
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG
KIRCHHOFF-INSTITUT FÜR PHYSIK

DISSERTATION

submitted to the
Combined Faculties for the Natural Sciences and for Mathematics

of the
Ruperto-Carola-University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

presented by

Dipl.-Phys. Steffen Gunther Hohmann
born in Braunschweig, Germany

Date of oral examination: 18.05.2005

Stepwise Evolutionary

Training Strategies

for

Hardware Neural Networks

Referees: Prof. Dr. K. Meier

Prof. Dr. F. A. Hamprecht

Schrittweise evolutionäre Trainingsstrategien für neuronale Netzwerke in Hardware

Rein analoge und gemischt analog-digitale Realisierungen künstlicher neuronaler Netzwerke in Hard-
ware entziehen sich für gewöhnlich einer exakten quantitativen Beschreibung. Die Gründe dafür sind
die bei der Halbleiterherstellung unvermeidlichen Schwankungen der Bauteilparameter sowie zeitliche
Fluktuationen der internen analogen Signale. Evolutionäre Algorithmen eignen sich besonders gut für
das Training solcher Systeme, da sie keinerlei detaillierte Informationen über das zu optimierende Sys-
tem benötigen. Um die hohe Arbeitsgeschwindigkeit der neuronalen Netzwerke voll auszunutzen, wer-
den einfache und schnelle Trainingsverfahren benötigt. Im Rahmen dieser Arbeit wurde eine spezielle
schrittweise Trainingsmethode entwickelt, die es erlaubt, die synaptischen Gewichte eines gemischt
analog-digitalen neuronalen Netzwerkchips unter Zuhilfenahme einfacher evolutionärer Algorithmen
auf effiziente Weise zu optimieren. Die vorgestellte Trainingsstrategie wurde an neun verbreiteten
standardisierten Aufgabenstellungen für Klassifikationsprobleme getestet: den breast cancer, diabetes,
heart disease, liver disorder, iris plant, wine, glass, E.coli und yeast Datensätzen. Es zeigt sich, dass
die erreichten Klassifikationsgenauigkeiten sehr gut mit denen von in Software realisierten neuronalen
Netzwerken konkurrieren können. Weiterhin sind sie mit den besten Resultaten vergleichbar, die für
andere Klassifikationsverfahren in der Literatur recherchiert werden konnten. Die vorgestellte Trai-
ningsmethode begünstigt eine parallele Realisierung und eignet sich darüberhinaus gut zur Verwen-
dung in Kombination mit einem speziell entwickelten Koprozessor, der die zeitaufwendigen genetischen
Operationen in einer konfigurierbaren Logik realisiert und damit eine beschleunigte Ausführung evo-
lutionärer Algorithmen ermöglicht. Auf diese Weise kann das entwickelte Trainingsverfahren optimal
von der Geschwindigkeit neuronaler Hardware profitieren und stellt daher eine effiziente Methode
dar, große neuronale Netzwerke auf dem verwendeten gemischt analog-digitalen Netzwerkchip für
anspruchsvolle, praxisrelevante Klassifikationsprobleme zu trainieren.

Stepwise evolutionary training strategies for hardware neural networks

Analog and mixed-signal implementations of artificial neural networks usually lack an exact numerical
model due to the unavoidable device variations introduced during manufacturing and the temporal
fluctuations in the internal analog signals. Evolutionary algorithms are particularly well suited for the
training of such networks since they do not require detailed knowledge of the system to be optimized.
In order to make best use of the high network speed, fast and simple training approaches are required.
Within the scope of this thesis, a stepwise training approach has been devised that allows for the use of
simple evolutionary algorithms to efficiently optimize the synaptic weights of a fast mixed-signal neural
network chip. The training strategy is tested on a set of nine well-known classification benchmarks:
the breast cancer, diabetes, heart disease, liver disorder, iris plant, wine, glass, E.coli, and yeast
data sets. The obtained classification accuracies are shown to be more than competitive to those
achieved by software-implemented neural networks and are comparable to the best reported results of
other classification algorithms that could be found in literature for these benchmarks. The presented
training method is readily suited for a parallel implementation and is fit for use in conjunction with a
specialized coprocessor architecture that speeds up evolutionary algorithms by performing the time-
consuming genetic operations within a configurable logic. This way, the proposed strategy can fully
benefit from the speed of the neural hardware and thus provides efficient means for the training of
large networks on the used mixed-signal chip for demanding real-world classification tasks.

Meinen lieben Eltern

Contents

Introduction 1

I Foundations 5

1 Artificial Neural Networks 7
1.1 The Human Brain . 8

1.1.1 The Neuron . 8
1.1.2 The Synapse . 9
1.1.3 Neural Encoding . 10
1.1.4 Learning in the Human Brain 10

1.2 Neural Network Models . 11
1.2.1 A General Neuron Model 12
1.2.2 Networks of Artificial Neurons 12
1.2.3 Important Neuron Models 15
1.2.4 Modeling Adaptation . 22

2 Feedforward Neural Networks 27
2.1 Single-Layer Feedforward Networks 27

2.1.1 Capability of the Simple Perceptron 28
2.1.2 Training the Simple Perceptron 33
2.1.3 Continuous Outputs and Gradient Descent 35
2.1.4 Generalization to Multiple Outputs 39

2.2 Multi-Layer Feedforward Networks 42
2.2.1 Computational Capabilities 43
2.2.2 Training Multi-Layer Networks 46

2.3 A Short Overview of Alternative Network Models 51
2.3.1 The Feature Space Revisited: Support Vector Machines . . 51
2.3.2 Hierarchical Approaches and the Neocognitron 52
2.3.3 The Hopfield Network . 52
2.3.4 Computing Without Stable States 54

2.4 Hardware Neural Networks . 54
2.4.1 Historical Overview . 55
2.4.2 A Categorization of Neural Hardware 56
2.4.3 Performance Criteria . 56
2.4.4 Challenges and Present Trends 57

I

Contents

2.4.5 Training Hardware Neural Networks 58

3 Evolutionary Algorithms 61

3.1 Natural Evolution . 61

3.1.1 The Principles of Darwinian Evolution 62

3.1.2 Evolution on the Genetic Level 63

3.1.3 Speciation . 65

3.2 Evolutionary Algorithms: An Overview 65

3.2.1 The Main Constituents of an Evolutionary Algorithm . . . 67

3.3 General Features of Evolutionary Algorithms 71

3.3.1 Evolutionary Algorithms as Global optimizers 71

3.3.2 A Modular View of Evolutionary Algorithms 72

3.3.3 Evolutionary Algorithms as Model-Free Heuristics 72

3.3.4 Extensions to the Basic Concept 74

3.4 Evolutionary Algorithm Implementations 76

3.4.1 Selection Schemes . 77

3.4.2 Genetic Representations . 80

3.4.3 Mutation Operators . 81

3.4.4 Recombination Operators 83

3.5 Theoretical Analysis: The Schema Theorem 86

3.5.1 Schemata . 86

3.5.2 The Processing of Schemata 87

3.5.3 Building Blocks, Deception and Challenges to the Schema
Theorem . 88

4 Evolving Artificial Neural Networks 91

4.1 Evolving Synaptic Weights . 92

4.1.1 Performance Evaluation and Fitness Function 92

4.1.2 Representations and the Permutation Problem 93

4.1.3 Comparison with Gradient Based Training 96

4.2 Evolving Network Architectures . 97

4.2.1 Performance Evaluation - Architectures and Weights 97

4.2.2 Genetic Representations . 98

4.2.3 Fixed vs. Evolved Architectures 103

4.3 Alternative Black-Box Approaches 104

4.3.1 Simulated Annealing . 104

4.3.2 Weight Perturbation . 106

4.3.3 Comparison to Evolutionary Algorithms 108

II Hardware Neural Network Framework 109

5 The HAGEN Chip 111

5.1 Design Considerations . 112

5.1.1 Speed and Efficiency . 112

5.1.2 Scalability . 112

II

Contents

5.1.3 The Mixed-Signal Approach 113

5.1.4 Trainability . 113

5.2 Network Model . 113

5.2.1 Configurable Topology . 114

5.2.2 Multiple Network Blocks . 115

5.3 VLSI Implementation . 117

5.3.1 Binary Neurons, Trainability, and VLSI Design Implications 118

5.3.2 Circuit Design . 119

5.3.3 Implementation Properties 119

5.4 The HAGEN Prototype . 122

5.4.1 Block Dimensioning . 123

5.4.2 Block Interconnectivity . 123

5.4.3 Weight Resolution and Dynamic Range 124

5.4.4 Weight Configuration . 125

5.4.5 Performance and Scalability 126

5.5 Network Calibration . 127

5.5.1 Types of Fixed Pattern Offsets 127

5.5.2 Determining the Offset Values 129

5.5.3 Calibration Measurements and Results 131

5.5.4 Calibration Practice . 132

6 The Hardware Environment 137

6.1 The Used Hardware Framework . 138

6.1.1 The Darkwing Board . 139

6.1.2 The Host Computer . 142

6.1.3 Common Chip-in-the-Loop Operation 142

6.2 The Evolutionary Coprocessor . 144

6.2.1 Coprocessor Setup Overview 144

6.2.2 Genetic Representation and Translation 145

6.2.3 Pipeline Operation Overview 146

6.2.4 Pipeline Control . 148

6.2.5 Instruction Handling . 150

6.2.6 The Evolutionary Coprocessor: Reflection and Outlook . . 152

6.3 An Advanced Hardware Environment 152

6.3.1 The NATHAN Board . 153

6.3.2 The Backplane System . 154

6.3.3 Implications for Network Training 155

7 The HANNEE Software 157

7.1 Overview . 158

7.1.1 Standardized Hardware Access 158

7.1.2 Modular Structure . 160

7.1.3 Automatically Generated User Interfaces 160

7.1.4 Platform Independence . 161

7.2 HObjects and the HAlgorithm Concept 162

7.2.1 The HObject Framework 162

III

Contents

7.2.2 Implementing New Algorithms as HAlgorithm subclasses . 166

7.3 The Hardware Abstraction Layer 167

7.3.1 The HNetData class . 169

7.3.2 The HNetMan class . 170

7.3.3 The EvoCop class . 173

7.4 HEAF: An Object-Oriented Framework for Evolutionary Algorithms175

7.4.1 The HFitnessFunction Class 176

7.4.2 The Genome and HGenome Classes 178

7.4.3 The HPopulation Class . 180

7.4.4 The HSelectionScheme Class 182

7.4.5 Evolutionary Algorithm Practice 183

III Experiments and Results 189

8 A Simple Evolutionary Approach 191

8.1 Classification Benchmarks . 192

8.1.1 The Classification Tasks . 192

8.1.2 Measuring the Generalization Performance 193

8.2 Network Setup . 196

8.2.1 General Architecture and Number of Hidden Nodes 196

8.2.2 Input Representation . 197

8.2.3 Output Representation . 200

8.2.4 Implementation on the HAGEN ASIC 201

8.3 The Evolutionary Training Algorithm 202

8.3.1 Genetic Representation and Operators 204

8.3.2 Selection Scheme and Evolution Parameters 207

8.3.3 Fitness Estimation . 207

8.4 First Training Experiments . 210

8.4.1 Experimental Setup . 210

8.4.2 Results and Discussion . 212

8.4.3 Modified Training Setups 214

8.4.4 Results Obtained with the Modified Setups 215

8.4.5 Concluding Remarks . 217

9 Stepwise Evolutionary Training Strategies 219

9.1 The Divide-and-Conquer Approach 220

9.1.1 Stepwise Network Training 220

9.1.2 Implications for Training 222

9.1.3 Stepwise Training and Mixtures of Experts 223

9.2 Experiments with the Stepwise Strategy 224

9.2.1 Results and Discussion . 225

9.3 The Generalized Stepwise Strategy 227

9.3.1 Training Multiple Networks per Class 228

9.3.2 Network Ensembles: Theoretical Considerations 230

9.4 Experiments with the Extended Stepwise Strategy 234

IV

Contents

9.4.1 General Observations . 234
9.4.2 Hardware Limitations and Single-Layer Networks 237
9.4.3 Approximately Linearly Separable Data Sets 241
9.4.4 Exceptional Cases . 243
9.4.5 Comparison to Previous Results 246
9.4.6 Multiple Subnetworks vs. Increased Subnetwork Size 252

9.5 The Stepwise Strategy: Conclusion 257

10 Hardware Implications 259
10.1 Training Speed and Parallelization 259

10.1.1 Time Measurements . 261
10.1.2 Parallelization of the Generalized Stepwise Strategy 264

10.2 Network Transferability . 269
10.2.1 Transfer Experiments . 270
10.2.2 Discussion and Further Improvements 275

10.3 Outlook: Coping with Chip Limitations 275
10.3.1 Varied Subnetwork Size . 276
10.3.2 Partitioned Input Layers . 278

10.4 Outlook: Software Simulations . 280
10.4.1 Hardware Networks in Software 281
10.4.2 Stepwise Training of Software Networks 282
10.4.3 Software Networks in Hardware 284

Summary and Outlook 287

Appendix i

A Exemplary HANNEE Code iii

B The Investigated Benchmark Problems vii

C Experimental Data xi

Bibliography xxxi

Danksagung (Acknowledgements) xlix

V

Introduction

All men by nature desire knowledge.

Aristotle, Metaphysics

The human brain is one of the most complex systems known to science and under-
standing its functional principles is a question as old as mankind. Although the
brain is far from being completely understood, there is a basic comprehension of
its operation on a general level. The brain can be regarded as a highly nonlinear,
dynamic, and massively parallel information-processing system that consists of
approximately 1010 processing units called neurons.

Besides its complexity, the brain is also remarkable for its outstanding capa-
bilities. It can readily perform a large variety of difficult information-processing
tasks — like the recognition of familiar faces in unfamiliar environments — much
faster and with greater reliability than conventional digital computers. Most no-
tably, however, the human brain has the ability to acquire and store additional
knowledge and successfully apply it to the solution of successive tasks, a process
which is commonly referred to as learning. At the same time, it contents itself
with an average power consumption of only about 20 W.

These astonishing features of the brain are the motivation to build artificial
systems that mimic the way in which it performs a particular task of interest.
The origins of scientific research on this topic can be traced back to the first half
of the 20th century. In 1943, Warren McCulloch and Walter Pitts published a
simple binary neuron model that can be used to compute Boolean functions [135],
and this work is considered to have founded the research area of artificial neural
networks.

Since then, neural networks have established themselves as a powerful computa-
tional model and provide an interesting alternative to the Turing paradigm [211]
that underlies the operation of common digital computers. It is one of the most
important aspects of neural networks that they can be optimized to solve the task
at hand by an iterative adaptation process denoted as training. In fact, the exis-
tence of a feasible training algorithm is a vital precondition for a neural network
model to be of use in practice.

The common method to implement neural networks is to simulate their oper-
ation in software. This provides a comparably easy and flexible way of testing
and evaluating different neural network approaches, but it actually compromises
several initial advantages of neural systems: The principles of neural information
processing feature a high degree of inherent parallelism that can only insufficiently

1

Introduction

be exploited when the networks are simulated on sequential computers. While this
deficiency can partly be compensated for by, e.g., the use of computer clusters,
such an approach inevitably leads to a considerable increase in power consump-
tion. Even only a single state-of-the-art microprocessor consumes in the order of
100 W which already exceeds the power consumption of the brain by a factor of
five.

These considerations motivate to implement artificial neural networks in a ded-
icated parallel, low-power hardware and have eventually driven the design of the
neural network chip HAGEN (Hardware AnaloG Evolvable Neural network). HA-
GEN has been developed within the Electronic Vision(s) group of the Kirchhoff-
Institute for Physics in Heidelberg and constitutes a dedicated VLSI (Very Large
Scale Integration) architecture for the realization of artifical neural networks in
a mixed-signal hardware. By combining analog computing with digital signaling,
the implemented network model succeeds in reconciling the aim for a low power
consumption and a massively parallel network operation with the desire for an easy
scalability to larger networks. The current HAGEN prototype features 256 neu-
rons and 32 k synapses and retains an average power consumption of less than 1 W.
Using contemporary CMOS (Complementary Metal Oxide Semiconductor) tech-
nologies, its underlying concepts allow for the feasible implementation of neural
networks in the megasynapse realm.

Besides speed, power consumption, and scalability, the usefulness of an artificial
neural network persists to be closely bound to its trainability. In the case of
the HAGEN chip, the employed binary neuron model in combination with the
temporal noise that inevitably affects the operation of analog circuits impede the
direct application of traditional gradient-based neural network training algorithms
such as backpropagation. On the other hand, due to its high reconfigurational
speed and fast operation, the HAGEN chip promotes the efficient utilization of
highly iterative chip-in-the-loop approaches like, e.g., evolutionary algorithms that
can automatically deal with these peculiarities.

Evolutionary algorithms apply the principles of natural evolution to the solution
of complex optimization problems and are widely accepted as powerful heuristic
optimization procedures. They do not require detailed knowledge about the search
space they are operating on and are thus particularly well suited for the training
of networks on the HAGEN chip1.

It remains that in order to take full advantage of the neural hardware during
training, the algorithm itself needs to be realized efficiently such that it can keep
up pace with the networks. The used hardware environment includes a dedicated
coprocessor architecture that accelerates evolutionary algorithms by performing
the time-consuming genetic manipulations in a configurable logic. While the co-
processor provides efficient means to speed up the training, it imposes certain
restrictions on the complexity of the realizable genetic variation operators. In
general, the desire for fast algorithm implementations motivates the use of sim-
ple algorithms which in turn seems to interfere with the aim of training complex
neural networks on the HAGEN chip for challenging tasks. In fact, the usual way

1Which eventually inspired its name.

2

Introduction

to cope with the difficulties of evolutionary neural network training is to employ
more elaborate — and time-consuming — algorithms.

Within this thesis, a stepwise training strategy is investigated that allows for
the application of simple and fast evolutionary algorithms to the training of large
networks on the HAGEN chip for real-world classification problems. Following
this approach, the training procedure is divided into independent steps: Within
the individual phases, only parts of the network are trained and optimized towards
solving different aspects of the whole problem.

It is demonstrated that each of the single steps can be accomplished by a sim-
ple evolutionary algorithm that can readily benefit from the functionality of the
evolutionary coprocessor. Apart from that, it is a notable feature of the proposed
stepwise approach that the individual training phases can be performed entirely
independently. This allows for a high degree of parallelism in the training process
that ideally complements a parallel hardware neural network framework.

The stepwise strategy is tested on a set of nine well-known classification bench-
mark tasks: the breast cancer, diabetes, heart disease, liver disorder, iris plant,
wine, glass, E.coli, and yeast problems. It is shown that the results are more than
competitive to those that are obtained with software-implemented neural networks
and are comparable to the performance of the best classification algorithms that
have been found for the respective benchmarks in literature.

The thesis is organized as follows. Part I provides an introduction to the basic
methodology of neural networks (chapters 1 and 2) and evolutionary algorithms
(chapter 3) and discusses the special precautions that are required for the success-
ful combination of these two concepts (chapter 4). A brief overview on the field
of hardware-implemented networks is included in chapter 2.

The hardware neural network framework that is used for all presented experi-
ments is introduced in part II: Chapter 5 describes the HAGEN prototype and
discusses the concepts that form the basis of its design. In order to train and
interface the implemented networks, the HAGEN chip is embedded within a ded-
icated hardware environment which is presented in chapter 6. As an important
part of the used training setup, the chapter in particular includes an introduction
to the evolutionary coprocessor. In the course of this thesis, a comfortable soft-
ware environment has been developed that smoothly integrates with the hardware
framework and allows for the easy implementation and testing of different training
approaches. This software is the topic of chapter 7.

Part III presents the conducted experiments and a discussion of the obtained
results. The basic experimental setup is described in chapter 8 which also presents
initial measurements that investigate the general feasibility of simple evolutionary
algorithms for the training of networks on the HAGEN chip. Chapter 9 provides
a detailed description and evaluation of the proposed stepwise training strategy.
Among other things, the performance of the trained networks is compared to those
that have previously been reported by other authors. Chapter 10, finally, discusses
some additional interesting aspects of the stepwise approach. Most notably, it is
demonstrated that the proposed strategy allows for a feasible parallelization of
the training process within the used hardware environment.

3

Part I

Foundations

5

Chapter 1

Artificial Neural Networks

If the brain were so simple we could understand it,
we would be so simple we couldn’t.

Lyall Watson

Artificial neural network (ANN) is the generic term for a specific kind of computa-
tional model that is inspired by the structure and operation of biological nervous
systems, particularly the human brain.

In response to sensory input from the body and its environment, it is the purpose
of a nervous system to make appropriate decisions and initiate corresponding
reactions that benefit the well-being and survival of the organism. A sponge does
not possess any nervous system and is not capable of reacting to changes in its
environment. If altered conditions inhibit further supply of nutrients, it is bound
to die. A jellyfish, on the other hand, already exhibits a primitive network of
neural cells that enable it to actively approach and acquire food [207].

During the course of evolution, biological nervous systems have become increas-
ingly complex resulting in more sophisticated and powerful realizations of the deci-
sion making process and a more differentiated behavior of the respective organisms.
This eventually lead to the evolution of brains which are not only remarkable for
their potential to solve highly complex information-processing problems. More
developed neural systems, most notably the brains of human beings, also have the
ability to acquire and store additional knowledge which is then advantageously in-
corporated into succeeding decisions, a process which is commonly referred to as
learning. Furthermore, the human brain can perform many information-processing
tasks — like the recognition of familiar faces in unfamiliar environments — much
faster and with greater reliability than existing computers [84]. At the same time,
it retains an average power consumption of only about 20 W.

These outstanding capabilities of the brain are the motivation to build artificial
systems that mimic the way in which it performs particular tasks of interest. It is
important to note in this context that while the nervous systems of an earthworm
or a jellyfish differ considerably from the human brain in structural and behavioral
complexity, the underlying basic principles are the same. In general, it is common
to all biological information-processing systems that they perform the necessary

7

1.1 The Human Brain

computations in an entirely different fashion than conventional digital computers.
As artificial neural networks are more or less simplified models of organic ner-

vous systems, it seems appropriate to start by investigating the most prominent
example of biological neural networks in more detail. The following sections give a
brief overview of what is known about the basic physiological, organizational and
functional principles of the human brain. This introduction cannot be exhaustive,
but focuses on those aspects of the brain that seem relevant for the design of
artificial neural networks from an engineer’s perspective.

1.1 The Human Brain

The human brain is considered as one of the most complicated structures known
to science and is far from being completely understood [207]. However, there
is a basic understanding of its operation at a low level. The brain is a highly
nonlinear, dynamic, and massively parallel information-processing system that
consists of approximately 1010 processing units called neurons.

1.1.1 The Neuron

Neurons are a remarkable type of cell which are specialized in generating electrical
signals in response to chemical and other inputs and propagating them rapidly over
large distances to other cells [44]. The brain contains various types of neurons that
nevertheless share several essential features (see figure 1.1).

The body of the neuron is called soma and has a diameter of about 10 to 50 µm.principal constituents

Two types of nerve processes are attached to it: The dendrites accept inputs from
other neurons via synaptic connections while the axon carries the output signals
of the neuron to other cells. The intricate branched structure of the dendrites
allows one neuron to receive signals from typically 104 other cells.

A wide variety of ion channels penetrate the cell membrane of a neuron andmembrane potential,
hyperpolarization
and depolarization

allow ions (primarily Na+, K+, Ca2+ and Cl−) to move in an out of the cell.
These channels control the flow of ions through the membrane by opening and
closing in response to voltage changes and to both internal or external signals.
Ion pumps located in the cell membrane maintain a concentration gradient be-
tween the interior of the neuron and the surrounding extracellular space, leading
to a corresponding difference in electrical potential. Under resting conditions, the
potential inside the cell membrane is approximately -70 mV relative to the envi-
ronment and the cell is said to be in a polarized state. Electric current in the form
of ions flowing through the open channels can either make the membrane potential
more negative — a process called hyperpolarization — or less negative and possibly
even positive which is called depolarization [44].

If the membrane potential is depolarized to a given threshold, the neuron gen-action potential

erates a so-called action potential which is a fluctuation in the electrical potential
across the membrane that lasts for about 1 ms and has an amplitude of approxi-
mately 100 mV. These action potentials, also referred to as spikes, are essential for
the signal transmission between neurons as they are the only form of membrane
potential fluctuations that can propagate over large distances without attenuation.

8

Artificial Neural Networks

PSfrag replacements

axon

dendrites

dendrites

soma
(basal)

(apical)

Figure 1.1: Schematic of a cortical pyrami-
dal neuron. These cells are the primary ex-
citatory neurons in the cerebral cortex of the
human brain. The dendrites and the axon are
not shown to their full extent. While the den-
drites cover an area of up to 400 µm2 around
the neuron, the axon typically expands to far
greater length.

All subthreshold potential fluctuations are severely damped over distances of less
than 1 mm.

After an action potential has been evoked, a new spike cannot be emitted for refractory period

a time span of a few milliseconds known as the absolute refractory period. For a
longer interval of up to tens of milliseconds after the initial action potential, the
generation of a new spike is more difficult. This is called the relative refractory
period.

1.1.2 The Synapse

The axon of a neuron terminates at typically thousands of synapses that connect coupling mechanism

it to the dendrites of other cells (figure 1.2). For the majority of synapses in the
brain, the coupling between the axon on the presynaptic side and the dendrite on
the postsynaptic side is a chemical one. An action potential arriving via the axon
on the presynaptic side causes the opening of ion channels and the resulting influx
of Ca2+ leads to the release of neurotransmitters into the synaptic cleft. When
these chemicals diffuse through the cleft and bind to receptors at the postsynaptic
side, they in turn initiate the opening of ion channels in the dendrite of the signal-
receiving cell.

Depending on the nature of the ion flow, the synapse can have a depolarizing, coupling strength

thus excitatory, or hyperpolarizing, hence inhibitory, influence on the postsynaptic
neuron. The magnitude of the resulting effect is determined by the amount of
neurotransmitter that is released in response to an arriving spike which itself
significantly depends on the kind and state of the synapse. While some synapses
might convey arriving spikes very efficiently, causing a strong change in membrane
potential within the postsynaptic neuron, others might only lead to a negligible
effect.

Usually, one arriving spike does not suffice to raise the membrane potential of
a neuron above its threshold. However, if the neuron receives ample excitatory
input within a sufficiently short time, the effects can add up and cause the neuron
to fire.

9

1.1 The Human Brain

PSfrag replacements

to axon

mitochondrion

postsynaptic
membrane

vesicle with
neurotransmitter

synaptic
cleft

Figure 1.2: Schematic view of a
synapse. An action potential arriv-
ing via the axon causes the release of
neurotransmitter into the synaptic
cleft. The chemicals diffuse through
the cleft and bind to receptors on
the postsynaptic membrane. (figure
taken from [92] with kind permis-
sion.)

1.1.3 Neural Encoding

While the spikes vary only slightly in amplitude, shape and duration, the outputtemporal coding

of a neuron is in fact coded through the timing of the generated action potentials.
Although the activation of a neuron follows an all-or-nothing principle, its output
can be regarded as quasi-continuous if it is taken to be the number of action
potentials generated within a given time interval. This spiking rate of a neuron
can readily be observed and evaluated by experimenters but it is not at all clear
that it is also the characteristic quantity used by neurons in the brain to encode
and transmit information [69].

The temporal pattern of action potentials emitted by a group of neurons canrate codes and
spike codes in principle code information in various ways, e.g., through correlations, phase

relations, or through the explicit order of the firing of specific neurons. These
encoding mechanisms are commonly named spike codes in contrast to the rate
based information that is accordingly referred to as rate code. The neural encoding
is one of the fundamental issues of neuroscience and at present, there is no definite
answer as to which are the relevant coding and encoding schemes in biological
nervous systems [69] [44].

1.1.4 Learning in the Human Brain

Within the brain, information in the form of spike trains is continuously transmit-synaptic plasticity

ted and processed by neurons and their interconnecting synapses. The response
of a neuron to the total of action potentials that arrive along its dendrites at a
given time is determined by the connection strengths of the involved excitatory
and inhibitory synapses. Hence, the kind of information-processing that is per-
formed by a whole network of such neurons as well as the information that is
stored within it are coded by the entire ensemble of its individual synaptic con-
nection strengths. The efficiencies of synaptic connections are not fixed but can be

10

Artificial Neural Networks

changed on different time scales by various processes and this variability is called
plasticity.

One of the basic phenomena that is believed to underly learning and memory Hebbian learning rule

in the human brain is the so-called activity-dependent synaptic plasticity. In this
case, all changes in the connection strength of a specific synapse only depend
on the activities of its presynaptic and postsynaptic neurons. The principles of
activity-dependent plasticity were first formulated in 1949 by D.O. Hebb [85]:

When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.

Hebb proposed this mechanism as a basis of associative learning. He suggested
that it would lead to the development of “neuronal assemblies” which reflect the
relationships between the input and output patterns of the involved neurons as
experienced during the learning period. While the original Hebbian plasticity
rule is only concerned with increases in synaptic strength, later versions have
been generalized to also incorporate the depression of synaptic efficiency. More
general forms regard the synaptic changes to be proportional to the correlation or
covariance of the activities of the pre- and postsynaptic neurons [69] [44].

1.2 Neural Network Models

Regarding the complexity of the human brain on the one hand and its efficiency motivation

on the other, there are at least two motivations to model biological neural systems
and thus to build artificial neural networks:

- to use them as a research tool for the interpretation and better understanding
of neurobiological phenomena

- to use them as information-processing systems that have the potential to
reproduce the efficiency, speed, adaptability, and fault tolerance of biological
networks

A lot of work has been done to develop adequate network models in pursuit of
both aims [44] [69] [84] [88] [118] [169]. As implied at the beginning of this chapter,
this thesis deals with networks that are primarily designed for the second purpose.

It is not surprising that biologically plausible artificial networks whose dynamics
are to be comparable to those of real neural systems have to include reasonably
complex models of neurons and synapses [44] [69] [118]. But it turns out that neural networks for

computationpowerful and adaptive information-processing systems can already be built by
interconnecting simple processing units that mimic only some basic properties of
biological neurons [84] [88] [169]. The term artificial neural network commonly
refers to this kind of biologically inspired information-processing systems and the
following sections give an overview of their basic principles, the various types and
their interesting properties. This thesis largely confines itself to the discussion of
what can be denoted as the classical artificial neural network approach. The more
biologically motivated spiking network models will not be covered.

11

1.2 Neural Network Models

PSfrag replacements

I1(t)

I2(t)

I3(t)

Inin(t)

Ii(t) ∈ I

O(t) ∈ O

f
O(t + ∆t)

= f(t, ρ1, . . . , ρk, I1(t), . . . , Inin(t))

Figure 1.3: A general neuron model: The neuron transforms its nin inputs Ii(t) into an
output O(t + ∆t) according to a given output function f .

1.2.1 A General Neuron Model

On an abstract level, the functionality of a neuron can be summarized as follows
(see also figure 1.3):

1. At a given point in time t, a neuron receives input signals Ii(t) ∈ I, 1 ≤ i ≤
nin via a set of nin ∈ N incoming synaptic connections.

2. Based on its input, the neuron computes its own output O(t + ∆t) ∈ O

according to a given output function f(t, ρ1, . . . , ρk) : Inin → O :

O(t + ∆t) = f(t, ρ1, . . . , ρk, I1(t), . . . , Inin(t)). (1.1)

The resulting output might depend on some inner parameters of the neuron
ρi with 1 ≤ i ≤ np and np ∈ N0 as well as the time t. It is available at time
t + ∆t.

Starting from this basic functional description, various neuron models are con-
ceivable. They differ in the kind of signals that can be transferred between the
neurons — i.e., in the sets I and O — and the way in which the neuron determines
its output as defined by the output function f . Nevertheless, important features
of artificial neural networks can already be discussed against the background of
this elementary definition.

1.2.2 Networks of Artificial Neurons

Neural networks are formed by interconnecting multiple neurons in a way that the
output of one neuron gets connected to nout ∈ N other neurons (fan-out). The
latter receive the output of this neuron as one of their several inputs (fan-in). The
way in which the neurons of a network are interconnected is called its architecture
or topology.

If such a network is to be used for a specific information-processing task, infor-input nodes,
output neurons
and hidden neurons

mation must be fed into it and it must in turn be possible to read back the result
of its computation. Usually, some of the neurons do not get input from other

12

Artificial Neural Networks

PSfrag replacements

inputs hidden neurons output neurons

I1

I2

I3

I4

O1

O2

Figure 1.4: A network of artificial neurons with Nin = 4 total inputs and Nout = 2
output neurons computes a function F : I4 → O2.

neurons but receive it from outside. The entirety of their input signals define
the inputs of the whole network. Correspondingly, the outputs of some dedicated
output neurons are regarded as the response of the system. Such a network can
be visualized as a signal-flow graph with directed links and neurons at the nodes
which is illustrated in figure 1.4. Neurons that do not represent part of the network
output are called hidden neurons.

In visualizations of neural networks, the sources of external input are commonly inputs vs. neurons

drawn in a way similar to that of neurons and are sometimes named input neu-
rons. This seems intuitive as different neurons can receive signals from the same
external input and one neuron on the other hand usually accepts inputs from sev-
eral external sources. Thus, regarding their interconnection with the network, the
external input sources do behave like neurons. However, it has to be made clear
that these inputs are not in fact neurons according to the above definition. First,
they do not receive input via incoming connections but their state is rather set
from outside. Second, they do not perform any transformation of their input but
transmit their state to the receiving neurons unchanged. They can best be viewed
in analogy to the receptor cells of biological nervous systems.

If Nin ∈ N is the number of effective input arguments and Nout ∈ N the number network function

of output neurons of a network, it computes a function F : INin → ONout which is
determined by the characteristics and the interconnection of the neurons.

Recurrent vs. Feedforward Networks

A network can contain feedback loops if the output of a neuron is connected to recurrent networks

one of its own inputs directly or via other neurons (figure 1.5 a). In this case, the
temporal dimension t introduced in 1.2.1 becomes important as the computation
of this neuron is now recursive: It is influenced by its own output in a preceeding
time step. Consequently, the output F of the whole network in response to an

13

1.2 Neural Network Models

PSfrag replacements
I1I1 I2I2

f1f1

f2f2

O
a) b)

O(t)

= f2(f1(I1(t − 2∆t), I2(t − 2∆t),

f2(f1(I1(t − 4∆t), . . .))))

O(t) = O

= f2(I1, I2, f1(I1, I2))

Figure 1.5: a) A simple recurrent network: The output depends on the time t and on the
initial states of the neurons. b) A feedforward network: The output is time independent
and the temporal dimension can be omitted.

input applied at time t = 0 now depends on the initial states of the neurons as
well as the time t. Hence, it has to be specified at what time the computation is
to be terminated or what is to be taken as the actual response of the network.

Usually, all neurons in a network need the same time ∆t to compute their result
and this interval can therefore be set to 1 without loss of generality. The network
can then be viewed as to operate in discrete steps with t ∈ N0 being the number
of computed iterations. Networks with feedback connections are commonly called
recursive or recurrent networks.

In contrast, networks that do not contain feedback loops are referred to asfeedforward networks

feedforward networks (figure 1.5 b)). In this case, the network output in response
to an applied input is well-defined. For simplicity, it can thus be assumed that each
node performs its calculation instantaneously and ∆t can be set to zero without
compromising the unambiguousness of the computation. Within such a network,
the neurons can always be numbered in a way that a neuron with index i only
receives input from neurons with indices l < i and/or external input.

Feedforward networks are often — but not necessarily— organized in layers aslayered networks

shown in figure 1.6. Neurons within a layer with index k > 1 only receive signals
from neurons in layers with lower index r < k. Neurons in the first layer only
accept external input. It is common to even further constrain the layered structure
such that layer k > 1 only processes the output of layer k − 1. Connections that
lead from a neuron in layer k to a neuron of a layer with index r > k+1 are called
shortcut connections. If all possible connections between two layers are realized,
i.e., if each neuron in one layer is linked to every neuron in the other layer, the
two layers are said to be homogeneously connected.

The term layer is not consistently used throughout the literature which is due to
the varying classifications of the inputs. As stated above, the inputs of the network
are sometimes considered as neurons and thus to form a layer in their own right.

14

Artificial Neural Networks

PSfrag replacements

inputs

1st layer

2nd layer

3rd layer
a) b)

Figure 1.6: a) Within a layered network, any neuron in layer k only accepts input from
neurons in layers r < k and/or external inputs. The depicted network exhibits several
shortcut connections. b) A strictly layered, homogeneously connected network: Each
neuron in layer k > 1 receives signals from every neuron in layer k − 1. No shortcut
connections are present and only the neurons of the first layer are linked to the external
inputs.

Throughout this thesis, the input fields of the network are not regarded as neurons counting layers

and are consequently not seen as a separate layer. According to this definition,
the networks depicted in figure 1.6 have three layers. This is equivalent to another
definition that does not count the layer of neurons in a network but the layers of
synaptic links that lead to them. As long as inputs are not regarded as neurons,
both definitions are equivalent.

1.2.3 Important Neuron Models

If not otherwise stated, it is understood that the time ∆t needed by a neuron
to compute its output is the same for all neurons in the network and is either
1 or negligible for recursive and feedforward networks, respectively. During the
discussion of some specific neuron models in the succeeding sections, the temporal
dimension is therefore omitted.

The Neuron of McCulloch and Pitts

In 1943, Warren McCulloch and Walter Pitts published a paper that introduced
a simple model of a binary neuron and which is considered to have founded the
research area of artificial neural networks [135]. The output and also the individual
inputs of a McCulloch-Pitts type neuron are binary, i.e., they can only be 0 or
1. The neuron can receive inputs from an arbitrary (but finite) number of other
sources via synapses that can either be excitatory or inhibitory. If the neuron
does not receive non-zero input via any inhibitory connection and if the sum of
its excitatory inputs equals or exceeds a given bias value b, it produces an output
of 1. In all other cases, the neuron responds with 0. Hence, only one inhibitory
signal can compensate any amount of excitatory input which is also referred to as
absolute inhibition.

15

1.2 Neural Network Models

For a McCulloch-Pitts type neuron with threshold b, let nin ∈ N be defined asoutput function

in 1.2.1 and let Iin ⊆ {1, . . . , nin} be a subset of indices such that an input with
index i, 1 ≤ i ≤ nin of the neuron is inhibitory if i ∈ Iin and excitatory otherwise.
Then its output O ∈ O = {0, 1} in response to a set of inputs Ii ∈ I = O = {0, 1}
can be computed as follows:

O = f(b, Iin, I1, . . . , Inin) =

0 if ∃ i ∈ Iin, Ii = 1

Θ

∑
1≤i≤nin

i/∈Iin

Ii

− b

 otherwise

(1.2)

where Θ(x), x ∈ R is the theta function defined by

Θ(x) =

{
0 x < 0

1 otherwise
∀x ∈ R. (1.3)

A network consisting of McCulloch-Pitts type neurons can be regarded as a
signal-flow graph with two types of directed links, namely the inhibitory and exci-
tatory connections. These connections, however, are not weighted: All excitatory
connections have equal influence on the output of the neuron and the same applies
to all inhibitory connections.

In terms of the general definition given in section 1.2.1, the bias value b of
the neuron and the set of indices of its inhibitory connections Iin can be seen as
internal parameters ρ1, ρ2 of its output function.

Associating the numerical value of 0 with the Boolean value false and the valuecomputational
capabilities 1 with true, it is easy to prove by construction that one single McCulloch-Pitts

type neuron with two inputs can compute the Boolean functions AND, OR, NOT,
NAND and NOR. The first two of them do not require any inhibitory connection.
In general, it can be shown that any Boolean function fB : {0, 1}n → {0, 1} can
be computed by a corresponding feedforward network of McCulloch-Pitts type
neurons with two layers.

Threshold Neurons with Weighted Inputs

Like the biological original, a neuron of the McCulloch-Pitts type accepts two
kinds of input: excitatory and inhibitory. It has been discussed in section 1.1.2 that
beyond having an excitatory or inhibitory effect, the synaptic connections between
neurons in the brain are individually weighted and do not in fact have equal
influence on the postsynaptic neuron. The weighting of incoming connections can
easily be incorporated by making some small modifications to the McCulloch-Pitts
type neuron.

In the modified neuron model, each incoming connection with index j is assigned
a synaptic weight wj ∈ R such that an input Ij ∈ I = O = {0, 1} arriving via this
connection contributes with wjIj to the total input of the neuron. The latter is
given by the sum over all input signals and is also denoted as the network input

16

Artificial Neural Networks

net of this neuron:

net =

nin∑

j=1

wjIj . (1.4)

Similar to the McCulloch-Pitts type neuron, the total network input is then com-
pared to the threshold b ∈ R and if the latter is equaled or exceeded, the neuron
responds with 1 and with 0 otherwise:

O = f(b, w1, . . . , wnin , Ii, . . . , Inin) = Θ (net − b) = Θ

nin∑

j=1

wjIj

− b

 (1.5)

Instead of a subset of indices Iin that determines the inhibitory connections, relative vs. absolute
inhibitionthe output function now contains the individual synaptic weights wj as internal

parameters. The Inhibitory influence of a single connection j can be realized
by choosing an appropriate negative weight wj . In contrast to the neuron of
McCulloch and Pitts, this inhibition is not absolute. Rather, it is relative in the
sense that a negatively weighted active connection does not inhibit the neuron
completely but effectively increases the bias of the neuron by the absolute value
of the respective weight wj . On the other hand, absolute inhibition of a synaptic
connection can be achieved by simply setting its weight to a sufficiently large
negative value.

More general, it can be shown that for every weighted network with relative in- weighted vs.
unweighted networkshibition where the weights and bias values of all neurons have rational values (thus

wj , b ∈ Q for all neurons) there exists an unweighted network of McCulloch-Pitts
type neurons that computes the same Boolean function and vice versa [169]. It
might be due to this equivalence that “McCulloch-Pitts neuron” is commonly used
in the literature as a term for the threshold neuron with weighted inputs described
in this section and not for the actual neuron model introduced by McCulloch and
Pitts in 1943. In the following, this nomenclature shall be adopted and the term
McCulloch-Pitts neuron will relate to the weighted threshold neurons introduced
in this section if not explicitly stated otherwise.

Threshold neurons with weighted inputs were first studied by Rosenblatt in the perceptron

1958 [170] [169] who named them perceptrons (see section 2.1). Hence, the thresh-
old neuron with weighted inputs is also often referred to in the literature as simple
perceptron or perceptron.

There is a substantial reason to prefer weighted networks of threshold neu- learning in
unweighted networksrons to their unweighted pendants: While both are equivalent in their potential

to compute arbitrary finite Boolean functions, weighted networks have a critical
advantage when adaption and learning are to be implemented. In biological sys-
tems, learning is realized primarily by modifying the individual strengths of the
synaptic connections. This cannot be done in unweighted networks. Adaption in
unweighted networks rather requires the addition or removal of single connections
in combination with modifications of the bias values which is more difficult to
automate and less biologically plausible.

The topic of learning in artificial neural networks, especially in the case of
weighted McCulloch-Pitts neurons or perceptrons, will be discussed in more detail
in sections 1.2.4, 2.1.2, 2.1.3, and 2.2.2.

17

1.2 Neural Network Models

PSfrag replacements

ϕ
(x

)

β = 4
β = 1
β = 0.5

ϕl(x) = 1
1+e−βx

x
-10 -8 -6 -4 -2

0

0 2 4 6 8 10

1

0.8

0.6

0.4

0.2

Figure 1.7: The logistic function ϕl(x) for different values of β. As β approaches infinity,
ϕl(x) converges to the theta function Θ(x).

Generalizing Further: Neurons with Continuous Output

The binary nature of the original neuron of McCulloch and Pitts has been moti-continuous output vs.
temporal complexity vated by the “all-or-none” character of nervous activity [135]. In the meantime

it has turned out that, as stated in section 1.1.3, the information which is trans-
mitted between neurons in the brain is far more differentiated. The principles of
neural encoding and decoding are in fact based on the temporal organization of
the exchanged signals. Even under the simplifying assumption that the relevant
quantity is the spiking rate of a neuron, this continuous signal is not adequately
represented by a single binary value if the network does not exhibit sufficiently
complex temporal dynamics. At least for feedforward networks, whose operation
lacks any temporal component, it seems appropriate to make up for this short-
coming by other means.

Therefore, a further generalization of the neuron model introduced in the pre-activation function

ceeding section is to allow for the input and output signals of the neuron to as-
sume continuous values, e.g., by setting I = O = [0, 1]. In this case, the threshold
function Θ(x) is replaced by a more general function ϕ(x), ϕ : R → [0, 1], called
activation function. The output O of the neuron is then given by the value of its
activation function ϕ(x) at the point net − b:

O = f(b, w1, . . . , wnin , Ii, . . . , Inin) = ϕ(net − b) = ϕ

nin∑

j=1

wjIj

− b

 (1.6)

One of the most common types of activation functions used for artificial neuronlogistic function

models is the s-shaped sigmoid function

ϕs(x) =
1

1 + e−x
∀x ∈ R (1.7)

or a more generalized version, the so-called logistic function

ϕl(x) =
1

1 + e−βx
∀x ∈ R (1.8)

18

Artificial Neural Networks

with its additional slope parameter β. Figure 1.8 shows the characteristics of
some logistic functions with different slope parameter β. It is to be noted that
as β approaches infinity, the logistic function converges to the threshold function
Θ(x). The threshold neuron in the preceeding section can thus be regarded as a
special case of this generalized neuron model.

For analytical investigations, it is often convenient to consider neurons with an antisymmetric
functionsoutput range of O = [−1, 1] which can, e.g., be accomplished by appropriately

rescaling and shifting the hitherto discussed activation functions. In case of the
threshold function Θ(x), this yields the so-called sign function sgn(x)

sgn(x) =

{
1 x ≥ 0

−1 x < 0
∀x ∈ R. (1.9)

Instead of modifying the logistic function ϕl(x), it can alternatively be replaced by
the hyperbolic tangent function ϕth(x) = tanh(x) : R → [−1, 1] that also exhibits
the desired behavior.

All functions introduced so far map the input space R onto a limited interval linear neurons

and are therefore denoted as squashing functions. In principle, the output of a
neuron does not necessarily have to be restricted to a limited range of values and
it is not uncommon to regard neurons with a linear activation function

ϕlin(x) =
β

4
x + γ ∀x ∈ R. (1.10)

The parameters β and γ are often set to 4 and 0 respectively in which case the
activation function ϕlin(x) becomes the identity and the neuron is then referred
to as a linear neuron.

Any neuron with weighted inputs and a linear activation function effectively
computes a functional mapping that is multilinear in all its input arguments. Fur-
thermore, any linear function l : Rm → Rn represented by a corresponding (m×n)-
matrix with elements lij can be computed by a single-layer network of linear neu-
rons with bias b = 0 if each synaptic weight wij of the connection leading from
input Ii, 1 ≤ i ≤ m to the output with index j, 1 ≤ j ≤ n is set to the corre-
sponding value lij .

Therefore, feedforward networks of linear neurons can completely be described networks of
linear neuronsin the terms of linear algebra. Any composition of linear combinations of linear

functions yields a function that is, again, linear [53]. The consequence for neural
networks is that for any feedforward network of neurons with linear activation
functions and with an arbitrary number of layers there exists an equivalent network
with only one layer that computes the same linear function. For this reason, linear
activation functions are not well suited for the hidden neurons of a neural network.
Rather, linear neurons are often used as outputs. For an output neuron, a non-
linear activation function does not yield any computational benefit but a linear
network response is in some cases easier to interpret with regard to the currently
investigated problem.

19

1.2 Neural Network Models

PSfrag replacements

I0 = −1

I1

I1

I2

I2

I3

IninInin

w1

w1

w2

w2

w3

wnin
wnin

w0 = b

∑∑ ϕϕ
OO

b

−

ff
a) b)

Figure 1.8: a) The bias b of the neuron is regarded as a separate internal parameter,
the role of which is distinct from those of the weights wi and the inputs Ii. b) Within
the alternative model, the bias is replaced by the synaptic weight w0 = b of an additional
Input I0 that is constantly set to -1.

A Note on the Internal Bias

It could be anticipated from equation 1.6 that the bias b of the neuron plays a role
which is clearly distinct from that of its inputs Ii and their corresponding weights
wi. However, the expression for the output of the neuron can be simplified by
regarding its bias as an additional weight w0 = b that belongs to an input I0

which is constantly set to -1. The bias then becomes a part of the total input net

net =

nin∑

j=1

wjIj

+ w0I0 =

nin∑

j=0

wjIj with w0 = b, I0 = −1 (1.11)

and the output of the neuron can be written in the more homogenous form

O = f(w0, . . . , wnin , I0, . . . , Inin) = ϕ(net) = ϕ

nin∑

j=0

wjIj

 with I0 = −1.

(1.12)
In other words, for each network of neurons with internal bias there exists anetworks with and

without bias functionally equivalent network of neurons without bias but an additional input
I0 that is constantly set to -1. It is evident that this equally applies to all neuron
models that incorporate weighted inputs.

The difference between the two approaches is illustrated in figure 1.8. It might
seem purely academic to differentiate between them as they are obviously equiva-
lent. In fact, the second form of the neuron output function f given in 1.12 proves
to be advantageous for the formulation of adaptation algorithms as all adjustable
internal parameters of f become synaptic weights and can thus be treated in the
same fashion.

20

Artificial Neural Networks

Alternative Neuron Models

Besides the types of neuron introduced in the foregoing sections, there are at least
two more neuron models that, although not directly relevant for this thesis, are
worth mentioning for completeness.

All preceeding neuron implementations are deterministic in that a given input stochastic neurons

signal reliably leads to a defined output. A stochastic neuron, on the other hand,
assumes either one of its two possible output values (e.g., 0 and 1) with a respective
probability that itself depends on the neurons total input. In other words, the
activation function of the neuron is no longer regarded as to directly compute its
output. Rather, it is given a probabilistic interpretation and now determines the
probability P (net) = ϕ(net) for the neuron to fire, i.e., to yield an output of 1:

O =

{
1 with probability P (net) = ϕ(net)

0 with probability 1 − P (net)
(1.13)

Most often, ϕ(net) is taken to be the logistic function 1.8. The slope parameter
β can then be interpreted as to control the size of the fluctuations that lead to the
stochastic behavior of the neuron. In analogy to thermal fluctuations as covered by
statistical physics, β is sometimes regarded as the inverse of a pseudotemperature
T = 1/β. When the pseudotemperature T reaches zero, the neuron becomes
a deterministic McCulloch-Pitts neuron. Stochastic neurons are primarily used
within a specific type of recurrent network denoted as Boltzmann Machine [2] in
honor of the physicist Ludwig Boltzmann.

Another variation of the neuron concept are the so-called radial basis function radial basis function
neuronsneurons [146]. Instead of computing their total input as a weighted sum of the

single inputs Ii ∈ R, they take it to be the length of the difference between the
input vector I = (I1, . . . , Inin) ∈ Rnin and the weight vector w = (w1, . . . , wnin) ∈
Rnin

net = ||I − w ||

=
√

(I1 − w1)2 + . . . + (Inin − wnin)
2

(1.14)

according to the Euclidian norm || . ||. The activation function ϕ(net) is in this
case usually referred to as the basis function. A popular choice of basis function
is the Gaussian

ϕ(net) = exp−1

2

(
net

σ

)2

(1.15)

with the parameter σ that determines the width of the maximum at net = 0.
Neurons with a localized basis function like the Gaussian are sensitive to a

region of the input space that is centered around the point w defined by their
synaptic weights. Inputs near this point cause a strong activation of the neuron,
vectors that are sufficiently far away from the center of the sensitive region cause
only negligible effect.

21

1.2 Neural Network Models

1.2.4 Modeling Adaptation

Let Nin and Nout be the respective numbers of input nodes and output neurons ofmotivation

a neural network with weighted connections. Once its architecture1 and the used
activation function are fixed, the output O ∈ ONout =: Ω of the network in response
to an input vector I ∈ INin =: Φ is determined by the set of weights wi of all its
internal synaptic connections2. The weights can thus be regarded as parameters
of the function F : Φ → Ω that is computed by this network. The challenge in
constructing a neural network for a specific information-processing task is to find
the corresponding set of parameter values, i.e., the synaptic weights, that let it
compute a given desired function F .

Learning Algorithms: An Overview

In some rare cases, it might be possible to define a priori the appropriate values oflearning in artificial
neural networks the synaptic weights that have to be chosen for the given problem. Unfortunately,

this is infeasible for most tasks of practical relevance. In fact, it is one of the pri-
mary advantages of artificial neural networks that they can iteratively adapt their
weight values to suit a desired purpose. This is in direct analogy to the adaption
properties of biological neural systems (see section 1.1.4) and the process by which
the synaptic weights of a network are optimized with regard to its performance
on a given task is therefore called learning or training.

During the learning process, input patterns are repeatedly applied to the net-learning algorithm:
description work and based on its response, modifications are made to its synaptic weights

according to a predefined rule. These changes will then cause the network to re-
spond in a different way during the next and successive iterations such that — in
the ideal case— its performance will improve over time. A given set of well-defined
weight updating rules is called a learning algorithm. Learning algorithms can be
classified into two main approaches: supervised and unsupervised learning.

Supervised Learning Following the supervised approach, the output vector
O of the network in response to an input pattern I is compared to the actually
desired target output T. The modifications that are applied to the weights of
the network are calculated on the basis of the potential difference between O and
T. Supervised learning therefore requires the specification of the correct answer
which is the reason why it is also called learning with a teacher.

The supervised training strategies can further be divided into error correctionerror correction
learning learning and reinforcement learning. In the case of error correction learning, the

difference between the network response O and the desired output T is quantified
according to some adequate distance measure E(O,T) which is directly incorpo-
rated into the computation of the weight updates. This measure is commonly
termed error function.

1In case of recurrent networks, defining the maximum number of allowed iterations is regarded
as part of fixing the architecture.

2Against the background of section 1.2.3, possible bias values can be regarded as weights and
do not have to be treated separately.

22

Artificial Neural Networks

During reinforcement learning, the weights are updated solely on the basis of reinforcement
learningwhether the network output has been right or wrong. But it has to be noted

that slightly different and more elaborate definitions of reinforcement learning can
be found in literature and that it can also be seen as an unsupervised training
approach [84]. The exact definition of the term reinforcement learning is not of
major relevance for this thesis and it shall henceforth be used in the above sense.

Unsupervised Learning In contrast to supervised learning, unsupervised train-
ing strategies do not require a specification of the correct outputs and are thus
useful for tasks where the correct outputs are not known at all. This particularly
applies to cases where the goal is not to reproduce a certain output but rather
to find and extract correlations within the input data. Clustering is a prominent
example for this kind of problem.

The Hebb-rule introduced in section 1.1.4 represents an unsupervised learning biological plausibility

approach as the modifications to the synaptic weights of each neuron depend only
on its own activity and the activities of the neurons it receives input from. The
updating of the weights does not rely on any externally specified target output. In
so far, unsupervised learning can be regarded as the more appropriate model for
adaptation in real nervous systems. Nevertheless, while not being as biologically
plausible, supervised learning proves to be of exceptional use in numerous practical
applications.

The task of neural network training can be extended to incorporate the con-
struction of network architectures and/or the choice of activation functions that
are optimal for the problem in question. However, the majority of widespread
learning algorithms and particularly all algorithms discussed in this and the next
chapter confine themselves to optimizing the weight values of a network. Some
approaches for the optimization of the network architecture during training will
be discussed in 4.2.

Types of Learning Tasks

As it has already been implied in the preceeding section, the kind of problem
that is to be solved by a neural network not only strongly influences the choice of
its architecture and neuron model but also the used learning algorithm. Neural
networks are successfully applied to a wide range of problems in a large variety of
fields and it is difficult to set up a rigid and consistent categorization of the entirety
of various learning tasks. But on a general level, one can at least distinguish the
following prominent types: function approximation, pattern recognition, pattern
association and clustering.

For the first example, consider an arbitrary functional mapping function
approximation

y = g(x) x ∈ Φ, y ∈ Ω (1.16)

where the explicit function g is unknown but is represented by a discrete set Eg

of Ne examples (xα,yα) with yα = g(xα) for 1 ≤ α ≤ Ne. The aim is to train the

23

1.2 Neural Network Models

network such that its corresponding function F approximates the target function g
as closely as required. Thus, it is desired that for a given small number ε > 0, ε ∈ R

the network function F satisfies

|| F (x) − g(x) || < ε ∀x ∈ Φ (1.17)

using an adequate norm || . || defined on Ω. Considering the premises and re-
quirements of this type of problem, it is obvious that supervised learning using
the available set of examples Eg is the adequate training approach. In fact, equa-
tion 1.17 already implies a suitable error measure E to be used for correction
learning and this will be investigated further in section 2.1.3.

In pattern recognition, also known as pattern classification, it is the task ofpattern recognition

the network to correctly allocate each applied input vector I ∈ Φ to one of a
predefined set of classes C = {C1, . . . , CNc}. The various classes Ci ⊆ Φ are
mutually exclusive (Ci

⋂
Cj = { }, 1 ≤ i, j ≤ Nc, i 6= j) and their number Nc is

fixed. As in the case of function approximation, networks for pattern classification
are trained in a supervised way using a set Ec of Ne learning examples (Iα, Cα),
i.e., a set of instances Iα, 1 ≤ α ≤ Ne for which the respective correct classes Cα

with Iα ∈ Cα are known.

For each input vector Iα from the set of training examples and any arbitrary
class Ck ∈ C, the specification of whether the former is a member of the latter —
thus whether Ck = Cα — is clearly a binary information, i.e., either true or false.
This motivates the use of a reinforcement learning strategy in the sense of the
definition given in section 1.2.4.

However, the problem of pattern classification can also be extended to the pre-
diction of the probability P (Ck | I) that an instance represented by the vector
I ∈ Φ is a member of the class Ck. For each class Ck, this probability can be
regarded as a functional mapping Pk : Φ → [0, 1], Pk(I) = P (Ck | I) and it can be
considered the purpose of the network to approximate this function. Seen from
this angle, pattern classification is closely related to function approximation.

In the case of pattern association, the network is taught to associate an inputpattern association

vector Iα with a corresponding output pattern Oα in the sense that when the
trained network is applied an incomplete or distorted version of Iα, it nevertheless
returns the learned output Oα. If Iα = Oα and thus in fact Φ = Ω, the problem
is also referred to as autoassociation and is named heteroassociation otherwise.
While heteroassociation requires supervised learning and can be seen in analogy
to the associative memory of the brain, autoassociation commonly involves unsu-
pervised training algorithms and can, e.g., be used for filtering or noise reduction.
Both are usually implemented using recurrent networks (see section 2.3.3).

Data clustering is perhaps the most obvious example for tasks that rely ondata clustering

unsupervised learning strategies. The problem can be seen as that of a pattern
classification task with the additional challenge that the classes Ck are not initially
specified. Rather, it is the purpose of the network to extract correlation informa-
tion within the input data in order to come up with an appropriate partitioning of
the input space into clusters by itself. Self-organizing maps (SOMs) are a popular
approach to tackle this kind of task [120].

24

Artificial Neural Networks

From what has been said, it may be understood that the boundaries between
the different types of learning tasks are smooth and in specific cases it might
indeed not be possible to unambiguously allocate a given problem to one of them.
Nevertheless, most applications of neural networks, from whatever field they might
originate, fall in at least one of the above categories. In particular, it has been
said that all neural networks implement a specific functional mapping F : Φ → Ω.
Training a network to perform a given information processing task can in this sense
always be regarded as some kind of function approximation (see also section 9.3.2).

Generalization

Within this thesis, emphasis is placed on pattern classification tasks in connection motivation

with supervised learning algorithms. As stated above, these are closely related
to the solution of corresponding function approximation problems. Whenever a
network is trained in a supervised way using a finite set E of examples, it is in fact
the goal of the learning process that the fully trained network will also perform
correctly on hitherto unseen input vectors I ∈ Φ\E. The ability to use previously definition

gained knowledge to perform well in present and future decisions under similar
but different conditions is called generalization. Thus, the aim of neural network
training is to produce a neural network that has good generalization ability.

While this comprehension might appear trivial, it is of great consequence for
the construction of neural networks and the formulation of training algorithms,
especially with regard to pattern recognition tasks. This is due to the fact that
improving the performance of a network on the training data does not in all cases
guarantee an improvement in generalization ability but might actually result in a
deterioration of the latter.

To understand this phenomenon, it is necessary to examine some explicit net-
work architectures, including their capabilities and limitations, as well as the cor-
responding learning algorithms more closely. The following chapter is devoted to
the important class of feedforward networks.

25

Chapter 2

Feedforward Neural Networks

It’s a poor sort of memory that only works backward.

Lewis Carroll

Feedforward architectures that do not contain any feedback loops form an im-
portant class of artificial neural networks. A considerable variety of theoretical
and experimental investigations have been performed in order to illuminate their
computational capabilities and to devise efficient algorithms for their training.

The experiments and novel training strategies presented in part III of this the-
sis concern themselves with hardware-implemented, strictly layered, feedforward
networks for pattern classification tasks. Therefore, the aim of this chapter is to
lay a solid foundation for the discussion of the achieved results by summarizing
what is known about the general properties of this class of networks, expecially
with regard to pattern categorization problems.

Beyond that, section 2.3 gives a brief overview of some alternative network
topologies and paradigms that have proven to be suitable approaches for the so-
lution of classification problems as well. Finally, the chapter is to be concluded
with a discussion of hardware-implemented neural networks and the special re-
quirements that have to be met by suitable algorithms for their training.

2.1 Single-Layer Feedforward Networks

The following sections address feedforward networks that exhibit only one single the perceptron

layer of weighted connections. Networks of this kind were first studied by Rosen-
blatt in 1958 [170]. Originally, he investigated threshold neurons that received
weighted input from a number of receptive neurons that were each sensitive to a
different region of an artificial retina (see figure 2.1). In this initial version, the
connections between the retina and the receptive neurons were deterministic and
fixed, whereas the weighted connections to the threshold neurons were initialized
randomly and tuned during training. Rosenblatt called this system perceptron.

In the following years, the model was refined further [22] and eventually simpli- the simple perceptron

fied and studied in more detail by Minsky and Papert [143]. Within their model,

27

2.1 Single-Layer Feedforward Networks

PSfrag replacements

artificial retina
receptive neurons

fixed adaptive
connectionsconnections

ou
tp

u
t

n
eu

ro
n
s

Figure 2.1: Schematic of the original perceptron (Rosenblatt 1958 [170]): A group
of receptive neurons are connected to different sets of receptive fields on an artificial
retina. Their outputs are sent to threshold neurons with weighted inputs whose connection
strengths are initialized randomly and adapted during training.

the so-called simple perceptron is reduced to a single threshold neuron that re-
ceives input signals via weighted connections from a set of binary predicates.

In more recent literature, the name perceptron is commonly used for any feed-single-layer and
multi-layer
perceptrons

forward network consisting of neurons that calculate their total input net through
a weighted sum of their input signals Ij . If the network has only one layer, it is
also referred to as a single-layer perceptron and if this single layer contains only
one neuron, it is named simple perceptron.

2.1.1 Capability of the Simple Perceptron

Consider a simple perceptron, more specifically, a single threshold neuron with
weighted inputs whose individual input signals Ij ∈ I = R are continuous while its
output O ∈ O = {0, 1} is limited to binary values. Figure 2.2 a) shows an example
with two real inputs I1, I2 and a virtual third input I0 that is constantly set to
-1 in order to implement a bias b = w0. The two-dimensional input space R2

of the neuron can unambiguously be divided into two distinct sets S0
⋂

S1 = ∅,
S0
⋃

S1 = R2 which contain those pairs of input values (I1, I2) that cause an
output of 0 and those which lead to an output of 1, respectively.

For the weight values chosen in figure 2.2 a), the two resulting regions S0 and S1linear region
boundary are illustrated in figure 2.2 b). According to equations 1.3 and 1.12 the boundary

between them is a straight line defined by

I0 w0 + I1 w1 + I2 w2 = 0. (2.1)

Using I0 = −1 and w0 = b, this immediately becomes

I1w1 + I2w2 = b (2.2)

28

Feedforward Neural Networks

PSfrag replacements

I1 I2 I0 = −1

w1 = 1 w2 = 2

w0 = b = 2
3

O
= Θ(w1I1 + w2I2 − b)

I1

I2

I1 + 2I2 < 2
3

I1 + 2I2 > 2
3

(0, 0) (0, 1)

(1, 0) (1, 1)

A B

C D

S1

S0

a) b)

Figure 2.2: A simple perceptron with two inputs (a) divides its two-dimensional input
space into two distinct regions that are separated by a straight line (b) which is defined
by I1w1 + I2w2 = w0. Inputs that correspond to points in the lower region S0 lead to an
output of 0, those from the upper part S1 (including the boundary) yield a response of 1.

which can be transformed to the linear correlation

I2 =
b

w2
− I1

w1

w2
(2.3)

depicted in figure 2.2 b). A little more algebra reveals that the hereby defined
region boundary is perpendicular to the vector w = (w1, w2) ∈ R2 and that its
normal distance from the origin is given by

l =
|b |√

w2
1 + w2

2

. (2.4)

Hence, while the orientation of the separation is solely defined by the individual
values of w1 and w2, its position in the input plane can be determined by specifying
the bias b. Through an adequate choice of these parameters, any linear partitioning
of the input space R2 can be achieved.

This result can be generalized to an arbitrary number of nin inputs, in which hyperplane in n
dimensionscase a simple perceptron with weight vector w ∈ Rnin and bias b divides the

input space Rnin into two regions that are separated by an (nin−1)-dimensional
hyperplane h ⊂ Rnin . The normal vector nh of this hyperplane is given by

nh =
w

|| w || (2.5)

while its normal distance from the origin lh can be calculated as

lh =
|b |

|| w || , (2.6)

where || . || denotes the Euclidian norm.

29

2.1 Single-Layer Feedforward Networks

In equations 2.5 and 2.6, the bias of the simple perceptron is once more treatedextended weight
vector separately from its weights. Still, in the spirit of section 1.2.3 and figure 2.2 a), all

parameters of the neuron, i.e., its weights and bias, can be regarded as components
of a single extended weight vector w̃

w̃ = (w0, w1, w2, . . . , wnin) with w0 = b (2.7)

and each input pattern I can be represented by an extended input vector

Ĩ = (−1, I1, I2, . . . , Inin), (2.8)

where I0 has already been replaced by a constant of -1. In this representation,
the perceptron again defines an nin-dimensional hyperplane h̃ within its extendedextended input vector

input space Rnin+1, but this time, the orientation of the hyperplane is defined by
the extended weight vector

ñh =
w̃

|| w̃ || (2.9)

which in particular includes the bias w0 = b. By definition, the new hyperplane
h̃ expands through the origin, hence l̃h is always 0. In turn, all extended input
vectors now lie in the nin-dimensional subspace P

nin
0 (−1) ⊂ Rnin+1 given by

P
nin
0 (−1) = {(I0, I1, . . . , Inin) ∈ Rnin+1 | I0 = −1} (2.10)

and thus have a minimum distance to the origin of 1.
In this sense, the original input plane shown in figure 2.2 b) could be seen asextended input space

a two-dimensional slice P2
0(−1) through the extended input space R3 at I0 = −1.

Another two-dimensional plane h̃ ⊂ R3 is defined by the perceptron via equa-
tion 2.1 and its intersection with P2

0(−1) results in the linear separation that is

shown in figure 2.2 b). It should be repeated that although h̃ must pass through
the origin of R3, its intersection with the original input plane P2

0(−1) can yield any
desired linear separation of the latter if its orientation ñh is changed accordingly.

This view of the situation might seem rather unintuitive but as stated before,
it simplifies matters in so far as the hyperplane h̃ in the extended input space
depends on all parameters wi of the neuron in a congenerous way. It persists,
that independent of the actual treatment of its bias, the perceptron divides the
extended as well as the original input space into two regions which are separated
by a respective linear subspace.

Linear Separability

Two sets C1 and C2 of points I in the nin-dimensional space Rnin are called linearly
separable, if there exist nin + 1 real numbers w0, w1, . . . , wnin such that

nin∑

i=1

wiIi ≥ w0 ∀ (I1, . . . , Inin) ∈ C1 and

nin∑

i=1

wiIi < w0 ∀ (I1, . . . , Inin) ∈ C2.

(2.11)
This is equivalent to the existence of an (nin−1)-dimensional hyperplane that
separates all points in C1 from those in C2.

30

Feedforward Neural Networks

Correspondingly, a bool-valued function fb : Rnin → [0, 1] is denoted linearly sep-
arable if the set B0 = {(I1, . . . , Inin) | fb(I1, . . . , Inin) = 0} is linearly separable
from the set B1 = {(I1, . . . , Inin) | fb(I1, . . . , Inin) = 1}.

It can be concluded from the results of the preceeding paragraphs that when a capability of the
simple perceptronsimple perceptron of the above definition is to be used for a pattern classification

problem with two classes C1 and C2, it can only reliably distinguish between them
if they are linearly separable. Also, if the perceptron is in fact a McCulloch-Pitts
neuron that only accepts binary inputs, it can only compute linearly separable
Boolean functions. It is worthwhile to investigate the consequences of this result
in more detail.

Linearly Separable and Inseparable Problems

Let, for a moment, the simple perceptron in figure 2.2 a) be restricted to accept linear separable
Boolean functionsonly binary values Ii ∈ {0, 1}. It then effectively becomes a McCulloch-Pitts neu-

ron and the input space is reduced to the points A, B, C and D in figure 2.2 b)
which correspond to the four possible combinations of two Boolean values. Adopt-
ing the specified weights, the network computes the Boolean function OR: Its out-
put is 1 in all cases except if both of its inputs equal 0 (point A). It is evident
that the extended weight vector w̃, i.e., the weights and the bias of the percep-
tron, could be changed such that the region boundary shown in 2.2 b) is shifted
to separate points A, B and C in S0 (blue) from the input D in S1 (red). In this
case, the perceptron would compute the Boolean AND. Both, AND and OR, are
clearly linearly separable.

Consider, however, the Boolean function XOR (“exclusive or”) that yields a the Boolean XOR

value of 1 for the points B and C while it returns 0 for the inputs A and D.
Figure 2.2 b) suggests that there is no linear partitioning of the input plane that
performs the desired separation. This assumption is indeed true and can easily be
proven by contradiction [143] [169]. In other words, the XOR function is linearly
inseparable and can therefore not be computed by a simple perceptron.

The generalization of XOR to more than two inputs is the so-called N-bit parity N-bit parity

function fN
p : {0, 1}N → {0, 1}. It accepts N binary inputs Ii, 1 ≤ i ≤ N and

returns 1 only if the number of inputs with value 1 is odd:

fN
p (I1, . . . , IN) =

{
1 |{Ij | 1 ≤ j ≤ N, Ij = 1}| ≡ 1 mod 2

0 otherwise .
(2.12)

Like XOR, the N-bit parity function is linearly inseparable and is the most fa-
mous example for functions that cannot be solved by single-layer feedforward net-
works [143]. In general, if N is the dimension of the input space — corresponding
to the number of inputs to the perceptron — there are 2N possible input patterns
and hence 22N

possible partitionings of these patterns into two classes. Each of
these partitionings corresponds to one Boolean function fb : {0, 1}N → {0, 1}. The
percentage of those functions that are linearly separable can be shown to converge
to 0 with increasing N [20] [149] [169]. Already for N = 3, only 104 of the 256
possible Boolean functional mappings exhibit linear separability.

31

2.1 Single-Layer Feedforward Networks

This result seems rather devastating as it suggests that the applicability of
a simple perceptron is limited to only a negligible fraction of problems. The
revelation of these limitations by Minsky and Papert in 1969 [143] indeed lead to
a strong decrease of interest in artificial neural networks for several years.

It has to be noted that Boolean functions, while providing sound means of esti-Boolean functions vs.
pattern recognition mating the basic capabilities of specific neural network architectures, are only of

minor interest to the practitioner who desires neural networks to generalize well
on realistic problems. Reliably modeling an arbitrary Boolean function involves
the learning of every single input-output mapping and the concept of generaliza-
tion (see section 1.2.4) cannot reasonably be applied at all. In case of XOR and
parity, the smallest possible change in the input pattern — changing one binary
input from 0 to 1 or vice versa — leads to the largest possible change in the out-
put. Most realistic pattern recognition problems show the opposite behavior, i.e.,
small changes in the input do in most cases lead to only minor changes in the
output [20].

Therefore, the restriction to binary input values shall now be lifted again and
the perceptron will be used to solve the three classification problems illustrated in
figure 2.3. As it is common for classification problems, the classes are in each case
represented by a finite set of examples with the instances of classes C1 and C2

being marked by crosses and circles, respectively. The shown class structures are
simplified but capture some typical characteristics of realistic pattern recognition
problems (see section 9.4).

In figure 2.3 a), position and shape of both classes are such that they can reliablylinearly separable
and inseparable
classes

be separated by a simple perceptron. While this is not possible for the classes
shown in figure 2.3 b), the given linear partitioning of the input space can at least

PSfrag replacements

I1I1I1

I2I2I2
a) b) c)

Figure 2.3: a) The two classes are linearly separable, i.e., their members can reliably
be told apart by a linear partitioning of the input plane. b) In this case, the thin curve
yields a better classification accuracy. Still, the linear separation is a good approximation.
c) Here, the classes partly overlap. As each class is represented by only a finite number
of instances, they can completely be separated by a sufficiently complex curve (thin line)
but the linear approach promises to achieve better generalization.

32

Feedforward Neural Networks

be regarded as a reasonable first-order approximation of the real solution and
would in this case lead to a fraction of misclassifications of only 10 %. Still, the
curved thin line represents a far more suitable separation of the input space for
this classification problem.

The two classes shown in figure 2.3 c) partly overlap. But as they are each overlapping class
regionsrepresented by only a finite number of instances, there exist intricate non-linear

separations of the input plane that seem to distinguish between them with 100 %
accuracy. One of these possible separations is again illustrated as a thin black
line. If the individual instances of the two classes are spread over the input space
according to some statistical distribution, it is most likely that additional instances
generated by the same underlying mechanism would not be classified correctly by
the shown specialized partitioning. In that case, the superiority of the non-linear
separation to the linear one would actually be an illusion caused by the use of
a finite set of examples. The shown linear partitioning, although not perfectly
classifying the present instances, clearly provides a more adequate separation of
the classes and is likely to yield a better generalization performance.

These reflections motivate that a simple perceptron with its limited compu-
tational capabilities might nevertheless prove to be of value for the solution of
pattern recognition problems if the respective class structures exhibit character-
istics similar to those of the above examples. It is reasonable to wonder whether
this does in fact apply to any realistic tasks. A thorough investigation of this topic
will be the subject of chapter 9.

2.1.2 Training the Simple Perceptron

During the initial years after its introduction, the perceptron attracted high in-
terest mainly because of the availability of a well-defined and effective training
algorithm that, for the first time, allowed an artificial network to be used as a
learning machine.

As a simple perceptron consists of only one neuron, the number of inputs to the
network Nin is equivalent to the number of inputs to the neuron nin = Nin and
the number of outputs Nout equals 1. For simplicity, it is assumed that the neuron
exhibits no internal bias. It is recalled from section 2.1.1 that this can always be
achieved by discussing the problem in terms of an extended weight vector w̃ and
corresponding extended input vectors Ĩ (see equations 2.7 and 2.8).

It has also been shown that a simple perceptron linearly divides its input space goal of the training

into two regions and can thus in principle solve any linearly separable classification
problem with two classes C1 and C2. The network is to be trained for one such
task using a finite training set E of input patterns Ĩα that are each associated with
the respective desired target output T α. Given this finite set of examples, it is
the purpose of the training algorithm to find a linear separation (represented by a
corresponding weight vector w̃) that yields a correct classification of all instances
Ĩα ∈ E.

To keep the formulation of the training algorithm simple, it will turn out to
be advantageous if one considers a threshold neuron that does not respond with
0 or 1 but with -1 or 1 instead. As stated in section 1.2.3, this transition is

33

2.1 Single-Layer Feedforward Networks

straight forward — it merely involves a shifting and rescaling of the output — and
effectively turns the threshold activation function Θ(x) into the sign function
sgn(x) (equation 1.9). The learning task shall then be formulated such that input
patterns Ĩ belonging to class C1 are desired to result in a network response of
T = 1 and those of class C2 are to yield an output of T = −1.

The perceptron learning algorithm [22] starts off by initializing the weights of allperceptron learning
algorithm connections with random values. It then proceeds by iteratively cycling through

all training examples Ĩα, presenting them to the network and comparing the re-
spective network response Oα to the corresponding target output T α: If Oα = Tα

the training immediately continues with the next training pattern. Otherwise,
the weight vector w̃ is changed by a small vector ∆w̃α which is proportional to
the original input vector Ĩα. The weight change ∆w̃α shall be added to the old
weights w̃, if the target output T α = 1 and be subtracted if T α = −1. At this
point, the choice of {−1, 1} for the possible output values pays off, as the mod-
ification of the weight vector after the application of each input pattern Ĩα can
conveniently be formulated as

w̃new = w̃old + ∆w̃α (2.13)

with

∆w̃α =
1

2
η (Tα − Oα) Ĩα (2.14)

where the constant η is an adjustable parameter of the algorithm denoted as
learning rate. This learning algorithm is an example for supervised training.

Discussing the Perceptron Learning Algorithm

According to an important result commonly known as the perceptron convergenceperceptron
convergence
theorem

theorem, the perceptron learning algorithm is guaranteed to find a complete so-
lution of a given classification task within a finite number of iterations under the
condition that the problem can actually be solved by a perceptron, i.e., is linearly
separable [22] [88] [143].

While the proof of this theorem shall not be reproduced here in detail, thegeometrical
discussion weight updating scheme 2.14 can be motivated by some simple geometrical con-

siderations [88] [20]. In the extended input space, the perceptron defines a hy-
perplane h̃ that passes through the origin. Its orientation is given by the normal
vector ñh which in turn is determined by the weight vector w̃ by virtue of equa-
tion 2.9. According to this definition, an input vector Ĩ results in an output of 1 if
its projection onto w̃ is positive and yields an output of -1 if the latter is negative.
Thus, if a vector Ĩα is incorrectly classified, its projection p̃α

h = ñhĨ
α onto the

direction of w̃ simply has the wrong sign which can iteratively be corrected by
slightly changing the orientation of w̃ into the appropriate direction. If the sign of
p̃α

h is false negative, w̃ has to be rotated towards Ĩα, if it is false positive, w̃ must
be changed in the opposite direction. The learning rule 2.14 is the mathematical
formulation of this strategy.

34

Feedforward Neural Networks

It is worth pointing out that the algorithm reaches a stationary weight vector training result

w̃ — and can be regarded as terminated — once all training patterns are classified
correctly. However, as the number of training instances is finite, the solution is
not unique and multiple runs with different random initializations will most likely
result in different final weight vectors w̃ which will nevertheless perform equally
well on the training set. In particular, the result of a specific training run is not
guaranteed to yield the best possible result with regard to generalization.

If the two classes are not linearly separable at all, there will at each stage of the linearly inseparable
casetraining be at least one input vector Ĩα that is not correctly classified. Therefore,

the algorithm will in principle continue to adjust the weights infinitely, resulting in
an ever increasing weight vector w̃. When the algorithm is eventually terminated
manually or due to another suitable abortion criteria, the resulting network is not
necessarily optimal in any sense, especially not in terms of generalization.

The perceptron learning rule nevertheless presents an effective training approach
for single-layer networks and linearly separable problems. Unfortunately, it turned
out that it cannot be transferred to multi-layer networks (section 2.2) which mo-
tivated the design and study of alternative learning algorithms.

2.1.3 Continuous Outputs and Gradient Descent

The discrete output of the simple perceptron discussed in the preceeding sections
shall now be exchanged for a continuous response like generated by one of the
squashing functions discussed in 1.2.3. For a start, let the output of the neuron lie
in the interval [0, 1] and let it be computed by the logistic function ϕl (equation 1.8)
with a slope parameter of β = 2. If the response O(I1, I2) of the simple network in
figure 2.2 a) is then plotted as a function of its two inputs, one obtains the graph
shown in figure 2.4.

The input plane can in some sense still be regarded as linearly separated into two linear separation

regions, one corresponding to an output near 1 and the other to a response close
to 0, but the transition between them is now gradual and no longer discontinuous.
Apart from that, all observations stated in section 2.1.1 concerning the position
and orientation of the linear separation still hold. As before, the transition to the
extended input space and the extended weight vector w̃ is straight forward.

Regarding a classification task with two classes C1 and C2, the output Oα of probabilistic
interpretationthe network in response to an input Ĩα can now be interpreted as a measure of

the probability P α
1 = P (C1 | Ĩα) that the latter belongs to class C1. Correspond-

ingly, the probability P α
2 = 1 − Pα

1 that the instance is of class C2 can be related
to 1 − Oα. Hence, while the limitation to a linear separation remains, a neuron
with continuous output can provide some additional information about its confi-
dence regarding the classification of a specific input. When the resulting output is
close to 1/2, the input vector must lie near to the region boundary h̃. If, e.g., the
class structure is similar to that of figure 2.3 c), the categorization of any input
close to the class separation is not as definite as if it was further away from the
boundary and the output was closer to 1 or 0.

35

2.1 Single-Layer Feedforward Networks
PSfrag replacements

I1

I2

O
(I

1
,I

2
)

1

0.8

0.6

0.4

0.2

I1 + 2I2 < 2
3

I1 + 2I2 > 2
3

-6 -6

-4
-4

-2

-2

0

0

0

2

2

4

4

6

6

Figure 2.4: If the output neuron of the simple perceptron in figure 2.2 a) is assigned
the logistic transfer function ϕl, its output O(I1, I2) becomes a continuous function of
the inputs. The position and orientation of the linear separation between output 0 and 1
remain the same as in figure 2.2 b) but the transition becomes smooth.

Gradient Descent Training: The Delta Rule

Besides allowing for a more differentiated interpretation of the network output, adifferentiable network
output continuous neuron response as given by the logistic function ϕl is also advantageous

in so far as the neuron output function O(w̃, Ĩ) is now differentiable with respect
to all input values Ii. Alternatively, given a fixed input vector Ĩα, the response
Oα(w̃) = O(w̃, Ĩα) of the neuron can itself be regarded as a differentiable function
Oα : Rnin+1 → O of the synaptic weights wi.

This important insight gives rise to a new training approach. Revisiting thedifferentiable network
error two-class problem of section 2.1.2, let the error Eα of the network with regard

to an input pattern Ĩα ∈ E be defined in terms of the actual network response
O(w̃, Ĩα) and the respective target output T α ∈ {0, 1} as follows

Eα(w̃) =
1

2

(
O(w̃, Ĩα) − Tα

)2
. (2.15)

Then, the overall performance of the network on the whole training set E can be
measured by the error function

E(w̃) =
∑

E

Eα(w̃) =
∑

E

1

2

(
O(w̃, Ĩα) − Tα

)2
(2.16)

such that the smaller E(w̃), the better the choice of weights w̃ for this particular
problem. The goal of training the network for a specific task could thus be iden-
tified with the minimization of E(w̃). As by definition, E(w̃) is a continuous and

36

Feedforward Neural Networks

differentiable function of all weights wi, it seems appropriate to pursue this aim
using common gradient descent optimization methods [20].

Following an iterative approach similar to the one introduced in 2.1.2, the train- iterative gradient
descenting starts once more with some random initial weights w̃ which are likely to yield

an undesirably large value of E(w̃). Therefore, the weight vector is updated by
moving into that direction of the weight space along which E(w̃) decreases most
rapidly. This direction is given by the negative gradient −∇ ewE and the weight
change can be written as

∆w̃ = −η ∇ ew E
∣∣

ew
(2.17)

including an adjustable learning rate η. In case of the perceptron learning algo-
rithm, the weights are updated after the processing and evaluation of each single
input pattern Ĩα and the same scheme can also be adopted here. If, furthermore,
the modification of each weight wi is regarded separately, one obtains

∆wα
i = −η

∂Eα

∂wi

∣∣∣∣
ew

∀ 1 ≤ i ≤ nin. (2.18)

Combining equations 1.12 and 2.15, it is straight forward to compute the involved
partial derivatives of Eα to be

∂Eα

∂wi

∣∣∣∣
ew

= ϕ′(netα) (O(w̃, Ĩα) − Tα) Iα
i ∀ 1 ≤ i ≤ nin. (2.19)

It turns out that apart from the input pattern and the corresponding actual the delta rule

and desired outputs, the weight change ∆wα
i depends also on the derivative of the

activation function ϕ′ at the point netα = w̃ Ĩα. It can finally be written in the
form

∆wα
i = −η δα Iα

i ∀ 1 ≤ i ≤ nin, (2.20)

where δα is defined as

δα = ϕ′(netα) (O(w̃, Ĩα) − Tα) ∀ 1 ≤ i ≤ nin. (2.21)

The above result was first formulated by Widrow and Hoff in 1960 [227] for the
case of linear neurons (ϕ′(netα) = 1). Since then, this particular weight updating
scheme and its variants are known by several names including Widrow-Hoff rule,
delta rule, adaline rule or LMS (least mean square) rule.

Discussing the Delta Rule

The delta rule is designed to iteratively minimize the error E(w̃) of the network on
the training patterns E and is therefore a perfect example for an error correction
learning algorithm (section 1.2.4). Initially, the particular choice of the error
function given by equation 2.16 is only motivated by analytical simplicity and
alternative functions of the network outputs and target values are conceivable
which can serve as adequate error measures as well. Using the specific form 2.16
can be motivated by some quite general assumptions concerning the underlying
structure of the data [20].

37

2.1 Single-Layer Feedforward Networks

Unlike the perceptron learning approach, a training procedure based on thelinearly inseparable
patterns delta rule does not terminate automatically once a perfect set of weights is found.

Rather, it asymptotically approaches the minimum of the error E. If, as is the case
for most realistic applications, the training inputs are not linearly separable, it has
been said that an exact solution E = 0 can generally not be found. In the case of
linearly separable classes, however, it has already been suggested implicitly that
the exact solution can be approximated as closely as required. More specifically, it
can be achieved that E < ε for any given small but nonzero number ε > 0, ε ∈ R.

As an example, consider once more a network with the structure and the weights
as shown in figure 2.2 a) but having a logistic activation function ϕl with β = 2.
It is obvious from figures 2.2 b) and 2.4 that its weights could be readjusted as to
model the Boolean OR as accurately as desired. In fact, choosing w1 = w2 = 4
and w0 = 2, one obtains an error E with regard to all possible four input vectors
of less than 5×10−4.

Even if the problem is not linearly separable, there might be partial solutionspartial solutions

that correspond to minima of the error function with E 6= 0. Besides solving
the OR problem, the above choice of the weights can be seen as one such partial
solution for the Boolean XOR. Again, considering all four possible inputs, the
network does in this case achieve E ≈ 1/2: Only the input (1, 1) results in a
clearly incorrect output of approximately 1 instead of the desired 0.

When an exact linear separation does not exist, the perceptron algorithm doesasymptotic behavior

not automatically yield a suitable near-optimal partitioning of the input space and
is, on the contrary, likely to infinitely oscillate between several bad ones. Gradient
based training approaches like the delta rule will under these circumstances at least
converge to one of the existing partial solutions1. For real-world applications, the
latter behavior is usually more desirable and in this respect, the gradient based
training approach is clearly superior to the perceptron learning algorithm.

If, as in all hitherto discussed cases, the target values lie outside the actual rangelocal minima

of the output function, the error E(w̃) has a high probability of exhibiting addi-
tional local minima besides those that represent reasonable partial solutions [88].
It is a major problem of all gradient descent approaches that they cannot reliably
be prevented from getting stuck in a local minimum of this last type instead of
converging to a set of weights w̃ that yields a perfect or at least the best possible
performance.

