. For example could the recorded activity of
the moving fovia be taken as an input to the system providing the possibility to investigate the
emerging adaption processes within the simulated cortical area. In contrast to software simula-
tions that will likely run slower than real time, the wafer-scale system will enable fast iterations
and parameter searches. Apart from the benefits this system will bring to neuroscience, it will
possibly fulfill another goal of the FACETS project: finding ways of information processing
beyond the Turing paradigm.

170 Summary and Outlook

Acronyms

ADC analog-to-digital converter

AER address event representation

ANN artificial neural network

ASIC application specific integrated circuit

BER bit error rate

CMOS complementary metal oxide semiconductor

CTS clock tree synthesis

CQFP ceramic quad flat pack

DAC digital-to-analog converter

DC direct current

DCM digital clock manager

DDR double data rate

DEF data exchange format

DLL delay-locked loop

DNL differential nonlinearity

DRC design rule check

DTC digital to time converter

ESD electrostatic discharge

FIFO first-in first-out

FPGA field programmable gate array

FSM finite state machine

HAL hardware abstraction layer

HDL hardware description language

171

172 Acronyms

IPO in-place optimization

JTAG joint action test group

LEF library exchange format

LSB least significant bit

LUT look-up table

LVDS low voltage differential signaling

LVS layout versus schematic

MGT multi-gigabit transceiver

MPW multi-project wafer

MSB most significant bit

NMOS n-type metal oxide semiconductor

PCB printed circuit board

PDN power distribution network

PGA pin grid array

PLL phase-locked loop

PSP postsynaptic potential

QoS quality of service

rms root mean square

SI signal integrity

SMT surface mount technology

SoC system on chip

SRAM static random access memory

STA static timing analysis

STDP spike timing dependent plasticity

STL standard template library

TCL tool command language

TDC time to digital converter

UMC United Microelectronics Corporation

VHDL VHSIC hardware description language

Acronyms 173

VHSIC very high speed integrated circuit

VLSI very large scale integration

VST Virtual Silicon Technology

174 Acronyms

Appendix A

Model Parameters

Available Model Parameters

This section lists all model parameters that can be adjusted on the chip together with a short
explanation of their meaning. Table A.2 lists the available bias currents. Table A.4 lists the
available voltage paremeters including voltages that need to be supplied externally. Table A.6
lists all parameters with their physical address on the Spikey chip. These are the addresses that
need to be written to the parameter memory during setup.

Parameter Address Offset Meaning

Vdtc0, Vdtc1,
Vdtc2, Vdtc3

0..3
short term plasticity time constant for spike history,
higher current⇒ shorter averaging windowtime, con-
nected to even and odd neurons on both halves.

Vcb0, Vcb1,
Vcb2, Vcb3

4..7
spike driver comparator bias current, connected to even
and odd neurons on both halves.

Vplb0, Vplb1,
Vplb2, Vplb3

8..12
spike driver pulse length bias, higher current⇒ shorter
internal pulse, important for short term plasticity, con-
nected to even and odd neurons on both halves.

Ibnoutampba,
Ibnoutampbb

13..14
both add together to the neuronoutampbias, global for
the chip.

Ibcorrreadb 15 correlation read out bias, global for the chip.

Table A.2: List of current parameters. The address offset gives the offset relative to the starting address
of the according vout_block in table A.6.

175

176 APPENDIX A. MODEL PARAMETERS

Parameter Address Offset Meaning

Ei0, Ei1 0, 2
Inhibitory reversal potential, even and odd neuron ad-
dresses.

El0, El1 4, 6
Leakage reversal potential, even and odd neuron ad-
dresses.

Er0, Er1 8, 10 Reset potential, even and odd neuron addresses.

Ex0, Ex1 12, 14
Excitatory reversal potential, even and odd neuron ad-
dresses.

Vclra 16
Storage clear bias for entire synapse array, acausal
(higher bias⇒ smaller amount stored on cap)

Vclra 18 As above, causal
Vcthigh 20 Correlation readout threshold high value
Vctlow 22 Correlation readout threshold low value

Vfac0, Vfac1 24, 26
Short term facilitation reference voltage, even and odd
synapse columns.

Vstdf0, Vstdf1 28, 30
Short term capacitor high potential, even and odd syn-
apse columns.

Vth0, Vth1 32, 34
Neuron threshold voltage, even and odd neuron ad-
dresses.

Vcasneuron 36 Neuron input cascode gate voltage
Vresetdll 38 DLL reset voltage
AROdllvctrl 16 DLL control voltage readout

AROpre1b 16
Directly monitor presynaptic signal after delay element
of synapse # 1

AROselout1hb 16
Directly monitor presynaptic signal after multiplexer
of synapse # 1

VM ext
externally supplied, synapse array correlation measure-
ment parameter (precharge voltage of measurement
cap.)

VREST ext externally supplied, synapse driver resting potential
VSTART ext externally supplied, synapse driver start potential # 1

Table A.4: List of voltage parameters. The address offset gives the offset relative to the starting
address of the according vout_block in table A.6. The last three parameter voltages need to be supplied
externally.

177

Location
Physical
Address

Parameter
Name

Meaning

left synapse
drivers

0 drviout
Max. synapse driver output current.
Scales the shape of the postsynaptic pulse.

1 adjdel

Delay for presynaptic correlation pulse.
Can be used to calibrate STDP measure-
ments for signal propagation delay within
the synapse array.

2 drvifall
Sets slew rate for falling edge of
presynaptic signal.

3 drvirise
Sets slew rate for rising edge of
presynaptic signal.

...
1020 drviout

see above
1021 adjdel
1022 drvifall
1023 drvirise

right
synapse
drivers

1024
right —same as for left side.... ...

2047

left neuron
circuits

2048 neurileak
Bias for neuron leakage circuit.
Controls gleak, thus, Ileak.

2049 neuricb
Bias for neuron Vth comparator. Controls
dependency of spike generation on V̇th

...
2430 neurileak

see above
2431 neuricb

right neuron
circuits

2432
right —same as for left side.... ...

2815

left
parameter
voltages

2816 Ibias,0 Bias for output buffer within . Total 23.

2817 Vparam,0
Parameter voltage. The different voltages
are listed in table A.4. Total 20.

...
2860 Ibias,22 see above
2861 –

right
parameter
voltages

2880
right side—same as for left side.... ...

2927

bias currents
2944

Miscellaneous bias currents.
Listed in table A.2

... ...
2958

bias currents

2959
Bias currents for 50 Ω membrane potential
output buffers. Total 8.

... ...
2966

2967 IBTEST
Current memory directly
connected to IBTEST pin.

Table A.6: List of analog parameters available in each column and row circuit with the according
physical addresses. Available voltage parameters are listed separately in table A.4.

178 APPENDIX A. MODEL PARAMETERS

Measurement Model Parameters

Table A.8 lists the model parameter settings relevant for the measurements presented in chapter
6. They are used as a standard setup for experiments that require neurons to produce an output
spike upon only one or a few input spikes.

Parameter Value
Ei0, Ei1 0.6 V, 0.7 V
El0, El1 0.6 V, 0.6 V
Er0, Er1 0.3 V, 0.3 V
Ex0, Ex1 1.7 V, 1.7 V
Vclra 1.55 V
Vclra 1.55 V
Vcthigh 0.89 V
Vctlow 0.8 V
Vfac0, Vfac1 1.1 V, 1.1 V
Vstdf0, Vstdf1 1.6 V, 1.6 V
Vth0, Vth1 1.1 V, 1.15 V
Vcasneuron 1.6 V
Vresetdll 0.8 V
Vdtc0..3 0.2 µA
Vcb0..3 0.5 µA
Vplb0..3 0.5 µA
Ibnoutampba 0.1 µA
Ibnoutampbb 0.4 µA
Ibcorrreadb 0.6 µA

Table A.8: List of voltage and current parameters that
have been set for the measurements presented in chapter
6. The voltage parameters were set identically for both
halves of the chip.

Appendix B

Communication Protocol and Data
Format

This appendix is dedicated to the description of selected control interface packets that are
commonly used for configuration, operation and monitoring of the Spikey chip. The synchro-
nization functionality as well as the specific content of the event packet have been described
in detail in section 4.3.2; they are included here for reasons of completeness.

The commands for the access to the parameter memory and the synapse memory control
modules contain 4 bit subcommands. These are explained as appropriate, alongside with the
according content of the control interface packet.

The content of the packet is displayed in a way that it corresponds to the physical data on
the interfaces. This way of illustration has proven to be useful, especially during low-level
debugging of the physical interface. It provides an intuitive arrangement of the data in the
same order as it is clocked into/out of the chip on the single signals.

179

180 APPENDIX B. COMMUNICATION PROTOCOL AND DATA FORMAT

Table B.1: Compilation of the packet content for the listed control interface commands.

181

Table B.2: Compilation of the packet content for the listed control interface commands (continued).

182 APPENDIX B. COMMUNICATION PROTOCOL AND DATA FORMAT

Table B.3: Control and status register content in dependence of the four possible subcommands. Only
the control register can be written. The status registers are read only.

Appendix C

Implementation Supplements

C.1 Spikey Pinout

This page is intentionally left blank. A graphical illustration of the pinout of the Spikey chip
is given on the following page. Subsequently, the pin names are listed together with their
meanings.

183

184 APPENDIX C. IMPLEMENTATION SUPPLEMENTS

CAD1_OUT_N<7>

CAD1_OUT_P<7>

CAD1_OUT_N<6>

CAD1_OUT_P<6>

CAD1_OUT_N<5>

CAD1_OUT_P<5>

V
S

S
:V

A
S

V
A

D

V
S

S
:a

a
v
d

d
a

!

F
IR

E
IN

L
E

F
T

<
0

>

F
IR

E
IN

L
E

F
T

<
1

>

F
IR

E
IN

R
IG

H
T

<
0

>

CAD1_OUT_N<4>

CAD1_OUT_P<4>

CTL1_OUT_N

CTL1_OUT_P

CLK1_OUT_N

CLK1_OUT_P

CAD1_OUT_N<3>

CAD1_OUT_P<3>

CAD1_OUT_N<2>

CAD1_OUT_P<2>

CAD1_OUT_N<1>

CAD1_OUT_P<1>

CAD1_OUT_N<0>

CAD1_OUT_P<0>

CAD0_OUT_N<7>

CAD0_OUT_P<7>

CAD0_OUT_N<6>

CAD0_OUT_P<6>

CAD0_OUT_N<5>

CAD0_OUT_P<5>

CAD0_OUT_N<4>

CAD0_OUT_P<4>

CTL0_OUT_N

CTL0_OUT_P

CLK0_OUT_N

CLK0_OUT_P

CAD0_OUT_N<3>

CAD0_OUT_P<3>

CAD0_OUT_N<2>

CAD0_OUT_P<2>

CAD0_OUT_N<1>

CAD0_OUT_P<1>

CAD0_OUT_N<0>

CAD0_OUT_P<0>

CAD1_IN_N<7>

CAD1_ _P<7>IN

CAD1_ _N<6>IN

CAD1_ _P<6>IN

CAD1_ _N<5>IN

CAD1_ _P<5>IN

CAD1_ _N<4>IN

CAD1_ _P<4>IN

CTL1_ _NIN

CTL1_ _PIN

CLK1_ _NIN

CLK1_ _PIN

CAD1_ _N<3>IN

CAD1_ _P<3>IN

CAD1_ _N<2>IN

CAD1_ _P<2>IN

CAD1_ _N<1>IN

CAD1_ _P<1>IN

CAD1_ _N<0>IN

CAD1_ _P<0>IN

CAD0_ _N<7>IN

CAD0_ _P<7>IN

CAD0_ _N<6>IN

CAD0_ _P<6>IN

CAD0_ _N<5>IN

CAD0_ _P<5>IN

CAD0_ _N<4>IN

CAD0_ _P<4>IN

CTL0_ _NIN

CTL0_ _PIN

CLK0_ _NIN

CLK0_ _PIN

CAD0_ _N<3>IN

CAD0_ _P<3>IN

CAD0_ _N<2>IN

CAD0_ _P<2>IN

CAD0_ _N<1>IN

CAD0_ _P<1>IN

CAD0_ _N<0>IN

CAD0_ _P<0>IN

VSS:V0IO

V3IO

VDDR

VSS:R

VSS:V0IO

V3IO

VSS:L

VDDL

V3IO

VSS:V0IO

VSS:L

VDDL

F
IR

E
IN

L
E

F
T

<
3

>

F
IR

E
IN

L
E

F
T

<
2

>

a
v
d

d
a

!

