
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Daniel Brüderle

Implementing Spike-Based Computation

on a Hardware Perceptron

Diplomarbeit

HD-KIP-04-16

KIRCHHOFF-INSTITUT FÜR PHYSIK

Implementing Spike-Based Computation
on a Hardware Perceptron

This diploma thesis has been carried out by Daniel Brüderle at the

Kirchhoff-Institute of Physics

University of Heidelberg

under the supervision of

Prof. Dr. Karlheinz Meier

Abstract

Implementing Spike-Based Computation on a Hardware Perceptron

This thesis presents the design, the implementation and the utilization of a device which
simulates networks of spiking neurons on the basis of an already existing hardware Perceptron.
For this purpose basic principles of information processing in biological and artificial neural
networks are introduced. The functional extensions developed for the Perceptron are mainly
based on the reconfiguration of a programmable array of logic gates that controls the network
chip. Detailed technical descriptions of these additional devices are presented. A high-level
software interface has been created that allows to make use of the developed simulation
platform without knowing about hardware specific details. This software includes methods
that map virtually generated three-dimensional neural networks to the available resources
with a minimum of topological distortion.
The capability of the novel simulation system to perform rate-based and temporal information
processing is shown. The successful execution of so-called liquid computing, which provides
an anytime approximation of a target function, is described. With the applied methods, it
was possible to keep but not to optimize the ability of the network to store information for
a benchmark task. In further experiments the Perceptron and its extensions were configured
to simulate a network of real cortical neurons. The benchmark problem was solved with this
spike-based setup.

Implementierung von Informationsverarbeitung mit Aktionspotentialen auf der

Grundlage eines Perzeptron-Chips

Diese Arbeit beschreibt den Entwurfsprozess, die Implementierung und die Benutzung eines
Gerätes zur Simulation von aktionspotential-basierten neuronalen Netzen auf der Grundlage
eines bereits vorliegenden Perzeptron-Chips. Zu diesem Zweck werden grundlegende Mecha-
nismen der Informationsverarbeitung in biologischen und künstlichen neuronalen Netzen vor-
gestellt. Die funktionellen Erweiterungen, die für das Perzeptron entwickelt wurden, basieren
im wesentlichen auf der Neuprogrammierung einer bereits vorhandenen rekonfigurierbaren
Kontroll-Logik für den Chip. Die technischen Details dieser zusätzlichen Funktionseinhei-
ten werden beschrieben. Es wurde eine Software entwickelt, die das Wissen um hardware-
spezifische Besonderheiten unnötig macht und eine Nutzung des Systems mittels abstrahierter
Schnittstellen ermöglicht. Diese Software beinhaltet unter anderem Methoden, um virtuelle
dreidimensionale neuronale Netzwerke möglichst frei von topologischen Verzerrungen auf die
zur Verfügung stehenden Ressourcen abzubilden.
Die Fähigkeit der neuartigen Simulationsumgebung zur raten- und intervall-basierten In-
formationsverarbeitung wird belegt. Die erfolgreiche Durchführung von sogenanntem Liquid
Computing, einer Methode zur kontinuierlichen Approximation einer Zielfunktion, wird be-
schrieben. Die Fähigkeit eines Netzwerkes, Information zur Lösung eines Standardproblems
zu speichern, konnte durch die zur Anwendung gekommenen Methoden erhalten, aber nicht
verbessert werden. In weiteren Experimenten wurden das Perzeptron und seine Erweiterungen
für die Simulation eines Netzes echter kortikaler Neuronen konfiguriert. Mit diesen Einstel-
lungen wurde das ausgewählte Standardproblem aktionspotential-basiert gelöst.

II

Contents

Abstract I

Motivation 1

1 Introducing Facts and Concepts 3

1.1 Biological Neurons . 4

1.2 Modeling Neural Networks . 7

1.2.1 First and Second Generation Neurons 7

1.2.2 Learning . 8

1.2.3 Perceptron . 9

1.2.4 Spiking Neuron Models (Third Generation) 10

1.2.5 High Conductance States . 11

1.3 Liquid Computing . 15

1.3.1 Liquid Computing with a Perceptron 16

1.3.2 The “Edge of Chaos” . 16

1.3.3 Memory Capacity . 17

2 Architectural Overview & Implementation 19

2.1 The HAGEN Spike Translation Environment (HASTE) 19

2.1.1 The HAGEN Chip - Technical Details 21

2.1.2 The Software Framework . 23

2.1.3 Extending the Components . 26

2.2 Methods . 34

2.2.1 Network Generation and Mapping to Hardware 34

2.2.2 Input Patterns . 38

2.2.3 Utilizing MATLAB . 39

3 Experiments 41

3.1 Basic Studies . 41

3.1.1 Single Neuron Bombardment . 44

3.1.2 Conductance Course Variation . 59

3.1.3 Interspike Interval Histograms . 66

3.2 Liquid Computing with HASTE . 73

3.2.1 The “Edge of Chaos” with HASTE . 73

3.2.2 MC Optimization by Input Shaping 84

3.2.3 A Cortical Microcircuit for HASTE 87

III

4 Discussion 92

5 Outlook 95

A Supplement 97

A.1 Additional figures . 97
A.2 Software . 104

A.2.1 Compiling HANNEE . 104
A.2.2 Compiling the Software for HASTE 104

A.3 Experimental Raw-Data and Script-files for MATLAB 104

List of Abbreviations 105

Bibliography 107

Acknowledgments 111

IV

Motivation

This thesis is the result of utilizing different ways of computation. It was written on a
standard desktop computer, which performs text and image processing, numerical computa-
tions, communication with peripheral devices or resources in the world wide web. Therefor a
processor is used that consists of hundreds of millions of transistors integrated into a small
silicon chip. The operating system installed on such a computer leads the user to believe that
many programs can be run at the very same time, but this so-called multitasking is just an
illusion of parallelism. A typical off-the-shelf CPU, mostly being a hybrid of von Neumann
and Harvard architectures [12], can perform computation only in a strictly successive way.
Since the temporal resolution of human visual perception is much lower than the possible fre-
quency of a desktop computer to switch between the execution of different tasks, the illusion
easily can be uphold.

Another device extensively utilized – hopefully the reader sometimes recognizes this –
is the human brain. Not only the author’s, but a lot of other people’s brains, too. These
people manage to communicate with each other, while in their heads visual, tactile and
auditory stimuli have to be processed rapidly, continuously and in a highly parallel way.
Useful information has to be extracted, combined and interpreted in real-time, i.e. within a
definite very small time window. Complex sequences of conscious thoughts occur – maybe
about what to say next, about the social role within the discussion group and what lunch
will be today. Not to mention subconsciousness... The human brain is a real multitasking
computer.

Until today it remains an unsolved challenge to satisfyingly understand how the compu-
tational power, consciousness, will and intellect can arise from the complexity of this neural
network. As we know a lot about basic processes in the scope of cellular mechanisms, one way
to go on in the search for essential principles is clearly bottom up. This means finding out
which of the cellular behaviors are indispensable to preserve the flexibility and computational
abilities of such a system and which can be skipped.

The Electronic Vision(s) group at the Kirchhoff Institute for Physics in Heidelberg has
developed an application specific integrated circuit (ASIC), which implements a network of
artificial neurons with binary in- and outputs [26]. The chip is extensively tested and a
powerful software interface and detailed documentation have been created. Many different
applications for this system have been proposed and performed already [29, 9, 20, 7, 28] while
the project is still growing. But the applied network model is far from being biologically
realistic, because it neglects basic features of real brain cells. The most important one is the
coding of information via temporal patterns of stereotypical signals called spikes.

Recent results from neuro-science allow to extend the existing hardware neuron model
towards biology while still utilizing the device itself as the core of computation. A basic
road-map set up for this thesis was

1

2

• to gather the necessary knowledge from neuro- and computer-science

• to create a first concept of a spike interpretation environment for the Perceptron

• to create a flexible software implementation in order to cut down the emerging parameter
space

• to implement the developed solutions on the programmable gate array controlling the
Perceptron (the tutor’s job)

• to gain specifications of the system

• to utilize this novel tool to simulate cortical neural networks

Since all points of this task list have been fulfilled more or less successfully, a third category
of computation can be claimed to be used for this thesis: An artificial neural network was put
into action to advance it towards a more biologically realistic operation mode and to study
its behavior.

Most of the conceptual planning concerning this system has been done in cooperation with
the tutor of this work, Michael Reuss. The Electronic Vision(s) group enabled and supported
the work by generously providing knowledge, tools and ideas. Most of the software neces-
sary for the operation of the novel system was written by the author. Essential fragments
programmed by other members of the group that have been integrated into the framework
without or with just slight modifications will be explicitly mentioned. All experiments pro-
posed in this document have been performed by the author, although some of them make use
of ideas and methods developed by others. In all cases the originators will be referred to.

Reading this thesis

The document is structured into three main parts:

• The introduction of basic facts and concepts used for this work, i.e. things that already
were on hand in the beginning

• The description of devices and methods that have been developed in the context of this
study

• The description of the most important experiments and results

Technical terms that are introduced for the first time usually are written in italic letters.
Once explained, they will be assumed to be known for the following text. In most cases the
meaning of abbreviations or acronyms becomes clear the first time they appear, only very
common ones are not explained. A complete list of all acronyms and abbreviations is appended
at the end of this thesis on page 105. A few comments on the figures: Experimentally measured
data points plotted in graphs often are connected by lines. Obviously these lines do neither
represent real data nor are they to be understood as a fit. They just serve to facilitate
the finding of corresponding data points. Unless otherwise noted, schematics and technical
drawings have been created by the author.

Chapter 1

Introducing Facts and Concepts

Biological organisms obtain their computational capabilities from systems of massively
interconnected cells. Those basic processing elements, called neurons, build a very dense
network in vertebrates’ brains (in Latin: cerebrum). The cerebral cortex is a fragile nervous
tissue and forms a part of the brain’s surface. It holds most of cerebral neurons and spreads
across an area of about 1.5m2 due to its wrinkled and folded topology. The neuron density in
the human cortex is more than 104 neurons per cubic millimeter. Each neuron in the cortex
is connected to 102 up to 104 other neurons, sometimes across very long spatial distances.
For centuries scientists of different disciplines have been researching the functionality of the
brain, and today they have a detailed knowledge to their disposal.

Very much is understood about processes in the scope of a single neuron cell, but mech-
anisms determining the behavior of neuron populations are much more difficult to extract.
Different approaches have been developed, in particular real life measurements and simula-
tions, but also methods from statistical physics, neuro-psychology and others.

Examples for non-invasive measuring methods of brain activity are electro-encephalograms
(EEG) or functional magnetic resonance imaging (fMRI). Imaging with voltage sensitive
dyes (VSD) is a relatively new, invasive and extracellular in vivo recording strategy [21],
while neuro-science is gaining experience with intra- and extracellular patch clamp techniques
already for decades [34], usually applied in vitro.

There is a wide spectrum of different approaches to simulate neurons and neural networks.
Nearly all of them skip the effort to exactly describe all known cellular mechanisms in order
to make the model computable in reasonable time, allowing for individual demands and
individually available resources. Nowadays the standard for modeling neurons with high
accuracy is the Hodgkin-Huxley model [3], named after its two originators. It describes many
features of neuron dynamics in a very detailed way, but due to its CPU-intensive computation
practically only very small numbers of interconnected neurons can be simulated.

Neural coding and network dynamics are often studied utilizing more phenomenologically
oriented models with less complexity. The so-called Integrate-and-Fire model (I&F), which
will be introduced in sec. 1.2.4, is a powerful representative of this category. It ignores many
details of intracellular dynamics, but is sufficient in many cases and applicable to large neuron
populations. “Large” means numbers in the order of ∼ 102 to 104 cells, depending on the
level of sophistication and especially the degree of connectivity and simulated activity.

Most simulations of neurons and neural networks are plain software approaches, only few
of them utilize hardware, e.g. FPGAs or full custom designs [17, 25, 19]. This study is on

3

4 CHAPTER 1. INTRODUCING FACTS AND CONCEPTS

simulating populations (∼ 102) of neurons using a VLSI implementation of a simple neuron
model. An FPGA controlling this chip and hitherto mainly performing data in- and output
administration was used to advance the neuron model on runtime (see sec. 2.1).

1.1 Biological Neurons

A schematic of a single neuron is shown in fig. 1.1, a real pyramidal neuron from a rat’s
cortex can be seen in fig. 1.2. The size of a mammal’s neuronal cell body, or soma, ranges
from 5 to 100µm. It has some wire like extensions connecting it to other neurons mostly in its
close surrounding area, but sometimes even across centimeters. In terms of information flow
some of them are inputs (dendrites), receiving signals from other neurons, and one of them
is an output (axon), conducting the signal away from the soma. Axons fan out into axonic
trees and distribute information to several target neurons by coupling to their dendrites via
synapses.

Dendrite

Soma
Axon

Synapse

Presynaptic Axon

Figure 1.1: Schematic of a sin-
gle neuron cell. The neuron con-
sists of a cell body (soma), a tree
of cell extensions called dendrites
and another extension, the axon.
The neuron receives information via
synapses from axons belonging to
other cells. Thus synapses link dif-
ferent neurons. The axon conducts
signals generated by the neuron it-
self away from the soma to other
synapses. The way of information
coding is explained in the text.

As already mentioned above, a cortical neuron can have up to 104 synapses. These
interneuronal links modulate arriving information in terms of the effect on the postsynaptic
1 neuron. Thus synapses are said to “weight” the input. The functionality of a neural circuit
strongly depends on the composition of these weights. The possibility of manipulating them
is called synaptic plasticity. Strengthening and weakening synapses is a basic way of learning
within the brain.

A neuron’s cell membrane divides intracellular from extracellular space. In the absence
of any input the electric potential between interior and outer cell space differs. This volt-
age called resting potential has a value of about −65mV. It represents the steady state of
concurring voltage-dependent ion channels increasing respectively decreasing the membrane
potential, in neuro-science also called polarization. Under the influence of input the membrane
potential is hyper- or depolarized. There are two different categories of synapses, depending
on the effect of input signals arriving there. If depolarizing the membrane, the synapse is
called excitatory, otherwise inhibitory.

Neural signaling happens via temporally very short positive excursions of the membrane
potential, called action potentials or spikes. Such a spike is triggered by the membrane

1postsynaptic = located after the synapse in terms of information flow

1.1. BIOLOGICAL NEURONS 5

Figure 1.2: Photo of a golgi stained pyramidal neu-
ron from a rat’s cortex. The main component parts of
the cell are indicated. Microscope magnification is 250x.
Courtesy of Grazyna Gorny.

potential exceeding a distinct threshold value and, while its extension is locally bounded,
travels along the axon. Since spikes produced by a distinct neuron always look the same,
information has to be completely coded by their firing times.

After the occurrence of an action potential and some time of hyper-polarization 2 the
membrane potential quickly returns to its resting potential (if not dragged away from it again
by new input). The minimum time tref between two subsequent spikes is referred to as a
neuron’s absolute refractory period. After this time a relative refractoriness still inhibits the
neuron but does not completely prevent it from firing again. This inhibition quickly dies
down with a time constant in the same order as the absolute refractoriness.

Reaching a synapse, an action potential initiates some biochemical mechanisms leading to
a change of the post-synaptic dendrite’s membrane potential (post-synaptic potential or PSP).
See fig. 1.3 for illustration. Many PSPs add up within the soma and determine the neuron’s
membrane potential. In scenarios of low to normal spike rates impinging a single synapse
even the synapse itself nearly linearly superposes its PSPs, but if pre-synaptic rates get too
high linearity breaks down since not enough neuro-transmitters are available anymore.

Postsynaptic potentials decay within time-scales of about 3 − 30ms, an action potential
happens in the scope of 1ms. Let vj(t) be the membrane potential of a neuron j and let v̄ be
its spiking threshold. Typically v̄ is about 20 − 30mV above j’s resting potential. Regarding
the fact that a single spike arriving at one of j’s excitatory synapses triggers a depolarization
peaking in the range of only 1mV many presynaptic 3 spikes within a short time window are
necessary to make vj(t) cross v̄. See [18] for more information about neurotransmitter control
of cortical activity.

2hyper-polarization = membrane potential is even more negative than the resting potential
3presynaptic = located before the synapse in terms of information flow

6 CHAPTER 1. INTRODUCING FACTS AND CONCEPTS

vrest

v

t(f)
1

t

v(t)
A

B

(a)

vrest

v

t(f)
1

t

A

B

t(f)
2

v(t)

(b)

vrest

v

t

A

B

v(t)

t(f1)
1 t(f2)

1

t(f2)
2t(f1)

2

(c)

Figure 1.3: Membrane po-
tential v(t) (A) depending on
two presynaptic inputs (B).
The jth spike arriving at

synapse i at spike time t
(fj)
i

causes a PSP (a). If v(t) al-
ready is above its resting po-
tential a new PSP adds to the
course (b). In case many PSPs
make v(t) cross the spiking
threshold v̄ an action potential
(which exceeds the scale of the
plot) is fired (c). Afterwards
v(t) runs through a phase of
hyper-polarization.

1.2. MODELING NEURAL NETWORKS 7

1.2 Modeling Neural Networks

The following section will give a short review about the main examples of neural net-
work models and their integration into a classification scheme (“generations”) suggested by
Wolfgang Maass [13].

1.2.1 First and Second Generation Neurons

Fig. 1.4 shows a simple model of a single neuron. It consists of a functional body (blue
area), an input vector x connected to this body via a vector of weights w and an output y.
The value of y is determined by a function F (s), the argument s being defined by the sum of
all weighted inputs x · w plus some threshold −δ.

y = F

((

∑

i

xiwi

)

− δ

)

. (1.1)

The neuron’s inputs, its output and the weights are real numbers, xi, y, wi ∈ �
. The

bias δ typically is a positive constant. F (s) is called transfer or activation function, it usually
is represented by a strictly monotonically increasing function of s with a bounded co-domain.

F(s)

.(−1)

y

x

x2

x3

1
.

.

.

1

2

w3

w

w =s

Figure 1.4: Scheme of a sim-
ple neuron model. The output y
is determined by a function F (s).
The argument s is the sum of all
weighted inputs minus some thresh-
old, s = x · w − δ.

Obviously the four basic elements of a biological neuron, namely the soma (summation
and modulation), the dendrites (inputs), the axon (output) and the synapses (weights) are
already contained in the model. The integration of inputs can be motivated by the summation
of postsynaptic potentials within real somata (see sec. 1.1). In [13] these kinds of neuron
descriptions are classified as second generation models. Hitherto the first generation was
withheld because it easily can be derived from the second generation.

In 1943 the neuro-physiologist Warren McCulloch and the mathematician Walter Pitts
suggested a neuron model representing a special case of the one described above. Fig. 1.5
shows a schematic of what is nowadays commonly known as a McCulloch-Pitts neuron. The
arbitrary activation function in eq. 1.1 is replaced by the unit step function Θ(·), hence the
output is drawn from {0, 1}. Since the inputs are thought to be other neurons’ outputs, they
consequently have to be binary, too.

y = Θ

((

∑

i

xiwi

)

− δ

)

y, xi ∈ {0, 1} . (1.2)

8 CHAPTER 1. INTRODUCING FACTS AND CONCEPTS

Eq. 1.2 describes the neuron model to sum up all inputs weighted with a distinct value and
compare the sum with a given threshold value δ. If the so-called inner state s(x) ≡ w · x− δ
exceeds zero, then the output is true, else false.

1

0

.(−1)

y

x

x2

x3

1
.

.

.

1

2

w3

w

w =s

Figure 1.5: Scheme of a
McCulloch-Pitts neuron. The
binary inputs xi ∈ {0, 1} are
multiplied with their weights wi

and then summed up. If this sum
exceeds some distinct threshold −δ,
the output is one, else zero.

Given fixed vectors x and w, the bias δ in the McCulloch-Pitts model determines whether
the output is active or not. This strongly reminds of the spiking threshold in real neurons
described in sec. 1.1. Due to the fact that the McCulloch-Pitts model is even simpler than the
one defined by eq. 1.1 and because it was the historically first attempt to abstract neuronal
dynamics to mathematics, all similar kinds of binary neuron models or “threshold circuits”
are classified as first generation neurons.