The remaining error E of the network at the end of the learning procedure is an
appropriate measure for the quality of the found solution. In particular, any prob-
lems due to unwanted local minima of the error function could be circumvented by
training several networks and keeping only the one (or the ones) with the lowest
error E, hoping that it might represent the actually achievable optimum. But
even then, a low residual error does not guarantee the best possible solution.

Finally, the convergence behavior of the delta rule critically depends on thechoosing the learning
rate η choice of the learning rate η. While the individual weight changes reasonably occur

into the direction of the strongest decrease of the error function, they are discrete
in nature and their size is proportional to the steepness of the error function at

1Assuming adequate choices for the learning rate.

38

Feedforward Neural Networks

the current point. The scaling factor is given by η and if both, the absolute value
of the current gradient and the value of the learning rate are sufficiently large, the
modification of a weight might in fact move the weight vector too far and beyond
the actual minimum. Depending on the error surface, the initial weight vector
and the precise value of η, this will lead to an oscillatory behavior which either
considerably slows down the convergence towards the minimum or even causes the
weights to reliably diverge from the optimal weight vector.

Too small a learning rate, on the other hand, naturally impedes a fast conver- small learning rates

gence as well. As the slope of the logistic activation function ϕl(x) is arbitrary
close to 0 for any input arguments that are sufficiently far away from the switching
point x = 0, the derivatives of the error function with respect to the weights tend
to be relatively small within large domains of the weight space. Using a small
learning rate η, it might take the algorithm many iterations to get out of these
flat regions of the error surface. If the algorithm is only allowed a fixed number of
training steps before it is terminated — as is common in most realistic setups — the
impact of these plateaus on the training performance is equivalent to the effects
caused by local minima.

In practice, the delta rule is known to approach the optimal weight vector
measurably faster than the perceptron learning algorithm but choosing the optimal
learning rate often remains a matter of trial and error.

2.1.4 Generalization to Multiple Outputs

A network with only one output neuron cannot satisfactorily be applied to classifi- multi-class problems

cation tasks with more than two classes and in such cases, the network is therefore
required to exhibit multiple outputs. It is common to allocate one output neuron
of the network to each individual class of the currently investigated problem. In
this setup, the desired response of the network after the application of an input
vector Ĩα is to distinctly activate the specific output neuron that is associated with
the respective correct class Cα.

Consider a classification problem with Nout classes and let the network exhibit
Nout output neurons that are labeled such that the output with index k is associ-
ated with class Ck. If the input pattern Ĩα belongs to class Cα, the target value
Tα

k for the kth neuron is reasonably set to 1 if k = α and to 0 otherwise.

Thus, regarding the coding of the network response and the appropriate assign-
ing of target values, the transition to networks with multiple outputs is straight
forward. However, as each of the individual output neurons of a one-layer percep-
tron continues to perform just one single linear separation of the input, it remains
to be analyzed what kind of partitionings of the input set a network with multiple
outputs is able to perform.

Representational Capability

Figure 2.5 a) schematically visualizes the input space of an exemplary network
with two input nodes and three output neurons. The weights of the network
shall be chosen such that the neurons with indices k = 1, 2, 3 perform the shown

39

2.1 Single-Layer Feedforward Networks

corresponding linear separations b1, b2 and b3. The colored areas mark those
regions of the plane for which the total inputs netk of the respective neurons
exceed 0. These regions partly overlap, i.e., input vectors from the areas α, β and
γ give rise to a positive total input for two neurons at a time. On the other hand,
points from the white triangle in the center do not result in positive input to any
of the three neurons.

Using threshold activation functions, the network output in reply to an input Ĩbinary output

can only be unambiguously interpreted if not more than one output neuron re-
sponds with 1. This is illustrated in figure 2.5 b): All points of the former regions
α, β and γ cause two output neurons to be activated simultaneously and cannot
be clearly classified. In accordance to the definition of the theta function (equa-
tion 1.3), these areas include their respective boundaries, particularly, the points
p1, p2 and p3 which are given by the intersections of the original linear separations
b1, b2 and b3.

While all inputs originating from the white area in the center result in no re-ambiguous responses

sponse at all, the parts marked with C1, C2 and C3 yield an unambiguous output
of the network. Any input vectors from these regions including their respective
boundaries to the central area lead to the activation of exactly one output neuron
which can be regarded as the definite classification prediction of the network. As
figure 2.5 b) suggests, a large fraction of the input space is lost to points that can-
not be classified at all. This is likely to cause problems if the different classes lie
close to each other in the input space, in which case the response of the network
is bound to be useless for a large number of instances.

PSfrag replacements

net2 ≥ 0 net3 ≥ 0

net1 ≥ 0 C1 C1

C2 C2C3
C3

b1

b2 b3
p0

p1

p2

p3

σ1

σ2

σ2
σ3

?

?

?

n.r.
netk < 0

a) b) c)

α

β

γ

Figure 2.5: a) Three neurons with two input nodes perform three linear separations b1,
b2 and b3 of the input plane. The colored areas denote those regions, where the respective
total input net of the neurons exceeds 0. While the areas α, β and γ deliver positive input
to two neurons simultaneously, no neuron receives a positive input from the white central
region. b) Using a threshold activation function, the regions formerly denoted as α, β and
γ result in an ambiguous output. The central region yields no response at all and only the
areas marked with C1, C2 and C3 can unambiguously be associated with their respective
classes. c) A continuous output of the neurons allows a for a better separation of the
input plane: Only the edges σ1, σ2 and σ3 as well as the point p0 lead to ambiguity. The
hereby performed partitioning is slightly different from the one in b) and in particular, all
points in the central region cause a nonzero network response.

40

Feedforward Neural Networks

If the neurons incorporate continuous activation functions, it is sufficient for the continuous output

respective correct neuron to yield the highest response among all outputs. The re-
maining neurons are not required to exhibit an activation close to 0 as long as the
one with the highest output is regarded as the classification response of the net-
work. This leads to a partitioning of the input plane as illustrated in figure 2.5 c)
which is clearly distinct from the one in figure 2.5 b). As before, the areas marked
with C1, C2 and C3 represent those parts of the input space that can unambigu-
ously be allocated to the corresponding classes. But the separation between two
regions Ci and Ck is now defined by the points that cause the respective outputs
Oi, Ok to return the same value Oi(̃I) = Ok (̃I). The hereby defined boundaries
turn out to be straight lines (σ1, σ2 and σ3) that meet in the point p0 which is
unique in resulting in an equal response of all outputs.

It is to be emphasized that this new partitioning is different from the original improved response

separation performed by b1, b2 and b3. Most notably, there are no points left in
the input space that yield a network response of exactly 0. Even inputs from
the central part (except p0 and those on σ1, σ2 and σ3) can each be assigned to
one of the classes. In practice, it is common to define a threshold value that
has to be exceeded by a neuron output in order to be accepted as a trustworthy
classification. Fixing a threshold value of 1/2 would again declare the points of
the central triangle (framed by the dashed lines) as not belonging to any class.

A comparison between figures 2.5 b) and 2.5 c) reveals that a differentiated neu- convex decision
regionsron output notably decreases the amount of unclassifiable inputs but it is also ev-

ident that in both cases, the pairwise separations between the different categories
persist to be linear. Moreover, it can be anticipated from both figures and can also
be proven mathematically that for monotonic activation functions, the individual
classification regions are always connected and convex. That is, for two points Ĩα

a

and Ĩα
b being assigned to class Cα, all points Ĩµ that lie on the straight connection

between them (Ĩµ = Ĩα
a + µ(Ĩα

b − Ĩα
a), 0 < µ ≤ 1) are inevitably assigned to class

Ck, too [20].

Going back to the classification problem depicted in figure 2.3 b), it has to
be concluded as a consequence of the above result that this specific task cannot
accurately be solved by a single-layer network even if it has one output neuron
reserved for each class: The instances of the upper class in figure 2.3 b) form a
region that is not convex but concave.

The limitation to connected and convex classification regions as well as the motivation for
multiple layersfrequent ambiguities caused by the undifferentiated output of threshold neurons

can be overcome by assigning multiple neurons to each class Ck. If the outputs of
these neurons are appropriately combined, they can perform a potentially more
differentiated and flexible decision concerning the allocation of a given input Ĩ to
the class Ck. This is in fact the main motivation to build feedforward networks
with more than one layer which will be the topic of section 2.2. The subject
of single-layer networks with multiple outputs shall be closed by discussing the
necessary modifications to the training approaches.

41

2.2 Multi-Layer Feedforward Networks

Training Single-Layer Networks with Multiple Outputs

Regarding the formulation of learning algorithms, the generalization to single-layermultiple outputs
are independent networks with multiple outputs poses no further problem. This is due to the fact

that the operation of each single output neuron is in no way influenced by the
response of the others. In fact, a single-layer perceptron with Nout outputs is fully
equivalent to Nout separate networks with one layer and one output each, as long
as the kth network is trained using only the respective kth components T α

k of the
target vectors Tα.

Let the weights of the network be labeled such that the weight wik is associatedperceptron learning

with the connection leading from the ith input node 0 ≤ i ≤ Nin to the output
neuron with index k, 1 ≤ k ≤ Nout. The weights of the network then form an
(Nin×Nout)-matrix with its rows being the extended weight vectors w̃k of the
single output neurons. In this notation, the perceptron learning rule 2.14 can
readily be generalized to multiple outputs by setting

∆wα
ik =

1

2
η (Tα

k − Oα
k) Ĩα

i . (2.22)

Correspondingly, if netk denotes the total input of the kth output neuron, thegradient descent

delta rule defined by equations 2.20 and 2.21 immediately becomes

∆wα
ik = −η δα

k Ĩα
i ∀ 1 ≤ i ≤ Nin, 1 ≤ k ≤ Nout (2.23)

where δα
k is now defined as

δα
k = ϕ′(netαk) (Ok(w̃k, Ĩ

α) − Tα
k) ∀ 1 ≤ i ≤ Nin, 1 ≤ k ≤ Nout. (2.24)

2.2 Multi-Layer Feedforward Networks

Single-layer feedforward neural networks suffer from several limitations concerning
the range of functions that they can represent and it has already been indicated
that these restrictions can be overcome by networks with multiple layers. The
following sections address strictly layered networks without shortcut connections
as already introduced in section 1.2.2 and illustrated by figure 1.6 b).

In addition to the input signals Ii and the outputs Ok, let the return value of

the hidden neuron with index h in layer l be denoted with H
(l)
h , 1 ≤ h ≤ N (l),

where N (l) is the number of units in this layer. Furthermore, let the weight w
(l)
ih

be associated with the synaptic connection leading from the ith node in layer
l − 1 to the unit h in layer l. For l = 1, the sources of these connections are the
input nodes of the network Ii while for l ≥ 2, they are the units of some hidden
layer l − 1.

The bias values b
(l)
h of neurons in any layer l ≥ 2 can be implemented by connec-implementing the bias

values tions w
(l)
0h = b

(l)
h originating from an additional hidden unit H

(l−1)
0 in the preceeding

layer whose output is constantly set to -1. This is similar to the implementation of
bias values for neurons in the first layer via an additional virtual network input I0.
The bias values of hidden units in higher layers could also be realized by directly

42

Feedforward Neural Networks

PSfrag replacements

I1 INin I0

w
(1)
11

w
(1)

1N(1)

w
(1)
21

w
(1)

2N(1)

w
(1)
01

w
(1)

0N(1)

w
(2)
11

w
(2)
1Nout

w
(2)
21

w
(2)
2Nout

w
(2)
01

w
(2)
0Nout

H1 HN(1) H0

O1 ONout

Figure 2.6: An exemplary network with Nin input nodes, Nout output neurons and N (1)

units in a single hidden layer. The weight w
(l)
ij connects the ith node in layer l − 1 with

the jth neuron in layer l. The internal bias of the neurons is implemented by additional

connections originating from virtual nodes (I0 and H
(1)
0) in the respective preceeding

layer.

connecting these neurons to I0, but this would not conform to the desired strictly
layered structure. Regardless of how the additional input signals are implemented,

the dimensionality of the input space N
(l)
in for any unit in layer l ≥ 2 — and thus

the length of its extended weight vector w̃
(l)
h — is given by the number of nodes in

the preceeding layer N (l−1) incremented by 1.
As an example, consider the network shown in figure 2.6 which exhibits Nin an exemplary

two-layer networkinputs, Nout = N (2) outputs and N (1) neurons in its single hidden layer. Adopting
the above notation, the output function of this network can be written as

Ok (̃I) = ϕ̃

N(1)∑

h=1

w
(2)
kh ϕ

(
Nin∑

i=0

w
(1)
hi Ii

)
+ w

(2)
k0 H

(1)
0

 ∀ 1 ≤ k ≤ Nout, H

(1)
0 = I0 =−1,

(2.25)
where ϕ and ϕ̃ are the respective activation functions of the hidden and the out-
put neurons. Note that these functions are not required to be the same and for
analytical investigations, it is quite common to use hidden units with squashing
activation functions but to choose a linear response for the output neurons.

2.2.1 Computational Capabilities

It has already been stated earlier that a two-layer feedforward network of the Boolean functions

type of neuron originally introduced by McCulloch and Pitts can compute any
arbitrary Boolean function fB : {0, 1}n → {0, 1}. This equally applies to networks
of weighted threshold neurons. Figure 2.7 shows an example that, provided its
inputs are constrained to assume binary values, effectively computes the Boolean
XOR. Networks of two layers are in particular not restricted to linearly separable
problems.

43

2.2 Multi-Layer Feedforward Networks

PSfrag replacements

I1 I2 I0=−1

H1
1 H1

2

H1
0=−1

1
1 2

2

−1

1/2

2/3

2 2
3

1 −1

O

I1

I2

(0, 0) (0, 1)

(1, 0) (1, 1)

b1

b2

S1
0

S1

S2
0

a) b)

Figure 2.7: The two hidden neurons H1
1 and H1

2 of the simple two-layer network shown
in a) create the respective linear separations b1 and b2 as depicted in b). The small black
arrows mark those sides of the boundaries that cause the corresponding neuron to exhibit
an output of 1. Hidden unit H1

1 actually corresponds to the simple perceptron shown in
figure 2.2 a). Its output is 0 for all points in region S1

0 but assumes 1 on the domains
S1 and S2

0 while the bias of neuron H1
2 has been modified to let it responds with 1 only

for input vectors in S2
0. The output neuron O combines the states of both hidden units

according to (H1
1 AND (NOT H1

2)) resulting in a value of 1 only for the points of S1 (red).
When being applied binary input values, the network readily computes the Boolean XOR.

PSfrag replacements

I1 I2 I0=−1

H1
1 H1

2

H1
0=−1

1

1
1

0

2
−2

1/2

2/3

2/3

1 1

O

I1

I2

b1

b2

S0

S1

a) b)

Figure 2.8: The two-layer network shown in a) gives rise to a partitioning of the input
plane that is illustrated in b). As in figure 2.7, the linear separations defined by the hidden
units H1

1 and H1
2 are given by the boundaries b1 and b2 and once again, H1

1 performs the
same computation as the simple perceptron in figure 2.2 a). Neuron H1

2 differs from H1
1

only in the sign of the weight w
(1)
22 . The output neuron O gets activated once at least

one of the hidden units assumes an output value of 1 (H1
1 OR H1

2), thus, the network
response is 0 only for points in S0 (blue) and is 1 for all inputs in S1 (red). The resulting
partitioning is clearly not convex.

44

Feedforward Neural Networks

PSfrag replacements

S1
1 S2

1

S1
0

S2
0

Figure 2.9: If the network output is re-
quired to be 0 for any points of the regions
S1

0 and S2
0 but to assume a value of 1 on

the domains S1
1 and S2

1, this peculiar sepa-
ration cannot be achieved by a network of
threshold neurons having only one hidden
layer [23].

The investigations in section 2.1.4 revealed the limitation of single-layer net- concave decision
regionsworks to convex decision regions. There is no such general restriction for two-layer

networks as can be inferred from figure 2.8 which presents a simple example for a
network with a non-convex classification domain. This observation could give rise
to the impression that two-layer networks of threshold neurons can implement any
desired decision boundary which is, in fact, not the case. The separation given
in figure 2.9 cannot be realized by a network with two layers [23]. But it turns
out that to create arbitrary, disjoint and non-convex classification regions, three
layers of threshold neurons are generally sufficient [127].

Moreover, it can also be proven that under relatively mild conditions2, a network finite classification
problemswith one output and dn/de neurons in a single hidden layer can correctly separate

n points in d dimensions into two arbitrarily defined classes3 [11]. In other words,
any classification problem with two classes that is defined by a finite set E of
instances can completely be solved by a two-layer network of McCulloch-Pitts
neurons as long as the number N (1) of its hidden units is large enough.

If the output neuron O is allowed to exhibit a linear activation function, it function
approximationhas been shown by various authors that a network with one hidden layer and

a sufficiently large number of internal neurons can approximate any continuous
function f : S → R on a compact subset S ∈ RNin to arbitrary accuracy [23] [100].
More precisely, the network can be constructed such that the associated network
function F obeys

ε > Ef = || F − f ||S∞ (2.26)

for any small but nonzero number ε ∈ R, ε > 0 and || · || S
∞ denoting the uniform

norm on S

|| f(x) ||S∞ = sup
x∈S

| f(x) | . (2.27)

For the propositions of this theorem to hold, the activation function of the hidden
units can be any continuous or discrete squashing function (see section 1.2.3).
In this sense, two-layer neural networks can be regarded as universal function

2The n points are required to be in general position, i.e., any subset of d or fewer vectors has
to be linearly independent.

3dn/de denotes the smallest integer value greater than or equal to n/d.

45

2.2 Multi-Layer Feedforward Networks

approximators and therefore form an important class of networks for practical
applications.

Note that the value set V of any continuous real function f on a compact setsigmoidal units

S ∈ RNin is itself compact [59]. Through shifting and rescaling, f can be modified
to yield a corresponding function f ′ with a value set V ′ that obeys V ′ ⊂ [0, 1].
On the other hand, for x ≈ 0 and/or β À 1, the logistic function ϕl(x) becomes
approximately linear. The above result can thus easily be transferred to networks
that consist entirely of sigmoidal units.

It has to be noted that most proofs for the universal approximation potential ofopen questions

two-layer networks are neither concerned about the number of hidden units that
is necessary to achieve a desired accuracy nor about whether networks with more
layers might be able to obtain the same result with a smaller number of neurons
and synaptic connections. Also, they do not provide an answer to the question
of how the network can actually be trained to perform the desired approxima-
tion. Nevertheless, these issues are undoubtedly of critical relevance for practical
applications.

Regarding the residual error Ef
N that remains when a network with N hiddennetwork sizing

units in a single hidden layer optimally approximates a given function f , the
former can be shown to decrease as O(1/

√
N) when N grows [113]. Assuming thetrainability

existence of an efficient training algorithm that is capable of optimizing a network
with N hidden units to yield the minimum achievable error E (equation 2.16) on
a finite training set Et, it can be estimated how N has to grow with the number of
training inputs Ne =| Et | in order to let the residual error Ef

N approximate 0 [219].
It is to be emphasized that in contrast to the error E of the network on the
training set, the value Ef

N refers to the remaining difference4 between the network
output F and the original function f on their whole domain S (see equation 2.27).
Thus, feedforward networks can not only approximate any continuous function to
arbitrary accuracy but can in principle also be taught to do so using a limited
number of training examples which is a promising observation especially with
regard to their generalization abilities.

Admittedly, this last theorem assumes two vital conditions that are both not
trivially fulfilled. First, it requires the network size to be adjusted appropriately
and second, it depends on the existence of the aforementioned learning algorithm
that is able to reliably yield the global minimum of the network error E on the
training set. It has already been shown for single-layer networks that the formu-
lation of such a training algorithm is at best difficult and the following sections
shall therefore address the important issue of training feedforward neural networks
with more than one layer.

2.2.2 Training Multi-Layer Networks

Each output neuron of a multi-layer feedforward network with L layers can bethe internal feature
space considered as a simple perceptron that receives its input signals from the N (L−1)

units of the last hidden layer and as such, it can only perform a linear partitioning
of its input space Ψ ⊆ RN(L−1)

. Seen from this angle, it is the purpose of the

4according to the L2 norm [60]

46

Feedforward Neural Networks

earlier layers to map the original input vectors Ĩα ∈ Φ ⊆ RNin onto corresponding
internal representations R̃α ∈ Ψ in such a way that within the feature space Ψ,
the desired classification can be performed by simple linear separations. Following
this view, the operation of the network is divided into two distinct steps: First, the
nonlinear mapping of a given input onto its internal representation and second, the
classification of this pattern according to a linear separation of the intermediate
feature space.

The Credit Assignment Problem

If it is ensured that the preceeding layers provide an adequate internal represen- training the hidden
nodestation in which a given set of training examples (Ĩα,Tα) is linearly separable (or

at least approximately so), the weights of the last layer could be trained using ei-
ther the perceptron algorithm or the gradient based approach introduced in 2.1.2
and 2.1.3. Unfortunately, training the hidden neurons to perform the required
preprocessing cannot be achieved via the same learning algorithms. While they
can equally be regarded as being like simple perceptrons, there are no target values
available for the hidden units that could be assigned to their outputs. Thus, if the
network produces an incorrect output in response to a given input Ĩα, there is,
initially, no way of determining which group of hidden units is responsible for this
error. Consequently, there is no apparent procedure for calculating appropriate
changes of the synaptic weights. This is a fundamental issue that is commonly
denoted as the credit assignment problem.

Once the operation of the system is divided into the two distinct stages de-
scribed in the preceeding paragraphs, it is not mandatory to let the first step be
performed by a feedforward network. Various alternative approaches have been
proposed that circumvent the credit assignment problem by using different types
of networks for the implementation of the initial nonlinear mapping to the feature
space. These approaches will briefly be introduced in section 2.3. Regarding multi-
layer feedforward networks, there does in fact exist a relatively simple solution to
this problem if the output of the neurons is continuous.

Error Backpropagation

As long as the activation functions of all neurons are differentiable with respect differentiable network
functionto the synaptic weights, it is evident by virtue of the chain rule [61] [59] that the

same also applies to the output of a complete feedforward network regardless of the
number of layers. For a network with one hidden layer, this can directly be inferred
from equation 2.25. Therefore, the sum-of-squares error of the network on a
given set of training examples as defined by equation 2.16 becomes a differentiable
function of the weights as well.

Similar to the case of single-layer networks, the derivatives with respect to the

individual synaptic weights w
(l)
ij can be used to minimize the network error function

E by employing appropriate methods like gradient descent. The procedure by
which the necessary derivatives can be evaluated for feedforward networks with
multiple layers is known as error backpropagation or simply backpropagation [175].

47

2.2 Multi-Layer Feedforward Networks

In analogy to the iterative approaches described earlier, consider the networkdifferentiable network
error error Eα obtained on a single training example (Ĩα,Tα) as given by equation 2.15

and let the network incorporate L layers of neurons. Using the common chain rule,

the derivative of Eα with respect to any synaptic weight w
(l)
ij within the network

can be calculated as

∂Eα

∂w
(l)
jk

=
∂Eα

∂ net
(l)
k

· ∂ net
(l)
k

∂w
(l)
jk

(2.28)

for all index values 1 ≤ l ≤ L, 1 ≤ k ≤ N (l) and 1 ≤ j ≤ N (l−1) with N (0) = Nin

and N (L) = Nout. Here, net
(l)
k stands for the total input to the kth neuron of the

lth layer in the presence of the network input Ĩα. It is convenient to denote the

first term on the right hand side of 2.28 as δ
(l)
k , i.e.,

δ
(l)
k :=

∂Eα

∂ net
(l)
k

. (2.29)

In pursuit of a simple notation, it is understood that the regarded error E is
calculated on the basis of only a single training pattern and the index α shall in
the following be omitted. The second term in equation 2.28 can then readily be
written as

∂ net
(l)
k

∂w
(l)
jk

= H
(l−1)
j

(
w̃

(l−1)
j , Ĩ

)
= H

(l−1)
j (2.30)

and the substitution of 2.29 and 2.30 into 2.28 yields the general result

∂E

∂w
(l)
jk

= δ
(l)
k · H(L−1)

j . (2.31)

For synaptic connections that lead to one of the output neurons in the last layeroutput neurons

L, the resulting δ
(L)
k ’s turn out to be similar to the δk’s that are obtained in the

case of a single-layer network

δ
(L)
k = ϕ′(net

(L)
k)

(
Ok

(
w̃

(L)
k , Ĩ

)
− Tk

)
∀ 1 ≤ k ≤ Nout = N (L)

= ϕ′(net
(L)
k) (Ok − Tk) .

(2.32)

Therefore, the respective derivatives of the error function E equal those used for
the delta rule (section 2.1.3) with the network input Ij being replaced by the

output of the hidden unit H
(L−1)
j

∂E

∂w
(L)
jk

= ϕ′(net
(L)
k) (Ok − Tk) H

(L−1)
j . (2.33)

48

Feedforward Neural Networks

In the case of a connection that does not lead to a network output but rather hidden neurons

to the jth neuron of some hidden layer 1 ≤ l < L, the chain rule has to be applied
once more. Thereby, equation 2.29 is reformulated to become

δ
(l)
j =

∂E

∂ net
(l)
j

=
N(l+1)∑

k=1

∂E

∂ net
(l+1)
k

· ∂ net
(l+1)
k

∂ net
(l)
j

∀ 1 ≤ j ≤ N (l) (2.34)

where it has been used that any change in the total input of the considered neuron
does only affect the error E by effectively changing the total inputs of the other
neurons that it is connected to.

The first factor in each addend of the above sum is in fact the δ
(l+1)
k of the backpropagation of

the errorcorresponding receiving neuron in the next layer. The calculation of the second
factor is straight forward and if the activation functions of all neurons in the
network are assumed to be the same, equation 2.34 can be rewritten as

δ
(l)
j = ϕ′(net

(l)
j)

N(l+1)∑

k=1

w
(l+1)
jk δ

(l+1)
k . (2.35)

In other words, the value of δ
(l)
j for a specific hidden unit can be obtained by

propagating the δ’s of neurons in higher layers backwards through the network.

For the output neurons, the values δ
(L)
k are explicitly given by equation 2.33.

Therefore, all values δ
(l)
j and correspondingly all possible partial derivatives of

the error function with respect to arbitrary synaptic weights can be calculated by
recursively applying equation 2.35.

Note that although the considerations so far assumed a network with a strictly
layered structure where the activation functions of all neurons are the same, the
above result can easily be generalized to any feedforward architecture and/or
networks that incorporate different activation functions for different neurons [20].

Calculating the partial derivatives of the error function via backpropagation advantages of
backpropagationhas two main advantages that are worth being pointed out explicitly. First, the

backpropagation scheme is local in the sense that calculating δ
(l)
j for a specific con-

nection only requires the knowledge of quantities that are available at the two end
points of this synaptic link. Hence, all connections within one layer can be eval-
uated independently which allows for a potentially fast parallel implementation.
Second, computing the partial derivatives of the error function 2.15 directly would
in the presence of W weights take O(W 2) operations. Using equations 2.31, 2.32
and 2.35, all derivatives can be calculated in only O(W) operations.

Training with Backpropagation

On the basis of the network error E after the application of an input pattern Ĩ and error backpropagation
and gradient descentequipped with its partial derivatives with respect to each weight w

(l)
ij , the gradient

descent training strategy introduced in section 2.1.3 can be applied to multi-layer
feedforward networks according to

∆w
(l)
ik = −η δ

(l)
k H

(l−1)
i

(
Ĩ, w̃

(l−1)
i

)
∀ 1 ≤ i ≤ N (l−1), 1 ≤ k ≤ N (L) (2.36)

49

2.2 Multi-Layer Feedforward Networks

where the values δ
(l)
k are obtained via error backpropagation.

Often, the term backpropagation refers to this specific training approach that
combines the calculation of the required partial derivatives using the rules derived
in the preceeding paragraphs with the gradient descent learning rule discussed
in section 2.1.3. This convention shall be adopted in the following. Initially,
the two parts are independent and the error-backpropagation scheme can also be
combined with other optimization strategies that rely on the derivatives of the
error function [20] [88].

Various modifications are conceivable to the backpropagation training strategy
that potentially benefit its ability to yield the minimum possible error of the
network on a given set of training examples. For example, it is straight forward
to replace the sum-of-squares error function by alternative differentiable error
measures.

Furthermore, it has already been discussed in section 2.1.3 that the choice oflearning with
momentum learning rate η has a strong influence on the convergence behavior and speed of

gradient descent. To avoid divergent oscillations, η is preferably kept small which
in turn slows down the speed of the training. One way of dealing with this problem
is the addition of a so-called momentum term in equation 2.36 that introduces a
contribution from the preceeding learning step to each new weight change in the
form of

∆w
(l)
ik (t + 1) = −η δ

(l)
k H

(l−1)
i + ν∆w

(l)
ik (t) (2.37)

where t refers to the number of training iterations [176]. The momentum param-
eter ν is bound to lie in [0, 1] and is commonly chosen to be 0.9. It turns out that
in the presence of a momentum term, the learning rate can safely be set to larger
values without running the risk of provoking divergent oscillations [218].

Another approach to avoid the difficulties in defining appropriate learning pa-learning rate
adaption rameters η and ν is to let them be adjusted automatically during the training

process [109] [32].

While all these modifications promote a more reliable convergence of the traininglocal minima

algorithm towards a minimum of the error function, they provide no guarantee of
the latter being the global minimum instead of a possible local one. For a multi-

layer network, the error surface as a function of the individual weight values w
(l)
ik

can be considerably complex and compared to single-layer networks, the number of
local minima that correspond to suboptimal solutions of a given learning problem
is most likely to be increased even further. Regarding the difficulties that arise
due to the existence of these local minima, the backpropagation algorithm and its
different variants inherit all the problems that already affect the delta rule.

In spite of this, multilayer feedforward networks in combination with error back-
propagation training algorithms constituted the working-horse of neural network
research for many years and have successfully been employed in various applica-
tions ever since [123] [187].

50

Feedforward Neural Networks

2.3 A Short Overview of Alternative Network Models

While the remainder of this thesis primarily addresses implementations and appli-
cations of the feedforward networks discussed so far, the following sections shall
give a brief summary of some important other types. These network models also
prove to be of considerable value not only for scientific research but also for re-
alistic pattern recognition applications. In so far, they can be seen as competing
approaches to ordinary feedforward networks.

An exhaustive discussion of the various known types of artificial neural networks
that would do justice to their interesting properties, capabilities and applications
exceeds the scope of this thesis. The succeeding sections will examine alternative
approaches only to an extent that is sufficient to allow for a reasonable comparison
with classical feedforward networks and the training strategies presented in later
chapters. Some important neural network models like Boltzmann machines [2] and
self-organizing maps [120] will not be covered. For a detailed investigation of these
topics and a more exhaustive study of artificial neural network theory in general,
the interested reader is referred to the available literature [20] [84] [88] [169].

2.3.1 The Feature Space Revisited: Support Vector Machines

Returning to the concept of the intermediate feature space Ψ brought forward in
section 2.2.2, it has been said before that the corresponding nonlinear mapping
r : Φ → Ψ of the original input vectors I ∈ Φ does not necessarily have to be
performed by a layered feedforward network of the hitherto discussed type.

A single hidden layer of N localized radial basis function neurons (see sec- radial basis
function networkstion 1.2.3) implements a mapping r : Φ → RN that is essentially different from

those performed by ordinary neurons. Based on this mapping, a succeeding layer
of simple binary or continuous-valued neurons can perform complex separations
of the original input space. For some applications, this strategy proves to be an
advantageous alternative to the partitionings provided by common feedforward
networks [146]. Systems of this kind are referred to as radial basis function net-
works. Both, classical two-layer feedforward networks and radial basis function
networks can be summarized under the generalized framework of support vector
machines that attracted increasing interest during the last years [29] [40] [84] [112].

The methodology of support vector machines includes an efficient procedure support vector
machinesfor determining the optimal hyperplane that separates two classes of points rα in

some space Ψ. The considered points can (but do not have to) be the nonlinear
projections r(Iα) ∈ Ψ of some original vectors Iα ∈ Φ. If the two sets are linearly
separable in Ψ, the found hyperplane is optimal in the sense that it retains the
highest possible normal distance from all vectors rα. For linearly inseparable
classes, it at least yields the minimum achievable classification error.

This optimal hyperplane is found by minimizing a Lagrangian that contains the
vectors rα only in the form of inner products rα · rβ = r(Iα) · r(Iβ). With regard
to the original input vectors Iα, this important feature allows to reformulate the
inner product in Ψ as a symmetric Kernel function

K(Iα, Iβ) = r(Iα) · r(Iβ) (2.38)

51

2.3 A Short Overview of Alternative Network Models

on Φ. The task of separating the two classes in the original input space can thus be
solved by finding an optimal hyperplane in an intermediate space without having
to consider this feature space itself in explicit form. The used non-linear mapping
r and the feature space Ψ become manifest within the formulation of the solution
only in the form of the Kernel function K. In particular, this allows to use feature
spaces with very high or even infinite dimensions.

The desire for very high-dimensional intermediate spaces and hence the mo-high-dimensional
feature spaces tivation for support vector machines arises from a general observation made by

Cover in 1965 [41]: The non-linear projections r(Iα) ∈ Ψ of patterns Iα from
some Nin-dimensional input space Φ exhibit an increasing probability to be lin-
early separable in the target space Ψ when the dimensionality of the latter grows.
For general sets of input patterns, both, the nonlinearity of the mapping and the
increased dimensionality of the intermediate feature space are necessary precon-
ditions to ensure an improved linear separability [41].

2.3.2 Hierarchical Approaches and the Neocognitron

Hierarchical networks like the neocognitron by K. Fukushima [63] [64] and relatedbasic idea

approaches [136] [205] divide the solution of a complex classification problem into
iterative nonlinear mappings between successive feature spaces. Each layer of
neurons combines localized patterns in the output of the preceeding layer to higher-
level features that are in turn the inputs of the next level. Viewed in terms
of its own input, each layer performs relatively simple classifications. However,
with regard to the original input space, the hereby constructed features grow in
abstractness and complexity with each hierarchical level. This way, a neuron in
the final output layer can exhibit a differentiated and robust sensitivity to the
presence or absence of complex features in the originally applied input patterns.

Among other things, the primary difference between the neocognitron approachspecifying the features

and ordinary feedforward models is that the features to be extracted by the indi-
vidual layers are defined externally. Thus, the layers can in principle be trained
independently using specialized supervised training algorithms [63] [64]. The suc-
cess of this training concept critically depends on the selection of adequate features
which is usually straight forward for the first layer but poses a substantial chal-
lenge in the cases of higher hierarchical levels. Variants of this approach therefore
aim to construct a single set of features that can be used in all layers [52] [205] or
to find appropriate features through unsupervised learning [63] [64] [136].

Hierarchical networks are commonly applied to image classification tasks like
hand-written digit classification [63] [64], object detection in realistic images [205]
or character recognition [52].

2.3.3 The Hopfield Network

In the year 1982, the field of artificial neural networks received fresh impulse by
a major contribution from the physicist J. Hopfield [98] who introduced a special
form of recurrent network architecture. Within a so-called Hopfield network, any
neuron 1 ≤ i ≤ N is connected to every other unit j 6= i apart from itself and

52

Feedforward Neural Networks

the synaptic weights are chosen to be symmetric, i.e., wij = wji, wii = 0 for symmetric weight
condition1 ≤ i, j ≤ N . Originally, the neurons are fixed to be weighted threshold units

with possible outputs of -1 and 1 but the concept has later been extended to
neurons with continuous output as well [99].

As a consequence of its highly recurrent architecture, the Hopfield network temporal dynamics

exhibits distinct temporal dynamics. When the output states Oi of the neurons
are set to some initial states Oi(0) = Ii at time t = 0, each neuron output Oi(t)
will in general be a function of time given by

Oi(t + ∆t) = sgn

∑

i6=j

wij Oj(t)

 . (2.39)

In practice, it is common to implement this updating scheme by randomly selecting
a new single neuron in each time step t and recalculating its activation due to the
current states of the remaining units to obtain its new output Oi(t + 1). The
state of the whole network O(t) = (O1(t), . . . , ON (t)) is a discrete trajectory in
the configuration space {−1, 1}N . The question arises whether the network ever
reaches a stationary point Os, a so-called attractor, such that after some time ts,
the network state obeys O(t) = Os ∀ t > ts.

The remarkable novelty in Hopfield’s theoretical investigation of this question energy function

is the introduction of an energy function H

H(t) = −1

2

∑

ij

wij Oi(t) Oj(t). (2.40)

If the network state evolves according to the update rule given by equation 2.39, it
is the central property of the energy function 2.40 that in each time step, the energy
H will either decrease or remain constant. Under the condition of symmetric
weights, the network is furthermore guaranteed to eventually reach a minimum of
the energy function and hence a stationary state after a finite time [98].

For this reason, Hopfield networks are attractive practical models of associative Hopfield networks as
associative memorymemory. Based on the energy function 2.40, it is possible to derive simple rules

for the adequate choice of weights wij that yield a network whose attractors are
given by a predefined set of desired output patterns Tα [88]. The network can
then be regarded to have learned these patterns: If it is applied an external input
I by setting the initial states of all neurons to Oi(0) = Ii, 1 ≤ i ≤ N , the
network output O will after some finite time ts settle to the specific attractor Tα

that resembles the original input most. In other words, Hopfield networks are
adequate systems to perform autoassociation tasks as introduced in section 1.2.4
and are also often denoted as autoassociative networks.

Moreover, the formulation of the energy function H underlines Hopfield’s state- relation to
statistical physicsment that the introduced network architecture is “isomorphic with an Ising model”,

a model from statistical physics that describes ensembles of interacting two-state
systems [54] [98]. This important observation readily allowed a vast repertoire of
physical theory to be applied to neural network research.

53

2.4 Hardware Neural Networks

2.3.4 Computing Without Stable States

Once the symmetric weight condition of the Hopfield model is abandoned, theunsymmetric weights

temporal dynamics of the network become more complicated. Being released from
an initial configuration O0, the network is no longer guaranteed to reach a stable
attractor. Experiments reveal that, started from different random states O0, it
will in most cases reach a stationary point, and will in the remaining trials at
least settle into limiting behaviors and wander around in only a small region of
the configuration space [98]. These domains are centered around one particular
minimum of the energy function.

At first sight, it might not seem desirable to have a neural network exhibit rich
temporal dynamics. To be usable for autoassociation tasks, a network is required
to converge to stable states within as short a time as possible. On the other hand, it
can be argued that the brain represents a highly recurrent system with complicated
temporal behavior and nevertheless performs demanding computational tasks on
time scales of 100–150 ms that are not much longer than those defined by the
operation of its constituents, i.e., the neurons and synapses [208].

Motivated by this observation, Mass et al. [129] and Jaeger [110] independentlyliquid computing
and echo states conceived a way of performing complex computations using neural systems without

stable states. The basic idea is to use highly recurrent neural networks that can
receive external input streams via dedicated input nodes. Such a system could,
e.g., be implemented by a Hopfield network with some input sources Ij being
connected to the neurons Oi. In any case, the purpose of the network is to act as
a dynamical non-linear system whose current response O(t) is influenced by the
present and past inputs I(t′), t′ ≤ t.

A simple readout unit that only processes the current state of the dynamic
network O(t) can then be trained to accomplish non-trivial classification tasks
on the original input patterns I(t). This readout can be as simple as a linear
perceptron which permits the use of common optimization techniques like those
described in sections 2.1.2 and 2.1.3.

It is a striking observation that different linear classifier systems can success-
fully be trained for different computational tasks while processing the output of
the very same randomly connected recurrent network, as long as the latter exhibits
sufficiently complex temporal dynamics [129] [110]. The originally used network
models are more elaborate and closer to biology than the Hopfield networks de-
scribed above but it has recently been shown that the temporal characteristics
of a recurrent network of threshold units suffice to allow a simple adjacent linear
classifier to perform non-trivial classification tasks [18] [184].

2.4 Hardware Neural Networks

It is one of the key features of artificial neural networks that their operationalmotivation

principles feature a high degree of inherent parallelism. In a feedforward network,
for example, all neurons of a given layer can compute their outputs simultaneously
and independently as soon as the outputs of all neurons in the former layer are
available. Software implementations on ordinary sequential computers can only

54

Feedforward Neural Networks

insufficiently exploit this parallelism. Therefore, hardware realizations have been
a topic of investigation almost from the outset of artificial neural network research.

The following sections are intended to provide a brief overview on the field organization

of hardware implemented neural networks. Past approaches, present trends, and
challenges to the development of dedicated hardware realizations are reviewed on a
general level, and the discussion will be concluded by an investigation of suitable
training approaches. These reflections serve as the basis for the more concrete
considerations that drove the design of the actual neural network chip used for
the experiments presented in this work. An exhaustive description of this chip
and the concepts that underly its design will be given in chapter 5.

2.4.1 Historical Overview

The first dedicated neural network hardware was introduced as early as 1951 by
Minsky and Edmonds [142]. The SNARC (Stochastic Neural-Analog Reinforce- SNARC

ment Computer) was an electro-mechanical implementation and contained 40 neu-
rons. Later, in parallel to computer simulations [171], Rosenblatt and co-workers
developed the MARK I, a hardware realization of the perceptron (section 2.1) that MARK I

already included automatic learning [83]. It comprised of a grid of 20×20 photore-
ceptors that could each be connected to 40 of the 512 so-called associator units.
The outputs of these units were conveyed to up to 8 threshold neurons (compare
figure 2.1). Although the MARK I was not particularly faster than software simu-
lations of the perceptron [22], it was expected that for larger network architectures,
the parallelized operation would result in a much higher performance gain.

When they originally published the delta rule in 1960 (section 2.1.3), Widrow
and Hoff also presented the ADALINE (Adaptive Linear Element), a hardware- ADALINE

implemented threshold unit with 16 variable weights [227]. The weight adjustment
during training had to be performed by a human operator. In the succeeding
years, the concept was extended to the MADALINE — the multiple ADALINE — MADALINE

in which several single ADALINEs were connected to a network. The MADALINE
also included automatic electronic learning.

The increasing speed of general-purpose microprocessors let software simulations
of neural networks become more and more feasible as well. Software packages like
the MARK I and MARK II 5 [86] fueled the desire for faster simulation speeds MARK I–IV

and this eventually drove the development of general purpose neural network ac-
celerators (e.g., the MARK III and MARK IV) [86].

In the late eighties, improvements in the fabrication process in conjunction with neural networks
in CMOS VLSImore advanced design tools promoted the utilization of VLSI (Very Large Scale

Integration) technologies for the parallel implementation of neural networks on
CMOS (Complementary Metal Oxide Semiconductor) substrates. In 1989, it was
shown by Mead [137] that neural systems can successfully be realized by directly
exploiting the physical features of the CMOS substrate instead of implementing
them on the basis of digital components. Since then, a large variety of analog

5The confusing resemblance with the MARK I perceptron by Rosenblatt is usually resolved
by setting the names of the software packages in a slanted font.

55

2.4 Hardware Neural Networks

PSfrag replacements

neurocomputers

standard chips

neurochips

sequential processor
+ accelerator

multiprocessor

analog

digital

mixed-signal

Figure 2.10: A simple but practical categorization of neural hardware according to
Heemskerk [87]. Regarding the last column, the potentially achievable performance of the
different approaches is deemed to increase from top to bottom [15] [87].

and digital neural hardware has been and is still developed by semiconductor
companies and in university laboratories [15] [35] [87] [97] [126] [212].

2.4.2 A Categorization of Neural Hardware

In order to categorize the large variety of different neural network hardware ap-
proaches, a simple but practical scheme has been proposed by Heemskerk [87].
First of all, it strictly differentiates between neurocomputers and neurochips (seeneurocomputers and

neurochips figure 2.10). While reconfigurability, training, and interfacing are regarded as an
essential part of the former, they are not necessarily included in the latter. In so
far, the term neurocomputer is seen to embrace all kinds of stand-alone hardware
neural networks systems, and these can either be built from specialized neurochips
or standard chips.

Neurocomputers which contain standard chips can further be categorized intoaccelerators and
distributed systems systems made of a single (sequential) processor plus a dedicated accelerator unit

on the one side and systems that are distributed on multiple processors on the
other. Besides purely digital or analog approaches, the field of dedicated neu-digital, analog, and

mixed-signal solutions rochips also embraces mixed-signal implementations that combine analog with
digital computing.

It has repeatedly been argued that regarding the last column of figure 2.10,
the potentially achievable performance of the different approaches is expected to
increase from top to bottom [15] [87].

2.4.3 Performance Criteria

The computational expense of calculating a neural network’s response is for theconnections per
second largest part determined by the evaluation of the single synaptic connections.

Therefore, the connection is regarded to be the natural basic unit of neural com-
putation [97], and a practical measure to quantify the performance of a neural

56

Feedforward Neural Networks

network hardware implementation is provided by the achievable number of evalu-
ated connections per second CPS:

CPS := connections/s. (2.41)

For the types of networks discussed in the preceeding sections, the calculation complexity of a
connectionof a connection boils down to the multiplication of an input signal I with the

associated synaptic weight w in order to yield the corresponding contribution to
the total input net of the respective neuron. The complexity of this operation
clearly depends on the resolutions of both, the input signal and the synaptic
weight. This applies to digital implementations, where the adders and multipliers
need to be scaled to the precision of the operands, as well as to analog circuits
the complexity of which is bound to grow with an increasing desired accuracy.
Therefore, a more suitable performance measure is given by the number of so-
called connection primitives per second CPPS

CPPS := bI · bw · connections/s (2.42)

where bI and bw are the respective resolutions of input signals and weight values
measured in bit.

In the course of the training process, the weight values of a neural network are connection updates

repeatedly subject to modifications. Similar to the above measures that specify the
performance of the network during the evaluation phase, the number of available
connection updates per second CUPS

CUPS := (connection updates)/s (2.43)

allows to quantify the reconfigurability of a hardware neural network during train-
ing. A high CUPS value is of particular advantage when highly iterative chip-in-
the-loop training approaches are to be applied (see section 2.4.5).

2.4.4 Challenges and Present Trends

The continuing increase in the available computing power of conventional comput- dedicated hardware
vs. softwareers— provided by an enhanced device integration [147] and a growing operational

speed — in connection with the flexibility of software solutions considerably chal-
lenge the development of dedicated neural hardware. It can be argued that the
potential performance advantage of parallel hardware implementations might not
be required at all [183], particularly, as the necessary data pre- and post-processing
stages cannot benefit from this parallelization.

Hybrid systems that combine analog with digital computation and which are analog and
mixed-signal systems:
drawbacks

apprehended to yield the highest performance gain come at the cost of a substan-
tially increased engineering expense. This is mainly due to the poorly automated
design process. Furthermore, in order to efficiently exploit the benefits of a parallel
realization in CMOS VLSI, a given neural network hardware is preferably designed
to optimally suit a specific model. This naturally impedes the simultaneous in-
vestigation of multiple different neural network concepts. Regarding the diversity

57

2.4 Hardware Neural Networks

of existing and competing network paradigms (see section 2.3), investments to a
comparably inflexible neural hardware seem risky.

Therefore, the commercial interest in hardware implemented neural networks
noticeably decreased during the nineties. The competition with conventional
general-purpose microprocessors mostly affected the research on digital neural
systems [152]. Nevertheless, besides dedicated implementations for specific appli-
cations [48], realizations of neural networks in configurable logic, such as Field
Programmable Gate Arrays (FPGAs), lately received new attention [158] [168].

It remains that although software simulations and digital hardware solutionsanalog and
mixed-signal
solutions: motivation

are potentially superior to analog or mixed-signal implementations in terms of
flexibility, design times, and costs, they eventually suffer from a higher power-
consumption and increased silicon area requirements. Aiming for the realization
of large neural networks whose complexity and performance are to be compa-
rable to those of biological systems (see section 1.1), only dedicated analog or
mixed-signal implementations have the potential to combine the necessary speed,
area-efficiency, and low power-consumption. Several such approaches have been
proposed [16] [122] [137] [215] [216].

2.4.5 Training Hardware Neural Networks

Beyond speed, efficiency, and scalability, the usefulness of a hardware neural net-
work is ultimately determined by its trainability. Unlike digital implementations,
analog systems generally suffer from inevitable device mismatches and fluctuations
in the analog signals. This considerably impedes the application of training algo-training on unreliable

substrates rithms that rely on detailed information about the characteristics of all neurons
and synapses like the exact individual transfer functions or the current weights.
Regarding equations 2.23, 2.24, 2.35, and 2.36, it has to be concluded that this ulti-
mately limits the feasibility of all conventional gradient-based training approaches.

So-called off-chip learning algorithms try to circumvent this problem by opti-off-chip training

mizing the synaptic weights according to simplified models of the network im-
plementation. Consequently, the hardware is not in fact involved in the learning
process: The resulting weight values need not to be transferred to the hardware
before the training has been completed. Although this approach readily allows to
utilize the traditional and well-proven algorithms presented in the preceeding sec-
tions, it is limited in so far as it can only insufficiently deal with the peculiarities
and deficiencies of the actual neuron and synapse implementations.

More promising approaches are on-chip or chip-in-the-loop algorithms that cope
with noise and imperfections of the devices by implementing and evaluating the
network directly on the dedicated substrate [144] [212]. For on-chip learning, theon-chip training

procedure to calculate the necessary weight updates has to be implemented in
hardware and, as implied by the name, has to be located directly on the ASIC.

In a chip-in-the-loop setup, the training algorithm is realized externally andchip-in-the-loop
training can, e.g., be executed as software on an ordinary computer (see figure 2.11). To be

suitable for this kind of training approach, a neural network ASIC needs to provide
means for the external specification of all variable network parameters like the
weight values and/or the synaptic connectivity. During training, slightly modified

58

Feedforward Neural Networks

PSfrag replacements

START

FINISH

iterate

initial

network

network network
configuration configuration

generate new

final
result

termination
condition ?

evaluate
performance

send new
configuration

data

read back
results

implement

process
training

data

Algorithm
Implementation

Network
ASIC

Hardware Neural Network Framework

Figure 2.11: The general scheme of a chip-in-the-loop algorithm. First, the current
network configuration is sent to the neural hardware for evaluation. Then, on the basis
of the resulting network response to the training data, the algorithm applies adequate
modifications to the network that in the ideal case lead to an improved performance during
the next evaluation. The whole process is iterated until a suitable termination condition
is fulfilled, e.g., the network achieves the desired performance. Since the algorithm itself
is not included on the used network ASIC but is implemented separately, e.g., as software
on a computer or within a configurable logic, large amounts of configuration and output
data have to be transferred repeatedly. Therefore, the algorithm implementation and the
network chip need to be embedded within a suitable hardware neural network framework
that provides efficient means of communication (see chapter 6).

variants of the network are iteratively implemented on the chip. After they have
been presented the desired input patterns, the resulting output is read back by the
algorithm for evaluation. Hence, while such a setup provides a considerably larger
flexibility compared to on-chip solutions, it also leads to massive data transfer
between the neural hardware and the algorithm implementation. In order to retain
high training speeds, the algorithm implementation and the network chip therefore
need to be embedded within a suitable hardware neural network framework that
provides an appropriate infrastructure to support fast data transfer (see chapter 6).

Furthermore, if the training process is to be made independent of a necessarily training a black-box
systemidealized and imperfect network model, the generation of beneficial modifications

to the synaptic weights is restricted to be based on the evaluation of the network
response. Optimization algorithms that do not rely on any model of the optimized

59

2.4 Hardware Neural Networks

system but are capable of finding improved versions merely by investigating the
performance of one or more given candidate solutions are commonly denoted as
model-free or black-box approaches (see also section 3.3.3).

Against the background of what has been said above, it can be reasoned thatevolutionary
algorithms such model-free algorithms promise to be the most adequate approach for the

training of analog or mixed-signal hardware neural networks. A prominent ex-
ample for this kind of optimization procedure are the so-called evolutionary algo-
rithms that mimic the principles of natural evolution and which shall be introduced
in more detail in the following chapter.

60

Chapter 3

Evolutionary Algorithms

I have called this principle, by which each slight variation,
if useful, is preserved, by the term Natural Selection.

Charles Darwin, On the Origin of Species

The field of evolutionary computation embraces a variety of algorithmic approaches
that are inspired by the mechanisms of natural evolution. Against the background
of the previous chapters that described how the principles of neural information
processing are successfully utilized in artificial systems, it is not surprising that
natural evolution has been considered as a paradigm for the construction of pow-
erful optimization algorithms. Over the course of time, evolution has created an
enormous diversity of life-forms that are each remarkably well adapted to their
respective ecological niche. Evolutionary algorithms aim to reproduce this effi-
ciency by transferring the underlying principles of biological evolution to common
optimization problems. Like in the case of artificial neural networks, the discus-
sion of evolutionary algorithms shall be preluded by a short investigation of the
biological original.

3.1 Natural Evolution

The origins of the planet that we inhibit date back to about 4.6 billion years ago. the origins
of lifeWithin the first 500 million years of its existence, the earth developed a solid shell,

the lithosphere, and a surrounding layer of gases called the atmosphere. Approxi-
mately 4 billion years ago, the atmosphere cooled down to below 100◦C [66] [201],
and it is believed that very simple life-forms initially appeared several 100 million
years later.

From the very beginning, life in all its variants has influenced and changed
both the surface as well as the atmosphere of this planet to a far-reaching extent.
Among the most primordial groups of life-forms are the archeabacteria and eu-
bacteria that produce oxygen by photosynthesis and thereby gradually converted
the atmosphere over a period of approximately 3 billion years. About 350 million
years ago, the concentration of oxygen settled to its present value. Among other
things, this distinct environmental change is assumed to have played the central

61

3.1 Natural Evolution

Figure 3.1: Charles Darwin (1809–1882) was
the first to explain the evolution of biological
species by natural selection. The publication of
his famous work “On the Origin of Species” [42]
in November 1859 caused public reactions that
ranged from fascination to disgust. Today, com-
plemented by molecular genetics, Darwin’s theory
constitutes the foundation of evolutionary biol-
ogy [66] [201].

role in promoting the evolution of multicellular organisms which in turn resulted
in an exploding increase in the diversity of life-forms [66] [201].

Today, biologists describe approximately 2 million different species of animalsbiological diversity

and plants that nevertheless represent definitely less than 10 % of the species that
ever existed during life’s history. Probably, this fraction is even below 1 % [201].
In other words, there can be assumed to have appeared (and for the largest part
vanished) in the order of a billion species on this planet within a period of around
3.5 billion years. Hence, on average — although this is admittedly a somewhat
simplifying calculation — a new species developed every few years.

3.1.1 The Principles of Darwinian Evolution

In 1859, Charles Darwin proposed a theory to explain the astonishing biologi-
cal diversity and its underlying mechanisms that in its central aspects still holds
today [42]. Within Darwin’s model of natural evolution, an essential role is accred-selection

ited to selection. Selection naturally arises whenever living organisms with their
basic instinct to reproduce compete for vital resources in an environment that
can only sustain a limited number of them. Given these constraints, the individ-
ual organisms that are best adapted to the environmental conditions will outrival
their competitors and are more likely to survive and to produce offspring. This
principle by which selection favors individuals with higher fitness, i.e., a greater
ability to survive and to reproduce, is also known as survival of the fittest.

Besides selection, the second main force behind evolution is variation. Eachvariation

organism exhibits characteristic physical and behavioral features that affect its
fitness and which are commonly called the phenotypic traits. During the lifetime
of an individual, its specific combination of traits is tested for their beneficial in-
fluence on the individuals ability to survive and to produce offspring such that if
advantageous, these traits will be passed to the next generation. Otherwise, the
individual is likely to die without reproducing and its specific combination of char-

62

Evolutionary Algorithms

acteristics will be discarded. Small occasional random variations of the relevant
features, so-called mutations, appear during reproduction from one generation to
the other. This leads to the occurrence of slightly modified compositions of traits
in the offspring. Once again, these new featural combinations get evaluated and
are themselves put to the test of natural selection with the useful variations being
spread by reproduction and the unfavorable ones dying out. As this process iter-
ates, the population of organisms gradually changes and evolves to be comprises
of individuals that are more and more adapted to the specific demands of their
environment.

It is worth emphasizing the different roles of the individual on the one hand and individuals and
selectionthe population on the other. Individuals are said to be the unit of selection. While

their specific characteristics determine how well they perform in passing these
very traits to succeeding generations, they are not in fact being modified directly.
Rather, the continuing selection process in combination with occasional variations populations and

evolutionleads to continuous changes in the population and cause it to slowly converge to
individuals whose features optimally suit the environmental conditions. Hence,
the population is to be regarded as the unit of evolution.

3.1.2 Evolution on the Genetic Level

While the Darwinian principles describe evolution from a macroscopic point of genotypes and
phenotypesview, molecular genetics provide insight into its underlying mechanisms on a mi-

croscopic scale. Each living organism can be viewed as a duality of its pheno-
type that represents the entirety of its physiological, morphological and behav-
ioral traits, and its genotype that encodes the combination of these features on a
molecular level. This encoding is complete in the sense that the genotype contains
all information that is necessary to build the phenotype.

The genetic information about an organism is summarized within its genome genomes and genes

which itself consists of single genes. The gene is the basic functional unit of genetic
encoding particularly with regard to heredity. In natural organisms, the mapping
between individual phenotypic traits and the corresponding encoding genes is not
one-to-one. A single gene might affect multiple phenotypic traits, a phenomenon
called pleitropy, and one specific characteristic of the individual may in turn be
influenced by more than one gene which is denoted as polygeny.

The genetic material of an organism, i.e., the complete set of its genes, is or- chromosomes

ganized in several chromosomes that contain the single genes in a linear arrange-
ment. The number of chromosomes varies from species to species and while hu-
man genomes include 23 of them, e.g., many birds exhibit in the order of 40 [201].
Higher life-forms include two copies of each chromosome in most of their cells.
These cells as well as the respective organisms are called diploid. Cells that partic-
ipate in the reproduction process, i.e., sperms and egg cells, the so-called gametes,
contain only one version of each chromosome and are denoted as haploid.

All phenotypic variations are caused by modifications on the genotypic level, variation during
reproductionmore specifically, by the mutation of single genes and the recombination of ge-

netic sequences during sexual reproduction. Recombination occurs in the course
of fertilization where the haploid sperm cell merges with the haploid egg cell to

63

3.1 Natural Evolution

PSfrag replacements

a) b)

c) d)

fraternal maternal
copycopy Figure 3.2: Schematical illustra-

tion of the biological process of meio-
sis. a) The starting point is given
by the two corresponding chromo-
somes inhered from the mother (ma-
ternal copy) and the father (frater-
nal copy). b) First, each chromo-
some is doubled and the four resulting
strands are aligned. c) In the second
step (crossing-over), genetic material
is swapped between one fraternal and
one maternal chromosome. d) The
resulting chromosomes suffice for four
haploid cells.

form a diploid cell called the zygote. Hence, the zygote contains two copies of
each chromosome, one inherited from the mother and one from the father. The
succeeding development of the new organism does not change the genetic infor-
mation and therefore all its cells contain copies of the same set of chromosomes
found in the original zygote.

Nevertheless, further mixing of genetic code takes place during meiosis [50] [66]meiosis

[201], a special cell-division process by which haploid gametes are formed from
diploid cells (see figure 3.2). Meiosis starts with the physical alignment of the two
corresponding chromosomes inherited from the mother and the father. Both chro-
mosomes are then doubled to yield a total of four aligned chromosomal strands
called chromatides. In the last step, known as crossing-over, one maternal and one
fraternal copy are broken up at the same random point and exchange parts. The
resulting chromosomes are used to form four haploid cells, two of which contain
unchanged genetic material from either the mother or the father. The remain-
ing two cells include the respective gene sequences in new and complementary
combinations.

The reproduction process by which chromosomes are copied during meiosis ismutations

subject to infrequent errors. Thus, in addition to the possible recombination of
genetic material, the four resulting haploid gametes will contain random mod-
ifications of the original genetic information caused by various types of muta-
tions [66] [201].

It is an important observation that the information-flow between genotype and
phenotype is unidirectional and that variations occur exclusively on the genotypic
level. As indicated above, any changes of the phenotypic features during the
lifetime of an individual, e.g., through learning or external influence, do not affect
the genetic code stored in its cells and are thus not passed to the offspring via
genetic inheritance. Hence, it can be said that the the two essential mechanisms of
evolution, i.e., selection and variation, are each confined to operate on a different

64

Evolutionary Algorithms

level. While selection acts solely on the phenotype, all variation processes affect
only the genotype.

3.1.3 Speciation

So far, it has indirectly been assumed that the regarded population consists of inhomogeneous
populationsindividuals from one single species. Thus, all individuals are biologically compat-

ible in that any two of them can have offspring (subject to the natural sexual
constraints). A given environment will contain individuals from various species.
Seen from the perspective of one population, the presence of other species that
compete for the same resources can be regarded as a special characteristic of the
environment that contributes an additional aspect to the selective pressure on the
individuals.

In this sense, natural selection can not only be seen to act on single organisms allopatric
speciationbut also on whole species. In nature, this has lead to the adaption of species to

different available ecological niches. New species can develop when individuals of
one species are separated into two populations that do no longer exchange genetic
material among them. Most often, this separation is caused by geographical iso-
lation (allopatric speciation), and the members of the two populations have to
survive in different environments, each with its special demands and constraints.
The interaction of variation and selection will therefore favor different types of
phenotypic traits within the two populations. Eventually, the differences between
both groups will have grown to be such that they are to be regarded as distinct
species [201].

3.2 Evolutionary Algorithms: An Overview

Evolutionary algorithms apply the principles of natural evolution to the solution population based
optimizationof optimization problems. Instead of modifying a single instance of the system

to be optimized, they process a whole group, a so-called population, of candidate
solutions that are now referred to as individuals. The performance of each in-
dividual is measured by a fitness function which is usually (but not necessarily) fitness function

chosen in a way such that the better the performance of the candidate solution,
the higher the fitness value.

An evolutionary algorithm starts with the generation of an initial population
of candidate solutions and the evaluation of their fitness values. Based on the
fitness, a selection procedure then determines those individuals of the population parent selection

that are allowed to produce offspring in the form of new candidate solutions. The
reproduction itself is accomplished by applying appropriate variation operators to
the original individuals.

Two types of variation operators can be distinguished: While recombination recombination and
mutationacts on two or more individuals to yield one or more new candidate solutions,

mutation operators are applied to single individuals, resulting in one offspring.
These operators do not act on the individuals themselves but on suitable repre-
sentations, i.e., special data structures that contain all parameters of a candidate
solution that are to be optimized by the algorithm.

65

3.2 Evolutionary Algorithms: An Overview

PSfrag replacements

START FINISH

initialize
individuals

initial
population

fitness

fitness

evaluation

evaluation
parent

selection

selection

variation
operators

survivor

new
generation

termination
condition?

determine
best

iterate

Figure 3.3: The general scheme of evolutionary computation. Starting from an initial
population, the individuals are repeatedly subject to variation operators and selection
procedures until a given termination condition is fulfilled. Typically, the result is taken
to be the best individual in the final generation. The main aspects of an evolutionary
algorithm are its fitness function, selection schemes, and the used genetic representation
in connection with the used variation operators.

Most commonly, the size of the population is kept constant and the resulting
offspring competes with the old individuals for places in the next generation. Like
the parent selection process, the assigning of individuals to slots in the succeedingsurvivor selection

generation, also called survivor selection, can be based on the fitness. However, it
can also be determined by the age of the individuals. Both selection procedures
can be more or less stochastic or completely deterministic.

Similar to natural evolution, evolutionary algorithms rely on the two essential
principles of variation and selection that are each represented by the recombina-
tion and mutation operators and by the parent and survivor selection procedures,
respectively. When the above process is iterated, the individuals in the population
will improve in their ability to solve the given problem reflected by an increasing
average fitness value of the population. This is to be viewed in analogy to the evo-
lutionary adaption of biological organisms to optimally suit their environmental
conditions.

The algorithm proceeds until a given termination condition is fulfilled, e.g., one
individual in the population represents a solution with sufficient quality (high
fitness) or a fixed computational limit is exceeded. Figure 3.3 illustrates this
general scheme of evolutionary algorithms.

Historically, the idea of evolutionary computation can be traced back as far as tohistorical overview

the forties of the past century [57] and since the 1960s, four main streams of evolu-
tionary algorithm implementations have emerged: evolutionary programming [56],

66

Evolutionary Algorithms

genetic algorithms [46] [71], evolution strategies [9] and, more recently, genetic
programming [121]. These approaches differ mainly in the types of optimization
problems they are commonly applied to as well as in the specific implementations
of the single components shown in figure 3.3.

While evolution strategies and genetic algorithms are typically employed for main fields

parameter optimization problems, evolutionary programming has initially been
developed to simulate evolution as a learning process with the aim of generating
artificial intelligence. Genetic programming, finally, is to be positioned in the field
of machine learning. Apart from that, the distinction between these approaches as
well as their respective traditional conventions and notations merely have historical
origins. Today, they are all seen as subareas of the whole field of evolutionary
computation [140] [50]. In the spirit of this generalized view, the succeeding
sections shall discuss the individual parts of an evolutionary algorithm in more
detail but on a generic level. Explicit realizations will be introduced in section 3.4.

3.2.1 The Main Constituents of an Evolutionary Algorithm

The following main components have to be specified in order to completely define
a particular evolutionary algorithm:

- The representation, also denoted as the genetic coding, defines the data struc-
ture that contains the information about all parameters of a candidate so-
lution that are to be optimized by the algorithm.

- The variation operators determine the way in which recombination and mu-
tation are implemented on the basis of the above representation.

- The fitness function provides a measure for the quality of an individual. Its
value is the actual quantity that is optimized by the algorithm.

- The parent selection and survivor selection procedures operate on the whole
population in that they transform the old generation of individuals to a new
one.

The Representation

An evolutionary algorithm is desired to eventually yield a system that represents
the solution to a given problem. In terms of the simulated evolution, this system
and any candidate solutions evaluated during the search process can be regarded
as the phenotypes. In contrast, the objects that are directly processed by the
algorithm are the corresponding genotypes. Each genotype, henceforth also called
genome, is an instance of a data structure that summarizes all variable parameters
of the respective candidate solution. The organization of this data structure as well
as the respective mapping from the phenotype to the genotype are both commonly
denoted as the (genetic) representation.

As an example, consider the case of a neural network with a fixed architecture example: network
weightspossessing n synapses. Here, each phenotype is completely defined by specifying

all synaptic weight values wi, 1 ≤ i ≤ n. Thus, a simple choice of genotype is

67

3.2 Evolutionary Algorithms: An Overview

a vector g = (g1, . . . , gn) ∈ Rn of real numbers that each represent one weight
wi = gi. However, another valid representation would be to code all weight values
in binary form with a resolution r and arrange them to a linear binary string
s ∈ {0, 1}(r·n).

The entirety of all different genomes that can possibly be realized by a givengenotype space

representation forms the genotype space G. In principle, this space is distinct from
the phenotype space P that consists of all candidate solutions to the investigated
problem. For the above examples, the mapping between them is straight forward.
Depending on the problem and the chosen representation, the relation between
the genotype space and the phenotype space can be relatively complex [117] [121].

It is important to note that an evolutionary algorithm performs its search in the
genotype space. Hence, when designing the representation for a given optimization
task, it has to be ensured that the desired solution can be defined by a valid genome
of the chosen kind, i.e., that there exists a point in the genotype space that codes
an acceptable solution to the problem. Since for most realistic applications, this
point will not be known in advance, the selection of a suitable representation
often has to be based on reasonable assumptions about the general nature of the
solution.

The Variation Operators

During evolution, new individuals are created from the old ones by applying ad-
equate variation operators to the respective genotypes. In other words, in search
of the optimal solution, the algorithm progresses through the genotype space by
virtue of these operators. It is crucial for the success of the optimization processtraversing the

genotype space that the used genetic representation in connection with the corresponding varia-
tion operators suit the investigated problem. More precisely, both are to be chosen
such that starting from a random initial population of points in the genotype space
and iteratively applying recombination and mutation, the optimal solution can be
expected to be reached within a finite number of steps with a sufficiently large
probability. Again, this would in principle require the exact knowledge of the
solution. In practice, the feasibility of a set of variation operators for a given task
can only approximately be estimated in advance.

Recombination Recombination operators are also called crossover operators.
They merge the information stored in the genotypes of two individuals, denoted
as the parents, to yield one or two new genomes, named the offspring. This is
usually achieved by randomly breaking up each of the original genomes into two
or more parts and exchanging some of the resulting segments among them.

The use of a crossover operator is inspired by the crossing-over that appearsbiological motivation

during meiosis in biological systems1 (see section 3.1.2). While its purpose is to
practicability recombine advantageous features of the parents to form potentially improved new

individuals, the application of crossover is not guaranteed to be beneficial. The
quality of a specific implementation of the recombination process can be measured

1Note however, that while the crossover operator acts during reproduction, the biological
crossing-over occurs earlier during the development of gametes.

68

Evolutionary Algorithms

by the average probability by which it produces individuals that have equal or
better fitness than their parents.

For a crossover operator to maximize this probability, its design has to account crossover and
genetic codingfor the structure of the chosen representation and vice versa. In particular, it is

the crossover operator that defines the smallest functional unit of the genome as
being the minimum part that is not broken up during the segmentation step. In
analogy to the biological original, this basic unit is called a gene and the different
values that it can assume are referred to as alleles.

Regarding the two examples above, the gene would in the first case be one real
number gi and the vectors of the two parents would only be cut apart between
any two components gi and gi+1. In the second encoding, a gene could correspond
to a single binary digit of the string s. Note that in the first example, the mixing
process merely recombines the weights of the two parent networks. The second
approach, on the other hand, can produce new weight values by cutting apart and
recombining sequences of the original strings that in fact formed a translational
unit by coding one weight. Such a behavior might be beneficial, but due to the
binary nature of the encoding, the outcome of this recombination process is highly
unpredictable.

While this already provides a first insight into the close relation between the re-
combination operator and the chosen genetic representation, a thorough discussion
of this topic shall be deferred to sections 3.4.4 and 3.5.

Mutation A Mutation operator acts on single genotypes by applying a series single gene
mutationof stochastic modifications. Often, it affects each gene separately by randomly

changing the respective allele to a new value. Mutation operators that act on
whole groups of genes simultaneously are conceivable as well but in any case, the
changes are desired to be stochastic and unbiased and are applied with a given low
probability. Returning to the examples of the real valued vector and the binary
string, a simple mutation operator could in the first case replace single components
with new random numbers and in the second case randomly flip single bits.

The presence of mutations is vital for the performance of an evolutionary algo- mutation and
diversityrithm since they support the genetic diversity within the population. This way,

they balance the effects of selection that tend to reduce this diversity by repeatedly
discarding the genetic material of individuals with low fitness. Viewed in terms of
the search space, mutations ensure that this space is connected. For theoretical
convergence proofs of evolutionary algorithms, it is often required that any allele
can be mutated into any other with nonzero probability [173] [174].

On the other hand, too frequent or too violent modifications of the genetic adjusting mutation

information in the population run the risk of impeding evolutionary progress by
destroying advantageous combinations of alleles. The correct adjustment of the
mutation rate in connection with the appropriate selective pressure is one of the
main issues when tuning the parameters of an evolutionary algorithm.

69

3.2 Evolutionary Algorithms: An Overview

The Fitness Function

The fitness function has to be chosen as to provide a fair measure for the quality
of the candidate solutions that are evaluated during the search process. Since the
selection procedures described below are based primarily on the fitness values of
the individuals, the evolutionary algorithm can be seen as to optimize the fitness.
At the same time, the desired result of the search is a system that solves the given
problem.

In this sense, it is evident that the fitness function has to be designed suchsmooth fitness
measures that it assumes its maximum value on the optimal solution(s)2. Furthermore, it is

preferred to be as smooth as possible, i.e., to reward even small improvements in
the quality of an individual with a measurable increase in fitness. If two or more
individuals can exhibit the same fitness value although one is actually closer to
the desired solution than the others, the efficiency of the selection procedure is
compromised.

Finally, it is understood that a worse individual should never be assigned a
higher fitness value than a better one. But it turns out that depending on the
task at hand, it is not necessarily straight-forward to formulate a simple fitness
function that is guaranteed to do so (see section 8.3.3).

The Selection Schemes

Given a population of individuals with known fitness values, it is the purpose ofparent selection

the parent selection scheme to chose some members of the population that will be
used to create offspring: New candidate solutions that are potentially accepted for
the next generation. Usually, this is selection is probabilistic and individuals with
higher fitness stand a better chance to be selected than those with lower fitness.

After the desired number of offspring have been created and their fitness valuessurvivor selection

have been evaluated, the survivor selection process determines those individuals
among the old and the new candidate solutions that are to form the new gener-
ation. Unlike the parent selection scheme, survivor selection can in addition to
the fitness values of the individuals also consider their age, such that offspring are
preferred over the parents.

In practice, many implementations of evolutionary algorithms confine them-selection in
different fields selves to only use either of the two selection processes. For example, genetic

algorithms traditionally apply only parent selection and fill the new population
completely with offspring3 [46] [71]. Evolution strategies chose the parents ran-
domly and regardless of their fitness. Also, they build the new generation from
the offspring (and in some case the old population) in an entirely deterministic
way [9] [50].

Selection is the pushing force behind the improvement of the individuals in theadjusting selection

population and as such, it has to favor good individuals over inferior ones. On the

2It is straight forward to reformulate all statements of this section to suit a fitness function
that monotonically decreases with the quality of the individual. Obviously, this function is to be
minimized rather than maximized.

3In fact, this can also be seen as a completely deterministic survivor selection that discards
all individuals with an age greater than one generation.

70

Evolutionary Algorithms

other hand, the exploration of new solutions depends on the diversity within the
population. Even bad individuals might partially comprise of allelic combinations
that are beneficial for the solution of the problem. Thus, in order to maintain a
sufficient genetic variance, the selection process is best not made too rigorous. A
brief overview of various selection schemes is given in section 3.4.1.

3.3 General Features of Evolutionary Algorithms

The preceeding section has outlined the basic methodology of evolutionary com-
putation. Before several specific implementations of the main components will be
introduced in 3.4, this section shall summarize some general properties of evolu-
tionary algorithms that already emerge as a direct consequence of their underlying
principles. Potential difficulties of the evolutionary approach will be discussed and
extensions to the basic concepts of evolutionary optimization will be introduced
that can compensate for some of these deficiencies.

As a general characterization, evolutionary algorithms can be sorted into the general
characterizationcategory of generate-and-test approaches [50] but are distinct among the algo-

rithms of this family under several aspects. First, they are population based.
Second, they are stochastic and third, they often rely on the recombination of
candidate solutions to form new ones. Especially the first two features have im-
portant consequences for the progression of the search process.

3.3.1 Evolutionary Algorithms as Global optimizers

The use of a population of individuals effectively enables an evolutionary algorithm
to probe the search space at multiple different points simultaneously. Although
initially, the candidate solutions are randomly spread across the whole space, later
generations will by virtue of the selection process and the variation operators be
clustered within regions of high fitness. It is a common observation that the
population will eventually converge towards a single located domain and slowly
approximate the optimal solution within this area. These two distinct phases of exploration and

exploitationthe evolution process are often denoted as exploration — finding regions of high
fitness in the search space — and exploitation, i.e., the concentration of the search
in the vicinity of the best encountered solutions [50].

The exploration phase greatly benefits from the diversity in the population. local maxima
and diversityMaintaining a whole group of different candidate solutions potentially increases the

probability of the algorithm to locate the global maximum of the fitness function.
Hence, it reduces the risk of getting trapped in local maxima like it is a common
problem of gradient ascent approaches (section 2.1.3) or even other stochastic
search algorithms (see section 4.3.1).

On the other hand, once the algorithm has reached the exploitation phase, too
strong variance interferes with an efficient approximation of the best solution in
the current neighborhood of the population. Therefore, evolutionary optimization
is often discussed in terms of a trade-off between exploration and exploitation.

The eventual convergence of the whole population around one optimum is a genetic drift

phenomenon commonly known as genetic drift. In principle, it is a desirable

71

3.3 General Features of Evolutionary Algorithms

feature that the population will after several generations be clustered in regions of
high fitness. However, in the case of multimodal tasks that exhibit more than one
optimum of the fitness function and where only one of these maxima is a global
one, the genetic drift can cause problems. If the diversity of the population is lostpremature

convergence too early during the search process, the algorithm might get stuck in local optima
and thus miss the global optimum. This unfavorable behavior is usually referred
to as premature convergence.

Against the background of these considerations, the optimal adjustment of the
selection pressure and variance parameters of an evolutionary algorithm can be
identified with the problem of balancing the efficiencies of the exploration and
exploitation phases. Ultimately, the chosen parameters are desired to avoid pre-
mature convergence and at the same time allow for an efficient approximation of
the global optimum during the exploitation phase.

3.3.2 A Modular View of Evolutionary Algorithms

Since the fitness function has to quantify the ability of an individual to solve the
given problem, it is clearly specific to the currently investigated task. But even ifautonomy of the

fitness function its formulation might be difficult (see section 8.3.3), the fitness function depends
only on the desired behavior of the optimized system or on specific requirements to
the latter. In other words, the fitness function is defined on the phenotype space.
As such, it is independent of the used genetic representation and the corresponding
variation operators.

In turn, the explicit form of the genotype and the applied genetic operatorsautonomy of the
genetic representation
and operators

can be chosen without regard to the details of the fitness evaluation. Rather, the
progress of the evolution depends on how far the coding and the operators pay
tribute to the structural and organizational features of the system to be optimized.

The selection process, finally, operates solely on the basis of the fitness of theautonomy of the
selection schemes individuals. It is neither concerned about how these values have been obtained or

about the way by which new offspring is created. In so far, the selection scheme
constitutes the part of an evolutionary algorithm that is least problem specific.

From this point of view, the three main components of an evolutionary algo-
rithm, i.e., the fitness calculation, the selection scheme and the genetic representa-
tion in connection with the variation operators, are inherently independent. The
detailed realization of each part can be chosen without necessarily affecting the
implementation of the others. Each component can easily be replaced by another
version in order to test the feasibility of different algorithm setups for a given task.

3.3.3 Evolutionary Algorithms as Model-Free Heuristics

The above considerations already indicate that specifics of the investigated prob-
lem become manifest within the formulation of a corresponding evolutionary algo-
rithm primarily in the form of the fitness function and possibly the design of the
genetic coding. The former is undoubtedly peculiar to the particular task at hand.
The latter is preferably chosen as to account for the structural characteristics of
the optimized system in order to increase the probability of the recombination

72

Evolutionary Algorithms

operator to produce improved offspring (see also sections 3.5 and 4.1.2).

However, many implementations of evolutionary algorithms, like evolution strate-
gies, do not use any recombination operator and rely solely on mutation and selec-
tion [9]. Also, recombination can contribute to the variance in the population and
thereby benefit the exploration of the search space even if it is not optimized to-
wards producing good offspring. Finally, the knowledge of how to best arrange the
genetic representation and to implement the recombination process is often simply
not available. This does not prevent the evolutionary approach — with or without
recombination — from being successfully applied to a multitude of optimization
problems (e.g., [19] [31]).

Thus, aside from an adequate problem-dependent fitness function and a specifi- independence of the
taskcation of the number and range of the variable parameters, no further information

about the optimized system is required. Neither does an evolutionary algorithm
rely on any model of how the candidate solutions actually work, nor does it depend
on any derivatives of the performance measure with respect to the parameters.
Therefore, evolutionary algorithms are often denoted as model-free, or black-box,
approaches. As such they can easily be applied to a wide range of optimization
tasks, even to those for which no other optimization strategy can readily be for-
mulated. In fact, it is the property of being model-free that constitutes the main evolving hardware

neural networksmotivation for using evolutionary algorithms to train hardware neural networks
(see 2.4.5). The evolution of artificial neural networks will be the topic of chapter 4
which will also discuss some alternative model-free optimization algorithms.

Heuristics and the No Free Lunch Theorem

Despite the potential problem of premature convergence, the principles of evolu-
tionary computation prove to be of great value for the solution of optimization
problems in practice. Nevertheless, there are some issues concerning evolutionary
algorithms that shall not remain unmentioned.

The evolutionary approach is based on simple and transparent ideas that are evolutionary
computation as a
heuristic

inspired by natural evolution. Regarding the efficiency of the biological original,
evolutionary algorithms are expected to provide feasible means for the solution
of optimization problems. But it is important to note that apart from some
selected artificial tasks and specific implementations of the algorithm [174], it
cannot be proven that an evolutionary algorithm is guaranteed to find a suitable
solution of sufficient quality within a reasonable time [50] [102]. For this reason,
the evolutionary approach is often referred to as a heuristic. The term heuristic is
not unambiguously defined but can be understood as to denote a technique for the
design of efficient optimization algorithms “for which no one is able to guarantee
at once the efficiency and the quality of the computed feasible solutions” (taken
from Hromkovic̆, 2004 [102]).

It is a common property of heuristics to be robust in the sense that they can heuristics and
robustnessbe applied to a large variety of optimization tasks, even if these problems differ

significantly in their combinatorial structures. In the 1980s, it has been antici-
pated that evolutionary algorithms outperform other techniques on a wide range
of problems [71] and that they are only beaten by dedicated algorithms that are

73

3.3 General Features of Evolutionary Algorithms

specially designed for particular tasks. Recent studies, however, lead to a cor-
rection of this view. In simple terms, the famous No Free Lunch theorem (NFL)the No Free Lunch

theorem by Wolpert and Macready [228] states that when averaged over the space of all
possible optimization problems, all nonrevisiting, model-free algorithms will show
the same performance. The term nonrevisiting refers to the demand that the algo-
rithm does not generate and test the same point in the search space twice. This is
not initially a property of evolutionary algorithms but can easily be incorporated.

The conclusions drawn from this theorem are twofold. First, if any algorithm
performs better than others on a set of problems, it pays for this by performing
worse on other tasks. Second, for a given problem, it is possible to break the
limitations of the NFL by abandoning the model-free nature of the algorithm,
hence, by incorporating problem specific knowledge.

It can be argued that by designing an appropriate genetic coding and corre-practicability of
evolutionary
algorithms

sponding operators, task specific information is automatically incorporated into
the algorithm. Furthermore, evolutionary algorithms have repeatedly demon-
strated their ability to find good solutions for many problems that could otherwise
not easily be solved. In practice, this is most often sufficient, even if the found sys-
tem cannot be proven to represent the achievable optimum or if other algorithms
can theoretically perform better. In so far, being a heuristic and as such being
theoretically limited by the NFL does not necessarily pose severe restrictions to
the applicability of evolutionary algorithms.

3.3.4 Extensions to the Basic Concept

Several mechanisms are present in nature that support the exploration of differ-
ent environmental niches and thus lead to the development of distinct species.
When tackling multi-modal problems with evolutionary algorithms, it is equally
desirable to explore various different regions of the search space in order to avoid
premature convergence towards a suboptimal solution. It is reasonable to assume
that the efficiency of the exploration phase could be improved if the basic concept
of evolutionary computation is extended by some of the mechanisms that also
promote speciation in nature. This has in fact been done in various ways.

- In the so-called island model algorithms (also coarse-grain parallel or simplyisland model
algorithms parallel evolutionary algorithms), multiple separated populations of individ-

uals are evolved in parallel. After a fixed number of generations denoted
as an epoch, several individuals from each population are exchanged with
the neighboring populations (migration) [38] [39] [128] [161] [172] [204]. The
topological arrangement of the populations is usually chosen as to suit the
architecture of the parallel system on which the algorithm is implemented.
Most often, it is a ring, torus or hypercube.

- Diffusion model algorithms (also fine-grain parallel, distributed or cellulardiffusion model
algorithms evolutionary algorithms) divide the population into smaller, partly over-

lapping subpopulations (demes) that are distributed in an imaginary al-
gorithmic space. Selection and mating only occur within the subpopula-
tions [72] [103] [132] [150] [220] [222]. A simple exemplary realization of this

74

Evolutionary Algorithms

concept is to distribute all individuals on a (toroidal) grid such that each
individual can only be recombined — and has to compete with — individuals
on neighboring grid points.

- The above approaches both aim to simulate restrictions on the mating of distance metrics and
mating constrictionsindividuals like they arise from geographical separation in nature. Another

idea is to introduce an appropriate distance metric in either the genotype
or phenotype space that quantifies some kind of relationship or similarity
between individuals. Those pairs of candidate solutions with a sufficiently
small mutual distance are then regarded as belonging to the same species
and are allowed to have offspring. Otherwise, the individuals are consid-
ered as biologically incompatible and cannot be recombined. Various types
of distance metric have been introduced [45] [194]. The distance can be
based on features of the individuals (resp. their genotypes), but the mem-
bership to a given species can also be assigned randomly and made subject
to recombination and mutation [196].

- Instead of using the distance between individuals to determine appropriate distance metrics and
biased selectionrestrictions on potential mating pairs, the similarity concept can alterna-

tively be utilized to bias the survivor selection process. In fitness sharing [70],
fitness sharing

the fitness of each individual is normalized by the number of other candidate
solutions that fall within a specified metric distance. This effectively reduces
the fitness for whole groups of individuals that are too similar and — since
the selection process favors candidate solutions with high fitness — can be
assumed to support the diversity within the population.

The crowding algorithm [46] [131] incorporates a special replacement selec- crowding

tion scheme that favors offspring to preferably replace those original mem-
bers of the population to which it exhibits a close similarity. Thereby, initial
subpopulations that inhibit different niches of the search space are likely to
be preserved. However, their size does not depend on their fitness as it is
the case for fitness sharing.

All of the above concepts have proven to constitute fruitful extensions to the
basic evolutionary algorithm framework. Nevertheless, they also introduce addi-
tional parameters that require reasonable adjustment. A detailed investigation of
these approaches, their benefits and problems cannot be provided here. The in-
terested reader is referred to either the original publications or the overview given
in [50]. Instead, it shall be discussed in how far the introduction of the above
concepts compromises the independence of the main components of evolutionary
algorithms that has been claimed in section 3.3.2.

Do Extensions Challenge Modularity ?

The first two of the above extensions primarily involve a specific organization
of the population. Within the parallel populations of the island model or the
subpopulations of the diffusion algorithm, the applied selection schemes can be
equal to those used in common evolutionary algorithms. Moreover, the genetic

75

3.4 Evolutionary Algorithm Implementations

representation, the variance operators, and the fitness function are not affected
by the adoption of these population models. In so far, mating restrictions that
arise due to the simulation of geographical separation merely represent a special
addition to the parent selection process and the population management.

Similar to the case of the fitness function, any selection process that takes intoautonomy of the
distance metric account the distance between two individuals needs not to be concerned about how

this quantity is obtained. Likewise, the formulation of the fitness function is not
at all affected by the presence of a similarity measure. Calculating the similarity
between two individuals can therefore be seen as an additional component of the
evolutionary algorithm that is independent of the fitness function and the selection
scheme.

The distance metrics introduced by the last two approaches of the above listdistance metrics and
genetic codings are either based on features of the individuals or on special tags that are encoded

within their genomes. Hence in both cases, the similarity between two individuals
can be inferred from their genotypes, and the reasonable choice of a distance metric
is closely linked with the used genetic coding. Designing a genetic representation
in connection with corresponding variance operators could thus be extended to
also incorporate the definition of an adequate similarity measure. Instead of being
considered as a new independent component, the similarity function can then be
regarded as an additional aspect of the genetic representation.