V
S

S
:a

a
v
d

d
a

!

V
S

S
:a

V
S

S
:V

A
S

V
A

D

O
U

T
_

A
M

P
<

7
>

O
U

T
_

A
M

P
<

6
>

O
U

T
_

A
M

P
<

5
>

O
U

T
_

A
M

P
<

4
>

V
A

D

V
S

S
:V

A
S

O
U

T
_

A
M

P
<

3
>

O
U

T
_

A
M

P
<

2
>

O
U

T
_

A
M

P
<

1
>

O
U

T
_

A
M

P
<

0
>

V
S

S
:V

A
S

V
A

D

V
S

S
:a

a
v
d

d
a

!

V
S

S
:a

a
v
d

d
a

!

V
S

T
A

R
T

V
R

E
S

T

V
M

V
C

A
S

D
A

C

IR
E

F
D

A
C

F
IR

E
IN

R
IG

H
T

<
1

>

F
IR

E
IN

R
IG

H
T

<
2

>

F
IR

E
IN

R
IG

H
T

<
3

>

F
IR

E
IN

R
IG

H
T

<
4

>

F
IR

E
IN

R
IG

H
T

<
5

>

a
v
d

d
a

!

V
S

S
:a

V
A

D

V
S

S
:V

A
S

IB
T

E
S

T

V
D

D
L

V
S

S
:L

V
S

S

V
S

S

V
D

D

V
S

S

V
S

S

V
D

D

E
X

T
_

C
L

K
_

N

E
X

T
_

C
L

K
_

p

V
D

D
P

L
L

V
S

S
:P

L
L

V
D

D

V
S

S

P
L

L
_

L
O

C
K

E
D

P
L

L
_

R
E

S
E

T

V
S

S

V
D

D

V
D

D

V
D

D

V
S

S

a
v
d

d
h

i!

V
S

S
:V

0
IO

V
3

IO

V
S

S

V
D

D

V
S

S

R
E

S
E

T

C
I_

M
O

D
E

B
S

_
M

O
D

E

C
_

D
E

L
A

Y

P
L

L
_

B
Y

P
A

S
S

C
H

IP
_

ID
<

3
>

C
H

IP
_

ID
<

2
>

C
H

IP
_

ID
<

1
>

C
H

IP
_

ID
<

0
>

T
C

K

T
D

I

T
M

S

T
D

O

V
D

D

V
S

S

V
D

D

V
3

IO

V
S

S
:V

0
IO

V
D

D

1

139

93

47

total pins: 184
pins per edge: 46

bond pad size: 70 x 60 µm
passivation opening: 64 x 56 µm

pad pitch: 95 µm
pad - die seal ring: 30 µm

die size: 5 x 5 mm

2

2

analog part

digital part

Figure C.1: Graphical illustration of the Spikey chip pinout.

C.1. SPIKEY PINOUT 185

Pad No. Pin Name Type Description

32-25, 46-
39

CAD0_OUT_P<7:0>,
CAD0_OUT_N<7:0>

output Output data bus link 0, connect to corresp. in-
put data bus on subseq. chip in chain

36, 35 CTL0_OUT_P,
CTL0_OUT_N

output output frame bit link 0. – see above –

38, 37 CLK0_OUT_P,
CLK0_OUT_N

output output clock signal link 0. – see above –

4-1, 10-7,
18-15, 24-
21

CAD1_OUT_P<7:0>,
CAD1_OUT_N<7:0>

output Output data bus link 1. – see above –

12, 11 CTL1_OUT_P,
CTL1_OUT_N

output output frame bit link 1. – see above –

14, 13 CLK1_OUT_P,
CLK1_OUT_N

output output clock signal link 1. – see above –

93-100,
107-114

CAD0_IN_P<7:0>,
CAD0_IN_N<7:0>

input Input data bus link 0. Connect to corresp. out-
put data bus on prev. chip in chain

103, 104 CTL0_IN_P,
CTL0_IN_N

input input frame bit link 0. – see above –

101, 102 CLK0_IN_P,
CLK0_IN_N

input input clock signal link 0. – see above –

115-118,
121-124,
129-132,
135-138

CAD1_IN_P<7:0>,
CAD1_IN_N<7:0>

input Input data bus link 1. – see above –

127, 128 CTL1_IN_P,
CTL1_IN_N

input input frame bit link 1. – see above –

125, 126 CLK1_IN_P,
CLK1_IN_N

input input clock signal link 1. – see above –

54-57 CHIP_ID<3:0> input static chip’s address in chain.
80, 81 EXT_CLK_P,

EXT_CLK_N
input chip’s core clock, needs to be the same for

each chip within one chain
84-86 TCK, TDI, TMS input JTAG interface.
87 TDO output JTAG interface.
60 BS_MODE input Boundary scan mode.
61 CI_MODE input Command interface mode.
59 C_DELAY input Config interface delay lines.
58 PLL_BYPASS input Bypass internal PLL.
75 PLL_LOCKED output Internal PLL locked state, open drain.
74 PLL_RESET input Reset internal PLL.
62 RESET input Chip reset.

166-163,
160-157

OUT_AMP<0:7> analog
output

analog signals to monitor membrane voltages.

186 APPENDIX C. IMPLEMENTATION SUPPLEMENTS

178 IBTEST analog
output

analog monitor pin, output of
analog_readout

177 IREFDAC reference
current

DAC reference current, generate externally.

176 VCASDAC bias volt-
age

DAC bias voltage, generate externally.

175-173 VM, VREST, VSTARTparameter
voltage

reference/parameter voltages,
generate externally.

180, 179,
150, 149

FIREINLEFT<0:3> input digital inputs directly connected to
synapse row drivers.

148-143 FIREINRIGHT<0:5> input

51, 53, 64,
70-72, 77,
82, 88, 90

VDD power 1.8 V digital core supply

49, 50, 52,
63, 65, 69,
73, 76, 83,
89

VSS ground digital core ground

6, 34, 47 VDDL power 1.8 V LVDS logic supply, transmit side (left)
5, 33, 48 VSS:L ground LVDS logic ground, transmit side (left)
120 VDDR power 1.8 V LVDS logic supply, receive side (right)
119 VSS:R ground LVDS logic ground, receive side (right)
19, 66, 91,
105, 133

V3IO power 3.3 V digital I/O supply

20, 67, 92,
106, 134

VSS:V0IO ground digital I/O ground

142, 151,
153, 170,
172, 181

avdda! power 1.8 V Analog core supply

141, 152,
154, 168,
171, 182

VSS:a ground analog core ground

68 avddhi! power 3.3 V analog supply (DAC only)
140, 156,
161, 168,
183

VAD power 1.8 V analog I/O supply

139, 155,
162, 167,
184

VSS:VAS ground analog I/O ground

79 VDDPLL power 1.8 V PLL supply (analog)
78 VSS:PLL ground PLL ground (analog)

Table C.1: Pinout of the Spikey chip. The pin numbers correspond to the numbers in figure C.1. To
obtain the pin numbers for the CQFP208 package, the empty pins at the edges have to be considered
(cf. figure E.1).

C.2. PIN MAPPING NATHAN-SPIKEY 187

C.2 Pin Mapping Nathan-Spikey

The following listing defines the mapping of the signals on the Nathan PCB to the Spikey chip.
The syntax is pseudo-VHDL and the signals left of the arrows are assigned to inputs. The last
column defines the I/O standard to use in the FPGA.

ANNA_BUS_N(25) <= CAD0_OUT_P(7) ANNA_BUS_P(25) <= CAD0_OUT_N(7) LVDS_25_DT
ANNA_BUS_P(24) <= CAD0_OUT_P(6) ANNA_BUS_N(24) <= CAD0_OUT_N(6) LVDS_25_DT
ANNA_BUS_N(23) <= CAD0_OUT_P(5) ANNA_BUS_P(23) <= CAD0_OUT_N(5) LVDS_25_DT
ANNA_BUS_P(22) <= CAD0_OUT_P(4) ANNA_BUS_N(22) <= CAD0_OUT_N(4) LVDS_25_DT
ANNA_BUS_N(13) <= CAD0_OUT_P(3) ANNA_BUS_P(13) <= CAD0_OUT_N(3) LVDS_25_DT
ANNA_BUS_N(10) <= CAD0_OUT_P(2) ANNA_BUS_P(10) <= CAD0_OUT_N(2) LVDS_25_DT
ANNA_BUS_P(0) <= CAD0_OUT_P(1) ANNA_BUS_N(0) <= CAD0_OUT_N(1) LVDS_25_DT
ANNA_BUS_P(11) <= CAD0_OUT_P(0) ANNA_BUS_N(11) <= CAD0_OUT_N(0) LVDS_25_DT
ANNA_BUS_P(12) <= CTL0_OUT_P ANNA_BUS_N(12) <= CTL0_OUT_N LVDS_25_DT
ANNA_BUS_P(6) <= CLK0_OUT_P ANNA_BUS_N(6) <= CLK0_OUT_N LVDS_25_DT

ANNA_BUS_P(35) <= CAD1_OUT_P(7) ANNA_BUS_N(35) <= CAD1_OUT_N(7) LVDS_25_DT
ANNA_BUS_P(32) <= CAD1_OUT_P(6) ANNA_BUS_N(32) <= CAD1_OUT_N(6) LVDS_25_DT
ANNA_BUS_P(31) <= CAD1_OUT_P(5) ANNA_BUS_N(31) <= CAD1_OUT_N(5) LVDS_25_DT
ANNA_BUS_P(30) <= CAD1_OUT_P(4) ANNA_BUS_N(30) <= CAD1_OUT_N(4) LVDS_25_DT
ANNA_BUS_N(29) <= CAD1_OUT_P(3) ANNA_BUS_P(29) <= CAD1_OUT_N(3) LVDS_25_DT
ANNA_BUS_P(26) <= CAD1_OUT_P(2) ANNA_BUS_N(26) <= CAD1_OUT_N(2) LVDS_25_DT
ANNA_BUS_N(4) <= CAD1_OUT_P(1) ANNA_BUS_P(4) <= CAD1_OUT_N(1) LVDS_25_DT
ANNA_BUS_N(3) <= CAD1_OUT_P(0) ANNA_BUS_P(3) <= CAD1_OUT_N(0) LVDS_25_DT
ANNA_BUS_N(28) <= CTL1_OUT_P ANNA_BUS_P(28) <= CTL1_OUT_N LVDS_25_DT
ANNA_BUS_P(27) <= CLK1_OUT_P ANNA_BUS_N(27) <= CLK1_OUT_N LVDS_25_DT