1.2.2 Learning

Configuring synaptic weights in order to make the neuron or neural network perform a
given task is usually referred to as training. The network itself is said to be learning during
this process. A basic distinction has to be made between supervised and un-supervised learn-
ing. In the first case a sort of higher authority trains the network from outside. The synaptic
weights are manipulated accounting for the discrepancy between a given target function and
the network’s real output. Supervised learning on the level of synaptic plasticity is not very
realistic, since biological neural networks manage to organize themselves. They optimize their
capabilities by creating, deleting, strengthening and weakening synapses without any supervi-
sion or super-ordinated target function. This is called un-supervised learning, i.e. the network
autonomically changes its configuration without having a target function to its disposal.

A first important postulation about the mechanisms of self-organization in the brain was
made by the psychologist Donald Hebb in 1949, especially notable for it was formulated
on purely theoretical grounds. He suggested a dependency of the development of synaptic
strengths on temporal correlations between pre- and postsynaptic spikes: “When an axon of
cell A is near enough to excite cell B or repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased.”

Respecting this, today un-supervised learning merely depending on spike time information
is called Hebbian learning. A very elaborated model of un-supervised Hebb-style learning, the
spike-timing-dependent plasticity (STDP), is described in [31].

1.2. MODELING NEURAL NETWORKS 9

1.2.3 Perceptron

A network consisting of McCulloch-Pitts neurons was presented by the psychologist Frank
Rosenblatt in 1958 [23, 24]. His Perceptron is the archetypal artificial neural network (ANN)
and shows typical features of today’s ANNs, including the ability to learn, to generalize,
self-organization and fault-tolerance [5].

Perceptrons are commonly trained in a supervised way, often using gradient or evolu-
tionary strategies. Many applications, most of them in the field of pattern recognition, have
successfully been developed for this kind of network model. Examples for evolutionary ap-
proaches using a VLSI implementation of a Perceptron can be found in [6, 7, 9].

(a) (b)

Figure 1.6: (a) Charles Wightman in the late 1950’s in front of Mark I, a Per-
ceptron implementation he had designed. This huge analog electro-mechanical
neuro-computer had 512 adjustable synaptic weights, a size in the order of many
m3 and, connected to a 400 pixel camera, could be successfully trained to recog-
nize characters. Picture taken from [5]. (b) A prototype of a Perceptron VLSI
implementation designed in the Electronic Vision(s) group in Heidelberg in 2002.
This chip (in what follows it will be called HAGEN) has 256 output neurons with
128 adjustable input synapses each, its dimension is about 3 × 4 mm.

The HAGEN chip - a VLSI Perceptron

In fig. 1.6(b) a VLSI implementation of a Perceptron is shown. The chip (in what fol-
lows it will be called HAGEN – Heidelberg AnaloG Evolvable Network) was designed in the
Electronic Vision(s) group at the Kirchhoff Institute for Physics in Heidelberg and repre-
sents the prototype of a larger chip to be built in near future. The prototype already holds
256 McCulloch-Pitts neurons with 128 adjustable input synapses each. The neurons can be
configured to form a single- or a multi-layer perceptron with optional feedback. The on-chip
feedback wires provide many, but not all possible connections (see sec. 2.1.1).

The chip can be used for multiple types of experiments. It is connected to a PC via
programmable logic and discrete electronics. A user-friendly software (see sec. 2.1.2) hides
most of the complex chip controlling and provides a comfortable interface to configure synaptic
connections and weights. It is possible to feed the artificial neural network (ANN) with input

10 CHAPTER 1. INTRODUCING FACTS AND CONCEPTS

patterns and to record the output. Due to its digital in- and output (I/O) signals, learning
strategies using gradient information cannot be applied. Thus the whole HAGEN system is
optimized for the usage of chip-in-the-loop algorithms. For example the functionality of the
field-programmable gate array (FPGA) interfacing and controlling the chip can be expanded
by an evolutionary co-processor [27] to speed up learning.

The HAGEN chip forms the hardware core for all experiments presented in this study.

1.2.4 Spiking Neuron Models (Third Generation)

Perceptrons are powerful devices [13] and show some basic characteristics of real neurons,
but their information processing differs from that found in nature in some basic points: Real
neurons do not have binary outputs, information is coded in the spatio-temporal pattern
of action potentials. Hence, an event-based model predicting spike-times without exactly
modeling membrane mechanisms within each neuron is a promising approach that can be
realized for large neuron populations with high connectivity. The Integrate-and-Fire model
is such a way to simulate neural networks. It is very popular for studying network dynamics.
Maass refers to all kinds of spiking neuron networks exhibiting the possibility of temporal
coding as third generation models [13].

Leaky Integrate & Fire Model

The leaky I&F model [3] describes a neuron’s spiking activity using a circuit of simple
analog standard devices, see fig. 1.7. For a neuron within a network, I(t) denotes the total
current coming from all synapses connected to it. Nonetheless any arbitrary current can be
applied, e.g. in order to simulate current injection with an electrode.

If a presynaptic spike runs into a synapse, it will be low-pass filtered and will induce a
temporally stretched input current pulse. The spike itself does not have to be described more
exactly since it has a stereotyped shape. In the I&F model an action potential is just a formal
events characterized just by its firing time tf . Traveling times along axons may be considered.
The synaptic answer to a spike is not an explicit part of the model and can be chosen with
arbitrary accuracy regarding knowledge about real synapses.

The current I(t) is split up into two components IR(t) (passing through the resistor R and
responsible for the term leaky) and IC(t) (charging the capacitor C). The voltage u(t) across
the capacitance C denotes the membrane potential of the simulated neuron. It is permanently
compared to a constant threshold voltage Uthresh. If it crosses this voltage from below, a spike
will be fired and the firing time tf is recorded.

The course of the current IC is given by the change of the capacitor’s charge:

IC(t) =
dqC (t)

dt
= C

du(t)

dt
. (1.3)

The current through resistor R is

IR(t) =
u(t)

R
. (1.4)

The total current I(t) therefore is

I(t) =
u(t)

R
+ C

du(t)

dt
. (1.5)

1.2. MODELING NEURAL NETWORKS 11

R U
thresh

C

I(t)

u(t)

Figure 1.7: Circuit representing the Integrate-and-Fire model of a neuron.

This is a basic differential equation describing the course of u(t) depending on I(t). The
standard form is obtained by multiplying eq. 1.5 by R and introducing the time constant
τ = RC.

τ
du(t)

dt
= −u(t) + R I(t) . (1.6)

The membrane potential u(t) follows eq. 1.6 for all times between two consecutive spikes.
Immediately after u(t) has crossed Uthresh at time tf it is set back to a reset voltage Ureset <
Uthresh.

lim
t→ tf , t>tf

= Ureset . (1.7)

After this reset eq. 1.6 determines the course again.

1.2.5 High Conductance States

The general subject of this study is to model the spiking activity of a network consisting of
cortical neurons. The inspiration for using a binary Perceptron to simulate neurons with the
claim of being biologically realistic was literature about so-called High Conductance States
(HCS) describing a scenario of high membrane conductances for cortical neurons under awake
activity, performing computation. Those states cannot arise for isolated single cells but only
for a neuron population (e.g. a cortical layer) resulting from distinct global activity or its
simulated presence. In order to describe this phenomenon and to motivate basic assumptions

Membrane model

According to [3], the total current through a cortical neuron’s membrane is described by
the equation

Itot(t) =
dvP(t)

dt
C

= −gL[vP (t) − VR] − gPE(t)[vP (t) − VE] − gPI(t)[vP (t) − VI] . (1.8)

12 CHAPTER 1. INTRODUCING FACTS AND CONCEPTS

C denotes the membrane capacitance, vP (t) the membrane potential, gL the leakage con-
ductance, VR the leakage reversal potential, VE the excitatory and VI the inhibitory reversal
potential. The subscript P ∈ {E, I} describes the type of the neuron (E = excitatory, I =
inhibitory). If a second subscript occurs, it indicates the type of the presynaptic cell.

The time-dependent conductance gPE (gPI) is due to extra-cortical input via the lateral
geniculate nucleus (LGN), excitatory (inhibitory) noise coming from other cortical areas and
excitatory (inhibitory) activity within the modeled area itself. The components will be defined
explicitly later in this section.

Eq. 1.8 is the standard differential equation for a neuron’s membrane potential vP , al-
though it is not an entire description. Additional information is needed about the potential
when crossing the spiking threshold v̄ (see sec. 1.1).

Values found in [30] are C = 1µF cm−2, gL = 50 · 10−6 Ω−1 cm−2,
VR = −70mV, VE = 0mV, VI = −80mV and v̄ = −55mV.

Following [30] eq. 1.8 can be written as

dv j
P (t)

dt
= −gLvj

P (t) − gj
PE(t)[vj

P (t) − VE] − gj
PI(t)[v

j
P (t) − VI] . (1.9)

The superscript j is a vector of coordinates and indexes the neuron’s spatial location within
the network. All potentials have been normalized by the transformation v → (v−VR)/(v̄−VR).
In this representation the now dimensionless spiking threshold becomes one, the reset potential
zero, VE = 14/3 and VI = −2/3. Furthermore, all conductances are defined as rates with
dimension s−1 by dividing eq. 1.8 by the membrane capacitance C. A conductance defined
this way transparently indicates the time-scale it represents, i.e. τg = g−1.

The time-dependent conductances can be written as

gj
PE(t) = FPE(t) + SPE

∑

k

aj−k

∑

l

GE(t − tkl) ,

gj
PI(t) = fPI(t) + SPI

∑

k

bj−k

∑

l

GI(t − T k
l) . (1.10)

Again P is in {E, I}, FPE(t) is defined by FPE(t) = gj
lgn(t)+f0

PE(t) and tkl (T
k
l) is the time of

the lth spike of the kth excitatory (inhibitory) neuron. Since input from the LGN normally
only excites its target neurons, these equations are slightly asymmetrical for excitatory and
inhibitory drive. The noise coming from outside the modeled area is represented by the
stochastic conductances f 0

PP ′(t). A method for estimating this background noise is suggested
in [30].

Typical time-scales in the human visual cortex are those of extra-cortical input via the
LGN, τlgn = O(10 − 102 ms), base cellular leakage time-scales, τL = g−1

L = 20ms, and time-
scales of cortico-cortical interactions (which are of primary interest in this study), τsyn = 4ms
[30].

Useful implications of High Conductance States

The High Conductance State is the normal operating point of an awake human cortex un-
der stimulation. It is characterized by a large total conductance gT (t) ≡ gL +gE(t)+gI(t). In
vitro (no global activity!) and in vivo measurements in neurons show an increase in membrane
conductance of factor three to five [2] resulting from the presence of activity. Simulations of

1.2. MODELING NEURAL NETWORKS 13

the visual cortex show up to ten-fold increase in conductance from completely un-stimulated
to highly stimulated state [30]. According to [2] neurons under normal conditions and ac-
tivity often have a depolarized average membrane potential (−65 to − 60mV instead of
−80 to − 70mV without activity) and membrane potential fluctuation amplitudes being at
least ten times larger compared to those in an un-stimulated scenario. These fluctuations
close to the spiking-threshold can cause a significantly higher spontaneous firing rate. At this
point the time-scale corresponding to a neuron’s membrane total conductance (τg ' 2−4ms)
becomes dominant in neural information processing. This fact has some important conse-
quences and will allow a more convenient neuron model compared to the standard leaky
integrator.

For convenience, eq. 1.9 is simplified by dropping the neuron type specifier P and its
spatial indices and transforming it to

dv(t)

dt
= −gT v(t) + ID(t) = −gT (t)[v(t) − VS(t)] . (1.11)

The so-called difference current ID is defined by

ID(t) = ID[gE(t), gI(t)] ≡ gE(t)VE − gI(t) |VI | , (1.12)

the effective reversal potential VS by

VS(t) = VS[gE(t), gI(t)] ≡ ID(t)/gT (t) . (1.13)

It is clear from eq. 1.11 that v(t) follows VS(t) with a time-constant ∼ g−1
τ . This means

that in High Conductance State the membrane potential v(t) closely tracks the course of VS(t),
which was quantitatively shown by the authors of [30] by making an asymptotic analysis and
a successful comparison to in-vivo measurements.

Eq. 1.11 also makes clear that VS(t) has to be larger than one if v(t) shall cross the

spiking threshold, because − dv(t)
dt

must be larger than zero at spike time tspike and v(tspike)
necessarily is one. Regarding the fact that membrane currents of excitatory and inhibitory
drive are nearly balanced in cortical operating regime [30],

gEVE ' gI |VI | , (1.14)

and that the ratio of VE/VI � 1 the inhibitory conductance may be assumed to dominate
both the excitatory and the leakage conductance. In [30] the accuracy of this assumption is
shown in simulations.

A new way of simulation

Combining these insights the essence of the considerations being made above emerges:
As v(t) is slaved to VS(t) and gT is dominated by gI one may write

v(t) ' VS =
gEVE + gIVI

gT
' gEVE + gIVI

gI
= VI + VE

gE

gI
. (1.15)

VE and VI are constants, thus the course of v(t) is determined by the ratio of excitatory
to inhibitory conductances. Furthermore, for modeling the neuron’s spiking activity not the
exact ratio gE(t)/gI(t) has to be known but only whether this ratio exceeds some distinct

14 CHAPTER 1. INTRODUCING FACTS AND CONCEPTS

critical value qcrit. Since the spiking threshold in this model is one, eq. 1.15 leads to the
spiking condition

VI + VE
gE

gI

!
= 1

=⇒ qcrit ≡
(

gE

gI

)

crit

=
1 − VI

VE
=

5

14
. (1.16)

The classical Perceptron model seems to be predestined for solving this discrimination
task.

The HAGEN chip, which implements a Perceptron with McCulloch-Pitts neurons, inte-
grates its weighted inputs by summing up currents in an analog way (see sec. 2.1.1). This is
very close to what happens in a neuron’s membrane, see eq. 1.8 and 1.12. The instantaneous
integration of the currents on the chip is a good approximation, because in High Conduc-
tance State time-scales of total membrane conductance become the shortest of all time-scales
involved in neural information processing.

For all these reasons it is a justifiable approach to use the HAGEN chip for simulating
High Conductance States. Modeling synaptically induced currents and utilizing the binary
outputs to decide whether the current sum is large enough to make the neuron fire is a good
approximation for reality. To sensibly reproduce the difference current defined in eq. 1.12 on
the HAGEN chip the provided binary inputs might be not accurate enough, although the
synaptic weights can be configured with a precision of 11 bits. But dynamically changing the
weights would take much too long to obtain simulation efficiency for technical reasons. The
problem was solved by pooling more than one binary input for multi-bit (integer) synapses
and apply conductance courses at these new inputs.

In conclusion, the HAGEN chip can be configured as a simulator of neurons in High
Conductance State without the need for generating or inducing high activity. Short mem-
brane time-scales due to high membrane conductances and a simple spiking condition can
straightly be translated to intrinsic features of this Perceptron implementation. The new
way of simulation is conductance-based since it takes advantage of consequences from High
Conductance State. Yet its computation complexity can be compared to that of a Perceptron
model. Sec. 2.1 gives detailed information about the configuration and modifications applied
to create a spiking environment for HAGEN.

1.3. LIQUID COMPUTING 15

1.3 Liquid Computing

Previously it was claimed that the question of how intellectual and computational power
manifests within the brain has to be solved yet. An important step towards understand-
ing the emergence of the brain’s capabilities was made by Wolfgang Maass et al. [14] and
independently by H.Jaeger [10]. They suggested a computational model different from the
common and well known Turing machine. Both developed a mathematical theory describing
computation in recurrent dynamical systems without stable states. In what follows, Maass’
work and nomenclature will be referenced.

The liquid computing concept provides anytime parallel processing of multi-modal con-
tinuous input data. This is in contrast to common computer systems based upon the Turing
theorem which perform given computation tasks in a successive but not real-time 4 and not
parallel way.

A universal computer

According to Maass’ model, a trained linear readout connected to a “sufficiently complex
recurrent circuit” [15] of non-linear devices can, at a time t > s, extract information about
a continuous input stream u fed into and perturbing this medium at a time s. The circuit
acts as a high-dimensional and non-linear filter with memory. In former work Maass provided
criteria describing the quality of such a complex filter system [14].

A so-called Liquid State Machine (LSM) necessarily consists of both a liquid and a linear
readout which has to be trained according to the users demands. It represents a universal
computer for if only the liquid is high dimensional and complex enough it can approximate
every function solvable by a finite state machine F. The accuracy of approximation depends
on the complexity of the liquid. The fact that a linear readout is sufficient makes training
easy and robust [15]. Changing the function that has to be predicted only needs a change of
the readout, the liquid itself keeps fixed.

Fig. 1.8 shows the formal scheme of a LSM. The machine itself consists of a filter LM and
a readout function fM , which has no memory and permanently translates the filter output
xM (t) to some target output y(t). Even if fM is just a linear readout it can be trained to
obtain every (even non-linear) target function of the input u(s) with 0 ≤ t− s < τmem. Here
τmem denotes a typical time describing the memory capacity of the liquid.

M
L

f
M

x (t)M

u(). y(t)

Figure 1.8: Scheme of a Liq-
uid State Machine according
to W.Maass. See text for de-
tails.

4For “real-time computing” the result of a computation is needed within a definite short time-window

16 CHAPTER 1. INTRODUCING FACTS AND CONCEPTS

A glass of water exposed to some mechanical excitation would fit this model and is an
illustrative example of a suitable medium’s fluid character. Induced oscillation of the water
molecules could be measured via pressure sensors or optical devices and thus be transmitted
to some linear readout as plain numbers. In [4] such a real-world implementation of liquid
computing is modeled and successfully trained. The capability of spiking neural networks to
represent a LSM’s filter has been shown by Maass et al. in [15].

1.3.1 Liquid Computing with a Perceptron

In [1] Nils Bertschinger and Thomas Natschlaeger suggested liquids of McCulloch-Pitts
neurons with binary outputs taken from {−1, 1}, working in discrete time domain. They
proposed an easy instruction to randomly generate network topologies, given only the follow-
ing parameters to vary. Be N the total number of neurons within the net. Each of the N
neurons then gets k incoming connections from randomly chosen neurons. The weights of the
incoming connections are drawn from a zero-centered Gaussian distribution with variance σ2.
Such a network is called input driven as the external input signal u(t) is connected to every
neuron. For every time step it is drawn randomly from {ū − 1, ū + 1} with equal chances, ū
being a constant bias.

1.3.2 The “Edge of Chaos”

Bertschinger et al. supposed the computational performance of a liquid represented by a
neural network generated according to their instructions to be restricted to a limited region
of parameters. They found criteria for their networks to deliver reproducibly well working
liquids. Shortly, the two-dimensional parameter space spanned by k and σ2 (the other pa-
rameters being fixed) hosts two characteristic regions of network activity. The first exhibits
deterministic behavior, i.e. nearly all neurons within the network will follow the input. The
second extreme is chaotic behavior (the term will be justified within this study), as due
to strong network connectivity the vector of all neurons’ outputs, the “liquid state”, shows
high activity that seems to be mostly independent of the recent input. Indeed the informa-
tion saved within this liquid’s states very quickly gets lost in both characteristic regions, see
sec. 3.2 for a method measuring this loss. A computational and memory performance (see
definition of the measure memory capacity below) significantly larger than zero can only be
obtained when creating a network with parameters taken from the band separating those two
phases in parameter space. The first to describe this border was C.G.Langton [11], he called
it the “edge of chaos”.

The author of [28] managed to transfer the software simulation experiments of Bertschinger
et al. to the HANNEE and HAGEN system and thus was able to let the Perceptron hardware
work as a liquid. This also meant to use IO values {0, 1} for the inner neurons instead of
{−1, 1}, as Bertschinger did. Hence some modifications regarding the input forcing had to
be made, which affected the liquid’s performance (see [28] for an analysis of this problem).
Another limitation given by the hardware approach was the fact that synaptic weights on
the HAGEN chip can not be chosen freely but only from a bounded interval of values. The
characteristic edge in parameter space could be shown on this VLSI platform and a measure
for the chaotic character of distinct parameter regions described above was developed.