In summary, it is concluded that the discussed extensions give rise to additionalpreserved modularity

demands on the implementations of the main components of an evolutionary algo-
rithm. Apart from that, it persists that the detailed realization of each component
is encapsulated from the remaining parts by simple and well-defined interfaces:
The genetic representation has to provide adequate variation operators and pos-
sibly a reasonable distance measure. The fitness function has to assign a fitness
value to each individual that quantifies its performance on the given task. On the
basis of the fitness and the similarity between individuals, the selection scheme
finally has to form mating pairs and select candidate solutions for the next gener-
ation. It is worth repeating that as long as all components meet their respective
requirements, their detailed realizations remain unaffected by the implementa-
tions of the others. This important feature will turn out to be of considerable
advantage for the design of flexible evolutionary algorithm software frameworks
(see section 7.4).

3.4 Evolutionary Algorithm Implementations

This section introduces the most widespread implementations of the different evo-
lutionary algorithm components. The only exception is the fitness function: Sur-
veying common realizations of the latter would be infeasible and of only limited use
as it is largely specific to the particular task at hand. Furthermore, the presented
implementations of the genetic coding and the corresponding variation operators
are confined to those suited for parameter optimization problems. Representations
and operators that are typical for the field of genetic programming are deliberately
excluded since this area is not directly related to the work presented in this thesis.

76

Evolutionary Algorithms

For an exhaustive overview of evolutionary algorithm implementations that also
accounts for genetic programming see [50].

3.4.1 Selection Schemes

The differentiated survival of individuals based on their fitness is one of the cor-
nerstones of evolutionary computation. Two basic models can be distinguished of
how this competitive element of population management is realized. According to
the generational approach, each iteration starts with a population of µ individuals generational

algorithmsfrom which a fixed number of parents is selected to form a mating pool. Note that
depending on the applied selection scheme, this mating pool can contain multiple
copies of the same individual. In any case, its members are used to create µ off-
spring that completely replace the old individuals and form the next generation.
Implementations that follow such a complete replacement scheme are commonly
denoted as generational evolutionary algorithms.

In contrast, steady-state algorithms only change parts of the population in each steady-state
algorithmsstep by substituting λ < µ individuals with a corresponding number of offspring.

The fraction of the population that is replaced during one iteration is called the
generational gap and is given by λ/µ.

While both approaches are equally often encountered in classical genetic algo-
rithms, the fields of genetic programming and evolution strategies usually follow
the generational scheme and the area of evolutionary programming traditionally
applies the steady-state model. Nevertheless, both strategies agree in that the
corresponding parent and/or survivor selection procedures operate on the basis
of an individual’s fitness. In the following, it shall be assumed that the fitness
increases with the quality of the candidate solution and is always nonnegative.

Fitness Proportional Selection

The selection scheme originally applied in classical genetic algorithms is the so- mechanism

called fitness proportionate selection [71]. It is a probabilistic procedure in so far
as each individual is assigned a nonzero probability to be chosen. Given the fitness
fi of the individual with index i, its selection probability pi is computed according
to

pi =
fi

µ∑
j=1

fj

, ∀ 1 ≤ i ≤ µ (3.1)

where µ is the population size. Thus, pi depends on the absolute fitness value
of the individual compared to the total cumulated fitness of the population. As
required, the hereby defined probabilities readily obey

µ∑

i=1

pi = 1. (3.2)

Fitness proportional selection suffers from several problems. First, individuals challenges

with outstanding fitness tend to take over the whole population very quickly which

77

3.4 Evolutionary Algorithm Implementations

leads to premature convergence. Second, in later generations of an evolution,
the fitness values of all population members usually have become large and are
likely to be close together. Hence, there will only be marginal differences between
the selection probabilities of the single individuals and thus hardly any selection
pressure left. Third, the same phenomenon occurs when the fitness function is
transposed, i.e., is modified by the addition of a sufficiently large value. The last
two issues are closely related and are consequences of the fact that the selection
probabilities are calculated on the basis of the absolute fitness values.

Ranking Selection

The drawbacks of fitness proportionate selection can be overcome if the selection
probability of an individual is not based on the absolute value of its fitness but
rather on its rank in the current generation [10] [77] [221]. Let the µ individuals in
the population be ordered such that the one with the the highest fitness is assigned
rank µ and the one with the lowest fitness is allocated to rank 1. In linear ranking,linear ranking

the selection probability is a linear function of the rank i given by

pi =
1

µ

(
s− + (s+ − s−)

i − 1

µ − 1

)
, ∀ 1 ≤ i ≤ µ (3.3)

where s−/µ and s+/µ are the respective probabilities for the worst and the best
individual to be selected [21]. In order to fulfill the normalization condition 3.2,
it is required that s− ≥ 0 and s+ = 2 − s−. This poses a rigid restriction on the
selection strength, i.e., the difference in selection probability between the worst
and the best individual.

Exponential ranking selection [21] does not suffer from these limitations. Here,exponential ranking

the selection probabilities are calculated on the basis of the rank i according to

pi =
cµ−i

µ∑
j=1

cµ−j

, ∀ 1 ≤ i ≤ µ (3.4)

using the adjustable parameter c ∈ (0, 1). If c approaches 1, the selection proba-
bilities of the individuals all converge to a common value and the selective pressure
weakens. For c close to 0, the exponential character of equation 3.4 becomes more
pronounced and individuals with higher ranks are more and more favored over
those at lower ranks.

A special form of ranking selection is the so-called truncation selection thattruncation selection

fixes a threshold T and only assigns a nonzero selection probability to the best
T individuals in the population. While worse individuals cannot be selected at
all, the first T members usually stand the same chance 1/T to be chosen. The
deterministic variant of this approach simply defines the best λ candidate solutions
to represent the outcome of the selection procedure.

78

Evolutionary Algorithms

Tournament Selection

Instead of calculating and sampling a probability distribution defined on the fitness mechanism

values of the whole population, tournament selection solely relies on an ordering
relation that can rank any two individuals. The selection is performed in two
steps. First, τ members of the population are chosen in a completely random
manner. This intermediate group is referred to as the tournament. Second, the
individual with the highest fitness among the τ chosen competitors is taken to
be the final selection. Hence, while the composition of the tournament is entirely
random, the choice of the winner is deterministic.

In order to select a pool of λ individuals, λ independent tournament selec- adjustable selection
pressuretions have to be performed. Although the effective selection probability for each

individual depends on its rank, the tournament scheme can be realized without
sorting the entire population. Furthermore, the selective pressure can conveniently
be adjusted by varying the tournament size τ . With increasing τ , the selection
probability for individuals with low fitness decreases.

The selection pressure also depends on whether the constituents of the tour-
nament are chosen from the initial population with or without replacement, i.e.,
whether an individual can appear in the tournament more than once. Especially
the worst individual of the population only exhibits a non-zero probability to win
a tournament, if it actually has to compete solely with copies of itself.

It can be shown that a tournament selection with tournament size 2 is effectively
equivalent to a linear ranking selection [21]. Since it is considerably simple and
easy to implement — and due to the direct control of the selective pressure via
the tournament size τ — this selection scheme is one of the most widely used for
evolutionary algorithms.

Survivor Selection Specialties

In principle, the selection procedures discussed so far are all equally well suited for
both, parent and survivor selection. Traditionally, however, they originate from
the field of genetic algorithms where they are only applied to the parent selection
process. It has been said before that it is common in this kind of algorithm to
replace the whole initial generation by its offspring. In a steady-state algorithm, on
the other hand, the number of offspring λ is lower than the size of the population µ.
Those individuals that will have to make room for the offspring can be selected
according to any of the above schemes if it is based not on the fitness or rank of
an individual but rather on the respective inverse.

A popular choice for this kind of replacement selection is the deterministic deterministic
replacementvariant of the truncation selection, i.e., the worst λ members of the old population

are chosen to be substituted by the offspring. But even if the replacement of the
elitismold individuals is stochastic, it is most often desirable to prevent the best member

of the former population from being discarded. It is therefore common to exclude
the best individual from the replacement selection process. This is referred to as
elitism and can be generalized to a preservation of the best nel individuals.

An alternative realization of the survivor selection process is to apply one of the

79

3.4 Evolutionary Algorithm Implementations

introduced selection schemes unmodified but to the whole group of the µ parents
plus the λ offspring.

3.4.2 Genetic Representations

As stated at the beginning of this section, it will be assumed in the following thatcodings for parameter
optimization tasks the task at hand is a parameter optimization problem. In general, the parameters

can be binary (Boolean), nominal (i.e., they can assume one of a finite set of
possible values), integer-valued, or continuous (e.g., real numbers). If the genes
directly translate to characteristics of the phenotype, the coding is called a direct
encoding. In an indirect encoding, the genes rather correspond to the parameters
of some kind of building rule according to which a phenotype is constructed4.
The two examples for the coding of neural network weights given in section 3.2.1
represent direct encoding schemes. Some indirect encoding methods for neural
networks will be introduced in section 4.2.2.

Evolutionary algorithms are commonly implemented on digital computers. Thisrepresentations on
digital systems suggests at least three basic ways in which parameters can conveniently be coded

within a genome: In a binary representation, by integer values or in the form
of floating point variables (which shall for simplicity be regarded as equivalent
to real numbers). While in a digital system, all of the above representations are
ultimately stored in binary form at the lowest level, the approaches rather differ
in what is regarded as a complete gene, i.e., an indivisible basic constituent of the
abstract genome (see section 3.2.1).

Binary Representation

The binary coding, besides obviously being an adequate choice for Boolean at-
tributes, can also be used for nominal, integer-valued and quasi-continuous pa-
rameters. Historically, genetic algorithms have often incorporated a binary repre-
sentation regardless of the investigated problem and the nature of its free variables.
In its simplest variant, the single genes are arranged to form a linear bit string
that represents the entire genome.

When numbers are coded through binary n-bit integers, the single bits arebinary coded
numerical attributes assigned different significances. This gives rise to the well-known phenomenon

that the probability to change a given value x to any other value y by a random
flipping of bits is not necessarily equal for all possible y’s. For example, changingknown problems

a 15 (01111) into a 14 (01110) requires the modification of only one bit. But in
order to yield a 16 (10000), it is in fact necessary to flip every single position.
When evolving nominal, integer or real-valued parameters, this peculiarity of the
canonical binary coding can cause an unwanted and disadvantageous bias to the
variation operators, particularly mutation.

This issue can be circumvented by applying other, more appropriate binary
coding schemes [50]. In general, however, it is not advisable to use a binary

4Note that by using an adequate indirect encoding, it can be possible to map specific prob-
lems to a simple parameter optimization task that would normally exhibit a more complicated
combinatorial structure

80

Evolutionary Algorithms

representation to code nominal, integer-valued or real parameters at all. Instead,
a corresponding integer or floating-point encoding should be chosen.

Integer and Floating Point Representations

The implementation of integer or floating-point representations is straight forward.
The single genes of the genome are arranged to form a corresponding vector of
integers or real numbers. As each value represents a complete gene, its integrity
under crossover is warranted. Furthermore, mutation operators will treat the
numbers as a whole and not just operate on the single bits of their representation
at a lower level (see section 3.4.3).

The range of possible alleles will be limited in practice. In integer representa-
tions, a gene can usually assume one of a finite set of values {L, L+1, . . . , U−1, U}
lying between a lower bound L and an upper bound U . Correspondingly, a floating-
point gene is confined to a closed and connected interval [L, U]. Note that in the
latter case, the number of possible allele values in principle remains infinite and is
only limited by the precision of floating-point numbers on the used digital system.

3.4.3 Mutation Operators

In the case of parameter optimization tasks, the most widespread mutation op-
erators all affect individual genes separately. The old value of the gene is either uniform and

nonuniform mutationreplaced by a new one that is in no way correlated with the original, or it is
modified by a small amount. The first procedure is called random resetting or
uniform mutation, the second approach is sometimes denoted as nonuniform or
creep mutation [50].

It is common to define a mutation probability ρm for each applied operator such mutation rate

that it is individually decided for each gene whether it is to be modified or not.
In this scenario, the eventual number of genes that are changed is not decided in
advance but depends on the generated random numbers. Alternatively, if ng is
the number of genes in the genome, ρm ·ng can be interpreted as the fixed number
of genes to be mutated. An according set of genes is then picked randomly.

For most practical applications, the mutation rate is in the order of several
percent and thus ρm ¿ 1. Therefore, the required number of random values for
the second strategy is considerably lower than for the first approach. This can be
advantageous when the generation of random numbers is costly and the size ng of
the genome is large.

Uniform Mutation

In binary representations, random resetting assumes the form of simple bit-flipping, binary codings

i.e., the affected gene changes its value from 1 to 0 or vice versa. This is the
predominant mutation operator used in classical genetic algorithms with binary
codings.

For integer-coded genes, the original allele is replaced by a new value randomly integer codings

chosen from the entire set of allowed numbers. The choice is uniform in that
the possible values are each assigned the same probability to be selected. Thus,

81

3.4 Evolutionary Algorithm Implementations

since the number of permissible alleles is finite, the gene stands a non-zero chance
to remain unchanged even if it is mutated. Especially for attributes with only
few alternative allele values, this can have measurable influence on the effective
mutation rate and it might be necessary to ensure that the new value is in fact
different from the original.

In the case of floating-point genes, the new value is chosen uniformly and ran-real-valued codings

domly from the allowed interval [L, U]. Given the usual precisions of floating-point
numbers on common digital systems, the probability to reproduce the original gene
value is negligible.

Nonuniform Mutation

In contrast to random resetting, creep mutation does not generate a new random
allele but rather adds a small value r to the original gene that is randomly sampled
from a given nonuniform distribution ρ(r). This distribution is generally symmet-
ric around zero and more likely to yield small numbers than large ones. The mostGaussian mutation

popular choice is a Gaussian or normal distribution with zero mean and a fixed
standard deviation σr

ρσr(r) =
1√

2πσr

exp−1

2

(
r

σr

)2

. (3.5)

Using a Gaussian distribution, it is ensured that approximately two third of the
random numbers lie within one standard deviation around zero. In addition to
the mutation rate ρm, the average effect of mutation can thus be controlled by
varying σr.

Although the Gaussian 3.5 is defined on the whole set R, the results of the
random changes are reasonably bound to lie between L and U . If the gene value
after mutation exceeds the allowed range, it is common practice to set it to the
respective boundary value L or U . For integer representations, the outcome of the
mutation either has to be rounded accordingly or the normal distribution itself has
to be discretized. Furthermore, it is evident that creep mutation cannot sensibly
be applied to binary values.

Mutation Parameters

The algorithm parameters that control the effect of mutation — the probabilityautomatic parameter
adaption ρm and the width σr — are not necessarily fixed globally. It is in fact a distinct

feature of evolution strategies, that the standard deviation of the applied Gaussian
mutation is often set individually for each gene. Furthermore, either the common
value σr or, potentially, the individual widths σi

r are coded within the genomes
and are subject to variation operators themselves. This allows to automatically
adapt the mutation parameters during evolution [9] [50].

It has been argued that an adaption of the evolution parameters is generally to
be favored above fixing them in advance [8] [43] [50] [91]. This claim is supported
by the intuitive assumption that during the individual stages of the search process,
i.e., exploration and exploitation, different choices for the mutation parameters are
deemed to be optimal.

82

Evolutionary Algorithms

Preceeding investigations had focused on finding a fixed set of parameters for automatic adaption
vs. fixed parametersspecific algorithms that are best suited for a given set of tasks [46] [75] [89]. Against

the background of the No Free Lunch theorem (section 3.3.3), it is understood
that no set of evolution parameters can be found which is ideal for all tasks.
On the other hand, practical experience suggests that a more than satisfactory
performance can often be obtained even without a thorough optimization of the
mutation parameters or a sophisticated self-adaption process (see section 9.4.5).

3.4.4 Recombination Operators

One of the features that distinguishes evolutionary algorithms from other opti-
mization procedures is the recombination of characteristics of two or more can-
didate solutions to form new ones. This mixing of information is achieved by
applying appropriate recombination operators. For parameter optimization tasks,
the genomes of the parents are each given by a set of values, i.e., a vector g of bits,
integers or floating-point numbers gi, 1 ≤ i ≤ ng. The genomes of two individuals
ga and gb are most commonly combined by swapping single components gi among
the respective vectors5.

One-Point Crossover

The oldest and simplest form of an exchange operator is one-point crossover [46] [71]
and the term crossover has in fact (illegitimately) become a widespread synonym
for recombination. Given two parental gene vectors ga and gb with dimension ng,
one-point crossover starts by generating a uniformly distributed random number
rc ∈ {0, . . . , ng − 1}. It then defines the two offspring ha and hb according to

ha
i =

{
ga
i i ≤ rc

gb
i i > rc

and hb
i =

{
gb
i i ≤ rc

ga
i i > rc

∀ 1 ≤ i ≤ ng. (3.6)

In other words, the vectors are cut apart behind position rc and the ends are
exchanged between them. As seen in figure 3.4 a), this procedure results in two
individuals that represent complementary combinations of the genes of their par-
ents.

Multi-Point Crossover

One-point crossover can readily be generalized to n-point crossover where the
original genomes are randomly partitioned into n + 1 parts. This requires the
generation of n random cut points ri, 1 ≤ i ≤ n with ri−1 < ri ∀ 2 ≤ i ≤ n.
Offspring is created by taking alternating segments from the two parents. For
the case n = 2, this is illustrated in figure 3.4 b). Again, two new individuals are
created.

n-point crossover (with the special case n = 1) has a tendency to preserve positional bias

combinations of genes that lie close to each other in the genome. This is commonly

5While this approach is typical for genetic algorithms, evolution strategies often employ dif-
ferent forms of recombination [9] [50] or no recombination at all.

83

3.4 Evolutionary Algorithm Implementations

PSfrag replacements

a)

b)

c)

g1g1

g1g1

g1g1

g2

g2

g2g2

g2g2

g3g3

g3g3

g3g3

g4g4

g4g4

g4g4

g5

g5

g5

g5

g5g5

g6g6

g6

g6

g6g6

g7

g7

g7

g7

g7

g7

g8

g8

g8

g8

g8

g8

g9g9

g9g9

g9

g9

g10

g10

g10g10

g10

g10

g1

g1

g1

g1

g1

g1 g2

g2

g2

g2

g2

g2 g3

g3

g3

g3

g3

g3 g4

g4

g4

g4

g4

g4

g5

g5

g5

g5

g5

g5

g6

g6

g6

g6

g6

g6

g7

g7

g7

g7

g7

g7

g8

g8

g8

g8

g8

g8 g9

g9

g9

g9

g9

g9 g10

g10

g10

g10

g10

g10

offspring ha

offspring ha

offspring ha

offspring hb

offspring hb

offspring hb

parent ga

parent ga

parent ga

parent gb

parent gb

parent gb

rc

r1 r2

Figure 3.4: a) The one-point crossover operator splits the two involved genomes at the
random cut point rc (6 in this example) and swaps the tails between them. b) Two-Point
crossover generates two random cut points r1 and r2 (here, 4 and 8, respectively) and
exchanges the enclosed segments. c) In uniform crossover, it is decided for each gene
separately, from which parent it is taken.

denoted as positional bias [51]. Whenever there are known dependencies between
the optimized parameters, positional bias can in fact be exploited as to benefit
the efficiency of the recombination process. If genes with strong interrelations are
arranged next to each other, n-point crossover of two individuals with high fitness
is likely to preserve their advantageous combinations of alleles and recombine them
to yield improved candidate solutions.

This comprehension lead to the formulation of the schema theorem discussed inpractical implications

section 3.5. Moreover, it constitutes a helpful directive for the design of adequate
representations in practice: When using recombination operators with positional
bias, the genes are best grouped within the genome according to their functional
relationships.

Uniform Crossover

In uniform crossover, it is decided separately for each gene from which parent it is
chosen, usually with equal probabilities. A second offspring can then be created by
using the inverse combination of genes as shown in figure 3.4 c). Within the field
of evolution strategies, this operator is also referred to as discrete recombination.

84

Evolutionary Algorithms

The uniform crossover operator does not exhibit any positional bias. On the distributional bias

other hand, it tends to yield offspring that contains the genetic material of both
parents in an approximately equal amount. Such a behavior is known as distribu-
tional bias [51].

Bearing in mind the propositions of the No Free Lunch theorem brought forward selecting adequate
crossover schemesin section 3.3.3, it can be concluded that if no knowledge is available about the

dependencies between the optimized parameters — and their arrangement within
the genome is thus random — there is no a priori reason to favor any of the above
crossover operators over the others. Empirical and theoretical studies suggest
that uniform crossover is superior to the one or two-point operators on several
artificial problems [197] [203]. But it should not be underestimated that the
number of necessary random values is far greater in the uniform case than for
n-point crossover with moderate n. Furthermore, when the genes can be grouped
as to account for relationships between the parameters, recombination operators
with positional bias might generally be the better choice.

A Note on the Organization of the Genome

So far, it has been assumed that all genes of a candidate solution are arranged partitioning into
chromosomeswithin one single vector that constitutes the entire genome of the individual. Like

in biological systems, the genetic material of a genome can be partitioned into
multiple chromosomes, each being a string or vector of genes as considered above.

Any Recombination operators are then applied to each parental pair of chro-
mosomes separately. As in the case of operators with positional bias, this scheme
is considered useful if the distribution of genes between the chromosomes reflects
the organizational characteristics of the optimized system.

Moreover, a segmentation into chromosomes suggests a new form of crossover swapping
chromosomeswhere whole chromosomes are swapped between two mating individuals with a

given probability. Whether they are exchanged or not is individually decided for
each chromosomal pair. Finally, the actually applied recombination operator can
be different for each chromosome. The respective choice might depend on the
presence or absence of functional relationships between the contained genes.

Another Note on Mixed Representations

Returning to the subject of genetic representations discussed in section 3.4.2, it is
to be expected that a given optimization task incorporates a variety of parameters
of different kinds. Rather than trying to find a common representation to be
applied to all attributes, it seems reasonable to code each parameter in the way
that best suits its characteristics. The resulting genomes will contain genes of
different types and each gene can assume alleles gi of its individual set Gi, gi ∈ Gi.

As long as all genomes in a population are structurally equivalent, a mixed mixed representations
and variationrepresentation does not necessarily give rise to further complications. The pre-

sented mutation operators all operate on single genes. Like in case of the used
encoding, the applied mutation operator can readily be chosen for each gene sepa-
rately. Furthermore, all discussed recombinational models are independent of the

85

3.5 Theoretical Analysis: The Schema Theorem

specific nature of the single genes. Hence, all of the above exchange operators can
immediately be applied to any mixed representation without further modification.

3.5 Theoretical Analysis: The Schema Theorem

A considerable amount of theoretical work has been undertaken to model andobjectives

analyze the behavior of evolutionary algorithms. Ultimately, these efforts aim
for a prediction of the performance of a given algorithm on a specific task. If
successful, this would allow for the selection of the most suitable algorithm — and
the most adequate choice of parameters — for a desired optimization problem in
advance.

A variety of theoretical techniques have been employed in pursuit of this goalmethodologic variety

such as, e.g., the analysis with Markov Chains [173] [174], the dynamical systems
approach [217] [214], and the application of methods that originate from statistical
mechanics [164] [165]. Although these investigations provide valuable insights into
several different aspects of how evolutionary algorithms work, they are in the
majority of cases concerned with comparably simple binary genetic algorithms on
simplified artificial problems.

Evolutionary algorithms are complex dynamic systems involving numerous ran-limitations

dom factors and it can be argued that the ultimate goal of precisely predicting the
behavior of an arbitrary algorithm on a realistic task might not ever be achiev-
able [50]. Nevertheless, the reported results at least provide useful hints for the
construction and tuning of efficient evolutionary algorithms in practice.

A thorough examination of these various theoretical approaches and their resultsthe schema theorem

cannot be given here. Instead, the following sections will confine themselves with
the discussion of an early result found by Holland which is commonly known as the
schema theorem [96]. Holland’s analysis has not only been of vital importance for
the development of genetic algorithms in general but will also prove to be useful
when investigating the feasibility of evolutionary algorithms for the training of
neural networks (chapter 4).

3.5.1 Schemata

A schema is simply an affine subspace in the search space. The agreed notation fordefinition

a schema uses the “don’t care” symbol #, such that in a 5-dimensional genotype
space G consisting of genome vectors g = (g1, g2, g3, g4, g5), the exemplary schema
H = (1, #, #, #, 1) denotes the affine subspace in G which is defined by all points
that exhibit ones in the first and last component. All vectors that meet this
requirement are called examples or instances of this schema. This allows to define
the fitness of a schema to be the mean fitness of all its instances.

Two measures characterize a schema. First, its order is defined as the number ofdefining length and
order its specified positions, i.e., those positions that do not show the # sign. Second,

the defining length is taken to be the number of crossover points between the
outermost fixed genes. The schema defined above has order 2 and defining length
4, whereas the schema (1, #, 0, #, 1) also has defining length 4 but exhibits an
order of 3.

86

Evolutionary Algorithms

Holland’s initial analysis is concerned with the so-called standard genetic al- the standard genetic
algorithmgorithm (SGA) that uses a binary representation, fitness proportional parent se-

lection, one-point crossover, a single-gene bit-flipping mutation operator, and a
generational replacement scheme. In this case, a genome g is given by a sim-
ple binary string and the above schema — which is now conveniently written as
1###1 — includes 23 = 8 instances.

3.5.2 The Processing of Schemata

Holland showed that a given string of length ng is an example of 2ng schemata. implicit parallelism

Although a finite population of µ genomes will not in general contain µ · 2ng

different schemata, he derived that it can nevertheless usefully process about O(µ3)
of them. This feature of genetic algorithms is known as implicit parallelism and
has widely been regarded as one of the main reasons for their efficiency.

During the execution of an evolutionary algorithm, the number of instances of a schemata and
variation operatorsschema that are present in the current population will depend on the schemata’s

fitness value as well as on the effects of the applied variation operators. Recom-
bination and mutation can create new instances but can also destroy previously
existing examples.

In the case of the SGA, the probability of a schema H to be disrupted by mathematical
formulationcrossover and mutation can be calculated and expressed in terms of its order o(H),

its defining length d(H), and the length of the genome ng. Let f(H) denote the
effective fitness of the schema, i.e., the average fitness of all its instances in the
current generation. If <f > is taken to be the mean fitness of all present indi-
viduals, then the on average expected number of instances in the next generation
m(H, t + 1) can be estimated from the number of examples m(H, t) in the current
population according to

m(H, t + 1) ≥ m(H, t) · f(H)

<f>
·
[
1 −

(
pc ·

d(H)

ng − 1

)]
· [pm · o(H)] (3.7)

where pm and pc are the respective probabilities for applying the mutation and
crossover operators [96]. The common interpretation of this result is that the
representations of schemata which exhibit a sufficiently high fitness and also stand
a reasonable chance to be preserved under mutation and crossover will continually
grow from generation to generation.

Schemata and Variation Operators

The fact that equation 3.7 can merely estimate a lower bound on the number destructive and
constructive effectsof instances of a given schema H is ultimately owed to the circumstance that

Holland’s derivation does not account for the constructive effect of the variation
operators. Only the probabilities of crossover and mutation to destroy a given
example of a schema are considered. Analyzing the constructive potential of the
variation operators is considerably more difficult, since these effects depend on the
explicit composition of the current population. But it has later been shown that
under some simplifying conditions and for an arbitrary recombination operator,

87

3.5 Theoretical Analysis: The Schema Theorem

the expected number of instances of a schema that are destroyed are in fact equal
to the expected number of examples that are created [198].

Besides that, the evaluation of variation operators in terms of their destructivepositional and
distributional bias effect on schemata provides a more solid foundation for the concepts of positional

and distributional bias (see section 3.4.4) [51]. Regarding two schemata H1 and H2

with equal fitness f(H1) = f(H2) but different defining lengths d(H1) < d(H2),
an operator is denoted to exhibit positional bias if it is less likely to destroy
the schema with the shorter defining length H1. This, e.g., applies to one-point
crossover.

On the other hand, a variation operator is said to show distributional bias if
its probability to disrupt a schema H is a function of the schema’s order o(H).
Uniform crossover as well as every single-gene mutation operator fall into this
category.

3.5.3 Building Blocks, Deception and Challenges to the Schema
Theorem

A closer investigation of equation 3.7 reveals that assuming equal fitness values,estimated growth of
representations short low-order schemata generally have a higher probability to be preserved in the

next generation of an SGA than longer schemata or those with higher order. It has
been argued that by virtue of equation 3.7, the representations of short schemata
with low order are in fact expected to grow approximately exponentially.

This comprehension forms the basis of what has become widely known as thethe building block
hypothesis building block hypothesis [71]. According to this model, a genetic algorithm starts

by selecting short, low-order schemata and successively combines them to build
longer, higher-order schemata until, in the ideal case, a schema of order ng is
found that represents the globally optimal solution. The building block hypothesis
stresses the role of recombination and in the field of genetic algorithms, crossover
is regarded to be the primary force behind the optimization process, whereas
mutation is merely regarded as a background mechanism that is to warrant the
necessary genetic diversity [71].

Deceptive Problems

Analyzing the operation of genetic algorithms in terms of building blocks even-characterization

tually gives rise to the question of what is expected to happen once the global
solution to a given problem is not an instance of the low-order schemata that ex-
hibit a high mean fitness. To illustrate this, consider an exemplary three-bit prob-example problem

lem where the fitness values of the possible bit-strings are given as follows [225]:

f(000) = 28

f(010) = 22

f(110) = 0

f(101) = 0

f(001) = 26

f(100) = 14

f(011) = 0

f(111) = 30

In this artificial problem, all schemata of order n < 3 that have a 1 in one

88

Evolutionary Algorithms

of their defining positions exhibit a lower mean fitness than their corresponding
counterparts that show a 0 in the same position. More specifically, the averaged
fitness values f(h) of the different schemata H obey:

f(0##) > f(1##)

f(#0#) > f(#1#)

f(##0) > f(##1)

f(00#) > f(11#), f(10#), f(01#)

f(0#0) > f(1#1), f(1#0), f(0#1)

f(#00) > f(#11), f(#10), f(#01)

Yet, the global optimum is represented by the string 111. In other words, all
schemata of order n < 3 effectively lead the search away from the perfect solution
and towards the suboptimal string 000. Problems of this kind are commonly de-
noted as deceptive, although this term is not unambiguously defined [76] [195] [225].

It could be apprehended that such deceptive problems considerably challenge practical relevance

conventional genetic algorithms since no appropriate building blocks are present.
However, experimental investigations have been reported that do not reveal a
direct correlation between the probability of an optimization problem to be de-
ceptive and the ability of the SGA to find the global solution [195]. Also, it is
not generally agreed whether deceptive problems are to be regarded as adequate
models of realistic tasks in practice [76] [225].

Challenges to the Schema Theorem

It shall not remain unmentioned that the Schema Theorem and the building block
hypothesis have faced some criticism. As stated above, the schema theorem is
limited in so far as it does not consider the potential of the variation operators to
create new instances of a schema but only accounts for their destructive effects.

Furthermore, the estimated fitness f(H) of a schema is exclusively based on finite population
effectsthe fitness values of those instances that are present in the current population

and might therefore not be representative of the schema as a whole. In so far,
equation 3.7 is restricted to make predictions only for the following generation.
Since the representation of H and all other present schemata will have changed
in the next generation, so will the estimated fitness values, and the composition
of the current population cannot reliably be employed to yield sound estimates
for later generations [50]. In particular, the rate by which the representation estimated growth of

representationsof a given schema H increases is not exponential: As soon as its share of the
population grows, its selective advantage f(H)/ <f> decreases accordingly due
to the increased mean fitness of the whole population.

The experimentally verified efficiency of operators with a high distributional experimental
counter-argumentsbias, most notably uniform crossover [197] [203], as well as the SGA’s apparent

ability to tackle deceptive problems [195] cannot satisfactorily be reconciled with
the propositions of the schema theorem and the building block hypothesis. Con-
sidering the recombination of building blocks to be the main force behind genetic
search can only insufficiently explain the success of those approaches that do not
incorporate recombination at all, e.g., most forms of evolution strategies.

Nevertheless, it shall be repeated that analyzing evolutionary algorithms in
terms of schemata persists to provide valuable insights into at least some aspects

89

3.5 Theoretical Analysis: The Schema Theorem

of how this kind of optimization procedures work. Among other things, the dis-
cussed results considerably affect the applicability of evolutionary algorithms to
the training of neural networks. This will be the topic of the following chapter.

90

Chapter 4

Evolving Artificial Neural
Networks

Human beings, who are almost unique in having the ability
to learn from the experience of others, are also remarkable
for their apparent disinclination to do so.

Douglas Adams, Last Chance to See

Evolutionary algorithms have the ability to cope with complex, multimodal search
spaces and do not depend on a detailed model of the system to be optimized
(chapter 3). In particular, they do not require the applied performance measure
to be differentiable with respect to the free parameters. A such, they represent a
promising approach to train neural networks, even those kinds of neural systems
for which no other feasible training algorithm is immediately available, e.g., re-
current networks, multi-layer networks of binary threshold neurons or networks
implemented in analog VLSI (see section 2.4).

Several examples in the preceeding chapter have already hinted at some suitable possible combinations

approaches for optimizing the synaptic weights of a network, but besides that,
evolutionary algorithms have been combined with artificial neural networks also
in various other ways (for a comprehensive overview see, e.g., [26] and [234]).
Most notably, they can be employed to optimize the architecture of a network,
i.e., the number of neurons and the available connections. Often, the training of
the weight values and the construction of the architecture are combined. Further
applications of evolutionary algorithms within the field of neural computation
include the evolutionary tuning of learning rules [13] [36] or the optimization of
neuron transfer functions [234].

This chapter will focus on the evolution of the synaptic weights and briefly
discuss the evolutionary design of architectures. Since this thesis is primarily con-
cerned with training strategies for hardware-implemented, feedforward networks
that cannot be trained via conventional algorithms and which exhibit fixed neuron
transfer functions (see chapter 5), the evolution of learning rules and activation
functions will not be covered.

Instead, two alternative methods for the optimization of neural network weights

91

4.1 Evolving Synaptic Weights

shall be discussed that do not depend on a differentiable performance measure and
a detailed model of the network operation as well: Simulated annealing and the
weight perturbation algorithm.

4.1 Evolving Synaptic Weights

If the topology of a neural network is fixed, training its synaptic weights can be
regarded as an optimization process that aims to minimize the network’s error
on the training patterns (see sections 1.2.4, 2.1.2, 2.1.3, and 2.2.2). In so far,
evolutionary algorithms could be expected to be readily applicable to this kind of
task without major modifications.

Indeed, compared to most gradient-based training approaches like, e.g., thebenefits

backpropagation algorithm discussed in section 2.2.2, evolutionary algorithms
yield the advantage of not posing any restrictions on the architecture of the op-
timized network. Given a suitable fitness function that appropriately quantifies
the performance of the network on the task in question (section 4.1.1), the same
evolutionary algorithm can in principle be applied to feedforward networks, radial
basis function networks, or recurrent networks [74]. In the following sections, em-
phasis is placed on feedforward networks, but most of the results can readily be
transferred to different architectures.

On the other hand, it turns out that the structural features of neural networkschallenges

call for special precautions during the design of suitable genetic representations
and corresponding variation operators. These issues are closely related to what
is commonly known as the permutation problem which will be addressed in sec-
tion 4.1.2

4.1.1 Performance Evaluation and Fitness Function

Equations 2.15 and 2.16 represent suitable means for quantifying the performancenetwork error

of a network on a given task and it seems reasonable to utilize them for evolution-
ary algorithms as well. If the fitness of an individual is desired to increase with
improving performance, the network error E on the training patterns can easily be
transformed into an adequate fitness function that meets this requirement. Com-
mon approaches are to choose 1/E, 1/(1 + E), or (Emax − E)/Emax as the used
fitness measure.

Apart from that, evolutionary algorithms allow to incorporate additional de-additional constraints

mands to the trained network into the formulation of the fitness function. In the
case of highly recurrent architectures, for example, the fitness function could be
formulated as to penalize networks that exhibit an undesirable oscillating behavior
(see sections 2.3.3 and 2.3.4).

Although there are no direct limitations concerning the special requirements
that might be accounted for by the fitness measure, it is to be remembered that
the exact form of the fitness function can have considerable impact on the success
of the evolutionary search (see section 3.2.1). More elaborate forms of perfor-
mance measures might run a greater risk of assuming multiple local optima on

92

Evolving Artificial Neural Networks

the accessible search space and thus promoting the premature convergence to a
suboptimal solution. An example will be discussed in section 8.3.3.

4.1.2 Representations and the Permutation Problem

It is popular to either code the weights of a neural network in binary form and binary and real-valued
codingsarrange them to a linear string [33] [221] [223] — such that each bit position is re-

garded as a single gene — or to represent them by a vector of real values [58] [145].
Traditionally, the former approach is mainly used in connection with classical ge-
netic algorithms that primarily rely on recombination while the latter encoding is
most often combined with evolution strategies where mutation is the only form of
variation operator [58] (see also chapter 3). In principle, the real-number repre-
sentation can be used with appropriate crossover operators as well [145] [206].

Ordering the Weight Values within the Genome

It has already been stated in section 3.4.4 that recombination operators with
positional bias are expected to work best if the genotypic representations are
arranged such that subsets of genes which code related features of the individuals
are grouped close to each other in the genome. This intuitive reasoning receives
theoretical support by the schema theorem which in turn constitutes the basis of
the building block hypothesis (see sections 3.5.2 and 3.5.3).

Transferred to the evolutionary optimization of neural networks, the implica- grouping related
weightstions of the building block hypothesis motivate to place the weights of functionally

related synapses near to each other. But the distributed processing of information
within a neural network makes it hard to identify these groups of related synaptic
connections in advance — at least in the case of realistic tasks where the structural
features of the final solution are not known. Nevertheless, a commonly proposed
heuristic is to group together the weights of all connections that lead to one single
neuron of the network [26] [206] [234].

The Permutation Problem

Another property that arises as a direct consequence of the organizational prin- structural symmetries

ciples of neural networks and which considerably impedes their optimization by
common recombination-oriented evolutionary algorithms is their inherent sym-
metry. Figure 4.1 a) shows two functionally equivalent but structurally different
neural networks and their exemplary genotypic representations. The networks dif-
fer solely in the labeling of their hidden neurons and the corresponding ordering
of synaptic weights within their genomes. For a network with n hidden nodes, n!
functionally identical networks can be constructed simply by permuting the inner
neurons.

On the genotypic level, the two networks of figure 4.1 a) are significantly dif-
ferent. In the general case when there are no degeneracies between the two sets
of weights ai and bi, 1 ≤ i ≤ 3, the genomes differ in each single gene position.
The resulting phenotypes, however, are equivalent in so far as the corresponding

93

4.1 Evolving Synaptic Weights

PSfrag replacements

phenotypes

genotypes

after
recombination

a1

a1a1

a1

a1

a1

a2

a2

a2

a2

a2

a2

a3

a3a3

a3

a3

a3

b1b1

b1

b1

b1

b1

b2

b2

b2

b2

b2

b2

b3

b3b3

b3

b3b3

a1

a1

a2

a2

a3

a3

b1

b1

b2

b2

b3

b3

AA

AA

BB

BB

a)

b)

exemplary cut point rc

Parents

Offspring

Figure 4.1: a) Two functionally equivalent individuals can have different genetic repre-
sentations. The shown networks differ solely in the labeling of their hidden neurons, but
as long as there are no degeneracies between the two sets of weights ai and bi, 1 ≤ i ≤ 3,
the corresponding genomes differ in each single gene position. b) When the two genotypes
are recombined using, e.g., a common one-point crossover operator, the offspring runs a
high risk of being inappropriate. In the shown example, each child turns out to contain
two identical hidden neurons. Assuming that the high fitness of the parents has been
based on the appropriate combination of the different nodes A and B, the offspring is
likely to yield a worse performance than the original networks.

94

Evolving Artificial Neural Networks

networks yield equal responses when being applied the same input, i.e., they im-
plement the same functional mapping. In fact, with the numbering of the hidden
nodes being initially arbitrary, one would usually regard the two individuals as
one and the same network.

Using the genetic representation shown in figure 4.1 a), the evolutionary algo- symmetries and
recombinationrithm is bound to ignore this symmetry. As illustrated in figure 4.1 b) a recom-

bination of the genomes that involves a common one-point crossover operator is
likely to produce inappropriate offspring. This phenomenon is commonly known
as the permutation problem (also: competing conventions problem) [17] [80] [81].

There is a related but somewhat more subtle issue that is connected to the weight symmetries

special symmetry of neurons with odd activation functions [26]: A neuron of this
kind retains its effective influence on the receiving nodes when the signs of the
weights of all its incoming and outgoing connections are flipped simultaneously.
For the types of activation function presented in section 1.2.3, this requires an
additional adjustment of the receiving neurons’ bias values, but the general sym-
metry abides. Within a network of n hidden neurons, one is free to flip the signs
of any of these nodes which gives rise to

∑n
i=0

(
n
i

)
= 2n different, but functionally

identical networks.

Implications of the Permutation Problem

Each of the different conventions — i.e., the individual numbering of the neurons speciation

in connection with the agreed signs of the weights — is represented by a distinct
region of the search space. Only a recombination of individuals from the same
region promises to yield improved offspring. Therefore, it is reasonable to assume
that the impact of the permutation problem could be alleviated by employing
one of the speciation mechanisms introduced in section 3.3.4 (e.g., [199] [200] or
see [26]).

In the light of the schema theorem, it is a direct consequence of the permutation schemata

problem that there exist multiple competing schemata with high average fitness
that each specify the values of the same genes but exhibit different alleles on
these positions. When multiple such building blocks are recombined, they do not
automatically yield better individuals. On the contrary, given the high degree
of symmetry in large networks, a combination of these building blocks stands a
considerable chance to produce worse offspring. Seen from this angle, the training
of neural networks can be regarded as a deceptive optimization task in terms of
section 3.5.3. The simplest way to avoid the negative impact of the permutation
problem would thus be to use no recombination at all.

It has been argued that the effects of the permutation problem are not as severe population sizing and
selective pressureas widely supposed [80] [81] and that they will most probably depend on param-

eters like the sizes of the network and the population [80] [81] [224]. Small pop-
ulation sizes in combination with strong selection and more aggressive mutation
should prevent the algorithm from exploring multiple alternative but equivalent
regions of the search space in parallel. On the other hand, this strategy runs the
risk of promoting premature convergence and can be expected to be feasible only
for small networks.

95

4.1 Evolving Synaptic Weights

Several approaches have been proposed that try to match the hidden neurons ofimproving
recombination two networks and either appropriately reorder the genotypes before recombination

or confine themselves to merely swapping corresponding hidden nodes between
the two mating individuals (for an overview see [26]). Finally, the permutation
problem can be circumvented by evolving the weights and the architecture of the
network simultaneously (section 4.2).

4.1.3 Comparison with Gradient Based Training

Evolutionary algorithms are comparably expensive in terms of computational ef-speed considerations

fort. In each generation, multiple new networks have to be implemented, tested
and evaluated. Compared to fast variants of backpropagation or other gradient-
based training algorithms, an evolutionary optimization of the weight values is
often found to be measurably slower (see [234]).

Nevertheless, some reported results suggest that evolutionary training can be
significantly faster than backpropagation at least on some problems (e.g., [188]).
The apparent discrepancy between these observations can partly be attributed to
the different evolutionary algorithm and backpropagation implementations com-
pared.

Evolutionary Training of Hardware Neural Networks

As already indicated above, the rationale behind the application of evolutionaryoptimizational
capabilities algorithms to neural network training is not initially given by speed considerations.

Rather, evolutionary algorithms lend themselves to the optimization of synaptic
weights primarily due to their ability to find global optima in complex, multi-
modal search spaces and their insensitiveness to starting conditions. Furthermore,
they can successfully and reliably train even those kinds of neural networks that
cannot be optimized by common gradient-based approaches.

In this respect, evolutionary algorithms do not directly compete with traditional
learning algorithms in terms of speed, but are to be seen to complement these ap-
proaches, especially considering those types of networks that cannot immediately
be trained via common gradient-based optimization. Besides highly recurrent net-
works, this particularly applies to neural networks implemented in analog VLSI
(see section 2.4).

For the latter case, the evolutionary approach is deemed to be feasible also withtraining speed

regard to the absolute speed of the training, since a parallel hardware realization
potentially allows to evaluate multiple different networks in a short time. When
being realized as chip-in-the-loop algorithms, evolutionary strategies therefore rep-
resent a competitive training approach for fast analog or hybrid hardware neural
networks (section 2.4.5).

Combined Approaches

Several strategies have been reported in literature that aim to combine the prin-combining evolution
and gradient descent ciples of simulated evolution with gradient-based training (e.g. [17], or see [26]

96

Evolving Artificial Neural Networks

and [234] for an overview). The common approach is to let the evolutionary al-
gorithm identify the region of the global optimum in the search space and let a
gradient descent algorithm perform the final fine-tuning of the synaptic weights.
This procedure is motivated by the observation that most evolutionary algorithms
perform well during the exploration phase but are comparably inefficient during
the exploitation phase (see section 3.3.1).

The reported results show that a hybrid algorithm of this kind can perform efficiency

significantly better than either the evolutionary algorithm or backpropagation
alone [17]. In practice, a conventional gradient-based training algorithm has to
be restarted several times from different initial conditions in order to make up for
its tendency to get stuck in local optima. A hybrid strategy that circumvents this
problem by employing an evolutionary algorithm for the search of suitable initial
weight values can thus be competitive also in terms of training speed.

4.2 Evolving Network Architectures

It is evident from what has been said in chapter 2 that the architecture of a motivation

neural network has significant impact on its representational capabilities. While
a one-layer perceptron might not suffice to perform the task at hand, a multi-
layer network with too many inner neurons runs the risk of overfitting noise in the
training data and may thus exhibit a poor generalization ability (see sections 2.1.1
and 2.2.1).

Although two-layer feedforward networks are known to be universal approxima-
tors, it is not clear in how far alternative architectures — with additional layers
and/or shortcut connections — could solve the same tasks more efficiently, e.g.,
with fewer neurons (see section 2.2.1). Neither is it possible to determine the ideal
structure for the investigated problem in advance, nor can a given architecture be
proven to be optimal [26].

Several non-evolutionary heuristics have been proposed that extend common heuristic approaches

gradient-based approaches by an automated construction of the neural network
architecture during training [62] [139] [157] [156], but these approaches still limit
the range of allowed topologies to strictly layered feedforward networks. Evo-
lutionary algorithms, on the other hand, promise to be a feasible approach for
systematically searching through large regions of the architecture space without
being restricted to a limited subset of valid structures.

4.2.1 Performance Evaluation - Architectures and Weights

When evolving the optimal network topology for a given task, two different strate- evolving pure
architecturesgies can be distinguished. In the first case, the evolutionary algorithm is solely

concerned about the structure of the network while the weights are to be trained
separately [141] [224]. The fitness of an individual, i.e., a specific network archi-
tecture, is then commonly evaluated by training multiple networks of this topol-
ogy and averaging their resulting fitness values. The single instantiations of the
evaluated network structure can be trained by any suitable algorithm, e.g., back-
propagation [141]. This kind of fitness determination is not only computationally

97

4.2 Evolving Network Architectures

expensive but also retains a considerable uncertainty, since the number of trained
networks per architecture is ultimately limited. Essentially, this problem can be
attributed to the inherent one-to-many mapping from the genotype to the possible
phenotypes.

The second approach therefore aims to evolve the architecture and the weightsevolving architectures
and weights of the network simultaneously [199] [200] [236]. Each genome translates into a

completely and uniquely defined network, and the resulting performance directly
determines the fitness of the individual. This strategy is attractive in so far as it
produces complete and immediately usable neural systems and can at the same
time freely explore the space of all possible networks, not just those of a fixed
architecture. On the other hand, the sheer size and complexity of the search space
poses a considerable challenge to the genetic coding and the variation operators
of the used evolutionary algorithm.

In either case, the fitness function can be formulated as to include a measure foroptimizing complexity

the complexity of the individual network topologies such that the evolution favors
simple and compact networks [224] [234]. This way, it can be ensured that the
resulting structure is not only optimal with regard to its suitability for the given
task, but also that the corresponding networks can be realized most efficiently.
The latter feature is of particular interest if the networks are implemented in
software on sequential processors.

4.2.2 Genetic Representations

Genetically representing the architecture of a neural network is not as straightfor-
ward as in the case of the mere weight values. It has to be ensured that the used
genetic representation can encode an optimal or at least near-optimal solution.
At the same time, it might be desirable to exclude invalid or meaningless network
architectures, and it is to be investigated to what extent the applied variation op-
erators are likely to yield valid offspring. Regardless of whether only the topology
of the network is evolved or also its weight values, the reported representations
either follow a direct or an indirect encoding scheme.

Direct Encoding Schemes

In a direct representation scheme, each connection within the network is specifiedconnectivity matrix

explicitly [141] [177] [224]. The simplest way to encode the architecture of a net-
work with N nodes is a connectivity matrix C = (cij)N×N , such that cij ∈ {0, 1},
1 ≤ i, j ≤ N specifies the presence or absence of a connection leading from node
i to node j. An example is given in figure 4.2. A value of cij = 1 indicates an
existing connection while cij = 0 marks the respective connection as being absent.
The number of neurons as well as the functionality of each node, i.e., whether
it is a network input, a hidden node, or an output neuron, are fixed in advance.
Further constraints to the topology can be incorporated by forcing the diagonal
elements of C to be zero — which prevents neurons from being connected to them-
selves— and/or ignoring nonzero entries of the lower left triangle, in which case

98

Evolving Artificial Neural NetworksPSfrag replacements

1 2

3 4

5

Genotype

Connection Genes

0 0 1 1 0
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1
0 0 1 0 0

00110 00011 00001 00001 00100

a)

b)

c)

Figure 4.2: Given a well-defined labeling of the single nodes (a), the architecture of
a neural network can unambiguously be specified by a corresponding connection matrix
C = (cij)N×N , such that cij ∈ {0, 1}, 1 ≤ i, j ≤ N marks the presence or absence of a
connection leading from node i to node j (b). The rows of this matrix can be arranged
to form a linear genotypic representation (c) that is compatible with common genetic
operators. This representation can easily be extended to also code the values of the
present connections.

PSfrag replacements

1 2

3

4
a) b)

Genotype
Node Genes

Connection Genes

1 2 3 4

inin outhid

1 → 3 2 → 3 3 → 4 4 → 3 1 → 4

0.73 -0.12 0.25 -0.18 0.93

i = 1 i = 2 i = 3 i = 7 i = 9

Figure 4.3: The genetic representation of the NEAT algorithm [199] [200] codes the
architecture and weights of a given network a) via two different sets of genes b): node genes
and connection genes. Each node gene codes the label of a respective node of the network
and also specifies whether it is an input, a hidden neuron or an output. A connection gene
includes the source, target neuron, and weight value of its coded connection. Furthermore,
each connection gene exhibits a unique so-called innovation number that allows to match
corresponding genes during recombination [199] [200].

99

4.2 Evolving Network Architectures

the architecture is restricted to be feedforward1.

The rows of the connectivity matrix are usually concatenated to form a lineargenetic representation

genome (figure 4.2 c)) which allows for the application of common mutation and
recombination operators. This encoding can easily be extended to evolve the
architecture and the weights of the network simultaneously, in which case cij ∈ R

is used to code the weight value of the respective synaptic link [24].

This simple kind of direct encoding scheme is particularly easy to implement,benefits and
drawbacks and investigations reveal that it has the potential to yield networks with better

generalization ability than those with manually constructed topologies [177]. How-
ever, the connectivity matrix representation has repeatedly been criticized for its
bad scalability, since the size of the genome grows quadratically with the number
of allowed neurons. Relying on a unique labeling of all neurons, the direct matrix
encoding also persists to suffer from the permutation problem brought forward in
section 4.1.2.

Several newer approaches aim to avoid these issues either by adding various
extensions to the connectivity matrix encoding or by using different, more so-
phisticated representations. Two examples shall be described here in more detail,
since they can be regarded as to represent the current state-of-the-art in direct
encoding schemes for artificial neural networks.

Yao et al. have proposed the EPNet system [236] that combines evolution-the EPNet system

ary computation with common backpropagation learning and simulated annealing
(see section 4.3.1) and which has successfully been applied to numerous prob-
lems [236] [237]. The genetic representation used in EPNet persists to be based
on the above connectivity matrix concept. One binary version codes the architec-
ture, while another, real-valued matrix defines the corresponding weight values.
In order to avoid the negative impact of the permutation problem, this approach
does not use any crossover operator. Instead, it employs five different forms of mu-
tation: hybrid training, node deletion, connection deletion, connection addition,
and node addition.

During hybrid training, the network is trained via backpropagation for a user-hybrid training in
EPNet defined number of iterations and is then further optimized by simulated annealing.

Being understood as a variation operator, this partial training is not intended to
yield even a local optimum in performance, but it is the only operator in EPNet
that modifies the weights of the network. The use of backpropagation for partial
training restricts the investigated architectures to be feedforward.

Although the number of hidden neurons is variable, the sizes of the two connec-structural mutation
and scalability in
EPNet

tivity matrices are kept constant and are determined by the user-defined maximum
number of inner nodes. An additional binary vector of the corresponding size is
contained in each genotype and specifies the presence and absence of the indi-
vidual neurons. On the basis of this encoding, all structural mutations can be
implemented as simple bit-flipping operators. Any entries of the two connectiv-
ity matrices that belong to an absent node are simply ignored. Hence, while the
EPNet system readily circumvents the permutation problem and even allows to

1It is assumed that the indices of the nodes increase from the inputs, over the hidden neurons,
to the output neurons.

100

Evolving Artificial Neural Networks

evolve individually sized networks, it retains an unfavorable scaling behavior.

Recently, a more elaborate direct encoding scheme has been proposed which the NEAT algorithm

is referred to as the NEAT method (NeuroEvolution of Augmenting Topolo-
gies) [199] [200]. It incorporates two different kinds of genetic units: node genes
and connection genes. Like in a common connectivity matrix encoding, each
connection gene specifies the presence/absence and the weight value of a single
synaptic connection. But in contrast to the above representations, the genes are
not arranged according to a fixed order. Rather, each connection gene internally
codes the source and target nodes of the represented synapse. Beyond that, the
genotype also contains a list of node genes that encode the labels of the present
input nodes, hidden neurons, and outputs (see figure 4.3).

In addition to the traditional random modifications of the weight values, a spe- structural mutation
in NEATcial mutation operator adds a new connection between two previously unconnected

nodes. The number of neurons in the network is variable as well. A third dedicated
mutation operator adds neurons to the network by splitting an existing connec-
tion in two and inserting the new node where the old connection used to be. As
an important result, the numbers of the connection genes and node genes in the
genotype are not fixed and will in general differ between the processed individuals.

In order to match corresponding genes within two mating genomes, each connec- recombination and
speciation in NEATtion gene contains a fixed, population-wide index (the “global innovation number”)

that is increased with every newly introduced connection in any genome of the
whole population. Among other things, this allows for the implementation of a
feasible crossover operator that can handle the varying size of the genotypes. It is
not the purpose of this work to examine the elaborate details of the NEAT algo-
rithm and the applied recombination operators. The interested reader is referred
to the original publications [199] [200]. But it is worth noting that NEAT incorpo-
rates a specific distance measure to evaluate the similarity between two genomes.
This measure is employed to implement speciation through fitness sharing as it is
described in section 3.3.4.

It turns out that given the variability of the genome and the complexity of
the search space, the implemented speciation mechanism is vitally necessary to
efficiently explore different competing architectures. Otherwise, networks with
more complex structures which might prove to be beneficial in the long run would
soon be outperformed and suppressed by simpler networks that can be optimized
more easily and thus reach higher fitness values considerably faster [200].

Apart from that, it is a striking feature of the NEAT encoding scheme that it permutation problem:
solveddoes not suffer from the permutation problem. This is primarily due to the fact

that the source and target nodes of each connection are coded within the respective
gene and that corresponding genes can be identified via similar values of the global
innovation number. Similar, yet not as sophisticated, approaches that partly
decouple the effect of a gene from its exact position in the genome and/or allow for
genotypes of varying size have also been proposed by other authors [24] [166] [148].

101

4.2 Evolving Network Architectures

Indirect Encoding Schemes

The undesirable scaling properties of most direct encoding schemes and their com-
mon susceptibility to the effects of the permutation problem have motivated the
development of several indirect encoding methods [82] [117]. The basic idea be-
hind an indirect representation is that it does not specify each single node or
connection of the network explicitly but rather codes either general characteris-
tics of the neural network architecture itself or specifications of a suitable network
construction procedure.

One approach that has been proposed by Harp et al. lets dedicated segmentsparametric encodings

of the genotype code the features of corresponding subareas (layers) of the net-
work [82]. Each segment primarily contains information about the number of
neurons included in the respective area as well as their average connectivity to the
nodes in other regions of the network. According to the rather coarse structural
specifications that are contained in the genome, networks are then built via an
automated, and partly stochastic construction rule. In order to yield a completely
specified network, the synaptic weights of the resulting connections are finally
trained by a suitable algorithm. The training parameters for each area, e.g., the
learning rate η and the momentum ν of the backpropagation algorithm, are coded
in the genome as well.

An even simpler variant of the indirect encoding would be to assume a strictlybenefits and
limitations layered, homogeneously connected feedforward architecture and merely code the

number of layers and their individual sizes. Coding schemes like these two ex-
amples which contain only certain parameters of the final network are commonly
denoted as parametric representations. Although a parametric encoding method
can significantly reduce the length of the genotype, the resulting network archi-
tectures are usually limited to a subset of the whole feasible architecture space.

According to another indirect representation that has originally been introduceddevelopmental rule
representations by Kitano, the genotype codes the rules of a deterministic graph grammar which

is then used to build the connectivity matrix C [117]. In other words, instead of
including only the parameters of a fixed building rule that is used to construct
the final network, the genome also codes the development rule itself. Such an
encoding scheme is therefore referred to as a developmental rule representation.

Like parametric encodings, developmental rule representations usually exhibitcompact genotypes

a good scaling behavior. Depending on the evolved set of rules, the resulting
networks can become very complex without requiring the genotype to grow ac-
cordingly. The coding of construction rules also facilitates the definition of suit-
able representations that yield useful building blocks and can thus efficiently be
combined with corresponding crossover operators. Some good results have been
reported with this encoding method [117].

On the other hand, developmental rule representations favor regular networklimited architecture
range architectures [26]. It can generally be said that depending on the used way of

encoding, not every structure is equally probable, and this inherent bias may
effectively prevent the algorithm from finding the optimal topology as it has ac-
tually been desired in the first place. Finally, the developmental rule encoding
can only efficiently be employed for the evolution of architectures while the weight

102

Evolving Artificial Neural Networks

values have to be trained separately. Experimental results suggest that it is not
automatically superior to common direct encodings per se [191].

4.2.3 Fixed vs. Evolved Architectures

In summary, it can be concluded that using either of the representational ap- feasibility of topology
evolutionproaches, the evolutionary search for optimal network architectures ultimately

faces adherent challenges. Simple direct encoding schemes exhibit poor scalability
and persist to suffer from the permutation problem. The latter can be circum-
vented by abstaining from the use of recombination like it is done in EPNet,
but even then, the poor scaling behavior remains. More elaborate variants like
the NEAT algorithm constitute promising approaches. But they also require ad-
ditional computational and organizational overhead in order to implement valid
recombination operators and the necessary speciation mechanisms.

While indirect encodings allow for compact representations, they are inherently
limited in the range of resulting architectures. Moreover, they have to defer the
training of the weight values to separate algorithms which results in a computa-
tionally expensive an noisy fitness evaluation of the individuals.

Against the background of these issues it is worthwhile to reflect the initial mo- evolving architectures:
necessary?tivation for evolving the topologies of neural networks: First, it is desired to find a

network structure that yields the best performance on the investigated task, more
specifically, that leads to an optimal generalization ability of the final network.
Second, in order to feasibly implement the resulting networks on ordinary sequen-
tial computers, they are preferably compact and simple, i.e., comprise of as few
neurons and connections as possible. It can be concluded that if sufficiently large
and complex networks could efficiently be realized on a suitable substrate and
if these networks could simultaneously be trained to yield the desired generaliza-
tion performance — even when being limited to a predetermined architecture — an
automated optimization of the topology might not be worth the effort.

Evolving Architectures for Neural Networks Implemented in Hardware

It has been motivated in section 2.4 that analog and/or hybrid CMOS VLSI
technologies have the potential to provide efficient means of realizing such large,
yet fast neural networks. The evolutionary training approach can greatly benefit
from the high configuration and evaluation speeds of these systems and in so far
ideally complements dedicated hardware implementations.

Yet, if the training algorithm is not to compromise the speed advantage of the speed vs.
computational
complexity

hardware substrate, it must itself be implemented efficiently (see also sections 6.2.6
and 6.3.3). From what has been said above, it can thus be deduced that an
evolutionary training strategy for fast hardware neural networks should rather
aim to keep up pace with the network implementation instead of dedicating major
computational effort to the unnecessary minimization and optimization of the
network topology. As long as the algorithm can succeed in producing networks
with competitive generalization capability, abandoning the search for an ideal
architecture does not necessarily constitute a limitation in practice.

103

4.3 Alternative Black-Box Approaches

On the other hand, the arguments brought forward in sections 2.1.1 and 2.2.1
suggest that improving the generalization ability of a neural network ultimately
boils down to the optimization of its architecture, primarily the appropriate adap-
tation of its size. It has repeatedly been argued that the former does not seem
to be achievable without the latter (e.g. [12] [139] [141]). In so far, it still awaits
demonstration that fast and simple training algorithms which refrain from op-
timizing the network architecture can efficiently exploit the speed and potential
size of hardware implemented networks while simultaneously yielding the desired
generalization performance. This will be investigated more closely in chapters 8
and 9.

4.3 Alternative Black-Box Approaches

One of the main features of evolutionary algorithms that qualifies them for the
training of highly recurrent and/or hardware implemented neural networks is that
they do not require the used performance measure to be differentiable with respect
to the free parameters, i.e., the weight values. In fact, the fitness needs not to
be consistently expressible as a function of the synaptic weights at all. As noted
in section 3.3.3, optimization algorithms with this characteristic are denoted as
model-free or black-box approaches.

Although all of the experiments presented in this thesis employ evolutionary
algorithms, other model-free, stochastic optimization algorithms have been pro-
posed that should in principle be capable of training neural networks implemented
on the used hardware substrate (chapter 5) as well. Since the main aspects of the
results presented in part III are deemed to be transferable also to these alternative
training algorithms, the two most prominent examples — simulated annealing and
weight perturbation — shall briefly be discussed in the following.

4.3.1 Simulated Annealing

Similar to evolutionary algorithms, simulated annealing is inspired by an opti-physical annealing

mization process in nature. In condensed matter physics, annealing is a procedure
to obtain the low-energy states of a solid. Initially, the material exhibits multiple
imperfections in its crystalline structure, and it is the aim of the annealing pro-
cess to yield the perfect regular structure that corresponds to the energetic ground
state: First, the temperature of the solid is raised to the material’s melting point.
Then, the temperature is slowly lowered according to a predetermined cooling
scheme until the desired low-energy state of the solid is reached.

Statistical Mechanics and the Metropolis Algorithm

In statistical mechanics, the behavior of a many-particle system is commonlystatistical ensembles

analyzed by regarding large ensembles of identical systems and averaging their
properties [54]. If the system is in thermal equilibrium with its environment at a
temperature T , the contribution of each possible state2 ri that exhibits the energy

2The vector ri specifies the values of all free parameters of the system in the represented state.

104

Evolving Artificial Neural Networks

Ei is weighted by its Boltzmann probability factor

pB(ri) = exp− Ei

kBT
(4.1)

where kB is the Boltzmann constant.
In 1953, Metropolis et al. introduced a simple iterative algorithm to simulate the Metropolis

algorithmthe behavior of a collection of atoms in thermal equilibrium at a given temperature
T [138]. In each step, one of the atoms is applied a small random displacement
in the phase space which results in a corresponding change ∆E of the overall
systems energy E. If ∆E ≤ 0, the displacement is immediately accepted and the
algorithm proceeds with the resulting new configuration of the system. Otherwise,
the displacement is only accepted with a probability P (∆E) calculated according
to equation 4.1 with Ei being replaced by ∆E. When this procedure is iterated,
it efficiently simulates the thermal motion of atoms in thermal equilibrium. The
particular choice of P (∆E) eventually causes the system to evolve into a Boltz-
mann distribution [54] [138], i.e., the probability PT(si) to find the system in a
given state si with energy Ei is given by

PT(si) =
exp− Ei

kBT∑
j

exp− Ej

kBT

(4.2)

where the sum in the denominator runs over all possible states.

Optimization by Simulated Annealing

The basic idea behind solving optimization problems by simulated annealing is to basic idea

combine the Metropolis algorithm with a slow decrease of the temperature param-
eter T [116].Here, the energy Ei of a given state is replaced by the performance
measure E(si) of the candidate solution si. Unlike in common evolutionary al-
gorithms, the used performance measure is reasonably formulated such that the
better the candidate solution si, the lower the value of E(si). For neural net-
works, the error on the training set (equations 2.15 and 2.16) thus represents a
suitable choice. Following the common nomenclature of simulated annealing, the
used performance measure E is also referred to as the energy function.

The optimization process starts with an arbitrary initial system of energy E0 iterative procedure

and a sufficiently high temperature parameter T0. For a given number N I(T0)
of iterations, the Metropolis algorithm is applied, i.e., the candidate solution is
repeatedly subject to random modifications — comparable to the mutations in an
evolutionary algorithm — and the changes are accepted or rejected according to
the scheme described above.

Once the N I(T0) iterations have been performed, the temperature parameter temperature variation

T is lowered to a new value T1 < T0 and the Metropolis algorithm is continued
for a number of N I(T1) iterations, this time using the new temperature T1 to
calculate the transition probabilities from one candidate solution to another. This
whole procedure is repeated until after the nth temperature step, the resulting
temperature Tn has decreased below a given threshold. In analogy to physical

105

4.3 Alternative Black-Box Approaches

annealing, this algorithm is expected to exhibit a high probability of converging
to the global minimum of the energy function E on the search space.

Discussing Simulated Annealing

In order to be successfully applied to a specific optimization task, several aspectsadjustable parameters

of the simulated annealing algorithm have to be tuned: The initial temperature T0,
the number of iterations per temperature step N I(T), N I : R → N, the size of the
ith temperature step ∆T (i), ∆T : N → R, the termination temperature Tt, and,
finally, the stochastic perturbation mechanism that modifies a given candidate
solution to yield a new one. The first four parameters are commonly denoted as
the applied cooling scheme.

The initial temperature T0 is preferably chosen high enough as to allow all
possible modifications of the candidate solution to be accepted with approximately
equal probabilities. This corresponds to the liquid state of a physical system
where the particles are arranged totally randomly. If the temperature is loweredthermal equilibrium

sufficiently slowly — as determined by N I(T) and ∆T (i) — the algorithm can at
each temperature Ti reach a state that corresponds to the thermal equilibrium in
a physical system, i.e., the probability PT(si) to encounter a specific candidate
solution si with energy Ei will be given by equation 4.2. Besides the capability of
the applied perturbation mechanism to create every possible candidate solution
from any previous one, the thermal equilibrium condition is essential for proving
the asymptotic convergence of simulated annealing to the optimal solution [102].

Depending on the current temperature T , even disadvantageous modifications ofefficiency

the candidate solution stand a chance to be accepted. This way, simulated anneal-
ing can in effectively escape local minima of the energy function E and therefore
exhibits an increased capability of finding the true optimal solution compared to
ordinary local search schemes [102]. Unfortunately, its warranted asymptotic con-heuristic character

vergence merely guarantees that the optimal solution is found in the limit of an
infinite number of steps. In practice, one is naturally interested in finding a good
solution within a finite time. On the other hand, like evolutionary algorithms,
simulated annealing has proven to be readily and successfully applicable to a mul-
titude of different problems, and in so far, it constitutes another example for a
heuristic (see section 3.3.3).

4.3.2 Weight Perturbation

As described in sections 2.1.3 and 2.2.2, common gradient descent training ap-gradient descent

proaches iteratively calculate the modification of a synaptic weight wij on the
basis of the corresponding derivative of the network error E:

∆wij = −η
∂E

∂wij
(4.3)

where η is an adjustable learning rate and E quantifies the difference between
the network response and the target output on a fixed set of training examples
(equations 2.15 and 2.16).

106

Evolving Artificial Neural Networks

In the case of strictly feedforward networks of neurons with continuous activa-
tion functions, the necessary derivatives can readily be calculated. This eventually
leads to the formulation of the delta-rule and the backpropagation algorithm for
single-layer and multi-layer networks, respectively.

Derivative Approximation

When the gradient of the error function is either costly to obtain or cannot be de- evaluating
perturbationstermined analytically at all, it stands to reason to avoid its calculation by probing

the dependence of the error on the single weights directly. The derivative of the
error E with respect to a single weight wij can be approximated by applying a
small perturbation ∆pwij to the current weight value and evaluating the resulting
change in the error ∆E = E(wij + ∆pwij) − E(wij):

∂E

∂wik
=

E(wij + ∆pwij) − E(wij)

∆pwij
+ O(∆pwij) (4.4)

As long as ∆pwij is sufficiently small, a good approximation of the optimal weight
change is then given by

∆wij = −η
E(wij + ∆pwij) − E(wij)

∆pwij
. (4.5)

This weight update rule does not require any information beyond the size of training with weight
perturbationsthe applied perturbation and the respective performance of the original and mod-

ified network. The iterative training procedure that adopts this update scheme
is referred to as the weight perturbation algorithm [106]. Originally, it has been
suggested as an efficient training procedure for recurrent neural networks imple-
mented in analog VLSI. Several similar algorithms have been proposed which also
approximate the derivative of the error function by measuring the differences be-
tween slightly perturbed versions (e.g., [34] [47] [55] [226]).

Discussing Weight Perturbation

Since it allows to apply the general principles of gradient descent to any opti- generality

mization problem, even those for which the necessary derivatives cannot be ob-
tained analytically, the concept of approximating the desired gradients by finite
differences is not limited to neural network training. On the other hand, weight local optima

perturbation naturally inherits all problems of the gradient descent approach, i.e.,
it is highly susceptible to local optima of the error function.

While they solely rely on the network’s response to the applied set of training efficiency

examples— an information which is reasonably available for any network imple-
mentation — weight perturbation and most related approaches lead to a consid-
erably larger amount of network evaluations than true gradient descent methods.
Each single weight update requires to measure the error E of a new, slightly modi-
fied network. In this respect, these algorithms are optimally suited for the on-chip
or chip-in-the-loop training of dedicated hardware implementations that do not
provide detailed information about their internal state but have the capability of
efficiently implementing multiple networks with high speed (see section 2.4.5).

107

4.3 Alternative Black-Box Approaches

4.3.3 Comparison to Evolutionary Algorithms

In the light of the No Free Lunch theorem (see section 3.3.3), none of the three
described black-box approaches for neural network training — evolutionary algo-
rithms, weight perturbation, and simulated annealing — can initially be deemed
to be superior to the remaining two. Furthermore, either approach represents
feasible means of training neural networks implemented in analog CMOS VLSI.

Nevertheless, compared to evolutionary algorithms and simulated annealing,global and local search

weight perturbation is more likely to get trapped in local optima of the perfor-
mance measure. Like true gradient descent algorithms, it is good at fine-tuning
the weight values but is less effective in reliably finding the global optimum.

Evolutionary algorithms and simulated annealing exhibit some important sim-simulated annealing
vs. evolutionary
algorithms

ilarities. Both incorporate random changes of the candidate solutions, and the
probabilistic acceptance scheme of the Metropolis algorithm can be seen in anal-
ogy to the survivor selection process in evolutionary algorithms. In so far, simu-
lated annealing could even be viewed as a special kind of evolutionary algorithm
with a population size of 1, a generational replacement scheme, a probabilistic
survivor selection process, and an automated adjustment of the selection pressure
(given by the slow decrease of the temperature parameter T). But while com-
mon evolutionary algorithms do not incorporate an automated adaption of the
selection parameters, they usually benefit from the parallel processing of more
than one individual and potentially draw additional computational power from
the appropriate recombination of different candidate solutions.

Due to these considerations and motivated by the multitude of reported suc-
cesses in combining evolutionary computation with artificial neural networks (see
above), the experiments described in this thesis exclusively employ the evolution-
ary approach. However, the discussed results do by no means aim to suggest the
general superiority of evolutionary algorithms over alternative model-free train-
ing algorithms. In fact, the presented observations are regarded to be of more
universal nature, and this topic will be returned to in section 9.5.

108

Part II

Hardware Neural Network
Framework

109

Chapter 5

The HAGEN Chip

Any sufficiently advanced technology
is indistinguishable from magic.

Arthur C. Clarke

The investigations presented in this thesis explore the applicability of evolutionary
algorithms (see chapters 3 and 4) to the training of large hardware neural networks
(see chapters 1 and 2). The central part of the hardware platform that is used
throughout all of the presented experiments is the HAGEN chip (Heidelberg Ana-
loG Evolvable Neural network). HAGEN is a mixed-signal1 ASIC that allows for
the efficient implementation of fast, low power consuming, and nearly arbitrarily
scalable networks. It has been designed by Dr. Johannes Schemmel [179].

Although the majority of the results presented in chapters 8 and 9 is regarded
to be of general nature and should readily be transferable to other network im-
plementations as well — regardless of whether they be realized in hardware or in
software (see also section 10.4) — the introduced training strategy has been de-
vised with particular regard to the characteristics of the used network chip. In
turn, the concepts that underlie the design of HAGEN pay special tribute to the
compatibility with highly-iterative chip-in-the-loop training algorithms like they
are, e.g., represented by evolutionary strategies2.

While the HAGEN prototype demonstrates the general feasibility of its under-
lying ideas, the proposed model for the realization of fast and scalable hardware
neural networks is also deemed to be a promising basis for more evolved future
ASICs that take full advantage of contemporary CMOS technologies. Therefore,
this chapter does not only intend to introduce the HAGEN prototype itself but
also to discuss and motivate some of the general considerations that form the basis
of its design.

The chapter will be concluded with an investigation of how the inevitable device
variations introduced during fabrication of an analog ASIC affect the network
operation of the HAGEN chip. Procedures for the evaluation of these deviations

1That is, it follows a hybrid approach that combines analog computing with digital signaling
(see section 2.4).

2Hence the name.

111

5.1 Design Considerations

are devised, experimental results are presented, and strategies for the efficient
compensation of the observed effects are proposed.

5.1 Design Considerations

The development of the HAGEN ASIC has been driven by the goal of imple-
menting a general-purpose, mixed-signal VLSI neurochip in a standard CMOS
technology that combines the high speed and efficiency of analog devices with the
scalability and flexibility of digital computing (see section 2.4).

5.1.1 Speed and Efficiency

A high operational speed of the network as well as a fast reconfigurability ofspeed considerations

its weights and architecture are vital preconditions for the efficient application
of highly iterative training strategies such as evolutionary algorithms. However,
given the ongoing progress in computer technology, the absolute speed of a system
has proven to be a short-lived quality. The presented design concept rather pursues
to exploit the fundamental speed advantage of analog computing in comparison
to digital solutions.

Apart from speed considerations, the aim to make optimal use of the siliconchallenges to analog
VLSI substrate also implies to minimize area and power consumption. While analog

VLSI has the potential to fulfill all of these requirements, the automation of analog
integrated circuit design is considerably harder than in the case of purely digital
implementations. The feasibility of an analog solution will thus be judged against
the background of the increased design times and non recurring engineering (NRE)
costs. It has been argued that any analog approach needs to exhibit an enhanced
efficiency in performance, size, or power consumption of at least one order of
magnitude to become more commercially attractive than digital ones [122].

This is most unlikely to be achieved for general purpose analog processors but
can realistically be targeted at for specific applications. In the particular case
of neural networks, several analog implementations have been proposed in litera-
ture [137] [16] [215] [216].

The characteristic curves of transistors provide a wide range of functionalityexploiting transistor
physics (nonlinear amplification, linear amplification, thresholding, etc.) [215]. In order

to take full advantage of the capabilities of the CMOS technology, the used neural
network model has to be mapped onto the analog properties of these elementary
components instead of using them merely as binary switches. This is not a trivial
task and requires the application of a model that explicitly allows for an efficient
representation by physical quantities [16] [215] [216].

5.1.2 Scalability

The need for scalability towards larger networks usually arises from the complexity
of the tasks to be solved. Up-scaling constitutes a challenge not only to the
technical realization of the network but also to the underlying model and the
applied training strategies.

112

The HAGEN Chip

It has to be taken into account that analog designs are potentially more vulner- up-scaling and analog
noiseable to noise and offsets than digital systems. Digital quantities can be stored and

transmitted far easier than analog signals. The reliable propagation of informa-
tion across large distances is of vital importance for the available connectivity in
a large-scale network. In this respect, purely analog implementations can hardly
be anticipated to provide satisfactory scalability.

On the other hand, for a large-scale realization of the network to be feasible at miniaturization

all, the elementary operations must be implemented efficiently. Again, this refers
to power consumption as well as area requirements and militates in favor of analog
implementations.

5.1.3 The Mixed-Signal Approach

The aim for high performance, low power consumption and feasible miniaturiza-
tion is to be reconciled with the desire for good scalability to larger systems. This
motivates a mixed-signal design that combines analog computing with digital sig-
naling. While all computationally expensive tasks are to be implemented in analog
VLSI, digital circuits will provide reliable communication and flexible routing to
allow for the implementation of large networks.

It has been proposed that the analog operation is preferably organized in a array-based structures

regular, array-based structure with digital interface [25] [122] [68]. This represents
an efficient way to implement vector-matrix multiplications that form the basis
for various neural network paradigms such as feedforward networks (chapter 2) or
support vector machines (section 2.3.1).

5.1.4 Trainability

When arguing in favor of a mixed-signal implementation, it cannot be ignored
that inevitable device mismatches introduced during manufacturing as well as
fluctuations in the analog signals during operation persist to impose restrictions
on the applicable training algorithms. As motivated in section 2.4.5, off-chip
learning can deal with such unreliable substrates only to a limited extent, and
this leaves either on-chip or chip-in-the-loop algorithms as viable alternatives.

Compared to on-chip learning, the chip-in-the-loop approach naturally provides chip-on-the-loop vs.
on-chip trainingenhanced flexibility. Hence, as long as the design of appropriate training algo-

rithms remains a subject of research by itself, network models and implementations
that are suited for chip-in-the-loop algorithms are deemed the more appropriate
alternative.

5.2 Network Model

The chosen network model is designed as to account for the prescriptions summa- McCulloch-Pitts
neuronsrized in the preceeding paragraphs. Its basic computational unit is the McCulloch-

Pitts neuron described in section 1.2.3, and multiple neurons are arranged to form
so-called network blocks as shown in figure 5.1. One network block implements a fully connected

perceptronfully connected, single-layer perceptron with multiple outputs by connecting each

113

5.2 Network Model

PSfrag replacements

binary input

binary neuron

analog synapse

feedback
connections

ou
tp

u
t

si
gn

al
s

O
j

input signals Ii

synapse array

Figure 5.1: One network block implements a single-layer perceptron by connecting each
of the binary input nodes Ii to each binary output neuron Oj via an individual analog
synapse with programmable weight wij . Feedback connections allow to apply the network
output of a preceeding network cycle as input for the present loop. This way, a large
variety of network architectures can be realized (see also figure 5.2).

of the Nin binary inputs Ii with each of the Nout binary output neurons Oj via an
individual synaptic connection with the analog weight wij .

Similar to equation 1.5, the output of the jth neuron in response to the appli-
cation of a set of inputs is thus given by

Oj = ϕ

(
Nin∑

i=1

wij Ii

)
= Θ

(
Nin∑

i=1

wij Ii

)
with Ii, Oj ∈ {0, 1}. (5.1)

The utilization of threshold neurons automatically sets up the desired border be-
tween the analog and the digital part of the network implementation. Both, themixed-signal

implementation weighting of inputs via individual synaptic strengths and the calculation of the
total input net (see section 1.2.3) can efficiently be realized in analog VLSI. At
the same time, the inputs are reduced to binary switches and the neuron outputs
are digital signals.

5.2.1 Configurable Topology

The network operates in discrete time steps: After the application of an inputtime-discrete
operation vector I, the network output is available after a finite time interval ∆t. This is

denoted as one network cycle, and given the length of one such loop, the network
frequency fnet is defined as

fnet :=
1

∆t
. (5.2)

External connections allow to feed the neuron output back to the inputs of thefeedback connections

network block. Thereby, the network’s response O(t) after a preceeding cycle

114

The HAGEN Chip

can partially contribute to its input in the present loop. More specifically, the
feedback connections define a mapping c : N → N from the indices of the inputs
to the indices of the neurons such that c(k) denotes the index of that specific
output which is fed back to the input k: Ik(t) = Oc(k)(t). The actual form of this
mapping depends on the current set of activated feedback connections. Some of
the input nodes i will not receive feedback at all and rather accept external input3

Ii. In this case, c shall be defined as to obey c(i) = 0. The network response then
assumes the form

Oj(t + ∆t) = Θ

Nin∑

i=1
c(i)=0

wij Ii(t) +

Nin∑

k=1
c(k)6=0

wkj Oc(k)(t)

 . (5.3)

Here, it is reasonably assumed that any input node can only receive either external
signals or feedback, but not both. Also, the output of each neuron can be fed back
to at most one input of the same network block. Since within the block, each input
Ii potentially contributes to the total input net of all neurons, this is no restriction
in practice.

In combination with an appropriate choice of weights, the activation of specific recurrent
architecturesfeedback connections allows to implement different network architectures. If the

network is operated for more than one cycle and if there exist indices k such
that c(k) 6= 0 and wk c(k) 6= 0, the network contains direct feedback loops and
is thus a recurrent network in terms of section 1.2.2. In the case of more than
two network cycles, more complex closed loops can be realized in which a neuron
feeds back to itself via other neurons. By setting all respective weights to zero, feedforward

architecturesstrictly feedforward networks with multiple layers can be implemented as well.
Simple examples for both configurations are shown in figure 5.2. For a feedforward
network, the number of necessary cycles nnc directly corresponds to the number
of desired layers.

5.2.2 Multiple Network Blocks

It is one of the key features of this model that it can readily be expanded to inter-block
connectionsmultiple network blocks. Similar to the feedback connections described above,

inter-block connections can transfer the neuron output of one block to the inputs
of other blocks (see figure 5.3). In the spirit of the preceeding paragraph, define
the mapping cba : N → N such that cba(l) is the index of the specific neuron in
block b the output of which is fed back to the input node l of block a. The initial
formalism introduced above is contained within this expanded model in the form
of the mappings caa. For a more concise notation, let cba(l) simply be denoted
as lba.

Any input that originates from another block will in general arrive with a time synchronous
operationdelay ∆t′ ≥ ∆t. If it is ensured that all blocks operate at the same network

frequency fnet and that the time delay introduced by the inter-block connections

3It is assumed that the number of output neurons Nout is chosen to be smaller than the
number of inputs Nin to the network block (see also section 5.4.1).

115

5.2 Network Model

PSfrag replacements

I1I1
I2I2

H1
1H1

1

H1
2

H1
2

O

O

a)

nnc = 2

weight w = 0weight w 6= 0

PSfrag replacements

I1I1
I2I2

H1
1H1

1 H1
2

H1
2

O

O

b)

nnc = 4

weight w = 0weight w 6= 0

Figure 5.2: a) By utilizing the available feedback connections and a corresponding num-
ber of network cycles nnc, networks of multiple layers can easily be implemented. Absent
connections are realized by setting the respective synapses to zero. The shown example
employs nnc = 2 network cycles to implement a two-layer architecture. b) By enabling
additional feedback lines, allowing for more network cycles, and setting the appropriate
synapses to finite values, recurrent network architectures can be implemented as well
(see also section 1.2.2). If fewer synapses are restricted to zero, even more complicated
topologies are possible.

116

The HAGEN ChipPSfrag replacements

Q

D

block a block b

fnet

= 1/∆t

∆t

∆t∆t

∆t∆t

nb = 2
Oa

Oa

Ob

ObIa

feedback block binput

synapse array

synapse array

Figure 5.3: Inter-block connections transfer the output of one block to the inputs of
other blocks. These inputs are ensured to arrive with a time delay ∆t′ that is an integer
multiple of ∆t = 1/fnet. This way, several networks blocks can be synchronously operated
as formulated in equation 5.4 (after [179]).

is always an integer multiple of ∆t = 1/fnet, the response of a given neuron j in
block a can consistently be formulated as

Oa
j (t + ∆t) = Θ

Nin∑

i=1
iaa=0

wijI
a
i (t) +

Nin∑

k=1
kaa 6=0

wkjO
a
kaa(t) +

∑

b6=a

Nin∑

l=1
lba 6=0

wljO
b
lba(t − nb∆t)

(5.4)
where nb ∈ N for all b. The second term refers to feedback connections within
the block, the last term represents incoming connections from other blocks b that
arrive with a delay of nb cycles, respectively. For the example shown in figure 5.3,
nb equals 2. As long as the condition ∆t′ = n∆t = n/fnet, n ∈ N is fulfilled for
all connections, this model allows the synchronous operation of arbitrary large
networks.

5.3 VLSI Implementation

By enclosing the analog part of the network operation into blocks with digital in-
terfaces, the described model lays the foundation for the desired up-scaling ability.
The targeted low power consumption, area-efficiency, and high speed remain to
be achieved by suitable realizations of the neuron and synapse circuits. In this
context, it is a notable feature of equation 5.4 that the use of binary inputs Ii

effectively reduces the calculation of the total input net to a mere summation of
weight values. A summation of currents can easily be implemented in CMOS.

117

5.3 VLSI Implementation

5.3.1 Binary Neurons, Trainability, and VLSI Design Implica-
tions

Many hardware implementations of feedforward networks do not restrict them-multi-valued inputs

selves to binary inputs and outputs. If the inherent parallelism in the network
operation is to be fully exploited, the necessary multiplier circuits do in this case
have to be incorporated within each synapse [79]. This naturally leads to increased
area requirements of the synapse implementations. Another disadvantage of this
approach is the difficulty for analog multiplier circuits to achieve simultaneously
a high dynamic range, a good noise resistance and a low power consumption [79].

Multi-valued inputs can be simulated by using binary inputs in connection with
appropriately dimensioned weights as will be described in section 8.2.2. In so
far, the use of binary input nodes does not inhibit the processing of multi-valued
inputs. At the same time, it allows to reduce the complexity of the synaptic
circuits and thus promotes smaller and faster synapse implementations.

There is another important advantage of using binary inputs that arises from theanalog multiplication

fact that an analog summation is only affected by additive offset mismatches [122].
In contrast, analog multiplication potentially suffers from offsets in the inputs as
well as additional variations in the gain. A purely additive offset can easily be com-
pensated, since it is independent of the inputs and the weights (see section 5.5).
This does not hold for the gain and offset mismatches in a multiplication cir-
cuit [144].

Nevertheless, the use of binary neurons also restricts the range of suitable train-training networks of
threshold neurons ing approaches: It has been discussed in section 2.2.2 that due to the credit

assignment problem, the formulation of efficient training algorithms for networks
of simple threshold neurons with more than one layer remains a considerable chal-
lenge. The popular backpropagation training algorithm for multi-layer networks
(section 2.2.2) vitally depends on the neurons to exhibit a continuous output and
is thus not viable in this case. But it has repeatedly been motivated (chapters 2, 3,
and 4) that adequate black-box optimization strategies, most notably evolutionary
algorithms, can successfully be utilized for this kind of task.