CAD0_IN_P(7) <= ANNA_CLK2_P CAD0_IN_N(7) <= ANNA_CLK2_N LVDS_25
CAD0_IN_P(6) <= ANNA_BUS_N(8) CAD0_IN_N(6) <= ANNA_BUS_P(8) LVDS_25
CAD0_IN_P(5) <= ANNA_BUS_P(9) CAD0_IN_N(5) <= ANNA_BUS_N(9) LVDS_25
CAD0_IN_P(4) <= ANNA_BUS_P(37) CAD0_IN_N(4) <= ANNA_BUS_N(37) LVDS_25
CAD0_IN_P(3) <= ANNA_BUS_P(36) CAD0_IN_N(3) <= ANNA_BUS_N(36) LVDS_25
CAD0_IN_P(2) <= ANNA_BUS_P(41) CAD0_IN_N(2) <= ANNA_BUS_N(41) LVDS_25
CAD0_IN_P(1) <= ANNA_BUS_P(40) CAD0_IN_N(1) <= ANNA_BUS_N(40) LVDS_25
CAD0_IN_P(0) <= ANNA_BUS_P(42) CAD0_IN_N(0) <= ANNA_BUS_N(42) LVDS_25
CTL0_IN_P <= ANNA_BUS_P(38) CTL0_IN_N <= ANNA_BUS_N(38) LVDS_25
CLK0_IN_P <= ANNA_BUS_P(39) CLK0_IN_N <= ANNA_BUS_N(39) LVDS_25

CAD1_IN_P(7) <= P7_BUS_N(3) CAD1_IN_N(7) <= P7_BUS_P(3) LVDS_25
CAD1_IN_P(6) <= P7_BUS_N(5) CAD1_IN_N(6) <= P7_BUS_P(5) LVDS_25
CAD1_IN_P(5) <= ANNA_BUS_N(21) CAD1_IN_N(5) <= ANNA_BUS_P(21) LVDS_25
CAD1_IN_P(4) <= ANNA_BUS_N(19) CAD1_IN_N(4) <= ANNA_BUS_P(19) LVDS_25
CAD1_IN_P(3) <= ANNA_BUS_P(17) CAD1_IN_N(3) <= ANNA_BUS_N(17) LVDS_25
CAD1_IN_P(2) <= ANNA_BUS_P(16) CAD1_IN_N(2) <= ANNA_BUS_N(16) LVDS_25
CAD1_IN_P(1) <= ANNA_BUS_P(15) CAD1_IN_N(1) <= ANNA_BUS_N(15) LVDS_25
CAD1_IN_P(0) <= ANNA_BUS_N(14) CAD1_IN_N(0) <= ANNA_BUS_P(14) LVDS_25
CTL1_IN_P <= ANNA_BUS_N(20) CTL0_IN_N <= ANNA_BUS_P(20) LVDS_25
CLK1_IN_P <= ANNA_BUS_N(18) CLK0_IN_N <= ANNA_BUS_P(18) LVDS_25

EXT_CLK_P <= P7_BUS_N(20) LVDS_25
EXT_CLK_N <= P7_BUS_P(20) LVDS_25

P7_BUS_P(10) <= FIREINLEFT(3) LVCMOS25
P7_BUS_N(10) <= FIREINLEFT(2) LVCMOS25
P7_BUS_P(9) <= FIREINLEFT(1) LVCMOS25
P7_BUS_N(9) <= FIREINLEFT(0) LVCMOS25
P7_BUS_P(13) <= FIREINRIGHT(5) LVCMOS25
P7_BUS_N(13) <= FIREINRIGHT(4) LVCMOS25

188 APPENDIX C. IMPLEMENTATION SUPPLEMENTS

P7_BUS_P(12) <= FIREINRIGHT(3) LVCMOS25
P7_BUS_N(12) <= FIREINRIGHT(2) LVCMOS25
P7_BUS_P(11) <= FIREINRIGHT(1) LVCMOS25
P7_BUS_N(11) <= FIREINRIGHT(0) LVCMOS25

BS_MODE => P7_BUS_P(16) LVCMOS25
CI_MODE => P7_BUS_P(15) LVCMOS25

PLL_BYPASS => P7_BUS_P(17) LVCMOS25
PLL_LOCKED => P7_BUS_N(14) LVCMOS25
PLL_RESET => P7_BUS_P(14) LVCMOS25

C_DELAY => P7_BUS_N(16) LVCMOS25
RESET => P7_BUS_N(15) LVCMOS25

ANNA_BUS_N(7) <= sref LVCMOS25

P7_BUS_N(1) <= dac12_cs_b_int LVCMOS25
ANNA_BUS_N(33) <= anamuxselb(0) LVCMOS25
ANNA_BUS_P(34) <= anamuxselb(1) LVCMOS25
ANNA_BUS_N(34) <= anamuxselb(2) LVCMOS25

C.3 Synchronization

The following is a listing of the Verilog source code of the sync module, which initializes the
system time counters upon sync and selects the destination event_buffer_in modules depending
in the LSB values of the synchronization time value and the incoming events’ time stamps.

module sync
(clkhi, chip_clk,

evt_clk_select,
clk_pos, clkb_pos,
clkhi_pos, prev_clkhi_pos,
sync, l oad_counter, sync_val, rst);

input clkhi, chip_clk;
output evt_clk_select;
output load_counter;

output [‘ev_clkpos_width-2 : 0] clk_pos;
output [‘ev_clkpos_width-2 : 0] clkb_pos;

output [‘ev_clkpos_width-1 : 0] clkhi_pos;
output [‘ev_clkpos_width-1 : 0] prev_clkhi_pos;
input sync;
input [‘ev_clkpos_width-1 : 0] sync_val;
input rst;

reg evt_clk_select;
reg clk200reg, clk400reg;

reg [‘ev_clkpos_width-2 : 0] clk_pos;
reg [‘ev_clkpos_width-2 : 0] clkb_pos;

reg [‘ev_clkpos_width-1 : 0] clkhi_pos; // actual system time
reg [‘ev_clkpos_width-1 : 0] prev_clkhi_pos; // needed to account for the earlyout bit

reg latchsyncr,latchsyncf; // these registers capture the sync signal
reg syncreg1, syncreg2; // syncreg1 and 2 do the synchronization to clkhi

wire rst_ls; //reset latchsync reg
wire load_counter; //signals other part of the chip that it is now safe to update their counter from sync_val

// to avoid glitches, sync-values are registered in deframer
// -> values should be stable, when sync changes to 1
// (sync works as asynchronous set)

// synchronization scheme:
// 1: "buffer" sync1 to sync @posedge sync1 -> stays 1 until next reset
// 2: register sync @negedge of resp. clock
// 3: negedge clkhi is always first. sync_val[0] and the value of chip_clk decide,
// how to connect the evt_clk’s after following scheme:
// sync_val[0] | chip_clk || evt_clk | evt_clkb
// --

C.3. SYNCHRONIZATION 189

// 0 | 0 || clk | clkb
// 0 | 1 || clkb | clk
// 1 | 0 || clkb | clk
// 1 | 1 || clk | clkb
// 3: load sync_cal into each counter @posedge of resp. clock

// one-hot encoded sync states
parameter sync_statebitsmsb = 4;

// bit meanings
parameter sync_idle = 0,

sync_select = 1,
sync_load = 2,
sync_wait = 3,
sync_synced = 4,

SNsync_idle = 5’b1 << sync_idle,
SNsync_select = 5’b1 << sync_select,
SNsync_load = 5’b1 << sync_load,
SNsync_wait = 5’b1 << sync_wait,
SNsync_synced = 5’b1 << sync_synced;

reg [sync_statebitsmsb:0] SNsync_state;

// catch asynchronous sync
// flip-flop clocked with SNsync_state[sync_synced]->cleared
// sync sets flip-flop -> set

assign rst_ls = rst | SNsync_state[sync_select];
assign load_counter = SNsync_state[sync_wait] || SNsync_state[sync_load];

always @(posedge clkhi or posedge rst_ls)
if (rst_ls) latchsyncr <= 0;
else if(latchsyncr==0)latchsyncr <= sync;

always @(negedge clkhi or posedge rst_ls)
if (rst_ls) latchsyncf <= 0;
else if(latchsyncf==0)latchsyncf <= sync;

// upon sync, the value of chip_clk has to be determined, to decide, which buffers
// to assign odd and even event times to. This is achieved by the use of the below registers.
// If their values are different (exor = 1) then the 200MHz clock hasn’t changed since
// the last 400MHz cycle and we are currently in low cycle of the 200MHz clock.
// the 200MHz register has to be somehow initialized...
initial clk200reg = 0;

always @(posedge chip_clk) clk200reg <= !clk200reg;
always @(posedge clkhi) clk400reg <= !clk200reg;

always @(posedge clkhi or posedge rst)
if (rst) evt_clk_select <= 0;
else if (SNsync_state[sync_select]) evt_clk_select <= !(sync_val[0] ^ !(clk200reg ^ clk400reg));

// crossing clock domains !!
// make sure the sync signal gets synchronized properly...
always @(posedge clkhi or posedge rst)

if (rst) syncreg1 <= 0;
else syncreg1 <= latchsyncr | latchsyncf;

always @(posedge clkhi or posedge rst)
if (rst) syncreg2 <= 0;
else syncreg2 <= syncreg1;

// sync FSM:
always @(posedge clkhi or posedge rst)
begin: sync_fsm

if (rst) begin
prev_clkhi_pos <= 0;
SNsync_state <= SNsync_idle; end

else begin

case (SNsync_state)

SNsync_idle: if (syncreg2) SNsync_state <= SNsync_select;

SNsync_select: SNsync_state <= SNsync_load;

SNsync_load: begin
‘ifdef SYNTHESIS
‘else

$display("%t: Chip: %0h, received sync to clock #%h", $realtime, chip_id, sync_val);
‘endif

SNsync_state <= SNsync_wait; end

// wait one cycle, then start counters
// delay needed for correct simulation

SNsync_wait: SNsync_state <= #‘tim_ctoff SNsync_synced;

190 APPENDIX C. IMPLEMENTATION SUPPLEMENTS

SNsync_synced: begin
prev_clkhi_pos <= clkhi_pos;
if (syncreg1 && syncreg2) SNsync_state <= SNsync_select; end

default: SNsync_state <= SNsync_idle;
endcase

end
end

// the data for the clock positions loaded into these counters is stored premanently
// by the deframer (synchronous to rx_clk0) 3 cycles before load.
always @(posedge clkhi or posedge rst)
begin

if (rst) clkhi_pos <= 0;
else if (SNsync_state[sync_load] || SNsync_state[sync_wait]) clkhi_pos <= sync_val;
else clkhi_pos <= clkhi_pos + 1’b1;

end

always @(posedge chip_clk or posedge rst)
begin

if (rst) clk_pos <= 0;
else if (SNsync_state[sync_load] || SNsync_state[sync_wait])

if (sync_val[0] && !evt_clk_select) clk_pos <= sync_val[‘ev_clkpos_width-1 : 1] + 1’b1;
else clk_pos <= sync_val[‘ev_clkpos_width-1 : 1];

else clk_pos <= clk_pos + 1’b1;
end

always @(posedge chip_clk or posedge rst)
begin

if (rst) clkb_pos <= 0;
else if (SNsync_state[sync_load] || SNsync_state[sync_wait])

if (!sync_val[0] && !evt_clk_select) clkb_pos <= sync_val[‘ev_clkpos_width-1 : 1];
else clkb_pos <= sync_val[‘ev_clkpos_width-1 : 1] + 1’b1;

else clkb_pos <= clkb_pos + 1’b1;
end

endmodule

C.4. SIMULATED SPREAD ON DELAYLINES 191

C.4 Simulated Spread on Delaylines

Within the following four figures, the extracted delay values for all delaylines are given. The
signals of one link are plotted in one figure each. The x-axis denotes the physical address of
the delayline and the extracted delay value for the default delay tap is plotted on the y-axis.