During the work for this study those methods were adapted to the special requirements of
a multi-bit and temporally pseudo-continuous approach and have been successfully integrated

1.3. LIQUID COMPUTING 17

into HASTE. Hence it is now possible to perform liquid computing on a VLSI Perceptron with
nearly arbitrarily resolved, modeled input shaping and the possibility of spatial and temporal
feedback path manipulation. Sec. 2.1 gives more information about technical details.

1.3.3 Memory Capacity

Researching computational performance of a liquid state machine requires a measure,
which is, according to Bertschinger’s terminology, given by its memory capacity (MC). More
precisely it values the capability of the system to extract distinct information about the input
applied to the liquid some time ago. The larger this time gap may become without prediction
of target values significantly worsening, the larger a liquid state machine’s memory capacity
is said to be.

A liquid state machine M ’s quality of predicting a distinct target function can be measured
via the so-called mutual information (MI). For the readout of M and a given input stream a
target value y(t) is defined for every time t. The value actually predicted by M is denoted
by vM(t). The mutual information then is

MI(vM , y) =
∑

vM
′

∑

y′

p(vM
′, y′) log2

p(vM
′, y′)

p(vM
′)p(y′)

, (1.17)

where p(vM
′) = Pr {vM(t) = vM

′} and p(vM
′, y′) denotes the joint probability. The setup

described here always implies v ∈ {0, 1}.
Let the target value y(t) be determined by the input of a finite time window in the past.

This window shall have a constant size and the interval between the last time step within
this window and t shall be constantly τ . In other words, the time window defining the target
output yτ moves with t, but shifted by τ . The memory capacity of M is evaluated by training
it to predict yτ correctly for each value of τ ≥ 0 and sum up the resulting values MI(vM ,τ , yτ).

MCM =
∑

τ≥0

MI(vM ,τ , yτ) . (1.18)

The example to follow shall illustrate this definition: A liquid state machine with binary
IO and perturbed with one single bit-stream is trained to tell the parity of n consecutive
input values fed in τ, (τ + 1), ..., (τ + n − 1) cycles ago. Thus, τ denotes some time shift into
the past. The problem becomes more difficult to solve the larger τ is, as the liquid has to
keep the information about the bits of interest for up to τ + n − 1 cycles.

Per definition, the memory capacity of a liquid is the discrete integral of MI(τ) over
all values of τ ≥ 0. As the liquid state machines regarded here are working in discrete
time domain τ is given as a dimensionless integer denoting number of cycles, but actually
represents a measure for time. The memory capacity can be understood as a time constant
of information decay or “echo” within a liquid.

18 CHAPTER 1. INTRODUCING FACTS AND CONCEPTS

Chapter 2

Architectural Overview &
Implementation

In the previous chapter many concepts have been introduced, intending to make the
following sections comprehensible. Since the theoretical background and motivation are now
given, in this very chapter the more tangible part of the study’s fruit will be presented.

Basis for all experiments described in the next chapter was the development of a flexible
experimental platform which will be specified below. The design work is considered to be
a main element of this study and happened in cooperation with its tutor, Michael Reuss.
Roughly speaking, the developed platform extends devices and methods which interface and
control a hardware Perceptron in order to simulate cortical neurons in High Conductance
States. The system as a whole is new, most of its components are not. Nonetheless all parts
involved into the setup have to be specified more or less elaborately depending on the necessity
of detailed information for understanding the functionality.

Two main pillars of the simulation platform will be described extensively. On the one
hand details of the hardware core will be given, namely the HAGEN chip already sketchily
introduced in sec. 1.2.3. This happens in terms of its control, interfaces, features and anoma-
lies. On the other hand the software framework will be introduced, which represents the basis
for nearly all software work done during this study.

Then the extensions developed for the programmable logic device in cooperation with and
realized by Michael Reuss are presented. Preceding to this hardware implementation a pure
software version of the planned system has been created by the author in order to support
the design process. This will be described together with software developed to interface and
utilize the hardware extensions.

Finally the solutions for special requirements will be proposed, i.e. how to configure the
system for distinct purposes.

2.1 The HAGEN Spike Translation Environment (HASTE)

In the introduction the basic idea of using a hardware Perceptron for cortex simulation
already was proposed. It was shown that the convenient spiking condition for neurons in the
High Conductance State can be simulated utilizing intrinsic features of the VLSI Perceptron
HAGEN (see sec. 1.2.5). A key element of such a simulation is the on-chip superposition of
conductance courses (CCs) arriving from different synapses.

19

20 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

Since Perceptrons have only binary in- and outputs, there is no way to model a conduc-
tance course at a single synapse under normal conditions. Hence, a new idea was to pool a
distinct number of binary synapses to one virtual integer synapse, see figure 2.1(a) and (b).
By this means, multi-bit values can be applied to the bundled inputs and exceed plain on-off
information. But shaping synaptic input into a Perceptron in both time and amplitude has
to be performed by some kind of device. Reasonably this device is located in front of the
pooled binary synapses, receives an input itself and then generates and applies some resulting
information to the multi-bit unit.

In order to generate input courses over more than one cycle this device needs memory.
Since the information that has to be transferred to the neuron is thought to represent synaptic
conductance courses, such an input generator will be called conductance course generator.
Fig. 2.1(c) shows the schematic of a first neuron prototype. It receives binary input bit streams
at its synapses A and B. These streams are interpreted as pseudo spike trains, which has to be
explained. The whole Perceptron setup works in discrete time domain, therefore the states of
neurons and synapses can only change from one network cycle to the next. During one cycle
period Tsys a bit can merely exhibit 1 or 0. A pseudo spike train is a bit stream where the
value 1 denotes “a single spike occurs during this period” and 0 means “no spike occurs during
this period”. To simulate real spike trains with this method, the simulated time per network
cycle Tsim has to be selected. The ratio νsim = Tsys/Tsim is a measure for simulation speed.
For νsim = 1 the simulation runs exactly as fast as the reality it emulates. The presented
way of bit stream interpretation has some intrinsic constraints. The maximum codable spike
rate is given by the frequency of network cycles fmax = (Tsim)−1. The occurrence of a spike
cannot be identified with an error less than δspike = Tsim/2. Thus a so-called interspike
interval (ISI), denoting the period between two subsequent action potentials, cannot be given
with an accuracy better than δISI = Tsim. Hence the simulated time per network cycle Tsim

should be selected large to keep errors low, but not too large in order to uphold simulation
speed. In what follows the inverse of Tsim, i.e. the number of network cycles per simulated
time unit, will be called temporal resolution or ρtemp.

On the one hand, the conductance course generators were developed by Michael Reuss
and the author according to their demands and therefore could be designed with nearly
arbitrary functionality, including the ability to interprete pseudo spike trains. On the other
hand, a hard-wired McCulloch-Pitts neuron cannot be manipulated to deliver pseudo spike
trains with selectable temporal resolution or even exhibit features like a refractory mechanism.
Therefore its the environment of all unmodifiable devices that has to be designed in a way that
the binary output can be reasonably interpreted as information about the neuron’s spiking
behavior. The basic idea to solve this task was introduced in sec. 1.2.5: The output y of a
hardware neuron just tells whether the ratio of conductances fed into it is large enough to
make the virtual effective reversal potential exceed the spiking threshold (then y = 1) or not
(y = 0). See fig. 2.2(a) for illustration. Consequently, for all times when y is one the neuron
is said to fire at its maximum firing rate, for all other times it is interpreted to be quiet.

Since the input of the prototype developed so far has to receive pseudo spike trains, but
its output does not deliver these, another processing step has to be implemented between
the output of a neuron and another neuron’s input. This process must implement a kind
of refractoriness by truncating a 1-sequence for a certain dead time. Fig. 2.2(b) shows a
scheme of this concept. The output of a neuron including both a refractory mechanism and
a conductance course generator at each of its synapses (indicated in light blue in the figure)
can be fed back to every other neuron of the same type.

2.1. THE HAGEN SPIKE TRANSLATION ENVIRONMENT (HASTE) 21

b

c

d

e

y

a

f

(a) Plain McCulloch-
Pitts neuron

b0

b1

b2

a
a

1

2

a 0

y

(b) Pooling synapses

b0

b1

b2

CC gen

CC gen

a
a

1

2

a 0

y

B

A

(c) Applying input generators

Figure 2.1: In (a) a single
Perceptron neuron with i in-
put synapses (here i = 6) is
shown. All inputs and the
output are binary, the synap-
tic weights (colored) are drawn
from � . As a first step
towards a HASTE neuron n
synapses (here n = 3) are
bundled (b). A generator can
be connected to every synapse
pool, supplying the n binary
synapses with binary coded
values. Therefore the weights
have to be graded, see text
for details. In (c) the first
prototype of a HASTE neuron
can be seen, now having only
i/n binary inputs left. The
conductance course generators
interpret their input as be-
ing spike-coded, i.e. every cy-
cle the input is 1 denotes that a
spike arrives within this cycle’s
period. Reactively the genera-
tors apply signals to the neu-
ron that can take more than
one cycle and that can be
shaped in terms of their am-
plitude.

In what follows, the implementation of the neuron model presented so far will be shown.
Therefore it is necessary to firstly give more details about the Perceptron chip HAGEN, which
was on hand but inalterable, and about its environment, which was manipulated to obtain
the desired spike interpretation.

2.1.1 The HAGEN Chip - Technical Details

The Electronic Vision(s) group in Heidelberg has developed a hardware Perceptron which
implements 256 McCulloch-Pitts neurons with 128 binary inputs each. The resulting 32768
synapses can be given individual weights ranging from −1.0 HAGEN weight units (hwu) to
1.0 hwu with a nominal precision of 10 bits plus sign [26]. Each synapse is a current memory
cell, it stores a current which is proportional to the configured weight. If this current is
positive, it is said to be excitatory, else inhibitory. Each neuron n receives the currents
stored by its input synapses, parted into the sum of excitatory components In

+ and the sum
of inhibitory components In

−. The neuron’s output on basically is determined by the ratio of

22 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

y
A

B

CC

CC

(a) Neuron with conductance course (CC) generators

y1

y2

y3

A

B

A

B

~

~

Ref Filter CC

CCRef Filter

(b) Preprocessing the inputs (y1 and y2): refractoriness plus shaping

Figure 2.2: The output of a neuron prototype suggested in fig. 2.1(c) just tells
whether the simulated ratio of conductances is above a predefined value (output
is 1) or not (output is 0). Thus this output in not spike-coded and therefore
cannot directly be fed into another HASTE neuron as it was developed so far,
since these prototypes expect pseudo spike trains (a). In (b) this problem is
solved by installing so-called refractory filters. These filters receive the output of
other HASTE neurons (e.g. y1) and implement a dead time after every cycle this
output exhibits 1. For the time being this dead time is a fixed number of cycles
and therefore represents an absolute refractory mechanism.

these two currents,

on =

{

1 , if
∣

∣In
+/In

−

∣

∣ > 1

0 , else
. (2.1)

Due to the digital I/O of all neurons and the digital weight configuration but the analog
summation of synaptic currents this artificial neural network (ANN) is said to be a mixed
mode device. The analog current integration makes output computation very fast, the digital
interface allows high-speed inter-neuron communication and fast interfacing from outside.
The change of neuron states is synchronized. If the weights are kept fixed a sequence of input
patterns stored in the RAM can be applied with a frequency of 50MHz. This high speed
evaluation of up to 1.64 · 1012 connections/sec points up a main advantage of the hardware
approach. Changing the synaptic weights costs much more time compared to the efficacy of
the common operation mode. A maximum weight update rate of 400 · 106 weights/sec can be
achieved.

The 256 neurons are divided into four network blocks on the chip, each of them containing
64 neurons. Within each block arbitrary feedback from every neuron to every neuron is
possible. Feedback going from one network block to another is not arbitrarily possible due
to limited preset wires. Another constraint is the discrepancy of 128 input synapses per
neuron versus 256 neurons within the net. Using feedback does not slow down the system.

2.1. THE HAGEN SPIKE TRANSLATION ENVIRONMENT (HASTE) 23

Fig. A.1 shows the feedback connections that are possible on HAGEN and also illustrates the
arrangement of the neurons into four network blocks.

The chip was designed for a fabrication process that is capable to generate spatial struc-
tures of down to 0.35µm. Therefore a very high synapse density of about 4 · 103 mm−2 is
achieved. Process variations during chip fabrication have to be compensated by the applica-
tion of calibration shifts on the synaptic weights in order to uphold synaptic accuracy [26].
Periodic weight refreshing allows for parasitic effects like leakage currents. Due to the density
and pure mass of transistors on this chip it is also referred to as a very large scale integration
(VLSI) design.

The HAGEN chip is controlled by an FPGA via so-called low voltage differential signals
(LVDS), see fig. 2.3. The FPGA applies the input patterns from a RAM and writes the
ANN’s output back to the same storage device. It also provides the configuration of the
synaptic weights by sending them to digital-to-analog converters (DACs), which prepare the
primarily binary values for the analog current memory cells. The programmable gate array
itself is accessed by a PC via PCI. The PC runs the administration software (see sec. 2.1.2)
and controls the network processing from a higher level.

Figure 2.3: The basic architectural setup embedding the VLSI Perceptron
HAGEN. The ANN chip is placed on a module which is connected to a PCI-
based FPGA board via LVDS. The FPGA provides all control signals and input
data for the chip, controls the DAC and stores HAGEN’s output. The board itself
is connected to a PC running a user-friendly software interface.

2.1.2 The Software Framework

The Electronic Vision(s) group has developed a powerful software framework for control-
ling and utilizing custom design VLSI devices implementing artificial neural networks. The
software is called HANNEE, which abbreviates “Heidelberg analog neural network evolution
environment”. As the name already tells, a main direction of research on ANNs in this group
are evolutionary algorithms for network optimization.

All HANNEE code is written in the languages C and C++. Although the integration
of nearly arbitrary network devices is possible, the focus of this section will be on interfac-
ing the HAGEN system, because it was utilized for this study. The HANNEE framework is
object-oriented, i.e. in particular the ANN devices themselves are represented by their own
classes, including many methods. The software provides a very comfortable graphical user

24 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

interface (GUI) allowing to run experiments on the HAGEN system without knowing very
hardware specific details. Many applications and tools are already integrated into the project,
for example training algorithms for the HAGEN chip and methods for input pattern genera-
tion. Compensation of the so-called fixed pattern noise, i.e. weight distortions due to process
variations during the chip fabrication, is already set up and can easily be applied.

The most important feature of HANNEE in the context of this study is the possibility to
integrate new software modules easily. All classes representing real objects or implementing
solutions that are applied to such are the last link in a chain of inheritance with very arbitrary
classes on the top level. Thus, creating classes similar to already existing objects does not need
a completely new description but just a new inheritance of a superior class which describes
the new object’s functionality and attributes arbitrarily enough. Fig. 2.4 shows an inheritance
diagram for the HagenData class. A HagenData object is the software representation for one
network block on the HAGEN chip and holds all information concerning synaptic weights,
in- and output data, usage of feedback connections et cetera. The tree exemplarily shows
the inheritance principle which was applied consistently throughout the whole HANNEE
framework.

Figure 2.4: Inheritance diagram for the
HagenData class, the software represen-
tation of one HAGEN network block in
HANNEE. HagenData is derived from
HChipData, which provides hardware
specific interfaces and methods for ar-
bitrary ANN network blocks. HNet-
Data interfaces HChipData for all non-
hardware related classes in HANNEE.

All software that has been written for the implementation of HASTE was integrated into
HANNEE. This provides a comfortable usage that is consistent with the appearance of the
GUI hitherto. An instruction of how to integrate the HANNEE code extensions into the
framework in order to use HASTE is given in sec. A.2.2.

Fig. 2.5 shows a screen-shot of the HANNEE GUI.

2.1. THE HAGEN SPIKE TRANSLATION ENVIRONMENT (HASTE) 25

Figure 2.5: A screen-shot of a typical HANNEE workspace. The “network man-
ager” HNetMan encapsulates the access to network hardware for the rest of the
program. In this picture the HNetMan holds four instances of the class Haste-
Hagen, which will be introduced later in the text. The HNetData Editor is an
editor for the weight matrix of all neural network classes derived from HNetData,
in particular for the HasteHagen object and thus for the HAGEN chip configu-
ration, see sec. 2.1.3. The Hannee ObjectManager can instantiate and delete all
kind of objects available in the HANNEE class tree. The HHasteSweepAlgo is a
algorithm object including many sub-classes. Among others, a “Network Gener-
ator according to Maass” can be seen. This generator will be described explicitly
in sec. 2.2.1.

26 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

2.1.3 Extending the Components

This subsection describes how the extensions suggested in sec. 2.1 have been transferred to
the HAGEN system. The first part will explain the implementation of additional functionality
in the controller FPGA. The second parts deals with the new software written for HASTE.

Adding functionality to the FPGA

The FPGA programming was extended in order to realize the refractory filters and the
conductance course generators. The VHDL (a hardware describing language) code determin-
ing this additional functionality of the reconfigurable device was written by Michael Reuss.
In addition to the filters and generators a flexible feedback router was implemented. Since for
the operation of HASTE all neuronal signals have to pass through the FPGA (i.e. through the
filters and generators) once every network cycle, the implementation of an additional routing
device does not slow down the system significantly. The router provides the possibility for
all output neurons to be fed back to every other neuron on the chip, independently of the
network block the source or target is located on. This new device originally was developed for
HASTE but can be utilized independently of it by all HANNEE users. Fig. 2.6 illustrates the
principle of routing. The router can delay every signal fed back to the chip. This global trans-
mission delay tFB of feedback can only be configured with the same value for all connections
and is limited to a region of 0 to 3 network cycles due to the lack of enough programmable
hardware.

128 input pins of one HAGEN block (0...127)

64 output signals from LOWER RIGHT block (0...63)

64 output signals from UPPER RIGHT block (0...63)64 output signals from UPPER LEFT block (0...63)

64 output signals from LOWER LEFT block (0...63)

128 external input signals from HNetData (0...127)

Figure 2.6: The feedback router developed for HASTE has to distribute 128
available input pins per HAGEN network block to 384 possible candidates. Every
block receives the output signals from all 256 neurons within the net, divided into
four times 64 signals from each block. Additionally 128 external bits provided
by HANNEE (more precisely by the HNetData object representing this HAGEN
block) have to be regarded. These inputs form three rows, i.e. every pin has three
possible candidates. The router can select an arbitrary row for every single input
pin. Each feedback signal can be delayed by the router for up to three network
cycles.

2.1. THE HAGEN SPIKE TRANSLATION ENVIRONMENT (HASTE) 27

Not all of the 128 available input pins per HAGEN network block were bundled to multi-bit
inputs. For the following it is helpful to agree on a block and pin enumeration: The network
blocks will be distinguished from each other by their positions in fig. 1.6(b), i.e. upper left,
upper right, lower left and lower right, see fig. 2.7. Using the same figure, a pin enumeration
will be used going from 0 to 127 for every block, starting at the leftmost pin.

Due to the necessity of calibration (see sec. 2.1.1) two input pins per block were needed
to apply constant bias inputs [26], namely the numbers 125 and 126. Additionally, some
pins might be required to feed signals directly into the chip, i.e. without being modulated
by a refractory filter and a CC generator. This makes sense if, for example, some statistical
background has to be simulated which cannot be realized by the output of CC generators.
Another reason for not using all available input pins for the application of CCs is the fact that
the synapses located next to the edge of the chip (number 127 on both network blocks on the
right) respond differently to input than all others. This can be explained with the different
surrounding on the chip: The synapses close to the edge are significantly more affected by
parasitic capacitances than synapses more distant to the edge.

Hence, eight pins per network block were reserved for direct input without CC generators
or refractory filters. For the reasons mentioned above three of them are the numbers 125,
126 and 127. Providing eight direct-ins automatically means that eight of the 128 possible
feedback connections cannot be used. Therefore the remaining five were located such that
on every block the same output neurons are affected: The pins 124, 60, 61, 62 and 63 are
freely available for generating background noise, thresholds et cetera. Providing eight pins
for direct-ins means leaving 120 pins for CC generators. This number can be divided by 1, 2,
3, 4, 5, 6, 8, 10, 12 and more. Thus a large spectrum of conductance course resolutions can
be realized for these remaining pins without skipping any.

The figures 2.7, 2.8 and 2.9 illustrate the solution that has been developed to implement the
refractory filters, the conductance course generators, the direct-ins and the feedback router for
the HAGEN chip. They show the HASTE system exemplarily for 4-bit conductance courses
and fully characterize the extensions.