The efficient application of these highly iterative generate-and-test approachesbenefits of
chip-in-the-loop
training

requires a high speed of the network operation. On the other hand, when being im-
plemented either on-chip or as chip-in-the-loop training, evolutionary algorithms
can adequately cope with potential device mismatches and high noise levels. Con-
sequently, a network implementation that is intended for use in conjunction with
evolutionary algorithms or other model-free strategies should be able to exploit
the small feature sizes of contemporary CMOS technologies to the fullest without
running the risk of compromising its trainability.

Finally, striving to benefit from the high degree of parallelism that is inherent inlocal weight storage

the concepts of neural information processing does not only imply to include the
necessary computational circuitry within each single synapse. It also requires the
synapses to have direct access to their predetermined weight values and thus to
incorporate an adequate means of weight storage into the synapse implementation.

118

The HAGEN Chip

5.3.2 Circuit Design

The proposed synapse and neuron circuits are designed in consideration of the mixed-mode operation

above conclusions and are schematically illustrated in figure 5.4. The synapse
combines voltage mode and current mode operation: While the postsynaptic ac-
tivity is represented by a current Ips(| w |) > 0 that is sank into the synapse
according to the absolute value of its weight w, the weight value itself is stored as
charge on a capacitor. On a general level, the synapse acts like a voltage controlled
current sink (for details see [179]).

The sign of the weight is stored in a dynamic latch. Depending on the state of excitatory and
inhibitory currentsthis latch, a synapse is either connected to the excitatory line I+ or the inhibitory

line I− of the postsynaptic neuron. By virtue of Kirchhoff’s law, the total exci-
tatory and inhibitory input currents Ipos and Ineg to the neuron that result from
the contribution of all its activated synapses become

Ineg =
∑

i

Ips(|wi |) ∀ i ∈ {j | wj < 0} (5.5)

Ipos =
∑

i

Ips(|wi |) ∀ i ∈ {j | wj > 0} (5.6)

As long as the input node of a specific synapse is not activated, it gets connected
to the third current line Ipark (see next section). The Resistors R+ and R− of
the neuron circuit convert the respective sums of the excitatory and inhibitory
currents to voltages Upos and Uneg according to Ohm’s law:

Uneg = Vdd − R− · Ineg (5.7)

Upos = Vdd − R+ · Ipos (5.8)

A comparator amplifies the resulting difference Upos − Uneg to logic levels.

5.3.3 Implementation Properties

Since the synapses continuously sink a current to either I+ I− or Ipark, the power constant power
consumptionconsumption of this design is independent of the input activity and solely deter-

mined by the programmed weights. From a technical point of view, a constant
power consumption is advantageous in so far as it also implies a constant tem-
perature and thus largely avoids temperature induced side effects on the circuit
operation. Besides that, it suppresses power supply noise [178]. Finally, the cho-
sen concept allows to adjust the overall power consumption via the programming
of appropriate weights.

The proposed weight storage circuit not only fulfills the demands for a small, weight storage and
weight refreshfast, and energy-saving synapse as well as a truly parallel synapse operation. It

also admits frequent changes in the weight values, e.g., during training. On the
other hand, leakage currents in the synapse circuit will cause the weight capacitor
to discharge over time. The actual time scale on which these weight deterioration
effects measurably occur depends on the utilized CMOS process. In the explicit
case of the 0.35 µm process used for the HAGEN prototype, the leakage time is
in the order of 10 to 100 ms and therefore several orders of magnitude larger than

119

5.4 The HAGEN Prototype

+

-

PSfrag replacements

excitatory current

inhibitory current

synapse

synapse circuit neuron circuit

neuron

inputs

Q

Q

D

I+

I+

I+

I−

I−

I−

Ipark

Vdd

R+ R−

VC

sign

weight
capacitor enablefrom

input
node

dynamic

latch

latch

store
comparator

comparator

output

output

Figure 5.4: Operational principle of the implemented synapse and neuron circuits (af-
ter [179]). The synapse acts like a voltage controlled current sink that is connected to
either the excitatory line I+ or the inhibitory input line I− of the neuron, depending on
the stored sign. The weight is stored as charge on a capacitor. Within the neuron, the
total excitatory and inhibitory currents Ipos and Ineg are converted to respective voltages
Upos and Uneg and their difference is evaluated by a comparator. The shown circuits are
simplified and merely illustrate the general principle of operation. For a detailed account
of the implementation see [179].

the time of one network cycle ∆t (see next section). Hence, the necessary weight
refreshes have to be performed comparatively rarely.

Still, the limited life expectancy of the programmed values requires an addi-weight generation and
digital storage tional digital weight storage that can serve as a fast and long-lasting memory and

which can in principle either be located on-chip or off-chip. The same applies to
the digital to analog converters (DACs) that are used to convert the stored digital
values into the analog synaptic weights. However, realizing the necessary DACs
on-die has the advantage of reducing the chip interface to an entirely digital com-
munication, and in the case of the HAGEN chip, it has therefore been chosen to
integrate the DACs on the ASIC. At the same time, the digital weight storage itself
remains off-chip as to retain the possibility to explore different training strategies
that can more flexibly be implemented in software or in a programmable logic.

120

The HAGEN Chip

PSfrag replacements

digital control logic 8 digital/analog converters (DACs) 128 input nodes

64 output neurons analog weight storage bidirectional LVDS IO cell

128 × 64
synapses

1 network block

Figure 5.5: Photograph of the HAGEN ASIC. The chip hosts four network blocks and is
organized in two halves, upper and lower. The halves are mirrored but otherwise identical
(see also figure 5.6).

PSfrag replacements

64 input nodes

64 input nodes

64 input nodes

64 input nodes

64
ou

tp
u
t

n
eu

ro
n
s

64
ou

tp
u
t

n
eu

ro
n
s

digital weight input

64
an

al
og

st
or

ag
e

u
n
it
s

64
an

al
og

st
or

ag
e

u
n
it
s

8
D

A
C

s
(1

0
b
it

+
si

gn
)

128×64128×64
synapsessynapses

Figure 5.6: Schematic drawing of the upper half of a HAGEN ASIC. The two synapse
arrays are fed by inputs from the top and the bottom but the output neurons of the blocks
all face towards the respective outside. Each block is accompanied by its own set of 64
analog storage units. The central DAC unit of 8 DACs is shared by both blocks (see
section 5.4.5).

121

5.4 The HAGEN Prototype

specification HAGEN prototype

process features 0.35 µm, 1 poly, 3 metal
die/core size 4.1×3 mm2 / 3.6×2.5 mm2

synapse size/density 8.7×12 µm2 / 9580 per mm2

blocks/neurons/synapses 4/256/32768
supply voltage 3.3 V
network frequency fnet 50 MHz typ.
CPS 1.64 Teracps max.
CUPS 400 Megaweights/s max.
LVDS bus data transfer rate 11.4 Gigabit/s max.
weight resolution 10 bit (nominal) + sign

Table 5.1: Nominal specifications of the HAGEN prototype.

5.4 The HAGEN Prototype

The HAGEN chip represents a prototype implementation of the introduced net-
work model and circuit designs that aims to demonstrate their general usability
for the implementation of low power consuming, area-efficient, fast, and scalable
neural network ASICs. HAGEN is fabricated in a 0.35 µm process by Austria
Mikro Systeme International [7]. A die photograph is shown in figure 5.5, and
table 5.1 lists some of the chip’s specification data. HAGEN has been described
in detail in a number of technical publications [179] [180]. The following sections
concentrate on summarizing what is relevant for the work presented in this thesis.

The ASIC contains four equally sized network blocks and is organized in twooverview

identical halves, labeled upper and lower in correspondence to their physical ar-
rangement. Within each half, the two adjacent network blocks — left and right —
are laid out such that the neuron outputs of each block face towards the respective
die edge while the weight storage circuitry is provided on the other. This allows
two share the DACs for the analog weight generation between the two blocks of
each half (see figures 5.5 and 5.6).

HAGEN includes a digital control logic that communicates with external hard-LVDS interface

ware via bidirectional LVDS (Low Voltage Differential Signaling) IO cells [5]. This
bus interface is used to write the weight values into the synapse array, to write
and read back the network input and output data, and to control the network op-
eration. In its current implementation, the interface does not provide a pipelined
handling of input and output data and can therefore not actually cope with the
speed of the network. Apart from that, the prototype character of the HAGEN
chip manifests itself mainly in the limited available silicon area and a correspond-
ing restriction to the number of contained synapses.

122

The HAGEN Chip

5.4.1 Block Dimensioning

The four network blocks comprise of 128 input nodes and 64 output neurons each
(see figures 5.5 and 5.6). The resulting 8192 synapses of one block are arranged
in a rectangular array that is fed by inputs from the top and the bottom4.

The four network blocks each include a number of inputs that is twice the num- complete feedback and
external inputber of their outputs. This dimensioning potentially allows to completely feedback

each block to itself and to simultaneously accept input from other blocks or ex-
ternal sources. Regarding the absolute numbers of inputs and neurons, larger
network blocks are possible, but the number of inputs to one neuron is ultimately
limited by the efficiency of the analog processing. Using the proposed circuit de-
signs, up to approximately 1000 inputs per block can be realized [178], and the
total number of neurons is limited only by the desired size of the ASIC.

In fact — as it has been motivated above — one of the primary goals of the HA-
GEN prototype is to explore the feasibility of encapsulating the analog operation
into blocks with digital interfaces that can easily be combined to form larger net-
works. Beyond that, implementing several smaller blocks instead of a single large feedforward networks

on multiple blocksone can also be motivated by another consideration: In a strictly feedforward
topology with multiple layers, a large fraction of the available synapses remains
unused, i.e., has to be set to zero. Since the power consumption of the synapse
circuit is solely determined by the value of the programmed weight, any unused
synapses have no further negative effect apart from occupying silicon area. Nev-
ertheless, for the realization of feedforward architectures with multiple layers that
contain only few neurons each, a single network block with a large number of in-
puts is inadequate. The same topology can more efficiently be implemented with
several smaller blocks and corresponding inter-block connections.

5.4.2 Block Interconnectivity

As another tribute to the prototypic nature of the HAGEN chip, the available hard-wired
connectionsfeedback and inter-block routing is limited to a fixed set of selected, hard-wired

connections. The resulting connectivity is schematically depicted in figure 5.7.

The blocks on the left side can potentially feedback all of their 64 neuron outputs left blocks

to a given subset of their own inputs and can receive up to 40 connections from
blocks on the opposite side. Apart from that, 24 input nodes per block can be
connected to 12 standard CMOS IO pads of the ASIC to allow for the direct
connection of external data sources to the network (denoted as “direct in” in
figure 5.7). The upper and lower left block both receive signals from the same set
of direct input pads plus the respective inverse signals.

The blocks on the right side only exhibit 32 feedback connections but can receive right blocks

extensive input from blocks on the left side via up to 96 inter-block links. In
similarity to the direct inputs of the left-sided blocks, each of the blocks on the right
side exhibits 8 connections that lead from its neurons directly to corresponding
CMOS pads of the die (“direct out”). The direct inputs and outputs have been

4This mutual setup is primarily dictated by signal routing considerations.

123

5.4 The HAGEN Prototype

PSfrag replacements

8

8

1212 20 20
32

32

3232

3232

64

6464

64

128

128

128

128

d
ir

ec
t

in

direct out

direct out

internal I/O bus fast LVDS I/O

I+ I+

I+I+

I
−

I
−

I
−

I
−

Figure 5.7: Schematic of the hard-wired feedback and inter-block connections on the
HAGEN prototype. The available routing capabilities promote a predominant data flow
from left to right. A block of the left side can feed all of its outputs back to its own inputs
as well as to the inputs of its counterpart on the right side. In total, each block on the
right can receive up to 96 inputs from blocks on the left (after [179]).

integrated to allow the HAGEN chip to be utilized for fast data communication
applications.

In the presented design, every single input node can either receive ordinary
input from the digital external bus or from exactly one fixed alternative source,
i.e., either a dedicated neuron of the same block, a neuron of one of the other
blocks, or one direct input. For each node, the choice of its actual input source is
thus a binary decision. Consequently, in order to specify the complete feedback
setup for one HAGEN chip, one bit per input node is sufficient (this topic will be
returned to in section 6.2.2).

5.4.3 Weight Resolution and Dynamic Range

The on-die digital to analog converters that are responsible for the generation ofweight resolution

the analog weight values have been implemented to yield a resolution of 10 bit.
In connection with the sign of each weight value, this results in a total nomi-
nal weight resolution of 11 bit. When expressed in units of the least significant
bit (LSB) of the DACs, the set W of possible weight values w is thus given by
w ∈ W = {−1023,−1022, . . . , 1022, 1023}.

It is a notable feature of the implemented circuits that the postsynaptic currentdynamic range

Ips(| w |) which is eventually contributed to either the inhibitory or excitatory
input line of the neuron is essentially identical to the current IDAC(| w |) that
is generated by the digital to analog converter to write the analog weight value

124

The HAGEN Chip

into the synapse [179] (possible deviations will be discussed in section 5.5). The
effective dynamic range of the synapse currents is therefore determined by the
dynamic range of the DACs and can be adjusted externally. The synapse imple-
mentation itself is designed for a maximum current Imax

ps = Ips(1023) of at most
50 µA which corresponds to a resolution of approximately 50 nA. The comparator
of the neuron circuit also achieves a resolution of 50 nA and exhibits a dynamic
range of ±300 µA for each input line.

Hence, if the maximum synapse current Imax
ps is set to the largest allowed value, neuron saturation

six activated synapses with maximum weights that are all connected to either I+
or I− will cause the respective neuron input branch to reach saturation. This
is deemed to be no severe restriction in practice: First, in common networks,
synapses with maximum weight are expected to be the exception rather than the
rule. Second, for most of the time, only parts of the neuron inputs will be activated
simultaneously. Finally, chip-in-the-loop training algorithms can automatically
account for these general restrictions and adjust the magnitudes of the weight
values accordingly.

Apart from that, Imax
ps is usually chosen to be smaller than the allowed max- dynamic range and

noiseimum value. This is not only reasonable with respect to a better exploitation
of the dynamic range of the neuron, but also yields a lower power consumption
(section 5.3.3). On the other hand, changes in the dynamic range of the synapse
current also affect its signal to noise ratio and thereby influence the effective res-
olution of the synaptic weights (see section 5.5.4).

5.4.4 Weight Configuration

A network block cannot be used for data processing while its weights are written.
Therefore, a fast weight transfer is desired. Each of the respective DAC units that
are located between the two opposing blocks of the upper and lower half (see fig-
ure 5.6) comprises of 8 single digital to analog converters. Each one of these DACs
is employed for the conversion of the synaptic weights of 2 · 8 neurons, 8 in each
of the two adjacent network blocks. This setup constitutes a compromise between
the resulting area consumption and the maximum achievable weight update rate.

The analog values of the single weights are written into the synapse array accord- two stage setup

ing to a column-wise pattern. In order to retain a high transfer speed, a two stage
structure is employed and combined with an alternating transfer scheme [179]:
Every DAC has two banks of digital input latches that are capable of the full
speed of the LVDS interface. While the DAC converts the weights for one block,
the buffers for the other side can already be filled with the corresponding digital
weight values. Furthermore, each DAC is accompanied by 2 · 8 analog storage
units, 8 per side. Unlike the sign bits of the weights that are transferred directly
into the synapses of the currently served column, the analog weight values are first
written into these current memory units. Once all eight buffers are filled, their
contents are finally being transferred into the respective synapses. Simultaneously,
the DACs can fill the analog storage units of the opposite side.

The conversion time of a single digital to analog converter is 40 ns. With eight
DACs, eight conversion cycles are necessary to fill the 64 current memories of one

125

5.4 The HAGEN Prototype

side. The implemented circuitry can transfer the analog weights from the cur-
rent storage units into the synapses within 320 ns. Together with the alternating
scheme described above, this allows for a continuous DAC operation.

In summary, the weights of all 32768 synapses of all four blocks on a HAGENhigh configurational
speed chip can be updated within 82 µs which corresponds to a maximum achievable

CUPS value during training (section 2.4.3) of about 400 Megaweights/s. Using a
weight refresh rate of 10 ms, the network speed is thus reduced by less than 1 %.

5.4.5 Performance and Scalability

The network operates at a maximum frequency fnet of 50 MHz. Assuming that ahigh network speed

given network configuration can fully exploit the parallel operation of one block,
the resulting performance becomes

8192 synapses · 50 MHz = 4.1·1011 CPS. (5.9)

A direct comparison to standard microprocessors is not unproblematic, since thecomparison to
standard
microprocessors

utilized 0.35 µm process has been used by manufacturers in the years around
1995–1997. At the time of writing of this thesis, contemporary microprocessors
of commercially available PCs have become strong competitors in terms of mere
performance. Consider the exemplary case of a 3.6 GHz processor with SIMD
(Single Instruction, Multiple Data), e.g. a 0.09 µm Pentium IV processor. If it is
assumed that an optimum of eight 16-bit integer instructions can be performed
in each clock-cycle and that the processor is used to simulate the operational
principles of the HAGEN block, the resulting performance turns out to be

8 integer additions · 3.6 GHz = 2.88·1010 CPS. (5.10)

It is understood that the 16 bit precision of the used integer representation is
not the most efficient way to code the 11 bit weights of HAGEN. But even in
terms of the achievable connection primitives per second (see section 2.4.3), the
performance of a HAGEN block and the Pentium IV microprocessor become
4.5·1012 CPPS and 4.6·1011 CPPS, respectively.

Besides providing a gain in computational performance of about one order oflow power
consumption magnitude, the second main advantage of the neural hardware approach is given by

its superior power efficiency: While the peak power consumption of a Pentium IV
is in the order of 100 W, a single HAGEN block reaches a maximum of only
approximately 1 W [179] [178]. Achieving a two orders of magnitude lower power
consumption particularly facilitates the efficient realization of large networks.

Admittedly, these are rather coarse calculations. The above considerations are
primarily intended to convey a general feeling for the high potential of the concepts
that underlie the desing of the HAGEN prototype. A thorough discussion of the
computational performance and power consumption of the HAGEN ASIC lies
beyond the scope of this thesis. A more detailed account of these topics can be
found in [185].

The utilized network model (equation 5.1) allows for a feasible up-scaling offeasible up-scaling

the implemented networks not only by integrating more network blocks on future

126

The HAGEN Chip

ASICs or by increasing the size of the blocks itself. The digital chip interface
in connection with the clocked network operation and the fast LVDS bus readily
allows to distribute suitable neural network architectures over multiple intercon-
nected HAGEN chips [52]. As long as it can be ensured that connections from
network blocks on different ASICs always retain a time delay ∆t′ that is an integer
multiple of the time of one network cycle ∆t = 1/fnet, the synchronous operation
of the whole network is ensured (see equation 5.4). A corresponding hardware
setup will briefly be introduced in section 6.3.

5.5 Network Calibration

The presented synapse and neuron circuit implementations ensure that the device motivation

mismatches introduced during manufacturing of the ASIC primarily lead to mere
additive offsets in the analog operation [179]. Hence, the major part of the static
variations can be compensated for by adequately modifying the desired weights
before they are programmed into the synapse arrays. Within certain limitations,
this even allows to train the networks off-chip. While for some applications, this
might be a feasible or even necessary alternative to chip-in-the-loop training ap-
proaches, the main motivation to calibrate the static variations of the used network
ASIC is the ability to transfer the obtained sets of weights from one chip to an-
other without a severe loss in performance. In any case, detailed knowledge of the
sources and magnitudes of the involved offsets is required.

5.5.1 Types of Fixed Pattern Offsets

Three types of static variations can be distinguished that affect the calculation of
the network output:

Neuron offset The switching points of the single neurons do not consistently
equal 0. In general, each neuron exhibits an individual threshold Inoff such that it
will only be activated if Ipos−Ineg ≥ Inoff and remain inactivated otherwise. These
neuron offsets can be be positive or negative.

An easy way to compensate for this deviation is to reserve one column of neuron calibration

synapses per block for the neuron calibration: The corresponding input node
is permanently activated and the synapses are each assigned an individual weight
σnoff , such that the resulting synaptic current equals the offset Inoff of their re-
spective neuron. Regarding only the contributions I′pos and I′neg of the remaining
synapses, the firing condition of a given neuron then becomes I′pos − I′neg ≥ 0 as
desired. Hence, while the calibration of the neuron offset is comparably unprob-
lematic, it effectively reduces the available inputs of a block to 127 (or less, see
section 5.5.4).

Weight generation error A second type of of static deviation has its origin in
the special operation of the on-chip DACs (see sections 5.4.3 and 5.4.4). In order to
speed up the transfer of the generated weight to the intermediate current memory,

127

5.5 Network Calibration

a fixed offset has to be added to its analog value (for technical details see [179]).
Dedicated circuitry is included in the weight generation unit that accounts for
this effect by subtracting the temporary offset before the desired weight value is
eventually written into the synapse. But due to the present device variations,
this compensation is not entirely perfect, and a small deviation from the original
weight remains. Although this effect is the result of an imprecise operation of the
compensation circuit rather than being caused by the DAC itself, it shall in the
following be denoted as DAC offset for simplicity.

The DAC offset can be positive or negative and its exact magnitude cannot reli-
ably and exactly be predicted in advance. But since all synapses of a given neuron
are served by the same DAC, they all suffer from the same, initially unknown offset
∆IDAC. If w is the desired weight expressed in LSB units, the actually generated
current IDAC(|w|) that is written into the synapse via the current memory buffer
(section 5.4.4) obeys

IDAC(|w|) = J(|w|) + ∆IDAC. (5.11)

Here, J(w) is the part of the DAC output that is exclusively determined by the
programmed weight and fulfills J(0) = 0.

Individual synapse offset In addition to the above deviation which is the same
for all synapses of a given neuron, each single synapse exhibits its own individual
offset due to charge injection [4] [179]. The postsynaptic current Ips(| w |) that
is eventually contributed to either the inhibitory or excitatory input line of the
neuron will differ from the generated value IDAC(|w|) (see equation 5.11) according
to

Ips(|w|) = IDAC(|w|) + ∆Isyn. (5.12)

The offsets ∆Isyn are generally positive. Furthermore, considering all synapses
of one specific neuron, the single values ∆Isyn can be described in terms of a
row-specific mean offset ∆Iavg

syn and an individual offset ∆Iind
syn:

Ips(|w|) = IDAC(|w|) + ∆Iavg
syn + ∆Iind

syn (5.13)

While the DAC offset ∆IDAC and the individual synapse offset ∆Iind
syn can be posi-

tive or negative, the absolute value of their sum is guaranteed to be smaller than
the row-wise synapse offset mean, |∆IDAC + ∆Iind

syn |< ∆Iavg
syn. In other words, the

resulting total deviation

∆I = IDAC + ∆Iavg
syn + ∆Iind

syn > 0 (5.14)

remains to be always positive. Depending on whether a synapse is connected to
I+ or I−, the excitatory or inhibitory effect of the synapse will be enlarged.

Regarding the different terms in equation 5.14, only the last summand dif-
fers between the individual synapses. The first two offsets are common to all
synapses of a neuron and can therefore be combined to a row-specific mean offset
∆Irow = IDAC + ∆Iavg

syn. In summary, the final postsynaptic current can then be
written in the form

Ips(|w|) = J(|w|) + ∆Irow + ∆Iind
syn. (5.15)

128

The HAGEN Chip

The HAGEN prototype provides special functionality for the compensation of row-wise offset
calibrationany deviations that are common to all synapses of a given neuron. Additional

dedicated circuitry is included in the weight storage setup that allows to store an
externally defined offset which is then automatically subtracted from all weights
that are being copied from the intermediate current memories into the final synap-
tic storage capacitances [179]. This circuitry can be used to balance the effect of
the row-wise offsets ∆Irow, once their respective values have been determined.

Furthermore, given that the magnitudes of all individual synapse offsets ∆Iind
syn synapse offset

calibrationare known, they can in principle be compensated by subtracting corresponding
values from the respective programmed weights w. Unlike in the cases of the neu-
ron offsets and the row-specific deviations that can be accounted for by constant
values and independently of the desired weights, the calibration of the individ-
ual synaptic deviations requires to readjust every single value in each new set of
weights that is to be transferred into the synapse array. Such a procedure leads
to unwanted additional costs in the weight generation and is preferably avoided.

Finally, since the weight storage capacitor of a given synapse cannot be charged limitations

with less than no current at all, subtracting the necessary offset from the absolute
value |w| of the desired weight must not yield a negative number. If this situation
does occur, the weight value is reasonably set to zero. In other words, even if it
is decided to calibrate the single synapse offsets individually, only those weights
can reliably and accurately be stored in the synapse array whose absolute values
exceed a given threshold that is determined by the magnitude of the synaptic
fixed-pattern noise.

In either case, it is desired that the single synapse offsets are reasonably small
and therefore do not compromise the achievable resolution of the weights too
severely. In order to verify that the HAGEN prototype fulfills this requirement —
and to actually allow for the calibration of the chip — it is necessary to devise
means of determining the magnitudes of the discussed types of offsets. This will
be the topic of the following sections.

5.5.2 Determining the Offset Values

The HAGEN ASIC does not provide any means for measuring the DAC output,
the individual neuron thresholds, or the single weight values directly. The only
information that is provided by the network is its response to a given input pat-
tern. In the course of the work presented in this thesis, a calibration method has
been developed that allows to deduce the values of the above fixed pattern offsets
solely by evaluating how the neurons’ responses to a specific input depend on the
specified weight values.

The involved measurements are based on the following basic procedure: The basic setup

inputs of the examined block are deactivated entirely except for two selected nodes.
For a given neuron, the two corresponding synapses are set to opposite weight
values w and −w which would ideally result in Ipos = Ineg. In the general case,
however, the individual effective offsets of the two synapses will cause the resulting
total neuron input to be different from zero and the offset of the neuron will have
moved its threshold to negative or positive values. Consequently, the neuron may

129

5.5 Network Calibration

either be activated or deactivated but will usually not be at its switching point.
In order to find this point, the weight of one of the synapses — without loss ofpairwise synapse

sweep generality it shall be the excitatory one — is swept across a range centered around
the original value w and large enough to include all variations. The inhibitory
synapse is kept fixed at −w. It has to be borne in mind that the total static offset
∆I of the varied synapse only affects the absolute value of the postsynaptic current
and thus inverts its effect once the swept weight crosses zero. In order to avoid the
resulting discontinuity, range and center of the sweep have to be chosen such that
it only covers positive weight values and retains a sufficient distance from zero.

Starting from the chosen minimum value, the sweep is done upwards in LSB
units of the DAC. For each weight value, the network response is evaluated fiverepeated measurement

times in order to account for analog noise in the system. If the neuron has fired
three or more times, it is considered to have reached the threshold. The difference
between the corresponding weight value and the original weight w is taken as the
result of the measurement x.

Let the swept synapse be assigned the index i and the fixed reference synapse be
labeled a. According to what has been stated in the previous section, the selected
reference weight value w, the total individual offset currents of the two synapses
∆Ii and ∆Ia, the neuron offset current Inoff , and the measured value xa

i obey:

Inoff = −J(w) − ∆Ia + J(w + xa
i) + ∆Ii (5.16)

As a general convention, the subscripts and superscripts of xa
i shall denote theabstracted

measurement swept and fixed synapse, respectively. For the calibration of the chip, the offset
currents ∆Ii, ∆Ia, and Inoff need to be determined in LSB units of the DACs.
Therefore, the corresponding values σi, σa, and σnoff shall be defined according to
J(σi) = ∆Ii, J(σa) = ∆Ia, and J(σnoff) = Inoff . Furthermore, it will be assumed
that the used digital to analog converters exhibit a sufficient linearity as to regard
J(x) as a linear function [179]. Equation 5.16 can then be simplified to become

σnoff = −(w + σa) + w + σi + xa
i

= −σa + σi + xa
i .

(5.17)

Since the original weight value w cancels, equation 5.17 remains to contain only
the measurand xa

i as a known quantity.
If the roles of the two synapses are exchanged, a second measurement yields theexchanged roles

result xi
a and one obtains the set of equations

−σa + σi + xa
i = σnoff (5.18)

−σi + σa + xi
a = σnoff (5.19)

which can be transformed into an expression for the neuron offset σnoff

σnoff =
xa

i + xi
a

2
. (5.20)

Apart from that, it turns out that pairwise measurements of the above type dotriple sweep

not suffice to uniquely determine the weight offsets σa and σi. It is required to

130

The HAGEN Chip

involve a second reference synapse b and perform a slightly modified sweep of the
synapse i where the inhibitory weight −w is distributed over the two synapses a
and b:

σnoff = −(
w

2
+ σa) − (

w

2
+ σb) + w + σi + xab

i

= −σa − σb + σi + xab
i

(5.21)

After a last pairwise measurement between the synapses b and a, one finally obtains
a set of four linearly independent equations

−σa + σi + xa
i = σnoff (5.22)

−σi + σa + xi
a = σnoff (5.23)

−σa − σb + σi + xab
i = σnoff (5.24)

−σa + σb + xa
b = σnoff (5.25)

that can easily be solved to express all four unknowns σa, σb, σi, and σnoff in terms
of the four measured values xa

i , xi
a, xa

b , and xab
i . The expression for the neuron

offset σnoff has already been given in equation 5.20 and the offset of synapse i
becomes:

σi = xab
i + xa

b − 2xa
i (5.26)

Similar results can readily be derived for σa and σb.

Each of the resulting values σi represents the combination of the row-specific row-wise offset and
single synapse
deviations

offset ∆Irow and the individual effective synapse offset ∆Iind
syn. Therefore, it stands

to reason to identify the mean of all measured values σi over a given row of
the synapse array with the corresponding row-wise offset ∆Irow. The individual
deviations from this mean value are then regarded as to represent the individual
offsets ∆Iind

syn of the respective synapses.

5.5.3 Calibration Measurements and Results

A set of measurements has been performed to quantify the magnitudes of the measurement scheme

discussed deviations within two typical HAGEN chips. The sweeps 5.22–5.25
are repeated for every synapse i, 2 ≤ i ≤ 127 of each neuron in the investigated
network blocks. The synapse columns 1 and 128 are excluded to avoid edge effects.
The reference synapses a and b are randomly chosen for each synapse i and it is
ensured that the three involved synapses are not adjacent to each other in order
to exclude any corruption of the results due to potential crosstalk. In practice, all
synapses of a given column of the network block can be swept simultaneously.

Besides the individual offsets σi, the 126 measurements of the investigated
synapses also yield a total of 126 values for the respective neuron offset. Their
mean value is taken to be the final result σnoff . The whole calibration procedure for
one block is repeated 100 times in order to obtain information about the temporal
fluctuations as well.

Table 5.2 shows the results for two network blocks on two different HAGEN measurement
parameterschips. The dynamic range of the synapses has been adjusted to yield a maximum

131

5.5 Network Calibration

chip 1 chip 2

neuron offset width (temporal mean of spatial rms of neurons) 74 73
synapse offset width (temporal mean of spatial rms of synapses) 2.4 2.5
synapse noise width (spatial mean of temporal rms of synapses) 2.2 2.3

row offset mean (mean of spatio-temporal mean of synapse rows) 10.7 12.4
row offset width (rms of spatio-temporal mean of synapse rows) 2.9 2.7

Table 5.2: Results of the calibration measurements on two HAGEN chips. The values
are given in LSB units of the used DACs.

current Imax
ps = 30 µA, and the chosen reference weight w = 180 LSB thus corre-

sponds to 5.4 µA. The numbers in table 5.2 are given in LSB. The mean values of
the neuron offsets averaged over each block are zero, and the same applies to the
temporal fluctuations of the measured single synapse offsets.

In terms of the neuron input range of ±300 µA, the measured width of theresults: neuron offset
& synapse variations neuron offset distribution of approximately 74 LSB =̂ 2.2 µA is less than 1 %. The

individual synaptic fixed pattern offsets turn out to be in the same order as the
temporal noise (rows two and three of table 5.2). The latter is deemed to be
dominated by crosstalk from the digital parts of the system [178].

It has already been stated in section 5.4.3, that the resolution of the neuron
as well as the nominal resolutions of the DAC units and the weight storage are
50 nA. In this respect, the resulting sigma of the single synapse offset distribution
of 75 nA and the observed temporal fluctuations of about 70 nA are satisfactory.

The row-wise mean of the individual synapse offsets is obtained by averagingresults: row-wise
mean offset the offsets of all synapses of the corresponding neuron. This value is denoted

as “row offset mean” and is averaged over all neurons of the respective block as
well as over all 100 successive measurements (second last row in table 5.2). In
agreement with what has already been stated in section 5.2, these mean offsets
are observed to be larger than the single synapse variations. The resulting total
synapse offset is always positive. Although, as expected, the row-wise averages
of the synaptic offsets do vary between the individual neurons of a block, the
variations are only small (last row of table 5.2) and comparable in magnitude to
the synaptic fixed-pattern noise.

5.5.4 Calibration Practice

It can be inferred from table 5.2 that an individual calibration of the singleomitting the synapse
calibration synapses is not to be considered essential since the static offsets are in the same

order of magnitude as the inevitable analog noise, and it is therefore omitted in
practice. Nevertheless, the observed fixed-pattern offsets and temporal fluctua-available dynamic

range tions persist to ultimately limit the achievable accuracy of the weights. Given
a synaptic dynamic range of 30 µA like it is used for the measurements above,
weight values can be specified with an uncertainty of only a few LSB. To limit the
chips overall power consumption and to better exploit the dynamic range of the
neuron, a lower dynamic range of the synapses Imax

ps might be desired. This would
necessarily result in a decreased precision of the weight values when measured in

132

The HAGEN Chip

LSB, and it has been discussed in section 5.5.1 that this particularly affects the
feasibility of small absolute weight values (see also section 8.2.2).

In order to allow for an adequate realization of absent connections within the assuring w = 0

implemented networks, all synapses that are assigned a weight value of zero are
switched off completely. Regardless of the state of the corresponding input node,
these synapses do not contribute to the input current of the respective neuron. In
other words, a weight value of zero can always be realized without any deviations.

Working with Calibrated HAGEN Chips

In practice, the measuring scheme that is employed to determine the necessary standard calibration
measurementcalibration information for the used HAGEN chip is slightly different from the

one described in section 5.5.3. The set of sweeps 5.22–5.25 is repeated five times
for each synapse i and the five obtained values of σi are averaged to yield the
final result. The neuron offsets and the row-specific averages of the synaptic
offsets are calculated by taking the respective mean of all corresponding 5 · 126
measurements within the respective row, again excluding the first and the last
synapse. This procedure is repeated for each block. For a given HAGEN ASIC, the
whole described measurement needs to be conducted only once and the obtained
data can henceforth be used for the calibration of this chip as desired.

A closer investigation of the results reveals that in contrast to the last synaptic edge effects

column, the first column of synapses (facing towards the DACs in the center of the
ASIC) is not affected by edge effects and is therefore considered to be usable for the
implementation of networks without problems. Excluding it from the calculation
of the neuron and row-specific averaged synapse offsets is merely a precaution
to err on the side of conservatism. In the case of the last column, edge effects
measurably manifest themselves in the form of increased static offsets of about
40 % of the synaptic dynamic range. Hence, for safety, the 128th input node of
each block commonly remains unused.

According to the scheme described in section 5.5.2, the neuron offset σnoff is improved neuron
offset calibrationmeasured in a setup where the two swept synapses are operated at potentially

large weight values of approximately −w and w + σnoff . Due to small remain-
ing nonlinearities of the neuron and the respective DAC [179], compensating the
neuron offset by only a single weight with a comparably small value of σnoff − σi

gives rise to slight but measurable deviations. Therefore, the proposed procedure
for the neuron offset calibration (section 5.5.1) is modified in practice: The accu-
racy of the compensation is improved by using two permanently activated input
nodes c1 and c2 instead of one. The first synaptic column is set to −w + σc1 in
order to yield the reference value w used during the offset measurement. The
weights of the other column are set to w − σc2 + y, using the respective neuron
offset σnoff of the given row. This setup approximately reproduces the conditions
of the measurement, thereby minimizing potential deteriorations due to present
nonlinearities.

In summary, omitting the last column of each block to avoid edge effects and remaining resources

reserving two columns for the neuron calibration leaves a total of 125 usable inputs
per block. By convention, columns 126 and 127 are employed for the compensation

133

5.5 Network Calibration

of the neuron offset. As described in section 5.5.1, the calibration of all row-wise
synapse offsets is performed in hardware. The operation of a calibrated chipremaining deviations

then deviates from the ideal model formulated in equation 5.4 merely by the
limited dynamic range of the neurons, the slight nonlinearities of the implemented
DACs [179], as well as the analog noise and the static individual synapse offsets.
For typical values of the maximum synapse current Imax

ps ≈ 22–30 µA, the static and
temporal weight variations are in the order of less than 1 %. The same applies to
all potential deviations that are caused by slight imperfections of the used digital
to analog converters [179].

Implications for Training and Reusability

It can be concluded that the use of calibrated HAGEN chips in principle allowsoff-chip training

for the utilization of suitable off-chip training approaches, provided that several
precautions are taken. First, the theoretically calculated weight values have to
be feasible also in the presence of random static and temporal variations in the
order of up to 1 %. Second, the used training model has to account for the limited
dynamic range of the neurons (section 5.4.3).

While it is possible to incorporate these aspects into the formulation of dedicatedchip-in-the-loop
training off-chip training algorithms, it is evident that chip-in-the-loop approaches persist

to be advantageous in so far as they automatically account for these peculiarities
of the hardware substrate. Most notably, training the networks directly on the
ASIC will favor systems that inherently exhibit an improved robustness against the
present analog noise. From this point of view, the use of calibrated chips remains
to be attractive mainly in one respect: the reusability of the trained networks on
different ASICs.

Since the neuron offsets and the row-wise deviations are readily accounted forimproving chip
transferability by the calibration, the main issue that remains to potentially impede the usability

of a given set of weights on several different ASICs is given by the individual
synaptic variations that differ from chip to chip. This problem can be overcome
in at least three conceivable ways.

- Although a compensation of the single synaptic deviations is not feasibleone-time calibration

during iterative training, the measured offset values can be used to modify
the weights of an already trained network as to reduce their specialization to
the chip they have been optimized on. In turn, before the resulting generic
set of weights is used in another ASIC, it can once be corrected by the
individually measured offset values of the target synapses.

- The magnitudes of the single synapse offsets are only in the order of 1 %re-training

of the total weight range. Therefore, if the network’s performance shows a
measurable deterioration after being transferred to another chip, it is rea-
sonable to assume that the original quality can be restored by a short and
cautious re-training.

134

The HAGEN Chip

- Similar to the robustness against temporal fluctuations that is automatically promoting inherent
robustnesspromoted by chip-in-the-loop approaches, the utilized network structures

and employed training strategies could be optimized to yield networks that
inherently exhibit the required insensitivity to spatial variations as well.

The best results can be expected from the combination of all three approaches.
However, if successful, the last strategy is particularly attractive in so far as it
potentially renders the first two procedures unnecessary. Moreover, aiming for
neural networks that are robust against unreliable substrates by construction is
not only motivated by the properties of biological neural systems. If feasible
means of generating such networks could be devised, the underlying concepts
might also be applicable to other systems, even those for which the first two
solutions do not constitute available alternatives. It remains to be demonstrated
that corresponding strategies for the construction and training of neural networks
on the HAGEN ASIC can be found. A promising approach will be investigated in
chapters 9 and 10.

135

Chapter 6

The Hardware Environment

Any technology distinguishable from magic
is insufficiently advanced.

Gregory Benford

The preceeding chapter has introduced the HAGEN neural network chip as a
feasible substrate for the flexible implementation of fast, massively parallel, and
scalable neural networks in a low power, mixed-signal hardware. In order to be
applicable to desired information-processing tasks, the ASIC itself needs to be em-
bedded within a complete neurocomputer framework (see section 2.4.2) that pro-
vides the necessary functionality to interface and train the implemented networks.
The following sections will describe the corresponding hardware environment that
is used for all experiments presented in this thesis.

Due to its fast reconfigurability, the HAGEN ASIC is particularly well suited for
highly iterative chip-in-the-loop training and it has been motivated in section 2.4.5
that model-free algorithms like, e.g., evolutionary strategies represent promising
approaches. Still, from what has been discussed in chapters 3 and 4 it can be
inferred that efficient evolutionary neural network training strategies persist to be
a topic of research themselves. Hence, the flexibility of a hardware neural network
framework to implement and evaluate different training algorithms constitutes an
important aspect.

At the same time, the configurational speed and the fast network operation
of the used HAGEN ASIC (see sections 5.4.4 and 5.4.5) can only efficiently be
exploited during training if the algorithm itself is capable of generating new can-
didate solutions at a sufficient rate. Apart from that, it has been stated in sec-
tion 2.4.5 that chip-in-the-loop training gives rise to considerable data transfer
between the algorithm implementation and the neural network ASIC. Therefore,
in order to best exploit the potential of the HAGEN chip also during training,
both, the used algorithm and the required data transfer need to be realized as
efficient as possible.

Among other things, the presented hardware setup features a specialized co-
processor architecture that is implemented in a configurable logic and allows to
speed up the execution of evolutionary algorithms by performing the data inten-

137

6.1 The Used Hardware Framework

PSfrag replacements

Darkwing Board

FPGA

P
C

I
In

te
rf

ac
e

RAM DAC

LVDS

HAGEN

ASIC

Neural Network

Module
Host

Computer

Figure 6.1: Schematic illustration of the hardware setup that is used for all presented
experiments. The used HAGEN ASIC is connected to an IBM compatible general purpose
computer by the custom-built PCI-based FPGA adapter board called Darkwing [14].

sive processing of the population’s genetic material in a dedicated hardware. This
so-called evolutionary coprocessor will be described in section 6.2 and can be pro-
grammed externally by an extensive instruction set. This allows for the remaining
parts of the training algorithm to be implemented in software and executed on a
common microprocessor, thereby reconciling the aim for flexibility with the desire
for enhanced training speed.

Nevertheless, while the hardware setup employed for the experiments presented
in this thesis reasonably accounts for efficiency and flexibility considerations, it
does not yet fully exploit the potential of the described HAGEN ASIC — neither
in terms of speed nor with regard to an efficient distribution of large networks
over multiple chips. For this reason, an improved, modular hardware environment
has been developed that overcomes these limitations. At the time of writing of
this thesis, this setup is near completion. In several respects, the novel evolu-
tionary training strategies that are introduced and evaluated in chapter 9 have
been devised in anticipation of this advanced setup and it will therefore briefly be
described at the end of this chapter.

6.1 The Used Hardware Framework

Figure 6.1 schematically illustrates the hardware environment that is used for thegeneral setup

presented experiments. A single neural network ASIC is connected to a standard
IBM compatible general purpose computer by a custom-built, PCI-based FPGA
(Field Programmable Gate Array) card. This PCB (Printed Circuit Board) has
been developed within the Electronic Vision(s) Group by Joachim Becker and is
called Darkwing [14]. It is inserted into one of the available standard PCI slots of
the host computer.

A central component of the used hardware setup is the programmable logicFPGA and PC

which is located on the Darkwing board. It serves as a digital controller for

138

The Hardware Environment

PSfrag replacements

AD/DA
components

(bottom)

(bottom)
SDRAM

FPGA

CPLD

PLX

CMC
connectors

PCI
interface

SRAM

Figure 6.2: Photograph of the top side of a Darkwing board (photograph by
F. Schürmann [185] with kind permission). Apart from the central FPGA, Darkwing
includes AD/DA conversion functionality, analog power supply for the connected ASICs,
as well as local memory. The provided CMC connectors allow to add specialized adapter
boards that are required to connect the different types of chip-carrier PCBs that host the
actual mixed-signal ASICs (see also figure 6.3).

the network chip and also provides its interface to the host PC. Furthermore,
time-critical parts of the evolutionary chip-in-the-loop training algorithm can be
migrated to the FPGA, as will be described in section 6.2. Alternatively, the
training can also be implemented purely in software. In general, at least the
higher-level parts of the training algorithm as well as the common user interaction
with the connected HAGEN ASIC are realized in software and executed on the
host PC (see also chapter 7).

Being designed as a suitable test system for the evaluation of different mixed- general usability

signal ASIC prototypes, the Darkwing Board is also used for other projects of the
Electronic Vision(s) group, such as evolvable hardware experiments [125] [209] or
the evaluation of an optical sensor with logarithmic response [27].

6.1.1 The Darkwing Board

Figure 6.2 shows a photograph of the top side of the Darkwing board. Apart
from the central FPGA and the PCI interface to communicate with the host
PC, Darkwing includes analog-to-digital (AD) as well as digital-to-analog (DA)
conversion functionality, analog power supply for the connected neural network
ASIC, and local memory (compare figure 6.1).

139

6.1 The Used Hardware Framework

FPGA and PCI Interface

The Darkwing board is designed to host a commercially available Xilinx Virtex-Econfiguration

FPGA [229]. It is compatible with different speed grades of various existing types
(XCV300E, XCV400E, and XCV600E). In order to allow for this flexibility, the
FPGA is not configured at startup. Instead, the configuration data has to be
provided by the host computer via the PCI interface. While a stand-alone PCI
bridge (a PLX PCI 9054 [162]) interfaces the FPGA to the PCI bus, the actual
configuration of the FPGA is assumed by a non-volatile programmable logic device
(a Xilinx CPLD XC9536XL [233]).

Once configured, the FPGA assumes the operation of all remaining components,responsibilities

i.e., the on-board memory, the DA and AD converters, and the interface to the
connected network chip. The FPGA configuration that implements this func-
tionality has been programmed in the high-level hardware description language
VHDL [49] (Very high speed integrated circuit Hardware Description Language).

The external PCI interface is a common 32 bit bus that operates at a frequencyPCI interface

of 33 MHz, i.e., has a maximum bandwidth of 132 Mbyte/s. Since this is only
about 10 % of the nominal bandwidth of the HAGEN chip [185] (see table 5.1),
the FPGA needs an associated local memory that can be accessed at a sufficient
rate to meet the interface requirements of the network ASIC.

Local Memory

Two types of local memory are provided: first, two static RAM (SRAM) chipspossible
configurations with 1 Mbyte each and second, a removable synchronous dynamic RAM (SDRAM)

of up to 256 Mbyte that can be inserted into a corresponding socket on the back
side of the board. The smaller SRAM guarantees a fixed latency, while the larger
SDRAM exhibits a varying latency. The different types of memory can only be
used mutually exclusive. Which of the two RAM configurations will be eventually
employed depends on the targeted application (see also section 6.2).

Within a typical chip-in-the-loop training setup, the primary purpose of the lo-memory access

cal memory is to provide fast access to the weights and input data as to allow for
an operation of the network chip at a reasonable frequency (see also section 6.1.3).
Apart from that, the RAM is required to store the network response that is read
back after the execution of a network on the ASIC. A memory controller is im-
plemented in the FPGA that enables the software on the host computer to trans-
parently access this memory.

DA/AD Converters

Being designed as a test system for various kinds of mixed-signal ASICs, the
Darkwing board readily supports analog signals. Since the FPGA itself is purely
digital, analog-to-digital as well as digital-to-analog converters are included that
allow the configurable logic to cope with analog input and output, respectively.

Two types of DACs are available. A pair of dual-channel 12-bit voltage DACsDA conversion

with a settling time of about 12 µs are used to generate slowly varying signals, like
e.g., static bias voltages for the used HAGEN ASIC. Some applications require

140

The Hardware Environment

PSfrag replacements

chip-carrier PCB LVDS interface adapter

HAGEN prototype
(packaged)

SCSI
connectors connectors

CMC

LVDS bus

supply voltages

Figure 6.3: Photograph of the HAGEN carrier PCB and the LVDS interface adapter
board (photograph by F. Schürmann [185] with kind permission). The LVDS extension
board gets connected to the Darkwing card via the shown CMC connectors. Apart from
the LVDS signals, the SCSI interface to the chip-carrier PCB also conveys the digital and
analog supply voltages for the HAGEN ASIC (see text).

a faster generation of analog values and therefore, one 16-bit current DAC is
included on the board that has a conversion time of only 25 ns. For the operation
of the HAGEN ASIC, this DAC remains unused.

Besides that, a 12-bit ADC (Analog to Digital Converter) with a sampling rate AD conversion

of 40 MHz allows to perform the necessary analog-to-digital conversions whenever
analog signals need to be connected to the FPGA. With the inputs and outputs
of the used HAGEN chip being entirely digital, no AD conversion is required for
its operation. In the employed setup, the ADC thus remains unused as well.

Analog Power Supply

The primary power supply for the Darkwing board is provided by the PCI interface
(3.3 V, 5 V, and ±12V are available). These power supplies are shared between all
components of the PC and are electrically noisy. Besides special power supplies
that meet the requirements of the various digital components, the board includes
extra power supplies with adequate blocking capacitors that serve its analog com-
ponents. The DACs and the ADC are fed by an analog 5 V power supply that can
also be used for the connected ASIC.

Peripheral Bus and Connection to the HAGEN chip

The employed Xilinx FPGAs provide enough I/O capabilities not only to manage connecting ASICs

the local memory, serve the PCI interface, and control the AD/DA converters, but

141

6.1 The Used Hardware Framework

also — and most importantly — to serve the peripheral bus to the connected neural
network chip. Dedicated CMC (Common Mezzanine Card) connectors allow to
connect special PCB extensions to the Darkwing board that translate its generic
interface to the specific hot-plug interface of the particular chip-carrier PCBs that
host the different mixed-signal ASICs.

A photograph of both, the HAGEN carrier PCB and the special LVDS interfaceconnecting HAGEN

adapter that forms the corresponding extension to the Darkwing board is shown in
figure 6.3. Due to the generic features that are already provided by the Darkwing
card itself, the functionality of the chip-carrier PCB is mainly reduced to passive
electronics and mechanical adapters. In the case of the HAGEN ASIC, the con-
nectors of the carrier PCB and the interface adapter are mechanically compatible
with the SCSI Parallel Interface connector 2 type P [159]. Electrically, the pin
configuration is adapted to suit the purpose of interfacing to the HAGEN pro-
totype (for details see [185]). In addition to the necessary supply voltages, the
interface mediates 16 bi-directional and 5 uni-directional LVDS links that can be
operated at up to 300 MHz. Voltage regulators on the carrier PCB derive the
required analog voltage of 3.3 V (see table 5.1) from the 5 V that are provided by
the Darkwing board.

6.1.2 The Host Computer

Within the described hardware configuration, the Darkwing card is inserted into
one of the PCI extensions slots of the used IBM compatible general purpose com-
puter. Since contemporary PCs provide multiple slots, this in principle allows to
operate several boards simultaneously in one machine.

At present, the used host computers execute a Linux operating system withoperating system

kernel 2.4.x. As it will be discussed in section 7.1.4, the software that is employed
for the operation and training of the HAGEN chip is largely platform independent
and is deemed to be easily portable to other operating systems as well.

For the various investigations within the Electronic Vision(s) group, a totalused setup

of 11 similar configurations are currently in operation that include either Intel
Pentium IV or AMD Athlon XP processors. The three setups that are used for
the presented experiments feature Intel Pentium IV CPUs with 2.4GHz. One
single Darkwing board is connected to each computer.

6.1.3 Common Chip-in-the-Loop Operation

In general, the following three basic steps are iterated during a common chip-in-basic scheme of
iteration the-loop training process (see also figure 2.11): First, the algorithm generates a

new candidate solution, i.e., a new network configuration for the HAGEN ASIC
that is to be used to solve the task in question. Besides the individual weight
values, the unambiguous definition of a network on the HAGEN chip requires the
specification of the activated feedback and inter-block connections as well as the
number of network cycles that are operated for each applied input pattern (see
section 5.2).

142

The Hardware Environment

Second, the generated network configuration is sent to the HAGEN ASIC for
implementation and the desired set of input patterns is applied successively. After
the network has finished processing all its input patterns, the resulting network
responses are stored in the local memory of the FPGA such that, third, the al-
gorithm can read back this data for evaluation. As long as the observed perfor-
mance of the evaluated network is not satisfactory — and all potential additional
termination conditions remain unfulfilled — the algorithm proceeds with the next
iteration, i.e., starts by generating a new candidate solution, etc.

Data Handling

If the training algorithm is purely implemented in software, all parts of the network required data transfer

configuration that potentially change between the single candidate solutions (e.g.,
the weight values) need to be retransmitted from the host PC over the PCI bus
to the local memory of the FPGA for each tested network. The same applies to
the network response that needs to be read back from the memory of the FPGA
into the RAM of the host computer for evaluation.

In contrast, the input patterns that are applied to the single candidate solutions input data handling

during training are usually the same for all networks. Within the experiments
presented in part III, these input patterns are therefore transferred to the local
memory of the FPGA only once at the beginning of a given training run and
remain there to be applied to all tested candidate networks.

Speed Considerations

In the used setup, the HAGEN chip can be operated at frequencies of up to HAGEN interface
speed100 MHz which yields a maximum bandwidth of the data transfer between the

FPGA and the HAGEN ASIC of about 500 Mbyte/s [185]. This is about 4 times
the nominal maximum speed of the PCI bus (see section 6.1.1). If the complete
network specification and the desired input patterns are available in the local
memory, an exemplary network that requires two network cycles and utilizes all
33k synapses in all four blocks can be loaded into the HAGEN chip and process
1000 input patterns within less than 1 ms.

Using a software implemented algorithm, the speed of the system during training PCI bottleneck

is limited by the considerable amount of data that has to be transmitted via the
PCI bus from the host PC to the local memory on the Darkwing board or vice
versa. According to what has been stated above, this primarily refers to the weight
values and the output data of the network.

In order to avoid this bottleneck, it suggests itself to at least partly implement
the generation of new candidate solutions and/or the evaluation of the network
outputs within the FPGA and thereby to cut down the data that needs to be
exchanged with the host computer. Ultimately, it would be desirable to entirely
avoid any significant data transfer over the PCI bus, e.g., by reducing the parts of
the training algorithm that need to be executed on the host PC to mere controlling
and user interaction. A feasible approach is described in the next section.

143

6.2 The Evolutionary Coprocessor

6.2 The Evolutionary Coprocessor

During the experiments presented in this thesis, the HAGEN chip is trained with
evolutionary chip-in-the-loop algorithms (see chapters 3 and 4). Apart from the
fitness calculation that needs to be performed for each new individual in every
generation, one of the most time-critical aspects of evolutionary optimization is
the processing of the genetic material in the population. Using a generational
replacement scheme (see section 3.4.1), a whole generation of new genotypes needs
to be created from the genomes of the previous population in each iteration.

Depending on the number of free parameters, the creation of offspring can in-data-intensive genetic
operations volve large amounts of data. For example, even if only the weights of half of the

synapses in one network block of the HAGEN ASIC were to be optimized, a single
genome would still contain 4096 genes. On the other hand, given a desired set
of mutation and recombination operators, all pairs of mating individuals are pro-
cessed in a similar way, and all genes within the genome are usually regarded as
equivalent. Tasks that require a similar set of simple operations to be repeatedly
performed on large sequences of data are particularly well suited for a pipelined
implementation in a specialized hardware.

This section introduces a dedicated coprocessor architecture that speeds upgenetic operations in
hardware evolutionary training algorithms by performing the required genetic variation op-

erations within a configurable logic. This so-called evolutionary coprocessor is
coded in VHDL [49] and has been designed by Tillmann Schmitz [182]. A detailed
description of the coprocessor will be given in Tillmann Schmitz’ PhD thesis1.
The following sections confine themselves with discussing those aspects that are
relevant for the work presented in this thesis.

6.2.1 Coprocessor Setup Overview

In the described hardware setup, the coprocessor resides within the FPGA ofgeneral setup

the Darkwing board. In order to retain a sufficient flexibility in the realizable
evolutionary training approaches, the remaining parts of the training algorithm
persist to be implemented in software and are executed on the microprocessor
of the host computer. At the same time, the coprocessor completely takes over
the management and processing of the genomes in the evolved population and is
controlled by the software via a given set of instructions. Figure 6.4 schematically
illustrates the data flow within this setup.

The genomes that are being processed by the coprocessor are stored within the
local memory of the FPGA. In order to allow for reasonably sized populations
of genomes of the required size, the used hardware setup employs a 64 Mbyte
SDRAM module that is inserted into the corresponding socket of the Darkwing
board (see section 6.1.1).

Since the genetic material that defines a given candidate solution is stored withinadvantages

the local memory, the evaluation of individual networks on the HAGEN ASIC does
not require this configuration data to be transmitted over the PCI bus. In addition
to the acceleration of the genetic operations, this yields a substantial speed gain

1At the time of this writing, the mentioned thesis has not yet been finalized.

144

The Hardware EnvironmentPSfrag replacements

weights
weights

inputinput

resultsresults

instructions
Evolutionary
Coprocessor

Local

Memory

Neural
Network

ASIC

Host
Computer

Figure 6.4: Schematical overview of the evolutionary coprocessor setup (after [182]).
The genetic material is stored within the local memory of the FPGA. It is managed
and processed exclusively by the coprocessor which in turn is controlled by the training
software via an extensive set of instructions.

in comparison to a pure software implementation of the training algorithm that
needs to be executed on the host computer (see also section 10.1).

6.2.2 Genetic Representation and Translation

According to the terminology introduced in section 3.4.2, the coprocessor em-
ploys an integer representation and implements a direct encoding scheme. In
correspondence to the nominal resolution of weight values on the HAGEN pro- integer representation

totype, one gene is expressed with 11 bit resolution. Nevertheless, in order to
simplify the addressing of the genes in the SDRAM, each gene occupies two bytes.
The remaining 5 bit are used internally to control the operation of the coprocessor
(see below).

The single genes are linearly arranged to chromosomes that are stored con- genome structure

secutively in the used SDRAM. Following the considerations brought forward in
section 3.4.4, complete genomes can be formed from multiple chromosomes. In
principle, the coprocessor can readily process chromosomes of variable length and
genomes with arbitrary numbers of chromosomes.

In order to fully benefit from the acceleration that is achieved by performing direct encoding

the genetic operations in a specialized hardware, the translation of the processed
genotypes into valid network configurations for the HAGEN ASIC is implemented
within the FPGA as well. In its current version, the translation unit only supports
a direct decoding of genes into corresponding weight values: A valid chromosome
needs to contain one gene for the weight of each of the 128 synapses that lead to
one specific neuron on the HAGEN chip. A complete weight configuration for the
ASIC is then defined by a genome of 4 · 64 chromosomes (a thorough description
of the genetic representation that is used for the presented experiments will be
given in section 8.3.1).

145

6.2 The Evolutionary Coprocessor

Architecture Specification

Apart from the mere weight values, the additional parts of a complete chip config-fixed architecture

uration that are required to uniquely define the architecture of the final network —
i.e., the activated feedback and inter-block connections in combination with the
used number of network cycles— can, as yet, not be coded within the genome.
Hence, in the current setup, the potential of the coprocessor can only be exploited
if the architecture of all networks is fixed during training. At the beginning of
the training run, the specification of the corresponding parameters can then be
transferred to the local memory of the FPGA in order to be used for all individ-
uals that will be evaluated during the following simulated evolution. Otherwise,
the individual architecture specification for each new candidate solution has to be
transferred from the host PC which significantly impedes a fast execution of the
training procedure.

Given a desired architecture, not all neurons and synapses of the HAGEN ASICdetermining the
architecture are necessarily used for the actually implemented network. Those genes of a chro-

mosome that correspond to unused synapses of the coded neuron are reasonably
set to zero. The coprocessor allows to mark single genes as deactivated such that
they are not affected by mutation (internally, this involves one of the 5 spare bits
in each gene, see below). In other words, any genes that are set to zero and are
also marked as deactivated within all genomes of the initial population, will re-
main zero in all individuals throughout the whole evolution. In combination with
the fixed feedback and inter-block connections as well as the specified number of
network cycles, this allows to optimize the weight values of networks with any
desired architecture that can be implemented on the HAGEN ASIC.

6.2.3 Pipeline Operation Overview

The design of the coprocessor pursues two aims: First, it needs to process a
high throughput of genetic data. Second, it is desired to allow for a wide range
of conceivable evolutionary algorithms to be implemented without changing the
hardware configuration. In consideration of these requirements, the coprocessor
is implemented as a pipeline whose single stages can be managed and controlled
by a given set of instructions.

A simplified schematic of this pipeline is shown in figure 6.5. Given the addressesprocessing scheme

of the two parent chromosomes “parent 1” and “parent 2” in the local memory, the
respective genetic material is fed through the pipeline successively. According to
the instructions that control each stage of the pipeline, the offspring chromosome
is constructed gene by gene and is written to a specified target address.

In fact, the pipeline is designed fourfold parallel, i.e., four genes can be processedprocessing speed

in each clock cycle. At a clock frequency of 80 MHz, this leads to a nominal
maximum rate of 320 · 106 processed genes per second. However, the following
description will only assume a single pipeline for simplicity; the generalization to
four pipelines is straight forward.

Each of the single stages shown in figure 6.5 involves numerous decisions that
are partly random and can partly be controlled via instructions. For the random

146

The Hardware Environment

PSfrag replacements

software
in

st
ru

ct
io

n
s

p
ip

el
in

e
co

n
tr

ol

parent 1 parent 2

current

current

gene

gene

local

local

memory

memory

crossover

control

control

control

control

replace

replace

add

uniform
uniform

Gaussian
Gaussian

mutation

mutation
random

random

number

number

storetake
previous previous

offspring

Figure 6.5: Simplified schematic of the coprocessor pipeline (after [182]). The genetic
data of the two parent chromosomes is taken from the local memory and is fed through
the pipeline gene by gene. The operation of the single pipeline stages can be controlled
by the software via an extensive set of instructions. In the first stage, it is decided from
which of the two parents the current gene is to be taken. The following two stages perform
a uniform and a Gaussian mutation, respectively. The last pipeline stage, finally, allows
to ignore the result of the previous steps and rather set the gene to half the value of its
predecessor (see also section 8.3.1). The finally obtained gene is appended to the offspring
chromosome and is written to the specified address in the local RAM.

147

6.2 The Evolutionary Coprocessor

decisions, a random number generator is implemented that produces a pseudo-
random bit sequence. Considering the specification and handling of instructions,
a more detailed discussion will be given in sections 6.2.4 and 6.2.5. For now, the
processing scheme of the pipeline is to be described on a general level.

The first stage implements the recombination step. Here, it is determined frompipeline stages

which of the two parents the current gene gi is to be taken. In the second stage,
it is tested whether a uniform mutation is applied. If this is the case, the result
of the first stage is replaced by a new random value that is uniformly distributed
within a previously specified range. Otherwise, the outcome of the first stage
remains unchanged. In any case, the gene is passed to the third stage where it is
potentially made subject to a Gaussian mutation. If it turns out that this form of
mutation is indeed to be applied, a random number is added to the original value
which obeys a normal distribution of zero mean and a selectable width σr (if the
result exceeds the allowed range, it is set to the respective maximum or minimum
value).

The last stage, finally, allows to entirely ignore the results of the first three
stages and to use another value instead that is given by half of the allele value of
the previously processed gene gi−1/2. This third stage has been incorporated in
anticipation of the special requirements of the experiments presented in part III.
The purpose of this procedure will be illuminated in section 8.3.1.

The eventually obtained gene value is transferred to the desired address inresulting data

the local memory that corresponds to the respective ith position in the child
chromosome. If the recombination process is desired to yield two complementary
offspring, the two parent chromosomes can be processed a second time where the
original decisions of the first stage are simply inverted (compare figure 3.4).

6.2.4 Pipeline Control

In order to allow for a large variety of evolutionary algorithms to be implemented,
the decisions that have to be made at each stage of the pipeline can be controlled
by the software part via the specification of different control options. In general,
two types of variables can be distinguished that affect the operation of the pipeline.
The first kind is of global nature and is assumed to be constant during the wholeglobal parameters

evolution run or at least for several successive generations. For example, this refers
to the mutation rate or the choice of the applied mutation operator(s).

In contrast, the actual decision from which parent a given gene is to be taken orgene-specific decisions

whether it is mutated or not is typically made for each gene position separately.
Consequently, the second kind of control option changes from gene to gene. Partly,
these gene-specific decisions will involve the random numbers that are provided
by the mentioned random number generator. Another source of input that can be
used to influence the operation of each stage are the states of the 5 spare bits that
accompany every gene. For example — as it has been discussed above — one of
these flags is used to switch off the mutation for single genes entirely. Finally, for
the recombination stage, a binary crossover mask of the appropriate length can
be provided by the software part that specifies the desired parent chromosome for

148

The Hardware Environment

random_gene

gene_flag

random_bit

input_gene

offspring

if (gene_flag = 1)
 and (random_bit = 1)
 offspring := random_gene
else
 offspring := input_gene
end if

PSfrag replacements

stage 2:

uniform mutation

example configuration

Figure 6.6: A simple exemplary configuration for the uniform mutation stage. The
considered gene is mutated only if both, the corresponding gene flag and the current
random bit assume a state of 1. The probability for the random bit to be 1 is given by
the specified mutation rate. The remaining gene flags and the mask bit that is provided
by the software are ignored. This decision rule can be coded in the form of the lookup
table shown in table 6.1.

each individual gene position2.

It remains that given the specified global parameters, the 5 gene-specific flags, stage configuration

the current bit of the provided binary mask, and the current random number(s),
the outcome of each stage needs to be determined according to some desired rule.
Unlike the gene-specific input parameters themselves, these rules can reasonably be
assumed to remain unchanged during extended periods of the evolution procedure,
the whole run, or even several successive simulated evolutions. Therefore, they
can feasibly be specified by the software without compromising the speed of the
pipeline operation.

A simple example for a possible configuration of the second stage (uniform mu- example configuration

tation) is illustrated in figure 6.6. For each gene position, one new random bit
is generated that assumes a state of 1 with the specified probability for uniform
mutation. If for a given gene, the mutation is not turned off entirely (i.e., the
respective gene flag is not 0) it is mutated whenever the current random bit is 1.
For this simple exemplary procedure, the provided binary mask and the remain-
ing gene flags are readily ignored. More complicated procedures might take this
additional information into consideration. In particular, most configurations of
the crossover stage are likely to incorporate the binary mask that is provided by
the software.

2In fact, two masks can be provided by the software that can in principle be used for different
purposes. For the presented experiments, only one mask is used and exclusively affects the
crossover stage. For more details see the technical publication [182] or the aforementioned PhD
thesis of Tillmann Schmitz.

149

6.2 The Evolutionary Coprocessor

random bit
first

gene flag
mask bit

remaining
gene flags

do
mutate

0 0 X X 0
0 1 X X 0
1 0 X X 0
1 1 X X 1

Table 6.1: The lookup table that specifies the decision rule for the exemplary configu-
ration of the uniform mutation stage shown in figure 6.6. An “X” in the table denotes
“don’t care”. Only the current random bit and one of the gene flags are considered. The
remaining gene flags as well as the binary mask that is provided by the software have no
influence on whether the current gene is mutated or not. More complicated decision rules
might incorporate this additional information. By specifying an individual lookup table
for each stage of the pipeline, a large variety of genetic operators can be implemented.

In any case, the decision rule for each stage can be represented by a corre-stage-specific lookup
tables sponding lookup table (LUT). The lookup table that defines the simple decision

rule shown in figure 6.6 is given by table 6.1. By providing an according lookup
table for each stage of the pipeline, the software can configure the coprocessor to
implement a large diversity of conceivable variation operators.

6.2.5 Instruction Handling

Against the background of what has been said in the preceeding sections, the set
of instructions that allows the software part of the training algorithm to control
the operation of the coprocessor can be divided into four groups:

- Instructions that define the decision rule for each stage of the pipeline by pro-stage configuration

viding an according lookup table. Since these configurations define the actu-
ally implemented genetic operators, they are usually only specified once per
evolution run or even remain unchanged for several successive runs. In fact,
for the described experiments, the desired operation of each stage is hard
coded, i.e., the predefined functionality is not changed by the software at all
(the used genetic operators will be introduced explicitly in section 8.3.1).

- Data transfer instructions control the reading and writing of genetic datadata transfer

from and to the local memory of the coprocessor. Whole genomes as well as
any sequence of genes may be transferred. Typically, these instructions are
used at the beginning and the end of the simulated evolution to define the
initial population and to read back the training result (e.g., for visualization
or long-term storage), respectively.

- Global parameter instructions allow to specify the values of all evolutionglobal parameters

parameters that are assumed to change only infrequently, e.g., the mutation
rates for uniform and Gaussian mutation or the desired width of the Gaussian
distribution for the latter.

150

The Hardware Environment

- A given set of recombination instructions is used to define the addresses of recombination

the two parent chromosomes, their respective lengths, the target address for
the offspring, and the desired crossover mask. Typically, a new correspond-
ing set of information is provided for each recombination.

Using a control software that is executed on the host PC, these instructions
need to be transferred via the PCI bus. The first three types of instructions are
uncritical in terms of speed since they are only used infrequently. In contrast, the
recombination instructions need to be issued for each mating process. Considering
genomes with N chromosomes, a total of 2N parent addresses, N chromosome
lengths, N crossover masks, and N target addresses need to be specified for each
crossover procedure.

For an efficient handling of these instructions, a dedicated data and instruction instruction buffer

buffer is provided that can be utilized to pool instructions and store frequently
used data. After an entire list of instructions has been written into this buffer,
a corresponding start command transmits all instructions to the coprocessor and
initiates the execution of the whole sequence. During the following operation of
the coprocessor, the software can address other tasks (e.g., calculating the fitness
of previously evaluated individuals).

Parts of the instruction buffer are reserved to allow for the generation of an data buffer

internal address table. Frequently used chromosome addresses and/or chromosome
lengths can be stored in this list such that instead of specifying all source and
target addresses directly, the corresponding instructions merely need to include
the index of the respective information in the internal address list. Using only
a fixed set of addresses for all individuals that are created throughout the whole
evolution run, this indirect addressing scheme effectively reduces the amount of
data that needs to be exchanged between the software and the coprocessor during
training. In principle, the same indirect addressing can also be used to repeatedly
switch between different lookup tables for the individual stages of the pipeline.
Within the current state of the setup, the buffer allows to store a total of 2048
instructions, chromosome address, and/or chromosome lengths.

The evolutionary coprocessor is subject to constant development and improve- advanced features

ment. Since its original version, several advanced features have been added that
provide more efficient ways of transmitting recombination instructions. For exam-
ple, having specified the number, addresses, and lengths of multiple chromosome
pairs, special loop functionality allows to iteratively apply predefined recombina-
tion operators, like, e.g., one-point crossover, to the whole set of chromosomes via
effectively only one single instruction. New random crossover masks are created
automatically and autonomously by the coprocessor for each mating pair. The
usage of such pre-set recombination operators further minimizes the amount of
data and instructions that needs to be exchanged between the software and the
coprocessor. However, this novel functionality has not yet been employed for the
experiments presented in this thesis. The detailed description of these additional
features is therefore deferred to later publications.

151

6.3 An Advanced Hardware Environment

6.2.6 The Evolutionary Coprocessor: Reflection and Outlook

The advantages of using the evolutionary coprocessor for the training of networks
on the HAGEN chip are twofold: First, performing the required genetic operations
in a dedicated hardware can potentially yield a significant speed gain compared to
pure software solutions, especially for large genomes. Second, having the genetic
material of the whole population available in the local memory allows to evaluate
the different candidate solutions without the need to repeatedly transmit large
amounts of configuration data over the PCI bus.

In order to further reduce the required data transfer between the host PC andfitness calculation in
hardware the memory of the coprocessor, the calculation of the fitness could be implemented

in the FPGA as well. In the current state of the system where suitable training
algorithms and appropriate fitness functions are a topic of research themselves, the
fitness calculation remains to be realized in software. A hardware implementation
of the fitness calculation is planned for future investigations.

Apart from that, the coprocessor persists to impose certain restrictions on thelimited complexity

complexity of the realizable genetic operators. The present version can only be
used to evolve the synaptic weights of networks with a fixed architecture using a
direct encoding scheme, an 11 bit integer representation, and two simple single-
gene mutation operators.

More complex encoding schemes and operators could in principle be realized byimplications for
training processing the same set of chromosomes multiple times using different configura-

tions for the single stages of the pipeline. Alternatively, the functionality of the
translation unit could be improved to allow for more abstracted genotypic repre-
sentations. In both cases, the increase in complexity would most likely be paid for
by a reduction in training speed. Also with regard to the fitness function, it can
thus generally be said that in order to fully benefit from hardware acceleration
and to be capable of keeping up pace with the used neural network hardware,
all time-critical parts of the evolutionary training algorithm are preferably kept
simple. While the next section introduces an advanced hardware environment
that successfully avoids some of the drawbacks of the current setup, the above
considerations will turn out to hold also for this improved system.

6.3 An Advanced Hardware Environment

By confining the analog network operation into blocks with an entirely digital
interface, the employed network model of the mixed-signal HAGEN prototype
lays the foundation for a feasible up-scaling to larger networks (see sections 5.2
and 5.4.5). Apart from including more blocks in future ASICs, this can also be
achieved by interconnecting a desired number of the existing HAGEN chips.

Regarding the hardware infrastructure that has been described in the preceedingscalability
considerations sections, multiple Darkwing boards could be used in the same host computer to

operate several HAGEN prototypes simultaneously. However, if the different chips
are to be interconnected to form one enlarged network, considerable amounts of
data will have to be transmitted isynchronously from one ASIC to the other via
the PCI bus (see also equation 5.4). Apart from the fact that the latency of a

152

The Hardware Environment

PSfrag replacements
NATHAN board

local memory

FPGA

programmable

logic

embedded

PowerPC

coreHAGEN

ASIC

Figure 6.7: The NATHAN board integrates all parts of the previously presented setup
on one single PCB: a neural network ASIC, a configurable logic, local memory, and an
embedded PowerPC microprocessor core. This way, any time-consuming data transfer
over the PCI bus during training can efficiently be avoided.

PCI transfer is not guaranteed, this is bound to significantly reduce speed of the
network operation.

6.3.1 The NATHAN Board

In order to allow for an efficient interconnection of multiple network chips, an
advanced hardware environment3 has been developed that can successfully avoid
the bottleneck of the PCI bus. The central part of this improved setup is a
custom-built FPGA board called NATHAN that has been developed by Andreas
Grübl [78].

A single NATHAN module integrates all parts of the previously described setup autonomous modules

on one PCB (see figures 6.7 and 6.8): In addition to the used neural network ASIC,
a configurable logic, and local memory, each board includes a microprocessor that
can execute the required control and training software. This is made possible by
the utilization of a Xilinx Virtex-II pro [230] that hosts an embedded PowerPC 405
core [232] [231]. This PowerPC microprocessor runs an embedded Linux operating
system [193]. Due to the special care that has been taken to keep the used software
environment largely platform independent (see section 7.1.4), it can readily be
utilized also in this setup.

For the local memory, NATHAN includes two SRAM units with 512 kbyte each
as well as a socket for a removable double data rate SDRAM (DDR-SDRAM)
module of up to 1 Gbyte. A synchronous LVDS interface of up to 32 links is used to
communicate with the hosted HAGEN chip, and additional extension connectors
even allow to connect special daughter boards that might host future network

3This work is supported in part by the European Union under the grant no. IST-2001-34712
(Sensemaker).

153

6.3 An Advanced Hardware Environment

PSfrag replacements

SRAM
SDRAM
(bottom)

HAGEN ASIC
(packaged)

FPGA
incl. embedded PowerPC

high-speed
connector

Figure 6.8: Photograph of the top side of a NATHAN board (photograph by Andreas
Grübl with kind permission). Multiple boards can be interconnected on a so-called Back-
plane PCB using the dedicated high-speed connectors for the multi-gigabit transceivers
of the FPGA.

ASIC prototypes. Apart from that, the NATHAN board provides connectors for
eight high-speed links — so-called multi-gigabit transceivers (MGTs) — that are
integrated in the used FPGA and are each capable of up to 3.125 Gbit/s.

One of the advantages of this new setup compared to the currently used en-faster HAGEN
operation vironment is that the new FPGA model allows to operate the HAGEN chip at

higher frequencies. Initial tests reveal that the interface of the network ASIC can
successfully be operated at 200 MHz instead of the 100 MHz that can be realized
on the Darkwing board [181] [185].

6.3.2 The Backplane System

In parallel to the NATHAN board itself, a dedicated backplane has been devel-interconnecting 16
NATHAN boards oped that hosts up to 16 NATHAN modules and interconnects them to form a

toroidal topology using the provided high-speed links [78]. This backplane system
is connected to a general purpose PC by utilizing a Darkwing card in combination
with one of the LVDS interface extensions that usually interface to the carrier
PCB of the HAGEN ASIC (see section 6.1.1). This way, a slow-control network
between the host computer and the single network modules can be established.

Various approaches are conceivable of how to fully exploit the enhanced networkenhanced resources

resources and high degree of parallelism that are offered by this new hardware envi-
ronment. A possible application for large hierarchical networks (see section 2.3.2)
that are distributed over multiple network chips is outlined in [52]. Apart from

154

The Hardware Environment

implementing larger networks on several HAGEN ASICs, the use of multiple dif-
ferent network chips also provides the possibility to speed up the training process
by evaluating several candidate solutions in parallel. If the training algorithm it-
self can benefit from parallelization, it could even be distributed over the multiple
PowerPC processors of the single NATHAN modules itself.

The introduced advanced hardware environment is a conjoint work with J. Fieres, operational readiness

A. Grübl, S. Philipp, Dr. J. Schemmel, T. Schmitz, F. Schürmann and A. Sinsel.
At the time of writing of this thesis, the single components of this system have
passed the initial test stage and are demonstrated to be fully functional. The
used software environment (see chapter 7) is successfully migrated to the embed-
ded Linux that is executed on PowerPC core of the employed Xilinx FPGA. The
whole framework will be fully functional in the near future. Although its operation
and further development is beyond the scope of this thesis, the evolutionary train-
ing strategies presented in part III are partially designed in special consideration
of the advantages and limitations of this new hardware setup.

6.3.3 Implications for Network Training

With regard to the training process, the NATHAN/Backplane environment will advantages

allow to exploit the speed of the HAGEN ASIC more efficiently than it is possible
with the current Darkwing setup: The chip itself can be interfaced at higher speeds
and the bottleneck of the PCI bus is efficiently avoided by executing the training
software locally on the embedded PowerPC. A clever distribution of adequate
training approaches over multiple NATHAN boards might even promote further
acceleration due to parallelization.

It remains to be a noticeable limitation of this setup, that the featured PowerPC limitations

core operates at a maximum clock frequency of only 350 MHz4 [232] [231] and
does, e.g., not provide special floating-point units. Compared to the currently
used 2.4 GHz Pentium IV, this breeds a substantial reduction in speed and is
thus bound to affect the training process. Aiming to make best use of both, the
accelerated network ASIC operation and the faster data transfer, the used training
algorithm will be challenged to keep up pace with the implemented networks even
more than in the present setup.

Considering the application of evolutionary training algorithms, it will therefore feasible hardware
accelerationbecome inevitable to employ the evolutionary coprocessor and thereby release

the PowerPC from performing the time-consuming genetic operations in software.
Ultimately, the calculation of the fitness is preferably migrated to the FPGA as
well, and the software part is best reduced to only a minimum of controlling
functionality.

As it has already been discussed in section 6.2 this implies to use simple ge- simple training
algorithmsnetic codings, variation operators, and fitness functions that allow for an efficient

realization within a configurable logic. In summary, it can be concluded that
within either of the described hardware setups, feasible evolutionary training ap-

4Three different speed grades are available with maximum clock frequencies of 300, 350 and
450MHz, respectively [232] [231]. All those models are compatible with the NATHAN board.
The eventual choice is determined by cost considerations.

155

6.3 An Advanced Hardware Environment

proaches need to contend themselves with simple components and — in anticipa-
tion of the NATHAN/Backplane system — should rather aim to efficiently benefit
from potential parallelization. A promising training approach will be introduced
in chapter 9.

156

Chapter 7

The HANNEE Software

Real Programmers don’t comment their code. If it
was hard to write, it should be hard to understand.

Anonymous

The HAGEN neural network chip introduced in chapter 5 is optimized for highly
iterative chip-in-the-loop training algorithms. This motivates the application of
evolutionary strategies (chapters 3 and 4), and it has been discussed in section 6.2
that this kind of optimization procedure can greatly benefit from hardware ac-
celeration. Nevertheless, as long as adequate training approaches remain to be a
subject of investigation in their own right, the arising need for flexibility advises
to implement at least part of the training in software.

Even if the training was completely realized on-chip or within a configurable
logic, the user interaction with the hardware — either for mere system testing or
the visualization and evaluation of training results and network responses — would
eventually involve a dedicated software. Within the two neural network hardware
setups presented in the preceeding chapter, the corresponding software compo-
nents are executed on either the standard PC and/or the embedded PowerPC
cores of the used Xilinx FPGAs.

In parallel to the HAGEN ASIC and the described hardware frameworks, a
software environment has been developed that allows the user to test, analyze
and train neural networks on the HAGEN chip for desired tasks. This software is
called HANNEE (Heidelberg Analog Neural Network Evolution Environment). It
has been designed in co-operation with Johannes Fieres and also received major
contributions from Eilif Mueller, Johannes Schemmel, Tillmann Schmitz, and Felix
Schürmann.

Regarding the prototype state of both, the neural network hardware as well as design goals

the appropriate training algorithms, the design of HANNEE had to fulfill at least
two important requirements. First, the software has to be usable in connection
with different, present and future hardware configurations (e.g., new generations
of network ASICs or alternative PCB environments) with only minor additional
programming effort. Second, it has to facilitate the integration of new software
components contributed by different researchers with diverging research interests.

157

7.1 Overview

With respect to the evaluation of evolutionary algorithms as suitable train-
ing approaches, the second point also comprises the concrete desire for an easy
combination of different evolutionary algorithm components (see sections 3.3.2
and 3.3.4).

As a basic consequence of these considerations, the HANNEE software follows anplatform
independence object-oriented approach and is implemented in C++ [202]. At the time of writing

of this thesis, it is primarily used on Unix-based systems, but special care has
been taken to keep the source code largely platform-independent. Earlier versions
have been used under the Windows operating system, and it is apprehended to
constitute no major effort to port current and future versions to Windows as well.

The succeeding sections will describe HANNEE in more detail and outline how
the main design goals formulated above are realized. Being written by a workgroup
of scientists to serve as a tool for their ongoing research, the HANNEE platform
is subject to constant development and improvement. Any detailed discussion of
its implementation would be outdated within weeks and would in any case miss
the purpose of this thesis.

In this sense, the present chapter is not intended to serve as an outright HAN-
NEE manual or an exhaustive source code documentation (the latter is included as
a doxygen [213] documentation within the source files). Rather, the main design
concepts that establish HANNEE as a flexible and efficient software environment
for the presented neural network hardware and as a valuable tool for the research
on evolutionary training strategies will be investigated on a general and structural
level.

Since the following sections are concerned with object-oriented software design,
it is assumed that the reader is familiar with the philosophy of object-oriented
programming and the concepts of classes, objects and inheritance. An introduc-
tion to this field can be found in literature [155] [202].

7.1 Overview

Figure 7.1 schematically illustrates the structure of the HANNEE software and its
interaction with the neural network hardware. As it has already been discussed
in section 6.1, any communication between the software and the HAGEN chip is
mediated by a configurable logic. Within the software, the access to the FPGA
is completely encapsulated by a set of dedicated hardware access classes. Besides
providing the functionality to configure the FPGA and to control the operation
of the neural network ASICs, these classes also manage the communication with
the evolutionary coprocessor (see section 6.2).

7.1.1 Standardized Hardware Access

Realizing parts of the training algorithm in software gives rise to frequent dataefficiency
requirements transfer between the neural network chips and the software environment (see sec-

tions 2.4.5 and 6.1.3). Therefore, an efficient implementation of the hardware
access is vital if the speed benefits of using a fast neural network hardware are

158

The HANNEE Software

PSfrag replacements

Network
ASIC

Hardware HANNEE Software

FPGA

Modular
Algorithm

Framework

Hardware
Abstraction

Layer

Hardware
Access
Classes

Command
Line

Graphical

User

Interface

Interface

Figure 7.1: Overview of the HANNEE software and its interaction with the hardware.
The low-level hardware access is mediated by a set of dedicated hardware access classes
that are encapsulated within the Hardware Abstraction Layer (HAL). The modular struc-
ture allows to easily integrate new algorithm modules. These components communicate
with the network ASICs solely via the HAL interface and thus remain largely independent
of the used hardware setup. HANNEE provides both, a graphical user interface and a
command line interpreter.

not to be compromised. This in turn requires the hardware access classes to be
designed with regard to the peculiarities of a specific hardware configuration and
initially opposes the desire to use the HANNEE software in different setups.

On a more general level, however, the forms of interaction between the neu- abstracted hardware
accessral network chips on the one side and the user or the training algorithm on the

other are anticipated to be independent of the specific setup: For the largest part,
networks have to be implemented and executed on the ASICs and their results
are to be read back for evaluation by the user and/or the algorithm. Neither the
algorithm nor the user are concerned about — or should be forced to explicitly
account for — the details of the software-hardware interaction. Similar considera-
tions apply to the communication with the evolutionary coprocessor.

Therefore, the low level hardware access is separated from the remaining parts Hardware Abstraction
Layer (HAL)of the software by the so-called Hardware Abstraction Layer (HAL). This way, the

access to the hardware is reduced to a concise and standardized set of methods
and data structures that nevertheless summarizes the full functionality needed for
common user interaction and the implementation of training algorithms.

Beneath the Hardware Abstraction Layer, the actual communication with the

159

7.1 Overview

network ASICs or the evolutionary coprocessor is delegated to an exchangeable
set of hardware access objects that is specifically designed for the currently used
hardware setup. Apart from selecting the present configuration, the user is not
involved in the details of the hardware access. Furthermore, by exclusively ad-
dressing the network chip or the coprocessor via the HAL interface, all remaining
parts of the HANNEE software retain the flexibility to be used with any present
and future hardware configurations. The Hardware Abstraction Layer will be
described in more detail in section 7.3.

7.1.2 Modular Structure

Besides providing a standardized hardware interface, the HANNEE software ex-easy extensibility

hibits additional features that facilitate the implementation of new training strate-
gies or other experimental setups. The modular structure of the HANNEE plat-
form allows to easily integrate new components into the project and to efficiently
combine them with existing modules.

Basic functionality — like the ability to store parameters and results on disk, abuilt-in functionality

user friendly interface, and the possibility of automated batch scripting, etc. — is
provided in the form of carefully designed base classes. Building on this founda-
tion, the effort of developing new modules that can readily be used within the
HANNEE framework and benefit from its various features is reduced to a mini-
mum.

In order to promote the fast realization and testing of novel chip-in-the-loopstandardized
algorithm interface training approaches, special care has been taken to warrant the easy interchange-

ability of different algorithmic components. This is achieved by introducing a
dedicated standardized interface class which is used as the basis for all algorithm
implementations in HANNEE. The main concepts of the modular approach are
outlined in section 7.2.

Evolutionary strategies are deemed to be a particularly feasible approach forevolutionary
algorithm framework the training of mixed-signal neural network ASICs like the HAGEN chip and

can gain considerable acceleration from the evolutionary coprocessor (section 6.2).
Therefore, HANNEE has been equipped with an additional set of base classes that
are designed to ease the realization of different evolutionary algorithm models
for neural network training. The entirety of these classes forms the HANNEE
Evolutionary Algorithm Framework (HEAF) that will exhaustively be discussed
in section 7.4.

7.1.3 Automatically Generated User Interfaces

HANNEE can be controlled via two user interfaces, a graphical one and a com-GUI and
command-line
interpreter

mand line interpreter. The latter proves to be convenient when automated pro-
cedures are processed in batch mode or when only a terminal connection can be
opened to the executing machine. The graphical interface is implemented using
the Qt library [210] which is available for multiple platforms.