It can be seen that the delay values of the input signals are spread over differences of up
to 600 ps. Moreover, the spread strongly varies with the process corner. Since the technology
data does not contain process corner dependant information on the RC parasitics, this variation
is due to the buffer cells that have been inserted by clock tree synthesis (CTS).

On the one hand, the spread is still below the adjustable range that can be covered by the
delaylines (cf. section 6.2.2). Therefore, it is possible to tune the interface timing to an optimal
data valid window size. On the other hand,

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6 7 8

de
la

y:
 p

ad
 to

 in
pu

t r
eg

is
te

r
[p

s]

delayline address

link 0, wc
link 0, tc
link 0, bc

Figure C.2: Delay values determined for the delaylines of input link 0 by back annotated simulations.
According to the measurements presented in section 6.2.3, the performance of the chips is at worst
12 % worse than the typical case.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 9 10 11 12 13 14 15 16 17

de
la

y:
 p

ad
 to

 in
pu

t r
eg

is
te

r
[p

s]

delayline address

link 1, wc
link 1, tc
link 1, bc

Figure C.3: Delay values determined for the delaylines of input link 1 by back annotated simulations.
According to the measurements presented in section 6.2.3, the performance of the chips is at worst
12 % worse than the typical case.

192 APPENDIX C. IMPLEMENTATION SUPPLEMENTS

 0

 200

 400

 600

 800

 1000

 18 19 20 21 22 23 24 25 26

de
la

y:
 c

lo
ck

 o
ut

 to
 d

at
a

ou
t [

ps
]

delayline address

link 0, wc
link 0, tc
link 0, bc

Figure C.4: Delay values determined for the delaylines of output link 0 by back annotated simulations.
According to the measurements presented in section 6.2.3, the performance of the chips is at worst
12 % worse than the typical case.

 0

 200

 400

 600

 800

 1000

 27 28 29 30 31 32 33 34 35

de
la

y:
 c

lo
ck

 o
ut

 to
 d

at
a

ou
t [

ps
]

delayline address

link 1, wc
link 1, tc
link 1, bc

Figure C.5: Delay values determined for the delaylines of output link 1 by back annotated simulations.
According to the measurements presented in section 6.2.3, the performance of the chips is at worst
12 % worse than the typical case.

C.5. THEORETICAL OPTIMUM DELAY VALUES FOR THE SPIKEY CHIP 193

C.5 Theoretical Optimum Delay values for the Spikey chip

Spikey FPGA Total Delays
Signal TPadD TPadCK TCO TCT TCO+CT Tdel Tdel−Tav delay tap

cad0_o0 3.39 2.76 1.72 1.23 2.95 -0.69 0.27 0
cad0_o1 3.23 2.76 1.70 1.22 2.93 -0.51 0.09 2
cad0_o2 3.34 2.73 1.73 1.23 2.96 -0.67 0.26 0
cad0_o3 3.25 2.76 1.73 1.23 2.96 -0.56 0.14 2
cad0_o4 2.99 2.76 1.71 1.28 2.99 -0.33 -0.09 4
cad0_o5 3.39 2.77 1.71 1.25 2.96 -0.68 0.27 0
cad0_o6 3.36 2.67 1.71 1.28 2.99 -0.79 0.37 0
cad0_o7 3.17 2.67 1.73 1.18 2.91 -0.51 0.09 2

ctl0_o 3.32 2.70 1.75 1.28 3.03 -0.76 0.34 0
clk0_o — 1.71 1.19 2.90 —

cad1_o0 3.03 2.68 1.75 1.29 3.04 -0.39 -0.03 3
cad1_o1 2.95 2.67 1.72 1.28 3.00 -0.26 -0.16 5
cad1_o2 3.02 2.67 1.73 1.28 3.01 -0.35 -0.07 4
cad1_o3 2.95 2.67 1.70 1.27 2.97 -0.24 -0.18 5
cad1_o4 2.90 2.67 1.70 1.29 2.99 -0.20 -0.22 5
cad1_o5 2.84 2.67 1.69 1.31 3.00 -0.16 -0.26 6
cad1_o6 2.85 2.67 1.70 1.27 2.97 -0.14 -0.28 6
cad1_o7 2.74 2.67 1.71 1.27 2.98 -0.04 -0.38 7

ctl1_o 2.91 2.61 1.69 1.29 2.98 -0.27 -0.15 5
clk1_o — 1.72 1.30 3.02 —

Av. Delay -0.42

Table C.2: Calculation of the theoretical optimum delay values for the delaylines at the Spikey chip’s
input. The values are calculated for the typical mean process corner of both, the Spikey chip and the
FPGA. The last column gives the absolute delay value to set on the respective delay line.

Legend:

TPadD = data input pad to D-pin of input flip-flop

TPadCK = clock input pad to CK-pin of input flip-flop

TCO = clock to output delay up to output pad

TCT = clock tree delay from DCM to CK-pin of output flip-flop

Tdel = (TPadCK +TCO+CT(clk))− (TPadD +TCO+CT)
= resulting delay between clock and data signal

Tav = average value of the above for all signals

194 APPENDIX C. IMPLEMENTATION SUPPLEMENTS

Spikey FPGA Total Delays
TCO TPadCK TPadD Tdel Tdel−Tav delay tap

cad0_i0 0.74 2.85 3.87 -1.77 -0.12 4
cad0_i1 0.95 2.92 3.89 -1.92 0.03 3
cad0_i2 0.82 2.87 3.90 -1.85 -0.04 3
cad0_i3 0.92 2.70 3.90 -2.12 0.23 1
cad0_i4 0.78 2.86 3.92 -1.83 -0.06 4
cad0_i5 1.04 2.86 3.91 -2.09 0.20 1
cad0_i6 0.79 2.86 3.91 -1.84 -0.05 3
cad0_i7 0.92 2.70 3.89 -2.11 0.22 1
cad0_i8 0.86 2.84 3.89 -1.91 0.02 3

clk0_i 0.00 —
cad1_i0 0.76 2.87 3.87 -1.76 -0.14 4
cad1_i1 0.83 2.88 3.88 -1.83 -0.06 4
cad1_i2 0.78 2.87 3.89 -1.80 -0.09 4
cad1_i3 0.83 2.89 3.89 -1.83 -0.06 4
cad1_i4 0.82 2.95 3.86 -1.74 -0.15 5
cad1_i5 0.98 2.93 3.87 -1.92 0.03 3
cad1_i6 0.86 2.71 3.84 -1.99 0.10 2
cad1_i7 0.94 2.88 3.89 -1.95 0.06 2
cad1_i8 0.95 3.09 3.88 -1.75 -0.14 4

clk1_i 0.00 —
average delay -1.89

Table C.3: Calculation of the theoretical optimum delay values for the delaylines at the Spikey chip’s
output. The values are calculated for the typical mean process corner of both, the Spikey chip and the
FPGA. The last column gives the absolute delay value to set on the respective delay line.

Legend:

TPadD = data input pad to D-pin of input flip-flop

TPadCK = clock input pad to CK-pin of input flip-flop

TCO = clock to output delay up to output pad

Tdel = TPadCK− (TCO +TPadD)
= resulting delay between clock and data signal

Tav = average value of the above for all signals

C.6. MIXED-SIGNAL SIMULATION OF THE DTC OUTPUT 195

C.6 Mixed-Signal Simulation of the DTC Output

x
0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F

0
.5

11
.5

c
lk

h
i

a
n
a
c
lk

tb
in

<
3
:0

>

s
y
n
a
p
s
e

d
ri
v
e
r

in
p
u
t

x
0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F

1
.7

6
2

7
5

V

-0
.0

0
0

6
8

9
1

8
7

V

0
.5

11
.5

c
lk

h
i

a
n
a
c
lk

tb
in

<
3
:0

>

s
y
n
a
p
s
e

d
ri
v
e
r

in
p
u
t

D
T

C
o
u
tp

u
t
w

it
h

p
a
ra

s
it
ic

s
,
1
5
6

M
H

z

D
T

C
o
u
tp

u
t
w

it
h

p
a
ra

s
it
ic

s
,
1
0
0
M

H
z

1
.0

V

0
.7

8
V

Figure C.6: Mixed-signal simulation of the DTC’s output signal, which enables the event generation
in a specific synapse block for all time bins {0,15}. The waveform is plotted at the synapse driver’s
input. Parasitics introduced by automated routing are included in the output load. It can be seen that
the input voltage to the driver becomes smaller and won’t drive the input over the threshold for large
time bin values. Thanks to Sebastian Millner for the plot!