Actually all 256 neurons can always be used as output neurons, but not all can be fed
back. The direct-ins allow up to 240 feedback connections to CC generators. But if ρamp

bits are used per generator, the number of HASTE neurons that can arbitrarily be fed back
decreases to

N(ρamp) = 240/ ρamp . (2.2)

If for example ρamp is two, every second output neuron is simply ignored.

The number ishape of shaped inputs per neuron depends on the shape resolution of the
generators either,

ishape(ρamp) = 120/ ρamp . (2.3)

The number of direct-ins remains unaffected by ρamp.

The CC generators were implemented as look-up tables, i.e. every time a spike arrives
at their input, they start applying a sequence of bit vectors stored in their own registers.
These registers have to be filled with reasonable bit arrays provided by the software. Since
the FPGA is limited in its size, the registers have a length of 16 bits, i.e. conductance course
sequences cannot be longer than 16 network cycles for the time being. This limits the possible
temporal resolution. For ρtemp = 2000 steps/sec the maximum length of a conductance course
would be only 8ms, for example.

28 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

lower right

Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter

0 1 2 30 1 2 30 1 2 30 1 2 30 1 2 30 1 2 30 1 2 3 0 1 2 3
CC GenCC GenCC GenCC GenCC GenCC GenCC Gen CC GenCC Gen

0 1 2 30 1 2 3 0 1 2 3
CC Gen CC GenCC Gen CC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC Gen

R
ef

 F
ilt

er

to other blocks

6464 64

64

64

64

64

from other blocks

external input

128

upper rightupper left

ou
tp

ut
 n

eu
ro

ns

input pins

Synapses

lower left

CC generators

Refractory Filters

Feedback Router

Figure 2.7: Upper: Photograph of the HAGEN chip, including the labeling of
the four network blocks. Lower: Schematic of one single HAGEN block (any of
the four) with extensions for spike interpretation. The large blue area denotes the
synapses. Input data comes from below, the output neurons are located on the
right (yellow). Every dot within this area is a possible connection between the
input pin under and the output neuron right of it. Every neuron output passes
through a refractory filter and is routed to all four network blocks. Consequently
the output of all four network blocks arrives at the input. Additionally to these
feedback signals, the external input provided by the software competes for the
existing pins. The feedback router distributes the candidates to the available CC
generators and direct-ins, see fig. 2.6.

2.1. THE HAGEN SPIKE TRANSLATION ENVIRONMENT (HASTE) 29

64 6464

64

64

64

Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter
Ref Filter

0 1 2 30 1 2 30 1 2 30 1 2 30 1 2 30 1 2 30 1 2 3 0 1 2 3

CC GenCC GenCC GenCC GenCC GenCC GenCC Gen CC GenCC Gen
0 1 2 30 1 2 3 0 1 2 3

CC Gen CC GenCC Gen CC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC GenCC Gen

128

external input

from other blocks

to other blocks

64

R
ef

 F
ilt

er

Feedback Router

Figure 2.8: Close-up view of a region within the schematic already described
in fig. 2.7. Here the synapses, the individual refractory filters, the conductance
course generators and four direct-ins can be seen.

30 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

w0w1 w3w2

0 1 2 3

CC Gen

Figure 2.9: Close-up view of a 4-bit conductance course generator with its con-
nection to the synapse columns of a HAGEN block. In this example the generator
has four outputs, enumerated from 0 to 3. It applies binary coded integer values
(ranging goes from 0 to 15) to the four input pins. This only makes sense if the
configuration of the weights wi allows for the input coding. For every pool of
weights the condition wi = 2 ·wi−1 must be fulfilled. The effective total weight of
the multi-bit synapse is Weff =

∑

i wi.

Also due to resource limitations, multiple CC generators have to share one look-up table.
The maximum number of tables tlook−up is again given by ρamp,

tlook−up(ρamp) = 30/ ρamp . (2.4)

These tlook−up look-up tables have to be distributed to the N(ρamp) generators. Let mgen

be an enumeration of all generators located on one block, starting and ending at the two
outmost ones. In a first step all neighboring generators share one table. In a second step all
generators with the same value m̃ = mgenmod(60/ ρamp) again use the same storage space.
This makes a total sharing rate of eight generators per look-up table. The contents of the CC
generators respectively the look-up tables is generated by the software. A complex mapping
algorithm has to guarantee that all synapses with different conductance courses are mapped
to generators with different look-up tables.

In case the global transmission delay tFB is set to zero the extensions applied to the
FPGA increase the duration for one network cycle by 60% compared to the normal HAGEN
operation speed. For all values of tFB > 0 there is even no slow-down of the system.

Adding functionality to HANNEE

In order to use the extensions made on the FPGA, the HAGEN administration software
had to be adapted and extended as well. A software representation for the new ANN was
developed, called HasteHagen. This class inherits HagenData and therefore can be used by
all algorithms that have been designed to interface the HAGEN chip. This is an important

2.1. THE HAGEN SPIKE TRANSLATION ENVIRONMENT (HASTE) 31

feature, because many methods that have been developed by other members of the Electronic
Vision(s) group were utilized for the HASTE experiments to be described in the next chapter.

HasteHagen itself includes other new classes that have been designed especially for HASTE,
namely multiple instances of the class for CC generators (due to historical reasons it is called
HPSPGenerator) and one for the extended feedback (FlexConnectInfo). For the configuration
of the new feedback possibilities a new GUI tab was created for HChipData objects. Thus
the feedback router can be configured by every user in a convenient way. A HPSPGenerator
object represents a whole CC generator and can even replace the FPGA generator extension
by pure software functionality. This feature was used when the FPGA version of HASTE was
not yet ready to work (see sec. 3.1). Using a CC generator purely in software needs commu-
nication between HAGEN and the PC every single network cycle. Since this has to happen
via the PCI bus, the software approach is very slow compared to the FPGA based operation
mode.

More classes encapsulate the discretization of continuous conductance courses to the avail-
able amplitude integer values and time steps and the transfer of these courses to the look-up
tables on the FPGA. Their functionality and optimal configuration will be explicitly discussed
in sec. 3.1.1.

The global refractory mechanism implemented on the FPGA does not have its own soft-
ware representation, since there is only one single parameter to adjust for the time being. But
additionally to the optional software operation mode of the CC generators, a class has been
created that provides individually adjustable refractoriness for every single HASTE neuron –
again only software-based and therefore slowing down the system significantly.

A pure software operation mode can be selected that emulates the CC generators with
more flexibility than the hardware solution It also provides individual refractoriness for every
single neuron and a software-based feedback router. In what follows this operation mode will
be referred to as SoftHASTE.

All new software written for HASTE is well documented, mainly with Doxygen1.

Parameters and graphical user interface

The graphical user interface (GUI) provided by HANNEE and the integrated HASTE
extensions allow to abstract nearly all hardware specific details. All adjustable parameters
within the HASTE specific GUI determining neuronal or synaptic time constants or specific
periods (e.g. refractoriness) can be configured in milliseconds. This means that the user
does not have to think about the selected temporal resolution and the consequences arising
therefrom for the mapping of the continuous original values to discrete ones.

1Doxygen is an open-source tool that extracts specific source code (among others: C++) comments and
creates a comfortable HTML documentation

32 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

A list of the most important parameters that determine the configuration of HASTE
neurons is given in the following info box:

Adjustable parameters provided by HASTE

• Temporal resolution [network cycles/simulated second]

• Number of bits per synapse (ρamp)

• Number of bits used for one single conductance course amplitude

• Shape of conductance course

– According to suggestions by Maass [15]

– According to suggestions by Shelley [30]

• Time constant of conductance course for excitatory synapses (τexc) [ms]

• Time constant of conductance course for inhibitory synapses (τinh) [ms]

• Transmission delay for all feedback connections (dFB) [network cycles], only 0,
1, 2 and 3 possible

• Refractory period for all neurons, tref [ms]

Due to its larger flexibility, SoftHASTE provides some additional and more specific pa-
rameters, for example separate refractory times for excitatory and inhibitory neurons and an
arbitrary transmission delay.

A very important feature of the software created for HASTE is the I/O visualizer. During
the application of an input sequence the network in- and output can be recorded and visualized
in a separate window. For SoftHASTE it is even possible to display the output courses of all
CC generators. This does not work for the hardware generated conductance courses, since
they cannot be read out. Fig. 2.10 shows an example of this I/O visualizer as it appears in
SoftHASTE.

2.1. THE HAGEN SPIKE TRANSLATION ENVIRONMENT (HASTE) 33

Figure 2.10: Screen-shot of the HASTE visualizer. The large window in the
background has three sub-windows. The upper one displays the input injected
into the network. Every small red bar denotes an input bit being 1. Each row is
another pseudo spike train. Input for different network blocks is colored differently,
but since only one network block is used in this case, all trains are red. The second
sub-window contains the output of one software CC generator vs. time in ms. The
conductance courses can be seen clearly. Obviously they occur in response to the
first input spike train. The small window in front of the large one allows to select
the displayed CC generator by its block and number. The third sub-window in
the large window shows the output of the network. Each row denotes one single
neuron’s output.

34 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

2.2 Methods

2.2.1 Network Generation and Mapping to Hardware

HASTE has been designed with the intention to simulate cortical neurons. Nonetheless
it provides a huge configuration space in order to provide maximum flexibility and to find
reasonable operating points. A finite region in parameter space is demarcated by typical
values found in biology.

Neuron parameters according to Maass

The setup of some experiments presented within this study (see sec. 3.2.3) was strongly
oriented towards the liquid computing experiments proposed in [15] by Wolfgang Maass.
Although the latter applied an I&F neuron model simulated merely in software, a lot of
parameters can directly be conveyed from Maass’ setup to the HASTE system. In [15] neuron
and synapse parameters are selected to fit measurements in rats’ somatosensory cortex best.
The refractory period for excitatory (inhibitory) neurons is given by texc

ref = 3ms (tinh

ref = 2ms).
As already mentioned above, HASTE unfortunately implements only one global refractory
period, at least for the time being. Hence, a parameter between the two given numbers should
be selected. In the referenced work, the postsynaptic current is modeled as an exponential
decay, Ipostsyn ∼ exp(−t/τs). This plain shaping will be used in some experiments to follow
(see sec. 3.1.1).

The time constant of this decay is given by τ exc
s = 3ms (τ inh

s = 6ms) for excitatory
(inhibitory) synapses. Maass proposes two different values for the interneuronal transmission
delay. For connections from excitatory to excitatory neurons it is set to tEE

trans = 1.5 ms, for
all others it was chosen to be ttrans = 0.8ms. Again this diversity of time constants cannot
be reproduced by HASTE due to the fact that it only realizes one global transmission delay.

Cortical circuits according to Maass

In [15] Maass also gives detailed instruction of how to generate network topologies ori-
ented to biological circuits. Due to the fact that the feedback capabilities of HASTE are
limited, mapping networks according to Maass to the available hardware is done as follows:
First an abstract three-dimensional network is generated purely in software. The generation
is performed by an object of the class HHasteMaassNetGen, which holds all necessary and
adjustable parameters determining the topology, connectivity and input of the network. The
network itself is represented by an instance of the class ThreeDNet, which provides manip-
ulation and access to all information via comfortable public routines. Up to this point no
restrictions had to be considered. But mapping this virtual three-dimensional representation
of a network to the available hardware neurons is a challenging task. Assume a given am-
plitude resolution ρamp for the synapses of HASTE. Then the number of provided neurons
Nreal(ρamp) is defined by eq. 2.2. The first condition for a proper mapping to the hardware is
that the number of abstractly represented neurons Nvirt is smaller or equal to the number of
neurons,

Nvirt

!
≤ Nreal . (2.5)

Otherwise distortion would be too strong, since some neurons would have to be skipped.
For example the ratio of inhibitory to excitatory neurons would be difficult to keep, or some

2.2. METHODS 35

parts of the network could even get isolated from the rest. The user interface therefore notifies
an error in case of Nreal being too large. The user has to change the configuration.

If eq. 2.5 is fulfilled, there still can be a discrepancy between the demanded feedback
connections and the available possibilities. A straight forward approach is to piecewise map
virtual connections to real wires until the hardware is completely occupied. But skipping
the remaining parts of the network possibly favors some areas within the three-dimensional
representation of the net and discriminates others. Again the danger of isolating parts of the
network from the rest arises. Thus the feedback connections that are dropped have to be
selected carefully. If a signal is fed into a single input pin of a HAGEN network block, it
easily can be connected to more than one output neuron located on this block by configuring
the weight array. Usually a single CC generator provides input shaping for more than one
synapse, i.e. more than one weight in the columns connecting the generator with the output
neurons is unequal to zero. The principle considered to yield best fairness for the skipping of
feedback connection is the following: If many neuron outputs compete for a distinct hardware
synapse, i.e. for the input of a CC generator, than the probability for a candidate to win the
pin is proportional to the number of synapses this generator has to supply.

36 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

The following box outlines the mapping algorithm implemented by the method mapHard()
being part of the class HMappingHaste2. This algorithm usually was applied when networks
generated according to Maass’ instructions had to be mapped to the available hardware.

Mapping an abstract network to the available hardware

• Given the vector n representing all neurons in software

• Given b network blocks with 64 hardware neurons each

• If the size of n is larger than b · 64: Notify error, stop!

• Sort n to obtain inhibitory neurons first, then excitatory → ñ

• Fill up blocks rotatively with elements of ñ

• For every input of every CC generator (pin): Count competing input signals

• For all external inputs:

– If an appropriate pin is completely free: take it, done!

– Else: Randomly select start pin, randomly select direction for search

– While selected pin already occupied by another external input:

∗ Consider pin next to this in selected direction

– If all pins have been tested and no one was free: Notify error, stop!

– Else: Found an appropriate pin, take it, done!

• For every input of every CC generator (pin):

– If external inputs take priority over feedbacks and if there is an external
input competing for this pin: Gets it!

– Else: Select winner randomly with respect to the number of synapses
each input represents on this block

– Update flags and data containers for hardware configuration

The model (and its software representation) locates all somata on the integer points of a
three-dimensional grid in space. The Euclidean distance D(a, b) between two neurons a and
b determines the probability of a connection a → b,

Pa→b = C · exp
(

−D2(a, b)/λ2
)

. (2.6)

Thus it is more likely for somata with a small spatial distance to be connected than for
those with large distances. The parameter C depends on the types of neuron a and b, i.e. if
they are excitatory (E) or inhibitory (I). Maass suggests values of CEE = 0.3, CEI = 0.2,
CIE = 0.4 and CII = 0.1. The parameter λ determines the degree of connectivity for the
whole network. Maass selected λ to be 2.0. Fig. 2.11 shows a spatial grid with connections
generated according to Maass’ instructions.

Maass also proposes values for the synaptic efficacy A(P1P2) of connections from a neuron
of type P1 to a neuron of type P2, P1, P2 ∈ {E, I}. In the I&F model applied in [15] this

2.2. METHODS 37

Figure 2.11: Neural network topology according to Maass. The somata are
located on the integer points of a three-dimensional grid in space (a). The prob-
ability of two neurons to connect to each other depends on their spatial distance
and on their types, i.e. if they are excitatory or inhibitory (see eq. 2.6). (b) shows
the connection cloud of two selected neurons. (c) illustrates a network generated
according to eq. 2.6 with all of its connections. Figures taken from [15].

efficacy denotes the relative amplitude of the exponentially decaying currents the synapses
respond with in case of arriving action potentials. Average values of AEE = 30nA, AEI =
60nA, AIE = −19 nA and AII = −19 nA and a standard deviation σ = A are suggested.

Because of the limited amplitude resolution a CC generator has at its output, the maxi-
mum amplitude produced by this device should always equal the largest integer value that is
codable with the available bits. Therefore, trying to apply the suggested values of A to the
generator amplitudes makes no sense. Another reason supporting this claim is the fact, that
a CC generator can supply both excitatory and inhibitory neurons at the same time. Hence,
the type of connection cannot be decided at the generator already.

The configuration of the HAGEN weight array defines which CC generator is connected
to which output neuron and which synaptic strength this connection exhibits. The weight
values have a resolution of 11 bits and therefore easily can be scaled. If the suggestions for A
shall be used for a realistic scaling of the simulated conductance courses, one must consider
that the spiking of the neuron is not determined by the sum of conductances but by the ratio.

Consider a HASTE neuron, i.e. an output neuron on the HAGEN chip receiving shaped
and differently weighted inputs from conductance course generators. Some of these generators
modulate input coming from excitatory, others from inhibitory neurons. Let SE(t) be the
sum of all courses arriving from excitatory neurons at a given time t and let SI(t) be the

38 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

corresponding sum for inhibitory inputs. The output of the HAGEN neuron exhibits 1 if
SE(t) > SI(t), otherwise it is 0.

Hence, the goal is to scale the synaptic weights in a way that the output neuron only
fires if the condition given by eq. 1.16 is fulfilled. Therefor the efficacy of connections with
an excitatory presynaptic neuron must be decreased by the factor qcrit, which is defined in
sec. 1.2.5. Regarding this transformation and the suggestions for A made by W. Maass, a
synaptic weighting Ã can be proposed for the usage with HASTE that results in a biologi-
cally inspired relative efficacy of different connection types:
ÃEE = 0.499 hwu, ÃEI = 1.000 hwu, ÃIE = −0.887 hwu and ÃII = −0.887 hwu. In prac-
tice the effective total weights of multi-bit synapses (see fig. 2.9) were drawn with a certain
standard deviation around their corresponding mean values. Due to the limited range of
applicable weights on the HAGEN chip the suggested standard deviation of 1.0A of the mean
had to be reduced to a constant value of 0.1 hwu.

Maass suggests to randomly select 20 %of the neurons to be inhibitory, the rest excitatory.
This corresponds to distributions found in real cortical networks.

Since for nearly every network generated according to this instruction with realistic param-
eter values the number of available feedback connections is insufficient, the mapping algorithm
described above was an important tool to avoid distortion of the topology character when
skipping some synapses.

2.2.2 Input Patterns

The usual way to run experiments on the HAGEN chip is to apply sequences of bit
vectors to its inputs and possibly enable feedback of the neurons’ resulting outputs. These
input sequences have to be generated by the controlling software, i.e. by some modules of
HANNEE. Before HASTE was realized there already was a bunch of input pattern generators
included in the default HANNEE setup.

Poisson spike trains

One of the most important for the experiments to follow is a generator for high-dimensional
bit streams with randomly Poisson distributed bits being 1. The term Poisson distribution
allows for the probability p(t1 − t0) of two subsequent 1-bits occurring at cycles t0 and t1.
These active bits can be interpreted by HASTE as spikes (see sec. 2.1), Poisson distributed bit
streams represent Poisson spike trains. This kind of spike distribution is commonly considered
to be a good estimation for the activity of cortical neurons, see [30]. Since such a randomly
generated bit stream does not contain information it is usually utilized for the simulation of
unspecific input or background. The Poisson spike train generator can be set to produce an
arbitrary frequency of spikes.

Random bit trains

Another type of bit stream generation that came into operation is the so-called Random
bit train: Every bit is set to 1 with a certain probability pon, randomly and independently
from all other bits. This type of bit stream with pon = 0.5 is best suited for parity tasks.

2.2. METHODS 39

Modulating input patterns

Due to the necessity of speeding up or down the information flow into a network, for some
HASTE experiments it was necessary to apply every single bit of a bit stream multiple times,
i.e. to blow up the stream in time domain. Therefore a new interface class, namely H?, was
written. This class implements the growing of arbitrary bit streams by a selectable integer
factor b. A new bit stream is generated by repeating every bit of the original stream b times.
This will be referred to as temporal blowup of a bit stream. Another modification is simply
stretching a stream, i.e. filling an arbitrary number of zeros between every pair of subsequent
bits. In what follows this will be called temporal blowup with zeros.

2.2.3 Utilizing MATLAB

MATLAB is a software product for numeric computation that is optimized for linear
algebra, i.e. particularly for matrix operations. It also is a powerful tool for the convenient
visualization of data. It has been applied on most of the raw experimental data retrieved for
this study in order to evaluate statistical errors and to plot the results in a clearly arranged
manner. In appendix A.2 the path where to find the sources is given.

