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Abstract. This work tackles the problem of synthesizing transferable and reusa-
ble operational amplifiers on a field programmable transistor array: the Heidel-
berg FPTA. A multi-objective evolutionary algorithm is developed, in order to be
able to include various specifications of an operational amplifier into the process
of circuit synthesis. Additionally, the presented algorithm is designed to preserve
the diversity within the population troughout evolution and is therefore able to
efficiently explore the design space. Furthermore, the evolved circuits are proven
to work on the chip as well as in simulation outside the FPTA. Schematics of
good solutions are presented and their characteristics are compared to those of
basic manually created reference designs.

1 Introduction

Analog circuit development is a discipline of electronic design that demands a lot of
knowledge and experience as well as a considerable amount of creativity in solving
diverse problems from the designer. The design of task specific operational amplifiers
(OP) is an example for an exercise that has to be done by experienced designers and
exactly such OPs are essential building blocks of many electronic circuits. Contrary to
digital circuit design there is still a lack of supporting tools for automatic synthesis and
sizing of transistor circuits.

To date, to the authors knowledge, only a few analytic solutions for analog design
automation are available. Examples in which previously known topologies are tested
while the sizing of the components is done by an optimization algorithm are given
in [1, 2]. In a great number of approaches, the topology is also to be found automat-
ically, therefore, developmental strategies are applied in order to deal with the high
complexity of amplifiers [3–6]. An alternative possibility is to choose a multi-objective
evolutionary algorithm [7, 8], in order to face the fact that, for the solution of almost
every complex problem, numerous variables have to be taken into account for opti-
mization. Operational amplifiers as well as other transistor circuits found to this point
by means of hardware evolution in conjunction with multi-objective optimization (MO)
are reported in [9–11]. Furthermore, a multi-objective approach provides the designer



with a variety of choices instead of only one more or less good solution. This is a great
advantage, especially in cases in which trade-offs have to be made, e.g. between gain
and speed of an amplifier.

In this paper a multi-objective evolutionary algorithm, based on previous work [12]
and referred to as the MO-Turtle GA, is presented and successfully used for the synthesis
of differential amplifiers on the Heidelberg FPTA [13]. Other current results, obtained
by using this FPTA, can be found in [14]. As proposed in an earlier publication [12],
one of the aims is to synthesize circuits that contain only relevant components, thus, are
easier to understand according to engineering criteria. The evolved circuits are proven
to work on the chip as well as in simulation outside the FPTA. Schematics of good
solutions are presented in this work and their characteristics are compared to those of
manually created OPs. Two series of experiments are carried out using in one case a
pair of PMOS transistors and in the other case a pair of NMOS transistors as input.

2 Evolvable Hardware System

The evolution system consists of three main parts: The FPTA that hosts the configurable
CMOS transistor array, a controller with a PCI interface that connects the FPTA to a
standard PC and the software that runs the multi-objective evolutionary algorithm and
communicates with the FPTA via the controller. Thus, the experimental setup and the
candidate configurations for the transistor array are generated on the PC and then trans-
ferred to the controller. Subsequently, the controller configures the FPTA and measures
the output of the circuits under test. The software on the PC reads back the results and
carries out the evolutionary steps. These components provide a real time test environ-
ment for the evolved circuits.

The transistor array consists of 16x16 con-
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Fig. 1. The block diagram of an FPTA
MOS transistor cell.

figurable CMOS transistor cells (Fig. 1). Each
cell contains a transistor that can be config-
ured by selecting values for its width W and
length L within W = 1, 2, ..., 15 µm and L =
0.6, 1, 2, 4, 8 µm. The terminals (source, drain
and gate) can be connected to one of the cells
outside connections (N,S,W,E), vdd or gnd.
Additionally, it is possible to directly connect
the nodes (N,S,W,E) to each other, which pro-
vides routing capabilities. Half of the cells are
designed as programmable PMOS and NMOS
transistors respectively and are arranged in a
checkerboard pattern. Owing to the four nodes
available for routing and terminal connections,
one cell mostly serves either as transistor cell or routing cell. However, both capabilities
are not separated. The array is enclosed by IO cells that can apply voltages to the border
cells or measure the output voltages of the evolved circuit. A detailed description of the
FPTA is given in [13].