Appendix D

Mixed-Signal Design Flow
Supplements

D.1 List of Routing Options

setNanoRouteMode dbSkipAnalog false

setNanoRouteMode drouteAntennaFactor 0.99
keep nanoroute from senseless trying...
setNanoRouteMode drouteAutoStop true
no time limit for router
setNanoRouteMode drouteElapsedTimeLimit 0
setNanoRouteMode drouteEndIteration default
setNanoRouteMode drouteFixAntenna true
setNanoRouteMode drouteForbidStackVia false
do not optimize for via count by default.
Do NOT specify together with drouteUseMultiCutViaEffort
setNanoRouteMode drouteMinimizeViaCount false
setNanoRouteMode drouteNoTaperOnOutputPin false
may be set to true after routing and antenna insertion to
#minimize resistance and improve yield:
setNanoRouteMode drouteUseMultiCutVia false
#setNanoRouteMode drouteUseMultiCutViaEffort low
setNanoRouteMode drouteSearchAndRepair true
setNanoRouteMode drouteStartIteration default
If you do not specify this option, NanoRoute uses the spacing
defined in the USEMINSPACING OBS statement in the LEF file:
#setNanoRouteMode drouteUseMinSpacingForBlockage false
the default here is 2...
setNanoRouteMode drouteUseViaOfCut 2
setNanoRouteMode drouteViaOnGridOnly false
setNanoRouteMode envNumberFailLimit 10
setNanoRouteMode envNumberProcessor 6
#setNanoRouteMode envSuperthreading \
"SSH \
{algol 2 /cad/products/encounter/SOC52/bin/nanoroute} \
{fourofeight 6 /cad/products/encounter/SOC52/bin/nanoroute} \
"
set this one to true only with very high congestion!:
setNanoRouteMode grouteMinimizeCongestion true
try setting this to true for analog routing!
setNanoRouteMode routeAllowPowerGroundPin false
setNanoRouteMode routeAntennaCellName {"HDANT" "HDANT2"}
setNanoRouteMode routeAntennaPinLimit 1000 #default
setNanoRouteMode routeAutoGgrid true #default
setNanoRouteMode routeBottomRoutingLayer 1 #default
setNanoRouteMode routeDeleteAntennaReroute true #default
setNanoRouteMode routeEcoOnlyInLayers "1:6"
setNanoRouteMode routeExtraViaEnclosure 0 #default
setNanoRouteMode routeFixTopLayerAntenna true #default
setNanoRouteMode routeHonorPowerDomain false #default
Specify false for this parameter when you route a block whose
top level is going to have diodes inserted:
setNanoRouteMode routeIgnoreAntennaTopCellPin true #default
set the following two to true for the last global routing step:
setNanoRouteMode routeInsertAntennaDiode false #default
setNanoRouteMode routeInsertDiodeForClockNets false #default
setNanoRouteMode routeMinShieldViaSpan -1 #default
#!obsolete in 5.2!setNanoRouteMode routeReInsertFillerCellList ./CFG/corefillers.txt
#setNanoRouteMode routeReplaceFillerCellList fileName
just to make sure:
setNanoRouteMode routeSelectedNetOnly false
setNanoRouteMode routeSiEffort medium
setNanoRouteMode routeStrictlyHonorNonDefaultRule false #default

196

D.2. APPLIED TIMING CONSTRAINTS 197

setNanoRouteMode routeStripeLayerRange "1:6"
setNanoRouteMode routeTdrEffort 8
setNanoRouteMode routeTopRoutingLayer 6
I assume the cells having detailed blockage information:
setNanoRouteMode routeUseBlockageForAutoGgrid true
setNanoRouteMode routeWithEco false #default
setNanoRouteMode routeWithSiDriven true
with this crosstalk reduction can be performed - see fetxtcmdref!
setNanoRouteMode routeWithSiPostRouteFix false
setNanoRouteMode routeWithTimingDriven true
setNanoRouteMode routeWithViaInPin false
setNanoRouteMode routeWithViaOnlyForStandardCellPin false
setNanoRouteMode timingEngine CTE #default

D.2 Applied Timing Constraints
##
definition of clocks
##

#clock frequency (defined as clkhi period)
set CLKPER 3.2

the accumulated phase error / jitter of the PLL will not exceed (according to datasheet)
100ps, therefore the clock period is set to 2.4ns
set MAXCLKJITTER 0.1
set CLKHIPERIOD [expr $CLKPER]
set SYSCLKPERIOD [expr $CLKPER * 2]
set CLKHIPERIODQ [expr $CLKPER / 4]
set CONFIGPERIOD 20
set JTAGPERIOD 200

create_clock -name "_RX_CLK0_" -period $CLKHIPERIOD [get_ports "CLK0_IN_P"]
create_clock -name "_RX_CLK1_" -period $CLKHIPERIOD [get_ports "CLK1_IN_P"]

create_clock -name "_EXT_CLK_" -period $CLKHIPERIOD [get_ports "EXT_CLK_P"]

the clock from the PLL
create_clock -name "_PLL_CLK400_" -period $CLKHIPERIOD [get_pins -hierarchical "*/PLLOUT"]

clkhi and chip_clk are generated by CLK_BY1BY2
No phase relation exists to any of the other clocks, so these clocks are
not treated as generate_clocks but rather as standalone clocks.
create_clock -name "_CHIP_CLK_" -period $SYSCLKPERIOD [get_pins -hierarchical "*/CK_BY2"]
create_clock -name "_CLKHI_" -period $CLKHIPERIOD [get_pins -hierarchical "*/CK_BY1"]

the very slow "clock" to clock in the delay value during reset
create_clock -name "_DEL_CONF_" -period $CONFIGPERIOD [get_ports "C_DELAY"]

the JTAG clock
create_clock -name "_JTAG_CLK_" -period $JTAGPERIOD [get_ports "TCK"]

set_dont_touch_network _RX_CLK0_
set_dont_touch_network _RX_CLK1_
set_dont_touch_network _DEL_CONF_
set_dont_touch_network _PLL_CLK400_
set_dont_touch_network _EXT_CLK_
set_dont_touch_network _JTAG_CLK_
set_dont_touch_network _CHIP_CLK_
set_dont_touch_network _CLKHI_

set_clock_uncertainty $MAXCLKJITTER [get_clocks *]

##
definitions for source synchronous LVDS IO
##

The interface data and clock lines are processed by CTS to have minimum skew. Omit clock definitions
for the data lines here as no synchronous paths are affected. The only thing to constrain is the
routing delay through the delay lines and false paths form clock to input and clock to output ports.
-> CTS can’t trace through the delylines themselves due to the tri-state busses.
OUTPUT LINK including CTL pins
for {set i 0} {$i<=8} {incr i} {

set_false_path -from _CLKHI_ -through [get_pins $SPIKENET_TOP*delaylines/tx_del??$i?/di_outbuf/Z] \
-to [get_ports C*_OUT*]

constrain the paths from the ddr flip flops’ otuputs with (reasonable) minimum delay as
the tool otherwise has no constraints there and unneccessarily loads the multiplexer
outputs with long lines.

constrain the path form clkhi to the start of the output data pseudo clock lines defined in
the clock tree config. this is the part through the select pin of the ddr mulitplexer
set_max_delay 1.55 -from [get_pins $SPIKENET_TOP*transmitter_tx_framer?__framer_buf2?$i?/A]\

-to [get_pins $SPIKENET_TOP*delaylines/tx_del??$i?/di_outbuf/Z]

#flatted for calibre
set_max_delay 1.3 -from [get_pins $SPIKENET_TOP*transmitter_tx_framer?__framer_dff?$i?/Q]\

-to [get_pins $SPIKENET_TOP*delaylines/tx_del??$i?/di_outbuf/Z]

198 APPENDIX D. MIXED-SIGNAL DESIGN FLOW SUPPLEMENTS

}

#FE skips the whole loop if it encounters an error
#therefore the hierarchical version for synopsys gets an extra loop here
for {set i 0} {$i<=8} {incr i} {

#this is the path from the output of the flipflops through the ddr multiplexer
set_max_delay 1.55 -from [get_pins $SPIKENET_TOP*transmitter/tx_framer?__framer_buf2?$i?/A]\

-to [get_pins $SPIKENET_TOP*delaylines/tx_del??$i?/di_outbuf/Z]
#this is the path from the output of the flipflops through the ddr multiplexer
set_max_delay 1.3 -from [get_pins $SPIKENET_TOP*transmitter/tx_framer?/_framer_dff?$i?/Q]\

-to [get_pins $SPIKENET_TOP*delaylines/tx_del??$i?/di_outbuf/Z]
}

set_false_path -from _CLKHI_ -through [get_pins $SPIKENET_TOP*delaylines/txc?_del/Z] \
-to [get_ports CLK?_OUT*]

INPUT LINK
for {set i 0} {$i<=7} {incr i} {

first set the path from the input pin to the clock to false. CTS does the balancing later.
set_false_path -from [get_ports CAD?_IN_*[$i]] -to [get_clocks _RX_CLK?_]

set maximum delay constraint on the delaylines to have them with all equal delay
set_max_delay 1.2 -from [get_pins $SPIKENET_TOP*delaylines/rx_del??$i?/di_a/A] \

-to [get_cells -hierarchical "*dff_*"]
}
the ctl signals
set_false_path -from [get_ports CTL?_IN_*] -to [get_clocks _RX_CLK?_]
set_max_delay 1.2 -from [get_pins $SPIKENET_TOP*delaylines/rx_del??8?/di_a/A] \

-to [get_cells -hierarchical "*dff_*"]

make the tool calculate input and output timing only through the di_null tristate
buffers. Disable all other buffers of the delay lines
for {set i 0} {$i<=8} {incr i} {

set_false_path -through [get_cells $SPIKENET_TOP*delaylines/rx_del??$i?/di_min*]
set_false_path -through [get_cells $SPIKENET_TOP*delaylines/rx_del??$i?/di_plus*]

set_false_path -through [get_cells $SPIKENET_TOP*delaylines/tx_del??$i?/di_min*]
set_false_path -through [get_cells $SPIKENET_TOP*delaylines/tx_del??$i?/di_plus*]

}

##

the current addresses have to be valid directly before cw_xx. This sums up
to about one clock cycle.
set_max_delay [expr $SYSCLKPERIOD /2] -from [get_cells -hierarchical "*applied_addr_reg*"] \

-to [get_pin "$SPIKENET_TOP*cw_*"]
set_max_delay [expr $SYSCLKPERIOD /2] -from [get_cells -hierarchical "*applied_addr_reg*"] \

-to [get_pin "$SPIKENET_TOP*ca*"]
the signals for the analog readout chain
set_max_delay [expr $SYSCLKPERIOD /2] -through [get_pin "$SPIKENET_TOP*aro_*"]

set_false_path -from [get_ports CHIP_ID*]
set_false_path -from [get_ports CI_MODE]
set_false_path -from [get_ports BS_MODE]
set_false_path -from [get_ports RESET]
set_false_path -from [get_ports PLL_RESET]

set_min_delay -5 -to [get_clocks _DEL_CONF_]
set_max_delay 5 -from [get_clocks _DEL_CONF_]

this signal only changes during sync... events shouldn’ be transferred directly
after sync!
set_max_delay 10 -from [get_cells -hierarchical "*evt_clk_select_reg*"]

the following blocks VST event buffer memory WCK --> DOUT paths
set_disable_timing event_in_ram_wc_162V_85C/event_in_ram -from RCK -to WCK
set_disable_timing event_out_ram_wc_162V_85C/event_out_ram -from RCK -to WCK
set_disable_timing event_in_ram_bc_198V_0C/event_in_ram -from RCK -to WCK
set_disable_timing event_out_ram_bc_198V_0C/event_out_ram -from RCK -to WCK

set false paths between unrelated clock domains in design:
all paths crossing the following clock domains either have no
phase relation or are synchronized by two register stages.
set_false_path -from _RX_CLK0_ -to _DEL_CONF_
set_false_path -from _RX_CLK1_ -to _DEL_CONF_

set_false_path -from _CLKHI_ -to _RX_CLK0_
set_false_path -from _CLKHI_ -to _RX_CLK1_
set_false_path -from _CHIP_CLK_ -to _RX_CLK0_
set_false_path -from _CHIP_CLK_ -to _RX_CLK1_

set_false_path -from _RX_CLK0_ -to _CHIP_CLK_
set_false_path -from _RX_CLK1_ -to _CHIP_CLK_

set_false_path -from _RX_CLK0_ -to _CLKHI_
set_false_path -from _RX_CLK1_ -to _CLKHI_

set_false_path -from _DEL_CONF_ -to [get_ports C*_OUT_*]
set_false_path -from _DEL_CONF_ -to _RX_CLK0_