40 CHAPTER 2. ARCHITECTURAL OVERVIEW & IMPLEMENTATION

Chapter 3

Experiments

The hardware implementation of HASTE was preceded by the creation of a pure software
version capable of exploring design variables, called SoftHASTE (see sec. 2.1.3). SoftHASTE
easily can switch parameters like synaptic amplitude resolution or the way of superposing
conductance courses (CCs) at one synapse. It can apply arbitrary and diverse CCs for every
single synapse. Thus in the beginning SoftHASTE was used to explore and cut down a huge
parameter space, preparing and supporting the realization of HASTE on the FPGA in the
long term.

The complexity of information processing performed within the experiments increases
during this study. In the first section of this chapter methods were developed for HASTE to
allow resolution variations without affecting output firing rates.

Although rate coding is very often considered to be the main mechanism of information
transmission in biological neural networks, it can not be the only way to convey information.
Rapid processing of visual stimuli in the brain for example was proven not to be compatible
with rate coding [33]. The concept of temporal coding can explain many features that are not
covered by rate coding [22]. Hence in the second section an important condition for temporal
coding is tested on HASTE: The diversity of interspike intervals.

The third section of this chapter deals with the application of liquid computing, which was
introduced in sec. 1.3.

3.1 Basic Studies

One has to cope with the fact that the HAGEN system is able to work only in discrete time
domain and that the chip provides just a finite number of neurons, synapses and feedback
possibilities. Due to these limited hardware resources the number of available neurons for the
HASTE extension had to be reduced by the factor n when pooling ρamp binary inputs to one
multi-bit unit (see sec. 2.1). To gain network topologies of reasonable complexity the synapse
resolution therefore had to be chosen low. This limited amplitude resolution of simulated
conductance courses and the finite temporal resolution ρtemp are obvious restrictions of the
HASTE system. As an example, fig. 3.1 illustrates the effect low resolutions can have on a CC
shape. The original conductance course these figures are based on is described by an equation
given further below in this section (eq. 3.1). The exact discretization method applied to the
continuous shape is an essential point of this work. It will be the subject of a subsection to
follow.

41

42 CHAPTER 3. EXPERIMENTS

The main goal of the HASTE approach was and still is to find out which characteristics
of synaptic behavior are essential for certain capabilities of the network like memory capacity
or self organization. In other words: How much precision for modeling a conductance course
is necessary to obtain a certain network feature?

Two design variables of HASTE dominate the accuracy of the simulation: ρamp and ρtemp.
An important feature of HASTE is the adjustable synapse resolution. Nonetheless results
of experiments with different shape resolutions must be comparable quantitatively. Conse-
quently a criterion to match the CCs modeled with different resolutions is required. Such a
criterion is described in sec. 3.1.1.

New questions arise from the possibility of input shaping by increasing synaptic amplitude
resolution. The function describing the temporal course of membrane conductance initiated
by an incoming spike is far from being indisputable and will be studied within this work. The
time delay of interneuron connections and especially the diversity of delays may also have an
impact on network capabilities.

It was a challenge to sensibly balance the flexibility and range of all required parameters.
The following experiments were intended to coarsely give an idea of how the system works
with different setups, mainly regarding temporal and CC amplitude resolution. They were
performed utilizing SoftHASTE.

3.1. BASIC STUDIES 43

(a) ↑ 8bit → 100 steps/msec (b) ↑ 8bit → 1 step/msec

(c) ↑ 4bit → 100 steps/msec (d) ↑ 4bit → 1step/msec

(e) ↑ 2bit → 100 steps/msec (f) ↑ 2bit → 1 step/msec

(g) ↑ 1bit → 100 steps/msec (h) ↑ 1bit → 1 step/msec

Figure 3.1: CC shapes for different amplitude (ρamp) and temporal (ρtemp) res-
olutions as they are produced by HASTE. They are based on a continuous course
defined by eq. 3.1. τ was set to be 0.6 ms, ρtemp is 100 steps/ms for all plots in
the left and 1 step/ms for the plots in the right column. The amplitude is scaled
to the maximum integer value that can be achieved with the available bits. In all
cases the translation from continuous to discrete values was done with arithmetic
rounding. The target shape is well reproduced in (a).

44 CHAPTER 3. EXPERIMENTS

3.1.1 Single Neuron Bombardment

Michael Shelley et al. used biologically inspired spike trains with Poisson distributed in-
terspike times for impinging their simulated network in order to put it into High Conductance
State, see sec. 1.2.5 and [30]. The work presented here advances McCulloch-Pitts neurons with
binary output towards more biologically realistic behavior. Hence the applied criterion for
comparability of different synapse resolutions included a biological characteristic: A HASTE
neuron bombarded with Poisson spike trains was claimed to fire with a distinct average rate in-
dependently from the number of bits used for CC modeling (see fig. 3.2 for a schematic). The
goal of the experiments to follow was to find a discretization method which fulfills this condi-
tion. Additionally a minimum temporal resolution had to be found in a way that increasing
this resolution would not change the response behavior of bombarded neurons significantly
any more.

Output Spike Train

Input Spike Trains

Dendrite

Synapse

Soma

Axon

Conductance Courses

Figure 3.2: Schematic of a single neuron bombardment experiment: One neuron
is impinged with several Poisson spike trains. Each synapse answers a spike with
a change of the soma’s membrane conductance (simulated in software, later on
FPGA). All conductance courses are summed up along the dendrites and in the
soma. HASTE utilizes the HAGEN chip for this superposing. The output neurons
on HAGEN discriminate if the excitatory-to-inhibitory conductance ratio is large
enough to make the simulated effective reversal potential (see sec. 1.2.5) cross the
spiking threshold.

Basic setup

For the first experiments performed with HASTE, all of them being single neuron bom-
bardments, the full and HAGEN chip with calibrated synaptic weights (see sec. 2.1.1) was
used. This means that all available neurons on the chip received the same input, but worked
independently from each other, i.e. without any interconnection. As the hardware neurons
were not expected to respond exactly identically to the same input, the simultaneous opera-
tion of as many of them as possible provided statistical information about mean and deviation
of the quantities observed.

3.1. BASIC STUDIES 45

Every output neuron was impinged with 30 spike trains, which is the largest input number
one can realize with the planned FPGA version of HASTE on one HAGEN block, using 4-bit
CCs. This can be explained as follows: One network block on the HAGEN chip provides 128
input pins. 120 of them are occupied by the 4-bit conductance course generators. One more
is skipped for chip specific reasons (the pin closest to the edge of the chip, see sec. 2.1.1), two
more are occupied by calibration inputs and another one is used for a bias input which adjusts
the threshold. For 2-bit (1-bit) CCs the number of used input pins per block decreases to
60 (30). Statistical data for one distinct hardware neuron was collected by averaging output
firing rates over intervals of 3 sec simulated real time.

Every input spike train had an average firing rate of 33 Hz, the spike times were Poisson
distributed. In biological context 33 Hz is a high firing rate, regular cortical activity in awake
state happens in the order of 5 Hz. But since only 30 inputs were possible, which is at least a
factor 20 too low to be realistic, a total input producing sufficient activity had to be created
by choosing such a high input rate per synapse. With the values selected a mean total input
spike rate of ∼ 1 kHz is achieved. All inputs were injected with the same synaptic weight.
This was swept from 0.0 hwu to 1.0 hwu, i.e. all inputs were considered to be excitatory. The
neurons’ refractory time was set to 3ms.

Threshold

Setting the threshold to a value larger than zero is essential for a neuron impinged with
excitatory spikes only. If there was no threshold the neuron would fire at its maximum rate for
the duration of synaptic response to each single input spike. Compared to nature this would
be much too sensitive. A real neuron’s output spike is triggered only after about 10 to 100
input spikes within a short time window. In case of a negative spiking threshold configuration
the HASTE neuron would fire even endlessly.

As already mentioned in the theoretical part of this work (see sec. 1) a cortical neuron has
102 up to 104 inputs. Hence in the scope of a neuron population in High Conductance State the
threshold of a McCulloch-Pitts neuron can be interpreted as the total conductance induced by
many other inputs that can not be simulated in detail (see section “A new way of simulation”
on page 13 and especially eq. 1.15). In the scope of a single cell the threshold implemented in
HASTE carefully can be compared with the voltage to be crossed by the membrane potential
of a real neuron for initiating an action potential. This analogy is not absolutely correct since
HASTE simulates membrane currents induced by conductance changes, it does not simulate
membrane potentials and PSPs. To adjust the threshold for all experiments to follow a
constantly active input was applied to every neuron. its weight was set to −1.0 hwu, i.e. to
make the neuron fire the sum of all inputs multiplied by their weights had to exceed 1.0 hwu.

Shaping

The synapses generated conductance courses according to suggestions found in [30], i.e.

GShelley
i

(t) ∼ (t − ti)
5

τ6
σ

exp (−(t − ti)/τσ)Θ(t − ti) , σ = E, I. (3.1)

Θ(t) is the unit step function, ti denotes the arrival time of spike i and E (I) means that the
simulated synapse is excitatory (inhibitory). In case of many spikes running into the same
synapse within a short time window an important question was how to manage temporally

46 CHAPTER 3. EXPERIMENTS

overlaying Gi(t) at this synapse. For the experiments presented in this section the compo-
nent of a neuron’s total membrane conductance provided by its synapse j was obtained by
superposing all this synapse’s spike answers,

gsuperpos

j (t) =
∑

i

Gi(t) . (3.2)

Here i indexes all spikes impinging the synapse j. The way of managing overlapping CCs
shall be universal for all shapes. Therefore the superscript Shelley has been skipped. If
this superposed conductance component exceeded the maximum value representable with a
multi-bit synapse then the synapse’s maximum value was applied instead.

Another possibility to cope with temporally concurring CCs at one synapse would be a
simple reset each time a new spike arrives, i.e. only the most current shape is transmitted.
Let Î(t) be the index of the last spike that occurred at synapse j. Then the conductance at
synapse j can also be described by

greset

j (t) = GShelley

Î(t)
(t) , (3.3)

The neuron’s total membrane conductance is the sum over all synaptic components,

gtot(t) =
∑

j

gj(t) . (3.4)

This superposing of many components was performed by the HAGEN chip. A HAGEN
neuron has an upper limit for its total input current, too, but the input rates and synaptic
weights selected for the experiments presented here were much too low to reach this ceiling
(see sec. 2.1.1).

The CC shape described by equation 3.1 is well reproduced in fig. 3.1(a). The time con-
stant τ was set to 0.6ms, which is in biologically realistic ranges [30]. The problem now was
how to map this continuous shape to the small number of discrete values provided by a HASTE
synapse. Different methods have been tested in single neuron bombardment experiments.

From continuous to discrete values

All mapping methods that have been tested have a basic procedure in common, see fig. 3.3
for illustration. This way of discretization was considered to provide maximum accuracy in
keeping the original shape, but leaving parameters to optimize mapping according to different
demands. First, for every interval between two discrete time steps k and k+1 the original CC
shape (1) is averaged over n samples (2), where n is a parameter adjustable via the HASTE
GUI (see sec. 2.1.3). This average value is assigned to time step k, thus the CC then is discrete
in time(3). The amplitude of this steplike CC, still being a non-integer value, then is scaled to
the maximum integer vmax that can be represented with the available bits (4,5). Afterwards
a constant offset 0 < δround < 1 is added to the scaled shape (6,7). Finally for every time
step the discrete CC value is determined by rounding down the scaled and biased CC to the
provided integer values (8,9).

When talking about discretization a common approach is arithmetic rounding (ARN).
For digital machines rounding to integers normally is implemented by adding 0.5 to the value
to be rounded and then truncate all digits smaller than one. The basic method described

3.1. BASIC STUDIES 47

Amp

0

3
2

1
t

Amp

0

3
2

1
t

Amp

0

3
2

1
t

Amp

0

3
2

1
t

Amp

0

3
2

1
t

Amp

0

3
2

1
t

Amp

0

3
2

1
t

Amp

0

3
2

1
t

Amp

0

3
2

1
t

(1) (2)

(5)

(8)

(4)

(7)

(3)

(6)

(9)

Figure 3.3: Process of shape mapping from continuous to discrete values, see
text for details.

above performs ARN by setting δround to 0.5. The CCs shown in fig. 3.1 have been created
according to the suggested procedure and with a constant rounding offset of δround = 0.5.

As the effect of the CCs on the output firing rate was to be kept constant a second idea
was to dynamically optimize the rounding offset δround in a way that the integral over time
of a conductance course (with normalized amplitude) is always as close to the integral of the
original shape as possible. The term dynamically means that for every bit resolution another
rounding offset can be applied. This method will be called CCI for Constant Course Integral.
A critical scenario for both ARN and CCI is a conductance course resolution of only one
bit: Regarding a realistic CC shape with a strongly localized peak and a long drawn-out tail
arithmetic rounding on the one hand might result in a 1-bit shape much too short. Arithmetic
rounding truncates already when the amplitude falls below half of the peak value, but the
peak itself is reproduced in a way. Keeping the integral constant on the other hand ignores
the original peak and thus might deliver a shape too long to support coincidence detection
properly, for example. Also conceivable are constant rounding offsets δround smaller or larger
than 0.5, which possibly can avoid the extreme cases described above.

Measurements with different temporal and amplitude resolutions

The first experiment performed with HASTE was a single neuron bombardment with set-
tings as described above (subsection “Basic settings”). Conductance courses were discretized
to the available integers via arithmetic rounding. For three different bit resolutions – namely
one, two and four – the mean output firing rate was measured with temporal resolutions of
1000, 2000, 4000 and 8000 steps/sec. Resolutions lower than 1000 steps/sec do not make too

48 CHAPTER 3. EXPERIMENTS

much sense as basic neuronal time constants are in the order of 1ms. Typical values for
absolute refractory times for example are 2 − 5ms, action potentials take about 1ms, time
constants of decaying synaptic signals are in the order of 3ms. The goal of this first experi-
ment was to detect dependencies of a neuron’s output firing rate on both the number of bits
per synapse and temporal resolution.

To start with, fig. 3.4 shows the results recorded for just one single neuron. The error-
bars represent statistical error caused by the finite time of measurement only. Obviously the
neuron’s output firing rate saturates for high input weights. The upper bound of 333Hz is
given by the inverse of the refractory time, which was 3ms for this setup. Obviously the
weight of −1.0 hwu for the bias input adjusting the threshold was reasonable, because the
whole available output frequency spectrum is covered. The curves for different amplitude
resolutions are similar, but for the 1-bit curves a steplike course appears. A simple model
was developed to explain this behavior, it will be presented further below.

In order to assess the matching of different curves, the following measure was applied (as
an example consider fig. 3.4(c)): For a fixed point on the x-axis, i.e. a fixed input weight w̃,
four different rate values belonging to four different temporal resolutions are assigned to w̃.
Those four values have an mean and a standard deviation. The sum of all standard deviations
over all sampled points on the x-axis divided by the number of these points was considered
to be an appropriate measure for the degree of curve matching. It is shown in every figure
containing more than one curve, labeled as avg dev.

Fig. 3.5 shows the same experiment like fig. 3.4(c), but averaged over all neurons available
on the HAGEN chip. This was to include errors possibly arising from hardware specific
differences between the neurons and imperfect calibration. Here the error-bars include both
the statistical error of each single neuron and the standard deviation of all mean firing rates
over all neurons for one distinct input weight. Comparing the one-neuron measurement with
the multi-neuron average it can be seen that in regions of high slope the error resulting from
hardware heterogeneity dominates the statistical error, thus increasing simulation time was
not necessary.

The data retrieved so far shows that for ρamp = 1bit and arithmetic rounding, different
temporal resolutions lead to significantly different firing rate curves in a way that does not
seem to converge for higher values of ρtemp. Hence amplitude resolutions of at least two bits
have to be recommended for arithmetic rounding, if a neuron’s independence on temporal
resolution is important.

3.1. BASIC STUDIES 49

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 4 bit shaping

avg dev = 2.53

res 1000 steps/sec
res 2000 steps/sec
res 4000 steps/sec
res 8000 steps/sec

(a) 4-bit shapes

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 2 bit shaping

avg dev = 5.63

res 1000 steps/sec
res 2000 steps/sec
res 4000 steps/sec
res 8000 steps/sec

(b) 2-bit shapes

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 1 bit shaping

avg dev = 9.93

res 1000 steps/sec
res 2000 steps/sec
res 4000 steps/sec
res 8000 steps/sec

(c) 1-bit shapes

Figure 3.4: Output firing rate of a single neuron bombarded with 30 Poisson spike
trains versus the synaptic weight of a single input (all 30 inputs have the same
weight). Each input spike train had an average firing rate of 33 Hz. All continuous
CC shapes were mapped to the available integers via arithmetic rounding. For
each amplitude resolution (a, b, c) four different temporal resolutions (colored)
are plotted.

50 CHAPTER 3. EXPERIMENTS

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 1 bit shaping

avg dev = 10.42

res 1000 steps/sec
res 2000 steps/sec
res 4000 steps/sec
res 8000 steps/sec

Figure 3.5: Same as fig. 3.4(c), but av-
eraged over a maximum number of neu-
rons available on one HAGEN chip. Each
data point shows the mean over 240 inde-
pendently driven hardware neurons. The
error-bars include both statistical error of
each measurement and the standard de-
viation of the mean values over all neu-
rons.

3.1. BASIC STUDIES 51

Comparing different discretization methods

The following experiments – all of them single neuron bombardments – were performed in
order to find out which mapping method matches output firing rates of bombarded neurons
with different ρamp values best. The temporal discretization was demanded to have no effect
on the rates in a range from 1000 to 4000 steps/sec. Therefore different methods were applied
for one, two and four bit amplitude resolutions while the temporal resolution was set to 1000
and 4000 steps/sec.

Fig. 3.6 shows four experiment series with different methods of discretizing continuous
conductance shapes. The sub-figures (a) and (c) were obtained by adding a constant rounding
offset of δround = 0.5 to the shape values, not depending on the number of used bits, before
truncating them to the next integer. This has been called the ARN method. In the experiment
series shown in the sub-figures (b) and (c) for every bit resolution the rounding offset was
varied from 0.0 to 0.99 in steps of 0.01, until the integral of the new shape matched best with
the integral of the continuous course. This is the CCI method mentioned above.

In appendix A.1 another figure is presented (fig. A.2), which shows four experiment series
with constant rounding offsets δround of 0.3, 0.4, 0.5 and 0.6. There the shift of the curves
relative to each other depending on the value of d can be observed.

Qualitatively, for both temporal resolutions the CCI method seems to match the three
curves best. This result is supported by the smallest avg dev value for CCI. The methods using
constant rounding offsets achieve best overall matching for δround = 0.6, at least according to
the measure avg dev. But as arithmetic rounding (δround = 0.5) delivers much better matching
for low output firing rates (f < 100Hz, this is the biologically realistic region) and because
of its mathematical persuasiveness it might be preferred.

Especially because of the steplike curves obtained with low amplitude resolution a perfect
matching of the firing rate curves is not possible. But the deviations caused by both ARN and
CCI seem to be dominated by hardware specific errors, which makes them both candidates
for application. The overall matching delivered by CCI is best in the experiments presented,
but for low output frequencies ARN may be the preferred choice.

52 CHAPTER 3. EXPERIMENTS

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 4000 steps/sec

avg dev = 7.92

1 bit shaping
2 bit shaping
4 bit shaping

(a) ARN, ρtemp = 4000 steps/sec

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 4000 steps/sec

avg dev = 6.30

1 bit shaping
2 bit shaping
4 bit shaping

(b) CCI, ρtemp = 4000 steps/sec

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 1000 steps/sec

avg dev = 9.08

1 bit shaping
2 bit shaping
4 bit shaping

(c) ARN, ρtemp = 1000 steps/sec

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 1000 steps/sec

avg dev = 7.30

1 bit shaping
2 bit shaping
4 bit shaping

(d) CCI, ρtemp = 1000 steps/sec

Figure 3.6: Output firing rate of a single neuron bombarded with 30 Poisson
spike trains versus the synaptic weight of a single input (all 30 inputs have the
same weight). Each input spike train has an average firing rate of 33 Hz, the
temporal resolution is 4000 steps/sec for (a) and (b) and 1000 steps/sec for (c)
and (d). (a) and (c) were obtained with a mapping offset d = 0.5, i.e. with
arithmetic rounding (ARN). For (b) and (c) the mapping offset was optimized to
keep CC integral constant (CCI).