3 The Multi-Objective Evolutionary Algorithm

Since the evolution of operational amplifiers is a challenging task, a multi-objective
strategy, first proposed in [15], is used for the experiments. This allows for a separate
evaluation and optimization of different properties of the circuits, which would not
be possible with a single objective algorithm. The MO-Turtle GA consists of a non-
dominated sorting algorithm and a crowding distance measure, which are described
in Sec. 3.2 and are based on those from the non-dominated sorting genetic algorithm,
presented in [7, 16]. Using an MO approach offers two important advantages: First,
numerous results can be harvested from the non-dominated front (NDF) instead of only
one, providing trade-off solutions for the different objectives. Second, the population is
of great diversity during the whole evolution, for the reason that individuals with a bad
over-all performance survive as long as they are superior in at least one objective. Thus,
crossover gains importance by combining differently specialized individuals.

3.1 Variation Operators of the MO-Turtle GA

The variation operators of the Turtle GA, reported in [12], are employed, namely the
Random Wires mutation and the Implanting Block of Cells crossover. The implementa-
tion of both operators is adapted to the FPTA’s architecture and described in the follow-
ing. A complete description is reported in [12].

Random Wires (Mutation). The mutation operator consists of the create mode and
the erase mode. The create mode connects random nodes within the FPTA’s transistor
array and thereby randomly inserts components into the active circuit. Contrary to that,
the erase mode randomly disconnects nodes and removes transistors. The mutation op-
erator is carried out recursively until the resulting circuit contains no dangling nodes
and no floating transistor terminals. The width and length of all active transistors is
mutated due to a configurable probability.

Implanting a Foreign Block of Cells (Crossover). The implanting crossover opera-
tor is carried out in two stages. The first stage exchanges randomly sized and positioned
rectangular blocks of transistor cells between two randomly selected individuals. While
the size of both blocks has to be the same for each individual, the positions of the blocks
may differ. Since this operation in general breaks the layout of both previously intact
circuits, the second stage fixes the occurring floating nodes by executing the random
wires mutation operator for each of them. Thus, again, the resulting circuits contain no
floating nodes.

3.2 Non-Dominated Sorting and Crowding Distance

Non-Dominated Sorting. All individuals are classified by calculating their level of non-
domination, as shown in Fig. 2, due to their objective values pi. An individual p is said
to dominate q, denoted by p � q, if and only if p is partially less than q (Eq. 1).

∀i ∈ (1, . . . , n), pi ≤ qi ∧ ∃i ∈ (1, . . . , n) : pi < qi (1)
NDF := {p ∈ P | @p′ ∈ P : p′ � p} (2)



All p satisfying Eq. 1, 2 provide the first non-dom. front NDF1. The succeeding
NDFs are found by removing the individuals of NDFk from the population P ′ = P \
NDFk and by recalculating Eq. 1, 2 for the new population P ′ until NDFk+1 is empty.

Crowding Distance. The crowding distance cdist is a measure for the density of
solutions within the vicinity of a particular individual p within the fitness landscape
(Fig. 2). All objective values are considered for calculating the quantity cdist which
represents an average distance to the nearest neighbors of p and is assigned to each
individual of the population. Therefore cdist is used to steer the evolution towards a
uniform distribution of the individuals over the NDF.