While an intuitive user interface is important for a software to be of reason-user interface
generation able use in practice, research on new algorithmic concepts which requires the

160

The HANNEE Software

frequent implementation and modification of new software components is not to
be decelerated by the cumbersome details of creating corresponding graphical rep-
resentations. It is one of the outstanding features of the HANNEE software that
the user interface for new modules is to a large extent generated automatically.
This refers to the graphical as well as the command line interface.

The creation of a solid software infrastructure that can serve as a convenient
basis for development and as an easily expandable tool for scientific research is
a demanding and time-consuming exercise by itself. This particularly includes,
but is not limited to, the automatization of user interface generation and the
implementation of scripting functionality. Nevertheless, although a lot of work has
been dedicated to these subjects, they are not of direct relevance for the scientific
work presented in this thesis. The elaborate details of how these convenience
features are implemented will therefore not be described here.

7.1.4 Platform Independence

Within the currently used hardware setup (see section 6.1), HANNEE is executed compatibility
considerationson the IBM compatible general purpose computer that hosts the Darkwing board.

At present, the primary development platform is Linux with a 2.4.x kernel and
a GCC 3.3 compiler [67]. But apart from the usage of the QT library that can
be compiled for both, Unix and Windows operating systems, several additional
precautions have been taken in order to warrant an easy migration of the HANNEE
software also to other compilers and platforms:

- All used libraries are openly available and can be compiled for any platform
that is supported by the GCC.

- It has been abstained from using any compiler specific extensions to the
C++ standard. This readily allows to employ a variety of compilers that
can automatically optimize the code for the targeted CPU. For example,
regarding the used Intel Pentium IV processor, HANNEE can alternatively
be compiled by the dedicated Intel Compiler [104] (see also [185]).

- The low-level hardware access is mediated by the WinDriver 6.x product
by Jungo, Inc. [114] which is available for all major platforms. Under Unix
and Windows, it encapsulates the hardware device by a kernel module or a
device driver, respectively.

Most notably, HANNEE can readily be compiled for the embedded Linux that HANNEE on
NATHANis executed on the PowerPC 405 microprocessor of the NATHAN board. Cur-

rently, only the command-line interface is available when executing the program
on NATHAN, but if desired, the graphical user interface can be included in future
versions. The MacOs X operating system is supported as well and apart from
some minor bugfixes that might potentially be required when the code is actu-
ally tested on other platforms, it is expected that HANNEE will immediately be
operable also under Windows NT/XP.

161

7.2 HObjects and the HAlgorithm Concept

7.2 HObjects and the HAlgorithm Concept

HANNEE, as an extendible software framework, provides a set of powerful basepowerful base classes

classes with general functionality and a common interface. By inheriting these
classes, the developer of new modules can readily use this basic functionality,
and the such created new components are seamlessly integrated and interoperable
within the overall HANNEE software.

Two examples of these base classes will be introduced here in more detail. First,
the HObject class, since it represents the least specialized case and is in fact
the common basis for all other classes that are to be inherited by new modules.
Second, the HAlgorithm class, since it serves as the appropriate base class for all
components that implement some kind of executable procedure like, e.g., neural
network training algorithms.

7.2.1 The HObject Framework

Algorithms in general and neural network training strategies in particular usuallygeneral requirements

include numerous free parameters (see chapters 2, 3, and 4). One of the main
challenges of successful training is posed by the appropriate tuning of these vari-
ables. Hence in practice, a neural network training software is required to allow
for an easy adjusting of parameters via a suitable user interface and to provide
means for storing previously found settings on disk. This can be extended to other
parts of the HANNEE software as well. For example, the smooth operation of the
hardware requires the specification of several parameters like clock frequencies,
reference currents, etc. (see section 5.4.3).

Parameter Management via HElements and HValues

Being derived from HObject, a new class automatically inherits the functional-HObject
functionality ity to manage internal variables such that their contents can be stored on disk

in XML (Extensible Markup Language [167]) format and are also automatically
recognized as parameters that require an adequate representation in the user in-
terface. Figure 7.2 shows a simplified UML (Unified Modeling Language [155])
diagram of the HObject class. Like most of the UML schematics shown in this
chapter, figure 7.2 omits parts of the class specification for clarity. Only those
attributes and methods are shown that are relevant for this discussion. For a
detailed account of the presented classes, the interested reader is referred to the
source code documentation.

Any internal variables of an HObject that need to appear in the user interfaceHElements as
subelements and have to be included in the XML description are each encapsulated within

a so-called HElement. A given HObject can contain multiple HElements as
subelements that are also referred to as its children. New children are added to
and removed from the object via different overloaded forms of addElement(·)
and removeElement(·).

Some basic features of HElement are shown in figure 7.3. Most notably, objectsHElement
functionality of this class exhibit the ability to convert their contents to valid XML strings. The

settings of a specific HElement can be identified in an XML document via the

162

The HANNEE Software

HObject

addElement(in newel : HElement)

removeElement(in oldel : HElement)

save(in filename : String)

initialize(in filename : String)

· · ·

Figure 7.2: Simplified UML representa-
tion of the HObject class. The diagram
does not show the complete class interface.
Several overloaded versions of some of the
shown functions as well as attributes and
methods that are not relevant for the dis-
cussion have been omitted.

object’s individual name. In addition to the name, each HElement is assigned
one of a predefined set of XML tags and may contain a brief description of its
purpose. Name, tag and description are typically specified upon construction of
the object but can also be changed afterwards.

Various classes are derived from HElement and figure 7.4 illustrates part of the inheritance hierarchy,
HValue, and HGroupinheritance hierarchy. While HValues generally encapsulate parameters of some

kind (Booleans, integers, floating point numbers, arrays, etc.), HGroup objects
contain and manage multiple HElements as subelements. In fact, HObject in-
herits the functionality to host HElement objects from its HGroup base class.
The ability to save its contents in XML format is owed to the circumstance that
each HObject is ultimately an HElement.

As a general result of this inheritance hierarchy, the children of an HObject complex element
hierarchiesare not restricted to be simple parameters (represented by suitable HValues and

possibly grouped within several HGroup subelements), but can themselves be ar-
bitrarily complex HObjects with their own specific functionality. When called to XML functionality

convert its settings to an XML string, an HObject recursively includes the set-

HElement

name(out name : String)

description(out info : String)

tag(out tag : String)

· · ·
toXMLString(out xmlrep : String)

save(in filename : String)

initialize(in filename : String)

· · ·

Figure 7.3: Abbreviated UML diagram of
the HElement class. Each HElement ob-
ject has a name, a short description and an
XML tag. The encapsulated data can be
converted to resp. be reconstructed from a
valid XML representation.

PSfrag replacements

HElement

HGroup

HObject

HValue

HIntValue HBoolValue HDoubleValue

Figure 7.4: Part of the HElement class
hierarchy. As every HObject is also an
HGroup, it can host other HElement ob-
jects such as the various HValues. All of
the shown classes inherit their XML func-
tionality from HElement.

163

7.2 HObjects and the HAlgorithm Concept

HIntValue

- value : Integer

- min : Integer

- max : Integer

· · ·

set(in newval : Integer)

get(out val : Integer)

setRange(in minval : Integer, in maxval : Integer)

min(out minval : Integer)

max(out maxval : Integer)

· · ·

Figure 7.5: Parts of the HIntValue class specifications. The internal integer variable
can be accessed via the set(·) and get() methods. The valid range of the represented
parameter — given by the integer values min and max —can be specified as well. Other
HValue subclasses exhibit similar class interfaces.

tings of all its subelements. Likewise, when being initialized from an appropriate
XML document, it accounts for the initialization of all its children as well.

In order to provide an example for a specific HValue subclass, figure 7.5 showsHIntValue

the abbreviated UML diagram of the HIntValue class that is used to represent
integer numbers. The actual value of the encapsulated variable can be accessed
via the set(·) and get() methods and besides the value itself, HIntValue also
allows to specify the valid range for the represented parameter. Similar HValue
subclasses are provided for floating point numbers, Boolean variables, strings,
arrays, etc. It is an important feature of the various HValue derivatives that they
are thread1 safe, i.e., the integrity of the internal data is warranted even when it
is being accessed simultaneously from different threads of the application2.

Easy Integration of New Functionality

According to the agreed notation of the HANNEE project, all classes that in-HANNEE object
nomenclature herit from HObject begin with a capital H. In the following, it is understood

that all such classes exhibit various attributes that are attached as corresponding
HElement objects. In the shown UML diagrams, the common subelements of a
class are usually omitted if not otherwise stated.

1In programming, a thread is a subprocess of a program that executes independently of its
other parts but operates on the same address space. Threads are managed by the operating
system and if the latter supports multithreading, the different threads of a program are executed
concurrently [192].

2The thread safety is implemented via mutual exclusion. All multi-thread functionality within
HANNEE is realized using the ACE library [1] that is openly available for all major platforms.

164

The HANNEE Software

HMyClass::HMyClass()
: HObject("MyObject", "This is my object.")

{
addElement(new HIntValue("Integer Parameter", 2));
addElement(new HDoubleValue("Float Parameter", 1.5));
addElement(new HBoolValue("Boolean Parameter", false));

addElement(new HGroup("Empty Group 1"));
addElement(new HGroup("Empty Group 2"));

}

HObjectMapEntryImpl<HMyClass> mycl("HMyClass", "HObject");

Figure 7.6: C++ constructor and registration entry of an exemplary new HObject
subclass. Objects of this class are given three parameters, an integer, a float (with double
precision) and a Boolean. The default value of each parameter is passed as the second
argument to its respective constructor. In this simple example, the two subgroups remain
empty. The last line registers the new class with the HANNEE application.

Figure 7.7: Automatically generated user interface for an object of type HMyClass.
The shown image is a screenshot of the HANNEE application being executed on a Linux
system.

When additional source files with new HObject subclasses are compiled and introducing new
HObjectslinked to the HANNEE project, the relinked application will automatically recog-

nize these new classes and allow the instantiation of corresponding objects by the
user. It is an important feature of the HObject framework that the newly intro-
duced functionality will be readily available to all parts of the program without the
need to modify existing code. The new source files merely have to contain a single
additional line of code that registers the new class with the HANNEE application.
The C++ constructor of a simple exemplary HObject subclass together with the
appropriate registering entry is presented in figure 7.6. The class declaration and
the implementation of the destructor of HMyClass are straight forward and have
therefore been left out. The complete code example can be found in figures A.3
and A.4 in the appendix.

165

7.2 HObjects and the HAlgorithm Concept

HAlgorithm

start(in thread : Boolean)

reset()

busy(out busy : Boolean)

pause()

initialize(in former : HAlgorithm)

result(out result : HNetData)

exec()

clear()

· · ·

Figure 7.8: Abridged interface of the
HAlgorithm class. Abstract methods
that have to be implemented by subclasses
are set in a slanted font. The last two func-
tions are protected, i.e., they are only vis-
ible inside the class and in subclasses but
are not accessible from outside.

The automatically generated user interface of an HObject accounts for theautomatic GUI
generation hierarchical structure of its children and contains controls for its various HValue

subelements. Figure 7.7 shows the resulting interface for an object of the new
HMyClass introduced in figure 7.6. The labeling is generated on the basis of
the various HElements’ names and it shall be repeated that apart from the code
shown in 7.6, no further development is necessary to create this user interface.

7.2.2 Implementing New Algorithms as HAlgorithm subclasses

New neural network training algorithms are implemented on the basis of the
HAlgorithm class which itself is a subclass of HObject3. HAlgorithm ex-
tends the functionality of its base class by adding several methods that define the
common interface for any algorithm module to be used in HANNEE. The most
important extensions are summarized in figure 7.8. Again, the class interface is
abbreviated for simplicity.

Automated Execution Management

Most prominently, every HAlgorithm can be started, paused and reset. Thebasic HAlgorithm
functionality methods start(·) and reset() are predefined and are not to be reimplemented

by inheriting classes since the provided implementations manage several internal
procedures that are important for the smooth integration of an HAlgorithm into
the HANNEE framework. In particular, the Boolean argument to the start(·)
method allows to specify whether the algorithm is to be executed in its own
separate thread or not. In any case, the provided implementations ensure a correct
synchronization of the algorithm execution with other modules — such as potential
monitoring objects — and the user interface in general. The busy() method, for
example, automatically returns true for as long as the HAlgorithm is executing,
i.e., has been started but not terminated.

3In reality, the situation is somewhat more complicated as HAlgorithm inherits from
HObject via several intermediate classes, but that does not affect the present discussion.

166

The HANNEE Software

While the predefined versions of start(·) and reset() ensure the frictionless implementing new
subclassesoperation of any HAlgorithm within the HANNEE software, the actual func-

tionality that is specific for a new HAlgorithm subclass is to be provided by
implementing the two protected, virtual abstract methods exec() and clear().
Internally, these functions are called by start(·) and reset(), respectively.

Similar considerations apply to the pause() function that can be filled with
a desired implementation by the developer and is expected to enable the user to
manually terminate the algorithm execution. After calling pause(), a succeeding
invocation of exec() is assumed to continue the execution at the point where it
has previously been halted; a call to clear() is to restore the internal state of
the algorithm to its initial conditions.

Figure 7.9 presents a simple but sensible implementation of an exemplary HMyAlgo
class and figure 7.10 shows a screenshot of HMyAlgo in operation. The complete
code for this example is provided in figures A.1 and A.2 in the appendix.

HAlgorithm Interaction

The desired outcome of a neural network training algorithm is a network that per- HAlgorithm results

forms a given task with a reasonable accuracy. Once an HAlgorithm has finished
executing, the resulting network can be obtained via the result() method which
returns the corresponding network specification in form of an HNetData object.
The HNetData class summarizes all information that is necessary to implement
a given neural network on the used network chip and will be described in more
detail in section 7.3.1.

The HAlgorithm class is designed to suit as a practical base class not only
for neural network training algorithms, but also for algorithmic modules that
implement other kinds of processes. For an algorithm of the latter type, the result
may possibly not be given by a neural network. The result() method is in this
case expected to return 0.

Instead of starting from a default or random initial state, an algorithm might combining different
algorithmsreasonably be initialized with the result of a former process. For this reason, the

HAlgorithm interface includes the initialize(·) method that accepts another
HAlgorithm as input parameter and can be implemented in subclasses as desired.
In the case of neural network training strategies, the initialize(·) method of
the new HAlgorithm will most probably call result() on the passed object
and use the obtained network as starting point for its own execution. This readily
allows to combine different training approaches like, e.g., traditional gradient-
based algorithms and evolutionary strategies (see sections 4.1.3 and 4.2.2). At the
same time, each new algorithm retains the standardized HAlgorithm interface
and the modularity and reusability of the implemented concepts are warranted.

7.3 The Hardware Abstraction Layer

The Hardware Abstraction Layer HAL consists mainly of three classes: HNetMan, overview

HNetData, and EvoCop. The HNetMan offers access to the neural network ASIC
and the programmable logic. Networks can be implemented and executed on the

167

7.3 The Hardware Abstraction Layer

HMyAlgo::HMyAlgo()
: HAlgorithm("HMyAlgo", "This is my algorithm.") {
maxiter = new HIntValue("Maximum Iteration", 10);
addElement(maxiter);
paused = false;
curriter = 0;

}

void HMyAlgo::exec() {
paused = false;
while (curriter < maxiter ->get() && !paused) {
log << "Current Iteration: " << curriter << hlog;
curriter ++;

}
}

void HMyAlgo::clear() { curriter = 0; }

void HMyAlgo::pause() { paused = true; }

Figure 7.9: C++ constructor and simple implementations of the exec(), clear()
and pause() methods for an exemplary HMyAlgo class. Note how the internal integer
variable of maxiter is accessed in the termination condition of the while loop in the
exec() method. The log stream is a HANNEE peculiarity. Effectively, it conveys the
passed text to the output stream and also writes it into a special log file.

Figure 7.10: Automatically generated user interface for an algorithm object of type
HMyAlgo. The shown image is a screenshot of the HANNEE application being executed
on a Linux system. Note the three buttons in the upper left corner of the window that
allow to invoke the respective methods start(·), pause(), and reset() manually. The
output that is generated during execution is displayed in the HMyAlgo’s log window.

168

The HANNEE Software

HNetData

weights : HFloatArray

feedbackData : HPortData

clockLoops : HIntValue

inputMask : HPortData

outputMask : HPortData

block : HIntValue

inputData : HPortVec

outputData : HPortVec

· · ·

sizeX(out numin : Integer)

sizeY(out numout : Integer)

setUpdate(in updateflag : netupdate)

· · ·

Figure 7.11: Simplified UML de-
scription of the HNetData class. The
desired network configuration is coded
in the form of multiple dedicated
HValue objects. (The HPortData
class basically encapsulates a binary
mask, and an HPortVec is essentially
a vector of HPortData objects.) The
applied input patterns and the result-
ing network output data are stored in
HNetData as well. The interface is
kept as general as possible to hide the
peculiarities of the actually used net-
work ASIC from the rest of the soft-
ware.

hardware by passing the desired chip configuration together with the desired input
patterns to the HNetMan in form of one or more HNetData objects. The EvoCop
provides an interface to the evolutionary coprocessor.

7.3.1 The HNetData class

When executing a network on the HAGEN ASIC, several parameters need to be
specified in addition to the mere weight values in order to unambiguously define
the desired topology (see section 5.2). Besides the required number of network
cycles and the activated feedback connections, it is, e.g., to be appointed which
of the output neurons in the various blocks are regarded as actual outputs of the
network.

The HNetData class exhibits various publicly accessible data fields to store this multiple network
blocksconfiguration data, to hold the desired input patterns, and to allow for the storage

of the obtained network response (see figure 7.11). In the current version of HAL,
one HNetData object specifies one network block; the targeted block coordinate4

is determined by the HNetDatas block value. Multiple HNetData objects can
be connected to a linked list: When an HNetData is passed to the HNetMan for
implementation on the hardware, all appended objects are automatically processed
as well, thereby allowing to configure a complete HAGEN chip by passing a list
of four appropriately prepared HNetData objects.

Chip Peculiarities

While the HNetData class represents the general interface for chip configurations subclasses for specific
ASICsas it is visible from outside the Hardware Abstraction Layer, the peculiarities

4In the case of the HAGEN prototype, this is one of the quadrants upper left, upper right,
lower left, or lower right.

169

7.3 The Hardware Abstraction Layer

of different past, present, and future ASICs are to be accounted for by deriving
corresponding subclasses. For example, the configuration of one HAGEN block is
given by an object of the HHagenData class. For the reasons discussed at the
beginning of this chapter, the actual nature of the currently used network chip is
to be hidden from the rest of the program, and the HNetData interface has to be
kept as general as possible. Therefore, the dimensions of the weight matrix — being
one of the specifications that is most likely to be changed for future chips — can
be inferred via sizeX() and sizeY() that return the number of input nodes and
output neurons, respectively.

In addition to the network configuration, each type of network ASIC is antici-analog parameters

pated to require the specification of several analog parameters (reference currents,
bias voltages, etc. — see also section 5.4.3) that are likely to differ between the
individual chip models. These settings do therefore not appear in the HNetData
interface, but are defined in the chip specific subclasses where they are coded via
adequate HValues. As such, these parameters are not initially visible from out-
side HAL. But due to the functionality of the HObject framework, they can, e.g.,
be manually adjusted via the user interface.

Network Evaluation

Implementing and evaluating a neural network on the hardware proceeds as fol-executing networks on
the hardware lows: First, the desired network configuration is translated into a linked list of

HNetData objects — including the feedback connections, the weight values, and
the desired input patterns. Second, the list is sent to the hardware for execu-
tion. Third, the resulting response of the network can be obtained from the
outputData fields of the respective HNetData objects and can be evaluated
as required. The second step is the only part that involves the hardware and is
accomplished by using the HNetMan class (section 7.3.2).

During the execution of chip-in-the-loop training algorithms, multiple networksrepeated execution

are iteratively evaluated on the chip that usually only differ in a few aspects,
e.g., the weight values. It is thus undesirable to retransfer the whole set of un-
changed settings to the hardware over and over again. In fact, weights, feedback
information, and input patterns are stored in the local memory of the FPGA and
potentially get updated whenever a new HNetData is sent (see section 6.1.3). A
dedicated set of update flags in HNetData allows for a differentiated specification
of the information that actually needs to be retransmitted. In the case of the
HAGEN/Darkwing setup, this can particularly speed up the network evaluation
if the used input patterns are the same for all tested networks and only the weight
values have to be updated for each run (see section 6.1.3).

7.3.2 The HNetMan class

For all classes outside the hardware abstraction layer, the access to the used neural
network ASIC is mediated by one or more objects of the HNetMan class. Fig-
ure 7.12 shows a simplified UML representation of its interface. Besides several
functions for the configuration of the FPGA, the testing of the hardware setup,

170

The HANNEE Software

and the calibration of the used neural network ASIC (see section 5.5), HNetMan
provides several overloaded versions of the run(·) method. HNetData objects
(see above) are sent to the hardware via this function, and consequently, every
version of run(·) expects at least an HNetData object as input argument.

Forms of Network Evaluation

In its simplest form, run(·) does not require additional information beyond the evolutionary
coprocessor supportdesired network configuration. The remaining examples, however, show two im-

portant variations of how a network can be evaluated on the ASIC. The first of
these alternative versions is to be used in conjunction with the evolutionary co-
processor (see section 6.2): The additional argument is interpreted as an address
in the coprocessor’s local memory that points to an individual in the current pop-
ulation. Instead of using the weights array of the passed HNetData object, the
synaptic weight values are read from the specified address. At the time of writ-
ing of this thesis, the coprocessor is only applied to the evolution of the network
weights. All other parameters of the network specification are obtained from the
passed HNetData object (see also section 6.2.2).

As the weights represent by far the largest part of the actual network configu- coprocessor benefits

ration data (not considering potential input patterns), taking their values directly
from the coprocessor’s RAM is considerably more efficient than transferring them
from the software. For the Darkwing/HAGEN setup described in section 6.1, us-
ing the evolutionary coprocessor in connection with this alternative version of the
run(·) method speeds up the network evaluation by approximately a factor of 2
(see also section 6.1.3).

HNetMan

- currconf : HHardwareConfiguration

· · ·

configure()

test()

calibrate()

run(in net : HNetData)

run(in net : HNetData, in weights : Address)

run(in net : HNetData, in dest : HNetDataQueue)

run(in net : HNetData, in weights : Address, in dest : HNetDataQueue)

· · ·

Figure 7.12: Abridged UML schematic of the HNetMan class. Besides various meth-
ods for the FPGA configuration, hardware testing and chip calibration, HNetMan al-
lows to execute networks on the neural network ASICs via several overloaded run(·)
functions. Internally, the interaction with the hardware is managed by an exchangeable
HHardwareConfiguration object. Each HHardwareConfiguration subclass rep-
resents a given combination of network ASIC and PCB environment.

171

7.3 The Hardware Abstraction Layer

Both of the above functions do not return before the evaluation of the network on
the hardware is finished, and the software thus remains inactive during the whole
network execution. This is acceptable, as long as the process that initiated the
hardware operation cannot reasonably proceed without knowledge of the network’s
response. On the other hand, various scenarios are conceivable where the time of
the network evaluation can be used more efficiently. For example, in the course of
an evolutionary algorithm, the fitness of a former network could be calculated while
in the meantime, the next individual is already being executed on the hardware.

The last two of the shown run(·) methods allow to perform the network evalu-threaded hardware
access ations in the background. Instead of waiting for the hardware to be finished, these

version return immediately after the respective HNetData object has been passed
to the HNetMan. Internally, the HNetMan enqueues the received object at the end
of a designated first-in, first-out queue (FIFO). The network specifications in this
queue are sent to the hardware sequentially, and this is performed in a separate,
dedicated thread.

The last argument of the respective method specifies the destination FIFO whereHNetDataQueue

the resulting HNetData (including the obtained network output) is to be ap-
pended after its execution is completed. For such purposes, HANNEE provides
the thread safe HNetDataQueue class. From this queue, the processed HNetData
objects can be accessed by the calling processes in their own threads. Returning
to the above example, the algorithm could first send all individuals of the current
population to the HNetMan to be enqueued for evaluation. After that, it can im-
mediately proceed with calculating the fitness of the sequentially arriving network
results while the hardware is operating in parallel.

Managing Hardware Configurations via HHardwareConfiguration

Internally, the HNetMan delegates all hardware requests to its HHardwareCon-
figuration subelement. The interface of the HHardwareConfiguration
class is essentially equal to that of the HNetMan discussed above. Specific hard-
ware setups are to be represented by corresponding subclasses, like, e.g., HHard-
wareConfigurationHagenDarkwing5.

Wrapping the peculiarities of specific hardware environments into exchangeableexchangeable
hardware
functionality

subelements of the HNetMan has various benefits. For example, it allows to imple-
ment new control software components for novel hardware configurations without
the need to change or inherit HNetMan itself. The HNetMan class thus persists
to serve as the exclusive, unchanged, and reliable hardware interface for the rest
of the program. Furthermore, as HHardwareConfiguration is derived from
HObject, new versions that work with different combinations of ASICs and PCB
environments can easily be integrated: The HNetMan allows the user to select
from all currently implemented variants.

At the same time, the actual functionality of a specific HHardwareConfi-integrating
hardware-related code guration subclass will itself be provided by a given set of internal hardware

access objects. These classes need not fit into the HObject framework or provide

5Abbreviated names are conceivable.

172

The HANNEE Software

EvoCop

writeBlkSdram(in addr : Address, in dest : Address, in size : Integer)

allocIbuf(in num : Integer, out addr : Address)

allocCmd(in num : Integer, out addr : Address))

writePcIbuf(in addr : Address, in data : Integer)

start()

finito(out fin : Boolean)

setProbabUni(in prob : Integer)

sourceOne(in addr : Address)

maskNull(in len : Integer)

target(in addr : Address)

· · ·

Figure 7.13: Abbreviated UML interface of the EvoCop class. Apart from dedicated
methods that implement the transfer of genetic data between the memory of the software
and the local RAM of the coprocessor, the EvoCop class provides several functions to
manage and fill the coprocessor’s data and instruction buffer. A call to start() transmits
the contents of this buffer to the local memory of the FPGA and initiates the execution
of the defined instruction sequence.

any functionality beyond the interaction with the hardware. This way, the devel-
oper of new hardware access software can concentrate on the optimization of the
hardware related code. The resulting functionality can then easily be wrapped
into an HHardwareConfiguration subclass that provides all the convenient
features of the HObject framework, can readily be integrated into the HANNEE
software, and is therefore immediately available for use.

7.3.3 The EvoCop class

As it has been discussed in section 6.2.1, the evolutionary coprocessor that is
implemented in the configurable logic of the used hardware environment can be
controlled via an extensive set of instructions. Within HANNEE, the access to the
coprocessor is encapsulated by an object of the EvoCop class which provides the
functionality to read and write genetic data to and from the local memory of the
FPGA, to define a desired sequence of commands, and to initiate the successive
execution of these instructions by the coprocessor itself. The abridged interface
of the EvoCop class is shown in figure 7.13.

According to what has been stated in section 6.2.5, the provided set of in- types of commands

structions can roughly be divided into four groups: instructions that define the
configuration for each stage of the pipeline, data transfer commands, instructions
that specify the global evolution parameters, and those that control a single re-
combination process, e.g., by specifying the source and target addresses of the
processed genetic material in the local memory of the FPGA.

173

7.3 The Hardware Abstraction Layer

In the current stage of the used neural network framework, neither the copro-fixed configurations

cessor nor the HANNEE software allow to modify the basic operation of the single
stages of the coprocessor pipeline. In other words, the first type of instructions is
not yet supported and the lookup table (see section 6.2.4) for each of the stages
shown in figure 6.5 is predefined (see also section 6.2.5).

The transfer of genetic data from the software’s RAM space to the local memorydata transfer

of the coprocessor is implemented by the writeBlkSdram(·) method. This
function requires the specification of the source address in the local memory of the
CPU, the target address within the SDRAM of the coprocessor, and the number
of bytes to be transferred. A corresponding readBlkSdram(·) method (not
shown in figure 7.13) transmits a defined number of bytes from the memory of the
coprocessor into the memory of the CPU .

Instruction Buffer Management

While the above commands are issued to the coprocessor directly and executedpooling instructions

immediately, the majority of instructions that control the processing of the hosted
genetic material are temporarily pooled inside an instruction buffer that resides
in the RAM space of the software (see section 6.2.5). Once this buffer has beencoprocessor execution

filled with the desired set of instructions, an invocation of the start() command
transfers the whole sequence to the coprocessor for execution. The start()
method returns as soon as the respective data has been transmitted, i.e., during
the processing of the genetic data, the software can in principle address other
tasks. The state of the coprocessor can be inferred at any time via the finito()
function which returns true as soon as the coprocessor has finished executing.

Apart from the actual instructions, dedicated parts of the buffer can also storebuffer management

frequently used data like, e.g., an available set of valid chromosome addresses
and lengths (see section 6.2.5). The buffer space for the desired number of com-
mands and data entries is allocated via the corresponding allocCmd(·) and
allocIbuf(·) method, respectively (buffer space that is not required any longer
can be released by according freeCmd(·) and freeIbuf(·) methods not shown
in figure 7.13). While any desired data can then be written to a given address in
the buffer using the writePcIbuf(·) function, all specified instructions are con-
secutively stored in the reserved command buffer in the order in which they have
been issued. After a call to start(), the thus defined sequence of commands is
be executed by the coprocessor in the same order.

Evolution Commands

Three global evolution parameters can be specified externally: the respective prob-global parameters

abilities for each single gene to be subject to uniform and Gaussian mutation as
well as the width of the Gaussian distribution that is used to generate the random
numbers for the latter. As an example, the probability for uniform mutation can
be set by the setProbabUni(·) method. Corresponding functions are provided
for the remaining two parameters. Typically, these methods are only executed

174

The HANNEE Software

once at the beginning of the training run6.

For each recombination process, the two source addresses of the parent chro- recombination
instructionsmosomes in the local memory of the coprocessor, the target address of the off-

spring chromosome, as well as the desired crossover mask need to be specified (see
sections 6.2.3 and 6.2.4). The required address information can be provided by
the sourceOne(·), sourceTwo(·) (not shown), and target(·) methods. The
passed values do not directly spcify the adresses of the chromosomes in the RAM
but always refer to entries in the data buffer.

Crossover masks can be defined in a runlength encoding using the maskNull(·) crossover masks

and maskOne(·) functions (the latter method is not included in figure 7.13 for
simplicity). Initially, the mask has length 0. Using the above methods, it can
successively be extended by adding corresponding sequences of ones and zeros
with the respectively specified lengths.

During evolution, the software-implemented training algorithm will typically
pool a whole sequence of instructions that defines the recombination of multiple
chromosome pairs — e.g., those that form two entire genomes or even several mat-
ing pairs — before the actual processing of the genetic data is initiated by a call
to start(). A simple code example for how the methods of the EvoCop class
can be used to program the coprocessor in practice is given in figure A.5 in the
appendix.

At the time of writing of this thesis, the evolutionary coprocessor is still under additional features

development and subject to ongoing improvement. A variety of novel features
has been added since its original version that allow for a more efficient control of
the recombination process (see section 6.2.5). While this additional functionality
is already supported by the HANNEE software, it has not yet been thoroughly
tested and is not used for the experiments presented in this thesis. A thorough
discussion of these features is therefore deferred to later publications that will
describe the coprocessor in more detail7.

7.4 HEAF: An Object-Oriented Framework for Evo-
lutionary Algorithms

It has been motivated in section 7.2.2 that implementing new network training
algorithms in the form of individual HAlgorithm subclasses greatly simplifies the
process of integrating and testing new algorithmic concepts and allows to easily
combine different training strategies. Regarding the special case of evolutionary
algorithms, the modularity concept can even be taken further.

As outlined in sections 3.3.2 and 3.3.4, the different parts of an evolutionary evolutionary
algorithms and object
orientation

algorithm — the fitness calculation, the selection scheme and the genetic repre-
sentation in combination with the variation operators — are inherently indepen-

6Note, however, that the specification of the global parameters nevertheless requires to allocate
space for a corresponding number of commands in the instruction buffer and is to be executed
with a call to start() (see also figure A.5 in the appendix).

7This primarily refers to the aforementioned PhD thesis of Tillmann Schmitz that has not
been finalized at the time of this writing.

175

7.4 HEAF: An Object-Oriented Framework for Evolutionary Algorithms

dent and interact through well-defined interfaces. For this reason, evolutionary
algorithms lend themselves particularly well to an object-oriented and modular
implementation.

The HANNEE Evolutionary Algorithm Framework, henceforth referred to asHEAF overview

HEAF, is designed in special consideration of this modularity. It is founded by
the following classes: HFitnessFunction, Genome, HGenome, HPopulation,
and HSelectionScheme.

Aiming for an extensive flexibility in the combination of different realizations ofdesign goal:
coprocessor
integration

the individual evolutionary algorithm components, it has been a major design goal
to smoothly integrate the evolutionary coprocessor. Selection schemes, population
models and fitness functions are to be combined with the coprocessor in an equally
straight forward manner as they can be connected to pure software solutions of
the genetic representations and variation operators.

7.4.1 The HFitnessFunction Class

The evaluation of the fitness constitutes a time critical aspect of every evolutionaryefficiency vs.
flexibility algorithm since it has to be repeated for each new individual in every generation.

A desirably fast fitness estimation process demands an efficient implementation
of the involved calculations. Unnecessary overhead like it may potentially be
introduced by an enhanced flexibility and configurability of the fitness function is
best avoided. On the other hand, the investigation of new evolutionary approaches
for the solution of a given task particularly relies on the option to vary the details
of the fitness calculation as well.

Rather than implementing one function that allows to chose between variousimplementation
implications slightly different fitness estimation approaches — e.g., by incorporating multiple

internal conditional statements and calling alternative subroutines — it is preferred
to implement several slightly different, specialized, and self-contained versions.
This approach is likely to lead to the duplication of large code fragments and may
thus be deemed inferior to more modular and elegant programming paradigms.
But in this case, it is justified by the sheer need for efficiency. Since the HAGEN
ASIC is optimally suited for the fast processing of large numbers of input patterns,
this particularly applies to those parts of the fitness calculation that are to be
repeated for each single output pattern.

At the same time, a given set of several, slightly different fitness functions may
still be regarded as modified versions of one and the same fitness estimation pro-
cess. From the user’s point of view, these methods should appear as the same
function with merely different parameter settings. The way in which the fitness
evaluation process is realized within HEAF tries to reconcile the desire for flexi-
bility with the need for efficiency.

Fitness Functions

The various forms of fitness calculation are implemented as globally visible meth-globally visible fitness
functions ods that are not member functions of any class. These functions expect two

arguments: First, the HNetData object that contains the network response to

176

The HANNEE Software

HFitnessFunction

- fitfunc1 : FunctionHandle

- fitfunc2 : FunctionHandle

· · ·

fitnessFunction(out fifu : FunctionHandle)

· · ·

Figure 7.14: Simplified UML diagram of the HFitnessFunction class. Since
the actual fitness calculation is delegated to global, specialized, non-class functions,
HFitnessFunction merely provides the handle to the fitness function implementation
that suits the currently chosen parameters. The respective methods are standardized to
accept two HNetData objects as inputs and return the calculation result as a Fitness
object.

be evaluated, and second, an additional HNetData object that includes the re-
spective correct output for comparison. The result of the calculation is to be
returned in the form of an object of a Fitness subclass. Most commonly, a Fitness class

given derivative of Fitness merely encapsulates a single numerical value (e.g.,
a floating-point number). The use of an abstracted Fitness class is aimed to
promote an easy extension to multi-objective optimization [37] in the future.

While using a whole HNetData object to merely store the correct network out-
put might seem lavish, it allows to incorporate additional specifics of the networks,
e.g., the resemblance to a given solution, into the fitness estimation. Furthermore,
it has to be taken into account that given the usual size of typical training data
sets, the superfluous information contained in an HNetData object is most often
negligible compared to the amount of processed input patterns and the corre-
sponding responses.

Management By HFitnessFunction objects

New fitness function components are integrated into the HANNEE framework providing fitness
functionsin form of an HFitnessFunction subclass (see figure 7.14). Since the actual

fitness calculations are implemented by different global non-class functions, an
object of a given HFitnessFunction does not provide methods to directly es-
timate the fitness of a network. Instead, it can be called to return a handle (also
called pointer [115]) to an appropriate C-function and thereby introduce the cho-
sen fitness measure to the remaining components of the evolutionary algorithm.

While the fitness functions themselves are specialized and preferably depend on managing fitness
functionsas few variable parameters as possible, a dedicated HFitnessFunction subclass

is able to manage a whole set of different but related fitness calculation methods.
Depending on the current values of several suitable, user accessible parameters, a
call to fitnessFunction() will return the handle to the corresponding version

177

7.4 HEAF: An Object-Oriented Framework for Evolutionary Algorithms

among the internally known set of functions. By storing the respective pointer for
as long as it is needed, the remaining parts of the software can directly call the
associated function whenever required.

The HFitnessFunction class thus allows to manage potentially large and
unhandy sets of functions and easily integrate them into the HANNEE platform
via the HObject framework. This way, the drawbacks of abandoning a modular
and elegant approach for the actual implementation of the fitness calculations are
at least partly compensated.

7.4.2 The Genome and HGenome Classes

The genetic representation of a candidate solution and the associated set of ade-genetic coding and
variation operators quate variation operators can be seen to form a closed unit (section 3.3.2). While

they must carefully be chosen to ideally complement each other, their implementa-
tion is initially unaffected by those of the selection scheme or the fitness function
and vice versa. Therefore, it suggests itself to wrap both, the coding and the
variation operators into one class.

The Abstract Genome Interface

In HANNEE, the genotypes of single individuals are represented by objects ofgeneral interface

appropriate classes that are to be derived from the common Genome base class (see
figure 7.15). In fulfillment of the essential requirements of evolutionary algorithms,
each Genome can be duplicated, mutated, recombined with another Genome,
translated into an individual (i.e., a neural network), and assigned a fitness value.

The details of how the parameters of a candidate solution are stored and orga-
nized internally are completely hidden behind the general Genome class interface
and the same applies to the variation operators. In other words, the remaining
components of the evolutionary algorithm will merely require the various sub-
classes to implement the methods generically provided by every Genome.

In this context, it is important to emphasize that different versions of the geno-coprocessor
integration typic representation can either realize the coding and the operators purely in soft-

ware or utilize the evolutionary coprocessor in the form of a dedicated EvoCop
object. As long as the corresponding classes retain the common Genome inter-
face, they can equally well be combined with any implementation of the selection
scheme or fitness function.

The HGenome Concept

In order to allow for an easy exchange of different Genome derivatives, its interface
is deliberately kept as general as possible. Regarding the actual algorithm execu-
tion, the provided methods should suffice to warrant the usability of the Genome
class in manifold different evolutionary algorithm setups.

On the other hand, if it is to be applied to multiple tasks that are likely toGenome configuration

require networks of varying size and architecture, any implementation of a geno-
typic representation is best made configurable in the number and partitioning of
the contained genes (see section 3.4.2). In that case, the way in which a genome

178

The HANNEE Software

Genome

clone()

mutate()

crossover(in/out partner : Genome)

translate(in/out target : HNetData)

fitness(out myfitness : Fitness)

setFitness(in newfitness : Fitness)

· · ·

Figure 7.15: Abbreviated UML
schematic of the Genome interface. From
the point of view of the other evolutionary
algorithm components, the functionality
of a genome can be summarized by a
concise set of methods. A genome can be
duplicated (cloned), mutated, recombined
with another genome, and translated
into a phenotype. The performance of
this phenotype determines the genome’s
fitness.

is to be translated into a neural network needs to be variable as well. Finally, the
used variation operators will in general allow for the tuning of several settings, like
mutation probabilities and crossover rates, etc. For some genetic representations,
even several alternative mutation and crossover operators might be available (see
sections 6.2 and 8.3.1).

In practice, the realizations of different genetic codings should preferably al- desired HObject
functionalitylow to manipulate their adjustable parameters via an adequate user interface and

provide the possibility to save these settings to disk. In so far, it would stand to
reason to employ the features of the HObject framework and derive new Genome
subclasses from HObject. But in addition to an enhanced functionality, inher- HObject drawbacks

iting HObject also breeds a measurable overhead in terms of an object’s RAM
consumption as well as in the complexity of its construction and destruction. As
long as an object either exhibits a sufficiently large complexity by itself or has a
reasonably long life expectancy, the introduced overhead is usually outbalanced
by the practical features of HObject.

During the execution of an evolutionary algorithm, multiple candidate solutions
are in fact repeatedly created, tested and discarded. At the same time, the cho-
sen evolution parameters and the desired structure of the genome typically apply
to the population as a whole and are not specific to individual genomes. There-
fore, representing each single genotype by a corresponding HObject is deemed
impracticable.

Rather, each Genome subclass is to be accompanied by a corresponding deriva-
tive of the HGenome class (see figure 7.16). As indicated by the capital H,
HGenome inherits HObject and the management and accessibility of the internal
variables is thus automatically accounted for (see section 7.2.1).

Apart from that, a given HGenome derivative serves as a factory class for the HGenome factory
classassociated Genome subclass in that it can create objects of the latter in consider-

ation of its various parameters as they have been specified by the user. This func-
tionality is provided by newGenome(). When the relevant settings are changed
during an evolution run, any existing Genome can be modified to account for these
changes by calling HGenome::updateGenome(·) with the respective object as
parameter.

The most frequently used internal variables of a genotype might still be stored Genome management
via HGenomewithin every single Genome object of the population to speed up their access by

179

7.4 HEAF: An Object-Oriented Framework for Evolutionary Algorithms

HGenome

newGenome(out newgen : Genome)

updateGenome(in gen : Genome)

· · ·

Figure 7.16: Abridged UML represen-
tation of the HGenome class. HGenome
allows to create new Genome objects ac-
cording to the current values of its internal
parameters and to update already existing
Genomes to suit the specified settings.

the objects’ own methods. At the same time, their values can be managed cen-
trally by only a single HGenome instance. This allows to implement elaborate
ways of specifying the genome structure and/or to chose between different evolu-
tion settings and variation operators without introducing intolerable overhead to
the single Genome instances. While this approach promotes an efficient handling
of the genetic material during the execution of the evolutionary algorithm, it obvi-
ously leads to additional organizational effort during the setup phase: Whenever
the genotypic parameters change, it is to be warranted that every Genome in the
population gets updated by the responsible HGenome object. This task is adopted
by the HPopulation class.

7.4.3 The HPopulation Class

Although initially, a population is essentially nothing more than a group of indi-
viduals, representing it by its own class is motivated by various considerations.

Motivations for an Extra Population Class

The population is regarded as the unit of evolution in that the repeated variationthe population as the
unit of evolution and selection of its single individuals gradually improves the average quality of the

contained candidate solutions (see section 3.1.1). As such, the selection schemes
of an evolutionary algorithm can be seen to transform the population as a whole
(see also figure 3.3). Transferred to an object-oriented implementation, this insight
motivates to complement the concept of a dedicated selection scheme component
with a corresponding population class.

In combination with the dual Genome/HGenome setup introduced in the pre-managing genomes

ceeding section, a population object is also practical in so far as it can internally
account for the synchronization of the single Genome objects with the settings of
the responsible HGenome instance. Also, when using the evolutionary coprocessor,handling the

coprocessor several issues like the RAM management for the gene data, the efficient handling
of instruction sequences, and the general configuration of the coprocessor can be
hidden from the remaining evolutionary algorithm components without the need
to intricately distribute their solution across the multiple Genome objects.

HPopulation Class Interface

Like in the case of the Genome class, the interface of HPopulation as it is
visible to the remaining parts of the algorithm is kept preferably simple and gen-
eral (see figure 7.17). During execution, an evolutionary algorithm is most likely

180

The HANNEE Software

HPopulation

- genomefactory : HGenome

- genomes : Set(Genome)

size(out size : Integer)

setSize(in size : Integer)

nextGeneration(in selector : HSelectionScheme)

evaluate()

· · ·
genomeAt(in index : Integer, out ind : Genome)

genomeRank(in rank : Integer, out ind : Genome)

· · ·

Figure 7.17: Simplified UML representation of the HPopulation class. Every
HPopulation hosts a group of Genome objects and automatically accounts for their
synchronization with the settings of the dedicated HGenome instance. During an evo-
lutionary algorithm, the population is repeatedly transformed by the desired selection
scheme and the new individuals are evaluated for their fitness. Single individuals can be
accessed from outside.

to alternately and repeatedly call evaluate() and nextGeneration(·) on its
population object. The first method sequentially translates all hosted Genomes
to individual networks and uses the associated fitness function to calculate their
fitness values. The second method applies the selection procedure that is imple-
mented by the passed HSelectionScheme (see section 7.4.4).

The selection scheme and other components of the software can access the sin- genome access

gle Genome objects of the population via the genomeAt(·) and genomeRank(·)
methods. The former expects the (arbitrary) index of the desired individual in
the internal set of genomes as parameter. In the latter case, the demanded in-
dividual is specified via its current rank as it is determined by its fitness value.
Using the functionality provided by the general Genome interface, members of the
population can then be duplicated, replaced, recombined and mutated as required
in order to realize multiple different selection procedures.

The details of nextGeneration(·) and evaluate() are to be supplied by implementing
subclassesspecialized subclasses and depend, e.g., on the internal organization of the pop-

ulation and whether it is dedicated for use with the evolutionary coprocessor or
not. The HGenome subelement of an HPopulation is exchangeable and can
be determined by the user. The interfaces of both classes are designed to allow
for a combination of various genotypic representations with different population
models. The only restriction is that genetic codings that utilize the coprocessor coprocessor

integrationcannot be combined with population implementations that expect a pure software
realization. It is to be repeated that apart from that, a potential specialization
to the evolutionary coprocessor is not visible from outside, particularly not to the
applied fitness functions or selection schemes.

181

7.4 HEAF: An Object-Oriented Framework for Evolutionary Algorithms

7.4.4 The HSelectionScheme Class

The HSelectionScheme class (figure 7.18) serves as the basis for potential sub-
classes that each encapsulate a different model of how to perform a parent or sur-
vivor selection process on a given HPopulation. The actual selection is realized
by the newGeneration(·) method that accepts the population to be transformed
as its argument.

The name newGeneration has historical origins and might be misleading. Inparent and survivor
selection fact, for some evolutionary algorithms, both, parent and survivor selection might

have to be applied to yield the next generation (see sections 3.2 and 3.4.1). In
that case, the two selection procedures are likely to be performed by different
HSelectionScheme objects and HPopulation::evaluate() is to be called
in between to evaluate the new individuals of the intermediate population (see
also figure 3.3).

In principle, the selection of potential parents from among a given populationselection and
offspring creation is distinct from the actual process of mating and reproduction. Nevertheless, for

practical reasons, any selection scheme that is to be used for parent selection also
assumes the task of managing the creation of offspring like it is implemented by
the Genomes crossover(·) and mutate() functions. After calling the corre-
sponding newGeneration(·) method, the population will already contain the
resulting offspring. A survivor selection process, on the other hand, will merely
discard superfluous individuals from the population depending on their fitness
values.

In both cases, an HSelectionScheme might change the size of the passed
HPopulation object and the combination of parent and survivor selection scheme
is to be tuned to effectively leave the size of the population constant. For gen-
erational evolutionary algorithm models (see section 3.4.1), it can be practical
to implement HSelectionSchemes that combine both selection steps to one
newGeneration(·) method.

In contrast to the fitness estimation process and the variation operators, selec-efficiency
considerations tion procedures are only applied once or twice per generation. In so far, they can

be regarded as the least time critical part of an evolutionary algorithm.

For that reason, the realization of a new HSelectionScheme subclass is
straight forward in that the selection process can directly benefit from the func-
tionality of the HObject framework. All variable parameters of a selection scheme
are to be represented by adequate HValue objects and the newGeneration(·)
method can be implemented to account for enhanced flexibility without giving rise
to an intolerable loss of efficiency.

HSelectionScheme

newGeneration(in oldpop : HPopulation)

· · ·

Figure 7.18: Short UML descrip-
tion of the HSelectionScheme class.
The actual selection scheme is imple-
mented by the newGeneration(·)
method.

182

The HANNEE Software

void HSimplePop::evaluate() {
Fitness thefitness;
for (int i=1;i<size();++i)
genomeAt(i)->translate(netdat);
netman ->run(*netdat);
thefitness = fitfunc (netdat , compdat);
genomeAt(i)->setFitness(thefitness);

}
sortPopulation();

}

void HSimplePop::nextGeneration(HSelectionScheme* sel) {
sel->newGeneration(*this);

}

Figure 7.19: C++ implementations for the evaluate() and nextGeneration(·)
methods of the exemplary HSimplePop class. In evaluate(), each genome in the pop-
ulation is translated into a network description, executed on the hardware and evaluated
for its fitness. nextGeneration(·) uses the passed selection scheme to transform the
population. Especially with regard to this second method, more sophisticated evolution-
ary algorithms are likely to require more complex implementations. Note, however, that
in spite of their simplicity, the provided examples are in fact fully functional.

7.4.5 Evolutionary Algorithm Practice

The preceeding sections have described HEAF by providing isolated views on its
single base classes. The following paragraphs shall illustrate more explicitly how
these components can be combined. For this purpose, the relevant parts of a simple
exemplary evolutionary algorithm implementation will be presented. Finally, the
chapter will be concluded with a brief discussion of how the introduced classes
can cope with extensions to the basic evolutionary concept like they have been
introduced in section 3.3.4.

A Simple Evolutionary Algorithm Example

Consider the classes HMyFitFunc, MyGenome, HMyGenome, HSimplePop, and
HSimpleSelect that are each exemplary subclasses of HFitnessFunction,
Genome, HGenome, HPopulation, and HSelectionScheme, respectively. The
implementation details of the genetic coding and the actual form of the fitness
function shall in the following be ignored. It suffices to ensure that each class
completely and reasonably implements the interface provided by its corresponding
base class.

Figure 7.19 shows simple versions of the evaluate() and nextGenera- simple HPopulation
exampletion(·) methods as they could be implemented by the HSimplePop class. Ev-

ery HSimplePop object is assumed to have access to an HNetMan instance via
a pointer named netman as well as to a pair of HNetData objects —netdat
and compdat — that are used to temporary hold the actual network descriptions
of the single individuals and to store the desired target outputs, respectively. Be-

183

7.4 HEAF: An Object-Oriented Framework for Evolutionary Algorithms

void HSimpleSelect::newGeneration(HPopulation& pop) {
int last = pop.size() - 1;

Genome*& worst = pop.genomeRank(last);
Genome*& bad = pop.genomeRank(last-1);
Genome*& better = pop.genomeRank(1);
Genome*& best = pop.genomeRank(0);

delete worst; worst = best->clone();
delete bad; bad = better->clone();
worst->crossover(bad);
worst->mutate();
bad->mutate();

}

Figure 7.20: Simple C++ implementation for the newGeneration(·) method of the
exemplary HSimpleSelect class. Effectively, the worst two individuals are replaced by
offspring of the best and second best. Although it is clearly basic, this example already
demonstrates how arbitrary selection schemes can easily be implemented. Note how the
creation of offspring is realized merely by using the methods of the Genome interface.

sides that, it can call the designated fitness function via the fitfunc function
pointer8.

Employing the functionality provided by these components, the implementationexemplary
evaluate() method of evaluate() is strikingly simple. The single genomes in the population are

sequentially translated into network descriptions that can be executed on the
neural hardware via the HAL interface, and the resulting network responses are
used to calculate the individuals’ fitness values.

Besides noting that the interaction with the hardware is essentially reduced to
one line of code, it is also worth emphasizing that the shown implementation is
unaffected by the peculiarities of the utilized genotypic representation and the
applied fitness function. It could readily be used with various different HGenome,
HGenome and HFitnessFunction subclasses without modification.

For convenience, the population is sorted according to the fitness values of the
individuals once the evaluation is completed which is done mainly to simplify the
implementation of the genomeRank(·) method. Both functions are realized in a
straight forward fashion and shall therefore not to be discussed here in detail.

In comparison to evaluate(), the code of nextGeneration(·) is even moresimple version of
nextGeneration(·) concise. The population is transformed via a single call to the newGenerat-

ion(·) method of the passed HSelectionScheme. This is sensible as long as
the parent selection, the creation of offspring, and the survivor selection can be
implemented in one method. A simple example for such a selection scheme is
given in figure 7.20.

The shown procedure effectively replaces the worst two individuals of the pop-

8The actual access to these objects and functions is provided via several built-in methods that
have so far been omitted for simplicity. Exhaustive information about this kind of organizational
details can be inferred from the HANNEE source code and its documentation.

184

The HANNEE Software

void HMyEvoAlgo::exec() {
paused = false;
population ->evaluate();
while (curriter < maxiter ->get() && !paused) {
population ->nextGeneration(selector);
population ->evaluate();
curriter ++;

}
}

Figure 7.21: The exec() method of a simple exemplary HMyEvoAlgo algorithm. Dur-
ing execution, the hosted population is repeatedly and alternately transformed by the
used selection scheme and evaluated on the hardware. Since the necessary functionality is
completely encapsulated by the used HEAF classes, the implementation of exec() retains
a remarkable generality.

ulation with offspring of the two best individuals (it is assumed that the fitness
decreases with increasing rank). Again, this scheme can be implemented solely
on the basis of the general Genome and HPopulation interfaces regardless of
the actually used subclasses. While this example can hardly claim to represent a
feasible selection scheme suitable for practical applications, it does indicate how
more sophisticated procedures can be realized.

Figure 7.21, finally, presents the exec() method of an exemplary HMyEvoAlgo basic implementation
of exec()class that illustrates how HSimplePop and HSimpleSelect can be combined

to form a complete evolutionary algorithm. The algorithm has access to the corre-
sponding objects via the population and selector pointers. In every itera-
tion, a new generation is created from the previous population and the individual
networks are tested for their fitness. Given the shown realizations of HPopu-
lation::evaluate() and HSimpleSelect::newGeneration(·), this ap-
proach does in fact leave room for improvement as a large unchanged fraction of
the population is unnecessarily retested on the hardware in each iteration.

On the other hand, the code presented in figure 7.21 retains a remarkable gen-
erality and could even be viewed as a formal notation of the basic generational
evolutionary approach itself (see section 3.4.1). It can therefore be anticipated
that, despite of its simplicity, this version of the exec() method serves as a suit-
able basis for a large variety of evolutionary algorithms simply by exchanging the
used HPopulation and HSelectionScheme subclasses.

Although the shown methods have been simplified to omit several important outlook

organizational aspects that are undoubtedly essential for an evolutionary training
algorithm to be usable in practice (e.g., defining the used input patterns, creating
the initial population, monitoring the populations fitness distribution during exe-
cution, defining an appropriate termination condition, etc.), they demonstrate the
basic methodology to create functioning algorithms in HEAF. The devil is said to
be in the details and this clearly applies also to software engineering. The code
of a complete and usable evolutionary algorithm implementation is likely to be
much more elaborate than the presented example. Nevertheless, the main concept

185

7.4 HEAF: An Object-Oriented Framework for Evolutionary Algorithms

of exploiting the inherent modularity of evolutionary computation for the realiza-
tion of a flexible evolutionary algorithm software framework holds. It remains to
be investigated whether the proposed design withstands a confrontation with the
extensions to the basic evolutionary approach that have been brought forward in
section 3.3.4.

Extensions to the Basic Concept

Among other things, encapsulating the details of the population management intoisland-model
algorithms a dedicated HPopulation class yields the advantage that multiple populations

can easily be combined to implement various forms of island-model approaches
(section 3.3.4). In contrast, the realization of diffusion-model algorithms re-diffusion-model

algorithms quires to extend the functionality of the HPopulation and HSelectionScheme
classes by deriving appropriate subclasses. A corresponding HPopulation deriva-
tive needs to account for the desired topology such that the hereby defined neigh-
borhood of a given individual is well-defined and can readily inferred by the
newGeneration(·) method of the used HSelectionScheme object.

One possible way to introduce this functionality is to expand the interface of
the HPopulation subclass by a dedicated method, e.g.,

neighborhood(in ind : Integer, out neigh : Set(Integer)),

which returns the set of indices neigh of all population members that form the
neighborhood of a given individual ind. This is probably the most intuitive
approach but it is limited in so far as an accompanying HSelectionScheme
subclass has to be implemented as well that actually employs this function during
the selection process. Hence, although the new HPopulation class would provide
the necessary topology information, the actual implementation of the diffusion-
model concept would be deferred to the new HSelectionScheme derivative.

An alternative approach exploits the fact that the HPopulation::nextGen-
eration(·) function is designed as a callback routine (see also figure 7.19): In-
stead of calling HSelectionScheme::newGeneration(·) on itself, a special-
ized diffusion-model population can repeatedly apply the desired selection proce-
dure to appropriate subpopulations. These neighborhoods can be represented by
internal objects of another specialized HPopulation subclass that do not actu-
ally host their own genomes. Instead, their genomeAt(·) and genomeRank(·)
methods are to return handles to the corresponding genotypes of the original pop-
ulation. This second solution is advantageous in so far as it allows to employ
existing HSelectionScheme classes unchanged.

Note that for both variants, the peculiarities of the diffusion-model concept areretained modularity
and generality completely hidden from the actual algorithm implementation. For example, the

code presented in figure 7.21 would not need to be changed at all. This insight can
be regarded as an additional support for the claim that the inherent modularity
of evolutionary algorithms (section 3.3.2) is not compromised by the extensions
introduced in section 3.3.4.

186

The HANNEE Software

Analog considerations apply to the concept of a similarity metric used for spe- similarity measures
and speciationciation schemes. As suggested in section 3.3.4, the task of quantifying the resem-

blance between two individuals can be assigned to the genetic representation. In
other words, subclasses of Genome can provide the necessary information in form
of an additional method, e.g.,

similarity(in comp : Genome, out sim : Float),

which returns the similarity sim between the regarded object and the specified
partner comp in adequate units. Alternatively, a special HFitnessFunction
object could be used to provide functions that do not actually evaluate the per-
formance of a network in consideration of the target output but calculate some
measure for the resemblance between the two passed HNetData objects. This
second variant can conveniently be used with already existing Genome classes,
but an estimation of the similarity based on the final networks runs the risk of
being less efficient.

While the first method measures the distance in the genotype space, the second again: retained
modularity and
generality

quantifies the similarity in the phenotype space. In both cases, the thus provided
information can be used by dedicated HSelectionScheme subclasses and again,
the algorithm implementation remains unaffected on the higher level.

The above reflections do not only underline the modularity of the evolutionary
computation concept itself. They also demonstrate that HEAF has the potential
to serve as a practical and flexible foundation for the efficient implementation of
evolutionary training algorithms for mixed-signal neural networks. This function-
ality constitutes the basis for the development of the efficient evolutionary training
strategies introduced in the following chapters.

187

Part III

Experiments and Results

189

Chapter 8

A Simple Evolutionary
Approach

Whenever you are asked if you can do a job,
tell ’em, ’Certainly I can!’ Then get busy and
find out how to do it.

Theodore Roosevelt

The hardware neural network framework presented in the preceeding chapters
allows to implement networks with in the order of 104 synapses that can efficiently
exploit the inherent parallelism of neural information processing. Networks of
the achievable scale and performance constitute a promising approach to tackle
challenging real-world problems that involve the processing of large amounts of
data. But in order to fully benefit from the potential of the provided hardware
resources, suitable training algorithms have to be devised first that can cope with
the size of the implemented networks and the complexity of the investigated tasks.

Several strategies have been considered for the design of neural systems that aim
to make best use of the available resources and the featured parallelism. Both, the
concept of computing without stable states (section 2.3.4) as well as the hierarchi-
cal approach (section 2.3.2) have been demonstrated to be successfully applicable
to the construction of networks on the presented hardware platform [52] [184].

The experiments described in this and the following chapters investigate the
potential of the more traditional chip-in-the-loop training approach. As it has been
stated before, highly iterative generate-and-test algorithms ideally complement the
realization of neural networks on the HAGEN chip since they can on the one hand
account for the peculiarities of the CMOS substrate and the inevitable noise in
the analog circuits (sections 2.4.5 and 5.5.1) and can on the other hand take full
advantage of HAGEN’s high configurational speed (section 5.4.4). Beyond that,
the utilization of evolutionary algorithms or any other black-box approaches (see
section 4.3) readily avoids the credit assignment problem (see section 2.2.2) that
usually impedes the training of multilayer networks of threshold neurons.

It remains that in order to keep up pace with the speed of the networks, the
training algorithm itself has to be implemented efficiently. This insight drove the

191

8.1 Classification Benchmarks

design of the evolutionary coprocessor that provides flexible means of accelerating
a large diversity of evolutionary strategies (see section 6.2). In its current state,
the coprocessor supports codings and operators that are primarily suited for the
evolution of the mere synaptic weights. More sophisticated representations — like
they have been discussed in section 4.2.2— that allow to simultaneously optimize
also the network architecture can, as yet, not fully benefit from hardware acceler-
ation. In general, it can be said that the desire for fast algorithm implementations
motivates the use of simple algorithms. Elaborate speciation schemes, computa-
tionally expensive fitness measures, and/or ingenious genetic representations run
the risk of compromising the speed advantage of the neural network hardware
during training.

In turn, the desire for simple algorithms interferes with the ultimate goal of
training complex networks for demanding real-world tasks. Besides describing the
general training setup that is to serve as the basis for all presented experiments,
this chapter will investigate in how far the restriction to simple evolutionary algo-
rithms limits the achievable training success. The obtained results will motivate
the development of the improved training strategies introduced in the next chap-
ter.

8.1 Classification Benchmarks

Pattern classification (see section 1.2.4) is one of the most important types ofbenchmark problems

applications for neural networks [20] [163]. There are a large number of real-world
classification problems originating from a variety of application areas that are
accepted throughout the neural network community as suitable benchmarks for
evaluating the feasibility of network models and novel training approaches.

Within the experiments described in this thesis, evolutionary training algo-
rithms are tested for their ability to train neural networks on the HAGEN chip
for a selected set of these common classification benchmarks. This readily allows
for a direct comparison of the achieved results with other neural network imple-
mentations, training algorithms, or classification procedures. The selected tasks
all represent real-world data and are therefore anticipated to capture the main
features that characterize realistic pattern categorization applications in practice.
The data sets have been obtained from the UCI KDD online archive [90], but some
are also included in the “Proben1” collection compiled by Lutz Prechelt [163].

8.1.1 The Classification Tasks

A total of nine well-established classification benchmarks are used within the de-the selected tasks

scribed experiments: the breast cancer, diabetes, heart disease, liver disorder, iris
plant, wine, glass, E.coli, and yeast problems. Each task is represented by a finite
set E of Ne exemplary instances eα, 1 ≤ α ≤ Ne, that each belong to one of Nc

classes Ck, 1 ≤ k ≤ Nc. Every instance eα of the respective problem is described
by a set of Na attributes whose values are used to form the corresponding input
vectors Iα for the network (see also section 1.2.4).

192

A Simple Evolutionary Approach

benchmark Nc Ne Na

breast cancer 2 683 9
diabetes 2 768 8
heart disease 2 297 13
liver disorder 2 345 6
iris plant 3 150 4
wine 3 178 13
glass 6 214 9
E.coli 8 336 7
yeast 10 1462 8

Table 8.1: The numbers of classes Nc, instances Ne, and attributes Na for the nine
different data sets used in the described experiments.

The numbers of classes, instances, and attributes for the different data sets are
summarized in table 8.1. More detailed information about the single data sets can
be found in appendix B.

8.1.2 Measuring the Generalization Performance

The ultimate goal of neural network training is to yield a network with satisfactory training set and test
setgeneralization performance (see section 1.2.4). In order to evaluate the ability of

a specific network model and/or a training algorithm to produce systems with
favorable generalization on a given task, the corresponding data set E is usually
divided into at least two partitions: the training data Et and the test data Eg.
As the name suggests, the former is used for training. In contrast, the test data
set Eg — also called the generalization data set — is only presented to the network
after the training is complete and is used to quantify its ability to correctly classify
previously unseen examples.

Fixed Partitionings

Once the training has been completed, let the achieved classification accuracy classification
accuracyof the network on the training data, more specifically, the fraction of correctly

classified instances in percent, be denoted with at. The corresponding performance
on the test set will then be denoted as ag. Since in practice, the used data
sets contain a finite number of examples, the obtained results are observed to
measurably depend on the used partitioning of the data into training and test set.

This is intuitively clear. Consider the exemplary case of a four-class problem disadvantageous
partitioningswhere the training set Et contains only instances of class C1 and C2 while the

test data Egincludes only examples of C3 and C4. Even if the network exhibits
a satisfactory accuracy on the training data, it is unlikely to perform well on
the test set since it has never been taught to differentiate between members of
C3 and C4. An alternative partitioning that includes a representative number of
examples from all four classes in each respective subset is not only likely to yield

193

8.1 Classification Benchmarks

networks with better generalization ability, but also permits a more meaningful
interpretation of the results.

But even then, the actual compositions of the training and test set remain
to influence the observed classification and generalization accuracies. Some of
the instances are usually harder to classify than others, e.g., if the classes partly
overlap in the input space (compare figures 2.3 a) – c)). Including the majority
of these problematic cases in the generalization data is likely to lead to a better
performance on the training data and thus to higher values of at but will also yield
a lower observed generalization accuracy ag and vice versa.

In summary, it can be said that a given partitioning of the data into trainingreproducible
partitionings and test set inevitably imposes an unwanted bias to the evaluation of the gener-

alization performance. Hence, for a quantitative comparison with the results of
other investigations, it is of vital importance to use exactly the same partition-
ing [163]. In fact, to achieve representative and sufficiently unbiased estimates,
multiple different partitionings should be used. The “Proben1” collection accounts
for this issue by specifying three randomly created but fixed partitionings for each
task [163].

Cross-Validation

A better estimate for the generalization ability of a classifier system is provided bymultiple random
partitionings a more elaborate method commonly known as N-fold cross-validation or rotation

estimation. First, the whole data set is randomly divided into Np mutually exclu-
sive and equally sized subsets Er, 1 ≤ r ≤ Np. Second, based on these subsets,
Np different partitionings are constructed that divide the whole data set E into
training and test data: According to the rth partitioning, subset Er represents
the test patterns while E \ Er is used as the training set. The classification and
generalization accuracies ar

t and ar
g of the investigated classifier system are then

evaluated once for each partitioning r and the results are averaged to yield the
mean classification and generalization accuracies at and ag.

Each single instance of the task is contained in the generalization set of exactlystratified subsets

one partitioning and appears in the training data of the remaining Np − 1 cases.
This way, all instances are treated equally. Taking the average over all obtained
generalization accuracies effectively compensates for the unfavorable bias that is
likely to be introduced by each partitioning individually. The reliability of the
estimate can be improved further by ensuring that the proportion of classes in
all Np subsets is approximately equal. In each subset, the fraction of instances
belonging to class Ck then roughly corresponds to Ck’s share of the whole data
set. This is called stratified N-fold cross-validation.

In the extreme case, the number Np of subsets equals the number Ne of ex-leave-one-out
validation amples in E which is commonly known as leave-one-out validation or jackknifing.

Depending on the size of the used data set, it can be very expensive to train Ne

different networks. While it might be apprehended that the quality of the estima-
tion grows with an increasing number Np of partitions, it can actually be shown
that leave-one-out validation does not necessarily yield the most accurate estimate
for the generalization ability of the investigated system [119]. Choosing a number

194

A Simple Evolutionary Approach

of partitionings in the order of ten is generally supposed to yield a sufficient ac-
curacy of the obtained results and also constitutes a compromise with regard to
the necessary computational effort.

In particular, the results of a random, stratified 10-fold cross-validation can be
expected to be sufficiently accurate as to compare them with other investigations
that also employ the same scheme but with a different set of random partition-
ings. Therefore, most of the presented experiments follow a stratified 10-fold cross
validation scheme. Only if the obtained results are to be directly compared with
previously published results, the experiments are conducted with the same parti-
tionings as reported in the respective publications.

Indeterministic Algorithms and Repeated Validation

The averages at and ag obtained by a stratified 10-fold cross-validation are deemed the random nature of
evolutionto be largely independent of the actually used random subsets, and the respective

standard deviations ∆at and ∆ag can be interpreted as to reflect the variance in
difficulty between the individual partitionings. However, for highly indeterministic
algorithms such as evolutionary strategies which involve a large number of random
decisions, even the results of multiple training runs on one and the same training
and test data configuration are observed to show a measurable variance. No pair
of evolutionary optimization processes yield the same network. Even common
gradient-based approaches suffer from a similar problem since the outcome of the
training can significantly depend on the random initializations of the weight values.
When applying neural networks to real-world applications, it is therefore common
practice to train multiple networks on the same data and keep only the best one.

In order to evaluate the expected generalization performance of the resulting modified
cross-validationnetworks, the used stratified 10-fold cross-validation scheme is easily modified such

that on each of the 10 partitionings, a number of Nn networks are trained and
only the ones with the best performance on the respective training set are used
for the calculation of at and ag. For a realistic estimate, it is evidently necessary
that the choice of the best network on each combination of training and test data
is exclusively based on the respective training set.

But it remains that given a specific network model and training algorithm, it is
not initially known in how far a high performance on the training data also implies
a high generalization accuracy. Especially in the case of highly indeterministic
training algorithms, the latter might therefore show a measurable variance between
two experiments, even if only the best of Nn networks is considered in each case.
Neither does the used cross-validation scheme account for this variance, nor can
the measured standard deviations ∆at and ∆ag serve to quantify its magnitude.

For this reason, the described cross-validation scheme is applied multiple times. repeated
cross-validationSuch a procedure is frequently encountered in literature and widely known as re-

peated cross-validation. Usually, it is intended to further minimize the impact of
the partition bias and therefore, different random divisions of the data are em-
ployed for each repetition. In the case of the presented experiments, repeating
the measurement rather aims to quantify the effects of the inherently indeter-
ministic nature of the training algorithms. Hence, the single repetitions of the

195

8.2 Network Setup

cross-validation scheme all use the same set of fixed but random partitionings.
In summary, the performance on a specific task that is to be expected from athe used evaluation

scheme given combination of network model and evolutionary training strategy is chosen
to be evaluated as follows: A stratified 10-fold cross-validation is performed, such
that for each of the 10 partitionings, Nn = 10 networks are trained and only
the one with the best performance on the training data is taken to contribute
to the averaged accuracies at and ag. Using the same set of partitionings, the
whole process is repeated Nr = 5 times. The respectively achieved accuracies at

and ag are averaged once more to yield the final results At and Ag together with
the respective standard errors of the mean ∆At and ∆Ag. Note that in order to
obtain these values, a total of 500 networks is trained. It is therefore expected that
they do not only represent a sufficiently unbiased estimate of the generalization
performance of the investigated system, but also reasonably quantify the reliability
of the used evolutionary training algorithms.

8.2 Network Setup

The HAGEN chip supports a wide range of neural network architectures (see
section 5.2). Several experimental investigations have shown that highly recur-
rent networks [184], strictly layered feedforward topologies with multiple lay-
ers [52] [94], as well as architectures with shortcuts [93] or feedback connections [95]
can feasibly be implemented. Among other things, the reported results demon-
strate that large networks can successfully be distributed over multiple network
blocks (see section 5.4.2), thereby paving the way for future experiments that are
to spread even larger networks over several chips (see also section 6.3).

8.2.1 General Architecture and Number of Hidden Nodes

It has repeatedly been stated in the preceeding chapters that choosing the opti-fixed architecture

mal topology or size of a neural network for a given task is anything but trivial.
Rather than striving for a thorough optimization of the network architecture, the
investigations presented in this thesis aim to provide a proof of principle for the
claim that simple and fast algorithms can successfully train networks implemented
on the HAGEN chip for realistic pattern recognition task. Therefore, the architec-
ture of the trained network is fixed in advance and the training algorithm merely
optimizes the synaptic weights. It is to be emphasized, though, that this is by
no means due to any principle restriction of the used hardware neural network
framework.

Strictly layered, feedforward neural networks with one hidden layer are proventwo-layer networks

to be universal approximators (see section 2.2.1), and it has therefore been cho-
sen to employ feedforward architectures with at most one hidden layer for all
presented experiments. Given one of the classification benchmarks introduced in
the foregoing section, the necessary number of input nodes Nin is related to the
number of attributes Na, while the size of the output layer Nout depends on the
number of classes Nc. The exact values are eventually determined by the way in
which the individual input attributes are presented to the network and by how

196

A Simple Evolutionary Approach

the network is desired to code its output. These topics will be addresses in the
following sections.

The number of hidden nodes in each network is decided to be scaled according to number of hidden
neuronsthe number of classes in the investigated benchmark. For simplicity, all networks

contain a fixed number of N c
hid = 6 inner neurons per category, such that the total

size of the hidden layer is in each case given by Nc · N c
hid. This is intended to

account for the fact that with an increasing number of classes, more complicated
partitionings of the input space need to be performed which in turn implies a
larger required number of hidden neurons.

The particular choice of N c
hid = 6 neurons per class is motivated by practical

considerations rather than theoretical predictions: Given a maximum of ten classes
(like they are included in the yeast problem), the hidden layers of all networks fit
on one network block of the HAGEN chip (see section 8.2.4). Apart from that,
it is understood that the employed network sizes do not necessarily represent the
respective optimal choice (see also section 8.4.3).

8.2.2 Input Representation

With only a few exceptions, all attributes that characterize the individual instances types of attributes

of the investigated classification tasks fall in one of three categories: binary, nomi-
nal, or (quasi-)continuous numerical variables. Attributes of the first kind assume
only two different states and are therefore adequately represented by one bit.
Nominal attributes can take one of m > 2 possible values that do not necessarily
obey an ordering relation (like, e.g., north, south, east, and west). The values
of numerical attributes, finally, are specified by either integer or floating-point
numbers.

There do appear some ordinal attributes within the data sets that assume one
of m > 2 alternative values which actually show a qualitative order (like, e.g.,
small, medium, and large). Attributes of this type could reasonably be mapped
onto corresponding numeric variables, but in all encountered cases, the respective
number m of potential values turns out to be lower than 4. For simplicity and
in agreement with other investigations [163] it has therefore been chosen to treat
these parameters like nominal attributes.

If the values of numerical or nominal attributes are to be presented to a network
on the HAGEN chip, they first have to be mapped onto the binary inputs of the
used network blocks. Nominal and continuous attributes are coded in different
ways.

Nominal attributes

Although a nominal parameter with m possible values can in principle be coded 1-of-m encoding

as an integer number, e.g., between 0 and m − 1, it is common practice to use a
different representation known as 1-of-m encoding. According to this approach,
m binary inputs are reserved for the attribute. In order to specify the jth value,
the jth input node is activated, while the remaining nodes are kept deactivated.

Effectively, this procedure could be seen as to replace a nominal attribute of

197

8.2 Network Setup

PSfrag replacements

00 1111

numerical attribute z ∈ [0, 1]

z = 0.43

example: z = 0.43

Nb = 6 bit
27 =̂ 011011

011011

z =̂

w0
w0

2
w0

4
w0

8
w0

16
w0

32

INb
(z)

∼ z · w0

MSB LSB

Figure 8.1: The value z of a continuous attribute is transformed into an Nb-bit integer
number that can be applied to a group of Nb input neurons. The corresponding synaptic
weights are coupled such that if the weight which corresponds to the most significant bit
is assigned a desired value w0, the succeeding synapses are set to w2 = w0/2, w3 = w0/4,
etc. The hereby generated current INb

(z) is proportional to the original value z.

m possible values by m binary attributes. Within the presented experiments,
it has been chosen to adopt the 1-of-m encoding for all encountered nominal
variables. This is not only conform to other reported investigations [163], but is
also particularly well suited for the binary inputs of the HAGEN network blocks.

Numerical attributes

In neural network experiments, numerical input values are commonly scaled to lien-bit integer numbers

within [0, 1] using a linear function [163] [235] [236]. For many of the investigated
tasks, the numerical attributes are already provided in this format. In order to be
applied to the binary inputs of the HAGEN chip, the resulting values are coded
as Nb-bit integers that can be applied to a group of Nb binary input nodes. This
is illustrated in figure 8.1.

The application of an integer number z ∈ 0, . . . , 2Nb to the corresponding groupweight coupling

of Nb input nodes is desired to yield an input current INb
(z) to the respective neu-

ron which is proportional to the original attribute value. This can be achieved by
coupling the weights of the involved synapses such that the connection leading to
the most significant bit (MSB) is assigned a given weight w1 = w0 and the succeed-
ing synapses are set to w2 = w0/2, w3 = w0/4, etc. The input node that represents
the least significant bit then contributes with a strength of wNb

= w0 · 2−(Nb−1).
Note that the absolute values of the individually programmed weights wi remain
to be restricted to integer numbers between -1023 and 1023 and might have to be
rounded accordingly (see section 5.4.3).

198

A Simple Evolutionary Approach

Coupling the Nb synapses of a multi-bit input in the proposed fashion consid- benefits

erably decreases the number of free parameters to be optimized by the training
algorithm. The resulting connection is completely specified by one single value
w0. In order to warrant the linearity of the hereby implemented digital to analog
converters, it is necessary to at least calibrate the row-wise averages of the synapse
offsets within the used HAGEN chip (see section 5.5.1). Previous investigations
have revealed that such Nb-bit input nodes with a precision of up to Nb = 6 can
reliably be implemented on a HAGEN ASIC and retain a satisfactory linearity of
the produced postsynaptic current INb

(z) [186]. The reported measurements use
w0 = 400 and a maximum postsynaptic current Imax

ps of 45 µA (see section 5.4.3).
Within the experiments discussed in this work, Imax

ps is set to 22 µA in order to known issues

better exploit the dynamic range of the neuron (see section 5.4.3) which leads to
a precision of the individual weights of about 1 % of the synaptic dynamic range.
Compared to the above results, this can be expected to impair the accuracy and
linearity of the generated currents, especially for small values of w0. On the other
hand, a comparably small synaptic weight also indicates that the corresponding
input attribute is not of significant importance for the decision of the receiving
neuron. Therefore, it can be anticipated that a decreased accuracy of the effec-
tively contributed current INb

(w0, z) does not necessarily compromise the neuron’s
functionality. At last, chip-in-the-loop training algorithms can readily account for
these issues and tune the remaining free parameters to yield an optimal balance
between the exploitation of the available dynamic range and the required accuracy
of the generated currents.

Against the background of these considerations, it has been decided to code used coding scheme

all numerical attributes as follows: First, if necessary, the values are scaled to lie
between 0 and 1. More specifically, given the attribute’s minimum and maximum
values xmin and xmax in the data set, every value x is transformed according to

x′ =
x − xmin

xmax − xmin
. (8.1)

Second, the obtained numbers x′ are rescaled and rounded to be coded as 6-bit
integers. The weights of the corresponding input nodes are coupled to form 6-bit
analog to digital converters in the fashion described above, such that the resulting
synaptic connection can completely be characterized by only one weight value w.

There are two exceptions to this rule: exceptions

- The data that is obtained from the UCI KDD archive specifies all input
attributes of the breast cancer problem as integer numbers between 0 and
10. Instead of rescaling these values to [0, 1] and then representing the results
by 6-bit integer numbers, the original attribute values are directly coded as
4-bit integers. Hence, the corresponding networks utilize multi-bit integer
inputs with a precision of only 4 bit.

- The attributes of the E.coli and yeast data sets are already provided as nu-
merical values between 0 and 1. A closer investigation reveals that two of
the attributes in the E.coli data set assume only two different values each,
and the same applies to one attribute of the yeast problem. These three

199

8.2 Network Setup

benchmark
No. of attributes No. of binary

binary nominal numerical inputs

breast cancer — — 10 40
diabetes — — 8 48
heart disease 3 4 6 52
liver disorder — — 6 36
iris — — 4 24
wine — — 13 78
glass — — 9 54
E.coli 2 — 5 32
yeast 1 1 6 40

Table 8.2: The numbers of binary, nominal, and numerical attributes for each task, as
well as the total resulting numbers of required binary input nodes to the respective net-
works. Note that the breast cancer, E.coli, and yeast problems require special treatment.
The details are discussed in the text.

parameters are therefore chosen to be treated as binary variables. Further-
more, one attribute of the yeast problem has only three different values in
the whole data set. It is coded as a nominal attribute.

The resulting numbers of binary, nominal, and numerical attributes for eachbinary input strings

task are listed in table 8.2. The binary representations of all input attributes that
specify a given instance eα of the investigated task are concatenated to form a
linear string of bits sα that serves as the input to the network. The resulting
lengths of the binary input strings for each task correspond to the respectively
required number of input nodes and are also included in table 8.2.

8.2.3 Output Representation

After the application of an input pattern sα, it is the purpose of the network tointeger coding

respond with the correct class label k, eα ∈ Ck. In principle, the class label k is an
integer number 1 ≤ k ≤ Nc where Nc is the number of classes in the investigated
problem. Hence, the network could reasonably code its response in the form of a
single numerical value. In the case of the HAGEN chip, the Nout binary outputs
of the implemented network might be interpreted as an Nout-bit integer number
that is then assumed to be the label of the predicted class.

This kind of output encoding is problematic in so far as it forces the network1-of-m output coding

to map its internal representation of the prediction onto an arbitrary labeling
that has been fixed externally. In analogy to the input encoding of nominal at-
tributes, many investigations on pattern classification rather employ the 1-of-m
representation to also code the network response, i.e., each of the possible classes
is assigned one output neuron [163] [235] [236]. It is common to consider neurons
with continuous activation functions and in response to an input pattern sα, the
output with the highest activation is then interpreted as to specify the network’s
prediction for the correct class. This output representation suits the operation

200

A Simple Evolutionary Approach

of neural networks far better than an encoding of the class label by an integer
number (compare figures 2.2, 2.4, 2.5, 2.6, 2.7, and 2.8).

Using neurons with sigmoidal activation functions (see section 1.2.3), the indi-
vidual output values Ok can be interpreted as the predicted probabilities P α

k =
P (Ck | eα) that the applied instance belongs to the respective class Ck [20] (see
also section 2.1.3). It is a notable advantage of this approach that it allows to
infer the confidence of the network’s prediction. If multiple output neurons exhibit
nearly equal values or if even the one with the highest activation yields only a neg-
ligible response, the classification of the respective instance is evidently difficult
(see also figure 2.5). For practical applications, this information can be of vital
importance for the user.

In the case of binary outputs like they are implemented on the HAGEN chip, multiple outputs per
classthe response of the network can only unambiguously be interpreted if exactly one

output neuron is activated and all others remain silent. In order to promote a more
differentiated network response, it stands to reason to assign a number N c

out > 1
of outputs to each class. It then remains to be specified, how these output neurons
are desired to quantify the individual probabilities P α

k .

Similar to the combination of input nodes for multi-bit integer inputs, it is
possible to group N c

out binary output neurons to act as an integer output. Using
N c

out−1 feedback connections and (N c
out−1)N c

out appropriately tuned weights, such
a group of output neurons can measure its analog input activity and represent it as
an integer number between 0 and 2(Nc

out−1) [186]. For the investigations presented used coding scheme

in this work, a simpler approach has been chosen: After the application of an
input pattern sα, the class with the highest number of activated output neurons
is considered to be the prediction of the network. Given a fixed number N c

out

of outputs per class, this encoding does not achieve the same resolution as the
representation by an N c

out-bit integer, but it yields the advantage of not binding
additional resources and being straight-forward to implement.

The number of outputs per class is fixed to N c
out = 4. It is expected that this

number constitutes a good compromise between the achievable resolution and
the required resources. Still, this initial choice retains a certain arbitrariness. A
thorough optimization of the network parameters might yield another value and
this topic will returned to in section 10.3.1.

8.2.4 Implementation on the HAGEN ASIC

Summarizing the considerations of the preceeding sections, figure 8.2 a) schemat- overall network setup

ically illustrates the chosen network setup. For a given categorization problem
with Nc classes, the network contains a single hidden layer of 6 · Nc inner neu-
rons — N c

hid = 6 per class— that are homogeneously connected to all input nodes
as well as to all outputs. While each class is assigned its own group of N c

out = 4
output neurons, the exact number of binary input nodes is determined by the
numbers and types of input attributes that characterize an individual instance of
the investigated task (see table 8.2). As described in section 8.2.2, some or all
of the input nodes are associated in groups to form Nb-bit integer inputs for the
corresponding numerical attribute values. By convention, Nb is set to 6 for all

201

8.3 The Evolutionary Training Algorithm

tasks, except for the breast cancer problem where Nb = 4 (see section 8.2.2).

In order to be implemented on the HAGEN chip, the resulting networks aremulti-block setup

distributed over multiple blocks as it is shown in figure 8.2 b). The first layer
is realized on block a. The output states of the involved neurons after the first
network cycle are fed into the input nodes of block b which implements the output
layer. Hence, the actual network response is available after the second cycle.
For tasks with only a few classes, the resulting networks could easily be fit on
single blocks and use appropriate feedback connections. But in anticipation of
the extensions introduced in the next chapter and in order to treat all tasks in a
similar fashion, the shown multi-block setup is used for all investigated problems.

The choice of N c
hid = 6 hidden neurons per class allows to fit all involved net-

works on a maximum of two blocks. For the yeast problem with its ten classes,
nearly all outputs of block a have to be connected to the corresponding inputs of
block b. Regarding the limited, hard-coded inter-block connections of the HAGEN
prototype (see section 5.4.2), this implies to use a block of the left side for block
a and its counterpart on the right side for block b (compare figure 5.7).

Not all input nodes and neurons of the two blocks are needed to implementunused resources

the desired networks. Output neurons of block b that do not contribute to the
response of the implemented network are ignored. Any redundant feedback or
inter-block connections are switched off and the weights of all unused synapses are
set to 0. The unused inputs of both blocks are permanently deactivated1.

In this context, it is to be noted that apart from those input nodes that are usedinternal neuron bias

to code the actual attributes of the respective task, one input per block is reserved
for the implementation of internal bias values for the neurons (see section 1.2.3
and figure 1.8). These nodes are permanently set to an input of one and the
weights of the corresponding synapses are allowed to be adjusted by the training
algorithm.

8.3 The Evolutionary Training Algorithm

With the architecture of the networks being fixed, it remains the task of the
training algorithm to find a suitable set of weight values that yields a satisfactory
classification performance on the training data. It has repeatedly been argued in
the preceeding sections that in order to best exploit the speed of the used neural
network hardware, the training is preferably implemented as fast as possible.

Within the used training setup, the synaptic weights are optimized by an evo-use evolutionary
coprocessor lutionary chip-in-the-loop algorithm that is partly implemented in software but

employs the evolutionary coprocessor (see section6.2) for the genetic representa-
tion of the individuals and the application of suitable variation operators.

1Note that this does not apply to the respective input nodes with indices 126 and 127 that
are used for the neuron offset calibration (see section 5.5.4).

202

A Simple Evolutionary Approach

PSfrag replacements
a)

O1 O4 O5 O8

H1
1

H1
6

H1
7 H1

12

binarynumerical nominal
attributeattributeattribute

class 1 class 2
PSfrag replacements

bias

biasbin.

numerical

nominal H1
1

H1
4

H1
12

O1

O4

O5

O8

b)

nnc = 4

class 1

class 2 weight w = 0

weight w 6= 0

block a (left)

block b (right)

nnc = 2

Figure 8.2: a) Schematic of the chosen network setup for an exemplary problem with
Nc = 2 classes and Na = 3 input attributes: One numerical, one binary, and one nominal
parameter. The network contains N c

hid = 6 hidden neurons and N c
out = 4 outputs per class.

b) Implemented on the HAGEN chip, each network employs two blocks. The first layer is
implemented on a left block, while the second layer is hosted by the corresponding block
on the right side. Unused synapses are set to zero and unnecessary feedback connections
are deactivated. The chosen architecture requires nnc = 2 network cycles.