3.1. BASIC STUDIES 53

Varying ρtemp with CCI

With these insights the dependence of HASTE with CCI mapping on temporal resolution
might be interesting. Thus the experiments proposed first in this section were repeated,
i.e. single neuron bombardments for different amplitude and temporal resolutions, but now
applying CCI instead of ARN. The results can be seen in fig. 3.7.

This experiment reveals a clear advantage of the CCI method: the dependence of a net-
work using conductance courses generated with CCI on temporal resolution is much smaller
than for arithmetic rounding. Even for a 1-bit setup 1000 discrete time-steps per second
seem to be enough. The experiments performed indicate no advantage of a higher temporal
resolution. Hence for experiments where temporal resolution might be a critical parameter
for optimization and thus needs comparability the method of keeping shape integrals constant
should be applied.

54 CHAPTER 3. EXPERIMENTS

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 4 bit shaping

avg dev = 2.19

resolution 1000 steps/sec
resolution 2000 steps/sec
resolution 4000 steps/sec
resolution 8000 steps/sec

(a) 4-bit shapes

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 2 bit shaping

avg dev = 4.27

resolution 1000 steps/sec
resolution 2000 steps/sec
resolution 4000 steps/sec
resolution 8000 steps/sec

(b) 2-bit shapes

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 1 bit shaping

avg dev = 3.48

resolution 1000 steps/sec
resolution 2000 steps/sec
resolution 4000 steps/sec
resolution 8000 steps/sec

(c) 1-bit shapes

Figure 3.7: Same as fig. 3.5, but the method for mapping from continuous to
discrete conductance course is CCI instead of ARN. Each data point in (a) shows
the mean over 60 independently driven hardware neurons. (b) corresponds to
120, (c) to 240 neurons. The error-bars include both statistical error of each
measurement and the standard deviation of the mean values over all neurons.
The matching of the different curves per figure is much better than with the ARN
method.

3.1. BASIC STUDIES 55

A simple 1-bit model

The distinct step character of the red curves in figures 3.5 and 3.7 can easily be understood
by studying the following model:
The bombarded neuron will only fire if the sum of its inputs multiplied by their synaptic
weights is above threshold Vthresh. In the experiment described here, all input weights wi

were the same, wi = w ∀i. For the red curves only one bit was used for conductance course
shaping. Therefore a critical number ncrit of inputs exists that have to be active in order to
exceed the threshold. Roughly speaking, the steps mark the input weights where this critical
number ncrit changes by the value one. Let psub be the probability that the number of inputs
being active at a given moment is not enough to obtain

N
∑

i=1

wi · si ≥ Vthresh (3.5)

where N is the total number of inputs and si is the value of input i, si ∈ {0, 1}.
The maximum firing rate of a neuron is given by the inverse of its refractory time tref ,

fmax =
1

tref
. (3.6)

The basic assumption of the 1-bit model is that the mean output firing rate f̂out of the neuron
can be expressed by psub via

f̂out = fmax · (1 − psub) . (3.7)

For single bit inputs, psub is easily calculated. Let fin be the mean firing rate of each input and
TCC be the duration of a single conductance course being above zero. Furthermore assume
1

fin
� TCC . Then for a single input into a neuron the probability to fire is

psingle = fin · TCC . (3.8)

The number of inputs firing at a given moment is Poisson-distributed, as the regarded system
works in discrete time steps.

psub =

ncrit−1
∑

i=0

(

N

i

)

· pi
single · (1 − psingle)

N−i . (3.9)

As an example, the model was evaluated applying the parameters used in the experiments
shown in fig. 3.5 (b), (c) and (d). The resulting predictions are drawn in fig. 3.8 (blue dashed
curves). Keep in mind that these predictions only describe the behavior of single bit CCs and
that this model does not consider any hardware specific details. Moreover eq. 3.7 is just an
assumption for large statistics. The characteristic steps are qualitatively reproduced, though.

To obtain a better matching with experimental data, a spontaneous input firing rate
pspont = 4Hz was added to fin a posteriori. This can be justified by current fluctuations
on the HAGEN chip (see sec. 2.1.1) causing the total input driven membrane current to
sometimes overstep the threshold spontaneously when already very close to it. Additionally
the synaptic weight of the bias neuron has been set 13% lower than in the experimental setup.
This variation optimizes matching, too, and can be explained by chip specific details as well:

56 CHAPTER 3. EXPERIMENTS

As the synapses connecting the bias input with the bombarded neuron have been positioned
close to the edge of the HAGEN chip, they have not the same surrounding as synapses
positioned more closely to the center. Therefore, parasitic conductances and capacities may
cause differences in the effective value of these connections. This already has been observed
in other experiments [8]. Both optimizations were applied a posteriori by trial-and-error and
are not to be understood as a sophisticated extension of the model. But after these small
cosmetics, the position of the steps is accurately reproduced, see fig. 3.9.

For higher bit resolutions, psub would be much more difficult to calculate, but as the
pursued target is not to mathematically model the behavior of HASTE in detail, this 1-bit
example should be enough.

3.1. BASIC STUDIES 57

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Theoretical prediction of firing rates

exp. data, 1−bit shaping
theoretical prediction

(a) d = 0.4

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Theoretical prediction of firing rates

exp. data, 1−bit shaping
theoretical prediction

(b) d = 0.5

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Theoretical prediction of firing rates

exp. data, 1−bit shaping
theoretical prediction

(c) d = 0.6

Figure 3.8: Experimental data (red) and theoretical values (blue) as predicted
by the model proposed in the text. The experimental data was already presented
in fig. A.2, the parameters are mentioned in the context. The steplike course of
the curve is already reproduced well.

58 CHAPTER 3. EXPERIMENTS

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Theoretical prediction of firing rates

exp. data, 1−bit shaping
theoretical prediction

(a) d = 0.4

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Theoretical prediction of firing rates

exp. data, 1−bit shaping
theoretical prediction

(b) d = 0.5

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Theoretical prediction of firing rates

exp. data, 1−bit shaping
theoretical prediction

(c) d = 0.6

Figure 3.9: Like fig. 3.8, but with slight modifications of the prediction model
inspired by hardware specific details (see text). Now the experimental data (red)
is even quantitatively reproduced within the error-bounds for nearly all measured
points.

3.1. BASIC STUDIES 59

3.1.2 Conductance Course Variation

More experiments have been carried out with conductance courses described by a different
equation. The CCs were modeled by

GMaass
i

(t) ∼ e−(t−ti)/τσ Θ(t − ti) , σ = E, I, (3.10)

which is a simplification of eq. 3.1 and was suggested, among others, by Wolfgang Maass [16].
E, I, σ, Θ(t) and ti have already been defined above. When these experiments have been
performed using SoftHASTE, it was not yet exactly clear how to implement the CC application
to the HAGEN chip via the embedding FPGA. One idea is to use a real-time generator in
hardware implementing a simple instruction that tells how to react to an incoming spike. An
exponential decay seems to be a task that can be easily realized on an FPGA, it is therefore
considered to be a good candidate. A concurring concept are CC lookup tables. In the
end they were preferred, at least for the time being. Main reason for this decision was the
manifoldness of shapes that could easily be applied by a simple software interface delivering
arbitrary CC shapes. But an exponential conductance course has some additional advantages.
A low temporal resolution is desired for time performance reasons. When being mapped to
a coarse temporal resolution, a sharp peak is more likely to lose shape characteristics than
a monotonic decay. Furthermore, two CCs generated at the same synapse shortly one after
another can possibly not be superposed due to hardware limitations. The latter restriction is
represented by eq. 3.3. In such a scenario the immediate onset of an exponential shape after
an occurring spike might reduce the loss of information, compared with a time-to-peak larger
than zero for conductance courses inspired by Shelley.

Mapping method for exponential shaping

It has not been clear from the start that the mapping approach from continuous to discrete
values found for shapes described by eq. 3.1 would work satisfactorily with an exponential time
course as well. So at first, either the CCI method for shape mapping was to be proven sensible,
or another method had to be found. The basic setup of neuron bombardment was used as
before. As it was expected to deliver pleasing results and thus further experiments possibly
could be skipped, only CCI was applied for the beginning. The time constant τ in eq. 3.10
was set to be 2.5ms, all other parameters were chosen just like for all previous experiments.

The result is plotted in fig. 3.10. Again the average standard deviation of the curves (as
already defined for the matching experiments above) is included. In fact the conformity of
curves obtained with different temporal resolutions for a given number of bits per synapse is
at least as good as for CCs according to eq. 3.1.

Fig. 3.11 shows output firing rates for different bit resolutions for ρtemp = 4000 steps/sec,
the mapping method was CCI. The result is satisfying, too.

60 CHAPTER 3. EXPERIMENTS

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 4 bit shaping

avg dev = 2.59

resolution 1000 steps/sec
resolution 2000 steps/sec
resolution 4000 steps/sec
resolution 8000 steps/sec

(a) 4-bit shapes

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 2 bit shaping

avg dev = 4.43

resolution 1000 steps/sec
resolution 2000 steps/sec
resolution 4000 steps/sec
resolution 8000 steps/sec

(b) 2-bit shapes

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 1 bit shaping

avg dev = 13.30

resolution 1000 steps/sec
resolution 2000 steps/sec
resolution 4000 steps/sec
resolution 8000 steps/sec

(c) 1-bit shapes

Figure 3.10: Mean output firing rates of different setups using exponentially
decaying conductance courses (see eq. 3.10) vs. synaptic input weight. The method
mapping from continuous CC shapes to low temporal and amplitude resolution
was CCI. The curves correspond to those in fig. 3.7 and show a pleasing matching.

3.1. BASIC STUDIES 61

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 4000 steps/sec

avg dev = 8.11

1 bit shaping
2 bit shaping
4 bit shaping

Figure 3.11: Output firing rate vs. input weight
of synaptic inputs in single neuron bombardment.
Standard setup and exponentially decaying conduc-
tance courses (see eq. 3.10) modeled with 1, 2 and
4 bits. The method mapping from continuous
CC shapes to low temporal and amplitude resolu-
tion was CCI. The figure corresponds to fig. A.2(f),
where Shelley CCs were applied.

62 CHAPTER 3. EXPERIMENTS

Matching different shapes

As so much effort has been made to keep results of different bit resolutions comparable,
it either might be useful for later experiments to find time constants for both Shelley’s and
Maass’ CCs that allow a direct comparison between data obtained with each of them. Indeed,
both shaping strategies have their advantages and form the basic shape library for all exper-
iments presented in this study. Shelley suggested values for τ which result in a time-to-peak
of tpeak = 3ms for CCs induced by excitatory synapses and 5ms for the inhibitory case [30].
For a spike i arriving at time ti = 0, eq. 3.1 can be written as

GShelley(t) = cShelley

t5

τ6
exp (−t/τ) Θ(t) (3.11)

with cShelley being an arbitrary constant. For t > 0 differentiation leads to

ĠShelley(t) = cShelley

t4

τ6
exp (−t/τ)

(

5 − t

τ

)

(t > 0) . (3.12)

Thus Shelley’s peak condition is solved by τshelley = 1
5 tpeak = 0.6ms (1.0ms) for excitatory

(inhibitory) synapses. Within the HASTE setup all conductance courses are mapped to low
resolutions according to fig. 3.3. Their amplitude is scaled in a way that the CC’s peak always
equals the maximum integer Vmax that is codable by the available number of bits used per
synapse.

For a scaled Shelley conductance course G
Shelley

(t), this means

G
Shelley

(tpeak) = cShelley(τ)
(5τ)5

τ6
exp (−5τ/τ) =

(

5

e

)5

τ
!
= Vmax

⇐⇒ cShelley(τ)
!
= Vmax τ

(e

5

)5
(3.13)

In contrast to the original shape defined by eq. 3.11 which always encloses the same area
underneath its curve, this amplitude manipulation generates a dependence of the course
integral on the time constant τ . The integral over eq. 3.11 is

∞
∫

−∞

GShelley(t) dt =
cShelley

τ6

∞
∫

0

5! τ5e−t/τ dt = 120 cShelley . (3.14)

Including condition 3.13 eq. 3.14 results in a total shape integral for a scaled conductance
course of

∞
∫

−∞

G
Shelley

(t) dt = 120Vmax τ
(e

5

)5
≡ AShelley(τ) . (3.15)

The value according to AShelley(τ) for the case of exponentially decaying conductance
courses (the superscript will be Maass as this shape was suggested by W.Maass in [15]) is
much easier to calculate and finally leads to

∞
∫

−∞

G
Maass

(t) dt = Vmax τ ≡ AMaass(τ) . (3.16)

3.1. BASIC STUDIES 63

The preceeding experiments indicate that constant integrals are an important criterion
for the independence of output firing rates on conductance course variations. Thus the idea
of assimilating the integrals of the shapes defined by eq. 3.1 and 3.10 in order to match

output firing rates suggests itself. The condition to fulfill AShelley(τShelley)
!
= AMaass(τMaass) then

becomes
τMaass

τShelley

!
=

AShelley(t)

AMaass(t)
= 120

(e

5

)5
≈ 5.70 . (3.17)

Regarding this, the corresponding value to τShelley = 0.60ms is τMaass ≈ 3.42ms.
In case of short intervals between spikes running into the same synapse the resulting

conductance changes are superposed if they are temporarily overlapping (at least this is what
SoftHASTE does). As binary inputs are a very limited resource, the shapes applied to the
synapses were scaled in a way that they always use the whole available integer spectrum. This
means that the superposition has an upper limit, namely the value of a conductance course
peak. When the sum of synaptic shapes succeeds this limit the maximum value is applied
instead. In that case, information and input intensity is lost.

In order to avoid this falsifying effect, which probably would affect the Shelley shape with
its later onset in a more critical way, the mean firing rate per input was reduced to 10Hz in
the experiment to be presented next. Once again, a single neuron was bombarded. To retain
the whole possible output firing rate spectrum in the presence of low input rates, the neuron’s
threshold was set to −0.1 instead of the hitherto used values of −1. Resolutions of 4 bits
for the conductance course amplitude and 8000 steps/sec in the time domain were selected
to maintain resemblance to the original shapes. Both a bombardment experiment applying
Shelley CCs with τ = 0.6ms and another one employing Maass CCs and τ = 3.42ms were
performed. Fig. 3.12 shows the two shapes generated by HASTE for these settings.

The results of the bombardment experiment are depicted in fig. 3.13. They confirm the
assumptions made above.

The two curves match nearly perfectly for firing rates up to 75% of fmax, for higher rates
they diverge slightly. This can be explained as follows: High output rates correspond to high
input weights, which means that less active inputs are necessary to make the bombarded
neuron fire. But for a small number of shapes being superposed within the neuron, the width
of the courses becomes increasingly important. Having one more look at fig. 3.12 reveals that
the exponential decay has a time above zero much longer than the Shelley CC and thus might
support an overlay of different shapes. Hence, the area under a synaptic shape is not the only
criterion for matching firing rates, but for large statistics it may be a sufficient one.

Conclusions drawn from this section

It has been found that a HASTE neuron with synaptic shaping according to Shelley and
under biologically realistic input produces sensible output firing rates f̄out. The dependence of
f̄out on its input weights is clearly monotonic. Arithmetic rounding turned out to be not the
optimal way of discretizing conductance courses. For 1-bit synapses and arithmetic rounding
the dependence of f̄out on temporal resolution can hardly be controlled. Keeping the temporal
resolution fixed, the method matching f̄out for different amplitude resolutions best was CCI.
The latter caused f̄out to respond nearly exactly the same for different temporal resolutions,
too. Thus CCI will be applied in the experiments to follow.

A model describing the course of f̄out for 1-bit synapses was developed. It reproduces the
characteristics of the original qualitatively and after some technically inspired variations even

64 CHAPTER 3. EXPERIMENTS

(a) Shelley CC

(b) Maass CC

Figure 3.12: Conductance courses as they are generated by HASTE for an am-
plitude resolution of 4 bit and a temporal resolution of 8000 steps/sec. Basis for
(a) was a shape according to eq. 3.1 (Shelley), for (b) it was eq. 3.10 (Maass).

quantitatively.
As a second CC shape a plain exponential decay was introduced. The CCI method

turned out to work well for it, too. The courses of f̄out for both shaping methods were tried
to be matched. This was achieved by adjusting the time constant of one of them on purely
theoretical grounds. An experiment proved these considerations to be correct for low firing
rates.

3.1. BASIC STUDIES 65

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 8000 steps/sec

avg dev = 11.74

Maass, 4 bit shaping
Shelley, 4 bit shaping

Figure 3.13: Output firing rate vs. input weight
of synaptic inputs in single neuron bombardment.
The setup is described and motivated in the text.
The red curve denotes the output firing rate of a
bombarded neuron receiving exponentially decaying
CCs, the blue one CCs according to Shelley.

66 CHAPTER 3. EXPERIMENTS

3.1.3 Interspike Interval Histograms

A common method in neuron research is recording time intervals between two subsequent
spikes of a neuron’s output. These are called interspike intervals (ISIs) and hold a lot of
information about cellular dynamics and the neuron’s input.

What ISIs can tell

Let t̂ be the time the last output spike occurred on a neuron’s axon. Then the probability
density for the next spike to occur at time t is denoted as PI(t|t̂), the probability of a spike to
occur in the interval [t1, t2] is

∫ t2
t1

PI(t|t̂) dt, provided that t̂ < t1. The lower index I represents

the fact that PI(t|t̂) depends on the neuron input I(t). The so-called renewal theory provides
basic formalisms to handle the information given by such ISI recordings ([3], p.152-158). Two
more quantities are introduced to statistically describe the firing behavior of a neuron. The
survivor function SI(t|t̂) is defined by

SI(t|t̂) = 1 −
∫ t

t̂
PI(t

′|t̂) dt . (3.18)

It is the probability for the neuron not to fire (to “survive”) between t̂ and t. The second
quantity, ρI(t|t̂), is called hazard function and describes the rate of decay of SI(t|t̂). It is
therefore a measure for the neuron’s actual output spike rate at time t.

ρI(t|t̂) =
− d

dt
SI(t|t̂)

SI(t|t̂)
. (3.19)

All three quantities describing the statistics of a renewal process can be transformed into each
other. PI(t|t̂) is the easiest one to be measured experimentally, as a histogram of the ISIs in
a sufficiently long spike train is considered to be a good estimate for it.

In what follows tref denotes the absolute refractory period of a neuron. A simple calcula-
tion (see [3]) shows that if a hazard function is given such as

ρI(t|t̂) =

{

0 for t ≤ t̂ + tref
c for t > t̂ + tref

, (3.20)

the probability distribution is an exponential decay starting at t = tref

PI(t|t̂) =

{

0 for t ≤ t̂ + tref
Ae−t/τ for t > t̂ + tref

. (3.21)

Here, c and A are constant positive values. This example will be relevant for the following
experiments since Poisson distributed inputs are used to activate the neuron’s membrane
potential.

The neural dynamics of HASTE respectively HAGEN is quite simple and well understood
since it is a full custom design. So why make ISI recordings of a HASTE neuron’s output?
Assume that the neuron is under a biologically realistic input bombardment. Different ways
to model the conductance courses superposed within the neuron may lead to different ISI
histograms. For example long drawn-out shapes may smoothen the temporal effect of a single
input spike, i.e. make the neuron less sensitive for the exact arrival time of incoming spikes.
Applying such CCs to the input synapses of a HASTE neuron might facilitate interactions

3.1. BASIC STUDIES 67

between two non contemporaneous spikes, but affects the membrane potential like a low pass
filter (see fig. 3.14 for illustration).

As long as a HASTE neuron’s cortically induced conductance ratio is above threshold it
constantly fires at its maximum rate. This rate is given by fmax = 1

tref
. Thus the frequency

of threshold crossings directly affects the ISI distribution. See fig. 3.14 for illustration. A
conductance ratio changing slowly will exhibit longer periods above threshold compared to a
very input sensitive regime with high frequency fluctuations, assuming the average ratio being
close to threshold. Hence an inertly changing conductance ratio results in the dominance of
the shortest ISI possible.