D.2. APPLIED TIMING CONSTRAINTS 199

set_false_path -from _DEL_CONF_ -to _RX_CLK1_

set_false_path -from _EXT_CLK_ -to _CHIP_CLK_
set_false_path -from _EXT_CLK_ -to _CLKHI_

disable optimization of pll_locked signal
set_false_path -through [get_pin "$SPIKENET_TOP*pll_locked400"]

set the clock enable signal for the event loopback to false.
-> Event out fifos must be resetted after switching!
set_false_path -from [get_cells -hierarchical "*el_enable_reg*"]

the only things clocked by rx_clk* are the input fifos (they have two asynchronous
clock ports) and the synchronisation logic in deframer0. The sync signal is
properly synchronized in spikenet_top/sync_inst (2 regs) so it should be ok to only
set a max_delay constraint on this path.
set_max_delay 1 -from [get_clocks _RX_CLK0_] -to [get_cells -hierarchical "*latchsync?_reg*"]

##
FE only timing constraints
##

As the anaclks are not really gated (they are switched only once or so for
a session), the clock gating check may be disabled, here.
set_disable_clock_gating_check [get_pins spikenet_top_pad/spikenet_top/clock_gen_aclkand/A2]
set_disable_clock_gating_check [get_pins spikenet_top_pad/spikenet_top/clock_gen_aclkband/A2]
set_disable_clock_gating_check [get_pins spikenet_top_pad/spikenet_top/clock_gen_aclkhiand/A2]

disable the clock_Gatin_check for the multiplexer selecting
between ext_clk and pllout
set_disable_clock_gating_check [get_pins spikenet_top_pad/spikenet_top/clock_gen_U5/A1]
set_disable_clock_gating_check [get_pins spikenet_top_pad/spikenet_top/clock_gen_U5/B1]

Appendix E

Bonding Diagram and Packaging

This page is intentionally left blank.

200

201

Figure E.1: Bonding diagram for Spikey 1 as sent to Europractice for packaging. The pinout of
Spikey 2 is identical to the one of Spikey 1, therefore the same diagram was used for the second version.

202 APPENDIX E. BONDING DIAGRAM AND PACKAGING

c
u

t
b

e
fo

re
b

o
n

d
in

g
!!

!
c
u

t
b

e
fo

re
b

o
n

d
in

g
!!

!

Figure E.2: Bonding diagram for both versions of the Spikey chip for bonding onto the Recha PCB.
This footprint also has not changed for the Recha successor PCB, Recha V2 which has been developed
by B. Ostendorf.

Appendix F

Recha PCB

F.1 Modifications to the Nathan PCB

The following modifications to the Nathan module are required in order to accommodate the
Recha PCB:

• The PGA144 socket has to be soldered off to free up the space between the SMT con-
nectors. This is required for the decoupling capacitors located on the bottom of the
Recha PCB. See [Ost07] for a technical solution.

• All 120 Ω resistors R9 on the top side need to be replaced by 0 Ω resistors to achieve
correct LVDS signaling levels.

• All 100 Ω resistors R8 on the top side need to be completely removed to achieve correct
LVDS signaling levels.

• Within the UCF file for the FPGA, the signaling standard of the LVDS pairs relating to
the afore listed resistors has to be changed from BLVDS_25 to LVDS_25.

F.2 Schematics

Page one of the Recha schematics will be displayed on the following page.

203

204 APPENDIX F. RECHA PCB

Figure F.1: Recha schematic, page 1 of 2.

F.2. SCHEMATICS 205

Figure F.2: Recha schematic, page 2 of 2.

206 APPENDIX F. RECHA PCB

F.3 Layouts

U
1
6

R
8

U
1
5

R
7

R
1
7

R
1
8

J
7

U
1
4

U6

J
6

C30

U
1
3

R
9

R
6

R
1
0

R
5

U19

U25

C11

C6

U
2
6

U
2
0

U2

C29

U
1
2

U22

U27

C21

U
1
1

U
2
3

U
2
8

U
1
0

U
9

U
5

J2

J1

J5

U
8

R
1

R
2

R
3

R
4

J4

J3

U29U30

U
4

3_ 0_

2_ 1_ID:1

’05

RECHA 2
A. Gruebl

Figure F.3: Top layer of the Recha PCB.

2

Figure F.4: Layer 2 of the Recha PCB.

F.3. LAYOUTS 207

3

Figure F.5: Layer 3 of the Recha PCB.

U
3

C35

C54

C
2
5

C
2
6

C
3
1

C
1
8

C
3
2

C
9

C
1
6

C
1
3

C
2
3

C47

C
4
2

C49

U32

C46

C
1

C
2

C15

C
2
2

C
2
7

C
2
8

C
1
7

C
2
4

C
4
3

C
4
4

C45

C
7

C
8

C
1
0

C36

R
1
9

C40

C41

R15

C38

R12
R14

C
2
0

C37
C39

R11
R13

C51

C
3

C
5

U31

U
1
7

R16

U7

C
1
4

C
1
9

C
3
3

C
1
2

C
4

C
5
2

U
1

U
1
8

U
2
1

U
2
4

C
5
3

C
5
0

4

Figure F.6: Bottom layer of the Recha PCB.

208 APPENDIX F. RECHA PCB

Bibliography

[Ach] R. Achenbach. personal communication.

[AGM00] Y. Wang A. Gupta and H. Markram. Organizing principles for a diversity of
gabaergic interneurons and synapses in the neocortex. Science, 287:273–278,
Jan. 2000.

[ANS96] ANSI/TIA/EIA-644. Electrical Characteristics of Low Voltage Differential Sig-
nalling (LVDS), March 1996.

[BGM+07] D. Brüderle, A. Grübl, K. Meier, E. Mueller, and J. Schemmel. A software
framework for tuning the dynamics of neuromorphic silicon towards biology.
In Proceedings of the 9th International Work-Conference on Artificial Neural
Networks (IWANN’2007), accepted for publication, 2007.

[Bha99] H. Bhatnagar. Advanced ASIC Chip Synthesis Using Synopsys DesignCompiler
and PrimeTime. Kluwer Academic Publishers, 1999. ISBN 0-7923-8537-3.

[BP97] G. Bi and M. Poo. Synaptic modifications in cultured hippocampal neurons: De-
pendence on spike timing, synaptic strength, and postsynaptic cell type. Neural
Computation, 9:503–514, 1997.

[Brü04] D. Brüderle. Implementing spike-based computation on a hardware perceptron.
Diploma thesis, University of Heidelberg, HD-KIP-04-16, 2004.

[Brü07] D. Brüuderle. PhD thesis, University of Heidelberg, in preparation, 2007.

[Cad05a] Cadence Design Systems, Inc. LEF/DEF Language Reference, Product Version
5.6, 2005. availbale from Cadence online documentation cdsdoc.

[Cad05b] Cadence Design Systems, Inc. Virtuoso AMS Environment User Guide, Product
Version 5.6, 2005. availbale from Cadence online documentation cdsdoc.

[Cad06a] Cadence Design Systems, Inc. Encounter Timing Closure Guide, Product Ver-
sion 5.2.1, February 2006. availbale from Cadence online documentation cdsdoc.

[Cad06b] Cadence Design Systems, Inc. Encounter User Guide, Product Version 5.2.3,
June 2006. availbale from Cadence online documentation cdsdoc.

[CBF00] A. P. Chandrakasan, W. J. Bowhill, and F. Fox. Design of High-Performance
Microprocessor Circuits. Wiley-IEEE Press, 2000.

[Cor] United Microelectronics Corporation. http://www.umc.com.

209

http://www.umc.com

210 BIBLIOGRAPHY

[DA01] P. Dayan and L. F. Abott. Theoretical Neuroscience: Computational and Mathe-
matical Modeling of Neural Systems. The MIT press, Cambride, Massachusetts,
London, England, 2001.

[DGA99] M. Diesmann, M.-O. Gewaltig, and A. Aertsen. Stable propagation of syn-
chronous spiking in cortical neural networks. Nature, 402:529–532, 1999.

[DLM+99] V. Douence, A. Laflaquiere, S. Le Masson, T. Bal, and G. Le Masson. Analog
electronic system for simulating biological neurons. In Proceedings of the Inter-
national Work-Conference on Artificial and Natural Neural Networks, IWANN
1999, pages 188–197, 1999.

[DP01] W. J. Dally and J. W. Poulton. Digital Systems Engineering. Cambridge Univer-
sity Press, Cambridge, UK, 2001.

[DRP03] A. Destexhe, M. Rudolph, and D. Pare. The high-conductance state of neocorti-
cal neurons in vivo. Nature Reviews Neuroscience, 4:739–751, 2003.

[EME+06] M. Ehrlich, C. Mayr, H. Eisenreich, S. Henker, A. Srowig, A. Grübl, J. Schem-
mel, and R. Schüffny. Wafer-scale vlsi implementations of pulse coupled neural
networks. Fourth IEEE International Multi-Conference on Systems, Signals &
Devices - paper submitted, December 2006.

[EVg] Kirchhoff Institute for Physics Electronic Vision(s) group. Spikey 2 svn repos-
itory. https://www.kip.uni-heidelberg.de/repos/VISION/
project/spikey2.

[FGP+04] J. Fieres, A. Grübl, S. Philipp, K. Meier, J. Schemmel, and F. Schürmann. A
platform for parallel operation of VLSI neural networks. In Proc. of the 2004
Brain Inspired Cognitive Systems Conference (BICS2004), University of Stirling,
Scotland, UK, 2004.

[FS95] D. Ferster and N. Spruston. Cracking the neuronal code. Science, 270:756–757,
1995.

[GAS90] R. L. Geiger, P. E. Allen, and N.l R. Strader. VLSI Design Techniques for Analog
and Digital Circuits. McGraw-Hill, Inc, 1990.

[Ger99] W. Gerstner. Spiking neurons. In W. Maass and C.M. Bishop, editors, Pulsed
Neural Networks. MIT Press, 1999.

[GK02] W. Gerstner and W. Kistler. Spiking Neuron Models: Single Neurons, Popula-
tions, Plasticity. Cambridge University Press, 2002.

[Gop05] L. Gopalakrishnan. FIFOs Using Virtex-II Shift Registers. Xilinx, Inc,
www.xilinx.com, January 2005. XAPP256.

[Grü03] A. Grübl. Eine FPGA-basierte platform für neuronala netze. Diploma thesis
(german), University of Heidelberg, HD-KIP-03-2, 2003.

[HC97] M. L. Hines and N. T. Carnevale. The neuron simulation environment. Neural
Computation, 9:1179–1209, 1997.

https://www.kip.uni-heidelberg.de/repos/VISION/project/spikey2
https://www.kip.uni-heidelberg.de/repos/VISION/project/spikey2

BIBLIOGRAPHY 211

[HdO06] D. Husmann de Oliveira. A new backplane for the nathan boards. Technical
report, Internal talk given on the meeting of the Electronic Vision(s) group, 2006.