203

8.3 The Evolutionary Training Algorithm

8.3.1 Genetic Representation and Operators

Every individual of the processed population defines a set of weight values for allgenomes,
chromosomes, and
genes

synapses that are utilized to implement the corresponding network on the HA-
GEN chip. The used genetic representation follows a direct encoding scheme (see
section 3.4.2). The genomes are hosted by the evolutionary coprocessor (see sec-
tion 6.2) and are divided into multiple chromosomes, such that each chromosome
codes the weights of all used synapses that lead to one single neuron of the HA-
GEN chip (see figure 8.3). Within one chromosome, the single weight values are
represented by genes that are linearly arranged to form a one-dimensional array.
Each gene is an integer number between -1023 and 1023 that directly specifies the
weight value of the targeted synapse.

For technical reasons (see section 6.2.2), each chromosome contains genes for allcoding and noncoding
genes 128 weight values of the coded neuron, even if not all synapses are used for the im-

plemented network. As a side effect, the position of a gene within its chromosome
immediately and uniquely specifies the coordinate of the corresponding synapse.
All unused genes are set to zero and are marked as deactivated to exclude them
from being affected by the mutation operators (see also section 6.2.2).

As it has been discussed in section 8.2.2, some of the weight values need to becoupled genes

coupled appropriately in order to form multi-bit integer inputs. Apart from fixing
unused genes to zero, a given gene gi can be specified to always assume half of the
value of the previous gene: gi = gi−1/2 (see section 6.2.3 and compare figures 6.5
and 8.3). For an Nb-bit integer input, Nb consecutive genes of the corresponding
chromosome are associated to form a group where only the first position is actually
subject to the genetic operators and the remaining Nb − 1 genes are successively
determined by the value of their respective predecessor. These genes are then
referred to as being coupled. Since they all eventually and exclusively depend on
the value of the first gene, the Nb−1 associated positions are affected by mutation
and crossover only indirectly.

Genetic Operators

Two different single-gene mutation operators are employed: A uniform versionuniform and
Gaussian mutation and a nonuniform mutation with Gaussian distribution (see section 3.4.3) that

are each applied with the respective probability ρu
m and ρg

m. The two forms of
mutation occur independently, i.e., a given gene can in principle be subject to
both mutations with a probability of ρu

m · ρg
m. In general, the uniform mutation

is always applied first and any potential further Gaussian mutation is performed
afterwards (see figure 6.5).

The evolutionary coprocessor supports the implementation of various forms ofused crossover
operators crossover and for the experiments presented in this thesis, three different alter-

native operators are investigated. All of the employed recombination procedures
operate on chromosome pairs and are applied with probability ρc. In other words,
for each pair of corresponding chromosomes that are supplied by the two mating
individuals, it is decided separately whether crossover is applied or not. Besides
common one-point and two-point crossover, a simple chromosome exchange op-

204

A Simple Evolutionary Approach

PSfrag replacements

synapse

neuron

network

coupled

coding noncoding

gene

chromosome

genome

g ∈ {−1023, . . . , 1023} w ∈ {−1023, . . . , 1023}

11 22 3 34 4 55 66

g w

a a

b b

c

c

Figure 8.3: The basic indivisible unit of the genome is the gene (top). Each gene directly
codes the weight of one synapse in the form of an integer number between -1023 and
1023. A chromosome (middle) summarizes all genes that code the weights of all synapses
that lead to one output neuron of one network block on the HAGEN ASIC. Within
a chromosome, the single genes are arranged linearly. Since not all synapses of every
neuron are actually used by the implemented network architecture, some of the contained
genes are fixed to zero and are not modified by the mutation operators. In contrast to
the coding genes that represent adjustable, non-zero parameters of the evolved network,
they are referred to as noncoding genes. In order to implement the desired multi-bit
integer inputs (see section 8.2.2), a gene gi can be linked to its predecessor gi−1 as to
always obey gi = gi−1/2 (compare figure 6.5). For an Nb-bit integer input, Nb genes are
associated to form a group where only the first position is actually subject to the genetic
operators and the remaining Nb − 1 genes are successively determined by the value of the
respective previous gene. These Nb genes are also denoted as being coupled. The whole
network, finally, is coded by a genome (bottom) that contains one chromosome for each
neuron in any of the four blocks of the HAGEN ASIC that is used by the actual network
architecture.

205

8.3 The Evolutionary Training Algorithm

PSfrag replacements

parent pa parent pb

offspring oa offspring ob

pa
1

pa
2

pa
3

pa
4

pb
1

pb
2

pb
3

pb
4

oa
1

oa
2

oa
3

oa
4

ob
1

ob
2

ob
3

ob
4

Figure 8.4: The used recombination operators process one pair of chromosomes at a
time and modify it with a fixed probability ρc. This figure schematically illustrates a
simplified example with reduced chromosome length. A two-point crossover is shown, i.e.,
for each pair of chromosomes that is actually recombined, two new random cut points
are generated. Here, it is assumed that the second chromosome pair turns out to be not
crossed: The corresponding chromosomes remain unchanged. None of the used crossover
operators distinguishes between coding and noncoding genes (see also figure 8.3). The
exchange of genes that are linked to their predecessor (see text) does not have any effect, as
long as the first gene of the group is not transferred as well (see the last shown chromosome
pair).

erator is considered where each pair of chromosomes is swapped among the two
involved genomes (see section 3.4.4).

During a given evolution run, only one single operator is consistently used for
all recombination processes, i.e., the different forms of crossover are not mixed.
Furthermore, it is to be noted that none of the applied crossover operators distin-
guishes between coding and noncoding genes, i.e., those that code the weight of a
synapse that is actually used by the represented network and those that are fixed
to zero.

In general, the recombination of two genomes yields two new offspring. Fordefault: two-point
crossover the example of the used two-point crossover operator, the basic overall procedure

is schematically illustrated in figure 8.4. By default, the two-point crossover is
utilized for the majority of the following experiments and it will explicitly be
noted if another operator is used.

206

A Simple Evolutionary Approach

8.3.2 Selection Scheme and Evolution Parameters

While the actual genetic material of the population is hosted and processed by
the evolutionary coprocessor, the hereby defined genetic representation is encap-
sulated into a dedicated HGenome subclass of the HEAF software framework (see
section 7.4). Within the used setup, both, the fitness calculation and the selec-
tion scheme are realized purely in software and are wrapped into corresponding
HFitnessFunction and HSelectionScheme subclasses.

The implemented algorithm processes a population of µ individuals and follows generational
replacementa generational replacement scheme (see section 3.4.1). Since several theoretical

investigations suggest that algorithms with elitist selection exhibit more favorable
convergence properties than those without [50] [174], the best nel genomes of the
current population can be taken over to the next generation unchanged. For the
described experiments, nel is fixed to 1.

The rest of the new generation is generated as follows: First, a common tour- tournament selection

nament selection process with a tournament size of τ = 2 is used to fill a mating
pool of µ − nel genomes drawn from the preceeding population. The members
of the mating pool are then randomly grouped into pairs and each mating pair
is recombined with a probability ρr =90 % using the selected crossover operator.
Finally, the respective offspring are made subject to mutation2. Together with
the nel unmodified genomes from the previous population, the resulting genotypes
form the new generation.

Against the background of what has been discussed in section 4.1.2 and given small populations and
strong mutationthe simplicity of the utilized genetic coding, it is to be anticipated that the de-

scribed evolutionary approach will potentially suffer from the negative impact of
the permutation problem. Aiming for a minimization of these effects, a compa-
rably small population size of µ = 20 is chosen (see also section 4.1.2). In order
to compensate for the emergent increased susceptibility to premature convergence
(see section 3.3.1), the probabilities of uniform and nonuniform mutation are set
to relatively high values of ρu

m = 3 % and ρg
m = 7 %, respectively. Choosing small

population sizes in combination with comparably high mutation rates has also
been motivated by previous investigations with a preceeding neural network ASIC
prototype [93].

8.3.3 Fitness Estimation

The calculation of the fitness needs to be repeated for each new individual in every
generation. Besides the genetic variation operators, the fitness estimation process
therefore constitutes one of the most time critical aspects of an evolutionary algo-
rithm. This particularly applies to the training of neural networks for the selected
benchmark problems, since quantifying the performance of a network on one of
these tasks involves the evaluation of its response to a potentially large number of
input patterns (see table 8.1).

On the other hand, common measures for the network performance reasonably planned hardware
implementationtreat all input instances — and the corresponding network outputs — in a uniform

2If µ − nel is an odd number, the remaining genome is not recombined but only mutated.

207

8.3 The Evolutionary Training Algorithm

fashion (see equations 2.15 and 2.16). With regard to a fast implementation of
the fitness calculation, this eventually motivates a pipelined and possibly even
parallelized processing of the involved data within a configurable logic (see sec-
tion 6.2.6). In the future, it is therefore planned to transfer the calculation of the
fitness to the FPGAs on the Darkwing or NATHAN boards of the used hardware
setup (see sections 6.1 and 6.3). For this approach to be feasible, the necessary
computations for each single pattern need to be simple enough as to warrant
their efficient realization with the available logic blocks of the used configurable
substrate.

A Basic Approach

From what has been said above, it can be concluded that regardless of whether
the fitness calculation is implemented in software or within an FPGA, it is prefer-
ably kept simple. Initially, this restriction seems to be easily reconciled with the
chosen output representation. In response to an input pattern sα of class Ck, the
network is desired to activate the corresponding group of N c

out = 4 output neurons
and keep the remaining outputs deactivated. A simple bitwise comparison of allsimple scoring scheme

neuron outputs Oα
i , 1 ≤ i ≤ Nc · N c

out with the corresponding target responses
Tα

i yields the number of agreeing positions λ(eα). After the individual scores for
all processed inputs have been added up, the resulting total value Λ =

∑
α λ(eα)

readily fulfills the general requirements to a suitable fitness function: First, it
assumes its maximum value only for a network that always responds with the cor-
rect output. Second, due to the large numbers of instances and output neurons,
Λ is expected to be a sufficiently smooth measure as to allow for a differentiated
comparison between two competing individuals.

In practice, the continuity of the hereby defined fitness function is further im-repeated application
of patterns proved by duplicating each of the training patterns mp > 1 times and applying

the total resulting total data set in a random order. Originally, this procedure is
intended to account for the analog noise in the system: Due to the present tem-
poral fluctuations, the repeated application of the same input can cause different
network responses. Considering each pattern multiple times does not only yield a
smoother fitness measure but also allows to quantify the stability of the respective
candidate solution. Within the described set of experiments, mp is set to 5.

A Refined Version

It is an outstanding feature of the proposed fitness calculation that it confines
itself with simple bitwise comparisons and integer summations and can therefore
be implemented efficiently either in software or within a configurable logic. Un-
fortunately, it turns out that in its original, simple form, the described procedure
cannot serve as a suitable fitness estimation procedure in practice. The reasons
for this are twofold.

Weighted Outputs A considerable fraction of the used classification bench-
marks includes a number of classes Nc that is larger than two (see table 8.1). As

208

A Simple Evolutionary Approach

a consequence, the correct output Oα in response to an applied input pattern sα

contains more zeros than ones. When the described fitness measure is employed
for the evolutionary training of networks for such tasks, it can be observed that
after only a few generations, the population has evolved to be comprised of net-
works that always respond with Oi = 0, 1 ≤ i ≤ Nout, regardless of the presented
input. This especially affects the glass, E.coli, and yeast problems (see table 8.1).

Although evidently undesired, this behavior can easily be understood. Consider problem: unbalanced
outputthe E.coli problem with its Nc = 8 classes. Each target output Tα contains

only N c
out = 4 ones but 7 · 4 zeros. A network that permanently produces a

response of zero with all its output neurons achieves a fitness that is 7/8 of the
possible maximum. This breeds a critical evolutionary advantage over networks
that exhibit a large number of false activations, even although they might actually
constitute more promising candidate solutions in terms of the original classification
task.

For this reason, the fitness calculation is modified as follows: After a bitwise modified scoring
schemecomparison with the target output Tα, the single outputs are weighted according

to whether they are required to be activated or not. Every neuron that correctly
shows an output of one is rewarded with a score of Nc − 1, those that correctly
respond with zero contribute with a score of 1. As before, neurons that produce
an incorrect output do not increase λ(eα) at all. This scoring scheme ensures
that the activation of the correct neurons and the deactivation of the remaining
outputs are effectively weighted equally.

Finally, if no other class exhibits a larger number of activated output neurons
than the correct one, the network is awarded an overall bonus of 2(Nc − 1)N c

out

which corresponds to the maximally achievable value of λ(eα) without bonus. In
total, the resulting single pattern scores thus range between 0 and 4(Nc − 1)N c

out.

Normalized Class Distributions In the majority of the investigated data sets,
the different classes are not represented by equal numbers of instances (see ap-
pendix B). For example, the most common classes of the E.coli and yeast problems
contribute 42.6 % and 31.2 % of the data, respectively. Even after incorporating
the above modifications into the fitness function, the evolutionary algorithm turns
out to produce networks that always predict the most frequently occurring class
of the current problem, independently of the presented instance.

In analogy to the considerations of the preceeding paragraph, this problem weighted class-specific
scorescan be overcome by an appropriate weighting of the different classes. The single

pattern scores λ(eα) are added up separately for each class Ck to obtain the class-
specific fitness values Λk which are then divided by the respective square root of
the number of instances Nk

e in each category. The sum of these normalized class
scores forms the fitness of the individual.

209

8.4 First Training Experiments

In terms of the notations introduced above, the fitness function F that is usedfinal fitness function

for the experiments presented in this chapter assumes the final explicit form:

F =

Nc∑

k=1

(
Λk√
Nk

e

)
=

Nc∑

k=1

 1√

Nk
e

∑

eα∈Ck

λ(eα)

 (8.2)

If desired, the resulting quantity can be normalized by
(∑

k

√
Nk

e

)
4(Nc − 1)N c

out

to yield a fitness measure between 0 and 1.

Although this refined version does not retain the same simplicity as the originalpreserved hardware
suitability form, it is still suited for an implementation in a configurable logic. Apart from

the normalization of the single class scores Λk by the square roots
√

Nk
e , the

calculation persists to merely involve comparisons and summations. The divisions
have to be performed only once per individual, and the required values

√
Nk

e are
fixed throughout the training process. They can be calculated in advance and, e.g.,
be stored in a lookup table. Since contemporary configurable logic substrates do
not commonly incorporate floating-point units, the used weighting scheme might
have to be modified to exclusively involve integer numbers, but the basic concept
persists to be fit for realization within an FPGA.

8.4 First Training Experiments

It remains to be investigated whether the described evolutionary algorithm in
combination with the predefined feedforward architecture can succeed in produc-
ing networks that achieve a satisfactory generalization performance on demand-
ing real-world pattern categorization problems. To this end, a set of stratified
cross-validation measurements (see section 8.1.2) is performed on each of the nine
selected tasks.

8.4.1 Experimental Setup

All trained neural networks are implemented on a HAGEN chip and employ thechip parameters

architecture defined in section 8.2.4. The used ASICs are operated in calibrated
mode such that both, the row-wise averages of the synapse offsets and the neuron
offsets are compensated for (see section 5.5.1). The synaptic dynamic range is
chosen to be limited to a maximum postsynaptic current of Imax

ps = 22 µA (see
sections 5.4.3, 5.5.4, and 8.2.2).

The experiments utilize the hardware configuration described in section 6.1.hardware setup

The software part of the evolutionary algorithm is implemented within the HEAF
framework of the HANNEE software (section 7.4) and is executed on a 2.4 GHz
Pentium IV. The software communicates with a single HAGEN chip via one Dark-
wing board. Three identical setups are used, but all networks for one specific
benchmark are always trained on the same chip. In all setups, the interface of the
ASIC is operated at a frequency of 84 MHz (see section 6.1.3) which determines
the the effective network frequency fnet (see section 5.2) to be 14 MHz [185] [181].

210

A Simple Evolutionary Approach

parameter value

No. of partitionings Np 10
networks per partitioning Nn 10
No. of repetitions Nr 5

output neurons per class N c
out 4

hidden neurons per class N c
hid 6

resolution of multi-bit inputs Nb 6(4)

population size µ 20
tournament size τ 2
recombination probability ρr in % 90
crossover probability ρc in % 90
uniform mutation rate ρu

m in % 3
Gaussian mutation rate ρg

m in % 7
Gaussian mutation width in LSB 102
used crossover operator two-point
elitist selection range nel 1
maximum generation (per class) 1000

neuron offset calibration on
row-wise offset calibration on
maximum postsynaptic current Imax

ps 22 µA

pattern multiplier during training mp 5(2)
pattern multiplier for training set mt

p 5(2)

pattern multiplier for test set mg
p 50(20)

Table 8.3: Summary of the relevant parameters of the employed experimental setup. The
numbers in parenthesis represent the individual exceptions for two of the used benchmarks:
The resolution of the used multi-bit integer inputs is reduced to 4 for the breast cancer
problem (see section 8.2.2), and due to the sheer size of the yeast data, smaller pattern
multipliers are used for this benchmark (see text). Apart from that, all tasks are treated
equally.

The weights of all individuals in the initial population are set to uniformly algorithm setup

distributed random values between -1023 and 1023. Since the size of the network
depends on the number of classes Nc in the current task, the maximum allowed
number of generations for the evolutionary training algorithm is adapted as well
and is set to 1000 · Nc. As noted in section 8.3.2, a chromosome-wise two-point
crossover operator is employed for all experiments.

If the fitness of the best individual in the current population reaches the highest termination condition

possible value and if this condition is maintained over a period of 5 succeeding
generations, the training is considered successful and the evolutionary algorithm
is terminated immediately. The best individual in the last generation is taken as
the result.

It has already been said that during training, each pattern is presented to the pattern repeat during
evaluationnetwork mp = 5 times in order to account for analog noise in the ASIC. The same

scheme is adopted during the estimation of the final classification performance at

211

8.4 First Training Experiments

of the trained network. For the accurate evaluation of the generalization perfor-
mance ag, each pattern in the test set is even applied mg

p = 50 times. This is
intended to account for the observation that the network’s performance on pre-
viously unseen data shows a higher sensitivity to noise than in the case of the
training patterns. This is plausible, since for the latter, the increased robustness
against temporal variations in the internal signals is automatically promoted by
the employed chip-in-the-loop training approach. This does not equally apply to
the generalization data. With the size of the test set being only 1/9 of the training
data, the resulting numbers of patterns for the evaluation of the classification and
generalization performance are approximately equal.

When determining the categorization accuracy of the network on the trainingcorrect classification

or generalization data, a given input pattern is only regarded as being classified
correctly if no other class exhibits a larger or equal number of activated output
neurons than the desired one. Ambiguous responses of the network where two or
more classes show the same amount of activation are counted as false classifica-
tions.

Apart from that, the conducted experiments follow the setup described in the
preceeding sections. The values of all relevant parameters are summarized in
table 8.3.

8.4.2 Results and Discussion

The resulting averaged classification accuracies on the training and test sets Atcomparison to
previous results and Ag together with their respective standard errors of the mean are listed in

table 8.4. It is well known that the selected tasks show a considerable variance
in difficulty which manifests itself mainly in the form of varying maximum values
for the achievable generalization rates. Therefore, the results for the individual
tasks cannot directly be compared with each other but have to be judged in com-
parison to the performance that can realistically be achieved on the respective
benchmark. The last column of table 8.4 presents some generalization rates that
have previously been reported in literature. Note that only the results obtained by
Prechelt [163] actually involve neural networks. The remaining investigations em-
ploy support vector machines [65], approximate distance classifiers [30], statistical
methods [3], or k nearest neighbor classifiers [101].

It is to be emphasized that the values shown in this last column are primar-differing evaluation
procedures ily intended to convey a general feeling for the generalization rates that can in

principle be achieved on the individual tasks. At this stage, a direct quantita-
tive comparison with the presented experimental results is problematic since the
cited investigations do not all employ the same stratified 10-fold cross-validation
scheme. Some of the reported results are obtained on single random partition-
ings of the data [163], while others are the outcome of 4-fold [101], 5-fold [30], or
leave-one-out [3] cross validation experiments. Although the provided value for
the liver-disorder problem is indeed the result of a 10-fold measurement [65], the
used subsets are not stratified. The same stratified 10-fold validation scheme that
is also used for the experiments described in this work is only applied in the case
of the yeast problem [101]. None of the publications reports error bounds for the

212

A Simple Evolutionary Approach

benchmark
No. of
classes

Nc

classification accuracy in %

training set test set reported taken
fromAt Ag Ag

breast cancer 2 98.26 ± 0.01 96.27 ± 0.13 98.85 [163]
diabetes 2 78.27 ± 0.02 73.17 ± 0.58 78.5 [163]
heart disease 2 89.06 ± 0.09 81.94 ± 0.48 96.8 [163]
liver disorder 2 75.94 ± 0.20 67.09 ± 0.78 73.7 [65]
iris plant 3 98.80 ± 0.05 94.30 ± 0.26 96–98 [30]
wine 3 91.10 ± 0.45 87.36 ± 1.37 100 [3]
glass 6 52.66 ± 0.68 46.07 ± 1.15 67.92 [163]
E.coli 8 57.13 ± 0.70 54.55 ± 0.45 86 [101]
yeast 10 8.52 ± 0.59 8.70 ± 0.68 60 [101]

Table 8.4: Training results obtained with the described combination of network setup
and evolutionary training algorithm. For problems with two or three classes, the results
are promising. With an increasing number of classes, the gap between the best reported
results and the accuracies that are obtained by networks on the HAGEN chip widens
significantly. The yeast problem is not reasonably learned at all (see text).

cited values. For a reasonable quantitative comparison with the measurements
discussed in this thesis, the different validation schemes of the other investigations
would have to be reproduced. A corresponding set of experiments will be discussed
in section 9.4.5.

Against the background of these considerations, it can be inferred from table 8.4 promising results

that — for most of the used benchmarks — the results are promising. In the case
of the breast cancer and iris plant problems, the obtained averaged accuracies on
the test sets are approximately in the order of those reported by other authors.
As expected, the performance on the test set is generally lower than the respective
accuracy on the training data (except for the yeast problem, see below) but is high
enough as to imply a satisfactory generalization ability of the trained networks.
Nevertheless, the absolute values of the achieved accuracies clearly leave room comparably low

accuraciesfor improvement: Apart from the liver disorder and iris plant data, not even the
respective performance on the training set can exceed the generalization accuracy
of other systems.

The gap between the achieved generalization performance and the accuracy that remaining
deficienciescan approximately be expected in the ideal case turns out to be considerably wide

for problems that incorporate larger numbers of classes. It is an important result
that being trained on the glass and E.coli data sets, the final networks do not
simply predict the most common class as it has been encountered in preliminary
experiments (in the case of the glass problem, the largest class represents 35.5 % of
the whole data). But compared to the results that have previously been reported
by other authors, the performance of the trained networks is not satisfactory.

In the case of the yeast problem, finally, the networks completely fail to produce yeast problem: clear
failureany reasonable response at all. A closer investigation reveals that they persist to

213

8.4 First Training Experiments

yield an output which is largely independent of the actually applied input pat-
tern, and that the single networks each tend to specialize on only one of the three
most common classes (which contain 31.2 %, 28.9 %, and 16.4 % of the whole data,
respectively). But even this specific class rarely exhibits a number of activated
outputs that exceeds those of all others. Against the background of these observa-
tions and given the low absolute accuracies, it is not surprising that the averaged
performance on the test data does not differ significantly from the classification
rate on the training set.

8.4.3 Modified Training Setups

For categorization tasks with three, six, or up to eight classes, the normalization
of the class scores that has been incorporated into the used fitness function (see
section 8.3.3) seems to at least partially yield the desired improvements. Nev-
ertheless, the eventually achieved generalization accuracies do not live up to the
expectations and this particularly applies to tasks with more than three classes.
The training of networks for the yeast problem evidently exceeds the capability of
the used evolutionary algorithm setup. With respect to the initial goal of training
networks on the HAGEN ASIC for demanding real-world applications — that are
likely to involve large numbers of classes— it might thus be concluded that simple
evolutionary algorithms and networks with a fixed architecture do not appear to
be a feasible approach.

Before this conclusion can be drawn with certainty, it is to be ensured that thepossible limitations

achieved training success is not in fact limited by the chosen particular evolution-
ary algorithm setup, i.e., the used mutation and crossover operators. In the light
of the permutation problem, the mere application of crossover might itself impede
a satisfactory outcome of the evolutionary training. Furthermore, since the exper-
iments presented in this thesis are the first to consistently utilize the evolutionary
coprocessor, it is to be verified that no hitherto unobserved deficiencies of this
device are the reason for the achieved results.

Therefore, a set of experiments similar to the ones discussed above is conductedmodified evolution
parameters where some of the parameters of the described setup are modified. In the first

experiment, the Gaussian mutation is disabled completely and the probability for
uniform mutation is raised to 4 %. The next three experiments use the original mu-varying crossover

operators tation probabilities but employ different crossover strategies: one-point crossover,
no crossover, and chromosome exchange. In the latter case, the recombination op-
erator simply swaps each pair of corresponding chromosomes between the two mat-
ing genomes with a modified probability of ρc = 50 % (see sections 3.4.4 and 8.3.2).
Another experiment is performed that uses the unmodified evolution settings butpure software

algorithm utilizes a software implementation of the genetic coding and the variance operators
instead of the coprocessor.

Finally, it is understood that the used network architecture, most notably the
predetermined size of the respective hidden layer, can generally be suspected of
constituting an unfavorable choice that eventually limits the achievable general-
ization performance. Indeed, it is to be expected that a systematic examination
of multiple network sizes will yield an optimal number of hidden units per class

214

A Simple Evolutionary Approach

that is different from the chosen value N c
out = 6 and depends on the particular

task at hand. But although a corresponding set of experiments can easily be con-
ducted, this would ultimately contradict the original intention of abandoning the
optimization of the network architecture in favor of high training speeds. The
sole existence of an optimal network size does not support the feasibility of the
simple evolutionary approach, even if it resulted in an improved generalization
capability of the trained networks. Moreover, the following chapter will present a
training approach that does not require a thorough optimization of the network
architectures in order to achieve competitive classification rates.

For these reasons, an exploration of different network sizes is deferred to sec- decoupled weight
valuestion 10.3.1. The last experiment in this campaign rather investigates whether the

enforced coupling of the weights to predefined multi-bit integer inputs (see sec-
tion 8.2.2) might in fact prevent the training algorithm from discovering better
solutions. In this experimental setup, all synaptic weights of the network are al-
lowed to be optimized by the algorithm independently of each other. While this
considerably increases the number of free parameters, it also permits to explore
hitherto inaccessible regions of the search space.

8.4.4 Results Obtained with the Modified Setups

The results are listed in tables 8.5 and 8.6. Only the obtained generalization
accuracies are shown, since the classification rates on the training sets are only
of minor interest in practice. A complete summary of the results can be found
in table C.1 in the appendix. Repeatedly training 500 networks for the E.coli
and yeast problems is particularly time-consuming due to the large number of
classes and — in case of the yeast benchmark — the sheer size of the data set.
An investigation of single, exemplary evolution runs indicates that neither of the
above modifications to the original setup can actually compensate for the general
incapability of the used evolutionary approach to train networks for the yeast
problem. Preliminary measurements with the E.coli data yield results that are
similar to those obtained with the other tasks. Therefore, it is decided to exclude
the last two benchmarks from this second set of experiments.

A comparison with table 8.4 immediately reveals that also in the cases of all unchanged results

other data sets, no significant improvement of the classification success can be
achieved. For the breast cancer, liver disorder, and iris plant problems, the aban-
donment of the Gaussian mutation leads to a slight increase of the averaged gener-
alization accuracy, but the respective difference to the original result is in no case
larger than the estimated error. For all other benchmarks, the use of a Gaussian
mutation has lead to a measurably better generalization.

Considering the various forms of recombination, none of the tested alternatives crossover operators:
equivalentseems to exhibit a distinct superiority over the others. Using no crossover at

all only yields a better performance on the glass problem. For all other tasks, it
either deteriorates the generalization rate or does not lead to an improvement that
exceeds the estimated uncertainty. Similar conclusions are to be drawn for the one-
point crossover and the chromosome exchange operator. Each of the investigated
recombination methods shows favorable results on some of the benchmarks but

215

8.4 First Training Experiments

benchmark

generalization accuracy Ag in %

no Gaussian
mutation

no crossover
one-point
crossover

breast cancer 95.90 ± 0.19 96.18 ± 0.10 96.33 ± 0.18
diabetes 73.61 ± 0.60 73.33 ± 0.76 73.62 ± 0.36
heart disease 80.17 ± 0.85 80.76 ± 0.17 82.47 ± 0.63
liver disorder 67.71 ± 0.83 67.85 ± 0.83 68.21 ± 0.73
iris plant 93.51 ± 0.97 94.03 ± 0.46 94.87 ± 0.74
wine 83.61 ± 0.91 80.25 ± 1.60 85.03 ± 1.10
glass 43.25 ± 1.27 49.91 ± 0.47 46.36 ± 1.22

Table 8.5: Training results obtained with slightly modified evolutionary algorithm setups.
For the first experiment, the Gaussian mutation is disabled and the probability for uniform
mutation is raised to 4 %. The second and last columns refer to experiments without any
crossover and with one-point crossover, respectively.

benchmark

generalization accuracy Ag in %

chromosome
exchange

software
algorithm

no coupled
weights

breast cancer 96.07 ± 0.09 96.40 ± 0.10 94.71 ± 0.15
diabetes 73.32 ± 0.67 72.68 ± 0.62 61.94 ± 0.65
heart disease 82.26 ± 0.53 81.49 ± 0.72 76.82 ± 0.32
liver disorder 67.15 ± 0.66 67.31 ± 0.74 51.83 ± 1.13
iris plant 94.86 ± 0.62 94.88 ± 0.35 58.06 ± 2.50
wine 81.83 ± 1.59 82.23 ± 0.90 46.33 ± 1.71
glass 46.30 ± 1.56 44.44 ± 1.37 25.00 ± 1.21

Table 8.6: Training results obtained with slightly modified training resp. network setups.
During the experiments that are represented by the first column, the applied recombina-
tion operator simply swaps each pair of corresponding chromosomes in the two mating
individuals. The results in the second column are obtained with a pure software imple-
mentation of the genetic coding and variation operators. For the last investigation, the
enforced coupling of the synaptic weights to form predefined multi-bit integer inputs is
relieved and all weights can be adjusted independently of each other.

216

A Simple Evolutionary Approach

yields inferior generalization rates on others. On most problems, the differences
between the various crossover operators are within the estimated error bounds.
The only exception is given by the wine benchmark where the initial two-point
crossover is observed to lead to significantly better results than the alternative
operators.

Especially with regard to the performance that is achieved without any recom-
bination, these results can be seen as to support previous suggestions that the
permutation problem might not in fact be as severe as widely supposed [80] [81]
(see section 4.1.2). But they could also be accredited to the circumstance that
in the presence of the used high mutation rates and small population sizes, the
applied recombination operator might not have a significant impact on the opti-
mization process at all.

It can be argued that especially for the larger networks, stronger selection in
combination with even further increased mutation rates could potentially improve
the performance of the evolutionary algorithm [93]. But similar to an exploration
of the optimal architecture, the need to tune the evolution parameters to optimally
suit the task at hand would rather militate in favor of an automatic adaptation of
the free parameters during training than support the employed simple evolutionary
approach.

Beyond that, it is important to note that compared to the training performance coprocessor:
functionalof the software algorithm, the evolutionary coprocessor does not show any sign

of a general insufficiency. While on the iris problem, the pure software algorithm
yields a slightly better performance of the final networks, the utilization of the
coprocessor leads to better results on the wine and glass benchmarks. Regarding
all investigated data sets and within the remaining statistical uncertainties of the
presented generalization rates, it can be said that both, the evolutionary copro-
cessor and the pure software implementation of the genetic coding and variation
operators tend to perform approximately equally well. This is good news in so far
as it supports the claim that the introduced coprocessor implementation allows to
efficiently accelerate the evolutionary training algorithm without loss in training
success.

Finally, it turns out that the original strategy to couple the weights of a multi- weight coupling:
necessarybit integer input to suit the used binary coding of the attribute values does indeed

give rise to a remarkable improvement of the training performance compared to
the case where all weights need to be adjusted independently. Using the lat-
ter approach, the achieved generalization accuracies are in some cases (e.g., the
iris plant, wine and glass data sets) dramatically reduced compared to those ob-
tained with all other investigated training setups. When appropriately coupling
the weight values, the resulting reduction of the search space evidently yields such
a significant simplification of the eventual optimization problem that it more than
compensates for the reduced flexibility in adjusting the weight values.

8.4.5 Concluding Remarks

It is to be emphasized that regardless of the dissatisfying results that are obtained
on benchmarks with more than three classes, the presented experiments success-

217

8.4 First Training Experiments

fully demonstrate the general functionality of the used hardware neural network
framework, most notably the evolutionary coprocessor. The latter is demonstrated
to achieve the same training performance as a slower software implementation.
The generalization rates that are eventually obtained by comparably small net-
works for classification task with two or three classes are promising.

The observation that extensive modifications to the applied variation operatorssimple approach:
insufficient or their probabilities do not on average yield a significant change in the achieved

results remains to indicate that the inherent robustness of the simple evolutionary
approach might also give rise to a partial insensitivity against small changes of
the evolution parameters, especially the used recombination operators. Initially,
this can be seen as a favorable feature of the heuristic evolutionary approach, but
it also indicates that the observed deficiency of the training setup is of a rather
general nature: The used simple evolutionary algorithm is not fit for optimizing
the weight values of large networks for demanding classification tasks with more
than two or three classes.

This is also problematic in so far as even the largest of the trained networks —
dedicated for the classification of yeast proteins — utilizes only a fraction of the
resources offered by one HAGEN chip (see section 5.4.1). Aiming for an efficient
exploitation of the parallelism that is provided by the implemented network model,
it will ultimately be required to train even larger and more complex networks.

It is evident that more sophisticated evolutionary training strategies need to berequired: improved
training devised that can readily benefit from the functionality of the coprocessor and at

the same time succeed in training complex networks for realistic applications. A
feasible approach will be introduced in the following chapter.

218

Chapter 9

Stepwise Evolutionary Training
Strategies

Prediction is very difficult, especially about the future.

Niels Bohr

The experimental results presented in the foregoing chapter indicate that simple
evolutionary algorithms do not suffice to successfully train large and complex neu-
ral networks on the HAGEN chip for challenging classification tasks. Regarding
the sheer dimensionality of the resulting search spaces, the ubiquitous threat of
premature convergence, and the various issues that are known to especially af-
fect the evolutionary training of neural networks — like the permutation problem
brought forward in section 4.1.2 — it is not surprising that the capability of simple
evolutionary algorithms to train large neural networks is ultimately limited.

Common ways to face up to these challenges are to extend the basic evolution-
ary approach by incorporating sophisticated speciation schemes and/or elaborate
genetic encodings. Several potential extensions to the described algorithm, such
as an automatic adaptation of the evolution parameters, the optimization of the
network architecture during training, or a further improved fitness function have
already been suggested in the previous chapter. Numerous feasible extensions
are also reported in literature and some of the more recent and most promising
approaches to train neural networks by simulated evolution like the NEAT and
EPNet algorithms have been discussed in section 4.2.2.

It has been motivated in section 7.4.5 that, in principle, such refined and im-
proved algorithms can readily be implemented within the HEAF framework for
evolutionary algorithms. Nevertheless, increasingly complex training algorithms
necessarily introduce additional computational effort (see section 4.2.3). It persists
that aiming for an efficient exploitation of the speed of the used network ASIC, an
appropriate hardware neural network framework requires simple and fast training
algorithms that can in the ideal case benefit from hardware acceleration and/or
parallelization themselves (see sections 6.2.6 and 6.3.3).

In pursuit of a training strategy that can fulfill these demands, the following
chapter introduces and evaluates a novel approach that aims to solve the com-

219

9.1 The Divide-and-Conquer Approach

plex task of training large networks for difficult problems without introducing
additional, time-consuming calculations. Instead, it follows an intuitive divide-
and-conquer heuristic.

9.1 The Divide-and-Conquer Approach

When trying to solve a large and complex task by simple means, it is a common
approach to divide the whole problem into several, easier to solve subproblems
that can be dealt with independently. If the available tools suffice to cope with
the smaller problems, the original task can easily be accomplished by completing
the individual parts separately, i.e., either sequentially or in parallel. It remains
that depending on the problem at hand, finding a reasonable partitioning into
independent subproblems and/or determining an adequate combination of the
obtained partial solutions to successfully solve the entire problem often turns out
to be highly nontrivial.

9.1.1 Stepwise Network Training

Regarding the training of neural networks for a pattern recognition task withdividing classification
tasks Nc classes, it is comparably straight forward to split the original problem into

Nc problems with two classes each: For every class Ck, one separate network is
trained to distinguish its instances eα ∈ Ck from those that belong to any other
class eα ∈ E \ Ck. This is illustrated schematically in figure 9.1 for an exemplary
task with three classes. The shown networks are simplified to only exhibit N sn

hid = 4
hidden neurons and N sn

out = 2 outputs.
The first stage of the training is then divided into Nc phases such that in the kthtraining stages and

training phases phase, 1 ≤ k ≤ Nc, one dedicated network is trained for class Ck. In response to
the binary representation sα of an arbitrary instance of the problem, this network
is demanded to activate all of its outputs if the presented instance belongs to class
Ck and to produce an output of zero otherwise.

Two important observations can be made. First, the training of the single net-simple training of
subnetworks works can be performed independently. In each case, the entire available training

data can be used. Only the desired target outputs differ between the networks.
Second, since they expect the same kind of input patterns, all networks can be
connected to the same set of input nodes and can thus in fact be regarded as
subnetworks of one large network. If every subnetwork can successfully be trained
to fulfill its individual requirements, the whole network readily solves the original
task.

Compared to the architecture that has been chosen for the experiments in theuncompleted
architecture preceeding chapter, the second layer of the final network does not exhibit the full

connectivity. The outputs of one specific class Ck are not connected to the hidden
neurons of the other subnetworks. Being trained to each distinguish a different
class l 6= k from the respective rest, the other subnetworks do in particular provide
means of differentiating between instances of their own class l and the considered
class k. In so far, the information that is coded by the inner neurons of those
remaining subnetworks might be useful also for the output neurons of this class.

220

Stepwise Evolutionary Training Strategies

PSfrag replacements

class 1

class 1

class 1

class 1

class 2

class 2

class 2

class 2

class 3

class 3

class 3

class 3

phase 1 phase 2 phase 3

phase 4 phase 5

phase 6

a) Stage 1

b) Stage 2

training complete

Figure 9.1: During the first stage of the stepwise training procedure, one separate net-
work is trained for each class (a). The shown example involves three classes and the
numbers of hidden neurons and outputs per network are set to N sn

hid = 4 and N sn
out = 2,

respectively. The individual networks can be regarded as subnetworks of one large net-
work. During the second stage (b), the interconnections between these subnetworks are
trained. Similar to the first stage, this can be done separately for each subnetwork such
that in each phase, only the newly introduced connections (dark brown) are trained while
the remaining synapses (light green) remain untouched. At the end of the second stage,
the network is a fully connected two-layer perceptron.

221

9.1 The Divide-and-Conquer Approach

Therefore, it suggests itself to interconnect the single subnetworks in order tointerconnecting the
subnetworks yield a homogeneously connected two-layer architecture. This is done in the second

training stage shown in the lower half of figure 9.1. Similar to the first stage, the
process can be divided into several independent phases: In each step, the outputs
of one specific subnetwork k are connected to the hidden neurons of all others.
While the synaptic weights that have been optimized in the preceeding phases
remain fixed, the weight values of the new connections are optimized to improve
the recognition accuracy of the respective class k.

As before, the single phases can be performed independently. During the train-independent training
phases ing of the synapses that lead to the outputs of subnetwork k, the connections

to all other outputs remain untouched. Furthermore, the iterative modifications
of the optimized weight values are based solely on the response of the respective
subnetwork — the outputs of the other subnetworks can readily be ignored. In
this respect, the phases of the second stage are similar to those of the first stage
which particularly allows to apply the same training algorithm.

9.1.2 Implications for Training

Once the second stage has been completed, the final network exhibits the sameoutput encoding

connectivity and is trained to perform the same task as the network proposed
in section 8.2. When being presented an instance of the respective problem, it
is expected to activate the outputs that indicate the correct class and deactivate
all others. In practice, the class with the largest number of activated neurons in
response to an input pattern sα is regarded as the prediction of the network.

However, compared to the training process described in the foregoing chapter,
the single phases of the stepwise approach involve optimization problems that are
considerably simpler in several respects. First, in every phase, the amount of freesmaller search spaces

parameters, i.e., weight values, is significantly reduced. Regarding the training
results that can be achieved on small networks (see table 8.4) it is reasonable to
assume that the used simple evolutionary algorithm can successfully cope with
search spaces of the resulting dimensionalities. Second, the task that remains tosimple subproblems

be solved by each subnetwork is a mere two-class problem. Again, the results
shown in table 8.4 indicate that the capability of simple training algorithms can
be expected to suffice for this kind of task. Third, the desired network responsesimpler fitness

function demands all output neurons to behave equally. Against the background of what
has been discussed in section 8.3.3, this allows for a considerable simplification
of the fitness calculation. A weighting of the output neurons according to the
respective target outputs becomes obsolete, and for each pattern sα, the score
λ(eα) can simply be calculated as the number of output neurons that show the
desired state of activation.

In summary, it is anticipated that the simple evolutionary algorithm describedtraining times and
parallelization in section 8.3 can successfully be utilized for the single optimization problems

that remain to be solved in each phase. On the other hand, for a problem with
Nc classes, the whole training process now involves 2Nc single evolution runs. De-
pending on the number of generations that are allowed per phase, the resulting
total number of iterations might exceed that of the simple approach used in the

222

Stepwise Evolutionary Training Strategies

preceeding chapter. But compared to a simultaneous optimization of the whole
network, the stepwise approach inherently promotes an immediate parallelization
of the training process: Within each stage, the single phases can readily be per-
formed in parallel. This particularly suits a hardware neural network platform
that allows to evaluate multiple neural networks simultaneously. This aspect will
be examined more closely in section 10.1.2.

9.1.3 Stepwise Training and Mixtures of Experts

The concept of dividing a given task into smaller subproblems that are to be
dealt with independently by specialized modules has already been considered in
the context of neural network training in another form. In 1991, Jacobs et al.
proposed the so-called adaptive mixture of local experts approach [108]. It is an
important difference between the introduced stepwise training strategy and the
mixture of experts model that the latter performs a partitioning of the investigated
task in the input space.

In the case of the stepwise training procedure described above, the single net- dividing the output
spaceworks are each specialized in recognizing a different class. Hence, it can be said

that they are each specialized on a different dimension of the output space. At the
same time, all subnetworks are trained on the complete set of training instances.
In contrast, within the mixture of experts approach, the individual networks are dividing the input

spacetrained to specialize on different regions of the input space. When a new vector
Iα is applied to the final system, it is not processed by all networks alike but only
by the expert that is responsible for the respective region of the input space that
contains Iα.

Since a suitable corresponding partitioning of the input space will in general not learning the input
partitioningbe known in advance, it needs to be determined during training. Apart from the

single expert networks, the system proposed by Jacobs et al. therefore includes
an additional, dedicated gating network that individually decides for each input
pattern which of the experts is applicable. As a consequence, all expert networks simultaneous training

requiredand the gating network have to be trained simultaneously. During training, the
single networks specialize on different areas of the input space, and the gating
network iteratively learns how to best allocate the different instances to the single
experts. A detailed account of the used training algorithm can be found in the cited
publications and shall not be given here. But it is to be noted that this strategy
and related approaches are reported to be successfully applicable to demanding
vowel discrimination and visual recognition tasks [107] [108].

In the case of a classification task with Nc categories, the individual networks of advantages of
stepwise trainingthe mixture of experts approach are in principle required to distinguish between

all Nc classes — even if only for a reduced set of instances. According to the
introduced stepwise strategy, each network merely has to solve a simple two-
class problem and can be trained on all available input vectors. The necessary
partitioning of the output space is automatically implied by the formulation of the
actual classification problem and does not have to be learned. Besides allowing for
the application of a simple algorithm to the training of the individual subnetworks,
this eventually yields the advantage that all of the single training phases within

223

9.2 Experiments with the Stepwise Strategy

parameter value

output neurons per subnetwork N c
out 4

hidden neurons per subnetworks N c
hid 6

uniform mutation rate ρu
m in % 3(0)

Gaussian mutation rate ρg
m in % 7(3)

Gaussian mutation width in LSB 100
maximum generation per phase 1000

Table 9.1: Parameter modifications for the stepwise strategy. The two stages use different
mutation probabilities, the values for the second stage are set in parenthesis. All remaining
parameter values equal those listed in table 8.3.

each of the two stages can be performed independently. This, in turn, permits a
potential parallelization of the training process that cannot equally be achieved
by the mixture of experts approach.

Nevertheless, it still awaits demonstration that the described stepwise training
strategy can in fact yield an improvement in the generalization performance of the
final networks compared to the simple evolutionary approach investigated in the
preceeding chapter. This will be evaluated in the following sections.

9.2 Experiments with the Stepwise Strategy

For each of the nine benchmarks, a set of repeated stratified 10-fold cross-validationnetwork and training
setup experiments (see section 8.1.2) is performed where the networks are trained using

the stepwise strategy brought forward in section 9.1.1. The numbers of hidden
neurons N sn

hid and outputs N sn
out for each subnetwork are chosen to be the same

as the numbers of hidden neurons and outputs per class (N c
hid and N c

out) that
have been used for the experiments of the foregoing chapter. With the number
of subnetworks being equal to the respective number of classes, this effectively
yields networks of the same architecture and size as in the previous experiments.
In each training phase, a maximum number of 1000 generations is allowed. Since
every subnetwork is trained for a total of two phases — one in each stage — the
resulting numbers of training iterations are twice as large as in the case of the
initial experiments.

According to what has been said above, the fitness function is modified suchfitness function

that in response to an applied input sα, the single pattern score λ(eα) is simply
taken to be the number of agreeing positions between the network output Oα and
the desired target output Tα. Given these individual scores λ(eα), the fitness F
persists to be calculated according to equation 8.2, but the sum now only involves
the two classes Ck and E\Ck. This evaluation procedure can readily be employed
during both stages of the training.

For all phases of the first stage, the used mutation probabilities equal those listedevolutionary
algorithm in table 8.3. The new connections that are introduced in the second stage are not

initialized randomly as it is done in the case of the first stage. Instead, they are set
to starting values of zero. The training of these additional connections is performed

224

Stepwise Evolutionary Training Strategies

benchmark
No. of
classes

Nc

generalization accuracy Ag in %

complete
training

only
stage 1

one-layer
perceptron

breast cancer 2 96.44 ± 0.23 95.34 ± 0.19 96.17 ± 0.14
diabetes 2 73.70 ± 0.31 66.92 ± 0.67 69.39 ± 0.29
heart disease 2 80.03 ± 0.54 79.82 ± 0.67 82.21 ± 0.57
liver disorder 2 66.51 ± 0.72 60.24 ± 0.63 65.40 ± 0.45
iris plant 3 95.10 ± 0.54 92.83 ± 0.44 88.46 ± 0.95
wine 3 95.31 ± 0.28 91.07 ± 0.36 94.07 ± 0.45
glass 6 62.56 ± 1.31 54.30 ± 0.60 60.89 ± 0.33
E.coli 8 81.01 ± 0.93 74.37 ± 0.23 79.74 ± 0.33
yeast 10 51.18 ± 0.31 42.55 ± 0.28 43.98 ± 0.41

Table 9.2: Training results obtained with the stepwise strategy described in section 9.1.1.
The first column shows the accuracies that are achieved with fully connected two-layer
perceptrons. For the experiments shown in the middle column, the second training stage
is omitted and the subnetworks thus remain unconnected. The values in the last column
are obtained with single-layer perceptrons.

without uniform mutation and the probability for the Gaussian operator is reduced
to ρg

m = 3 %. Apart from that, the evolutionary algorithm described in section 8.3
remains unmodified. Table 9.1 summarizes all relevant parameters that have been
modified compared to the previous experiments.

In order to evaluate in how far the additional connections that are trained in the abbreviated training

second training stage actually benefit the eventual generalization performance of
the final networks, a further set of measurements is performed where the training
is already terminated after the first stage. The single subnetworks thus remain
unconnected.

Finally, a last series of experiments employs a single-layer architecture for the alternative:
single-layer networkssubnetworks, where N c

out = 4 output neurons per class are directly connected to
the input nodes. Evidently, the stepwise training strategy can immediately be
applied also to this topology. But since no hidden neurons need to be intercon-
nected, no second training stage is performed. As a side effect, each of the resulting
single-layer networks fits on one single network block of the HAGEN ASIC (see
sections 5.4.1, 5.4.2, and 8.2.4).

9.2.1 Results and Discussion

The results of all described experiments are presented in table 9.2. Again, only
the achieved generalization accuracies are shown, a complete overview that also
includes the respective classification performance on the training set can be found
in table C.2 in the appendix.

It can be observed that the proposed stepwise training procedure mainly im- measurable
improvementsproves the generalization success on tasks with more than two classes. The gen-

eralization accuracies that are achieved on the iris plant, wine, glass, E.coli and

225

9.2 Experiments with the Stepwise Strategy

yeast data sets are measurably increased compared to networks that are trained
as a whole (see table 8.4). For the iris plant problem, the improvement in gen-
eralization performance just exceeds the estimated error, but in case of the wine
data set, the number of misclassification is reduced by more than a half.

For large networks and problems with large numbers of classes, the stepwise ap-benefits for larger
networks proach naturally yields a substantial reduction of the search space in comparison

to a simultaneous optimization of all weights. This is observed to lead to a drastic
increase in generalization accuracy for the glass, E.coli and yeast problems. Com-
pared to the results that are reported by other authors (see table 8.4) the obtained
generalization rates now exhibit approximately the same slight inferiority as those
achieved on problems with three or two classes. This is particularly satisfactory in
the case of the yeast problem for which networks could not reasonably be trained
with the simple evolutionary approach at all.

Given the observed measurement uncertainty, the results obtained on the breastresults for small
networks cancer, diabetes, and liver disorder data sets are not significantly different to those

reported in the preceeding chapter. Splitting the respective networks into two
independently trained halves and thereby reducing the number of simultaneously
optimized parameters does in these cases not yield a substantial improvement
of the training. As suspected earlier, it can reasonably be concluded that for
these benchmarks, the achieved generalization performance is not limited by the
simplicity of the used evolutionary algorithm and/or the size of the networks. The
only task where the stepwise strategy yields a measurably worse generalization
performance than the naive approach of the previous chapter is the heart disease
problem.

It can furthermore be inferred from the third column of table 9.2 that the ad-favorable: two
training stages ditional connections between the subnetworks which are introduced during the

second stage of the training measurably benefit the performance of the final net-
works. An abandonment of the second stage leads to a decrease of the generaliza-
tion accuracy for all tasks. With the exception of the heart disease problem, the
observed deterioration always exceeds the estimated statistical uncertainty.

The last column, finally, reveals that the feasibility of a single-layer architectureoptimal architecture:
task dependent strongly depends on the investigated task. The single-layer perceptrons that are

trained for the heart disease problem actually seem to perform better on aver-
age than the networks with one hidden layer (see also table 8.4). Against the
background of the above observation that even the simple evolutionary approach
achieved better generalization on this benchmark, it can be concluded that the
given number of 12 hidden neurons in combination with the extended training
times of the stepwise strategy does in this case lead to an unfavorable overfitting
of the data (see also figure 2.3 c)).

Comparing the second last and last columns, it becomes clear that when only
one training stage is performed, networks with just one single layer tend to achieve
better generalization accuracies than those with two layers. The only exceptions
are the iris and wine problem.

Although it can generally be observed that — apart from the heart disease prob-suitability of
single-layer networks lem — the generalization rates of the single-layer networks are lower than those of

the two-layer perceptrons, it can also be seen that the respective difference turns

226

Stepwise Evolutionary Training Strategies

out to be remarkably small for most tasks. It is well known that two of the three
classes that form the iris problem are definitely not linearly separable. This is
consistent with the achieved results. Given the obtained accuracies on the other
benchmarks, it is to be concluded that the respective classes actually contain a
large fraction of linearly separable data. This seems to particularly apply to the
heart disease problem where a linear partitioning of the input space is in fact su-
perior to more complex class separations. This has already been observed during
previous investigations by other authors [163].

The dimensionalities of the investigated problems inhibit a reasonable display in
two or even three dimensions. But it is plausible to assume that when considering
any pair of classes from one of these problem, their arrangement in the input space
might be similar to the situation illustrated in figure 2.3 c).

Implications for Further Improvements

In summary, it can be concluded that the introduced stepwise training strategy stepwise training:
feasibletends to promote a measurable improvement in the achievable classification per-

formance compared to the simple evolutionary approach that has been described
in the foregoing chapter. In each phase of the training, a simple and fast evolu-
tionary training algorithm can be used and the individual subnetworks for each
class can in principle be trained in parallel. In so far, the stepwise training ap-
proach is particularly well suited for fast and massively parallel neural network
hardware platforms (a possible way of exploiting this parallelism will be discussed
in section 10.1.2).

Still, the achieved results can, as yet, not compete with those that are obtained remaining issues

by other systems, and the gained improvements primarily affect problems with
more than two classes. Furthermore, considering the observations that are made
on the heart disease benchmark, it must be stated that the restriction to a fixed
and predefined, two-layer network architecture runs the risk of yielding suboptimal
results on some problems.

Finally, it is to be considered that a number of N c
hid = 6 hidden neurons and/or unused resources

N c
out = 4 outputs per class, does — for most of the investigated benchmarks — by

far not exploit the resources that are provided by even only a single HAGEN chip.
Therefore, it would be desired to extend the proposed stepwise training procedure
to allow for an efficient training of larger networks that can make best use of
the offered hardware resources and achieve competitive generalization rates on
a variety of problems without requiring an individual adaptation of the network
architecture. The following sections will present a promising approach.

9.3 The Generalized Stepwise Strategy

In the spirit of an intuitive divide-and-conquer heuristic, the proposed stepwise
training strategy performs a partitioning of the whole network that is inspired
by the combinatorial structure of the actual categorization task: The resulting
subnetworks are each trained for a different class. The experiments described
in the preceeding section demonstrate that the resulting division of the training

227

9.3 The Generalized Stepwise Strategy

process into the independent optimization of several single subnetworks is indeed
feasible.

In pursuit of larger networks, the size of the individual subnetworks could be
increased until the capability of the training algorithm to successfully optimize
the resulting set of weights reaches its limit. But given the apparent success of the
divide-and-conquer approach, it also suggests itself to compensate for increased
network sizes by further dividing the thus enlarged subnetworks themselves.

9.3.1 Training Multiple Networks per Class

The original stepwise strategy shown in figure 9.1 can easily be extended by train-generalizing the
stepwise strategy ing multiple networks for each class instead of one. Figure 9.2 schematically illus-

trates a simple example where a number of N c
net = 2 subnetworks is trained for

each of the Nc = 2 possible classes. Effectively, each of the Nc phases of the first
stage is simply repeated N c

net times. Again, the resulting set of Nc · N c
net networks

can readily be regarded as to form one large network.

The second training stage then proceeds as before: During a number of Nc · N c
neteffect: increased

networks training phases, the outputs of each subnetwork are connected to the hidden neu-
rons of all other subnetworks. Once again, the resulting network turns out to ex-
hibit a fully connected two-layer architecture, the only change being an increased
number of hidden neurons N c

net · N c
hid and outputs N c

net · N c
out.

Multiple Subnetworks vs. Increased Subnetwork Size

Initially, generalizing the original strategy to the training of multiple subnetworks
per class does not automatically seem to yield an advantage over a simple increase
of the subnetwork size. As long as the used training algorithm can cope with
the resulting dimensionality of the search space, a further division of the enlarged
subnetwork is not necessarily expected to increase the training performance. At
least, this is suggested by the results that are obtained with the original stepwise
approach on two-class problems (see table 9.2).

Nevertheless, the proposed extended strategy promises to be advantageous inincreased training
times several respects. Both, the training of larger subnetworks and the optimization of

multiple subnetworks per class eventually increase the required number of training
iterations. In the latter case, the total number of performed generations of the evo-
lutionary algorithm linearly scales with the number of subnetworks per class — if
it is assumed that the maximum number of allowed generations per phase remains
unchanged. Given a fixed size of the individual subnetworks, the overall number
of iterations is then proportional to the total number of hidden neurons in the
final network. For an alternative training of larger subnetworks, the number of
training iterations in each phase is reasonably increased in approximately the same
fashion.

Having said that, it remains an important difference between the two approachespotential
parallelization that the training of multiple networks per class can readily be performed in par-

allel. Evidently, this does not apply to the additional generations that will have
to be processed for the training of the larger networks. The parallelization of the

228

Stepwise Evolutionary Training Strategies

PSfrag replacements

class 1

class 1

class 1class 1

class 2

class 2

class 2

class 2

class 1

class 1

class 2

class 2

phase 1 phase 2 phase 3 phase 4

phase 5

phase 6

phase 7

phase 8

a) Stage 1

b) Stage 2
training complete

Figure 9.2: The stepwise training strategy can easily be generalized to a training of
multiple subnetworks per class instead of one. Here, an exemplary two-class problem
is considered and N c

net = 2 different subnetworks are trained for each category. The
first training stage (a) then includes 2 · 2 phases and the resulting network features 2 · 2
subnetworks, two of which are sensitive to the same class, respectively. As before, the
single subnetworks are interconnected during the second training stage (b). The final
network is a fully connected two-layer perceptron with an effective number of 2 ·N sn

hid = 8
hidden neurons and 2 · N sn

out = 4 output neurons for each class.

229

9.3 The Generalized Stepwise Strategy

stepwise strategy will more thoroughly be discussed in section 10.1.2.

Beyond that, increasing the size of the single subnetworks will eventually befeasibility of simple
algorithms limited by the capabilities of the used simple training algorithm. Indeed, com-

paring the results of the previous chapter with the performance of the stepwise
strategy (tables 8.4 and 9.2), it can be expected that a measurable deterioration
of the training success already occurs for networks with 3 · 6 hidden neurons (e.g.,
the networks for the iris and wine problems). In contrast, repeatedly training
and interconnecting multiple networks of a fixed size is limited only by the avail-
able network resources, the achievable degree of parallelization, and the allowed
training time.

9.3.2 Network Ensembles: Theoretical Considerations

In addition to the above considerations, training multiple subnetworks per classsubnetwork diversity

instead of a single large one is also anticipated to be beneficial with respect to the
achievable generalization accuracy. It has been discussed earlier that the eventual
outcome of an evolutionary training run is influenced by numerous random deci-
sions, and the multiple subnetworks i, 1 ≤ i ≤ N c

net that are trained for a given
class Ck are therefore expected to be slightly different. Due to their individual
partitionings of the input space, the number of outputs ν i

k(s
α) ∈ {1, . . . , N sn

out} that
are activated in response to the application of the same input pattern sα is likely
to vary between the single networks — at least for some of the instances (compare
figure 2.3 c)).

Following the proposed strategy, the binary output patterns of these subnet-averaged outputs

works are simply concatenated such that the total number of activated output
neurons per class immediately becomes

νk(s
α) =

Nc
net∑

i=1

νi
k(s

α) k ∈ {1, . . . , Nc} (9.1)

and eventually obeys νk ∈ {1, . . . , N sn
out · N c

net}, 1 ≤ k ≤ Nc. As long as the same
number of subnetworks N c

net is trained for each category, this procedure effectively
yields the same response of the entire network as when the averaged numbers of
outputs νk = νk/N

c
net for each class were compared.

So-called ensembles of networks whose outputs are appropriately combined tonetwork ensembles

yield a collective prediction of the whole committee have already been examined
repeatedly in literature [105] [111] [124] [154] [153] [160] [189] [190].

Perrone and Cooper [160] consider a group of N networks with the respectivefunction
approximation output functions yi(I), 1 ≤ i ≤ N that each approximate a given target function

f(I) with a specific individual error εi(I), f(I) = yi(I) + εi(I). The expected sum-
of-squares error of network yi(I) can then be written as

Ei = 〈 (yi(I) − f(I))2 〉 = 〈 ε2
i 〉 (9.2)

(compare equations 2.15 and 2.16) and the on average expected error of any single

230

Stepwise Evolutionary Training Strategies

network in the committee simply becomes

E =
1

N

N∑

i=1

〈 ε2i 〉 (9.3)

where 〈 · 〉 denotes the expectation value on the input space I ∈ I.
Instead of considering only the output of a single network, one can regard the ensemble prediction

collective prediction of the whole ensemble y(I) to be the average over all individual
network responses

y(I) =
1

N

N∑

i=1

yi(I). (9.4)

The expected sum-of-squares error of this ensemble output is then given by

Eens =

〈 (
1

N

N∑

i=1

yi(I) − f(I)

)2 〉
=

〈 (
1

N

N∑

i=1

εi

)2 〉
. (9.5)

Perrone and Cooper derive the important result that if the errors εi(I) of the improved accuracy

different networks are assumed to be uncorrelated and to have zero mean, then
the estimated error of the ensemble Eens and the averaged estimated error of the
single networks E obey

Eens =
1

N
E. (9.6)

At first sight, this is a remarkable observation in so far as it suggests that limitations

the sum-of-squares error of the ensemble prediction can be reduced below any
desired threshold ε > 0 simply by regarding committees of sufficient size. In
practice, however, the assumption that the errors εi(I) of the single networks
are uncorrelated does not hold. In fact, the errors are anticipated to be highly
correlated, since they are strongly influenced by the used network architecture,
the employed training algorithm, and the structure of the available training data.
In general, when networks with equal architectures are trained on the same data
in a more or less deterministic fashion (see sections 2.1.3 and 2.2.2), the remaining
errors of the individual networks are likely to occur on approximately the same
subset of problematic input values.

Therefore, equation 9.6 can merely serve as a lower bound on the actually guaranteed: preserved
accuracyobserved ensemble error Eens. On the other hand, it can also be shown quite

easily [20] that the use of an ensemble can never increase the on average expected
error, i.e.,

Eens ≤ E. (9.7)

Experimental results suggest that some measurable improvement in performance
will generally be observed [20] [160].

231

9.3 The Generalized Stepwise Strategy

Network Ensembles and Diversity

It remains that in order for an ensemble to be superior over a single network,ensemble diversity

the members of the committee need to exhibit a sufficient diversity, i.e., they
must not behave equally on all input patterns. Even an arbitrary number of
identical networks will not yield any improvement over a single instance of the
same network. This intuitively plausible insight has been formalized by Krogh
and Vedelsby [124]. For each network i, they consider the deviation di(I) of its
output from the ensemble mean

di(I) = (yi(I) − y(I))2 (9.8)

and define the on average expected ensemble diversity (or “ambiguity”) to be

Dens =
1

N

N∑

i=1

〈 di(I) 〉. (9.9)

On the basis of this definition, a simple relation between the estimated ensemblediversity and
accuracy error Eens, the expected error of the single networks E, and the ensemble diversity

Dens is obtained:

Eens = E − Dens (9.10)

Again, it turns out that the error of the ensemble is guaranteed to be not larger
than the average error of the single networks. The achieved reduction is deter-
mined by the diversity Dens of the networks within the committee.

Aiming for the construction of an efficient ensemble, it is thus necessary topromoting diversity

not only optimize the accuracy, but also the diversity of the contained networks.
Various approaches to promote a sufficient disagreement between the different
committee members are conceivable and have been investigated in literature.
Prominent strategies are to vary the used training data between the individual
networks [124] [153], to employ different architectures, start from different ini-
tializations of the weights [130], or to apply varying training algorithms (for an
overview see [189]).

More recent approaches aim to actively minimize the similarity between theactively enforcing
diversity individual ensemble members. For example, Opitz and Shavlik use a genetic al-

gorithm to construct a diverse set of networks [154]. Other procedures start with
a minimal ensemble of only one or two networks and successively add and train
new members in a way that ensures these newly introduced networks to be dif-
ferent from the others [73] [105]. The algorithm proposed by Islam et al. [105]
additionally incorporates the automatic adjustment of the architectures and the
number of networks in the ensemble. While this last approach promises to maxi-
mize the diversity within the committee most efficiently and yields excellent results
on various benchmark problems (see section 9.4.5), it also requires elaborate pro-
cedures to ensure the diversity of the networks. In general, for all of the above
approaches, the training of each individual network needs to incorporate knowl-
edge of the current performance of all others, i.e., the networks can no longer be
trained independently.

232

Stepwise Evolutionary Training Strategies

The Stepwise Strategy and Diversity

It is understood that equations 9.6, 9.7, and 9.10 have been derived for networks threshold neurons and
classificationwith continuous outputs that are being applied to function approximation tasks

and can as such not directly be transferred to networks on the HAGEN chip that
are trained to solve classification problems. Still, when using a number N c

out of
output neurons per class, the task to activate them all whenever an applied input
pattern belongs to a given class and to deactivate them otherwise can be seen as
the approximation of a function that only assumes values of either 0 or N c

out. The
difference between the number of actually activated outputs and the respectively
desired value can thus serve as an — admittedly coarse — error measure similar to
the quantity εi(I) considered above.

As it has been argued before, concatenating the outputs of several networks qualitative similarity

that are trained to recognize the same class is effectively equivalent to an averag-
ing over the single network responses. In so far, the propositions of the preceeding
sections are assumed to at least qualitatively hold also for the introduced gener-
alized stepwise strategy.

It remains that the final response of the whole network is obtained by a majority
voting among the different classes. This ultimately impedes an equally straight
forward theoretical investigation of the situation as in the case of the originally
considered function approximation tasks. A thorough discussion of these topics
lies beyond the scope of this thesis. But it is reasonable to expect that an improved improved accuracy

expectedperformance of the single parts which each specialize on a different class Ck will
also lead to an increased classification accuracy of the whole network. Training
multiple subnetworks for the same category is therefore anticipated to yield better
generalization results — as long as it can be ensured that the different subnetworks
exhibit a sufficient diversity (see equation 9.10).

In the case of the proposed stepwise strategy, the diversity of the multiple sub- diversity through
independent evolutionnetworks that are trained for the same class is expected to automatically arise from

the intrinsic random nature of the evolutionary training algorithm. Initially, it is
not at all clear whether this suffices to yield a satisfactory reduction of the simi-
larity between the individual network responses. But in contrast to the previously
mentioned strategies that actively enforce the diversity within the constructed en-
sembles, the introduced stepwise approach allows for a truly independent training
of the single subnetworks. This even holds for the second training stage that oc-
curs for two-layer networks: When optimizing the interconnections that lead to
one specific subnetwork, only its own output needs to be evaluated. The modifica-
tions that are applied to the corresponding weights do in no way affect the other
subnetworks. As stated before, this permits the training procedure to be remark-
ably simple and allows for a degree of parallelization that cannot be achieved by
the more elaborate procedures discussed above. The only remaining restriction is
that all phases of the first stage need to be completed before the second stage can
be initiated.

Furthermore, it is to be considered that the additional interconnections that information sharing
via interconnectionsare established in the second training stage allow the single subnetworks to share

useful information. In addition to the benefits that automatically arise due to

233

9.4 Experiments with the Extended Stepwise Strategy

the use of an ensemble of separate networks, this might even permit a more ef-
ficient exploitation of the thus increased network resources. Still, it remains to
be verified whether the introduced generalized stepwise strategy can ultimately
yield a measurable gain in classification accuracy or whether it can compete with
a simple enlargement of the single subnetworks. These questions are addressed in
the following sections.

9.4 Experiments with the Extended Stepwise Strategy

An extensive campaign of measurements is performed to evaluate in how far thefixed subnetwork size

classification performance of networks on the HAGEN chip can be increased by
training multiple subnetworks N c

net per class. For simplicity, the size of each
subnetwork remains fixed to N c

hid = 6 and N c
out = 4, and the number of al-

lowed generations per training phase is consistently set to 1000 generations (see
table 9.1).

Similar to the preceeding investigations, a repeated stratified 10-fold cross-varied number of
subnetworks validation measurement is conducted for each benchmark and for several different

numbers N c
net of subnetworks per class. Besides the described two-layer architec-

ture, this is also done for networks with only one layer where the second training
stage is naturally omitted.

In each phase, the training is performed by the evolutionary algorithm that hasunmodified training

also been employed for the experiments of the foregoing section, and the used
parameters equal those listed in tables 9.1 and 8.3. Apart from a different initial-
ization of the adjustable weight values and the modified mutation probabilities,
the training algorithms of the two successive stages that are used for the two-layer
architectures are essentially equal (see section 9.2). In consideration of the results
shown in table 9.2, both training stages are completed and the final networks are
fully-connected two-layer perceptrons.

9.4.1 General Observations

As an introductory example, the results obtained on the liver disorder benchmark
are presented in figure 9.3. The diagrams show the averaged classification rates on
the training and test data At and Ag as a function of the number of subnetworks
per class N c

net. The upper part refers to two-layer networks while the lower part
presents the accuracies of the single-layer perceptrons (see also figure C.1 in the
appendix). It shall be repeated that each pair of data points involves the training
of 500 networks.

For the achieved performance of both, the single-layer and two-layer networks,liver disorder

a clear dependence on the number of subnetworks per class can be observed: With
increasing N c

net, the classification accuracies At and Ag measurably improve. The
gain in performance is distinct for N c

net = 2 and 3 but is seen to abate for larger
numbers of subnetworks. Around approximately N c

net = 5, any potential further
increase in the generalization rate begins to founder in the remaining statistical
fluctuations. This behavior is commonly encountered for most of the benchmarks.

Figure 9.4 shows the outcome of the corresponding set of experiments with thewine

234

Stepwise Evolutionary Training Strategies

PSfrag replacements

Liver Disorder

training set

training set

test set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

in
%

generalization accuracy Ag in %
mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60

70

70

61
71
62
72
63
73
64
74

65

65

75

75

66
76
67
77
68
78
69
79

80

80

90
81
91
82
92
83
93
84
94

85

85

95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.3: The achieved classification accuracies on the training sets At and test sets Ag

as a function of the number N c
net of subnetworks per class for the liver disorder problem.

The upper diagram presents the results of the two-layer networks, the lower diagram refers
to single-layer perceptrons. Each pair of data points is the result of a repeated stratified
10-fold cross-validation. The results for N c

net = 1 correspond to those listed in table 9.2.
The shown dashed lines are the result of a heuristic fit (see equation 9.11) and are merely
intended to serve as a guide to the eye (see text). For the classification accuracies on the
training set, the error bars are very small and are partly covered by the markers.

235

9.4 Experiments with the Extended Stepwise Strategy

PSfrag replacements

Wine

training set

training set

test set

test settwo-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

in
%

generalization accuracy Ag in %
mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84

94

94

85
95
86

96

96

87
97
88

98

98
89
99

100

100

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.4: The achieved classification accuracies on the training sets At and test sets
Ag as a function of the number N c

net of subnetworks per class for the wine problem. The
upper diagram presents the results of the two-layer networks, the lower diagram refers
to single-layer perceptrons. Each pair of data points is the result of a repeated stratified
10-fold cross-validation. The results for N c

net = 1 correspond to those listed in table 9.2.
The shown dashed lines are the result of a heuristic fit (see equation 9.11) and are merely
intended to serve as a guide to the eye (see text). Given the three classes of the wine
problem and the fixed number N c

hid of hidden neurons per subnetwork, a maximum of 5
subnetworks per class can be realized when a two-layer architecture is employed. For the
classification accuracies on the training set, the error bars are very small and are partly
covered by the markers.

236

Stepwise Evolutionary Training Strategies

wine data set (see also figure C.2 in the appendix). Already for one subnetwork
per class, the classification accuracy of the two-layer perceptrons on the training
data is 100 % and is thus not increased any further. Apart from that, the results
are comparable to those obtained with the liver disorder problem. The increase in
generalization performance for the two-layer perceptrons is remarkable in so far,
as the number of misclassifications is reduced by nearly a factor of two. Although
the results of the single-layer networks exhibit a certain noise, the general charac-
teristics of the curve are anticipated to correspond to those observed during the
liver disorder measurements.

These results confirm the theoretically motivated expectation that the use of measurable
improvementmultiple subnetworks per class can considerably improve the performance of the

trained networks. In the case of the single-layer perceptrons, the individual subnet-
works remain unconnected and the achieved gain in classification accuracy solely
arises from the usage of a diverse ensemble of independent networks (compare
equation 9.10).

With increasing N c
net, the observed improvement in generalization accuracy even simple fit

seems to show a qualitative similarity to the reduction of the ensemble error which
is predicted for networks with continuous outputs that are applied to function
approximation tasks (see section 9.3.2). In coarse analogy to equation 9.6, a
simple mapping of the form

E(N c
net) =

Emax − Emin

N c
net

+ Emin (9.11)

is fitted to the squared averaged classification errors Eg = (100 − Ag)
2 obtained on

the test sets. The curve fit is performed by a least squares fit routine included in
the MATLAB software package [134], and the adjustable variables are the two pa-
rameters Emax and Emin. The fit results are used to calculate corresponding values
for the generalization accuracy Ag(N

c
net) = 100 −

√
Eg(N c

net) that are included in
figures 9.3 and 9.4 as dashed lines.

It has been discussed in section 9.3.2 that the propositions of equation 9.6 guide to the eye

cannot directly be transferred to binary networks on the HAGEN chip that are
used to perform pattern classifications by majority voting. In so far, it shall be
emphasized that equation 9.11 is not claimed to be justified by sound theoretical
considerations. Rather, it represents a heuristically chosen regression function that
is primarily intended to serve as an appropriate guide to the eye. It remains an
interesting observation that the simple functional mapping given by equation 9.11
can describe the experimental results obtained with both, two-layer and single-
layer networks remarkably well (compare also the following figures). However, a
thorough theoretical investigation of this topic exceeds the scope of this thesis.

9.4.2 Hardware Limitations and Single-Layer Networks

Given the three classes of the wine problem and considering networks with one limited number of
hidden neuronshidden layer, a maximum of N c

net = 5 subnetworks per class can be implemented
(see figure 9.4). This is due to the fact that the available inter-block connections
on the HAGEN ASIC allow a maximum number of hidden neurons of 96 (see

237

9.4 Experiments with the Extended Stepwise Strategy

PSfrag replacements

Glass

training set

test set
two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16

7

17

8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28

58

29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49

60

70
61
71

62

72
63
73

64

74
65
75

66

76
67
77

68

78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.5: The achieved classification accuracies on the test sets Ag as a function of
the number N c

net of subnetworks per class for the glass problem. Due to the six classes
of this benchmark and given the fixed subnetwork size of N c

hid = 6 hidden neurons, a
maximum of two subnetworks per class can be realized for the two-layer networks. The
shown dashed line is intended as a mere guide to the eye (see section 9.4.1).

sections 5.4.1 and 5.4.2). The lower right block, for example, can receive up to
64 inputs from its counterpart on the left side and 32 signals from the left block
in the upper half. As it has been discussed in section 5.5.4, one of the involved
inputs is omitted to avoid edge effects and two are reserved for the neuron offset
calibration. This effectively limits the size of the hidden layer to a maximum
number of 93 hidden neurons.

A more flexible interconnectivity between the network blocks can in principle besimulated inter-block
connections simulated by reading back the outputs of all blocks after each network cycle and

appropriately processing this data within the FPGA to construct the new inputs
for the following cycle (see sections 5.2 and 6.1). A corresponding functionality is
implemented [28]. But it is evident that such a procedure would severely slow down
the network operation. Apart from that, the maximum number of subnetworkslimited number of

outputs per class would still be limited by the fact that for a full connectivity of the second
layer, the latter has to fit on one single network block. Restricting oneself to a
homogeneously connected, two-layer architecture, the number of output neurons
of the whole network is thus ultimately limited to 64.

Depending on the number of classes in the investigated task and given thelimited number of
subnetworks agreed number of hidden/output nodes per subnetwork, this poses a limitation

to the maximum number of subnetworks per class that can be realized on the
HAGEN prototype. In contrast, single-layer architectures do not require any

238

Stepwise Evolutionary Training Strategies

PSfrag replacements

E.coli

training set

test set
two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16

7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79

80

90
81
91

82

92
83
93

84

94
85
95

86

96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.6: The achieved classification accuracies on the test sets Ag as a function of
the number N c

net of subnetworks per class for the E.coli problem. Due to the eight classes
of this benchmark and given the fixed subnetwork size of N c

hid = 6 hidden neurons, only
one subnetworks per class can be realized for the two-layer networks. The shown dashed
line is intended as a mere guide to the eye (see section 9.4.1).

feedback connections and since the desired input patterns can easily be applied
simultaneously to multiple blocks, single-layer networks can be distributed over single-layer networks:

unrestrictedthe different blocks of the HAGEN chip without restrictions. Here, the size of the
network is only limited by the total number of available output neurons. With
regard to a feasible increase of the number of subnetworks per class, the use
of single-layer networks therefore constitutes an important potential alternative,
especially for task with many classes.

Figures 9.5 and 9.6 present the results obtained with the glass and E.coli prob- glass and E.coli

lems. In these and all following diagrams, the classification rates on the training
sets are omitted and only the generalization rates for two-layer and single-layer
networks are compared. The complete data is shown in figures C.3, and C.4 in
the appendix.

For the glass and E.coli problems, the networks with hidden layer can at most single-layer networks:
efficientinclude two respectively one subnetwork of the agreed size per class. Compared to

the generalization rates that are initially achieved with these two-layer architec-
tures, the single-layer networks show a remarkable improvement in performance
when the number of subnetworks is increased. In the cases of the previously
discussed liver disorder and wine benchmarks, the accuracies of the one-layer net-
works are observed to converge to approximately the accuracy of a two-layer net-
work with two subnetworks per class. For the glass and E.coli problems, the

239

9.4 Experiments with the Extended Stepwise Strategy

PSfrag replacements

Yeast

training set

test set
two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14
5

15
6

16
7

17
8

18
9

19
20

50

21
51
22

52

23
53
24

54

25
55
26

56

27
57
28
58
29
59
30
40
31
41
32

42

33
43
34

44

35
45
36

46

37
47
38

48

39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.7: The achieved classification accuracies on the test sets Ag as a function of
the number N c

net of subnetworks per class for the yeast problem (note that the error bars
are very small). Due to the ten classes of this benchmark and given the fixed subnetwork
size of N c

hid = 6 hidden neurons, only one subnetworks per class can be realized for the
two-layer networks. The shown dashed line is intended as a mere guide to the eye (see
section 9.4.1).

respective increase in the generalization rate is significantly more distinct.

As it has already been stated in section 9.2.1, the performance of the simple
single-layer architecture on these benchmarks indicates that the different classes
of the respective data sets might to a large extend be pairwise linearly sepa-
rable. Since the available experimental data for the two-layer networks is only
limited, it cannot be inferred whether the training of multiple subnetworks per
class might affect networks with and without hidden layer differently. But at least
the measurements with the glass problem suggest that two-layer networks can be
anticipated to benefit from multiple subnetworks per class in approximately the
same way as single-layer networks. This topic will be returned to below.

For both, the glass and the E.coli problem, the avaliable resources on the HA-saturation behavior

GEN chip would allow to further increase the number of subnetworks. However,
the achieved improvement in generalization seems to settle at approximately five
subnetworks per class like it is also observed for the other tasks. Although the
measurements indicate that a further increase in the number of subnetworks only
yields minor improvements, they also suggest that it does not in fact lead to a
significant deterioration of the results.

This can be seen in direct analogy to equations 9.7 and 9.10 and thus supportspreserved accuracy

the theoretically motivated expectation that the use of a network ensemble will
not lead to an actual increase in the observed error. With respect to the training

240

Stepwise Evolutionary Training Strategies

PSfrag replacements

Breast Cancer

training set

test set
two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16

7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86

96

87

97

88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.8: The achieved classification accuracies on the test sets Ag as a function of
the number N c

net of subnetworks per class for the breast cancer problem. For this task,
the observed increase in performance is not in fact significant compared to the estimated
error. The shown dashed lines are intended as mere guides to the eye (see section 9.4.1).

of networks on the HAGEN chip, this is an important result in so far as it allows
to employ the stepwise approach for an arbitrary scaling of the network to fit the
available resources without running the risk of overfitting the data.

Similar results are obtained on the yeast problem (see figure 9.7). Given the size yeast

of this data set and the comparably large number of ten classes, only a limited
set of measurements is conducted for this problem due to time considerations.
Although single-layer networks with up to N c

net = 6 subnetworks per class would
fit on one HAGEN ASIC, the resulting generalization rates are only evaluated up to
N c

net = 4 (see also figure C.5). Nevertheless, given the shown data, it is reasonable
to assume that the achieved averaged classification accuracy on the test set obeys
the same saturation behavior that is also observed on the previously discussed
benchmarks. In so far, a further increase of the number of subnetworks per class
is expected to yield only minor improvements. For the two-layer architecture, the
number of realizable subnetworks per class is once more limited to one.

9.4.3 Approximately Linearly Separable Data Sets

It has already been observed during the measurements presented in table 9.2 that breast cancer

for the breast cancer problem, two-layer and single-layer networks perform nearly
equally well. This condition holds when multiple subnetworks per class are trained
on this benchmarks. Figure 9.8 shows the corresponding results, and it can be
observed that both, single-layer and two-layer networks benefit from an increased

241

9.4 Experiments with the Extended Stepwise Strategy

PSfrag replacements

Heart Disease

training set

test set
two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79

80

90

81

91

82

92

83

93

84

94

85

95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.9: The achieved classification accuracies on the test sets Ag as a function of
the number N c

net of subnetworks per class for the heart disease problem. With increasing
N c

net, the obtained generalization rates for two-layer and single-layer networks converge.
The shown dashed lines are intended as mere guides to the eye (see section 9.4.1).

number of subnetworks. Beyond N c
net = 5, any potential further improvement is

occluded by the remaining statistical uncertainty of the measurement.

Although for the single-layer networks, the generalization accuracy seems tono significant
improvement actually decrease again for N c

net ≥ 5, the estimated error does not allow for a
definite conclusion. Additional measurements are necessary to ultimately clarify
this question. It is generally observed that for this benchmark, the benefits that
arise due to the training of multiple subnetworks per class are not significant
compared to the magnitude of the statistical uncertainty. The breast cancer data
set is the only investigated task where this is the case.

For the heart disease benchmark, single-layer networks are initially observed toheart disease

be superior over two-layer networks (see table 9.2). An increase in the number
of subnetworks compensates for this differences, as can be seen in figure 9.9. A
number of subnetworks per category of N c

net ≥ 5 yields approximately the same
performance for both architectures.

Against the background of the results reported above for the glass and E.coliconverging results

problems, it is an important observation that for tasks where two-layer and single-
layer network architectures perform approximately equally well, the remaining
differences are reduced even further when multiple subnetworks per class are con-
sidered. It can be anticipated that also for the glass and E.coli benchmarks,
two-layer networks with an increased number of subnetworks might yield about
the same performance as it is obtained for the single-layer networks.

242

Stepwise Evolutionary Training Strategies

PSfrag replacements

Diabetes

training set

test set
two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60

70

61

71

62

72

63

73

64

74

65

75

66

76

67

77

68
78

69

79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.10: The achieved classification accuracies on the test sets Ag as a function of
the number N c

net of subnetworks per class for the diabetes problem. For networks with
hidden layer, the observed generalization rates show a nonmonotonic development that is
different from those observed on all other tasks. The shown dashed line is intended as a
mere guide to the eye (see section 9.4.1).

9.4.4 Exceptional Cases

Figures 9.10 and 9.3 present the measurements for the diabetes and iris plant diabetes and iris plant

problems. Although they fit into the general picture, the results on these two
tasks are peculiar in some aspects. In both cases, the behavior of the single-layer
networks corresponds to what is also observed on the other data sets. Slightly
different results, however, are obtained with the two-layer networks.

In the case of the diabetes benchmark, the improvement in performance turns diabetes:
nonmonotonic
behavior

out to be nonmonotonic. A number of subnetworks of N c
net = 3 leads to a signif-

icantly worse generalization rate than N c
net = 2. Given the shown data, it seems

reasonable to assume that the point at N c
net = 2 is to be regarded as an outlier.

The observed behavior might thus be accredited to the remaining statistical uncer-
tainty and the inherently random nature of the evolutionary training algorithm.
It then remains that the increase in performance is initially slow and becomes abnormal behavior

more pronounced for N c
net ≥ 4. On all other tasks — and with the single-layer net-

works that are trained on this benchmark — the opposite behavior is observed: For
N c

net < 5, the generalization rates usually increase measurably, for about N c
net ≥ 5,

the performance slowly saturates.

At present, it is not clear whether this seemingly abnormal behavior is connected
to specific peculiarities of the diabetes data set or whether it is to be accredited
to statistical deviations. Additional measurements are required to illuminate this

243

9.4 Experiments with the Extended Stepwise Strategy

PSfrag replacements

Iris Plant

training set

test set
two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80

90

81
91
82

92

83
93
84

94

85
95

86

96

87
97

88

98

89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.11: The achieved classification accuracies on the test sets Ag as a function of
the number N c

net of subnetworks per class for the iris plant problem. Here, the two-layer
networks do not benefit from an increased number of independently trained subnetworks
per class at all. The shown dashed line is intended as a mere guide to the eye (see
section 9.4.1).

question. But apart from that, it is important to note that a training of multiple
subnetworks per class persists to significantly benefit the generalization capability
of the networks also for this benchmark.

This is not true for two-layer networks that are trained on the iris plant problemiris plant: no
improvement (see figure 9.11). Here, including more than one subnetwork per category does not

yield any significant change in the achieved generalization rates at all. Again, this
behavior is unique among all investigated data sets.

In this context, it is an important result that with an increasing number ofefficient single-layer
networks subnetworks, the generalization rates of the single-layer networks approximately

converge to the maximum accuracy that can be observed for two-layer networks.
This is remarkable in so far as two of the three classes of this benchmark are known
to be not linearly separable. It seems that the use of multiple, independently
trained networks can at least partially compensate for the limitation to linearly
separable problems that is in principle inherent to the single-layer perceptron
architecture (see section 2.1.1).

It has recently been shown by Auer et al. that n independently trained simple“parallel perceptrons”

perceptrons whose outputs are combined to a single binary response via majority
voting can compute every Boolean function fB : {0, 1}n → {0, 1} [6]. The N c

net

subnetworks that are trained for the same class during the proposed stepwise pro-
cedure are not combined by majority voting (see sections 8.2.3 and 9.3.2). In fact,
the increased number of outputs per class is rather intended to allow for a more

244

Stepwise Evolutionary Training Strategies

differentiated comparison with the remaining networks that are trained for the
other classes. In so far, it is understood that the above universal approximation
theorem for “parallel perceptrons” [6] cannot directly be applied. But the experi-
mental data shown in figure 9.11 suggests that similar propositions might also hold
for single-layer networks that are trained by the generalized stepwise strategy. A
more detailed theoretical investigation of this question exceeds the scope of this
thesis but promises to be an interesting topic for future investigations.

Summarizing Remarks

For all investigated benchmark problems — except for the breast cancer problem — improved results

the training of multiple subnetworks per class yields some kind of measurable
improvement of the achieved classification accuracies. At the same time, both, the
simplicity of the evolutionary training algorithm that is used in each phase and
the favorable inherent parallelism of the original stepwise approach are preserved.