3.3 Evolutionary Step

Three populations are used for evolution: A repository population RP and a new pop-
ulation NP of size N and an intermediate population IP of size 2N . The algorithm
is initialized by randomly generating individuals for IP and measuring their objective
values. Subsequently, the evolutionary loop is started by performing non-dominated
sorting and calculating crowding distances for IP = RP∪NP. The next step is to refill
RP with the best individuals of IP by using tournament selection with the first selection
method (SM1), described in the next subsection, on the obtained NDFs. Hereby, NDFk

is allowed to occupy at most 1

2k of the available space in RP. In case the size of NDFk
is less than or equal to the available space, the whole NDFk is copied to RP. Finally,
a new population NP of size N is created from IP by using tournament selection with
SM2 and applying mutation and crossover.
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Fig. 2. Left: An example set of individuals—which are to be optimized for two objectives—is
depicted. The first three NDFs, obtained by evaluating Eq. 1, 2, are drawn in. It is expected that
the NDFs propagate towards better fitness values throughout evolution. Additionally, the rank
of the NDF is equal to the level of non-domination for each individual of the respective NDF.
Right: In this example, the individuals are not distributed uniformly over the NDF. Therefore,
in order to be able to drive evolution towards such a uniform distribution, a partial order of the
individuals within an NDF is defined by the crowding-distance cdist. The value of cdist for an
example individual p is derived from the distance to the next neighbors of p.



3.4 Tournament Selection Schemes

Tournament selection with a tournament size of 2 is used as selection scheme. The
selection mechanism (SM) for creating the repository is slightly different from that for
creating the new population. In the first case (SM1), the decision which competitor wins
is simply based on the comparison between the individuals’ level of non-domination
and crowding distance cdist (Cond. 3 is true), whereas in the second case (SM2) it is
additionally based on a randomly selected objective and on the main objective (Tab. 1)
(more than one of the Cond. 3-5 are true).

These two kinds of tournament selection provide on the one hand high diversity
within the repository population by making pure pareto-decisions (SM1) and, on the
other hand, drive evolution to improve single objectives and the main objective (SM2).

p, q ∈ P : p � q ∨ (p = q ∧ cdist(p) > cdist(q)) (3)
Fitness(pmain-objective) < Fitness(qmain-objective) (4)

Fitness(prandom-objective) < Fitness(qrandom-objective) (5)

4 Experimental Setup

The experiments are run at a generation size of 200 for IP and a number of 4000 gener-
ations per evolution run. Individuals are mutated with a probability of 0.6 and crossover
is carried out with a probability of 0.4 and a maximum block-size of 4 × 4 transistor
cells. An area of 9× 9 transistor cells is provided to the evolving circuit. Both, the non-
inverting (I+) and the inverting (I-) input of the circuit are statically connected to the
gate of a transistor of the same flavor, in order to avoid meaningless amplifiers. Two se-
ries of experiments, each of 20 evolution runs, are carried out using PMOS input in the

TM objective fitness description

TM1 pull to rails min. (Vtar − Vout)
2 (main objective)

TM1 DC offset min. sum of DC offsets of the set of curves
TM1 dev. of DC offset min. standard deviation of the DC offsets
TM2 slew-rate max. (use recip.) sum of slew-rates of all steps
TM2 settling-time min. time when Vout settles within ±10% of Vtar
TM2 deviation from Vtar min. (Vtar − Vout)

2

TM3 magnitude max. (use abs.) damping of the fundamental frequency at unity gain
TM3 harmonic distortion min. sum of ampl. of harmonics if above −60dB

TM4 phase-shift min. phase-shift of sin between Vout and VI+
TM4 sin-curve deviation min. (Vtar − Vout)

2

— resource consumption min. sum of used transistors

Table 1. An overview of all objectives. The aim is to minimize the fitness; thus, in the cases
where the objective value is to be maximized, the reciprocal or absolute value is used as fitness.
Pull to rails is chosen as main objective, for the reason that it judges a fundamental behavior of
an amplifier and the fitness-value improves smoothly.



first case and NMOS input in the second case. Free resources of the transistor array are
used to attach a randomly (by mutation) variable capacitive load to the circuits output
and to implement two test benches for the circuit under test: One for open loop testing
and another one with full feedback to the inverting input. Thus, a gain of 1 is assumed
for the latter. Since the feedback is realized using only the configuration capabilities
of the transistor array—where no constant resistors, capacities or current sources are
available—it is not feasible to measure properties like gain or common-mode rejection
ratio (CMRR) directly on the chip. Nevertheless it is possible to measure and evaluate
important properties of an amplifier, namely open-loop behavior, slew-rate, settling-
time, DC offset, harmonic distortion and phase-shift, directly on the FPTA.