[HH52] A.F. Hodgkin and A.F. Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. J. Physiol. (London),
117:500–544, 1952.

[HMW96] Ph. Häflinger, M. Mahowald, and L. Watts. A spike based learning neuron in
analog VLSI. Advances in neural information processing systems, 9, 1996.

[Hoh05] S. Hohmann. Stepwise Evolutionary Training Strategies for Hardware Neural
Networks. PhD thesis, University of Heidelberg, 2005.

[Hop82] J. J. Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sciences,
79:2554–2558, 1982.

[HP95] J. Hennessy and D. Patterson. Computer Architecture - A Quantitative Approach.
Morgan Kaufmann Publishers, Inc., San Francisco, California, 1995.

[HY04] B. Hirschl and L. P. Yaroslavsky. Fpga implementations of sorters for non-linear
filters. In Proceedings of the XII. European Signal Processing Conference (EU-
SIPCO), Vienna, Austria, September 2004.

[Hyp06] HyperTransport Technology Consortium. HyperTransport I/O Link Specifica-
tion, revision 3.0a edition, November 2006. Document No. HTC20051222-
0046-0017.

[Int00] Integrated Device Technology, Inc. 128K x 36, 256K x 18, 3.3V Synchronous
ZBT SRAMs, 2.5V I/O, Burst Counter, Pipelined Outputs, idt71v2556 edition,
October 2000. www.idt.com.

[JG93] H. Johnson and M. Graham. High-Speed Digital Design - A Handbook of Black
Magic. Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458, 1993.

[KA88] J. Krüger and F. Aiple. Multimicroelectrode investigation of monkey striate cor-
tex: Spike train correlations in the infragranular layers. Journal of Neurophysi-
ology, 60 (2):798–828, 1988.

[lvd00] National Semiconductor Corporation. LVDS Owner’s manual, 2.0 edition, 2000.
www.national.com.

[Maa97] W. Maass. Networks of spiking neurons: the third generation of neural network
models. Neural Networks, 10:1659–1671, 1997.

[MAG+02] M. Mazzucco, A. Ananthanarayan, R. L. Grossman, J. Levera, and G. Bhagavan-
tha Rao. Merging multiple data streams on common keys over high performance
networks. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE con-
ference on Supercomputing, pages 1–12, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[Max96] Maxim Integrated Products. +3V, Quad, 12-Bit Voltage-Output DAC with Serial
Interface, max5253 edition, September 1996. www.maxim.com.

www.idt.com
www.national.com
www.maxim.com

212 BIBLIOGRAPHY

[McK99] N. McKeown. The islip scheduling algorithm for input-queued switches.
IEEE/ACM Transactions on Networking, Volume 7, Issue 2:188–201, 1999.

[Mea05] K. Meier et al. FACETS - fast analog computing with emergent transient states
(15879). EU FP6-2004-IST-FETPI, 2005.

[Mic02] Micron Technology, Inc., www.micron.com. Small-Outline DDR SDRAM Mod-
ule, Jan 2002.

[MMS04] E. Müller, K. Meier, and J. Schemmel. Methods for simulating high-conductance
states in neural microcircuits. In Proceedings of the Brain Inspired Cognitive
Systems (BICS), Stirling, UK, 2004.

[MNM02] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation, 14(11):2531–2560, 2002.

[MNM04] W. Maass, T. Natschläger, and H. Markram. Computational models for generic
cortical microcircuits, chapter 18, pages 575–605. Number ISBN 1-58488-362-
6. J. Feng, Boca Raton, 2004.

[MP43] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, pages 127–147, 1943.

[MP69] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

[MS95] Z.F. Mainen and T.J. Sejnowski. Reliability of spike timing in neocortical neu-
rons. Science, 268:1503–1506, 1995.

[Mue03] E. Mueller. Simulation of high-conductance states in cortical neural networks.
Diploma thesis, University of Heidelberg, HD-KIP-03-22, 2003.

[Mul06] E. B. Muller. Markov Process Models for Neural Ensembles with Spike-
Frequency Adaptation. PhD thesis, Ruprecht-Karls University Heidelberg, 2006.

[Nat01] National Semiconductor Corporation. 1.5A Low Dropout Positive Regulators,
lm1086 edition, August 2001. www.national.com.

[Ost07] B. Ostendorf. Charakterisierung eines neuronalen netzwerk-chips. Diploma the-
sis, University of Heidelberg, in preparation (in german), 2007.

[OWLD05] M. Oster, A. M. Whatley, S-C. Liu, and R. J. Douglas. A hardware/software
framework for real-time spiking systems. In Artificial Neural Networks: Biolog-
ical Inspirations û ICANN, pages 161–166. Springer, 2005.

[PGMS07] S. Philipp, A. Grübl, K. Meier, and J. Schemmel. Interconnecting vlsi spik-
ing neural networks using isochronous connections. In Proceedings of the 9th
International Work-Conference on Artificial Neural Networks (IWANN’2007),
accepted for publication, 2007.

[Phi07] S. Philipp. PhD thesis, University of Heidelberg, in preparation, 2007.

[Raz96] B. Razavi. Monolithic Phase-Locked-Loops and Clock Recovery Circuits. IEEE
Press, 1996.

www.national.com

BIBLIOGRAPHY 213

[RD06] D. Shin R. Dömer, A. Gerstlauer. Cycle-accurate rtl modeling with multi-cycled
and pipelined components. In Proceedings of the International System-on-Chip
Design Conference, Seoul, Korea, October 2006.

[Ros60] F. Rosenblatt. Perceptron simulation experiments. In Proceedings of the IRE,
pages 301–309, 1960.

[SA99] T. Shanley and D. Anderson. PCI System Architecture. Addison-Wesley Long-
man, Amsterdam, 4th edition, 1999.

[SBMO07] J. Schemmel, D. Brüderle, K. Meier, and B. Ostendorf. Modeling synaptic plas-
ticity within networks of highly accelerated I&F neurons. In Proceedings of the
2007 IEEE International Symposium on Circuits and Systems (ISCAS’07). IEEE
Press, 2007.

[Scha] J. Schemmel. personal communication.

[Schb] T. Schmitz. personal communication.

[Sch05] F. Schürmann. Exploring Liquid Computing in a Hardware Adaptation: Con-
struction and Operation of a Neural Network Experiment. PhD thesis, Ruprecht-
Karls University Heidelberg, 2005.

[Sch06] T. Schmitz. Evolution in Hardware – Eine Experimentierplattform zum par-
allelen Training analoger neuronaler Netzwerke. PhD thesis, Ruprecht-Karls-
University, Heidelberg, 2006.

[SGMM06] J. Schemmel, A. Grübl, K. Meier, and E. Mueller. Implementing synaptic plas-
ticity in a VLSI spiking neural network model. In Proceedings of the 2006 Inter-
national Joint Conference on Neural Networks (IJCNN’06). IEEE Press, 2006.

[SGOL+06] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gomez-Rodriguez, H. K. Riis, T. Delbrück, and S.-C. Liu. AER
building blocks for multi-layer multi-chip neuromorphic vision systems. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 1217–1224. MIT Press, Cambridge, MA, 2006.

[SH02] J. B. Sulistyo and D. S. Ha. A new characterization method for delay and power
dissipation of standard library cells. VLSI Design, 15(3):667–678, 2002.

[SHMS04] J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann. A mixed-mode analog
neural network using current-steering synapses. Analog Integrated Circuits and
Signal Processing, 38(2-3):233–244, 2004.

[Sin01] A. Sinsel. Linuxportierung auf einen eingebetteten powerpc 405 zur steuerung
eines neuronalen netzwerkes. Diploma thesis (german), University of Heidel-
berg, HD-KIP-03-14, 2001.

[SKZ+03] D. Schubert, K. Kötter, H. Zilles, H.J. Luhmann, and J.F. Staiger. Cell type-
specific circuits of cortical layer iv spiny neurons. Journal of Neuroscience,
23:2961–2970, 2003.

214 BIBLIOGRAPHY

[SMA00] S. Song, K. Miller, and L. Abbott. Competitive hebbian learning through
spiketiming-dependent synaptic plasticity. Nat. Neurosci., 3:919–926, 2000.

[SMM04] J. Schemmel, K. Meier, and E. Mueller. A new VLSI model of neural micro-
circuits including spike time dependent plasticity. In Proceedings of the 2004
International Joint Conference on Neural Networks (IJCNN’04), pages 1711–
1716. IEEE Press, 2004.

[SMS01] J. Schemmel, K. Meier, and F. Schürmann. A VLSI implementation of an analog
neural network suited for genetic algorithms. In Proceedings of the International
Conference on Evolvable Systems ICES 2001, pages 50–61. Springer Verlag,
2001.

[SQ 04] Cadence Design Systems, Inc. SPECCTRAQuest Simulation and Analysis Refer-
ence, 15.2 edition, 2004. availbale from Cadence online documentation cdsdoc.

[Str97] B. Stroustrup. The C++ Programming Language. Addison Wesley, Reading,
MA, August 1997.

[sup03] Super-LVDS Receiver/Transmitter Cell Design Manual, version 6 edition, Jan-
uary 2003. Internal Document available from http://wwwasic.kip.
uni-heidelberg.de/asiccc/docu.html.

[Syn04a] Synopsys, Inc. Design Compiler User Guide, June 2004. Chapter I-III, Version
V-2004.06, available e.g from docserv.kip.uni-heidelberg.de.

[Syn04b] Synopsys, Inc. Library Compiler User Guide, 2004. Chapters 1-3.

[Syn04c] Synopsys, Inc. Synchronous (Dual-Clock) FIFO Controller with Static Flags
DW_fifoctl_s2_sf, 2004. DesignWare Building Block IP, Version 2004.06.

[Syn04d] Synopsys, Inc. Synchronous (Dual-Clock) FIFO with Static Flags
DW_fifo_s2_sf, 2004. DesignWare Building Block IP, Version 2004.06.

[Syn04e] Synopsys, Inc. Synchronous (Single-Clock) FIFO Controller with Static Flags
DW_fifoctl_s1_sf, 2004. DesignWare Building Block IP, Version 2004.06.

[Tan03] A. S. Tanenbaum. Computer Networks. Prentice Hall PTR, Upper Saddle River,
New Jersey 07458, fourth edition edition, 2003.

[The07a] The Neural Simulation Technology (NEST) Initiative. Homepage. http://
www.nest-initiative.org, 2007.

[The07b] The Python Programming Language. Homepage. http://www.python.
org, 2007.

[TMG02] C. Toumazou, G. Moschytz, and B. Gilbert. Trade-Offs in Anaolg Circuit Design
- The Designer’s Companion. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2002.

[UMC03] UMC, Inc. 0.18um Mixed-Mode/RFCMOS 1.8V/3.3V 1P6M Electrical Design
Rule, ver. 1.2_p2 edition, 2003.

[Vir04a] Virtual Silicon Technology, Inc. eSi-PLL Phase Locked Loop, 2004. Version 2.1.

http://wwwasic.kip.uni-heidelberg.de/asiccc/docu.html
http://wwwasic.kip.uni-heidelberg.de/asiccc/docu.html
docserv.kip.uni-heidelberg.de
http://www.nest-initiative.org
http://www.nest-initiative.org
http://www.python.org
http://www.python.org

[Vir04b] Virtual Silicon Technology, Inc. eSi-RAM/1P Single-Port Synchronous SRAM,
2004. Version UMCL18U420T2_1.2.