Furthermore, given the results that are obtained on the breast cancer, heart single-layer networks:
feasibledisease, iris plant, glass, and E.coli data sets, it can be concluded that the gen-

eralized stepwise training strategy also allows for the application of single-layer
perceptrons to demanding, real-world tasks — partly even for those problems that
cannot ordinarily be solved satisfactorily by such simple networks. Apart from
being an interesting observation by itself, this particularly suits the used HAGEN
prototype, since single-layer networks are not affected by the restrictions that arise
from the limited set of available, hard-wired feedback connections or the fixed size
of the network blocks.

It is another important outcome of the presented measurements that the train- results for different
architecturesing of multiple subnetworks per class tends to compensate for the differences in

performance between the investigated two-layer and single-layer architectures. Es-
pecially in the case of the heart disease problem, the choice of a network with
hidden layer has initially been encountered to be problematic (see section 9.2.1).
But when it is possible to train a sufficient number of subnetworks per class, the
two-layer architecture is seen to be at least as efficient as the simple single-layer
topology on all respective benchmarks.

These results indicate that the generalized stepwise strategy can largely relieve architecture
optimization: largely
redundant

the user — or the training algorithm — from determining the optimal architecture
for a specific task: If the number of classes in the considered problem allows to
realize a number of two-layer subnetworks of about N c

net = 5, the two-layer ar-
chitecture is to be chosen. Otherwise, satisfactory generalization rates can still
be achieved with the single-layer architecture. At this point, having experimen-
tally investigated only a limited number of exemplary benchmarks, this directive
is admittedly nothing more than an empirical rule of thumb. Nevertheless, it
persists that in all examined cases where a sufficient number of subnetworks can
be implemented on the HAGEN chip, the two-layer architectures never perform
measurably worse than the single-layer networks.

In summary, the proposed generalized stepwise strategy suggests itself as a
feasible way of training enlarged networks that can efficiently exploit the resources
of the HAGEN ASIC. But it remains to be investigated whether the performance

245

9.4 Experiments with the Extended Stepwise Strategy

of the hereby constructed networks can eventually compete with those of other
systems.

9.4.5 Comparison to Previous Results

It has already been stated in section 8.4.2 that most of the reported experiments
that evaluate the performance of other neural network setups or classification sys-
tems on the selected benchmarks do not employ a stratified 10-fold cross-validation
scheme. In order to allow for a direct comparison with these results, an additional
set of experiments is performed where for each benchmark, the same evaluation
scheme is employed that is also used in a corresponding earlier publication. Apart
from alternative training setups for single neural networks, the performance of the
introduced stepwise strategy is compared also to other classification algorithms —
such as support vector machines and k nearest neighbor classifiers— as well as to
contemporary approaches for the training of neural network ensembles.

Fixed Partitionings and Single Neural Networks

Among numerous other benchmarks, Prechelt [163] examines multiple feedforward“Proben1”

neural network architectures on the breast cancer, diabetes, heart disease and glass
problems. For each task, a set of three different partitionings into training and
test data is provided. Since these partitionings are all included in the “Proben1”
benchmark suite that is introduced in the same publication, the respective combi-
nations of training and test data shall be denoted as “Proben1 a)”, “Proben1 b)”,
and “Proben1 c)”.

The breast cancer and diabetes problem are also investigated by Yao and Liu [236]EPNet

who evaluate the performance of their EPNet system (see section 4.2.2) on these
tasks. They use one fixed partitioning of the data for each benchmark, and their
investigations also include the heart disease problem. But unfortunately, the pre-
cise compositions of training and test set for this task cannot unambiguously be
reconstructed.

In both publications, the training data is divided further into an actual trainingtraining set and
validation set set and a so-called validation set [163] [236]. The training of the network then only

employs the former while the latter is exclusively used to determine the termina-
tion of the algorithm: During training, the network is periodically tested on the
validation set, usually after a fixed number of iterations. While the classification
accuracy on the training set is expected to improve approximately monotonically,
the performance on the validation set might stagnate or even deteriorate due to
overfitting of the data. If this is the case, the training is terminated. The evolu-
tionary stepwise strategy introduced in this thesis does not employ any validation
data during training. The subsets of the data that are marked as the validation
sets are therefore appended to the respective training sets.

Table 9.3 compares the results of the cited publications with the generalizationtraining setup

rates that are obtained by neural networks on the HAGEN chip. The networks
are trained with the same algorithm and network setup that is also used during
the investigations described in the previous sections. The only exception is that

246

Stepwise Evolutionary Training Strategies

during the evaluation of a network’s classification accuracy on the test data, each
pattern is applied only mg

p = 20 times instead of the 50 repetitions used for the
previous experiments (see section 8.4.1 and table 8.3). This accounts for the fact
that according to the used fixed partitionings, the different test sets now contain
about 25 % of the total instances in the respective data set.

In case of the glass problem, the network architecture comprises only one single network architecture

layer; for the other tasks, the networks have two layers. The numbers of sub-
networks per class that are contained in the trained networks are included in the
table.

For each of the used fixed partitionings, a total of Nn = 10 entire networks evaluation procedure

is trained, and the one with the best classification rate on the training data is
regarded as the result. This is repeated Nr = 5 times for each partitioning and
the obtained averaged generalization accuracies Ag together with the correspond-
ing standard deviations are listed in table 9.3. Only the classification rates on
the test data are compared. For the networks trained on the HAGEN chip, the
performance on the training data At can be found in table C.3 in the appendix.

A variety of results are reported in the “Proben1” collection that each employ compared networks

slightly different network architectures and transfer functions [163]. The networks
are trained with a variant of the backpropagation algorithm (see section 2.2.2).
For each individual partitioning of the individual data sets, table 9.3 lists the best
respective result that can be found in this publication regardless of the employed
network setup. Since some of these values represent the generalization rates of
individual, outstanding networks, the respective results include no error estimates.
The remaining values represent the mean of 60 independent training runs (10 in
the case of the heart disease problem) and the provided error measures are given by
the corresponding standard error of the mean1. Within the experiments reported
by Yao and Liu, the network topology is optimized by the training algorithm (see
also section 4.2.2). Here, the cited results each represent the mean of 30 training
runs with the EPNet system. The generalization rates that are obtained by these
two previous investigations represent the best results of single neural networks on
the considered benchmarks that have been found in literature and that can also
exactly be reproduced due to an unambiguous specification of the used training
and test data. The performance of recent neural network ensemble approaches
will be discussed below.

A comparison to the generalization accuracies that are obtained with networks results: competitive

on the HAGEN chip reveals that the introduced stepwise training strategy in
combination with the used strictly layered, feedforward perceptron architecture
constitutes a competitive approach to tackle the investigated problems. In most
cases, the trained networks either achieve better generalization rates than those
obtained by the previous setups (marked red in table 9.3) or perform approxi-
mately equally well (blue entries).

This result is particularly remarkable in so far, as neither the various parameters
of the used evolutionary training algorithm nor the settings of the generalized

1The provided standard errors of the mean are calculated from the respective standard devi-
ations and the number of experiments that are reported in the two cited publications.

247

9.4 Experiments with the Extended Stepwise Strategy

benchmark
fixed

partitioning
N c

net

generalization accuracy Ag in %

stepwise
strategy

previously
reported [163] [236]

breast cancer

Proben1 a)

7

98.73 ± 0.39 98.85
Proben1 b) 94.95 ± 0.28 95.48 ± 0.10
Proben1 c) 95.94 ± 0.04 97.71
Yao et al. 99.12 ± 0.15 98.63 ± 0.17

diabetes

Proben1 a)

6

83.88 ± 0.44 75.90 ± 0.25
Proben1 a) 84.86 ± 0.57 76.56
Proben1 b) 82.65 ± 0.40 78.65
Yao et al. 78.05 ± 1.29 77.63 ± 0.003

heart disease
Proben1 a)

6
81.60 ± 0.50 80.27 ± 0.18

Proben1 b) 94.13 ± 0.68 96.80 ± 0.49
Proben1 c) 84.71 ± 1.28 85.73 ± 0.22

glass
Proben1 a)

8
72.75 ± 0.74 67.92

Proben1 b) 62.64 ± 0.71 47.17
Proben1 c) 63.57 ± 0.92 66.04

Table 9.3: Comparison of the results that are obtained by a stepwise training of networks
on the HAGEN chip with the generalization rates that are reported by other authors. The
cited results are achieved on fixed separations of the tasks into training and test data.
Prechelt [163] specifies three different fixed partitionings for each task that are denoted
as “Proben1 a)–c)”. Yao and Liu use one fixed separation [236]. For the experiments
with the stepwise training strategy, the exact compositions of the respective training and
test data sets are reproduced. It is to be noted that during the investigations reported by
Yao and Liu, the network architectures are optimized for the task in question [236]. The
results cited from Prechelt represent the best generalization rates that can be found in the
corresponding publication regardless of the actual network architecture. Generalization
accuracies Ag which exceed those reported by the other authors are set in red color. All
cases where the results are approximately equal within the estimated error bounds are
shown in blue. On the remaining partitions, the stepwise strategy performs measurably
worse.

248

Stepwise Evolutionary Training Strategies

stepwise approach — like, e.g., the size of the subnetworks — have been subject
to any optimization. The same simple training strategy is successfully applied to
all four benchmarks and the trained networks can readily compete with networks
whose architectures have especially been optimized for the respective task. This
even holds for the glass problem where the trained network employs a mere single-
layer architecture.

Cross-Validation Experiments and Alternative Classifiers

In the cases of the liver disorder, iris plant, wine, E.coli, and yeast data sets,
experiments are reported in literature that employ N-fold cross-validation mea-
surements similar to those used for the experiments in this thesis but with varying
numbers of subsets. The selected publications represent the best of this kind of
results that have been found in literature for non-ensemble classification methods.

The best reported generalization rate for the wine problem is obtained by an wine: comparison
problematicexhaustive leave-one-out test [3] which yields an accuracy of 100 % . If the previ-

ously used cross-validation scheme (see section 8.1.2) was extended to a number of
partitionings of Np = 178 (the number of instances in the wine data set), a total
of 5 · 10 · 178 = 8900 networks would have to be trained. In consideration of the
required time, it has been abstained from doing so. It has already been stated in
section 8.1.2 that the reliability of the leave-one-out procedure is in fact deemed
to be inferior to cross-validation schemes with 5–10 partitionings.

For each of the the remaining benchmark problems, a stratified cross-validation evaluation setup

experiment is performed with a number Np of partitionings that equals the one
which is also used in the respective reference publication. Apart from that, the
experimental setup and evolutionary algorithm correspond to those utilized for
the previously described experiments. For the E.coli and yeast benchmarks, the
used networks employ a simple one-layer architecture, while the networks for the
remaining tasks contain one hidden layer.

The achieved generalization rates together with the results of the cited publica- compared systems

tions are listed in table 9.4. As it has already been stated in section 8.4.2, these in-
vestigations do not examine neural networks but use support vector machines [65],
approximate distance classifiers [30], statistical methods [3], or k nearest neighbor
classifiers [101]. Apart from the generalization accuracies that are cited for the
E.coli and yeast problems, none of these experiments uses a stratified partitioning
of the data, i.e., the Np individual subsets are created entirely randomly with-
out further constraints. The measurements that are conducted with the stepwise
strategy persist to use stratified cross-validation (see section 8.1.2).

It can be inferred from table 9.4 that feedforward networks on the HAGEN chip results: slightly
inferiorwhich are trained and constructed according to the proposed stepwise procedure

cannot actually outperform competing approaches on the selected tasks. For the
iris plant and E.coli benchmarks, the generalization rates of the compared classi-
fiers are only marginally better. In the cases of the liver disorder, wine, and yeast
problems, the differences are more distinct.

For the liver disorder and wine benchmarks, it cannot be excluded that the
remaining discrepancies might partly be accredited to the slight differences that

249

9.4 Experiments with the Extended Stepwise Strategy

benchmark N c
net

generalization accuracy Ag in %

cross-validation
stepwise
strategy

previously
reported

liver disorder 6 70.98 ± 0.52 73.7 [65] 10-fold
iris plant 5 95.41 ± 0.47 96.2 [30] 5-fold

wine 5 97.71 ± 0.28 100 * [3] (10-fold)
E.coli 7 84.89 ± 0.49 86 [101] 4-fold
yeast 4 53.73 ± 0.12 60 [101] 10-fold

Table 9.4: The results that are achieved with the introduced generalized stepwise strat-
egy are compared with the generalization rates that are reported by previous experiments.
The cited publications employ N-fold cross-validation schemes with varying numbers of
partitionings. The corresponding values are listed in the last column. *In the case of the
wine problem, the cited investigation actually includes a leave-one-out measurement, but
in consideration of the required time, a corresponding experiment has not been conducted
for the stepwise strategy. The shown generalization rate is the outcome of a stratified
10-fold validation. Therefore, a direct comparison between the two results remains prob-
lematic. It is to be noted that apart from the results reported for the E.coli and yeast
benchmarks, the cited publications perform a random, unstratified cross-validation.

remain between the used cross-validation procedures. But it is to be expected
that these effects do not significantly affect the general observation that on all
examined task, the proposed stepwise training procedure performs slightly worse
than the respective best classifier system that is found for each benchmark in
literature.

Nevertheless, although a superior classification algorithm does exist for eachsatisfactory
performance task, it remains that the stepwise training of feedforward networks on the HAGEN

chip evidently constitutes a more than satisfying approach for all tasks alike. As it
has already been emphasized in the preceeding section, none of the parameters of
the used stepwise training approach has undergone any optimization. Moreover,
the networks for the E.coli and yeast benchmarks merely exhibit a simple single-
layer architecture. Under these adversarial conditions, it is a satisfactory obser-
vation that the employed divide-and-conquer training approach readily achieves
generalization rates that are comparable to the results of other systems.

Comparison to Neural Network Ensembles

As it has been discussed in section 9.3.2, the generalized stepwise training strategy
is comparable to common neural network ensemble approaches in several respects.
Therefore, the performance of the introduced training procedure is also compared
to the generalization accuracies that have been reported for committees of net-
works on the same benchmark problems.

One popular way of promoting the diversity within an ensemble of networks isBagging

to train the individual committee members on different sets of training patterns.
According to the so-called Bagging procedure, the training set for each network is

250

Stepwise Evolutionary Training Strategies

benchmark N c
net

generalization accuracy Ag in %

stepwise
strategy

Bagging [153] CNNE [105]

breast cancer 7 96.65 ± 0.10 96.6 98.9
diabetes 6 75.52 ± 0.21 77.2 82.2
heart disease 6 84.03 ± 0.46 83.0 88.8
glass 8 67.33 ± 0.26 66.9 75.4

Table 9.5: The results that are achieved with the introduced generalized stepwise strategy
are compared to the generalization rates that are reported by other investigations on
neural network ensembles. The cited publications both employ an unstratified 10-fold
cross-validation scheme. Bagging is a popular approach where the individual members of
the ensemble are trained on different training sets [153]. The CNNE algorithm proposed by
Islam et al. incorporates elaborate schemes of adjusting the number and architecture of the
single networks and promoting the diversity within the ensemble by negative correlation
learning [105]. The generalization rates that are achieved by this latter approach are by
far the best that have been encountered for the investigated tasks in literature.

generated by randomly drawing, with replacement, Nt examples from the original
training data, where Nt is the number of instances in the whole training set [153].
Some of the instances will then appear multiple times in the training data of a
given network, while others will be left out. Since each network in the ensemble is
trained on a new, randomly created training set, it is expected that their responses
will exhibit a measurable disagreement.

It has been discussed in section 9.3.2 that more recent approaches actively en- compared ensembles

force the diversity of the networks in the ensemble during training. Among other
benchmarks, Islam et al. [105] test their proposed CNNE (Constructive Neural
Network Ensemble) algorithm also on the breast cancer, diabetes, heart disease,
and glass problem and compare it to the results that are reported for a Bagging
ensemble by Opitz et al. [153].

In both investigations, a 10-fold cross-validation scheme is employed and the evaluation procedure

reported results can therefore directly be compared to the generalization rates
that are achieved by the introduced stepwise strategy. The respectively obtained
classification accuracies on the test sets are summarized in table 9.5.

Compared to the results of the Bagging ensemble, the stepwise strategy is once comparison

more observed to exhibit a competitive performance. Still, the generalization rates
that are achieved by the CNNE approach are not only significantly better than
those of the Bagging ensemble, to the author’s best knowledge they also represent
by far the best results that are reported for N-fold cross-validation measurements
on the respective benchmarks in literature. It can be inferred from table 9.5,
that the generalization accuracies that are achieved with the introduced stepwise
strategy cannot compete with these results.

As it has already been stated in section 9.3.2, the CNNE model involves a CNNE

complex learning procedure that actively promotes the diversity of the individual
networks in the ensemble. During training, the weight modifications that are

251

9.4 Experiments with the Extended Stepwise Strategy

applied to each single network are affected not only by its own output but also by
the current performance of the other networks, such that any correlation between
the responses of the different networks can effectively be reduced [105]. In other
words, the networks need to be trained simultaneously and cannot be considered
independently. Furthermore, elaborate construction schemes are applied in order
to optimize the individual architectures as well as the number of networks in the
committee during training.

Given the complexity of this approach, it is not surprising that the training ofcomplexity vs. speed

networks via the generalized stepwise strategy — which is optimized for simplic-
ity, fast training speeds, and inherent parallelism— is eventually outperformed by
the CNNE algorithm. On the other hand, an elaborate approach like the CNNE
procedure is unlikely to achieve an efficient exploitation of the speed benefits that
arise from the use of a neural network hardware. In particular, the interdependen-
cies that remain between the networks during training do not allow for the same
degree of parallelism that can readily be achieved by the proposed stepwise strat-
egy. In so far, it is a more than satisfying observation that the stepwise training is
comparable in performance to common neural network ensemble approaches and
at the same time allows to efficiently utilize the evolutionary coprocessor for the
fast training of neural networks on the HAGEN chip.

9.4.6 Multiple Subnetworks vs. Increased Subnetwork Size

Having demonstrated the potential of the generalized stepwise approach, the chap-
ter is to be concluded by an investigation of whether an alternative increase of the
subnetwork size might actually yield an equal or even better performance. A set
of experiments is conducted where only one subnetwork is trained for each class
of the investigated problem and where the classification accuracies of the final
networks on the used test sets are evaluated as a function of the number of hidden
neurons N sn

hid and outputs N sn
out per subnetwork.

In order to allow for a direct comparison with the training of multiple sub-equal network size

networks per class, the enlarged subnetworks are scaled to contain numbers of
hidden nodes and outputs that are simple integer multiples ms of the agreed ini-
tial parameters N sn

hid = 6 and N sn
out = 4, respectively. Therefore, the resulting

networks comprise an equal total number of neurons as those that are obtained by
an independent training of ms subnetworks for each category. The allowed num-equal training time

ber of generations of the evolutionary training algorithm in each phase is scaled
accordingly, i.e., an increase of the network size by a factor of ms is accounted
for by multiplying the number of training iterations per phase by the same fac-
tor. Hence, the total amount of processed generations is the same as for the
corresponding experiment with the generalized stepwise strategy described in the
preceeding sections. Apart from the increased subnetwork size and the extended
training time, the experiments follow the same setup as described in section 9.2.

252

Stepwise Evolutionary Training Strategies

General Observations

In figure 9.12, the results that are obtained on the liver disorder problem are com- liver disorder

pared with the performance of the generalized stepwise strategy investigated in
section 9.4.1. For both results to be displayed in the same diagram, the achieved
classification accuracies on the test sets Ag are shown as a function of the number
of output neurons of the networks. The circular dots refer to networks with in-
creased subnetwork size, the triangles represent those with multiple subnetworks
per class. It is to be repeated that each pair of corresponding data points ef-
fectively represents networks with the same size that have been trained for the
same total number of iterations. Merely the training procedures are different.
The upper diagram corresponds to two-layer networks, the lower part refers to
single-layer networks.

The presented results immediately reveal that a straight-forward increase of enlarged subnetworks:
inferiorthe subnetwork size is measurably inferior to the alternative training of multiple

subnetworks with fixed numbers of neurons. For the two-layer networks, an en-
largement of the class specific subnetworks is indeed observed to yield a slight
increase in the achieved generalization rates. But these improvements cannot
compete with the benefits that arise due to a training of multiple subnetworks per
class.

In the case of the single-layer architecture, an increased subnetwork size leads
to only slightly improved generalization rates, and an enlargement to the fifefold
or sixfold of the original size even yields a distinct deterioration of the observed
accuracy. The efficient training of enlarged single-layer networks for this bench-
mark obviously exceeds the capability of the used simple evolutionary algorithm.
The independent training of multiple subnetworks per class does not equally suffer
from such limitations of the employed training procedure.

A similar behavior is commonly observed on all examined data sets. Figure 9.13 wine

shows the outcome of corresponding experiments with the wine benchmark. Here,
an increase of the subnetwork size turns out to leave the obtained generalization
rates at best unaffected. For several specific numbers of hidden neurons and/or
outputs, the performance even seems to be significantly reduced. However, in the
light of the estimated errors, it is to be said that these effects do not necessarily
need to follow any systematics. Nevertheless, against the background of this be-
havior and comparing the magnitudes of the estimated errors with those obtained
for the networks with multiple subnetworks per class, it can be concluded that the
training of enlarged subnetworks is also disadvantageous in terms of reliability—
at least on this data set.

Examining Different Benchmarks

As an example for a problem with more than three classes, figure 9.14 presents E.coli

the results for the E.coli data set. Due the constraints of the HAGEN prototype,
only single-layer networks are considered for this task. The results are comparable
to those obtained with the liver disorder benchmark. Increasing the subnetwork
size does indeed yield a measurable improvement in performance, but the training

253

9.4 Experiments with the Extended Stepwise Strategy

PSfrag replacements

Liver Disorder

training set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks

multiple subnetworks

enlarged subnetworks

enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12

3
13

4

14
5

15
6

16

7
17

8

18
9

19

20

50
21
51
22
52
23
53

24

54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60

70

70

61

71

71

62

72

72

63

73

73

64

64

74

65

65

75

66

66

76

67

67

77

68

68

78

69

69

79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.12: The generalization rates Ag on the liver disorder data set that are achieved
by networks with increased subnetwork size are compared to the obtained accuracies of
networks that contain multiple subnetworks per class (see figure 9.3). The numbers of
output neurons and hidden nodes of the enlarged subnetworks are integer multiples ms

of the initially agreed values N sn
hid = 6 and N sn

out = 4. Therefore, the compared networks
are effectively equal in size, and the obtained generalization accuracies can be shown as
a function of the total number of output neurons per class. The upper part refers to
two-layer architectures, the lower half represents singe-layer networks. The shown dashed
lines are intended as mere guides to the eye (see section 9.4.1).

254

Stepwise Evolutionary Training Strategies

PSfrag replacements

Wine

training set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks

multiple subnetworks

enlarged subnetworks

enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12

3
13

4

14
5

15
6

16

7
17

8

18
9

19

20

50
21
51
22
52
23
53

24

54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82

92

92

83

93

93

84

94

94

85

95

95

86

96

96

87

97

97
88

98

98

89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.13: The generalization rates Ag on the wine data set that are achieved by net-
works with increased subnetwork size are compared to the obtained accuracies of networks
that contain multiple subnetworks per class (see figure 9.4). The upper part refers to two-
layer architectures, the lower half represents singe-layer networks. The shown dashed lines
are intended as mere guides to the eye (see section 9.4.1).

255

9.4 Experiments with the Extended Stepwise Strategy

PSfrag replacements

E.coli

training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12

3
13

4

14
5

15
6

16

7
17

8

18
9

19

20

50
21
51
22
52
23
53

24

54
25
55
26
56
27
57

28

58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69

79

80

90

81

91

82

92

83

93

84

94

85

95

86

96

87

97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 9.14: The generalization rates Ag on the E.coli data set that are achieved by
networks with increased subnetwork size are compared to the obtained accuracies of net-
works that contain multiple subnetworks per class (see figure 9.6). The shown dashed line
is intended as a mere guide to the eye (see section 9.4.1).

of multiple subnetworks per class is significantly more efficient.

Except for the yeast and diabetes problems, corresponding experiments arebreast cancer and
heart disease performed for all remaining benchmarks. The results can be found in appendix.

For the breast cancer and heart disease problem, the discrepancy between the two
training approaches is observed to be less distinct (figures C.11 and C.12). In the
case of two-layer networks that are trained for the former data set, the results
seem to indicate that an increase of the subnetwork size might even be superior
to the training of multiple subnetworks. However, in the light of the obtained
statistical accuracy, a definite conclusion cannot be drawn with certainty and the
two approaches are to be regarded as at best equally effective.

On the iris plant benchmark, it has been observed that the training of multipleiris plant

two-layer subnetworks per class does not yield any improvement in the general-
ization performance (see figure 9.11). It turns out that he same applies to an
alternative enlargement of the subnetworks (see figure C.13). One possible in-
terpretation of this result is that an averaged generalization rate of Ag ≈ 95.4 %
represents the maximum that can be achieved on this data set with the used kind
of two-layer neural network and that any enlargement of the networks is thus re-
dundant. The results obtained for single-layer networks are consistent with the
observations on the other tasks, i.e., the training of more subnetworks per class is
clearly to be favored above an increase of the subnetwork size.

256

Stepwise Evolutionary Training Strategies

9.5 The Stepwise Strategy: Conclusion

The presented strategy of independently optimizing and interconnecting multiple successful training

subnetworks for each class of the investigated categorization task is shown to be a
feasible approach to successfully train large neural networks on the HAGEN ASIC
for demanding real-world problems. Each of the single training phases can be ac-
complished by a simple evolutionary algorithm that is itself well suited for hard-
ware acceleration. The presented experiments demonstrate — for the first time —
that networks on the HAGEN chip provide more than competitive means for
solving challenging classification benchmarks compared to software-implemented
neural networks (see table 9.3).

It is shown that by increasing the number of subnetworks per category, the entire exploited resources

network can readily be scaled to the desired extent, limited only by the available
resources on the HAGEN ASIC. The hereby increased network size does not lead to
a measurable overfitting of the data, i.e., the proposed stepwise training approach
exhibits a favorable up-scaling behavior. Although an alternative increase of the
subnetwork size can yield an improvement of the network performance as well, it
is observed to be clearly inferior to the training of multiple subnetworks per class
on the majority of examined benchmarks.

Theoretical considerations suggest that a sufficient dissimilarity between the alternative black-box
approachesindividual subnetworks of the same class constitutes a vital precondition for the

success of the generalized stepwise strategy. Apart from that, it is reasonable to
expect that other model-free chip-in-the-loop training algorithms can be employed
for the single training phases as well. In so far, the simulated annealing and weight
perturbation algorithms which have been introduced in section 4.3 provide poten-
tial alternatives to the evolutionary training approach. However, while simulated
annealing — similar to evolutionary optimization — is highly indeterministic and
can therefore be assumed to automatically promote a reasonable diversity, the
weight-perturbation approach might not be able to yield a sufficient disagreement
between the subnetworks that are trained for each class. A thorough examina-
tion of alternative optimization algorithms exceeds the scope of this thesis and is
deferred to future investigations.

Having demonstrated the potential of the stepwise evolutionary training strat-
egy in principle, several aspects remain to deserve further evaluation, e.g., how
to efficiently exploit its inherent parallelism or in how far the performance of the
final network can be optimized by appropriately adjusting the subnetwork size.
These and some other topics will be investigated in the following chapter.

257

Chapter 10

Hardware Implications

The trouble with facts is that there are so many of them.

Samuel McChord Crothers, The Gentle Reader

There are several important aspects of the used hardware neural network frame-
work in general (see chapter 6) and the introduced stepwise evolutionary training
strategy in particular (see chapter 9) that deserve further consideration but have
not yet been examined in detail. This final chapter is to provide a more thorough
discussion of these topics.

Most notably, the succeeding sections will discuss the training speed that can be
achieved within the currently used neural network framework. It will be demon-
strated that — as it has repeatedly been claimed in the foregoing chapter — the
proposed stepwise strategy allows for an efficient parallelization of the training
procedure. Furthermore, it has already been discussed in section 5.5 that the
utilization of calibrated HAGEN chips in principle allows to transfer the net-
work configurations that have been trained for one ASIC also to other chips. In
section 10.2, it will be evaluated in how far this affects the performance of the
transferred networks.

The remaining sections of this chapter will present several preliminary investi-
gations that are not as exhaustive as the other measurements and are primarily
intended to provide an outlook to future experiments: Section 10.3 examines how
the eventual success of the proposed stepwise strategy is affected by modifications
to the size and architecture of the single subnetworks (see sections 9.1.1 and 9.3.1).
Section 10.4, finally, is concerned with software-implemented networks. It is in-
vestigated whether the concepts of the stepwise approach might also be applicable
to an ideal network that accurately obeys equation 5.4 and does not suffer from
the inevitable device variations and temporal fluctuations that are present in the
used HAGEN ASIC.

10.1 Training Speed and Parallelization

During evolutionary chip-in-the-loop training, the testing of individual networks parallelized network
evaluationon the used HAGEN ASIC and the evaluation of their fitness values on the basis of

259

10.1 Training Speed and Parallelization

PSfrag replacements

time
training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12
3

13
4

14
5

15
6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

next
generation

evaluation
phase

evolutionary

coprocessor

software

HAGEN

idle

idleidle

idle

time tt = 0

evaluate

network 1 network 2

variation

selection 1 1 2 2

read back
results

calculate
fitness

Figure 10.1: Schematical illustration of the evolutionary chip-in-the-loop training proce-
dure. While the selection scheme is implemented purely in software (green), the necessary
genetic operations are assumed by the evolutionary coprocessor (blue, see section 6.2).
In the current setup, the testing of the new individuals on the hardware does not com-
mence before the creation of the next generation is finished completely. On the other
hand, the fitness calculation (orange) is performed in parallel to the network execution
(purple): While the next individual is already tested on the HAGEN chip, the fitness of
the previously implemented network is simultaneously calculated in software. At present,
the training speed is limited by the required transfer of the individual network responses
over the PCI bus (grey, see section 6.1.3), while the fitness can actually be calculated in
about one fourth of the CPU time that is available during a network execution (for the
exact numbers see section 10.1.1).

the obtained network responses are partially performed in parallel: While a given
candidate solution is executed on the hardware via the multi-threaded version of
the HNetMan::run(·) method (see also section 7.3.2), the fitness of the previ-
ously tested network is already evaluated in software. Figure 10.1 schematically
illustrates this procedure.

The genetic variation operations are performed by the evolutionary coprocessorsoftware-implemented
selection process (see sections 6.2 and 8.3.1). Using common selections schemes (see section 3.4.1

and 8.3.2), this step can only be performed, once the fitness values of all individuals
of the preceeding generation have been determined (the parent selection process
is currently implemented purely in software). In contrast, the evaluation of the
newly generated candidate solutions can in principle commence as soon as the
evolutionary coprocessor has created the first offspring.

However, in the setup that is used for all experiments presented in the previousunparallelized
coprocessor operation chapters, the operation of the evolutionary coprocessor and the execution of net-

works on the HAGEN chip are not yet performed in parallel. In other words, the
testing of individuals on the hardware and the parallel calculation of their fitness
values is not initiated before the coprocessor has completely finished executing
(see figure 10.1). But as it will be shown below, this does not lead to a significant
loss of training speed in practice.

260

Hardware Implications

10.1.1 Time Measurements

Within the present hardware framework, performing the fitness calculation in soft-
ware requires to transfer the output data of each tested network from the local
memory of the FPGA to the RAM of the host PC over the PCI bus (see sec-
tion 6.1.3 and compare figure 10.1). Being currently executed on a Pentium IV
with 2.4 GHz, the actual evaluation of the fitness can then be performed compa-
rably fast. Considering the exemplary case of the liver disorder problem where liver disorder

a number of 1550 patterns needs to be processed by both, the tested network
and the fitness function, the latter requires 0.28 ± 0.01 ms, while the execution of
the network on the hardware — including the transfer of the output data over the
PCI bus — takes 2.04 ± 0.01 ms. If the time-consuming exchange of output data
between the memory of the FPGA and the host computer is omitted, this time is
reduced to 1.26 ± 0.01ms1.

The reported numbers are obtained by measuring the amount of time that is measurement
procedurespent in the HNetMan::run(·) function and the fitness calculation method2 (see

section 7.4.1), respectively. The given values each represent the mean of 100
measurements and the respective standard deviation. Similar to all previously
presented experiments, the interface of the HAGEN chip is operated at a frequency
of 84 MHz (see section 6.1.3) and the network frequency fnet (see section 5.2) is
thus determined to be 14 MHz [181] [185]. The first phase of the first stage of the
proposed stepwise strategy is considered (see sections 9.1 and 9.2). The trained
network comprises N c

hid = 6 hidden units and N c
out = 4 outputs.

It is to be noted that in the case of the HNetMan::run(·) method, the re- communication
overheadported time does not only include the network operation on the hardware: Even

if the output data is not read back over the PCI bus, the measured value persists
to be increased by the remaining communication between the PC and the FPGA
that is necessary to synchronize their operation. Given the used base frequency
of 84 MHz and the processed number of patterns of 1550, the time that is ex-
clusively spent for the actual execution of the network can be estimated to be
approximately 1.1 ms [181].

It remains that in the present state of the system, the calculation of the fitness remaining idle time

only occupies about one fourth of the time that effectively elapses until the results
of the next network can be read back from the memory of the FPGA. Since the
times for the fitness evaluation and the network execution each grow linearly with
the number of processed patterns, similar conditions are expected to apply also
to the other investigated tasks (see below). This generally leads to a considerable
amount of idle time for the CPU, and a strategy of how this time can be used
more efficiently will be introduced in section 10.1.2.

1In the current setup, such a procedure is evidently not practical, since the fitness calculation
can in this case not yield reasonable results.

2For these measurements, the network execution and the fitness evaluation are performed
sequentially and not in parallel. The standard built-in C-functionality for time measurements is
used as it is provided by the ctime library.

261

10.1 Training Speed and Parallelization

Averaged Individual Processing Time

In order convey a general feeling for the speed of the current training setup, mea-experimental setup

surements are performed where the average overall processing time for one individ-
ual network is estimated. This is done for all of the nine investigated benchmarks.
Again, all networks contain N c

hid = 6 hidden units and N c
out = 4 outputs, and the

effective number of adjustable genes within the genome merely varies according
to the number of inputs required for the respective benchmarks. The processing
of the genetic material is taken over by the evolutionary coprocessor. Apart from
that, the evaluation time of each network depends on the respective number of
input patterns that needs to be processed.

For each task, it is evaluated how much time is spent in one generation step of theaveraged processing
time per individual evolutionary algorithm, i.e., the time that elapses between the moment when the

HPopulation::newGeneration(·) function is invoked and the point when the
succeeding HPopulation::evaluate() method returns (compare figure 7.21
and see sections 7.4.3, 7.4.4, and 7.4.5). Similar to the experiments presented in
the previous chapters, the population size is set to µ = 20 and the average time
for one individual is thus obtained by dividing the resulting numbers by 20. The
measurements are repeated for a respective number of 1000 generations and the
corresponding average is taken as the final result.

According to the scheme depicted in figure 10.1, the fitness calculation is per-a complete iteration

formed in parallel to the network execution. Still, apart from the actual imple-
mentation of the networks on the HAGEN ASIC, the operation of the evolution-
ary coprocessor, and the necessary communication via the PCI bus (see above),
the measured times also include the sorting of the population according to the
individuals’ fitness values, the selection process, the generation of the desired re-
combination instructions for the coprocessor (see section 7.3.3), and the general
organizational overhead for the parallelized execution of networks on the hardware
(see section 7.3.2). The latter four parts are all implemented in software.

In so far, it is to be emphasized that the presented numbers do not claim to be
an accurate estimate for the actual speed of the hardware itself. Rather, they are
to serve as a practical measure for the speed of the training as it is experienced
by the user. A second set of measurement evaluates the time that is exclusivelycreating the new

generation spent in the HPopulation::newGeneration(·) method. These times remain
to include the selection process, the generation of appropriate instructions for the
evolutionary coprocessor in software, the transmission of these commands over the
PCI bus, and the operation of the coprocessor itself. Again, the resulting numbers
are normalized by the number of individuals in the population.

The obtained values are presented in figure 10.2. The results are given in mil-results

liseconds and are shown as a function of the number of processed patterns. The
overall times per individual for one complete generation step are represented by
circular markers, the data points that correspond to only the creation of the next
population are shown as squares.

The averaged overall time per individual shows the expected dependence on thelinear dependence

number of processed patterns: The times for both, the execution of the actual
network and the calculation of its fitness should grow linearly with the number

262

Hardware Implications

PSfrag replacements

time
training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14
5

15
6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100

500 1000 1500 2000 2500 3000 3500

4000
4500
5000
5500

0.5

1.5

2.5

3.5

4.5

5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

b
re

a
st

ca
n
ce

r

d
ia

b
et

es

h
ea

rt
d
is

ea
se

li
v
er

d
is

o
rd

er

ir
is

p
la

n
t

w
in

e

g
la

ss

E
.c
o
li

y
ea

st

effective number of processed patterns

ti
m

e
p
er

in
d
iv

id
u
al

in
m

s

entire iteration step
new generation

Figure 10.2: The averaged overall processing time per individual during evolutionary
training as a function of the effective number of patterns that are processed by the single
networks. The circular markers refer to the total time that is required for one generation
step. As expected, this time shows a linear dependence on the number of processed
patterns. The squares correspond to the time that is used to merely create the next
generation of individuals. This value depends only on the size of the genome. Similar to
the first phase of the fist stage of the proposed stepwise training strategy (see chapter 9),
the trained networks all contain N sn

hid = 6 hidden neurons and N sn
out = 4 outputs, and the

respective genomes differ only marginally in size (see text).

of input patterns. Indeed, within the remaining statistical error, the measured
points very accurately form a straight line. The observed linear behavior can be constant offset

extrapolated to the case where no input pattern is applied at all. The execution
of a network then only incorporates the implementation of the corresponding net-
work configuration on the HAGEN ASIC. The estimated intersection point of the
extrapolated line3 and the ordinate axis yields a value of 0.74 ± 0.03 ms.

The effective time per individual that is lost to the creation of a new generation
from the previous population is independent of the number of patterns that need
to be processed by the single individuals. Any remaining differences between the
examined benchmark problems arise due to the varying numbers of inputs to the
respective network and the hereby determined numbers of adjustable genes in the
genome. However, the observed variations in processing time are only marginal.
On average, the time per individual that is spent in the HPopulation::new-
Generation(·) method is obtained to be 0.17 ± 0.01 ms.

3The fit is a simple linear regression performed in MATLAB [134]

263

10.1 Training Speed and Parallelization

Outlook: Speeding up the Training

Especially for large problems it can be inferred from figure 10.2 that the trainingcurrent limitations

speed is presently limited by the the time that is required for the network execu-
tion. But it is to be emphasized that while the evaluation time for each network
will persist to grow linearly with the number of applied input patterns, the abso-
lute value of the execution time as well as the slope of the observed linear increase
are specific to the currently used hardware environment which cannot in fact fully
exploit the potential of the HAGEN ASIC.

It has already been stated in section 6.3 that within the new NATHAN/Back-advanced setup

plane setup, the interface to the HAGEN chip can be operated at higher fre-
quencies and no data transfer over the PCI bus is required during training. As
soon as this more advanced setup is fully operable, it will serve as the primary
platform for future applications and training experiments. Regarding the linear
dependence of the averaged overall processing time per individual on the number
of input patterns (see figure 10.2), both, its slope and its offset will then be consid-
erably decreased. At the same time, given the frequency of the featured PowerPC
microprocessor of only 350 MHz (see section 6.3.3), all parts of the iteration step
that are implemented in software — most notably the fitness calculation and the
selection process — will be slowed down significantly. Under these circumstances,
the roles of the fitness calculation and the network execution are likely to be
exchanged in so far as the former will require more time than the latter.

Finally, it is to be noted that the way in which incoming and outgoing data isfuture ASICs

managed within the HAGEN prototype leaves some room for improvement [178].
Future neural network ASICs will provide additional functionality that will allow
for a more efficient, pipelined handling of input and output data directly on the
chip. This is bound to speed up the execution of the networks even further.

At present, exact quantitative predictions for the eventual training speed offast algorithms

the NATHAN/Backplane setup are difficult [181] and do not actually fall into
the scope of this work. But as it has already been discussed in sections 6.2.6
and 6.3.3, the above considerations remain to fuel the desire for simple evolutionary
algorithms that can keep up pace with the used neural network ASICs and can
preferably benefit from hardware acceleration and/or parallelization themselves.

10.1.2 Parallelization of the Generalized Stepwise Strategy

During evolutionary training, the calculation of the former individual’s fitnessunexploited potential

value currently takes only about one fourth of the time that is required for the
next candidate network to finish executing on the hardware (see also section 10.1.1
and compare figure 10.1). The remaining intermediate CPU time is bound to be
wasted. It is true that due to the high degree of parallelism in the network oper-
ation of the HAGEN prototype, the execution time for, e.g., a two-layer network
does not increase with a growing size of its single layers. This allows for a feasible
scaling to large networks. But for comparably small networks like those that are
trained during the single phases of the proposed stepwise strategy (see chapter 9)
and which occupy merely a small fraction of the offered network resources each,

264

Hardware Implications

this parallelism is only insufficiently exploited.

On the other hand, it has repeatedly been claimed that the stepwise approach
itself readily promotes a viable parallelization of the training process. The follow-
ing sections will describe how this parallelism can efficiently be exploited already
within the currently used hardware environment that merely features one single
network ASIC per setup.

Simultaneous Evaluation of Candidate Solutions

Figure 10.3 presents a schematical illustration of the upper left corner of the upper
left network block of a HAGEN ASIC (see section 5.4). The image is taken from
a screenshot of the network visualization tool that is included in the HANNEE
software (see chapter 7). The black and white squares at the top and the left
side represent the single input nodes and output neurons respectively. The shown
matrix of colored cells illustrates the synaptic array of the network block (compare
figures 5.2 and 5.5). The red, blue and white cells correspond to positive, negative,
and zero weights, respectively. The orange or grey color of the buttons at the edges
of the array indicate whether any of the feedback or inter-block connections of the
corresponding input or output node is activated (see section 5.4.2).

The shown configuration represents a network that has been trained for the exemplary network

iris plant problem using the stepwise training strategy proposed in chapter 9.
One subnetwork is included for each of the three classes. In pursuit of a better
visualization, this exemplary network is implemented on only one single block
instead of being distributed over two blocks (see section 8.2.4). A subset of the
available feedback connections is utilized to realize the two desired network layers.
The network is shown in a state where the first training stage is completed but the
second stage is not yet initiated, i.e., the additional interconnections between the
subnetworks are not yet established (an illustration of the complete network can
be found in figure C.14 in the appendix). The input nodes and output neurons
that are actually used for the implemented network are marked by black squares.

By construction, the single subnetworks occupy distinct areas of the synaptic subnetworks:
independent operationarray and are entirely independent. It is an important consequence that during

training, three different subnetworks can in principle be tested simultaneously dur-
ing one single operation of the HAGEN ASIC: one for each of the three different
classes. Similar considerations also apply to the interconnections that are intro-
duced in the second stage. It has already been discussed in sections 9.1.1 and 9.3.2
that the respective synaptic connections which lead to the output neurons of one
particular subnetwork can be optimized independently of those that lead to all
other outputs.

In general, given a total desired number of subnetworks Nnet = Nc · N c
net in the

final network, Nnet corresponding candidate solutions can be evaluated on the
network chip simultaneously. Due to the parallel operation of the HAGEN chip,
this does not lead to an increase in the required execution time.

Within each of the two training stages, the single phases of the proposed step- parallelization

wise approach can therefore partly be parallelized.This is schematically illustrated
in figure 10.4. For the parallel training of Np

net subnetworks, Np
net corresponding

265

10.1 Training Speed and Parallelization

PSfrag replacements

time
training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12
3

13
4

14
5

15
6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

used inputs
neuron bias

input nodes

output nodes

first layer

second layer

feedback

upper left block

synaptic arraysubnetwork 1: class 1

class 1

class 2

class 3

nnc = 2

Figure 10.3: Schematical illustration of the upper left corner of the upper left block
of a HAGEN ASIC, taken from a screenshot of the HANNEE software (see chapter 7).
The input nodes are on top, the neurons are to the left, and the array of colored squares
represents the synaptic array (compare also figures 5.2, 5.5, and 8.2 b)). Positive weight
values are a shade of red, negative weights are blue, and white squares correspond to
deactivated synapses with zero weight. The presented network has a two-layer architecture
and is trained for the iris problem. It contains one subnetwork for each class and is shown
in a state where the first stage of the stepwise training is completed but the second stage
is not yet initiated: the single subnetworks are still unconnected (compare figure C.14).

populations of candidate solutions are processed partly simultaneously. In each
iteration, Np

net new generations are created from the Np
net respective previous pop-

ulations. The populations are entirely independent, and the generation step can
thus in principle be parallelized as well. But since the selection scheme is imple-sequential creation

mented in software and each hardware setup only features one single evolutionary
coprocessor, the different populations are at present processed sequentially. How-
ever, given the results that have been presented in figure 10.2, this does not breed
a significant loss in training speed — at least within the currently used hardware
environment.

During the evaluation phase, Np
net candidate subnetworks — one from each of theparallelized evaluation

Np
net populations — are tested simultaneously during one execution of the network

ASIC. More specifically, based on the respective genetic data that is stored in
the local RAM of the FPGA (see section 6.2) one single network configuration is
constructed that determines the required feedback and inter-block connections and
combines the weight values for all Np

net candidate solutions. This configuration is
sent to the hardware for implementation via one single call to HNetMan::run(·)
(see section 7.3.2).

266

Hardware Implications

PSfrag replacements

time
training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12
3

13
4

14
5

15
6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

next

sequentially generate

Np
net = 3 new generations

populations

A B C

idle

coprocessor

software

HAGEN

idle

idle

idle

time tt = 0
evaluate Np

net = 3

subnetworks simultaneously

A1 B1 C1 A2 B2 C2

A1 B1 C1 A1 B1 C1

read back
results

sequentially calculate
the fitness of Np

net = 3 individuals

Figure 10.4: Schematical illustration of the proposed parallelization scheme for the step-
wise training approach (see chapter 9 and compare figure 10.1). In the shown example,
Np

net = 3 subnetworks are trained in parallel, i.e., three independent populations —one
for each of the three subnetworks —are processed partly simultaneously. In each itera-
tion step, the three corresponding next generations are created sequentially. In contrast,
three subnetworks —one from each population —can be tested in parallel during one sin-
gle execution of the hardware (compare figure 10.3 and see text). While the next three
candidate solutions are evaluated, the fitness values of the former three networks are al-
ready calculated in software. This needs to be done sequentially but can efficiently exploit
the CPU time that is available during the network operation. Since the creation of the
three new generations can be achieved comparably fast (see section 10.1.1) and the time
for one network execution is independent of the amount of used network resources, this
parallelization procedure yields a considerable increase in training speed (see figure 10.5).

Once the resulting network output is available, the fitness values of the N p
net sequential fitness

calculationcandidate solutions are calculated sequentially in software, while the next N p
net

subnetworks are already tested on the hardware in parallel. This way, the con-
siderable amount of CPU time that is currently available during the hardware
operation (see section 10.1.1) can be used more efficiently (see figure 10.4): For up
to approximately Np

net = 4, the time that is required for the fitness calculations
can completely be hidden in the network execution time.

Time Measurements

For the exemplary case of the liver disorder benchmark, figure 10.5 shows the aver- evaluation procedure

aged overall processing time per individual as a function of the number of subnet-
works that are trained in parallel. Similar to the measurements presented in sec-
tion 10.1.1, the subnetworks each contain N c

hid = 6 hidden units and N c
out = 4 out-

puts and the processed populations include µ = 20 individuals. Again, it is mea-
sured, how much time passes from the invocation of the HPopulation::new-
Generation(·) method to the moment when the HPopulation::evaluate()

267

10.1 Training Speed and Parallelization

PSfrag replacements

Liver Disorder

training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation

0
0

10

1

1

11

2

2

12

3

13

4

14

5

15

6

16

7

17

8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5

1.5

2.5

3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

number of simultaneously trained subnetworks Np
net

ti
m

e
p
er

in
d
iv

id
u
al

in
m

s

Figure 10.5: For the liver disorder benchmark, the averaged overall processing time
per individual during evolutionary training is shown as a function of the number of sub-
networks Np

net that are trained simultaneously according to the proposed parallelization
scheme (compare also figure 10.4). Again, the single subnetworks contain N sn

hid = 6 hidden
neurons and N sn

out = 4 outputs each. The reported time for Np
net = 1 corresponds to the

value already shown in figure 10.2. The dashed line refers to an optimal 1/n-behavior.
Since several parts of the evolutionary training procedure remain to be performed se-
quentially, the achieved gain in training speed is not as high as is expected in the ideal
case.

function returns. If Np
net subnetworks are evolved simultaneously, the considered

population in fact contains Np
net independent subpopulations and each iteration

step effectively processes 20 · Np
net individuals4. Accordingly, the measured times

are normalized by the respective value 20 · Np
net. The shown data points each

represent the average over 1000 generations, and the reported time for N p
net = 1

corresponds to the value that has also been included in figure 10.2.

The dashed line illustrates an ideal 1/n-reduction in processing time. Sincemeasurable
acceleration several parts of the iteration step — i.e., the creation of the N p

net new generations
and the calculation of their fitness values — remain to be performed sequentially
and given the fact that the available CPU time during one network execution ef-
fectively suffices for only about four fitness calculations, the eventually achieved
gain in training speed is bound to be smaller than the ideally expected factor
Np

net. Still, it can be observed that following the above parallelization procedure,
increasing the number of simultaneously evolved subnetworks N p

net yields a signifi-

4The multiple subpopulations that each correspond to a different subnetwork are all encap-
sulated by one dedicated HPopulation subclass. As it has been discussed in section 7.4.5,
this allows to leave the algorithm implementation unmodified on a higher level (compare also
figure 7.21).

268

Hardware Implications

cant reduction in the effective processing time that is on average required for each
individual. For Np

net = 6, the training time is reduced by approximately a factor
of 3. Training more than 6 subnetworks in parallel only yields minor improvements
in training speed.

Parallelization in Practice

Leaving hardware limitations aside, the maximum number of subnetworks that remaining limitations

can actually be trained simultaneously is ultimately limited by the given num-
ber of classes in the examined categorization problem times the desired number
of subnetworks per class. Apart from that, it is understood that the proposed
scheme does not exploit the inherent parallelism of the stepwise training strategy
to the fullest possible extent: Several parts of the iteration step remain to be per-
formed sequentially that could in principle be parallelized as well. But on the other
hand, the presented measurements do not only provide a first demonstration for
the claim that the stepwise training approach is indeed suited for a parallel imple-
mentation, the proposed scheme can also readily be employed within the currently
used hardware setup. In fact, the exhaustive investigations presented in the fore-
going chapter have successfully utilized the proposed parallelized implementation
of the training process.

For future investigations, it is planned to also perform the execution of the evolu- parallelization in
future setupstionary coprocessor in parallel to the evaluation of networks on the HAGEN ASIC.

With regard to the upcoming NATHAN/Backplane framework (see section 6.3),
the faster operational speed of the network hardware and the reduced performance
of the featured PowerPC microprocessor will render the proposed parallelization
scheme infeasible, since the fitness calculation will under these conditions most
likely take longer than the actual network execution (see also section 6.3.3). On
the other hand, the advanced hardware setup will allow to efficiently benefit from
the parallel nature of the stepwise training strategy by distributing both, the fi-
nal networks5 and the simultaneous training of multiple subnetworks over several
NATHAN boards (see also section 6.3.3).

10.2 Network Transferability

It is one of the important advantages of chip-in-the-loop training that it can substrate deficiencies

automatically cope with the potential deficiencies and peculiarities of the used
hardware neural network substrate (see section 2.4.5). Beyond that, it has been
discussed in section 5.5 that the device variations which affect the network op-
eration on the HAGEN prototype can to a large extend be compensated for by
an appropriate calibration. During the experiments presented in the preceeding
sections, the used HAGEN chips have always been operated in calibrated mode
such that the single neuron offsets and the row-specific averages of the individual
synapse offsets are accounted for (see sections 5.5.1 and 5.5.4). Under these con-
ditions, it remains the primary task of the evolutionary training algorithm to deal

5It has already been discussed in section 9.4.2 that at least for single-layer architectures, the
trained networks can be distributed over an arbitrary number of blocks without restrictions.

269

10.2 Network Transferability

with the single static synapse offsets and to appropriately adjust the individual
weights as to best exploit the dynamic ranges of the neurons and synapses (see
also section 5.4.3).

Given the allowed maximum postsynaptic current Imax
ps = 22 µA (section 5.4.3)network transfer

that is used for all presented experiments, the magnitudes of the individual synapse
offsets are in the order of only 1 % of the total weight range (see also section 5.5.3).
In so far — as it has already been discussed in section 5.5.4— any network config-
urations that are obtained during the training of networks on one HAGEN ASIC
should to some extent also be usable on other HAGEN chips. It is not expected,
however, that the transfer of a network configuration to another chip will yield
exactly the same performance as on the original ASIC it has been trained on.
Therefore, it is worthwhile to investigate if and in how far the performance of a
network configuration that has been trained with the generalized stepwise strat-
egy deteriorates once it is being loaded into a chip that it has not originally been
optimized for.

10.2.1 Transfer Experiments

For the liver disorder, wine and E.coli benchmarks, the different network configu-
rations that have been obtained during the experiments presented in the preceed-
ing chapter are each transferred to two different HAGEN ASICs. This is done for
all investigated numbers of networks per class N c

net and for both, single-layer and
two-layer networks.

In this context, it is to be repeated that the classification accuracies on theabsolute differences

training and test sets At and Ag reported in the preceeding chapters each represent
the respective average over a total of 50 different networks — five for each of the
ten stratified random partitionings of the data into training and test set (see
section 8.1.2). Based on the original accuracies ar

t and ar
g of a specific network

configuration that has been trained on the rth partitioning and given the respective
values ãr

t and ãr
g that are obtained on the same training and test data once this

very network is implemented on another chip, consider the absolute differences

dr
t =|ar

t − ãr
t | (10.1)

dr
g =|ar

g − ãr
g | . (10.2)

Since dr
t and dr

g quantify the respective difference in the fraction of correctly
classified training and test patterns, they are given in percentage points. Af-
ter measuring these quantities for all of the ten networks that have originally beenaveraged results

considered for one single 10-fold cross-validation, the resulting values are aver-
aged to yield the mean differences dt and dg. This is repeated for each of the five
performed repetitions of the cross-validation measurement (see section 8.1.2), and
the achieved values are averaged once more to yield the final results Dt and Dg

together with the corresponding standard errors of the mean ∆Dt and ∆Dg.
The outcome of this measurement for the liver disorder benchmark is presentedliver disorder

in figure 10.6. The networks are originally trained on the HAGEN ASIC denoted
as “chip A” and are once transferred to “chip B” (left plot) and once to “chip C”
(right plot). The three chips are operated in calibrated mode, work at the same

270

Hardware Implications

PSfrag replacements

Liver Disorder

training set

training set

training set

training set

test set

test set

test set

test set

two layerstwo layers

single layersingle layer

m
ea

n
ab

so
lu

te
d
iff

er
en

ce
D

in
p
er

ce
n
ta

ge
p
oi

n
ts

number of subnetworks per class N c
net

chip A

chip B

chip B

chip C

chip C

simulation

0

0

10

1

1

11

2

2

12

3

3

13

4

4

14

5

5

15

6

6

16

7

7

17

8

8

18

9

9

19

0

10

11

11

22

12

33

13

44

14

55

15

66

16

7

17

8

18

9

19

0

0

10

1

1

11

2

2
12

3

3

13

4

4

14

5

5

15 6

6

16

7

7

17

8

8

18

9

9

19

Figure 10.6: The networks that have been trained for the liver disorder benchmark
during the experiments presented in section 9.4 are loaded into different chips. Originally,
the networks have been trained on the HAGEN ASIC denoted as “chip A” (not shown).
Now, they are transferred to“chip B” (left plot) and “chip C” (right plot). The mean
absolute differences in classification accuracy on the training and test sets between the
original and the transferred networks (see also equation 10.2) are shown as a function of
the number of subnetworks per class N c

net. It can be observed that on average, increasing
the number of subnetworks also improves the stability of a network’s response when it is
being transferred to another chip.

frequency of 84 MHz (section 6.1.3), and use the same analog settings, most no-
tably, a maximum synaptic current of Imax

ps = 22 µA (section 5.4.3). The obtained
averaged absolute differences Dt and Dg are shown as a function of the number
of subnetworks that have been trained for each class (see section 9.3.1). The up-
per plot refers to two-layer networks, the lower plot represents the single-layer
networks.

As expected, the responses of the transferred networks deviate from the results training set

that are obtained on the chip they have originally been optimized for. The ob-
served differences in classification accuracy are generally larger on the test sets
than on the training sets. This is plausible since on the latter, the networks’ sen-
sitivity to temporal fluctuations is automatically minimized during the employed
chip-in-the-loop training procedure. With the analog noise being in the same order

271

10.2 Network Transferability

PSfrag replacements

Wine

training set

training set

training set

training set

test set

test set

test set

test set

two layerstwo layers

single layersingle layer

m
ea

n
ab

so
lu

te
d
iff

er
en

ce
D

in
p
er

ce
n
ta

ge
p
oi

n
ts

number of subnetworks per class N c
net

chip A

chip A

chip B

chip B

chip C

simulation

0

0

10

1

1

11

2

2

12

3

3

13

4

4

14

5

5

15

6

16

7

17

8

18

9

19

0

10

11

11

22

12

33

13

44

14

55

15

66

16

7

17

8

18

9

19

0

0

10

1

1

11

2

2
12

3

3

13

4

4

14 5

5

15

6

16

7

17

8

18

9

19

Figure 10.7: The networks that have been trained for the wine benchmark during the ex-
periments presented in section 9.4 are loaded into different chips. Originally, the networks
have been trained on “chip C” (not shown). Now, they are transferred to“chip B” (left
plot) and “chip A” (right plot). The resulting mean absolute differences in classification
accuracy on the training and test sets (see also equation 10.2) are shown as a function of
the number of subnetworks per class N c

net. The results are similar to those obtained with
the liver disorder benchmark (see figure 10.6). For two-layer networks that are transferred
to “chip A”, the averaged absolute differences in classification accuracy on the training
data are even reduced to zero.

of magnitude than the static variations (see section 5.5.3) the improved insensi-
tivity to temporal fluctuations also gives rise to an increased robustness against
differences in the static synapse offsets like they occur between different chips. In
contrast, for input patterns from the test set, the insensitivity to analog noise is
not optimized during training (see also section 8.4.1), and the networks’ responses
therefore show an increased susceptibility to changes in the static synapse offsets
as well.

Single-layer networks suffer from a measurably lower deterioration in perfor-single-layer networks

mance than two-layer networks when being transferred to another chip. This
might partly be accredited to the circumstance that the former include consider-
ably fewer synapses than the latter. Furthermore, in a network with two layers, the
single synaptic connections exhibit much stronger interdependencies as in a single-

272

Hardware Implications

layer network. Due to the highly nonlinear behavior of the employed threshold
neurons, only small variations of the weights in the input layer can lead to signifi-
cant changes in the responses of the hidden nodes and are thus likely to cause even
larger deviations in the final output of the second layer. Finally, it can be inferred
from figure 9.3 that single-layer networks generally perform worse on this task than
two-layer networks in the first place. With a linear partitioning of the input space
obviously not being the appropriate separation to reliably differentiate between
the two classes, it is reasonable to assume that multiple linear partitionings exist
which yield approximately the same — suboptimal — classification performance.
In so far, it seems plausible that the eventual classification accuracies of networks
with only one layer are less sensitive to perturbations of the single weight values
than those of two-layer networks.

Apart from that, it is an important observation that with an increasing number multiple subnetworks:
improved stabilityof subnetworks per class, the averaged absolute difference in accuracy on the test

set Dg is significantly reduced. This also applies to the difference in performance
Dt that is obtained on the training data but here, the effect is not as distinct.

Similar results are obtained with the wine and E.coli data sets, as it is shown in wine and E.coli

figures 10.7 and 10.8. The networks for these two benchmarks have been trained on
“chip C” and are transferred to both, “chip A” and “chip B”. Compared to the liver
disorder data set, the initial differences between the original and the transferred
networks are smaller, and the observed decrease in Dt is more pronounced. In the
case of the wine data set, the average difference in performance on the training
data observed for two-layer networks that are transferred to “chip A” is even
reduced to zero.

Initially, it could have been expected that with an increasing size, the networks’ possible explanation

susceptibility to variations in the static offsets becomes more severe, since a larger
number of mutually dependent synaptic weights is affected. But it can be inferred
from the presented measurements that the redundancy that results from the train-
ing of multiple subnetworks per class actually gives rise to an improved stability of
the final networks once they are confronted with the peculiarities of another chip
than the one they have been trained on. It might be a possible explanation for
this phenomenon that the deviations which occur when a network is transferred
to a different chip promote an improved diversity among the single subnetworks
that are dedicated to the same class. It has been argued in section 9.3.2 that an
increased dissimilarity between the members of a network ensemble yields a better
performance of the whole committee. It is reasonable to assume that this bene-
ficial effect can at least partly compensate for the perturbations that inevitably
occur when the network is transfered to another HAGEN ASIC.

The results that are achieved on the E.coli data set reveal that the stability of saturation behavior

the final networks is not improved any further when more than approximately 5
subnetworks per class are trained (see figure 10.8). This can be seen in analogy
to the saturation behavior of the generalization accuracy that has already been
observed during the actual training of an increasing number of subnetworks per
class (compare figure 9.6).

For N c
net > 5, the difference in accuracy on the training data even seems to in- remaining differences

crease again, but given the estimated statistical uncertainty, a definite conclusion

273

10.2 Network Transferability

PSfrag replacements

E.coli

training set

training set

test set

test set

two-layer networks

single-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

m
ea

n
ab

so
lu

te
d
iff

er
en

ce
D

in
p
er

ce
n
ta

ge
p
oi

n
ts

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A

chip B

chip C

simulation

0

0

10

1

1

1

11

2

2

2

12

3

3

3

13

4

4

4

14

5

5

5

15

6

16

7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure 10.8: The networks that have been trained for the E.coli benchmark during the
experiments presented in section 9.4 are loaded into different chips. Originally, the net-
works have been trained on “chip C” (not shown). Now, they are transferred to“chip B”
(left plot) and “chip A” (right plot). The resulting mean absolute differences in classifica-
tion accuracy on the training and test sets (see also equation 10.2) are shown as a function
of the number of subnetworks per class N c

net. The results are similar to those obtained
with the liver disorder and wine benchmarks (see figures 10.6 and 10.7). Increasing the
number of subnetworks per class beyond N c

net = 5 does not seem to further improve the
stability of the networks’ responses.

274

Hardware Implications

cannot be drawn. Still, the measurements suggest that the differences in perfor-
mance between the original and the transferred networks are not reduced to zero
when more subnetworks per class are trained. It is to be expected that a given
minimum deviation will remain.

Having hitherto considered only the absolute values of the observed deviations
(see equation 10.2), it is to be noted that especially on the test data, the final
classification accuracy of a transferred network can in some cases actually be better
than the performance of the respective original. In practice, however, this effect
cannot directly be exploited since the behavior of a network under chip transfer
is effectively unpredictable. In so far, the mean absolute differences Dt and Dg

persist to be the adequate measures for evaluating the stability of a network.

10.2.2 Discussion and Further Improvements

Regarding the measurements for each of the three benchmarks, the results that are different ASICs

achieved on the two different respective target chips are very similar. It can thus
reasonably be assumed that the obtained results are of general validity and are
not caused by specific peculiarities of any of the three involved HAGEN ASICs.

It is a satisfying observation that apart from producing networks with compet- improved stability

itive generalization accuracies on realistic problems (see table 9.3), the proposed
stepwise training strategy also promotes an improved stability of the final networks
once they are being transferred to different chips. But it persists that the individ-
ual characteristics of the used ASICs remain to lead to measurable deviations in
the network response. The perturbative effects that occur when a network con-
figuration is loaded into another chip are not actually compensated for. Rather,
their negative impact on the network’s eventual classification accuracy is reduced.

Some promising approaches to further improve the network transferability have further improvement

been discussed in section 5.5.4. Most notably, it is expected that the original
performance of a transferred network can be reproduced by a short and cautious
retraining. However, corresponding investigations are beyond the scope of this
work and have to be deferred to further investigations.

10.3 Outlook: Coping with Chip Limitations

The limited size of the single network blocks on the HAGEN prototype (see sec- current limitations

tion 5.4.1) as well as the fixed set of available, hard-wired feedback and inter-block
connections (section 5.4.2) remain to impose certain restrictions on the size and
architecture of the realizable networks. It has already been discussed in sec-
tion 9.4.2 that in the case of the generalized stepwise strategy, this eventually
defines an upper limit to the number of subnetworks that can be trained for each
class. Single-layer networks are not as severely affected by these restrictions as
homogeneously connected two-layer architectures since they do not require any
feedback connections and can thus more easily be distributed over multiple net-
work blocks.

275

10.3 Outlook: Coping with Chip Limitations

Having observed that an increased number of subnetworks per class is generallysmaller subnetworks

expected to lead to an improvement in the final network’s performance (see sec-
tion 9.4) and given the result that an alternative increase in the subnetwork size is
not equally beneficial (section 9.4.6), it suggests itself to investigate the feasibility
of smaller subnetworks that in turn allow for a larger number of subnetworks per
class to simultaneously fit on one HAGEN chip. Although it is actually regarded
as a favorable feature of the proposed generalized stepwise training strategy that
networks with competitive performance can be produced even without any adjust-
ment of the subnetwork size, the pragmatically chosen numbers of N c

hid = 6 hidden
neurons and/or N c

out = 4 outputs per subnetwork are not necessarily optimal.

There is another limitation of the HAGEN prototype that arises from the fixedlimited number of
inputs number of 128 inputs to each block. For classification problems with large numbers

of input attributes, the resulting lengths of the binary input strings sα might
exceed the number of available input nodes. In such cases, it will be required to
distribute the input layer over several network blocks. For a given neuron, it will
thus no longer be possible to directly be connected to all inputs.

As it has been stated in section 5.4.1, potential future network ASICs can partlydistributed input
layers overcome these restrictions by featuring more and/or larger network blocks. The

employed circuit designs should allow for about 1000 input nodes per neuron, and
the maximum number of outputs is solely limited by the desired size of the en-
tire ASIC. Still, aiming for an application of the implemented networks to data
intensive problems with high-dimensional input spaces — like, e.g., image pro-
cessing tasks — the available number of inputs might nevertheless turn out to be
insufficient. In so far, it is worthwhile to examine whether partially connected
architectures, where the single neurons are not equally connected to all inputs,
can retain a satisfying performance.

The following sections will present a set of initial measurements that aim to
illuminate these questions. However, the reported experiments do not claim to
be exhaustive. Rather, they intend to provide a first estimation of how an opti-
mization of the subnetwork size or a distribution of the input nodes over multiple
network blocks affect the performance of the final networks. As such, these mea-
surements primarily serve as a basis for future investigations that are to address
these topics more systematically.

10.3.1 Varied Subnetwork Size

For the liver disorder benchmark, two additional sets of experiments are performedvaried subnetwork
size where the numbers N sn

hid and N sn
out of hidden neurons and outputs per subnetwork

are modified compared to the setup that is used for the experiments presented in
the foregoing chapter. For the first campaign of measurements, each subnetwork
contains only N sn

hid = 3 hidden nodes but persists to include N sn
out = 4 outputs. In

the second case, both, the numbers of hidden units and outputs are reduced and
are set to N sn

hid = 3 and N sn
out = 2, respectively. The former set of measurements

shall in the following be denoted as experiment M (medium) and the latter will
be referred to as experiment S (small).

276

Hardware Implications

PSfrag replacements

Liver Disorder

training set

test set

two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60

70

61
71
62

72

63
73

64

74

65
75

66

76
67
77

68

78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75
classification accuracy At in %

experiment L : 6 hidden, 4 outputs
experiment M : 3 hidden, 4 outputs
experiment S : 3 hidden, 2 outputs

Figure 10.9: For the liver disorder benchmark, the averaged classification accuracy on the
test sets Ag (see section 8.1.2) is measured as a function of the number of subnetworks per
class and for different subnetwork sizes. The results of experiment L (N sn

hid = 6, N sn
out = 4,

circular markers) have already been presented in figure 9.3. Compared to these initial
measurements, the subnetworks of experiment M possess fewer neurons in the hidden
layer (N sn

hid = 3, N sn
out = 4, triangles), and those of experiment S actually contain only half

the number of nodes (N sn
hid = 3, N sn

out = 2, squares). Training a sufficient number N c
net

of subnetworks per class, the eventual generalization rates of the final networks become
approximately equal.

Apart from the modified subnetwork sizes, the employed experimental setup measurement
procedureand training algorithm equal those already used for the investigations presented in

section 9.4. For each phase of the stepwise training, a maximum of 1000 iterations
are performed. The mean classification accuracy Ag of the final networks on the
test set is measured as a function of the number of subnetworks per class N c

net,
and the results are shown in figure 10.9. For comparison, the generalization rates
that have been obtained with the original subnetwork size are included as well
(see figure 9.3). This set of measurements will henceforth be called experiment L
(large).

Note that for a given number of subnetworks per class N c
net, the three results different total sizes

that are obtained during the respective experiments L, M , and S are achieved
by networks of different size. In fact, for the same value of N c

net, the networks
that are produced during experiment S are only half the size of the corresponding
networks that are obtained in the original experiment L.

277

10.3 Outlook: Coping with Chip Limitations

For N c
net = 1, the smaller networks of measurement S tend to perform worseobservations

than the corresponding networks of experiment L, while the medium sized net-
works of experiment M show a significantly better generalization rate. It is plau-
sible that the decreased number of hidden nodes for networks in experiment M
reduces the risk of overfitting, while the retained number of N sn

out = 4 outputs per
subnetwork persists to allow for a reasonably differentiated response. Furthermore,
with the overall number of training iterations depending only on the number of
subnetworks, the reduced dimensionality of the search space in each training phase
might allow for a more effective optimization of the synaptic weights. On the other
hand, although the smaller networks of experiment S feature hidden layers of the
same size as those of experiment M , the decreased numbers of outputs are ob-
served to measurably reduce the achievable generalization performance— despite
the further reduced search space and the equal effective training time.

In so far, it is a remarkable observation that an increase in the number of
subnetworks per class eventually yields approximately the same generalization
performance for all investigated subnetwork sizes. At N c

net = 6, the on average
achieved classification accuracies on the test sets are approximately equal for all
experiments.

It has already been discussed in sections 9.4.3 and 9.4.4 that the training of mul-independence of
subnetwork size? tiple subnetworks per class can in some cases compensate for the initial differences

in performance that are observed between single-layer and two-layer architectures.
It seems that the results achieved with the generalized stepwise training strategy
might to some extent also be insensitive to changes in the employed subnetwork
size.

Admittedly, the available experimental data does at this point not permit anyfuture investigations

definite conclusion. Similar experiments need to be performed also with the other
investigated benchmarks in order to verify these initial observations. Apart from
that, it still remains to be tested whether slightly enlarged subnetworks might
even yield better results. Finally, since smaller subnetworks naturally allow for
more of them to fit on one HAGEN ASIC simultaneously, it will be interesting
to evaluate in how far this eventually permits a more efficient exploitation of the
offered network resources.

10.3.2 Partitioned Input Layers

Within a further set of experiments, slightly modified networks are trained forrestricted connectivity

the heart disease benchmark that feature only a reduced connectivity: The single
hidden neurons of each subnetwork are not connected to all input nodes. Similar
to the experiments presented in sections 9.2 and 9.4, the subnetworks contain
N sn

hid = 6 hidden units and N sn
out = 4 outputs. But while the output layer persists

to be homogeneously connected, half of the hidden nodes of each subnetwork are
connected only to those binary input nodes that code the first 7 input attributes,
while the other half is exclusively connected to those inputs that correspond to
the remaining 6 input variables.

The hereby restricted connectivity is intended to simulate a situation where the
number of available input attributes requires the input layer of the network to be

278

Hardware Implications

PSfrag replacements

Heart Disease

training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79

80

90

81

91

82

92

83

93

84

94

85

95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

inputs fully connected
inputs partly connected

Figure 10.10: For the heart disease benchmark, the generalized stepwise strategy is
employed for the training of modified two-layer networks that feature only a partially
connected input layer: Half of the hidden neurons of each subnetwork are exclusively
connected to the input nodes of the first 7 attributes, while the other half is merely con-
nected to those input nodes that correspond to the remaining 6 attributes. The averaged
generalization rate Ag of the final networks (see section 8.1.2) is shown as a function of
the number of subnetworks per class (circular markers). Compared to the original, fully
connected networks (triangles, compare figure 9.9), the performance seems to be slightly
decreased, but the differences are only marginal.

distributed over multiple network blocks of the HAGEN ASIC. The heart disease
problem is well suited for this kind of investigation since it features a comparably
large number of 13 input attributes.

Once again, the networks are trained with the stepwise evolutionary strategy evaluation procedure

introduced in the preceeding chapter and the generalization accuracies of the fi-
nal networks are measured as a function of the number of subnetworks per class.
Apart from the missing connections in the input layer, the training setup is the
same as for the experiments presented in section 9.4. The results are shown in
figure 10.10 (circular markers). To allow for a better comparison, the correspond-
ing classification rates on the test set that have been observed during the original
experiments with a fully connected input layer are included as well (triangles, see
also figure 9.9).

For N c
net = 1, the modified networks actually achieve a better generalization ac- observations

curacy than those which are fully connected. It is conceivable that the restricted
connectivity of the input layer reduces the risk of overfitting and thereby leads
to the observed superior classification accuracy on the test set. Nevertheless, for
N c

net > 1, the networks with the incomplete input layers either show a worse per-

279

10.4 Outlook: Software Simulations

formance than their homogeneously connected pendants or the respective values
are approximately equal within the estimated error.

All in all, the results seem to suggest that a reduced connectivity of the first layermarginal
deterioration indeed tends to slightly decrease the achievable performance of the final networks

on this task. Still, given that the remaining statistical uncertainty ultimately
impedes a clear decision, it is important to note that any potential deterioration
in generalization accuracy is evidently only marginal. Furthermore, it can be
inferred from figure 10.10 that even if the input layers needed to be distributed
over several blocks, the hereby restricted networks would persist to measurably
benefit from an independent training of multiple subnetworks per class.

Having investigated only a single exemplary benchmark problem, it cannot be
predicted with certainty in how far these observations hold also for other classifi-
cation tasks. But in the light of the presented measurements, it is reasonable to
assume that the restricted number of input nodes of the featured network blocks
does not necessarily prevent the HAGEN chip from being successfully applicable
to problems with high-dimensional input spaces. Ultimately, this question will
have to be clarified by future experiments.

10.4 Outlook: Software Simulations

The numerous networks that have been trained during all hitherto presented ex-
periments are each optimized for the specific HAGEN ASIC they have been trained
on. The particular deficiencies and peculiarities of the used chip are partly com-
pensated for by the calibration procedure described in section 5.5.4, and the re-
maining deviations from the ideal network model (see section 5.2) are dealt with by
the used chip-in-the-loop training algorithm. It has already been investigated in
section 10.2, in how far this procedure allows for a viable transfer of the resulting
network configurations to other calibrated HAGEN chips.

Apart from the static device variations and the present analog noise, the op-hardware networks in
software eration of the implemented network obeys equation 5.4. This in principle allows

to use the obtained configurations also for software simulations of the utilized
network model. Like in the case of a transfer from chip to chip, a simulation in
software is not assumed to entirely preserve the network’s performance, but the
observations of section 10.2 are expected to hold also in this scenario.

Furthermore, the applicability of the proposed stepwise training strategy is not atraining software
networks priori restricted to hardware implementations. It is true that the usage of multiple

subnetworks per class naturally leads to larger networks. Software simulations
that usually persist to be implemented on ordinary sequential computers rather
call for preferably small systems, but this does not inhibit the utilization of the
generalized stepwise approach for training in principle. On the other hand, it is
conceivable that the demonstrated success of this strategy actually relies on the
characteristics of the used hardware substrate. The inherent static variations and
temporal fluctuations might promote the diversity of the multiple subnetworks
that are trained for each class (see also sections 9.3.2 and 10.2.1). Finally, it willsoftware networks in

hardware be interesting to evaluate the performance of network configurations that have

280

Hardware Implications

been optimized to work well in a software simulation and are transferred to a real
HAGEN ASIC.

A detailed investigation of these aspects is not the purpose of this thesis. Never-
theless, in order to gain a first impression of to what extent the reported results are
influenced by the characteristics of the used neural network hardware substrate, an
initial set of experiments are conducted that employ a software simulation of the
trained networks. Similar to the experiments presented in the foregoing section,
these investigations primarily aim to provide an outlook to future work.

10.4.1 Hardware Networks in Software

In analogy to the measurements reported in section 10.2.1, the network configu- stepwise training and
software networksrations that have been obtained during the experiments discussed in section 9.4

for the liver disorder, wine, and E.coli problems are used to implement the corre-
sponding networks in software. The employed software simulation is included in
the HANNEE framework (see chapter 7) and implements the ideal network model
defined by equation 5.4.

Apart from the fact that the network configurations are not transferred to an- measurement
procedureother HAGEN ASIC but are simulated on an ordinary CPU, the measurements

are conducted in the same way as those of section 10.2.1. For the liver disorder
benchmark, the resulting averaged absolute differences Dt and Dg together with
the corresponding standard errors of the mean ∆Dt and ∆Dg are shown as a
function of the number of subnetworks per class in figure 10.11 (left side). For
comparison, the right half shows the outcome of the transfer to “chip B” that has
already been presented in figure 10.6.

The shown data immediately reveals that the transfer to another chip on average results

has approximately the same effect as a transfer of the network configuration to
a simulated ideal substrate. The corresponding measurements with the wine and
E.coli data set yield similar result and are shown in figures C.15 and C.16 in the
appendix. In all cases, the obtained differences are in remarkable agreement with
those presented in section 10.2.1.

This is an important observation since it provides an experimental proof for conclusion

the claim that — apart from the known deviations — the used HAGEN ASICs
actually implement the desired network model. If the trained networks exploited
any further and hitherto unconsidered peculiarities of the used analog circuits,
the transfer to an ideal substrate should yield measurably worse results than the
transfer to another chip. In fact, it is observed that the deviations of each single
ASIC from the ideal model (see section 5.2) are in the same order of magnitude as
the differences between two calibrated chips. It can reasonably be concluded that
the network operation of the HAGEN ASIC differs from the ideal model primarily
by the remaining statistical device variations and not by any inherent deficiencies
of the employed circuits.

281

10.4 Outlook: Software Simulations

PSfrag replacements

Liver Disorder

training set

training set

training set

training set

test set

test set

test set

test set

two layerstwo layers

single layersingle layer

m
ea

n
ab

so
lu

te
d
iff

er
en

ce
D

in
p
er

ce
n
ta

ge
p
oi

n
ts

number of subnetworks per class N c
net

chip A

chip B

chip B

chip C

simulation

simulation

0

0

10

1

1

11

2

2

12

3

3

13

4

4

14

5

5

15

6

6

16

7

7

17

8

8

18

9

9

19

0

10

11

11

22

12

33

13

44

14

55

15

66

16

7

17

8

18

9

19

0

0

10

1

1

11

2

2
12

3

3

13

4

4

14

5

5

15 6

6

16

7

7

17

8

8

18

9

9

19

Figure 10.11: The networks that have been trained for the liver disorder benchmark
during the experiments presented in section 9.4 are implemented in software using a
dedicated chip simulation that is based on the ideal network model defined by equation 5.4.
The mean absolute differences in classification accuracy on the training and test sets
between the original and the simulated networks (see also equation 10.2) are shown as
a function of the number of subnetworks per class N c

net (left half). For comparison, the
corresponding averaged differences that are obtained during a network transfer to “chip
B” are shown in the right half (compare figure 10.6). The results are very similar. It
can be concluded that apart from the known deviations, the HAGEN prototype actually
implements the desired network model.

10.4.2 Stepwise Training of Software Networks

For the wine benchmark, networks are trained with the generalized stepwise train-
ing strategy that are not implemented on the HAGEN ASIC but are executed in
software. The currently used software simulation of the employed network model
is mainly designed to be smoothly integrated into the HANNEE framework and
to be usable in conjunction with the same training algorithm implementations as
the actual neural hardware. At present, this setup is not optimized for speed and
the required training times are considerably larger than if networks are trained
on the HAGEN chip. For this reason, the measurements reported here are not
conducted with the same thoroughness as those presented in section 9.4.

282

Hardware Implications

PSfrag replacements

Wine

training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14
5

15
6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82

92

83

93

84

94

85

95

86

96

87

97

88

98

89

99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75 ge
n
er

al
iz

at
io

n
ra

te
a

g
(A

g
)

in
%

chip C
simulation

Figure 10.12: The generalized stepwise strategy is employed for the training of networks
for the wine problem that are purely implemented in software. For each number of sub-
networks per class N c

net, a single 10-fold cross-validation (see section 8.1.2) is performed
and the resulting averaged accuracy on the test sets ag is shown (circular markers). For
comparison, the mean generalization rates Ag that have been obtained during the corre-
sponding measurements with hardware implemented networks (see section 9) are presented
as well (triangles, compare figure 9.4).

Most of the parameters of the training setup equal those already used for the measurement setup

original investigations of chapter 9 (see tables 8.3 and 9.1). The networks exhibit
a two-layer architecture and contain N sn

hid = 6 hidden nodes and N sn
out = 4 outputs

per subnetwork. However, the following modifications to the experimental proce-
dure are made: Since the software simulation is deterministic and does not suffer
from any analog noise, each training pattern is only processed once by each net-
work in each iteration. The same applies to the evaluation of the final network’s
classification performance on the training and test sets. To further reduce the
expenditure of time, only a single 10-fold cross-validation is performed for each
measurement, and the maximum number of training iterations in each phase of
the stepwise training procedure is reduced to 500.

Figure 10.12 shows the obtained averaged classification accuracy on the test
set ag as a function of the number of subnetworks that are trained per class.
The standard error of the mean that is on average obtained on the 10 networks
that are trained for each of the 10 partitionings (see section 8.1.2) is in the order
of ±1 % (corresponding error bars are included in figure 10.12). Although it is estimated uncertainty

understood that this quantity is not the adequate error measure to be consulted
for a comparison between the shown data points (see section 8.1.2), it is expected
to provide a realistic upper limit to the remaining statistical uncertainty that will
be observed when multiple cross-validations are performed. For comparison, the

283

10.4 Outlook: Software Simulations

corresponding accuracies Ag that have been obtained during the experiments of
section 9.4 (see figure 9.4) are included in figure 10.12 as well.

For N c
net = 1, the software simulation performs measurably worse than the net-comparison

works that are implemented on the hardware. Given the used setup, this might
partly be accredited to the reduced training times. But it is also conceivable that
since the temporal fluctuations within the HAGEN chip and the resulting noisy
network response might yield a smoother fitness measure (see also section 8.3.3),
the evolutionary training algorithm could optimize networks on the hardware more
efficiently. In so far, the present analog noise might even be beneficial for the even-
tual training success. Still, the available experimental data does not yet suffice to
support this conclusion, and further measurements will be necessary to illuminate
this interesting question.

Apart from that, it can be observed that training multiple subnetworks per classimproving
generalization also improves the performance of software-implemented networks. For a number

of 3 subnetworks per class, the simulated networks even seem to achieve a better
performance than those on the HAGEN ASIC. Due to the limited amount of data
and the remaining uncertainty, this result should not be over-interpreted. Still,
the shown data suggests that with growing N c

net, the simulated networks might
become at least as good as the networks that are trained on the hardware.

It is a satisfying observation that the concepts of the proposed stepwise training
strategy seem to be readily transferable to ideal, software-implemented networks
of threshold neurons as well. Although it can reasonably be assumed that these
observations will hold also for the other benchmark problems, this will ultimately
have to be confirmed by additional experiments.

10.4.3 Software Networks in Hardware

Within a final set of measurements, the software networks that are trained forevaluation procedure

the wine problem during the investigations discussed in the preceeding section are
loaded into the HAGEN ASIC formerly denoted as “chip B” to be implemented in
hardware. The observed differences in performance between the original software
networks and their hardware implemented pendants are evaluated according to the
procedure described in section 10.2.1. But since only one 10-fold cross-validation
is performed for each value of N c

net, no final averaging over multiple repetitions is
done.

The resulting averaged absolute differences dt and dg are shown in figure 10.13.observations

With only the networks of one cross-validation measurement being considered, no
error measures can be provided that are reasonably comparable to those included
in figure 10.7 (see also section 8.1.2). It is expected that a repetition of the cross-
validation will reveal statistical fluctuations in the same order of magnitude as
those obtained during the previously presented experiments. In comparison to the
results that have been presented in sections 10.2.1 and 10.4.1 (see also figure C.15),
it can be observed that training a network for the ideal substrate and transferring
it to a real HAGEN chip on average yields approximately the same difference in
performance as it is obtained in the inverse case or when networks are transferred
between different ASICs. Again, this can be seen as to support the claim that

284

Hardware Implications

PSfrag replacements

Wine

training set
test set

two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A

chip B

chip C

simulation

0

10

1

1

11

2

2

12

3

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

m
ea

n
ab

so
lu

te
d
iff

er
en

ce
d

in
%

Figure 10.13: The networks that have been trained in software for the wine benchmark
during the experiments presented in the previous section are loaded into the HAGEN
ASIC denoted as “chip B”. The obtained averaged absolute differences in classification
accuracy on the training and test sets dt and dg (see also equation 10.2) are shown as
a function of the number of subnetworks per class N c

net. The resulting differences are in
the same order of magnitude and show the same dependence on N c

net as it is observed
when networks are trained in hardware and are transferred to an ideal software simulation
(compare also figure C.15).

the employed circuits actually implement the intended network model defined
by equation 5.4 — at least apart from the inevitable static device variations and
temporal fluctuations.

Moreover, the shown data suggests that even if an off-chip optimization of net- off-chip training

work configurations for the HAGEN ASIC in software cannot benefit from the
speed of the used hardware environment or the inherent parallel nature of the
stepwise training approach as easily as a chip-in-the-loop procedure, it does pro-
vide a feasible training approach in principle. This is also suggested by earlier
results that have been obtained with different network setups and training ap-
proaches [151].

Several precautions to improve the transferability of networks between different improving off-chip
trainingchips have been discussed in section 5.5.4, and these concepts can be expected to

also improve the transferability of network configurations that are trained in soft-
ware. In combination with a potential fine-tuning of the transferred networks by
a suitable chip-in-the-loop algorithm, this eventually opens interesting new pos-
sibilities for alternative training strategies. However, the investigation of efficient
off-chip training approaches for networks on the HAGEN ASIC lies beyond the
scope of this work and is to be deferred to future investigations.

285

Summary and Outlook

You cannot depend on your eyes when
your imagination is out of focus.

Mark Twain

The HAGEN neural network ASIC provides flexible means for the implementation the HAGEN chip

of fast and massively parallel neural networks with in the order of 104 synapses
in a low power, mixed-signal hardware. By confining the analog operation to
blocks with an entirely digital interface, the employed network model allows for
a feasible up-scaling to even larger networks. On the other hand, the binary
nature of the neurons in combination with the inevitable analog noise that remains
to affect the operation of the network impede a direct application of traditional
gradient-based training algorithms. Chip-in-the-loop training approaches can not
only automatically cope with these peculiarities of the HAGEN chip, but can also
make best use of its high reconfigurational speed and fast operation.