4.1 Test Modes for the Measurements on the FPTA

Three kinds of test-modes (TMi) have been developed to perform these measurements
delivering a total of 11 objective values listed in Tab. 1.

TM1: Open-Loop Behavior, Offset. The task is to pull Vout to Vtar = 5V if VI+ > VI-
and to Vtar = 0V if VI+ < VI- and to keep the offset voltage Vos low or at least constant.
A set of nine curves at VI+ = 1.5, 1.75, . . . , 3.5V , each consisting of 100 randomly
applied sample voltages for VI- = 0 . . . 5V , is used as test pattern. TM1 delivers fitness
values for three objectives, namely pull to rails, DC offset and deviation of DC offset.

TM2: Slew-Rate, Settling-Time. The challenge for the output is to follow two voltage-
steps from VI+ = 1.5V to 2.5V and from VI+ = 2.5V to 3.5V in tstep = 0.25 µs. Fitness
values for the slew-rate and the settling-time are calculated from the period of time be-
tween the step and the point of time when Vout has settled at the new target voltage
Vtar ≡ VI+. An additional objective is given by the deviation of Vtar from Vout.

TM3 & TM4: Magnitude, Phase-Shift, Harmonic Distortion. A further demand
on an OP is to distort and damp the input signal as less as possible and to keep the
phase-shift constant below 180 ◦ in order to cause the amplifier to remain stable. These
properties are measured in TM3 by applying three different sinusoidal signals with
f = 5, 50 and500 kHz to the input and comparing them to the circuits output Vtar ≡ VI+.
A discrete fourier transform is used to calculate the power spectrum of the output sig-
nal for each frequency. Subsequently, fitness values for magnitude and total harmonic
distortion (THD) are calculated from the power spectrum. Additionally, the output of a
sinusoidal input signal of f = 20 kHz is used in TM4 to obtain values for the phase-shift
and the deviation of VI+ from Vout.

4.2 Simulation Setup

The simulations are carried out with the SPICE3 simulator described in [17]. BSim3
transistor models are used for simulation. SPICE netlists are extracted from the cir-
cuits that have been evolved on the transistor array by using the MO-Turtle GA. The
input voltage patterns correspond to those used for the on-chip measurements. A load-
capacity of 10 pF is attached to the circuits’ output in simulation. Fitness values, cal-
culated from the simulation results, are obtained by using the same fitness functions as
throughout evolution.



5 Results

All evolution runs ended up in similar regions of fitness, although the overall perfor-
mance of the circuits is slightly better for those with NMOS input than for those with
PMOS input, as can be seen from Tab. 2. For all evolved circuits the simulation results
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Fig. 3. An example run (NMOS input) with good performance is chosen and the depicted NDFs
are recalculated by considering only the two objectives shown in the respective plot for illus-
tration. The position of a manually made OP (reference), described in Sect. 5.2, is marked by
a triangle. Left: The NDF for offset over magnitude converges towards better fitness over time.
Right: In contrast to this, the NDF for dev. of offset over magnitude is spread over wide ranges of
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are worse than those obtained from the chip and about half of them did not work at all
outside the FPTA. Nevertheless, each evolutionary run features a significant amount of
individuals performing at least similar in simulation and on the transistor array. Exam-
ple NDFs for the resulting circuits are depicted in Fig. 3 and 4.

5.1 Performance of the Multi-Objective Approach

An example of how the NDF develops throughout evolution is depicted in Fig. 3. For
some objectives (e.g. magnitude, offset) the NDF converges towards better fitness values
over time, as can be nicely seen from Fig. 3 (left). Other objectives (e.g. magnitude,
offset-deviation) show a different behavior where the front as a whole does not further
converge, but is spread over wide ranges of fitness. An example for the latter is shown
in Fig. 3 (right). Additionally, the position of a manually created design, described in
Sec. 5, within the objective space is marked by a triangle.