The all-or-nothing spiking behavior of HASTE is not very realistic, especially the imple-
mented absolute refractory mechanism is too simple. But this deficit may be acceptable, if
the conductance ratio fluctuates around threshold with a frequency high enough to obtain a
broad ISI spectrum, which is a necessary condition for temporal coding.

(a)

(b)

Figure 3.14: (a) and (b): Con-
ductance ratio gE(t)/gI(t) of a neu-
ron exposed to many synaptic in-
puts (schematic). The curve is the
sum of all incoming CCs. Below the
curve the neuron’s output is shown.
For (a) the shapes generated at the
synapses are long and smooth, for
(b) they are short and sharp. The
periods of the ratio being above
threshold are colored blue. During
these times a HASTE neuron fires
at its maximum rate fmax, all the
remaining time the rate is zero.

The experiments described here have been carried out to find out if the behavior of HASTE
in terms of interspike intervals corresponds to biological scales. A major deficit of the HAGEN
chip, namely its small number of synapses, was circumvented by setting the firing rates of
all inputs higher than typical values in nature. Hence, one HASTE input could be said to
represent many biological ones.

An ISI histogram recorded from a real neuron in human hippocampus can be seen in

68 CHAPTER 3. EXPERIMENTS

(a) Single Cycle CC (“pseudo delta peak”)

(b) Shelley CC

(c) Maass CC

Figure 3.15: Three different
shapes used to simulate con-
ductance courses for the exper-
iments described in sec. 3.1.3.
(a) is the shortest CC pos-
sible, i.e. maximum value for
one time step, others zero.
(b) shows a shape defined by
eq. 3.1, with τ = 0.6 ms. (c)
represents an exponential de-
crease according to eq. 3.10
with a time constant of τ =
2.5 ms.

fig. 3.16. The upper plot, measured in awake state (High Conductance States usually occur
in the awake brain), will be taken as a landmark when judging the histograms produced by
HASTE.

ISI recordings with HASTE

Just like in the first section of this chapter a single neuron was bombarded with 30 Poisson
spike trains, the weight was the same for all inputs and it was gradually increased from 0.0 hwu
to 1.0 hwu. Each of the trains had a mean firing rate of 33 Hz. The absolute refractory
period was set to 3ms. A bias input weighted with −1.0 hwu adjusted the threshold. The
conductance course resolution ρamp was set to two bits. Three different CC shapes were
applied: A first run was done with CCs lasting for exactly one network cycle, which is the
shortest shape that larger than zero a CC generator can produce and represents a pseudo delta
peak. Another shape was generated according to Shelley [30], see eq. 3.1, with τ = 0.6ms.
A third one was modeled according to eq. 3.10, with τ = 2.5ms. This shape was suggested,
among others, by Wolfgang Maass [16]. See fig. 3.15 for illustration.

Experimental results are shown in figures 3.17, 3.18 and 3.19. For each of the three CC
modeling methods the histograms for three different input weights are plotted.

The probability that the conductance ratio exceeds the threshold grows for higher input
weights, thus the ISI distribution shifts to smaller values. The absolute refractory period of
3 ms set can be seen as a gap of no events at the left of each histogram. The ISI distribution

3.1. BASIC STUDIES 69

Figure 3.16: A real interspike interval
histogram taken from a publication of
Staba et al [32]. It shows the ISI distri-
bution of a single neuron in human hip-
pocampus during awake state (Aw), slow
wave sleep (SWS) and REM sleep.

belonging to the single-cycle CCs (fig. 3.17) can be very well matched by an exponential fit.
This is easily explained by the considerations already made above (see eq. 3.20 and 3.21).
The occurrence of an output spike is completely independent from earlier spikes or others to
come, because the CCs do not last for longer than a single network cycle. That’s why the
output spiking probability must be Poisson distributed just like the input spiking probability
and therefore results in an exponential ISI distribution.

In case of long drawn-out CCs there often is a correlation between two subsequent output
spikes. Hence the Poisson distribution of the output spike times respectively the exponential
character of the ISI probability density is distorted. Just as predicted the long drawn-out
CCs a la Shelley and Maass led to a high dominance of the shortest ISI possible.

Conclusions drawn from this section

A HASTE neuron under biologically realistic input can be configured in a way that its
interspike intervals are distributed to a spectrum broad enough to ensure the possibility of
temporal coding. Prolonging synaptic responses to an incoming spike results in growing
dominance of the shortest interspike-time possible. By balancing the ratio of input weight
to threshold a broad spectrum of interspike-times can be established, though. An in-vivo
measurement of a real neuron’s interspike intervals exhibits a spectrum width in the order
of 40ms. The simulation experiments performed on HASTE resulted in spectrum width
values of about 10 to 40ms, depending on synaptic shaping and the ratio of input weights
to threshold. In spite of its plain refractory mechanism the HASTE system obviously can
uphold interspike diversity if it is exposed to biologically realistic activity.

70 CHAPTER 3. EXPERIMENTS

0 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

interspike time (msec)

fr
eq

ue
nc

y
(#

)

res 4000 steps/sec, w 0.45, cf 4

experimental data
statistical error
exp distr fit

(a)

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

interspike time (msec)

fr
eq

ue
nc

y
(#

)

res 4000 steps/sec, w 0.5, cf 4

experimental data
statistical error
exp distr fit

(b)

0 10 20 30 40 50
0

2000

4000

6000

8000

10000

12000

interspike time (msec)

fr
eq

ue
nc

y
(#

)

res 4000 steps/sec, w 0.55, cf 4

experimental data
statistical error
exp distr fit

(c)

Figure 3.17: Interspike Inter-
val Histograms recorded from a
HASTE neuron bombarded with
30 Poisson distributed spike trains.
The synapses at the neuron’s
input applied single cycle CCs
(fig. 3.15(a)). Temporal resolution
was 4000 steps/sec for the experi-
ment and is 1 ms/bin for this his-
togram. The bin most left includes
interspike times smaller than the re-
fractory time and therefore holds
less counts than his right neighbor.
From (a) to (c) the synaptic weight
of the inputs is increased.

3.1. BASIC STUDIES 71

0 10 20 30 40 50
0

1

2

3

4

5
x 10

4

interspike time (msec)

fr
eq

ue
nc

y
(#

)
res 4000 steps/sec, w 0.25, cf 4

experimental data
statistical error

(a)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8
x 10

4

interspike time (msec)

fr
eq

ue
nc

y
(#

)

res 4000 steps/sec, w 0.3, cf 4

experimental data
statistical error

(b)

0 10 20 30 40 50
0

2

4

6

8

10
x 10

4

interspike time (msec)

fr
eq

ue
nc

y
(#

)

res 4000 steps/sec, w 0.35, cf 4

experimental data
statistical error

(c)

Figure 3.18: Interspike Inter-
val Histograms recorded from a
HASTE neuron bombarded with
30 Poisson distributed spike trains.
The synapses at the neuron’s in-
put applied CCs according to eq. 3.1
(fig. 3.15(b)). Temporal resolution
was 4000 steps/sec for the experi-
ment and is 1 ms/bin for this his-
togram. From (a) to (c) the synap-
tic weight of the inputs is increased.

72 CHAPTER 3. EXPERIMENTS

0 10 20 30 40 50
0

0.5

1

1.5

2
x 10

4

interspike time (msec)

fr
eq

ue
nc

y
(#

)

res 4000 steps/sec, w 0.25, cf 4

experimental data
statistical error

(a)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

interspike time (msec)

fr
eq

ue
nc

y
(#

)

res 4000 steps/sec, w 0.3, cf 4

experimental data
statistical error

(b)

0 10 20 30 40 50
0

1

2

3

4

5

6
x 10

4

interspike time (msec)

fr
eq

ue
nc

y
(#

)

res 4000 steps/sec, w 0.35, cf 4

experimental data
statistical error

(c)

Figure 3.19: Interspike Inter-
val Histograms recorded from a
HASTE neuron bombarded with
30 Poisson distributed spike trains.
The synapses at the neuron’s in-
puts applied CCs according to
eq. 3.10, i.e. plain exponential de-
cays (fig. 3.15(c)). Temporal resolu-
tion was 4000 steps/sec for the ex-
periment and is 1 ms/bin for this
histogram. The bin belonging to
the leftmost bar includes both in-
terspike times smaller and larger
than the refractory period. It ther-
fore holds less counts than its right
neighbor. From (a) to (c) the
synaptic weight of the inputs is in-
creased.

3.2. LIQUID COMPUTING WITH HASTE 73

3.2 Liquid Computing with HASTE

Now that HASTE was “put to the acid” and proved useful, more elaborate experiments
were conceivable. Basic concepts of liquid computing and the approach of generating liquids
from binary neural networks were introduced in sec. 1.3. A Perceptron implementation devel-
oped in the working group of this study’s author was mentioned also. Technical details about
adaption to perform liquid computing on the HASTE system have been proposed in sec. 2.1.

On the one hand liquid computing on a VLSI Perceptron already had been performed
within the Electronic Vision(s) group and thus some necessary knowledge and methods were
easy to obtain [28]. On the other hand Maass et al. have successfully applied liquid computing
to biologically oriented networks of integrate-and-fire neurons in a pseudo-continuous time
domain [15]. HASTE was considered to be a candidate to bridge this gap. It implicitly
contains the ability to work as a plain Perceptron but can be improved towards biologically
realistic behavior.

To begin with, one of the basic experiments presented in [28] was reproduced on the
HASTE system as a proof of principle. Afterwards variations allowed by the HASTE system
have been applied to the setup in order to gain improvements in terms of memory capacity.
The idea behind this was that long drawn-out synaptic shaping may help the liquid to store
information not within the output states of the neurons and the mechanism of feedback, but
already at the synapses respectively the inputs. This approach was carried out in a stepwise
way, starting from the basic setup according to [28] and moving towards more sophisticated
synaptic shaping and timing.

Advancing the search for memory capacity optimization the networks suggested by Bert-
schinger et al. [1] then were left behind and topologies inspired by Wolfgang Maass’ work on
liquid computing with leaky integrate-and-fire neurons have been applied [15].

3.2.1 The “Edge of Chaos” with HASTE

The “edge of chaos” proposed by Bertschinger [1] and reproduced on the HAGEN chip
by the author of [28] denotes a band in the two-dimensional parameter space spanned by k
and σ2. These two parameters determine the generation of networks which are utilized as
liquids, see sec. 1.3.2. The liquids are part of LSMs trained to approximate functions on a
binary input bit stream connected to every neuron within the net. The edge of chaos forms
a border of qualitatively different regions in terms of the liquids’ activity. Along this border,
respectively on the edge of chaos, the liquids memory capacity was found to peak [1].

To find this edge, a parameter sweep covering a sufficiently large region is necessary.
Nearly all experiments to follow will basically be such two-dimensional samplings of the space
spanned by k and σ2.

P-HASTE

In previous sections the possibility of writing just a pseudo delta peak to the synaptic
lookup tables has already been used. This means that in case of an incoming spike a synapse
applies maximum input to its target neuron for exactly one network cycle and afterwards
is quiet again. If all binary inputs forming a multi-bit synapse are active, this maximum
input always affects the target neuron with exactly the same total weight independent of the
number of bits used for shaping (see sec. 2.1).

74 CHAPTER 3. EXPERIMENTS

When applying these pseudo delta peaks and setting both the refractory time of all neurons
and the transmission delay of all synapses to zero, the setup should just make HASTE work
like the HAGEN chip without any extensions. The only exception made for the experiments to
follow was the usage of the FPGA based feedback router providing a feedback more flexible
than that of HAGEN alone. Nonetheless this definite configuration should make HASTE
behave like a plain VLSI Perceptron and on that score it will be called Perceptron HASTE
or P-HASTE. In order to verify this claim an experiment designed to be run on HAGEN was
repeated on P-HASTE, see subsection “First success”.

Basic setup

Big parts of the software utilized for the experiments described here were adopted without
changes from Felix Schürmann, the author of [28]. Some of them had to be adapted to
the requirements of multi-bit shaping. For all liquid computing experiments HASTE was
utilized to implement a network representing the liquid. If not explicitly stated differently,
the neurons were connected and driven by a Bertschinger-like input bit stream, according to
the instructions given in [1] and explained in sec. 1.3.2. The memory capacity was sampled
for every point on a grid covering the parameter space spanned by k and σ2. For each
sampled point the memory capacity was evaluated by training a linear readout connected to
the network to solve the three-bit parity task described in sec. 1.3.3.

The MC of a liquid state machine is defined as the sum over the mutual information in
this system for all time-shifts τ ≤ 0 (see sec. 1.3.3). For a distinct τ training and evaluation
of the linear readout was performed as follows:

For two times 2000 cycles a randomly generated input bit stream was applied to every
neuron in the network and the resulting liquid states were recorded. The target output
according to the demanded three-bit parity problem was calculated for each time step. Using
these target values and the liquid states belonging to the first 2000 input cycles, the linear
readout then was calculated as proposed in [28]. After this training phase the readout was
kept fixed and its three-bit parity prediction for the liquid states referring to the next 2000
cycles was computed. Finally the mutual information included in the system was calculated
according to eq. 1.17.

As it was not possible to evaluate all τ ≤ 0 in practice, only a finite number of evaluations
were performed. If τ was larger than τmax or if the mutual information dropped below
a lower limit MImin, evaluation was stopped. In [28] the monotonic and fast dropping of
mutual information for increasing values of τ can be seen, so this necessary truncation was
not expected to be source of a significant error.

The memory capacity was calculated not only once for each data point but multiple
times in order to obtain information about the reproducibility of a certain parameter set’s
performance. For each repetition a new network was generated while the applied input bit
stream was reused. Evaluating this statistical information, a mean value and a standard
deviation was found for the MC at each sample point in the regarded region. Since the
parameter σ2 denotes the variance of randomly chosen synaptic weights and the HAGEN
weights are limited to a bounded region [−1, 1], values of |σ2| > 1 make no sense. The
maximum number of inputs that can be fed back into one neuron is limited to a value kmax

due to the finite number of input synapses per neuron. For a HASTE neuron kmax is given
by eq. 2.3. Therefore the region to be scanned could be cut down to a finite area.

3.2. LIQUID COMPUTING WITH HASTE 75

Successful reproduction of a liquid computing experiment

The first goal was to reproduce basic results presented in [28] utilizing the new plat-
form, i.e. to find the edge of chaos using the HASTE system instead of a plain HAGEN.
On P-HASTE a parameter sweep with k running from 1 to 16 in steps of 1 and σ2 running
from 0.0 to 1.0 in steps of 0.05 was performed. 256 neurons were used, although only the
outputs of 240 could be used for feedback (see sec. 2.1). The remaining 16 neurons received
k inputs and thus were able to improve the memory capacity, but they were not fed back.
Regarding only the 240 feedback-capable neurons the isotropy of the network generation is as
good as possible because the flexible FPGA routing was used. Each of those neurons could
be fed back to every other neuron within the net. This is an improvement compared to the
topologies applied in [28] since perfectly following Bertschinger’s instructions was not possible
on a stand-alone HAGEN due to limited preset feedback wires.

The input proposed by Bertschinger was a single stream consisting of values ∈ {ū − 1, ū + 1}
connected to every neuron. Regarding the experience gained in the Electronic Vision(s) group
ū was a priori set to zero. This always exhibited the best results in terms of memory capacity.
Since a HASTE neuron’s input only can be 0 or 1, the Bertschinger-like input stream consist-
ing of only one signal was realized as two mutually exclusive signals, one of them representing
the inverse of the other. One was connected to every neuron with a weight of 0.5, the other
with −0.5. This possible difference in affecting target neurons of value (0.5 − (−0.5)) = 1
accounts for a neuron’s maximum output change of (1 − 0) = 1.

The parameters for stopping the MC evaluation were set to τmax = 10 and MImin = 0.001.
For all experiments shown here the stopping criterion always was MI falling below MImin, so
τmax was chosen large enough to not significantly lose information.

Fig. 3.20 shows the P-HASTE results for 256 neurons, the edge of chaos is an obvious
band of high MC mean values. The positions of the first three measured MC maxima are
marked (1.dot, 2.star, 3.cross), the values are m1 = 3.38, m2 = 3.38 and m3 = 3.35. The
corresponding standard deviations over all 30 runs are s1 = 0.24, s2 = 0.20 and s3 = 0.23.
The errors of the mean values can be estimated by ∆gen

mi = si/
√

N with N = 30. For all
three maxima ∆gen

mi ≈ 0.04. This error represents the fluctuation caused by multiple network
generation (hence the superscript “gen”), i.e. it is a measure for the reliability of a certain
parameter set to deliver a powerful liquid. It does not contain errors resulting from a too
sparse parameter sampling. Within the error range the MC values found with HASTE are
the same as those presented in [28].

The proximity of the first three maximal values in the scope of their errors and their
significant distance in parameter space indicates a band of roughly constant MC values along
the bend of the edge, or pictorially spoken, a sort of crest in the “MC landscape”.

In order to extend synaptic signals to more than one bit the number of neurons had to be
reduced. Comparing results of different HASTE setups would only make sense if the number
of used neurons was the same for all experiments. Thus, intending to work with two-bit
conductance courses, the same experiment as the one shown in fig. 3.20 was performed with
120 neurons only, see fig. 3.21. Again the band of high computational power is visible, now
the first three measured maxima being 2.60 ± 0.04, 2.60 ± 0.03 and 2.58 ± 0.05 (again the
errors result from network generation). For input shaping two bits were selected because they
provide the possibility of modeling input courses while still many neurons are available.

76 CHAPTER 3. EXPERIMENTS

Figure 3.20: Left: Memory capacity (grey value) of liquids generated according
to Bertschinger as a function of two parameters determining the network topology
(input number and variance). Each data point represents the mean over 30 liquids
generated with the same parameters and receiving the same input stream. Right:
Each data point denotes the standard deviation of the MC measured at this point
in the parameter space over 30 runs. The readout of the liquid state machine was
trained to predict the parity of three consecutive input bits fed in at a distinct
time earlier. The HASTE system was configured to work as a plain Perceptron,
i.e. the synapses applied pseudo delta peaks responding to spikes, refractory time
and synaptic transmission delay were set to zero. The network consisted of 256
neurons.

Chaos and order

The “edge of chaos” was claimed to divide two regions of characteristically different liquid
activity in parameter space. This still has to be proven. Having a look at the output patterns
acquired in two different points of parameter space, one from the left of the band and one
from the right, the naked eye can recognize something like ordered and disordered activity
(see appendix A.1, figures A.3 and A.4).

According to the definition, for a chaotic system different preconditions have to lead to
significantly different states. A method to test this for the HAGEN liquid was developed by
Felix Schürmann. In what follows an input bit stream always denotes a one-dimensional stream
of bits with equal probabilities for 0 and 1. The test is presented step by step: For a distinct
point in parameter space a network is generated. S1, S2 and Stest are three independently
generated input bit streams, S1 and S2 having the same length. First S1 is applied to the
network, directly followed by Stest. Then the network state and all information stored in
the synapses or feedback devices is reset. Afterwards S2 is applied, again followed by Stest.
During the application of Stest the output states of the network are recorded. The purpose
of this procedure is to put two identical networks into completely different initial states and,
with the beginning of a shared input stream Stest, observe whether they synchronize again,
i.e. converge to a sequence of similar or identical states, or if they do not. Since the network

3.2. LIQUID COMPUTING WITH HASTE 77

Figure 3.21: The same experiment as the one shown in fig. 3.20, but with 120
neurons only. Again mean MC values are plotted to the left, standard deviations
to the right.

states are vectors of binary digits, the hamming distance was considered to be a good measure
for their resemblance. Let x and y be two k-dimensional vectors of binary digits. Then the
hamming distance is defined as

dham = (x − y)2 , (3.22)

i.e. if the states are identical, the distance becomes zero. In order to compare hamming
distances obtained for vectors with different values for k they need to be normalized,

dham,norm = dham/k . (3.23)

On average two randomly generated binary vectors with 0 and 1 equally distributed the mean
normalized hamming distance is 0.25.

Be si
test the ith bit of Stest and o

i
1 (oi

2) the corresponding output state during the first
(second) application of Stest. The normalized hamming distance is evaluated for all measured
pairs of o

i
1 and o

i
2. The course of dliquid(i) ≡ dham,norm(oi

1,o
i
2) then can be plotted versus i.