Within this thesis, it has been investigated in how far evolutionary chip-in-the- classification
benchmarksloop algorithms can successfully be applied to the training of neural networks on

the HAGEN ASIC for demanding classification tasks. To this end, the performance
of the examined evolutionary strategies has been tested on a set of nine well-known
classification benchmarks: the breast cancer, diabetes, heart disease, liver disorder,
iris plant, wine, glass, E.coli, and yeast problems.

In order to efficiently train neural networks on the HAGEN chip, the evolu- evolutionary
coprocessortionary algorithm itself needs to be realized in a way such that it can keep up

with the speed of the networks. The used hardware environment features a ded-
icated evolutionary coprocessor that is implemented within a configurable logic
and accelerates evolutionary algorithms by performing the time-consuming ge-
netic operations in hardware. In its current version, the coprocessor persists to
impose certain restrictions on the complexity of the used genetic representation
and the applied variation operators. At present, only direct encoding schemes are
supported and the architecture of the trained networks needs to be fixed during
training. In general, to be suited for use within the introduced hardware environ-
ment, the training algorithm is preferably kept simple and should rather aim to
efficiently benefit from parallelization.

Experiments have been presented that examine a simple evolutionary algorithm the simple
evolutionary approachthat utilizes the evolutionary coprocessor for the genetic operations. While this

algorithm allows for a fast implementation and therefore ideally suits the used

287

Summary and Outlook

hardware neural network framework, it turns out to be not capable of training net-
works on the HAGEN ASIC to achieve a satisfactory performance on the selected
classification benchmarks. This particularly applies to problems that include more
than two classes.

Therefore, a stepwise training strategy has been developed that divides thethe stepwise training
strategy original task of training one large network for the entire categorization problem

into the separate optimization of multiple, smaller subnetworks that each address
only a part of the whole task: Each of the subnetworks is trained to differentiate
the members of only one specific class against all remaining instances. Using
a two-layer architecture, it is a notable feature of this strategy that additional
interconnections between the single subnetworks can be introduced and optimized
within a second training stage. This can be done separately for all subnetworks.
As an important consequence, the single training steps of the whole procedure
can be performed in parallel. Furthermore, it has been verified experimentally
that each of the independent training phases can successfully be accomplished by
simple and fast evolutionary algorithms that benefit from the functionality of the
evolutionary coprocessor.

It is straight forward to generalize the proposed stepwise strategy to incorpo-multiple subnetworks
per class rate the training of multiple subnetworks for the same class instead of one. An

exhaustive campaign of measurements has been conducted that evaluates in how
far an increased number of subnetworks per category improves the classification
performance of the final networks. This has been done for all investigated bench-
marks and for both, single-layer and two-layer networks. The results reveal that
the use of multiple subnetworks per class never leads to a decrease of the achieved
classification rate.

For all considered tasks — except for the breast cancer and iris plant problems —improved accuracy

an increased number of subnetworks has been observed to lead to a significant
improvement of the network performance. In the case of the breast cancer data
set, the achieved gain in generalization accuracy does not exceed the estimated
statistical uncertainty and for the iris data set, a measurable improvement has
only been obtained with single-layer networks.

Apart from that, single-layer and two-layer networks have been shown to equallysingle-layer networks

benefit from an enlarged number of subnetworks. For the heart disease and iris
plant benchmarks, it has even been observed that any initial differences in per-
formance between the two architectures tend to vanish once a sufficient number
of subnetworks is trained. It is an important aspect of the proposed generalized
stepwise strategy that it allows for an efficient application of simple single-layer
networks to challenging classification tasks. Single-layer architectures can more
easily be scaled to fully exploit the resources of the currently used HAGEN pro-
totype than two-layer networks.

For the breast cancer, diabetes, heart disease, and glass benchmarks, the finallycomparison to
previous results obtained generalization rates have been compared with the accuracies of software-

implemented networks that have previously been reported by other authors. It is
a satisfying observation that in comparison to these results, the networks on the
HAGEN ASIC show a more than competitive performance (see table 9.3). The
achieved generalization rates have been shown to be even comparable to those of

288

Summary and Outlook

common neural network ensemble approaches (see table 9.5). Although for each of
the nine investigated task, a better classifier— not necessarily a neural network —
can eventually be found in literature (see tables 9.4 and 9.5), networks on the
HAGEN ASIC that are being trained by the introduced stepwise strategy have
been shown to achieve a satisfying performance on all benchmarks.

The presented experiments are the first to demonstrate that networks on the successful training

HAGEN chip can actually be trained to outperform other neural network imple-
mentations on realistic classification tasks. This is remarkable in so far as each of
the independent training phases is performed by a simple evolutionary algorithm
and none of the training parameters has been subject to an exhaustive optimiza-
tion. Most notably, the size of the independently trained subnetworks has been
fixed to 6 hidden neurons and/or 4 output nodes.

The proposed strategy of training multiple subnetworks per class has been com- an alternative
approachpared to an alternative approach where only a single subnetwork is included for

each category that contains a larger number of neurons instead. It has been ob-
served that although an improvement in generalization accuracy can be obtained
on some benchmarks, this latter procedure tends to be inferior to the training of
multiple subnetworks.

Moreover, it has been demonstrated that the inherent parallelism of the stepwise parallelization

approach can be exploited already within the currently used hardware environment
that includes only a single ASIC and one evolutionary coprocessor within each
training setup. In this configuration, the proposed parallelization scheme can
speed up the training by up to a factor of 3. The upcoming NATHAN/Backplane
system will allow to make even better use of both, the speed of the neural network
ASIC and the parallel nature of the presented training approach. Since it can
successfully employ simple and fast evolutionary algorithms and is readily suited
for a parallel implementation, the stepwise training strategy can be seen to ideally
complement the introduced hardware neural network framework.

For the liver disorder, wine, and E.coli benchmarks, the trained network con- network transfer

figurations have been transferred to other HAGEN chips than the one they had
originally been trained on, and it has been evaluated how this affects the network
operation. As expected, the response of a transferred network deviates from the
output of the original. But it has been observed that the training of multiple
subnetworks per class improves the stability of the networks: Although the dif-
ferences to the respective original do not vanish completely, they are measurably
reduced. Transferring the network configurations to a software simulation of the
ideal network model has been shown to yield similar results as if these networks
are tested on different chips.

As an outlook to future investigations, it has been examined whether a mod- varied subnetwork
sizeerately reduced size of the single subnetworks affects the generalization rates of

networks that are trained for the liver disorder problem. If only one subnetwork
is included for each class, the numbers of hidden neurons and outputs per subnet-
work have indeed been observed to affect the performance of the final network.
These differences have been seen to disappear as soon as multiple subnetworks
per class are trained. Apart from that, it has been shown that the connectivity of
networks which are trained for the heart disease problem can be restricted — such

289

Summary and Outlook

that not all hidden neurons are connected to all inputs — without leading to a sig-
nificant reduction in classification accuracy. This is a satisfying observation in so
far as more complex problems with large numbers of input attributes will require
the input layer of the network to be distributed over multiple network blocks of
the HAGEN ASIC or even multiple chips. The obtained results suggest that this
is not necessarily bound to cause a deterioration in performance.

Preliminary measurements have been performed that test the applicability ofsoftware simulations

the stepwise training strategy to software simulations of the used network model.
The training of multiple subnetworks per class has been observed to be beneficial
also for software-implemented networks that do not suffer from static offsets or
analog noise. The resulting network configurations have been loaded into a real
HAGEN chip. The observed differences in performance are similar to those that
have been obtained with networks that are originally trained on the hardware and
transferred to the software simulation. This opens interesting new possibilities for
suitable off-chip training approaches.

It persists that evolutionary chip-in-the-loop algorithms represent an ideal wayoutlook

to benefit from the speed of the neural hardware during training and at the same
time automatically compensate for the peculiarities of the mixed-signal network
implementation. The presented results establish the stepwise evolutionary strat-
egy as an efficient approach to successfully train complex networks on the HAGEN
ASIC for real-world classification tasks. Due to its inherent scalability and paral-
lelism, the proposed training procedure promises to be readily applicable to the
enlarged networks that can be realized within the upcoming advanced hardware
environment and on future ASICs. In combination with hierarchical network ap-
proaches that are also investigated in the Electronic Vision(s) group [52], it is
planned to employ the stepwise strategy for the training of large and massively
parallel networks for complex real-time image recognition tasks in the future.

290

Appendix

i

Appendix A

Exemplary HANNEE Code

#include "hvalue.h"

#include "halgorithm.h"

class HMyAlgo : public HAlgorithm {
HIntValue* maxiter ;
bool paused ;
int curriter ;

public:
HMyAlgo();
virtual ˜HMyAlgo();

void pause();
void initialize(HAlgorithm*);
HNetData* result();
bool success() const;

protected:
void setup();
void exec();
void clear();

};

Figure A.1: Declaration of the exemplary HMyAlgo class like it would typically be found
in a corresponding "hmyalgo.h" file (see section 7.2.2). The HMyAlgo class implements
the HAlgorithm class interface (see figure 7.8). The complete code for a simple but
sensible implementation can be found in figure A.2 on the next page.

iii

Exemplary HANNEE Code

#include "hmyalgo.h"

HMyAlgo::HMyAlgo()
: HAlgorithm("HMyAlgo", "This is my algorithm.") {
maxiter = new HIntValue("Maximum Iteration", 10);
addElement(maxiter);
paused = false;
curriter = 0;

}

HMyAlgo::˜HMyAlgo() {}

void HMyAlgo::pause() { paused = false; }

void HMyAlgo::initialize(HAlgorithm* algo) {
log << "I am being initialized.";
log << "Nothing happens." << hlog;

}

HNetData HMyAlgo::result() { return 0; }

bool HMyAlgo::success() const { return true; }

void HMyAlgo::setup() {
log << "Starting HMyAlgo! " << hlog;

}

void HMyAlgo::exec() {
paused = false;
while (curriter < maxiter ->get() && !paused) {
log << "Current Iteration: " << curriter << hlog;
curriter ++;

}
}

void HMyAlgo::clear() { curriter = 0; }

HObjectMapEntryImpl<HMyAlgo> hma("HMyAlgo", "HAlgorithm");

Figure A.2: Complete implementation of the exemplary HMyAlgo class as it is declared
in figure A.1 (see also section 7.2.2). Note how the internal integer variable of maxiter
is accessed in the termination condition of the while loop in the exec() method. The
log stream is a HANNEE peculiarity. Effectively, it conveys the passed text to the output
stream and also writes it into a special log file. The last line registers the new class with
the HANNEE application. A sreenshot of the corresponding user interface together with
the output of one execution of this algorithm is presented in figure 7.10.

iv

Appendix A

#include "hobject.h"

class HMyClass : public HObject {
public:
HMyClass();
virtual ˜HMyClass();

};

Figure A.3: Declaration of the exemplary HMyClass class like it would typically be
found in a corresponding "hmyclass.h" file.

#include "hvalue.h"
#include "hmyclass.h"

HMyClass::HMyClass()
: HObject("MyObject", "This is my object.")

{
addElement(new HIntValue("Integer Parameter", 2));
addElement(new HDoubleValue("Float Parameter", 1.5));
addElement(new HBoolValue("Bool Parameter", false));

addElement(new HGroup("Empty Group 1"));
addElement(new HGroup("Empty Group 2"));

}

HMyClass::˜HMyClass() {}

HObjectMapEntryImpl<HMyClass> mycl("HMyClass", "HObject");

Figure A.4: Complete implementation of the HMyClass as it is declared in figure A.3.
Objects of this class are given three parameters, an integer, a float (with double precision)
and a Boolean. The default value of each parameter is passed as the second argument to
its respective constructor. In this simple example, the two subgroups remain empty. Note
that the destructor is not required to delete the various HValue objects that have been
created in the constructor, since the HObject base class automatically takes care of their
destruction. The last line registers the new class with the HANNEE application.

v

Exemplary HANNEE Code

cop ->allocCmd(7);
ibufaddr = cop ->allocIbuf(6);

length = 128;
cutpoint = 72;

cop ->writePCIbuf(ibuffaddr , parentone);
cop ->writePCIbuf(ibuffaddr +1, length);
cop ->writePCIbuf(ibuffaddr +2, parenttwo);
cop ->writePCIbuf(ibuffaddr +3, length);
cop ->writePCIbuf(ibuffaddr +4, offspring);
cop ->writePCIbuf(ibuffaddr +5, length);

cop ->setProbabUni(983);
cop ->setProbabGau(0);

cop ->maskNull(cutpoint);
cop ->maskNull(length -cutpoint);
cop ->sourceOne(ibuffaddr);
cop ->sourceTwo(ibuffaddr +2);
cop ->target(ibuffaddr +4);

cop ->start();
while (!cop ->finito());

cop ->freeCmd();
cop ->freeIbuf(ibuffaddr);

Figure A.5: Exemplary code to illustrate the use of the EvoCop class (see also sec-
tion 7.3.3 and figure 7.13). It is assumed that the cop handle points to a valid EvoCop
object, and that the integer variables parentone , parenttwo , and offspring
code the addresses of two parent chromosomes resp. a valid target address for one off-
spring chromosome in the local memory of the FPGA (see section 6.2). The length of
each chromosome is assumed to be 128 and the two parents are to be recombined by
a common one-point crossover using the (arbitrary) cutpoint rc = 72. The probability
for uniform mutation is desired to be 983/65535 ≈ 0.015, and the Gaussian mutation is
turned off. First, the necessary space in the instruction buffer is allocated. The three
pairs of chromosome address and length require a total of six entries in the data buffer,
and for the recombination and mutation process, space for a total of seven instructions is
to be reserved. Once this is accounted for, the actual address information is written into
the data buffer and the coproccessor instructions are issued in the desired order. Finally,
the recombination procedure is initiated with a call to start(). The last two commands
do a cleanup in the instruction buffer. In practice, the mutation parameters are specified
only once at the beginning of an evolution run. Furthermore, multiple chromosomes are
processed with one execution of the coprocessor, and the required address information
that is written to the data buffer can be reused for multiple recombination procedures.

vi

Appendix B

The Investigated Benchmark
Problems

All data sets that are used for the presented experiments have been obtained
from the UCI KDD online archive [90]. Some are also included in the “Proben1”
benchmark collection compiled by Lutz Prechelt [163]. The numbers of classes,
instances, and attributes for the different classification tasks are summarized in
table 8.1. The following paragraphs are intended to provide additional information
about the origins, compositions, and relative difficulties of the different problems.

The breast cancer problem This data set was originally obtained from the
University of Wisconsin Hospital, Madison, from Dr. William H. Wolberg [133].
The task is to classify a tumor as either benign or malignant based on cell de-
scriptions gathered by microscopic examination (e.g., clump thickness, cell size
uniformity, the frequency of bare nuclei, etc.). The original data set contains
699 instances but 16 include missing attribute values and are therefore omitted.
65 % of the used examples are benign.

The diabetes problem The data in this set was originally donated by Vincent
Sigillito from the Johns Hopkins University. Based on various personal data and
medical examinations (age, blood pressure, body mass index, etc.), it is to be
decided whether a female patient of Pima Indian1 heritage and age above 21
would test positive for diabetes according to the criteria of the World Health
Organization or not. 65.1 % of the patients are tested negative for diabetes.

The heart disease problem The experiments presented in this thesis only
use the specific part of this data set that originates from the Cleveland Clinic
foundation (this corresponds to the heartc data set of the “Proben1” collection
by Prechelt [163]). It was supplied by Robert Dotrano of the V.A. Medical Center,
Long Beach, CA. On the basis of personal data (age, sex, smoking habits, etc.)
and various medical examinations such as blood pressure and electro cardiogram

1The Pima Indians live near Phoenix, Arizona, USA.

vii

The Investigated Benchmark Problems

results, it is to be decided whether at least one major vessel is reduced in diameter
by more than 50 %. The whole data set comprises 303 instances, 6 of which exhibit
missing attribute values and have therefore been omitted. 53.81 % of the patients
have “no vessel reduced”.

The liver disorder problem This data set was created by BUPA Medical Re-
search Ltd. and donated by Richard S. Forsyth, 8 Grosvenor Avenue, Mapperley
Park, Nottingham. The task is to predict the presence of liver disorder for a male
patient on the basis of several blood tests and the number of half-pint equivalents
of alcoholic beverages drunk per day. It appears that a value larger than five for
the latter attribute is some sort of a selector on this data set. The first class
contains 42 % of all instances.

It is to be noted that the above four data sets are commonly considered to rep-
resent some of the most challenging problems in the neural network and machine
learning field since they all feature a comparably small sample size and high noise
level [236].

The iris plant problem This is perhaps the best known database to be found
in the pattern recognition literature. It was created by R.A. Fisher and donated
by Michael Marshall. The three classes each refer to a type of iris plant (Iris
Setosa, Iris Versicolour, and Iris Virginica) that are to be distinguished on the
basis of the respective dimensions of the sepal and petal. Each class contains 50
instances (33.3 %) and one class is known to be linearly separable from the other
two. The latter are not linearly separable. The iris plant benchmark is widely
regarded as a comparably simple task.

The wine problem The data in this set was originally donated by M. Forina,
Institute of Pharmaceutical and Food Analysis and Technologies, Via Brigata
Salerno, Genoa, Italy and was first used as a benchmark for pattern recognition
by Aeberhard et al. [3]. The data represents the results of a chemical analysis of
wines grown in the same region in Italy but derived from three different cultivars.
The analysis determined the quantities of 13 constituents found in each of the
three types of wines. The three classes contain 33.1 %, 39.9 %, and 27 % of the
data, respectively. In a classification context, this is a well posed problem which
is commonly considered as a good data set for first testing a new classifier, but it
is not truly challenging (see also table 9.4).

The glass problem This data set was created by B. German from the Cen-
tral Research Establishment, Home Office Forensic Science Service, Aldermaston,
Reading, Berkshire and was donated by Vina Spehler, PhD., DABFT Diagnos-
tic Products Corporation. The task is to distinguish glass types. The results of
a chemical analysis of glass splinters (percent content of eight different elements)
plus the refractive index are used to classify the sample to be either float processed
or non float processed building windows, vehicle windows, containers, tableware,

viii

Appendix B

or head lamps. This is motivated by forensic needs in criminal investigation. The
largest class (non float processed building windows) contributes 35.5 % of all in-
stances. The remaining classes contain 32.7 %, 13.6 %, 7.9 %, 6.1 %, and 4.2 % of
the data set, respectively.

The E.coli and yeast problems These two data sets were created by Kenta
Nakai, Institute of Molecular and Cellular Biology, Osaka University, Japan and
were donated by Paul Horton. The task is to predict the cellular localization sites
of E.coli resp. yeast proteins. The decision is to be made on the basis of a set of
feature values that are calculated from the protein’s amino acid sequence. These
two data sets contain comparably large numbers of classes (compare table 8.1).
For the E.coli benchmark, the single classes contain 42.6 %, 22.9 %, 15.5 %, 10.4 %,
6.0%, 1.5 %, 0.6 %, and 0.6 % of the instances, respectively. For the yeast bench-
mark, the most common class contributes 32.2 %, and the remaining categories
comprise 28.9 %, 16.4 %, 11.0 %, 3.4 %, 3.4 %, 2.4 %, 2.0 %, 1.3 %, and 0.3 % of the
data, respectively.

ix

Appendix C

Experimental Data

This page remains empty. The presentation of the experimental data starts on
the next page.

xi

Experimental Data

benchmark

no Gaussian
mutation

no crossover

training set test set training set test set
At in % Ag in % At in % Ag in %

breast cancer 98.16 ± 0.02 95.90 ± 0.19 98.29 ± 0.02 96.18 ± 0.10
diabetes 77.65 ± 0.09 73.61 ± 0.60 78.34 ± 0.16 73.33 ± 0.76
heart disease 88.66 ± 0.06 80.17 ± 0.85 89.33 ± 0.07 80.76 ± 0.17
liver disorder 75.49 ± 0.10 67.71 ± 0.83 76.08 ± 0.10 67.85 ± 0.83
iris plant 98.34 ± 0.10 93.51 ± 0.97 98.70 ± 0.11 94.03 ± 0.46
wine 88.72 ± 0.56 83.61 ± 0.91 89.29 ± 0.69 80.25 ± 1.60
glass 50.73 ± 0.51 43.25 ± 1.27 55.10 ± 0.36 49.91 ± 0.47

benchmark

one-point
crossover

chromosome
exchange

training set test set training set test set
At in % Ag in % At in % Ag in %

breast cancer 98.28 ± 0.03 96.33 ± 0.18 98.25 ± 0.02 96.07 ± 0.09
diabetes 78.03 ± 0.15 73.62 ± 0.36 78.17 ± 0.08 73.32 ± 0.67
heart disease 89.05 ± 0.14 82.47 ± 0.63 89.04 ± 0.06 82.26 ± 0.53
liver disorder 76.00 ± 0.08 68.21 ± 0.73 76.12 ± 0.16 67.15 ± 0.66
iris plant 98.73 ± 0.04 94.87 ± 0.74 98.71 ± 0.12 94.86 ± 0.62
wine 90.47 ± 0.54 85.03 ± 1.10 89.51 ± 0.49 81.83 ± 1.59
glass 51.68 ± 0.97 46.36 ± 1.22 50.22 ± 1.12 46.30 ± 1.56

benchmark

software
algorithm

no coupled
weights

training set test set training set test set
At in % Ag in % At in % Ag in %

breast cancer 98.17 ± 0.03 96.40 ± 0.10 97.28 ± 0.04 94.71 ± 0.15
diabetes 77.57 ± 0.17 72.68 ± 0.62 69.83 ± 0.15 61.94 ± 0.65
heart disease 88.98 ± 0.11 81.49 ± 0.72 86.68 ± 0.18 76.82 ± 0.32
liver disorder 76.03 ± 0.16 67.31 ± 0.74 69.28 ± 0.19 51.83 ± 1.13
iris plant 98.41 ± 0.08 94.88 ± 0.35 77.37 ± 0.31 58.06 ± 2.50
wine 90.31 ± 0.32 82.23 ± 0.90 64.69 ± 0.44 46.33 ± 1.71
glass 50.79 ± 0.92 44.44 ± 1.37 35.28 ± 0.46 25.00 ± 1.21

Table C.1: Training results obtained with the simple evolutionary approach presented
in chapter 8 using slightly modified training resp. network setups. Several different mea-
surements are performed (see also section 8.4.3 and tables 8.5 and 8.6): For the first
experiment, the Gaussian mutation is disabled and the probability for uniform mutation
is raised to 4 % (upper left table). The next three investigations employ different recombi-
nation operators: no crossover, one-point crossover, and chromosome exchange. Another
experiment is conducted with unmodified evolution settings but using a pure software
implementation of the genetic algorithms instead of the coprocessor. For the last investi-
gation, finally, the enforced coupling of the synaptic weights to form predefined multi-bit
integer inputs is relieved and all weights can be adjusted independently of each other.

xii

Appendix C

benchmark
No. of
classes

Nc

complete
training

training set test set
At in % Ag in %

breast cancer 2 98.57 ± 0.01 96.44 ± 0.23
diabetes 2 79.79 ± 0.03 73.70 ± 0.31
heart disease 2 90.96 ± 0.08 80.03 ± 0.54
liver disorder 2 77.24 ± 0.11 66.51 ± 0.72
iris plant 3 99.50 ± 0.03 95.10 ± 0.54
wine 3 100.0 ± 0.00 95.31 ± 0.28
glass 6 83.11 ± 0.19 62.56 ± 1.31
E.coli 8 91.82 ± 0.14 81.01 ± 0.93
yeast 10 55.10 ± 0.24 51.18 ± 0.31

benchmark
No. of
classes

Nc

only
stage 1

training set test set
At in % Ag in %

breast cancer 2 97.98 ± 0.02 95.34 ± 0.19
diabetes 2 72.82 ± 0.18 66.92 ± 0.67
heart disease 2 87.52 ± 0.11 79.82 ± 0.67
liver disorder 2 68.44 ± 0.18 60.24 ± 0.63
iris plant 3 98.29 ± 0.06 92.83 ± 0.44
wine 3 99.34 ± 0.06 91.07 ± 0.36
glass 6 73.00 ± 0.05 54.30 ± 0.60
E.coli 8 84.30 ± 0.18 74.37 ± 0.23
yeast 10 44.53 ± 0.30 42.55 ± 0.28

benchmark
No. of
classes

Nc

one-layer
perceptron

training set test set
At in % Ag in %

breast cancer 2 97.89 ± 0.14 96.17 ± 0.14
diabetes 2 73.07 ± 0.09 69.39 ± 0.29
heart disease 2 87.44 ± 0.14 82.21 ± 0.57
liver disorder 2 71.17 ± 0.13 65.40 ± 0.45
iris plant 3 93.42 ± 0.50 88.46 ± 0.95
wine 3 99.07 ± 0.06 94.07 ± 0.45
glass 6 70.98 ± 0.07 60.89 ± 0.33
E.coli 8 86.62 ± 0.08 79.74 ± 0.33
yeast 10 45.91 ± 0.13 43.98 ± 0.41

Table C.2: Training results obtained with the stepwise strategy described in section 9.1.1
(see also table 9.2). The upper table shows the accuracies that are achieved with fully
connected two-layer perceptrons. For the experiments shown in the middle table, the
second training stage is omitted and the subnetworks thus remain unconnected. The
values in the lower table are obtained with single-layer perceptrons.

xiii

Experimental Data

benchmark
fixed

partitioning
N c

net
training set

At in %
test set
Ag in %

breast cancer

Proben1 a)

7

98.06 ± 0.07 98.73 ± 0.39
Proben1 b) 98.67 ± 0.05 94.95 ± 0.28
Proben1 c) 98.55 ± 0.10 95.94 ± 0.04
Yao et al. 98.44 ± 0.04 99.12 ± 0.15

diabetes

Proben1 a)

6

80.54 ± 2.03 83.88 ± 0.44
Proben1 a) 81.94 ± 2.30 84.86 ± 0.57
Proben1 b) 80.01 ± 1.45 82.65 ± 0.40
Yao et al. 83.60 ± 0.24 78.05 ± 1.29

heart disease
Proben1 a)

6
94.47 ± 0.16 81.60 ± 0.50

Proben1 b) 92.36 ± 0.32 94.13 ± 0.68
Proben1 c) 94.18 ± 0.16 84.71 ± 1.28

glass
Proben1 a)

8
74.43 ± 0.14 72.75 ± 0.74

Proben1 b) 78.48 ± 0.37 62.64 ± 0.71
Proben1 c) 75.82 ± 0.09 63.57 ± 0.92

Table C.3: The results that are obtained on the fixed partitionings into raining and test
data that are used by previous investigations: Prechelt [163] specifies three different fixed
partitionings for each task that are denoted as “Proben1 a)–c)”. Yao and Liu use one
fixed separation [236] for the breast cancer and the diabetes data set, respectively. For the
experiments with the stepwise training strategy, the exact compositions of the respective
training and test data sets are reproduced. For a comparsion with the results of the cited
publications see table 9.3.

xiv

Appendix C

PSfrag replacements

Liver Disorder

training set

test set
two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60

70

61

71

62

72

63
73
64
74

65

75

66

76

67

77

68

78

69

79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.1: The achieved classification accuracies on the test sets Ag as a function of
the number N c

net of subnetworks per class for the liver disorder problem. The shown
dashed lines are intended as mere guides to the eye (see section 9.4.1). The corresponding
classification accuracies on the training sets At can be found in figure 9.4.

PSfrag replacements

Wine

training set

test set
two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84

94

85

95

86

96

87

97

88

98

89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.2: The achieved classification accuracies on the test sets Ag as a function of
the number N c

net of subnetworks per class for the wine problem. The shown dashed lines
are intended as mere guides to the eye (see section 9.4.1). The corresponding classification
accuracies on the training sets At can be found in figure 9.4.

xv

Experimental Data

PSfrag replacements

Glass

training set

training set

test set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

in
%

generalization accuracy Ag in %
mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16

7

17

8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49

60

60

70

70

61
71
62
72
63
73
64
74

65

65

75

75

66
76
67
77
68
78
69
79

80

80

90

90

81
91
82
92
83
93
84
94

85

85

95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.3: The achieved classification accuracies on the training sets At and test sets
Ag as a function of the number N c

net of subnetworks per class for the glass problem. The
upper diagram presents the results of the two-layer networks, the lower diagram refers
to single-layer perceptrons. Due the six classes of this benchmark and given the fixed
subnetwork size of N c

hid = 6 hidden neurons, a maximum of two subnetworks per class
can be realized for the two-layer networks. The shown dashed line is intended as a mere
guide to the eye (see section 9.4.1). For the classification accuracies on the training set,
the error bars are very small and are partly covered by the markers.

xvi

Appendix C

PSfrag replacements

E.coli

training set

training set

test set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

in
%

generalization accuracy Ag in %
mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16

7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79

80

80

90

90

81
91

82

82

92

92

83
93

84

84

94
85
95

86

86

96
87
97

88

8898
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.4: The achieved classification accuracies on the training sets At and test sets
Ag as a function of the number N c

net of subnetworks per class for the E.coli problem. The
upper diagram presents the results of the two-layer networks, the lower diagram refers
to single-layer perceptrons. Due the eight classes of this benchmark and given the fixed
subnetwork size of N c

hid = 6 hidden neurons, only one subnetwork per class can be realized
for the two-layer networks. The shown dashed line is intended as a mere guide to the eye
(see section 9.4.1). For the classification accuracies on the training set, the error bars are
very small and are partly covered by the markers.

xvii

Experimental Data

PSfrag replacements

Yeast

training set

training set

test set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

in
%

generalization accuracy Ag in %
mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14
5

15
6

16
7

17
8

18
9

19
20

50

50

21
51
22

52

52

23
53
24

54

54

25
55
26

56

56

27
57
28
58
29
59
30
40
31
41
32
42
33
43
34

44

44

35
45
36

46

46

37
47
38

48

48

39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.5: The achieved classification accuracies on the training sets At and test sets
Ag as a function of the number N c

net of subnetworks per class for the yeast problem. The
upper diagram presents the results of the two-layer networks, the lower diagram refers
to single-layer perceptrons. Due the eight classes of this benchmark and given the fixed
subnetwork size of N c

hid = 6 hidden neurons, only one subnetwork per class can be realized
for the two-layer networks. The shown dashed line is intended as a mere guide to the eye
(see section 9.4.1). For the classification accuracies on the training set, the error bars are
very small and are partly covered by the markers.

xviii

Appendix C

PSfrag replacements

Breast Cancer

training set

training set

test set

test set two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

in
%

generalization accuracy Ag in %
mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16

7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86

96

96

87

97

97

88

98

98

89

99

99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.6: The achieved classification accuracies on the training sets At and test sets Ag

as a function of the number N c
net of subnetworks per class for the breast cancer problem.

The upper diagram presents the results of the two-layer networks, the lower diagram refers
to single-layer perceptrons. The shown dashed lines are intended as mere guides to the
eye (see section 9.4.1). For the classification accuracies on the training set, the error bars
are very small and are partly covered by the markers.

xix

Experimental Data

PSfrag replacements

Heart Disease

training set

training set

test set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

in
%

generalization accuracy Ag in %
mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79

80

80

90

90

81
91

82

82

92

92

83
93

84

84

94

94

85
95

86

86

96

96

87
97

88

88

98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.7: The achieved classification accuracies on the training sets At and test sets
Ag as a function of the number N c

net of subnetworks per class for the heart disease problem.
The upper diagram presents the results of the two-layer networks, the lower diagram refers
to single-layer perceptrons. The shown dashed lines are intended as mere guides to the
eye (see section 9.4.1). For the classification accuracies on the training set, the error bars
are very small and are partly covered by the markers.

xx

Appendix C

PSfrag replacements

Diabetes

training set

training set

test set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

in
%

generalization accuracy Ag in %
mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60

70

70

61
71
62

72

72

63
73
64

74

74

65
75
66

76

76

67
77
68

78

78

69
79

80

80

90
81
91

82

82

92
83
93

84

84

94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.8: The achieved classification accuracies on the training sets At and test sets
Ag as a function of the number N c

net of subnetworks per class for the diabetes problem.
The upper diagram presents the results of the two-layer networks, the lower diagram refers
to single-layer perceptrons. The shown dashed line is intended as a mere guide to the eye
(see section 9.4.1). For the classification accuracies on the training set, the error bars are
very small and are partly covered by the markers.

xxi

Experimental Data

PSfrag replacements

Iris Plant

training set

training set

test set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

in
%

generalization accuracy Ag in %
mean absolute difference D in percentage points

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10

1

11

2

12

3

13

4

14

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80

90

90

81
91
82

92

92

83
93
84

94

94

85
95

86

86

96

96

87
97

88

88

98

98

89
99

100

100

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.9: The achieved classification accuracies on the training sets At and test sets
Ag as a function of the number N c

net of subnetworks per class for the diabetes problem.
The upper diagram presents the results of the two-layer networks, the lower diagram
refers to single-layer perceptrons. For two-layer networks, an increase in the number of
subnetworks per class does not yield a measurable improvement in generalization. The
shown dashed line is intended as a mere guide to the eye (see section 9.4.1). For the
classification accuracies on the training set, the error bars are very small and are partly
covered by the markers.

xxii

Appendix C

PSfrag replacements

Glass

training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12

3
13

4

14
5

15
6

16

7
17

8

18
9

19

20

50
21
51
22
52
23
53

24

54
25
55
26
56
27
57

28

58

29
59
30
40
31
41

32

42
33
43
34
44
35
45
36
46
37
47
38
48
39
49

60

70
61
71

62

72
63
73

64

74
65
75

66

76
67
77

68

78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.10: The generalization rates Ag on the glass data set that are achieved by net-
works with increased subnetwork size are compared to the obtained accuracies of networks
that contain multiple subnetworks per class (see figure 9.5). Only single-layer networks
are considered. The shown dashed line is intended as a mere guide to the eye (see sec-
tion 9.4.1).

xxiii

Experimental Data

PSfrag replacements

Breast Cancer

training set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks

multiple subnetworks

enlarged subnetworks

enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12

3
13

4

14
5

15
6

16

7
17

8

18
9

19

20

50
21
51
22
52
23
53

24

54
25
55
26
56
27
57

28

58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86

96

96

87

97

97

88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

95.75

95.75

96.25

96.25

96.5

96.5

96.75

96.75

97.25

97.25

Figure C.11: The generalization rates Ag on the breast cancer set that are achieved
by networks with increased subnetwork size are compared to the obtained accuracies
of networks that contain multiple subnetworks per class (see figure 9.8). The upper part
refers to two-layer architectures, the lower half represents singe-layer networks. The shown
dashed lines are intended as mere guides to the eye (see section 9.4.1). They are fitted to
the data that is obtained with the networks that feature multiple subnetworks per class
(triangles).

xxiv

Appendix C

PSfrag replacements

Heart Disease

training set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks

multiple subnetworks

enlarged subnetworks

enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12

3
13

4

14
5

15
6

16

7
17

8

18
9

19

20

50
21
51
22
52
23
53

24

54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79

80

80

90

81

81

91

82

82

92

83

83

93

84

84

94

85

85

95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.12: The generalization rates Ag on the heart disease data set that are achieved
by networks with increased subnetwork size are compared to the obtained accuracies
of networks that contain multiple subnetworks per class (see figure 9.9). The upper part
refers to two-layer architectures, the lower half represents singe-layer networks. The shown
dashed lines are intended as mere guides to the eye (see section 9.4.1). They are fitted to
the data that is obtained with the networks that feature multiple subnetworks per class
(triangles).

xxv

Experimental Data

PSfrag replacements

Iris Plant

training set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks

multiple subnetworks

enlarged subnetworks

enlarged subnetworks

classification accuracy in %

ge
n
er

al
iz

at
io

n
ac

cu
ra

cy
A

g
in

%

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12

3
13

4

14
5

15
6

16

7
17

8

18
9

19

20

50
21
51
22
52
23
53

24

54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80

90

90

81
91
82

92

92

83
93
84

94

94

85
95

86

86

96

96

87
97

88

88

98

98

89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.13: The generalization rates Ag on the iris plant data set that are achieved
by networks with increased subnetwork size are compared to the obtained accuracies
of networks that contain multiple subnetworks per class (see figure 9.9). The upper part
refers to two-layer architectures, the lower half represents singe-layer networks. The shown
dashed line is intended as a mere guide to the eye (see section 9.4.1).

xxvi

Appendix C

PSfrag replacements

time
training set

test set
two-layer networks

single-layer networks
two-layer network

single-layer network
multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

mean absolute difference D in percentage points
number of subnetworks per class N c

net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation
0

10
1

11
2

12
3

13
4

14
5

15
6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

used inputs
neuron bias

input nodes

output nodes

first layer

second layer

feedback

upper left block

synaptic arrayinterconnections

class 1

class 2

class 2

class 3

nnc = 2

Figure C.14: Schematical illustration of the upper left corner of the upper left block
of a HAGEN ASIC, taken from a screenshot of the HANNEE software (see chapter 7).
The input nodes are on top, the neurons are to the left, and the array of colored squares
represents the synaptic array (compare also figures 5.2, 5.5, and 8.2 b)). Positive weight
values are a shade of red, negative weights are blue, and white squares correspond to
deactivated synapses with zero weight. The presented network has a two-layer architecture
and is trained for the iris problem. It contains one subnetwork for each class (compare
figure 10.3). In the case of the first class, no interconnections are added during the
second stage, since the unconnected subnetwork already achieves a classification accuracy
of 100 %. In general, the additional interconnections tend to have lower absolute weight
values than those trained in the first stage.

xxvii

Experimental Data

PSfrag replacements

Wine

training set

training set

test set

test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

m
ea

n
ab

so
lu

te
d
iff

er
en

ce
D

in
p
er

ce
n
ta

ge
p
oi

n
ts

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation

simulation

0

0

10

1

1

1

11

2

2

2

12

3

3

3

13

4

4

4

14

5

5

5

15

6

16
7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.15: The networks that have been trained for the wine benchmark during the
experiments presented in section 9.4 are implemented in software using a dedicated chip
simulation that is based on the ideal network model defined by equation 5.4. The mean
absolute differences in classification accuracy on the training and test sets between the
original and the simulated networks (see also equation 10.2) are shown as a function of
the number of subnetworks per class N c

net. The results are very similar to those that are
obtained when the networks are transferred between different chips (see figure 10.7).

xxviii

Appendix C

PSfrag replacements

E.coli

training set
test set

two-layer networks

single-layer networks

two-layer network
single-layer network

multiple subnetworks
enlarged subnetworks

classification accuracy in %
generalization accuracy Ag in %

m
ea

n
ab

so
lu

te
d
iff

er
en

ce
D

in
p
er

ce
n
ta

ge
p
oi

n
ts

number of subnetworks per class N c
net

number of output neurons per class N c
out

chip A
chip B
chip C

simulation

0

10

1

1

11

2

2

12

3

3

13

4

4

14

5

5

15

6

16

7

17
8

18
9

19
20
50
21
51
22
52
23
53
24
54
25
55
26
56
27
57
28
58
29
59
30
40
31
41
32
42
33
43
34
44
35
45
36
46
37
47
38
48
39
49
60
70
61
71
62
72
63
73
64
74
65
75
66
76
67
77
68
78
69
79
80
90
81
91
82
92
83
93
84
94
85
95
86
96
87
97
88
98
89
99

100
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5

96.25

96.5

96.75

Figure C.16: The networks that have been trained for the E.coli benchmark during the
experiments presented in section 9.4 are implemented in software using a dedicated chip
simulation that is based on the ideal network model defined by equation 5.4. The mean
absolute differences in classification accuracy on the training and test sets between the
original and the simulated networks (see also equation 10.2) are shown as a function of
the number of subnetworks per class N c

net. The results are very similar to those that are
obtained when the networks are transferred between different chips (see figure 10.8).

xxix

Bibliography

[1] ACE: The Adaptive Communication Environment. Distributed Object Com-
puting (DOC) group, Vanderbilt University, Nashville, Washington Univer-
sity, and University of California, Irvine,
http://www.cs.wustl.edu/ schmidt/ACE.html.

[2] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for
Boltzmann machines. Cognitive Science, 9:147–169, 1985.

[3] S. Aeberhard, D. Coomans, and O. de Vel. The performance of statistical
pattern recognition methods in high dimensional settings. Technical Re-
port 4, James Cook University, Australia, 1993.

[4] P. E. Allen and D. R. Holberg. CMOS Analog Circuit Design. Oxford
University Press, Inc., 198 Madison Avenue, New York, 2002.

[5] ANSI/TIA/EIA-644. Electrical Characteristics of Low Voltage Differential
Signalling (LVDS), March 1996.

[6] P. Auer, H. Burgsteiner, and W. Maass. Reducing communication for
distributed learning in neural networks. In Proceedings of the Interna-
tional Conference on Artificial Neural Networks ICANN’02, pages 123–128.
Springer Verlag, 2002.

[7] Austria Mikro Systeme International AG. austriamicrosystems AG. Schloss
Premstätten, A-8141 Unterpremstätten, Austria,
http://www.austriamicrosystems.com.

[8] T. Bäck. Optimal mutation rates in genetic search. In Forrest, editor, Pro-
ceedings of the 5th International Conference on Genetic Algorithms, pages
2–8. Morgan Kauffman, June 1993.

[9] T. Bäck, F. Hoffmeister, and H. Schwefel. A survey of evolution strategies. In
R. K. Belew and L. B. booker, editors, Proceedings of the 4th International
Conference on Genetic Algorithms, pages 2–9, San Diego, CA, July 1991.
Morgan Kaufmann.

[10] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In
J. J. Grefenstette, editor, Proceedings of the 2nd International Conference
on Genetic Algorithms, pages 14–21, Hillsdale, New Jersey, 1987. Lawrence
Erlbaum.

xxxi

Bibliography

[11] E. B. Baum. On the capabilities of multilayer perceptrons. Journal of
Complexity, 4:193–215, 1988.

[12] E. B. Baum and D. Haussler. What size nets gives valid generalization?
Neural Computation, 1:151–160, 1989.

[13] J. Baxter. The evolution of learning algorithms for artificial neural networks.
Complex Systems, pages 313–326, 1992.

[14] J. Becker. Ein FPGA-basiertes Testsystem für gemischt analog/digitale
ASICs. Diploma thesis (german), University of Heidelberg, HD-KIP-01-11,
2001.

[15] V. Beiu. Digitial integrated circuit implementations. In E. Fiesler and
R. Beale, editors, The Handbook of Neural Computation, New York, January
1997. Institute of Physics Publishing and Oxford University Publishing.

[16] V. Beiu. VLSI implementations of threshold logic – a comprehensive survey.
IEEE Transactions on Neural Networks, 14(5):1217–1243, 2003.

[17] R. K. Belew, J. McInerney, and N. M. Schraudolph. Evolving networks:
Using the genetic algorithm with connectionist learning. Technical Report
CS90-174 (Revised), Computer Science & Engr. Dept. (C-104), Univ. of
California, San Diego, La Jolla, CA 92093, USA, February 1991.

[18] N. Bertschinger and T. Natschläger. Real-time computation at the edge of
chaos in recurrent neural networks. Neural Computation, 16(7):1413 – 1436,
July 2004.

[19] B. Bhanu and Y. Lin. Learning composite operators for object detection.
In W. Langdon et al., editors, Proceedings of the Genetic and Evolutionary
Computation Conference GECCO 2002, pages 1003–1010. Morgan Kauf-
mann Publishers, July 2002.

[20] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, Walton Street, Oxford, 1995.

[21] T. Blickle and L. Thiele. A comparison of selection schemes used in genetic
algorithms. Technical Report 11, Computer Engineering and Communica-
tions Networks Lab (TIK), Swiss Federal Institute of Technology (ETH),
Gloriastrasse 35, 8092 Zurich, Switzerland, 1995.

[22] H. D. Block. The perceptron: a model for brain functioning. Reviews of
Modern Physics, 34:123–135, 1962.

[23] E. K. Blum and L. K. Li. Approximation theory and feedforward networks.
Neural Networks, 4(4):511–515, 1991.

[24] S. Bornholdt and D. Graudez. General asymmetric neural networks and
structure design by genetic algorithms. Neural Networks, 5(1):327–334, 1992.

xxxii

Bibliography

[25] Boser et al. An analog neural network processor with programmable topol-
ogy. IEEE Journal of Solid-State Circuits, pages 2017–2025, December 1991.

[26] J. Branke. Evolutionary algorithms in neural network design and training –
A review. In J. T. Alander, editor, Proceedings of the First Nordic Work-
shop on Genetic Algorithms and their Applications (1NWGA), number 95-1,
pages 145–163, Vaasa, Finnland, 1995.

[27] A. Breidenassel, K. Meier, and J. Schemmel. A flexible scheme for adaptive
integration time control. In Proceedings of the Third IEEE Conference on
Sensors, pages 280–283, Vienna, October 2004.

[28] D. Brüderle. Implementing spike-based computation on a hardware percep-
tron. Diploma thesis, University of Heidelberg, HD-KIP-04-16, 2004.

[29] C. J. C. Burges. A tutorial on support vector machines for pattern recogni-
tion. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[30] A. H. Cannon, L. J. Cowen, and C. E. Priebe. Approximate distance clas-
sification. In Proceedings of the 1998 Symposium on the Interface between
Computer Science and Statistics, number 30-1, pages 544–549, 1998.

[31] B. Carr, W. Hart, N. Krasnogor, J. Hirst, E. Burke, and J. Smith. Alignment
of protein structures with a memetic evolutionary algorithm. In W. Langdon
et al., editors, Proceedings of the Genetic and Evolutionary Computation
Conference GECCO 2002, pages 1027–1034. Morgan Kaufmann Publishers,
July 2002.

[32] J. P. Cater. Successfully using peak learning rates of 10 (and greater) in back-
propagation networks with the heuristic learning algorithm. In M. Caudill
and C. Butler, editors, Proceedings of the IEEE First International Con-
ference on Neural Networks, volume II, pages 645–651, San Diego, 1987.
IEEE.

[33] T. P. Caudell and C. P. Dolan. Parametric connectivity: Training of con-
strained networks using genetic algorithms. In J. D. Schaffer, editor, Pro-
ceedings of the Third International Conference on Genetic Algorithms, pages
370–374. Morgan Kaufmann, 1989.

[34] G. Cauwenberghs. A fast stochastic error-descent algorithm for supervised
learning and optimization. Advances in Neural Information Processing Sys-
tems, 5:244–251, 1993.

[35] G. Cauwenberghs. Learning on silicon: A survey. In G. Cauwenberghs
and M. A. Bayoumi, editors, Learning on Silicon: Adaptive VLSI Neural
Systems, pages 1–29, Norwell, MA, 1999. Kluwer Academic Publisher.

[36] D. J. Chalmers. The evolution of learning: An experiment in genetic con-
nectionism. In D. S. Touretzky, J. L. Elman, and G. E. Hinten, editors,
Proceedings of the 1990 Connectionist Models Summer School, pages 81–90,
San Mateo, CA, 1990. Morgan Kaufmann.

xxxiii

Bibliography

[37] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic/Plenum
Publishers, New York, 2002.

[38] J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. Richards. Punctuated
equilibria: A parallel genetic algorithm. In J. J. Grefenstette, editor, Pro-
ceedings of the 2nd International Conference on Genetic Algorithms, pages
148–154, Hillsdale, New Jersey, 1987. Lawrence Erlbaum.

[39] J. P. Cohoon, W. N. Martin, and D. S. Richards. Genetic algorithms and
punctuated equilibria in VLSI. In H.-P. Schwefel and R. Männer, editors,
Proceedings of the 1st International Conference on Parallel Problem Solving
from Nature, volume 496, pages 134–141. Springer Verlag, 1991.

[40] C. Cortez and V. Vapnik. Support-vector networks. Machine Learning,
20:273–297, 1995.

[41] T. Cover. Geometrical and statistical properties of systems of linear inequal-
ities with applications in pattern recognition. IEEE Trans. on Electronic
Computers, EC-14:326–334, 1965.

[42] C. R. Darwin. On the Origin of Species. John Murray, London, 1859.

[43] L. Davis. Adapting operator probabilities in genetic algorithms. In J. D.
Schaffer, editor, Proceedings of the Third International Conference on Ge-
netic Algorithms, pages 61–69. Morgan Kaufmann, 1989.

[44] P. Dayan and L. F. Abott. Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. The MIT press, Cambride, Mas-
sachusetts, London, England, 2001.

[45] K. Deb and D. E. Goldberg. An investigation of niche and species formation
in genetic function optimization. In J. D. Schaffer, editor, Proceedings of the
Third International Conference on Genetic Algorithms, pages 42–50, San
Francisco, 1989. Morgan Kaufmann.

[46] K. DeJong. The analysis and behaviour of a class of genetic adaptive sys-
tems. PhD thesis, 1975.

[47] A. Dembo and T. Kailath. Model-free distributed learning. IEEE Transac-
tions on Neural Networks, 1(1):58–70, 1990.

[48] B. Denby, P. Garda, B. Dranado, C. Kiesling, J.-C. Prévotet, and A. Was-
satsch. Fast triggering in high-energy physics experiments using hardware
neural network. IEEE Transactions on Neural Networks, 14(5):1010–1026,
2003.

[49] Design Automation Standards Committee of the IEEE Computer Society,
New York. VHDL Language Reference Manual, IEEE Std. 1076.1, 1997.

xxxiv

Bibliography

[50] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer Verlag, Berlin, Heidelberg, New York, 2003.

[51] L. J. Eshelmann, R. A. Caruana, and J. D. Schaffer. Biases in crossover
landscape. In J. D. Schaffer, editor, Proceedings of the Third International
Conference on Genetic Algorithms, pages 10–19. Morgan Kaufmann, 1989.

[52] J. Fieres, A. Grübl, S. Philipp, K. Meier, J. Schemmel, and F. Schürmann.
A platform for parallel operation of VLSI neural networks. In Proc. of the
2004 Brain Inspired Cognitive Systems Conference (BICS2004), University
of Stirling, Scotland, UK, 2004.

[53] G. Fischer. Lineare Algebra. Friedrich Vieweg und Sohn Verlagsgesellschaft
mbH, Braunschweig, Wiesbaden, 1986.

[54] T. Fließbach. Statistische Physik. Spektrum Akademischer Verlag GmbH,
Heidelberg, 1995.

[55] B. Flower and M. Jabri. Summed weight neuron perturbation: An O(n)
improvement over weight perturbation. Advances in Neural Information
Processing Systems, 5:212–219, 1993.

[56] D. B. Fogel. Evolutionary Computation – Toward a New Philosophy of
Machine Intelligence. IEEE Press, New York, 1995.

[57] D. B. Fogel, editor. Evolutionary Computation: the Fossil Record. IEEE
Press, Piscataway, NJ, 1998.

[58] D. B. Fogel, L. J. Fogel, and V. W. Porto. Evolving neural networks. Bio-
logical Cybernetics, 63:487–493, 1990.

[59] O. Forster. Analysis 2. Friedrich Vieweg und Sohn Verlagsgesellschaft mbH,
Braunschweig, Wiesbaden, 1984.

[60] O. Forster. Analysis 3. Friedrich Vieweg und Sohn Verlagsgesellschaft mbH,
Braunschweig, Wiesbaden, 1992.

[61] O. Forster. Analysis 1. Friedrich Vieweg und Sohn Verlagsgesellschaft mbH,
Braunschweig, Wiesbaden, 2000.

[62] M. Frean. The upstart algorithm: A method for constructing and training
feedforward neural networks. Neural Computation, 2:198–209, 1990.

[63] K. Fukushima. Neocognitron: A hierarchical neural network capable of
visual pattern recognition. Neural Networks, 1:119–130, 1988.

[64] K. Fukushima, S. Miyake, and T. Ito. Neocognitron: A neural network
model for a mechanism of visual pattern recognition. IEEE Transactions on
Systems, Man and Cybernetics, SMC-13:826–834, 1983.

xxxv

Bibliography

[65] G. Fung and O. L. Mangasarian. Proximal support vector machine classi-
fiers. In F. Provost and R. Srikant, editors, Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 77–86, 2001.

[66] D. J. Futuyma. Evolutionary Biology. Sinauer Associates, Inc., Sunderland,
Massachusetts, USA, 1986.

[67] The GNU Compiler Collection. Free Software Foundation, Inc., 59 Temple
Place, Boston, MA, USA, http://gcc.gnu.org/.

[68] R. Genov. Kerneltron: Support vector “machine” in silicon. IEEE Trans-
actions on Neural Networks, 14(5):1426–1434, 2003.

[69] W. Gerstner and W. Kistler. Spiking Neuron Models: Single Neurons, Pop-
ulations, Plasticity. Cambridge University Press, 2002.

[70] D. E. Goldberg. Genetic algorithms with sharing for multimodal function
approximation. In J. J. Grefenstette, editor, Proceedings of the 2nd Inter-
national Conference on Genetic Algorithms, pages 41–49, Hillsdale, New
Jersey, 1987. Lawrence Erlbaum.

[71] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley Longman Inc., 1989.

[72] M. Gorges-Schleuter. ASPARAGOS an asynchronous parallel genetic opti-
mization strategy. In J. D. Schaffer, editor, Proceedings of the Third Inter-
national Conference on Genetic Algorithms, pages 422–427, San Francisco,
1989. Morgan Kaufmann.

[73] P. M. Granitto, H. Navone, and H. A. Ceccatto. A stepwise algorithm for
construction of neural network ensembles. In VII Argentine Congress of
Computer Science, Calafate, Argentina, 2001.

[74] G. W. Greenwood. Training partially recurrent neural networks using evo-
lutionary strategies. IEEE Transactions on Speech and Audio Processing,
5(2):192–194, 1997.

[75] J. J. Grefenstette. Optimization of control parameters for genetic algorithms.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-16(1):122–128,
1986.

[76] J. J. Grefenstette. Deception considered harmful. In L. D. Whitley, editor,
Foundations of Genetic Algorithms, volume 2, pages 75–91, 1993.

[77] J. J. Grefenstette and J. E. Baker. How genetic algorithms work: A critical
look at implicit parallelism. In J. D. Schaffer, editor, Proceedings of the
Third International Conference on Genetic Algorithms, pages 20–27. Morgan
Kaufmann, 1989.

xxxvi

Bibliography

[78] A. Grübl. Eine FPGA-basierte platform für neuronala netze. Diploma thesis
(german), University of Heidelberg, HD-KIP-03-2, 2003.

[79] G. Han and E. Sánchez. CMOS transconductance multipliers: A tutorial.
IEEE Transactions on Circuits and Systems II; Analog and Digital Signal
Processing, 45(12):1550–1563, 1998.

[80] P. J. B. Hancock. Genetic algorithms and permutation problems: A com-
parison of recombination operators for neural net structure specification. In
D. Whitley, editor, Proceedings of the IEEE Workshop on Combinations of
Genetic Algorithms and Neural Network, pages 108–121. IEEE Press, 1992.

[81] P. J. B. Hancock. Recombination operators for the design of neural nets by
genetic algorithm. In R. Männer and B. Manderick, editors, Proceedings of
the Conference on Parallel Problem Solving from Nature, volume 2, pages
441–450. Elsevier Science Publishers B.V., 1992.

[82] S. A. Harp, T. Samad, and A. Guha. Towards the genetic synthesis of neural
networks. In J. D. Schaffer, editor, Proceedings of the Third International
Conference on Genetic Algorithms, pages 360–369. Morgan Kaufmann, 1989.

[83] J. C. Hay, F. C. Martin, and C. W. Wightman. The MARK I perceptron
- design and performance. In IRE National Convention Record, volume 2,
pages 78–87, 1960.

[84] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
Upper Saddle River, New Jersey, 1999.

[85] D. O. Hebb. The Organization of Behaviour. Wiley, New York, 1949.

[86] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, 1989.

[87] J. N. H. Heemskerk. Overview of neural hardware. In: Neurocomputers
for Brain-Style Processing. Design, Implementation and Application, PhD
thesis, 1995.

[88] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory of neural
computation. Addison Wesley Publishing Company, Redwood City, CA,
1991.

[89] J. Hesser and R. Männer. Towards an optimal mutation probability for
genetic algorithms. In H.-P. Schwefel and R. Männer, editors, Proceedings
of the 1st International Conference on Parallel Problem Solving from Nature,
volume 496, pages 23–32. Springer Verlag, 1991.

[90] S. Hettich and S. D. Bay. The UCI KDD archive. University of Cal-
ifornia, Department of Information and Computer Science, Irvine, USA,
http://kdd.ics.uci.edu, 1999.

xxxvii

Bibliography

[91] R. Hinterding, Z. Michalewicz, and A. E. Eiben. Adaptation in evolutionary
computation: A survey. In IEEECEP: Proceedings of The IEEE Conference
on Evolutionary Computation, IEEE World Congress on Computational In-
telligence, 1997.

[92] A. Hohmann and W. Hielscher. Lehrbuch der Zahntechnik, Band I.
Quintessenz Verlags-GmbH, Berlin, 2001.

[93] S. Hohmann, J. Schemmel, F. Schürmann, and K. Meier. Exploring the
parameter space of a genetic algorithm for training an analog neural network.
In W. e. a. Langdon, editor, Proceedings of the Genetic and Evolutionary
Computation Conference GECCO 2002, pages 375–382. Morgan Kaufmann
Publishers, July 2002.

[94] S. Hohmann, J. Fieres, K. Meier, J. Schemmel, T. Schmitz, and
F. Schürmann. Training fast mixed-signal neural networks for data clas-
sification. In Proceedings of the 2004 International Joint Conference on
Neural Networks (IJCNN’04), pages 2647–2652. IEEE Press, 2004.

[95] S. G. Hohmann, J. Schemmel, F. Schürmann, and K. Meier. Predicting
protein cellular localization sites with a hardware analog neural network.
In Proceedings of the Int. Joint Conf. on Neural Networks, pages 381–386.
IEEE Press, July 2003.

[96] J. H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM
J. of Computing, 2:88–105, 1973.

[97] M. Holler. VLSI implementation of learning and memory systems: A review.
Advances in Neural Information Processing Systems, 3, 1991.

[98] J. J. Hopfield. Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sci-
ences, 79:2554–2558, 1982.

[99] J. J. Hopfield. Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proceedings of the National
Academy of Sciences, 81:3088–3092, 1984.

[100] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks
are universal approximators. Neural Networks, 4(2):359–366, 1989.

[101] P. Horton and K. Nakai. Better prediction of protein cellular localization
sites with the k nearest neighbors classifier. In Proceedings of the 5th In-
ternational Conference on Intelligent Systems in Molecular Biology, pages
147–152. AAAIPress, 1997.

[102] J. Hromkovic̆. Algorithmics for Hard Problems. Springer Verlag, Berlin,
Heidelberg, New York, 2004.

xxxviii

Bibliography

[103] P. Husbands. Distributed co-evolutionary genetic algorithms for multi-
criteria and multi-constraint optimisation. In T. C. Fogarty, editor, Evo-
lutionary Computing: Proceedings of the AISB workshop, pages 150–165,
Berlin, Heidelberg, New York, 1994. Springer Verlag.

[104] Intel Compiler for Linux. Intel Inc.,
http://www.intel.com/software/products/compilers/clin/.

[105] M. M. Islam, X. Yao, and K. Murase. A constructive algorithm for train-
ing cooperative neural network ensembles. IEEE Transactions on Neural
Networks, 14(4):820–834, 2003.

[106] M. Jabri and B. Flower. Weight perturbation: An optimal architecture and
learning technique for analog VLSI feedforward and recurrent multilayer
networks. IEEE Transactions on Neural Networks, 3(1):154–157, 1992.

[107] R. A. Jacobs, M. I. Jordan, and A. G. Barto. Task decomposition through
competition in a modular connectionist architecture: The what and where
vision tasks. Cognitive Science, 15:219–250, 1991.

[108] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive
mixtures of local experts. Neural Computation, 3:79–87, 1991.

[109] R. Jacobs. Increased rates of convergence through learning rate adaption.
Neural Networks, 1:295–307, 1988.

[110] H. Jaeger. The ”echo state” approach to analysing and training recurrent
neural networks. Technical Report GMD Report 148, German National
Research Center for Information Technology, 2001.

[111] D. Jimenez and N. Walsh. Dynamically weighted ensemble neural networks
for classification. In Proceedings of the 1998 International Joint Conference
on Neural Networks (IJCNN), 1998.

[112] T. Joachims. Text categorization with support vector machines: learning
with many relevant features. In C. Nédellec and C. Rouveirol, editors,
Proceedings of ECML-98, 10th European Conference on Machine Learning,
pages 137–142, Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE.

[113] L. K. Jones. A simple lemma on greedy approximation in hilbert space
and convergence rates for projection pursuit regression and neural network
training. Annals of Statistics, 20(1):608–613, 1992.

[114] Jungo Ltd., Netanya. Windriver 6 User’s Manual, 2003.

[115] B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice-Hall International Inc., London, 1978.

[116] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

xxxix

Bibliography

[117] H. Kitano. Designing neural networks using genetic algorithms with graph
generation system. Complex Systems, 4(4):461–476, 1990.

[118] C. Koch. Biophysics of Computation: Information Processing in Single
Neurons. Oxford University Press, 1999.

[119] R. Kohavi. A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. In The 1995 International Joint Conference on
Artificial Intelligence IJCAI, pages 1137–1145, Montreal, Quebec, Canada,
August 1995.

[120] T. Kohonen. Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43:59–69, 1982.

[121] J. R. Koza, F. H. Bennet III, D. Andre, and M. A. Keane. Genetic Program-
ming III - Darwinian Invention and Problem Solving. Morgan Kaufmann
Publishers, San Francisko, CA, USA, 1999.

[122] A. Kramer. Array-based analog computation. IEEE Micro, pages 20–29,
October 1996.

[123] T. Kristensen and R. Patel. Classification of eukariotic and prokariotic cells
by a backpropagation network. In Proceedings of the International Joint
Conference on Neural Networks, pages 1718–1723. IEEE Press, 2003.

[124] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and
active learning. Advances in Neural Information Processing Systems, 7:299–
314, 1995.

[125] J. Langeheine, K. Meier, and J. Schemmel. Intrinsic Evolution of Quasi DC
Solutions for Transistor Level Analog Electronic Circuits Using a CMOS
FPTA chip. In Proceedings of the 2002 NASA/DoD Conference an Evolvable
Hardware, 2002.

[126] C. Lindsey and T. Lindblad. Survey of neural network hardware. SPIE,
1995(2492):1194–1205, April 1995.

[127] R. P. Lippmann. An introduction to computing with neural nets. IEEE
ASSP Magazine, 4(2):4–22, 1987.

[128] R. Lohmann. Application of evolution strategy in parallel populations. In
H.-P. Schwefel and R. Männer, editors, Proceedings of the 1st International
Conference on Parallel Problem Solving from Nature, volume 496, pages
198–208. Springer Verlag, 1991.

[129] W. Maass, T. Natschläger, and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on perturba-
tions. Neural Computation, 14(11):2531–2560, 2002.

xl

Bibliography

[130] R. Maclin and J. W. Shavlik. Combining the predictions of multiple classi-
fiers: Using competitive learning to initialize neural networks. In Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence,
pages 524–530, Montreal, Canada, 1995.

[131] S. W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, 1995.

[132] B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In
J. D. Schaffer, editor, Proceedings of the Third International Conference on
Genetic Algorithms, pages 428–433, San Francisco, 1989. Morgan Kaufmann.

[133] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear pro-
gramming. SIAM News, 23(5):1–18, September 1990.

[134] MATLAB. version 6, release 12.1, The Mathworks Inc., 3 Apple Hill Drive,
Natick, MA, USA,
http://www.mathworks.com/products/matlab/.

[135] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, pages 127–147, 1943.

[136] M. R. J. McQuoid. Neural ensembles: Simultaneous recognition of multiple
2-D visual objects. Neural Networks, 6:907–917, 1993.

[137] C. A. Mead. Analog VLSI and Neural Systems. Addison Wesley, Reading,
MA, 1989.

[138] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Theller.
Equation of state calculations by fast computing machines. Journal of Chem-
ical Physics, 21(6):1087–1092, 1953.

[139] M. Mézard and J.-P. Nadal. Learning inf feedforward layered networks: the
tiling algorithm. Journal of Physics A, 22:2191–2203, 1989.

[140] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
gramms. Springer Verlag, Berlin, Heidelberg, New York, 1999.

[141] G. F. Miller and P. M. Todd. Designing neural networks using genetic
algorithms. In J. D. Schaffer, editor, Proceedings of the Third International
Conference on Genetic Algorithms, pages 379–384. Morgan Kaufmann, 1989.

[142] M. Minsky. Neural nets and the brain model problem. PhD thesis, 1954.

[143] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.

[144] P. Moerland and E. Fiesler. Neural network adaptions to hardware imple-
mentations. In E. Fiesler and R. Beale, editors, The Handbook of Neural
Computation, New York, January 1997. Institute of Physics Publishing and
Oxford University Publishing.

xli

Bibliography

[145] D. Montana and L. Davis. Training feedforward neural networks using ge-
netic algorithms. In Proceedings of the 11th International Joint Conference
on Artificial Intelligence, pages 762–767, San Mateo, CA, 1989. Morgan
Kaufmann.

[146] J. Moody and C. J. Darken. Fast learning in networks of locally-tuned
processing units. Neural Computation, 1:281–294, 1989.

[147] G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), April 1965.

[148] D. Moriarty and R. Miikkulainen. Discovering complex othello strategies
through evolutionary neural networks. Connection Science, 7(3/4):195–210,
1995.

[149] Y. S. Mostafa and J. St. Jaques. Information capacity of the hopfield model.
IEEE Transactions on Information Theory, IT-31(4):461–464, 1985.

[150] H. Mühlenbein. Parallel genetic algorithms, population genetics and com-
binatorial optimization. In J. D. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 416–421, San Fran-
cisco, 1989. Morgan Kaufmann.

[151] D. Niedenzu. Aufbau eines binären Neocognitrons. Diploma thesis (german),
University of Heidelberg, HD-KIP-03-11, 2003.

[152] A. R. Omondi. Neurocomputers: A dead end ? International Journal of
Neural Systems, 10(6):475–481, 2000.

[153] D. W. Opitz and R. Maclin. Popular ensemble methods: An empirical study.
Journal of Artificial Intelligence Research, 11:337–353, 1999.

[154] D. W. Opitz and J. W. Shavlik. Actively searching for an effective neural
network ensemble. Connection Science, 8(3/4):337–353, 1996.

[155] M. Page-Jones. Fundamentals of Object-Oriented Design in UML. Addison
Wesley, Reading, MA, 2000.

[156] R. Parekh, J. Yang, and V. Honavar. Mupstart - a constructive neural net-
work learning algorithm for multi-category pattern classification. In Proceed-
ings of the IEEE International Conference on Neural Networks (ICNN’97),
pages 1924–1929, Houston, TX, USA, 1997.

[157] R. Parekh, J. Yang, and V. Honavar. Pruning strategies for the mtiling
constructive learning algorithm. In Proceedings of the IEEE International
Conference on Neural Networks (ICNN’97), volume 3, pages 1960 – 1965,
Houston, TX, USA, 1997.

[158] E. Pasero and M. Perri. Hw-sw codesign of a flexible neural controller
through a fpga-based neural network programmed in vhdl. In Proceedings
of the International Joint Conference on Neural Networks IJCNN’04, pages
3161–3166. IEEE Press, 2004.

xlii

Bibliography

[159] G. O. Penokie. Working Draft SCSI Parallel Interface-2 (SPI-2). American
National Standard of Accredited Standards Committee NCITS, Washington,
DC, revision 20b edition, April 1998.

[160] M. P. Peronne and L. N. Cooper. When networks disagree: Ensemble meth-
ods for hybrid neural networks. Artificial Neural Networks for Speech and
Vision, pages 126–142, 1993.

[161] C. B. Pettey, M. R. Leuze, and G. J. J. A parallel genetic algorithm. In
J. J. Grefenstette, editor, Proceedings of the 2nd International Conference on
Genetic Algorithms, pages 155–161, Hillsdale, New Jersey, 1987. Lawrence
Erlbaum.

[162] PLX Technology, Inc., Sunnyvale. PLX 9054 Data Book, version 2.1 edition,
January 2000.

[163] L. Prechelt. Proben1 — A set of neural network benchmark problems and
benchmarking rules. Technical Report 21/94, 38 pages, Fakultät für Infor-
matik, Universität Karlsruhe, 1994.

[164] A. Prügel-Bennet and A. Rogers. Modelling GA dynamics. Proceedings of
Theoretical Aspects of Evolutionary Computation, pages 59–86, 2001.

[165] A. Prügel-Bennet and J. L. Shapiro. Analysis of genetic algorithms using
statistical mechanics. Physical Review Letters, 72(9):1305–1309, February
1994.

[166] J. Pujol and R. Poli. Evolving neural networks using a dual representation
with a combined crossover operator. In Proceedings of the IEEE Inter-
national Conference on Evolutionary Computation (ICEC), pages 416–421,
1998.

[167] E. T. Ray. Learning XML. O’Reilly & Associates, Inc., 101 Morris Street,
Sebastopol, CA, 2001.

[168] L. Reyneri. Implementation issues of neuro-fuzzy hardware: Going toward
HW/SW codesign. IEEE Transactions on Neural Networks, 14(1):176–194,
January 2003.

[169] P. Rojas. Theorie der neuronalen Netze: Eine systematische Einführung.
Springer Verlag, Berlin, Heidelberg, New York, 1996.

[170] F. Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65:386–408, 1958.

[171] F. Rosenblatt. Perceptron simulation experiments. In Proceedings of the
IRE, pages 301–309, 1960.

[172] G. Rudolph. Global optimization by means of distributed evolution strate-
gies. In H.-P. Schwefel and R. Männer, editors, Proceedings of the 1st Inter-
national Conference on Parallel Problem Solving from Nature, volume 496,
pages 209–213. Springer Verlag, 1991.

xliii

Bibliography

[173] G. Rudolph. Convergence of evolutionary algorithms in general search
spaces. In Proceedings of the IEEE Conference on Evolutionary Compu-
tation, pages 50–54, Piscataway, NJ, 1996. IEEE Press.

[174] G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr.
Kovac̆, Hamburg, 1997.

[175] D. E. Rumelhart, G. E. Hinton, and W. R.J. Learning internal representa-
tions by error propagation. Parallel Distributed Processing: Explorations in
the Microstructures of Cognition, I:318–362, 1986.

[176] D. E. Rumelhart, G. E. Hinton, and W. R.J. Learning representations of
back-propagation errors. Nature, 323:533–536, 1986.

[177] J. D. Schaffer, R. A. Caruana, and L. J. Eshelmann. Using genetic search to
exploit the emergent behavior of neural networks. Physica D, 42:244–248,
1990.

[178] J. Schemmel. personal communication, 2005.

[179] J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann. A mixed-mode
analog neural network using current-steering synapses. Analog Integrated
Circuits and Signal Processing, 38(2-3):233–244, 2004.

[180] J. Schemmel, F. Schürmann, S. Hohmann, and K. Meier. An integrated
mixed-mode neural network architecture for megasynapse ANNs. In Pro-
ceedings of the 2002 International Joint Conference on Neural Networks
IJCNN’02, pages 2704–2710. IEEE Press, 2002.

[181] T. Schmitz. personal communication, 2005.

[182] T. Schmitz, S. Hohmann, K. Meier, J. Schemmel, and F. Schürmann. Speed-
ing up Hardware Evolution: A Coprocessor for Evolutionary Algorithms. In
A. M. Tyrrell, P. C. Haddow, and J. Torresen, editors, Proceedings of the 5th
International Conference on Evolvable Systems ICES 2003, pages 274–285.
Springer Verlag, 2003.

[183] R. Schüffny, A. Graupner, and J. Schreiter. Hardware for neural networks.
In Proceedings of the 4th International Workshop on Neural Networks in
Applications, pages 1–6, 1999.

[184] F. Schürmann, K. Meier, and J. Schemmel. Edge of Chaos Computation in
Mixed Mode VLSI – “A Hard Liquid”. In L. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing Systems 17, Cambride,
2005. MIT Press.

[185] F. Schürmann. PhD thesis, University of Heidelberg, in preparation, 2005.

[186] F. Schürmann, S. G. Hohmann, K. Meier, and J. Schemmel. Interfacing
binary networks to multi-valued signals. In Supplementary Proceedings of
the Joint International Conference ICANN/ICONIP, pages 430–433. IEEE
Press, 2003.

xliv

Bibliography

[187] T. J. Sejnowski and C. R. Rosenberg. NETtalk: a parallel network that
learns to read aloud. Technical Report JHU/EECS-86/01, John Hopkins
University, Electrical Engineering and Computer Science, 1986.

[188] R. S. Sexton, R. E. Dorsez, and J. J. D. Toward global optimization of neu-
ral networks: A comparison of the genetic algorithm and backpropagation.
Decision Support Systems, 22(2):171–185, 1998.

[189] A. J. C. Sharkey. On combining artificial neural nets. Connection Science,
8(3/4):299–314, 1996.

[190] A. J. C. Sharkey and N. E. Sharkey. Combining diverse neural nets. Knowl-
egde Engineering Review, 12(3):1–17, 1997.

[191] A. A. Siddiqi and S. M. Lucas. A comparison of matrix rewriting versus
direct encoding for evolving neural networks. In Proceedings of the 1998
IEEE International Conference on Evolutionary Computation (ICEC’98),
pages 392–397, Piscataway, NJ, 1998. IEEE Press.

[192] H.-J. Siegert and U. Baumgarten. Betriebssysteme: Eine Einführung. R.
Oldenbourg Verlag, München, 1998.

[193] A. Sinsel. Linuxportierung auf einen eingebetteten powerpc 405 zur
steuerung eines neuronalen netzwerkes. Diploma thesis (german), University
of Heidelberg, HD-KIP-03-14, 2001.

[194] R. E. Smith, C. Bonacina, P. Kearney, and W. Merlat. Embodiment of
evolutionary computation in general agents. Evolutionary Computation,
8(4):475–493, 2001.

[195] R. E. Smith and J. E. Smith. New methods for tunable, random landscapes.
In W. N. Martin and W. Spears, editors, Foundations of Genetic Algorithms,
volume 6, pages 47–67, 2001.

[196] W. M. Spears. Simple subpopulation schemes. In A. V. Sebald and L. J.
Fogel, editors, Proceedings of the Third Annual Conference on Evolutionary
Programming, pages 296–307. World Scientific, 1994.

[197] W. M. Spears and K. A. De Jong. On the virtues of parametrized uniform
crossover. In R. K. Belew and L. K. booker, editors, Proceedings of the 4th
International Conference on Genetic Algorithms, pages 230–236, San Diego,
CA, 1991. Morgan Kaufmann.

[198] W. M. Spears and K. DeJong. Dining withGAs: Operator lunch theorems.
In W. Banzhaf and C. Reeves, editors, Foundations of Genetic Algorithms,
volume 5, pages 85–101, 1999.

[199] K. O. Stanley and R. Miikkulainen. Continual coevolution through com-
plexification. In W. Langdon et al., editors, Proceedings of the Genetic and
Evolutionary Computation Conference GECCO 2002, pages 113–120. Mor-
gan Kaufmann Publishers, July 2002.

xlv

Bibliography

[200] K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning through
evolving neural network topologies. In W. Langdon et al., editors, Pro-
ceedings of the Genetic and Evolutionary Computation Conference GECCO
2002, pages 569–577. Morgan Kaufmann Publishers, July 2002.

[201] V. Storch, U. Welsch, and M. Wink. Evolutionsbiologie. Springer Verlag,
Berlin, Heidelberg, New York, 2001.

[202] B. Stroustrup. The C++ Programming Language. Addison Wesley, Reading,
MA, August 1997.

[203] G. Syswerda. Uniform crossover in genetic algorithms. In J. D. Schaffer,
editor, Proceedings of the Third International Conference on Genetic Algo-
rithms, pages 2–9, San Francisco, 1989. Morgan Kaufmann.

[204] R. Tanese. Parallel genetic algorithm for a hypercube. In J. J. Grefen-
stette, editor, Proceedings of the 2nd International Conference on Genetic
Algorithms, pages 177–183, Hillsdale, New Jersey, 1987. Lawrence Erlbaum.

[205] J. Teichert and R. Malaka. An association architecture for the detection of
objects with changing topologies. In Proceedings of the International Joint
Conference on Neural Networks IJCNN’03, pages 125–130. IEEE Press, July
2003.

[206] D. Thierens, J. Suykens, J. Vandewalle, and B. DeMoor. Genetic weight
optimization of a feedforward neural network controller. In Proceedings of
the Conference on Artificial Neural Nets and Genetic Algorithms, pages 658–
663, Berlin, Heidelberg, New York, 1993. Springer Verlag.

[207] R. F. Thompson. The Brain. W. H. Freeman and Company, New York and
Oxford, 1985.

[208] S. J. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human
visual system. Nature, 381:520–522, 1996.

[209] M. Trefzer, J. Langeheine, K. Meier, and J. Schemmel. New genetic opera-
tors to facilitate understanding of evolved transistor circuits. In Proceedings
of the 2004 NASA/DoD Conference an Evolvable Hardware (EH2004), 2004.

[210] Trolltech AS. The Qt application development framework. Waldemar
Thranes gate, 98, NO-0175 Oslo, Norway,
http://www.trolltech.com/products/qt/.

[211] A. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265,
1937.

[212] M. Valle. Analog VLSI implementations of neural networks with supervised
on-chip-learning. Analog Integrated Circuits and Signal Processing, 33:263–
287, 2002.

xlvi

Bibliography

[213] D. van Heesch. The doxygen documentation system. 2004,
http://www.stack.nl/˜dimitri/doxygen.

[214] E. van Nimwegen, J. P. Crutchfield, and M. Mitchell. Statistical dynamics
of the Royal Road genetic algorithm. Theoretical Computer Science, 229:41–
102, 1999.

[215] E. A. Vittoz. Analog VLSI signal processing: Why, where and how? Analog
Integrated Circuits and Signal Processing, 8(1):27–44, 1994.

[216] E. A. Vittoz. Analog VLSI implementation of neural networks. In E. Fiesler
and R. Beale, editors, The Handbook of Neural Computation, New York,
January 1997. Institute of Physics Publishing and Oxford University Pub-
lishing.

[217] M. D. Vose and G. E. Liepins. Punctuated equilibria in genetic search.
Complex Systems, 5(1):31–44, 1992.

[218] R. L. Watrous. Learning algorithms for connectionist networks: Applied
gradient methods for nonlinear optimization. In M. Caudill and C. Butler,
editors, Proceedings of the IEEE First International Conference on Neural
Networks, volume II, pages 619–627, San Diego, 1987. IEEE.

[219] H. White. Connectionist nonparametric regression: Multilayer feedforward
networks can learn arbitrary mappings. Neural Networks, 3(5):535–549,
1990.

[220] P. M. White and C. C. Pettey. Double selection vs. single selection in dif-
fusion model GAs. In T. Bäck, editor, Proceedings of the 7th International
Conference on Genetic Algorithms, pages 174–180, San Fransiso, 1997. Mor-
gan Kaufmann.

[221] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In J. D. Schaffer, editor,
Proceedings of the Third International Conference on Genetic Algorithms,
pages 116–121. Morgan Kaufmann, 1989.

[222] D. Whitley. Cellular genetic algorithms. In S. Forrest, editor, Proceedings
of the 5th International Conference on Genetic Algorithms, page 658, San
Francisco, 1993. Morgan Kaufmann.

[223] D. Whitley and T. Hanson. Optimizing neural networks using faster, more
accurate genetic search. In J. D. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 391–395, 1989.

[224] D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural
networks: Optimizing connections and connectivity. Parallel Computing,
14(3):347–361, 1990.

xlvii

Bibliography

[225] L. D. Whitley. Fundamental principles of deception in genetic search. In
G. Rawlins, editor, Foundations of Genetic Algorithms, volume 1, pages
221–241, 1991.

[226] B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: Percep-
tron, Madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415–
1442, 1990.

[227] B. Widrow and M. E. Hoff. Adaptive switching circuits. In IRE WESCON
Convention Record, pages 96–104, New York, 1960. IRE.

[228] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

[229] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400, USA. Virtex E
Datasheet.

[230] Xilinx, Inc., www.xilinx.com. Virtex-II Pro Platform FPGA Handbook,
2002.

[231] Xilinx, Inc., www.xilinx.com. PowerPC processor reference guide, Septem-
ber 2003.

[232] Xilinx, Inc., www.xilinx.com. PowerPC 405 processor block reference guide,
August 2004.

[233] Xilinx Inc., San Jose. Xilinx XC9536XL High Performance CPLD, Septem-
ber 2004.

[234] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE,
87(9):1423–1447, 1999.

[235] X. Yao and Y. Liu. Ensemble structure of evolutionary artificial neural
networks. In Proceedings of the Third IEEE International Conference on
Evolutionary Computation (ICEC’96), pages 659–664, Nagoya, Japan, May
1996.

[236] X. Yao and Y. Liu. A new evolutionary system for evolving artificial neural
networks. IEEE Transactions on Neural Networks, 8(3):694–713, May 1997.

[237] X. Yao and Y. Liu. Making use of population information in evolutionary
neural networks. IEEE Transactions on Systems, Man and Cybernetics,
Part B: Cybernetics, 28(3):417–425, 1998.

xlviii

Danksagung
(Acknowledgements)

We are not an endangered species ourselves yet,
but this is not for lack of trying.

Douglas Adams, Last Chance to See

Abschließend möchte ich all jenen, die zum Gelingen dieser Arbeit beigetragen haben, ein
herzliches Dankeschön aussprechen. Mein Dank gilt vor allem

- Herrn Prof. Dr. K. Meier für die freundliche Aufnahme in seine Arbeitsgruppe und
die Möglichkeit, an einem so interessanten Projekt mitarbeiten zu können.

- Herrn Prof. Dr. F. A. Hamprecht, der freundlicherweise das Zweitgutachten über-
nommen hat.

- Dr. Johannes Schemmel, der nicht nur mit der Entwicklung des HAGEN Chips
einen wesentlichen Grundstein für diese Arbeit gelegt hat, auf dessen umfassendes
fachliches Wissen und visionären Ideenreichtum ich auch in unzähligen Diskussionen
zurückgreifen durfte, der immer auf alle Probleme eine Antwort wusste und dessen
freundliche Art mir die Arbeit stets angenehm machte.

- Felix Schürmann für die jahrelange kollegiale Zusammenarbeit, viele fruchtbare
Diskussionen, bereitwillige Hilfe in allen Hardware-Fragen, wertvolles inspirieren-
des Material für die Kapitel 5 und 6 und die immer geduldige Unterstützung bei
unzähligen Linux-Problemen.

- Johannes Fieres für weitaus mehr als ich hier aufzählen könnte, vor allem jedoch
für enorme Mengen genialen C++ Codes, objekt-orientiertes Denken in allen Le-
benslagen, viele erhellende fachliche und (mindestens ebenso viele) nichtfachliche
Diskussionen, des öfteren Schokolade, Abendessen im Botanik, gute Stimmung im
Büro, diverse Schülertage, bei denen ich nicht zu erscheinen brauchte, die aufmerk-
same Korrektur des Manuskripts und vor allem seine trotz alledem andauernde
Freundschaft.

- Eilif Mueller, nicht nur weil sein ehemaliges VisWidget immer noch toll aussieht,
sondern auch für seinen wesentlichen Beitrag zur netten Atmosphäre im Büro, viele
inspirierende Gedanken zu theoretischen Fragen und dafür, dass er mich so oft an
seinen Englischkenntnissen hat teilhaben lassen.

- Tillmann Schmitz, der es nicht nur geschafft hat, einen schnellen evolutionären Ko-
prozessor zu zaubern und stetig zu verbessern, sondern der ihn auch bereitwillig
selbst den abstrusesten Vorstellungen der Jungs aus dem Softwarezimmer anzupas-
sen bereit war.

xlix

Danksagung (Acknowledgements)

- Allen Mitgliedern der Electronic Vision(s) Gruppe für die vielen lustigen Arbeits-
gruppen-Meetings, die immerwährende Hilfsbereitschaft — egal, wen man fragt —
ein harmonisches Arbeitsklima, das nahezu vollständige Erscheinen auf allen WG-
und Geburtstagsparties und dass man auch, wenn man nicht um 12 Uhr essen geht
und nur ein klapperiges altes Schrottfahrrad fährt, das Gefühl hat dazuzugehören.

- meinem ersten und leider einzigen Diplomanden Dominik
”
Bon“ Niedenzu für seine

vielfältige konstruktive Kritik am HANNEE Programm, seine erfrischend andere
Sichtweise der Dinge und dafür, dass er es geschafft hat, Diplomand zu sein und
gleichzeitig Kumpel zu bleiben.

- Kristoffer Lerch und Ulf Bissbort, deren vorbildliches Engagement sie im Rahmen
ihrer Projektarbeiten wertvolle Beiträge zur HANNEE Software bzw. der Forschung
an den schrittweisen Trainingsmethoden hat liefern lassen.

Abgesehen von der fachlichen und anderweitig arbeitsbezogenen Unterstützung, die
mir im Laufe dieses Projekts zuteil wurde, haben insbesondere auch der freundschaftliche
und emotionale Beistand mehrerer lieber Menschen die letzten Jahre für mich zu einer
wertvollen Erfahrung werden lassen, die ich nicht mehr missen möchte. An dieser Stelle
will ich auch hierfür ein herzliches Dankeschön loswerden an:

- alle Mitglieder (die ehemaligen wie die aktuellen) der Kultband
”
Fake It“: Ani,

Hanni, Kranky, Mad und Merd dafür, dass sie ihren despotischen
”
Frontman“ auch

nach Jahren immer noch ertragen, für einmal in der Woche rumschreien dürfen, tolle
Musik, bombastische Auftritte, jede Menge Spass, kein Rauchen im Proberaum und
überhaupt das ganze Rockband-Lebensgefühl.

- Martin
”
Desboth“ Both, Gunnar

”
the Gunner“ Schramm, Thomas

”
the Killer“

Künsting und Blizzard Entertainment für wiederholtes wildes gezocke, Prosecco
und viel zu viel Pizza. Ab demnächst bin ich wieder voll dabei:

”
That’s it. I’m

dead.“

- den Mensaclub: Annika, Franzi, Fred, Gunnar, Johannes, Kristin, Kristine, Martin,
Nicole, Stefan, Thomas und alle gelegentlichen Besucher für das unangefochtene
soziale Highlight meines Arbeitstages, interessante und nicht immer so bierernst zu
nehmende Diskussionen über Gott und die Welt und das Tolle Gefühl, Mitglied in
einem der erlesensten und elitärsten Intellektuellenclubs der Welt zu sein.

- meine WG— Angelika, Beate und Michael — sowie meine Lieblings-Ex-Mitbewohner
Nicole und Sven für ein trautes und harmonisches Heim, auch wenn ich nicht oft
genug dort war um immer mein Zeug abzuspülen.

- meine allerliebste Verena für ihre nicht enden wollende Geduld mit ihrem ständig
arbeitenden Freund, ihre aufopferungsvolle Unterstützung in den letzten Wochen
und vor allem dafür, dass mit ihr das Leben so viel schöner ist.

- meine lieben Eltern, die inhaltlich vielleicht nicht so viel zu dieser Doktorarbeit
beigetragen haben, die es mir aber durch ihre stete liebevolle Unterstützung in
jeglicher Hinsicht überhaupt erst ermöglicht haben, es bis hierhin zu schaffen.

l

	Autoren: Steffen Hohmann
	Titel: Stepwise Evolutionary Training Strategies for Hardware Neural Networks
	typ: Dissertation
	kip-nr: HD-KIP-05-05