Projections of the whole NDF into the plane spanned by the respective objectives—
taking all objectives into account for computation—are graphed in Fig. 4. This illus-
trates nicely the complexity of the NDF troughout the optimization process. After all,
the main benefit of using an MO approach for the evolution of operational amplifiers on
the Heidelberg FPTA is the possibility to efficiently explore the search space taking care
of both, the diversity of the population and the various demands on the target circuit.

5.2 Solutions for the Operational Amplifier

The FPTA is configured with manually created circuits, one with PMOS and one with
NMOS input respectively, in order to be able to assess the quality of the synthesized
circuits compared to human-made solutions. Each of the references consists of a differ-
ential input stage and a simple inverter-output stage. The fitness values are measured for
both reference designs, using exactly the same setup as throughout evolution, and are
compared to those of the evolved circuits. As can be seen from Tab. 2, almost each run
contains at least one individual that outperforms the corresponding reference OP in up
to 3 objectives and about 5 runs feature similar performance in up to 5 objectives. In all
cases the manually made OPs obtained better fitness values for distortion (noise) and
resource consumption than the evolved circuits. The reason for this is the placement and
routing of the evolved solutions which often contain longer wires and therefore produce
more noise.

Opposite to the competition with the reference circuits on the FPTA, the evolved
circuits come off worse if typical characteristics of OPs are compared in simulation. As
can be seen from Tab. 3 especially those properties that cannot be measured directly on
the transistor array during evolution—thus, cannot be evaluated by a fitness function
(e.g. open-loop gain)—return rather poor results. Contrary to that, the characteristics
that are represented by an objective perform similar, e.g. offset, slew-rate and settling-
time. Since the output voltage swing and the 0dB bandwidth are correlated to a good
open-loop gain, those values are also not as good as those of the manually made OPs.

In both cases the phase-margin of the evolved solution is higher than those of the
reference OPs. This is interesting insofar, that it is on the one hand a very good re-
sult, since the aim of the corresponding objective is to minimize the phase-shift. On the



in no. of objectives
1 2 3 4 5 6 7 8 9 10 11

no. of NMOS runs
better than ref. 20 20 18 5 1 0 0 0 0 0 0
max. 10% worse than ref. 20 20 18 5 5 2 1 1 0 0 0

no. of PMOS runs
better than ref. 20 20 18 4 2 1 0 0 0 0 0
max. 10% worse than ref. 20 20 19 6 5 3 1 1 1 0 0

Table 2. The no. of runs that contain at least one individual that achieved a better (or not more
then 10% worse) fitness value than the manually made circuits for a given no. of objectives.
In all cases the manually made OPs obtained better fitness values for distortion and resource
consumption than the evolved circuits. The reason for this is the placement and routing of the
evolved solutions which often contain longer wires and therefore produce more noise.

other hand, forcing the phase-shift towards zero could possibly thwart the evolution of
output gain-stages. If this is the case, it would be better to allow for a certain phase-
margin in the objective function. Hence, this could be the reason why in both examples
depicted in Fig. 5—which represent evolved circuits with good performance—the al-
gorithm was able to synthesize clearly recognizable differential input stages as well as
biasing circuitry, but failed in appending a simple inverter, which would provide sig-
nificantly better performance. Finally, some important characteristics of the evolved
circuits are shown in Fig. 6.