[Vir04c] Virtual Silicon Technology, Inc. eSi-RAM/2P Two-Port Register File SRAM,
2004. Version UMCL18U420T2_1.3.

[Vir04d] Virtual Silicon Technology (VST). 0.18um VIP Standard Cell Library, Pro-
cess: UMC Logic 0.18um Generic II Technology: 0.18µm, July 2004.
UMCL18G212T3, Revision 1.0.

[vR01] M. C. W. van Rossum. A novel spike distance. Neural Computation, 13(4):751–
763, 2001.

[WG78] C.D. Woody and E. Gruen. Characterization of electrophysical properties of
intracellularly recorded neurons in the neocortex of awake cats. Brain Res.,
158:343–357, 1978.

[wue] Würth elektronik. www.wuerth-elektronik.de.

[Xil02a] Xilinx, Inc., www.xilinx.com. Virtex-II Pro Platform FPGA Handbook, 2002.

[Xil02b] Xilinx, Inc. Virtex-II Pro Platform FPGAs: Datasheet, ds083 edition, 2002.
www.xilinx.com.

[xil05a] Xilinx, Inc, www.xilinx.com. Local Clocking Resources in Virtex-II Devices,
2005. XAPP609.

[Xil05b] Xilinx, Inc., www.xilinx.com. Synthesis and Verification Design Guide, product
revision 7.1i edition, 2005.

[Xil05c] Xilinx, Inc., www.xilinx.com. Xilinx CORE Generator, Version 7.1i, 2005.

215

www.wuerth-elektronik.de
www.xilinx.com
www.xilinx.com

216

Danksagung - Acknowledgements

Mein herzlicher Dank gilt allen, die zum Gelingen dieser Arbeit beigetragen haben. Insbeson-
dere möchte ich mich an dieser Stelle bedanken bei

• Herrn Prof. Dr. Karlheinz Meier für die stets positive Unterstützung und die Möglichkeit,
nach meiner Diplomarbeit auch im Rahmen dieser Doktorarbeit an den Hardwareaspek-
ten der Electronic Vision(s) forschen zu können.

• Herrn Prof. Dr. René Schüffny für die freundliche Übernahme des Zweitgutachtens und
für die angenehme Zusammenarbeit mit ihm und seiner Arbeitsgruppe im Rahmen von
FACETS.

• Dr. Johannes Schemmel für die Zusammenarbeit an den beiden Spikeys. Seine Ideen
und sein “Analogteil” haben meine Arbeit erst ermöglicht und er hat mir in vielen
fachlichen Diskussionen stets kompetent und scharfsinnig weiterhelfen können. Nicht
zuletzt möchte ich ihm auch für die (ent)spannenden Bike-Touren auf, über und um die
Heidelberger Berge danken.

• Stefan Philipp und Dr. Tillmann Schmitz für die gemeinsame Zeit im Hardware-Zimmer,
für bereichernde Diskussionen über VHDL-Design und natürlich für ihr VHDL-Design,
das den Spikey-Controller so toll aufgenommen hat. Nochmals vielen Dank an Tillmann
für das Korrekturlesen des Manuskripts.

• Dr. Martin Trefzer für seine unendliche Ausdauer beim Korrekturlesen des Manuskripts
und für die vielen netten Gespräche - nicht nur im KIP.

• Daniel Brüderle für seine große Hilfe bei den letzten Spikey 2-Messungen.

• Dr. Ina Kyas für die langjährige Freundschaft seit unserem gemeinsamen Studienbe-
ginn. Ihr motivierender Zuspruch, ihr Glücksschweinchen und natürlich auch das Kor-
rekturlesen des Manuskripts haben einen großen Teil zum Gelingen dieser Arbeit beige-
tragen.

• Den Softies Dr. Johannes Fieres und Dr. Eilif Mueller für die Beantwortung meiner
neurowissenschaftlichen Fragen.

• Ralf Achenbach für seine Hilfe im Reinraum und die Kämpfe mit dem (Auto)Bonder,
das stets zielsichere Lokalisieren der Gerätschaften des ASIC-Labors und für viele
schöne Kaffeekränzchen, die mir den Alltag beim Verfassen dieser Arbeit erleichtert
haben.

217

• Markus Dorn für die zuverlässige Betreuung unserer CAD-Maschinen und die sofortige
Hilfe bei irgendwelchen “shared object library not found”- oder sonstigen Katastrophen,
die die Arbeit mit den Tools so begleiten.

• Boris Ostendorf für seine produktive Hilfe im Rahmen seiner Diplomarbeit.

• Den Mitarbeitern der Elektronikwerkstatt für ihre Unterstützung bei Bauteilfragen, Löt-
problemen und in vielen anderen Belangen.

• Allen aktuellen und ehemaligen Freunden und Kollegen aus der Electronic Vision(s)
Gruppe für die angenehme Atmosphäre im KIP und außerhalb des KIP.

• Allen Mitarbeitern des KIP für die freundliche und nette Atmosphäre, für die super
funktionierende Infrastruktur, für die Hilfe bei allen bürokratischen Fragen und dafür,
dass der Laden läuft.

• Meinen lieben Eltern für ihre moralische Unterstützung in allen Lebenslagen und nicht
zuletzt für ihre finanzielle Unterstützung, ohne die weder mein Studium noch diese Dok-
torarbeit möglich gewesen wären.

• Meiner liebsten Ute für die vielen schönen Momente, die wir zusammen verbringen
können, für die Ruhe, die sie mir gibt und dafür, dass sie immer für mich da ist. Aber
auch für ihre bedingungslose Unterstützung während des Verfassens dieser Arbeit und
für die schöne Aussicht, im Anschluss an meine Disputation unsere Hochzeit feiern zu
können.

218

Erklärung:

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 02. Mai 2007
.......................................

(Unterschrift)

	Introduction
	1 Artificial Neural Networks
	1.1 Biological Background
	1.1.1 Modeling Biology

	1.2 The Utilized Integrate-and-Fire Model
	1.2.1 Neuron and Synapse Model
	1.2.2 Terminology
	1.2.3 Expected Neural Network Dynamics

	1.3 VLSI Implementation
	1.3.1 Neuron Functionality
	1.3.2 Synapse Functionality and Connectivity
	1.3.3 Operating Speed and Power Consumption
	1.3.4 Network Model and Potential Topologies
	1.3.5 Overview of the Implementation

	2 System on Chip Design Methodology
	2.1 Prerequisites
	2.1.1 Digital Design Fundamentals
	2.1.2 Required Technology Data

	2.2 Design Data Preparation
	2.3 Logic Synthesis and Digital Front End
	2.4 Digital Back End and System Integration
	2.4.1 Design Import and Partitioning
	2.4.2 Analog Routing
	2.4.3 Top-Level Placement and Routing
	2.4.4 Intermezzo: Source Synchronous Interface Implementation

	2.5 Verification
	2.5.1 Timing Closure
	2.5.2 Physical Verification

	2.6 Concluding Remarks

	3 Large Scale Artificial Neural Networks
	3.1 Existing Hardware Platform
	3.1.1 The Nathan PCB
	3.1.2 The Backplane
	3.1.3 Transport Network

	3.2 Principles of Neural Event Processing
	3.2.1 Communication with the Neural Network Chip
	3.2.2 Inter-Chip Event Transport
	3.2.3 Event Processing Algorithm
	3.2.4 Layers of Event Processing

	3.3 Neural Event Processor for Inter-Chip Communication
	3.3.1 Event Queues
	3.3.2 Event Packet Generator
	3.3.3 Implementation Considerations
	3.3.4 Estimated Resource Consumption

	3.4 Simulation Environment
	3.4.1 Operation Principle of the Simulation Environment
	3.4.2 Neural Network Setup

	3.5 Simulation Results
	3.5.1 Static Load
	3.5.2 Synchronized Activity
	3.5.3 Drop Rates and Connection Delay

	3.6 Concluding Remarks

	4 Implementation of the Chip
	4.1 Chip Architecture
	4.2 Analog Part
	4.2.1 Model Parameter Generation
	4.2.2 The Network Block
	4.2.3 Event Generation and Digitization
	4.2.4 Monitoring Features
	4.2.5 Specifications for the Digital Part

	4.3 Digital Part
	4.3.1 Interface: Physical and Link Layer
	4.3.2 The Application Layer
	4.3.3 Clock Generation and System Time
	4.3.4 The Synchronization Process
	4.3.5 Event Processing in the Chip
	4.3.6 Digital Core Modules
	4.3.7 Relevant Figures for Event Transport

	4.4 Mixed-Signal System Implementation
	4.4.1 Timing Constraints Specification
	4.4.2 Top Level Floorplan
	4.4.3 Estimated Power Consumption and Power Plan
	4.4.4 Timing Closure

	4.5 Improvements of the Second Version

	5 Operating Environment
	5.1 Hardware Platform
	5.1.1 System Overview
	5.1.2 The Recha PCB

	5.2 Programmable Logic Design
	5.2.1 Overview
	5.2.2 Transfer Models and Organization of the Data Paths
	5.2.3 The Controller of the Chip
	5.2.4 Synchronization and Event Processing
	5.2.5 Communication with the Controller and the Playback Memory

	5.3 Control Software
	5.3.1 Basic Concepts
	5.3.2 Event Processing
	5.3.3 Higher Level Software

	6 Experimental Results
	6.1 Test Procedure
	6.2 Performance of the Physical Layer
	6.2.1 Clock Generation
	6.2.2 Signal Integrity: Eye Diagram Measurements
	6.2.3 Accuracy of the Delay Elements and Estimation of the Process Corner

	6.3 Verification of the Link Layer and Maximum Data Rate
	6.4 Verification of the Application Layer
	6.4.1 Basic Functionality
	6.4.2 The Different Core Modules
	6.4.3 Maximum Operating Frequency

	6.5 Verification of the Event Processing
	6.5.1 Synchronization of the Chip
	6.5.2 Verification of the Digital Event Transport
	6.5.3 Maximum Event Rate Using the Playback Memory
	6.5.4 Event Generation: Digital-To-Time
	6.5.5 Event Digitization: Time-To-Digital

	6.6 Process Variation and Yield
	6.7 Power Consumption
	6.8 An Initial Biologically Realistic Experiment

	Summary and Outlook
	Acronyms
	A Model Parameters
	B Communication Protocol and Data Format
	C Implementation Supplements
	C.1 Spikey Pinout
	C.2 Pin Mapping Nathan-Spikey
	C.3 Synchronization
	C.4 Simulated Spread on Delaylines
	C.5 Theoretical Optimum Delay values for the Spikey chip
	C.6 Mixed-Signal Simulation of the DTC Output

	D Mixed-Signal Design Flow Supplements
	D.1 List of Routing Options
	D.2 Applied Timing Constraints

	E Bonding Diagram and Packaging
	F Recha PCB
	F.1 Modifications to the Nathan PCB
	F.2 Schematics
	F.3 Layouts

	Bibliography