6 Conclusion and Outlook

The main achievement of the presented method is that reusable and substrate-indepen-
dent circuits are evolved successfully and human-understandable schematics of good
solutions can be drawn. Hence, it is possible to analyze the resulting circuits and to

parameter NMOS (evo) NMOS (ref) PMOS (evo) PMOS (ref)

open-loop gain 33 dB 57 dB 29 dB 65 dB
0dB bandwidth 13 MHz 77 MHz 6 MHz 33 MHz
offset −80 mV 28 mV 230 mV 20 mV
slew-rate (+) 40 V

µs
100 V

µs
15 V

µs
25 V

µs

slew-rate (-) 15 V

µs
30 V

µs
35 V

µs
45 V

µs

settling-time 0.4 µs 0.2 µs 0.3 µs 0.2 µs
phase-margin 91 ◦ 50 ◦ 92 ◦ 50 ◦

common mode rejection 30 dB > 40 dB 20 dB > 40 dB
out voltage swing 2.2 V 4.8 V 2.8 V 4.8 V
input common mode range 2.5 V 4.2 V 3.5 V 4.3 V

Table 3. Comparison between characteristics of evolved circuits with a good performance and the
reference circuits (NMOS and PMOS input). The values are obtained from SPICE simulations.



investigate how the algorithm is solving problems on the hardware substrate. As an
example, it has been shown that the presented algorithm is able to synthesize operational
amplifiers on the Heidelberg FPTA. The fact that the evolution of OPs is a difficult task
suggests that the MO-Turtle GA can be applied to a variety of problems.

The resulting circuits are extracted into netlists and simulated outside the substrate
on which they were evolved. About 50% of the outcome is performing equally well
on the chip and in simulation and can therefore be transferred to other technologies.
The presented multi-objective approach allows for considering various objectives dur-
ing evolution. Thus, it is possible to efficiently explore the design space and converge
to regions of fitness comparable to those which are obtained by basic human reference
designs measured on the chip. Unfortunately, the algorithm failed in synthesizing addi-
tional gain-stages. The reason for this is probably the lack of a suitable gain test bench
due to the fact that even well approved human designs do not achieve significantly bet-
ter fitness. In this case it is more likely that the abilities of the FPTA limit the search for
good solutions than the algorithm itself. This indeed, will only be solved by a second
generation FPTA.

Future work will be done to understand to what extent the architecture of the transis-
tor array influences the performance of the algorithm and what can be done to improve
it. Furthermore, the MO-Turtle GA will be enhanced to allow the creation and deletion
of structures like differential pairs or inverters in one step. Hereby, all transistors of
those structures could be marked for a simultaneous W/L mutation.

Fig. 5. Schematics of the evolved circuits; shorted transistors are grayed. Left: NMOS input tran-
sistors. Right: PMOS input transistors. In both cases the MO-Turtle GA achieved to synthesize
differential input stages and some kind of biasing circuitry. The evolved solutions thus far lack of
an output gain-stage.



PSfrag
replacem

ents

frequency [Hz]

op
en

-l
oo

p
ga

in
[d

B
]

PM
O

S

N
M

O
S

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

-10

-5

0

5

10

15

20

25

30

35

PSfrag
replacem

ents

time [us]

ou
tp

ut
[V

]

PM
O

S

N
M

O
S

0 0.2 0.4 0.6 0.8

1
1.2
1.4
1.6
1.82

0

1

2

3

4

5
PSfrag

replacem
ents

frequency [Hz]

ph
as

e
[◦

]
PM

O
S

N
M

O
S

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

-100

-80

-60

-40

-20

0

20

PSfrag
replacem

ents

input+ [V]

ou
tp

ut
vo

lta
ge

sw
in

g
[V

]

PM
O

S

N
M

O
S

0 1 2 3 4 5
0

1

2

3

4

5

PSfrag
replacem

ents

frequency [Hz]

C
M

R
R

[d
B

]

PM
O

S

N
M

O
S

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

0

5

10

15

20

25

30

35
PSfrag

replacem
ents

input+ [V]

in
pu

tc
om

m
on

m
od

e
re

je
ct

io
n

[V
]

PM
O

S

N
M

O
S

0 1 2 3 4 5
0

1

2

3

4

5

Fig. 6. The graphs above show characteristics of evolved operational amplifiers obtained from
spice simulation. For illustration, evolved circuits with PMOS (—) and NMOS (- - -) input re-
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