Using Felix Schürmann’s tool the P-HASTE experiment with 256 neurons was studied
applying this method. The proposed procedure was applied to every point in the parameter
space where the memory capacity already had been measured at. The result can be seen in
fig. 3.22. The initialization phase, i.e. the application of S1 respectively S2, was performed for
1000 cycles each. This large number accounts for the fact that a network reset as postulated
above was not possible for HASTE within one experiment due to technical reasons. This is
a task still to solve. But, regarding a maximum memory capacity in the order of 4 for the
evaluated networks, a complete loss of information about conditions 1000 cycles ago can be
assumed. After the different initializations of both identical networks the course of d liquid(i)
was measured for 300 more cycles, applying the same input bit stream. For every pair of
parameters the hamming distance evaluation was performed 30 times in order to average over
fluctuations.

78 CHAPTER 3. EXPERIMENTS

0 0.5 1

2

4

6

8

10

12

14

16

variance

average memory capacity sweep

in
pu

tN
um

be
r

0

0.5

1

1.5

2

2.5

3

0 0.5 1

2

4

6

8

10

12

14

16
Integral of d(t)

variance
in

pu
tN

um
be

r

0

10

20

30

40

50

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

M
C

 [b
it]

0 5 10 15
0

10

20

30

40

50

60

In
te

gr
al

 o
f d

(t
)

data point

Profile Along Cut

0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

d(
t)

time t

Normalized Hamming Distance

Figure 3.22: Upper left: Same as left part of fig. 3.20. For the parameter pairs
on the red line the memory capacity is re-plotted in the lower left figure (red).
In another experiment a single network was generated for every parameter point
the memory capacity was evaluated at (blue circles). This network was fed with
the same input bit stream twice, being differently initialized in each case. The
hamming distance d(t) between the generated output states was recorded. The
lower right figure shows the course of this hamming distance for every parameter
point which is crossed by the green line in the upper right plot. More precisely,
every plot in the lower right figure represents the mean over 30 courses evaluated
for a fixed parameter set. Lower courses of d(t) correspond to lower values of k.
Every data point in the upper right plot denotes the integral over such a mean
course. The integrals of all parameter pairs crossed by the green line (same as for
the red one) are re-plotted in the lower left figure, too.

3.2. LIQUID COMPUTING WITH HASTE 79

The course of the average hamming distance dham,norm along the 300 cycles of synchronized
input is shown for 15 selected parameter sets in the lower right subplot of fig. 3.22. Imme-
diately after the onset of identical input streams, dham,norm is about 0.25 for all parameter
sets. This was expected, see eq. 3.23. The differently initialized but identical networks then
tend to synchronize, i.e. the hamming distance decreases. Some of them nearly completely
adapt to each other, which corresponds to values of dham,norm ≈ 0. Others seem to converge
to a finite value dham,norm ≈ d̃ > 0. This means that different preconditions lead to different
final states, which was the criterion for chaos. Of course this cannot be proven to infinity, but
since 300 cycles are a relatively long time compared to memory capacities of 4̃, a characteristic
difference between the networks can be claimed. The so-called “edge of chaos” really divides
networks with ordered from those with chaotic activity. Parameters drawn from this edge
generate networks of high memory capacity.

Obviously d̃ depends on the parameters the network has been generated with, d̃ = d̃(k, σ2).
The 15 selected parameter sets form a cross-section diagonally through the band of high
memory capacity. In the lower left of fig. 3.22 both the memory capacity and the integral over
the mean hamming distance after input synchronization are plotted for every point along the
cross-section. The memory capacity (red) reaches its peak right when the hamming integrals
(green) begin to leave the x-axis, i.e. at the onset of chaos. Similar measurements have
been performed for cross-sections cutting the band of high memory capacity horizontally and
vertically (see appendix A.1, figures A.5 and A.6), leading to the same conclusion.

How to assess different HASTE setups

Assume the number of used neurons to be fixed. Then, apart from the network topology,
the P-HASTE configuration is non-ambiguous. But having such a flexible extension like
HASTE to one’s disposal, a way suggesting itself is to leave P-HASTE behind, elaborate
synaptic behavior and compare computational power of liquids with different setups (see
sec. 3.2.2). This creates the need for a measure to somehow assess HASTE configurations
regarding their capability to build substrates for good liquids. Even for P-HASTE one might
be interested in the dependence of its liquid performance on a variable number of neurons.
The best memory capacity over all possible network generation parameters that reproducibly
can be achieved with a certain HASTE setup was regarded as such a measure.

Due to the impossibility of continuously scanning a finite part of the two-dimensional
parameter space, it is an unsolvable task to find the exact global maximum memory capacity.
The problem has to be solved in a different way. Assume the “MC surface” over the parameter
area of interest can be proven to be somewhat smooth, i.e. it is continuous and fluctuations
can be estimated quantitatively. Then for each sampling resolution an approximation of
the maximum memory capacity MC within the scanned parameter space including an error
estimation can be found. Hence the goal is firstly to show the memory capacity over the
parameter space of interest to be continuous. Then an estimation has to be given for the MC
fluctuation within the small area Asam captured by one sample (= sample patch). Due to
the fact that one of the two parameters suggested by Bertschinger is an integer that cannot
be resolved more precisely, the parameter space has the form of a grating, Asam being only
a line in this case. But in later experiments two continuous parameters were swept, so the
terminology will be kept general.

The degree of smoothness of the MC surface around the edge of chaos was proven as
follows: Let Si be the set of points in parameter space which technically can be resolved

80 CHAPTER 3. EXPERIMENTS

within a sample patch Asam,i. As already noted above, for the Bertschinger-like parameter
sweeps these patches are just lines. To get a measure for MC fluctuations within Asam,i, the
MC for every element of Si was measured in the same way as for the coarse sample grid.
Fig. 3.23 shows the sample patches belonging to the first three measured MC maxima of the
120 neuron experiment.

(a) MC over parameter space

(b) High resolution scans

Figure 3.23: (a) re-shows the left plot
of fig. 3.21, marking a smaller region that
contains the first three MC maxima. (b)
is a close-up of this region. For the coarse
parameter space sampling each of the
three MC maxima represents an area in-
dicated red (in the text this is called sam-
ple patch). A parameter sweep with ma-
ximum resolution was performed along
these lines to obtain the MC distribution
(see fig. 3.24).

Now having a set of 51 MC values Fi =
{

mci
j, j = 1...51

}

for 51 finely resolved and

equidistant parameter points, a histogram can be plotted. The deviations from the mean
over all 51 values represent the deviations of the MC surface over one Asam from flatness,
including the fluctuations caused by multiple network generation already discussed above.
Fig. 3.24(a) shows the histogram of MC values found in the area Asam around the first MC
maximum of the P-HASTE experiment (120 neurons) before translation.

The data looks encouraging since the measured deviations can be well fitted by a normal
distribution with σ ≈ 0.05, which is only slightly larger than the included fluctuation of
∆gen ≈ 0.04 caused by network generation (see subsection “Successful reproduction...”). The
same measurements were performed for the second and third maximum, delivering normal-

3.2. LIQUID COMPUTING WITH HASTE 81

2.3 2.35 2.4 2.45 2.5 2.55 2.6
0

2

4

6

8

10

Memory capacity

fr
eq

ue
nc

y
(#

)

Histogram of MC values

sigma = 0.048

Exp. Data
Gauss Distr. Fit

Figure 3.24: Histogram of 51 MC values (blue bars). The binned values belong
to 51 different parameter sets determining the network structure according to
Bertschinger et al. The (k, σ)-pairs were uniformly distributed around the first
MC maximum found in the coarse parameter sweep of fig. 3.21, covering the area
this MC value represents. A normal distribution fit is added (red bars).

distribution-like histograms with fitted deviations of 0.06 (second) and 0.05 (third). These
results again strongly indicate the edge of chaos to have a continuous surface and a relatively
plane crest.

To get a feeling for MC fluctuations within sample patches over the whole parameter space
of interest, a cross-section was made acquiring MC data for the parameter sets indicated red
in figure 3.25(a). For all uneven values of k < 16 the whole σ2-spectrum was scanned with
maximum resolution. A set Fi of 51 MC values was referred to each sample patch Asam,i. In
order to combine many histograms with different average MC values the mean of each set Fi

was subtracted from every element of Fi, i.e. all translated values m̃ci
j spread around zero.

After this translation the memory capacities acquired in different sample patches Asam,k were
binned in one histogram. The latter can be seen in fig. 3.25(b).

Although the parts of the parameter space where the MC surface was expected to be
steep were included into the cross-section histogram, i.e. both sides of the edge itself, nearly
no MC value differed more than 0.2 from the mean over its sample patch. Most of them were
dislocated even less than 0.1.

Hence the density of sample points across the parameter space as it was selected first can
be claimed to be sensible. The MC error ∆sam caused by fluctuations within one sample
patch is in the same order as the error ∆gen caused by many different network generations.
Thus, missing significant single peaks of memory capacity within the parameter space by
the sparse scanning presented above is not to be expected. As not all possible values of k

82 CHAPTER 3. EXPERIMENTS

Figure 3.25: (a) Again the left plot of fig. 3.21,
marking all lines of parameters for uneven values of
k (vertical axis, “inputNumber”). Along these red
lines MC measurements with maximum resolution
were performed in order to obtain information about
fluctuations of the MC surface not captured with the
coarse sample grid (blue dots). The blue dots demar-
cate subsets of the parameter pairs defined by the
red lines. Each MC value measured in such a subset
was subtracted by the mean over the whole subset.
A histogram of all MC values along the red lines and
after application of this translation is shown in (b).
The histogram proves the MC surface to be smooth
in the sense of fluctuations larger than 0.2 being very
unlikely. The runaway values on the left side of the
peak are MC values evaluated for σ2 = 0.0, which
always have to be zero since the generated networks
have no connectivity.

−1 −0.5 0 0.5
0

500

1000

1500

Memory capacity

fr
eq

ue
nc

y
(#

)

Histogram of MC values

Exp. Data

3.2. LIQUID COMPUTING WITH HASTE 83

were evaluated (k = 17...120 was skipped), one might possibly miss better values of memory
capacity than the ones found in the selected region. But for all Bertschinger-like experiments
performed for this study the largest value for k holding a global maximum memory capacity
ever measured was kmax = 12; this was even the only case in which k was larger than 10.
Hence the global MC maximum over the parameter space available with the HASTE platform
always was assumed to lie within the reduced parameter region k ≤ 16.

The histograms of MC values close to local maxima show that right on the edge of chaos
∆gen dominates ∆sam, so giving only ∆gen as an error estimation for MC is sufficient. Re-
ducing ∆gen by a factor n would cost up to O(n2) more MC evaluations in both cases, as it
goes with

√
N (N being the number of evaluated networks per parameter set).

In conclusion, the largest memory capacity available with P-HASTE and 120 neurons
can be stated to be MC = 2.6 with an estimated error of ∆tot ≈ 0.05. Claiming this is
only possible if the parameters for a global maximum are assumed to lie within the sampled
regions, which was strongly motivated, but not absolutely proven.

Due to the fact that the error ∆tot is dominated by the statistical error ∆gen, a HASTE
setup has to have a MC of about 0.1 = 2∆tot larger than the one it is compared with to know
with a confidence of 95% that it is really a better substrate for liquids.

84 CHAPTER 3. EXPERIMENTS

3.2.2 MC Optimization by Input Shaping

The idea of increasing the memory capacity of an ANN liquid by temporally stretching
and shaping synapses’ outputs was already introduced and motivated in the beginning of
this section. In what follows the way of configuring a network’s synapses will be called
synaptic setup. Assessing and comparing different synaptic setups was done using the method
developed and proved for P-HASTE, i.e. finding an estimation for the maximum memory
capacity MC over a reasonable parameter space. This MC value of a synaptic setup was then
interpreted as a measure for its capability to be a substrate for liquids. Other measures are
difficult to find as the position of the edge of chaos in parameter space is not fixed. Thus
observing a single fixed point within parameter space and comparing MC values for different
synaptic setups belonging to this fixed point makes no sense.

As a first approach the Bertschinger topology and the parameter sweep already used for
P-HASTE was retained, only the answer of synapses to incoming signals and the frequency
of the input stream were manipulated. The synaptic setup of HASTE has many degrees of
freedom, the ones selected to change were a global transmission delay larger than zero and
stretching/shaping synaptic answers. The synapses were configured to apply an exponen-
tial decay to the postsynaptic neuron if a presynaptic signal had occurred. The refractory
mechanism was kept deactivated, as it significantly worsened the results for the input driven
networks in all cases. A problem of stretching the synapse answers without shrinking shape
amplitude or weights is the increase of total activity caused by more effective input. This
leads to an earlier onset of chaotic behavior compared to applying pseudo delta peaks. In-
creasing synaptic time-scales relatively to the input frequency can make the network too slow
to properly process the provided information. The problem was solved by temporally “blow-
ing up” the input stream by a factor n, i.e. applying every input bit n times instead of only
once (see sec. 2.1). This complies with a relative acceleration of the system by the factor n
compared to the input frequency.

Systematical search

The same experiment as the one described above for P-HASTE with 120 neurons was
repeated with different configurations concerning input blowup, feedback delay and time-
scale of synaptic exponential decay. The amplitude resolution for synapses always was set to
two bits. The input blowup factor b was set to one, two and three, for every value of b the
feedback delay dFB was swept from 0ms to bms in steps of ∆dFB = 1ms. For every value of
dFB, τ was increased in steps of ∆tau = 0.5ms, starting from 0.5ms. The temporal resolution
always was configured as ρtemp = 1000 steps/sec, but since there was no time-scale inherent
in the experiment that would give any biological reference, this setting was arbitrary. Due
to the lack of time references it makes no sense to talk about simulated real time at this
point. Simply specifying numbers of cycles would do. But since the dimension of τ in the
software GUI of HASTE is milliseconds and similar experiments to follow will be modeled on
biology this unit of measurement will be kept. The ratio ρtemp/∆

tau determines the effect of
increasing τ .

All results are summarized in table 3.1. Every single number shown there represents
the maximum memory capacity MC across the same parameter space as for the P-HASTE
experiment. The same grid of sample points has been used, 30 measurements have been
performed for every evaluated point, a new network has been created randomly for every

3.2. LIQUID COMPUTING WITH HASTE 85

measurement, a linear readout has been trained for every new network (2000 network cycles)
and its performance has been evaluated (2000 more network cycles). Every number is the
result of ∼ 40 · 106 network cycles and ∼ 104 new networks and readout training runs. Table
3.2 gives error values to some selected MC values. These errors were obtained with the
method described above, i.e. by binning the values of a highly resolved memory capacity scan
across the sample patch of MC and making a normal distribution fit. The σ of this fit was
interpreted as the error of MC and is shown in the table.

`
`

`
`

`
`

`
`

`
`

`
`

`
`

τ (ms)
Blow / FB(ms) 1/0 1/1 2/0 2/1 2/2 3/0 3/1 3/2 3/3

0.5 2.57 0.00 2.00 2.54 0.00 1.54 2.30 2.44 0.17

1.0 2.55 0.02 2.11 2.60 0.18 1.65 2.46 2.47 0.28

1.5 1.91 0.03 2.28 2.22 0.15 2.05 2.47 2.29 0.19

2.0 1.65 0.02 2.37 2.10 0.14 2.08 2.54 2.16 0.28

2.5 2.20 2.02 0.13 2.09 2.48 2.13 0.27

3.0 1.71 1.67 0.10 2.26 2.31 1.98 0.22

3.5 2.22 2.08 1.95 0.20

Table 3.1: MC values for experiments according to Bertschinger, with different
synaptic setups (see text for details). “Blow” denotes the temporal stretching
factor of the input bit stream. “FB” stands for feedback delay. τ is the time
constant of synapse signals’ exponential decay. The maximum values in each
column are marked bold (except for the columns with marginal MC values only).

`
`

`
`

`
`

`
`

`
`

`
`

`
`

τ (ms)
Blow / FB(ms) 1/0 1/1 2/0 2/1 2/2 3/0 3/1 3/2 3/3

0.5 0.05 0.05 0.04

1.0 0.06 0.05 0.05

1.5 0.06 0.08 0.05 0.09

2.0 0.07 0.04

2.5 0.06 0.07 0.05

3.0 0.07

3.5 0.06

Table 3.2: Errors for the values in table 3.1, obtained with the sample patch
method.

Obviously there is an optimal time constant for nearly every combination of blowup factor
and feedback delay, and apparently there is a system behind these optima. Let tbit be the
period one single bit of input information is applied to the network during an experiment. For
example in the case of a blowup factor b = 3 and a temporal resolution ρtemp = 1000 steps/sec,
tbit would be 3 cycles times 1ms, i.e. tbit = 3ms. The best values for MC seem to occur if

τ + dFB
!≈ tbit , (3.24)

86 CHAPTER 3. EXPERIMENTS

i.e. if the time of a synaptic course plus its transmission from one neuron to the next is about
the period an input bit is applied.

Fig. 3.26 plots parts of table 3.1, namely the maximum memory capacity MC versus the
time constant τ of the exponential decay for input blowup factors two and three (ignoring
experiments with MC < 1). The existence of an optimum depending on the input frequency
b−1 and the feedback delay can be seen as peaks in the course of MC.

0.5 1 1.5 2 2.5 3 3.5
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Bertschinger topology

tau

M
C

m
ax

blow 2, delay 0 ms
blow 2, delay 1 ms

(a) Blowup factor 2

0.5 1 1.5 2 2.5 3 3.5
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Bertschinger topology

tau

M
C

m
ax

blow 3, delay 0 ms
blow 3, delay 1 ms
blow 3, delay 2 ms

(b) Blowup factor 3

Figure 3.26: MC versus time constant τ of exponentially decaying synaptic an-
swers. Experiments with a time blowup of factor two are shown in (a), those with
factor three in (b). In every figure the colored subplots represent measurements
applying different settings of the global feedback delay (see legend).

The clear and consistent course of MC as a function of τ with step sizes in the order of
0.1 supports the estimation presented above of ∆tot being smaller than 0.1.

A first encouraging finding of the experiment series shown in table 3.1 is the fact that
shaping synapse answers can work without worsening the capability of the system to be a
liquid. This can be detected when looking at the marked optima in the rows belonging to τ
values larger 0.5ms, i.e. belonging to experimental setups with drawn-out synaptic shapes.
Compare the MC values for b = 2 complying eq. 3.24 for dFB = 0 and dFB = 1. Apparently
stretching the input shapes works better if the transmission time for feedback signals is larger
than zero. For distinct delays larger than zero MC becomes significantly larger than in the
case of no delay.

The total performance could not be optimized significantly compared to the P-HASTE
experiment, but it was not worsened either by all approaches. It was possible to add more
sophisticated multi-bit input shaping without losing liquid performance in the scope of com-
puting boolean functions.

3.2. LIQUID COMPUTING WITH HASTE 87

3.2.3 A Cortical Microcircuit for HASTE

In chapter 1 the consequences of High Conductance States on the capability of a Percep-
tron to simulate cortical neurons elaborately have been discussed. The experiments presented
so far have been important to confirm basic assumptions, to develop methods for coping with
the limitation of hardware resources and to gain first experiences with liquid computing. A
relation to biology already was given for the single neuron bombardment experiments, but
the liquid computing approach according to Bertschinger had only little to do with biological
networks of spiking neurons. This is in contrast to the experiments presented in [15]. Uti-
lizing a software simulation, the authors implemented a network of I&F neurons connected
accordingly to topologies found in the rat cortex. This net then was used to act as the high-
dimensional filter of a LSM. The corresponding linear readout was successfully trained to
solve tasks like speech recognition.

The following experiments are the biologically inspired trial to perform spike-based real-
time computing on a VLSI Perceptron. The capability of the HASTE system to perform spike-
based computation close to cortical activity was used to full capacity. Network topologies were
created strongly oriented towards real cortical structures, according to the instructions given
in [15]. The mapping of these instructions to the parameter space provided by HASTE was
introduced in sec. 2.2.1. The neuron and synapse parameters also were chosen to fit data
suggested in [15].

Typical stimuli in real life are highly continuous. Hence, the three-bit parity problem on a
binary input stream in discrete time domain used so far is not an optimal benchmark problem
for the attempt to perform biological computation. But since the whole experimental setup
already existed and only small adaption had to be performed to apply this problem to the
new HASTE setup, it was worth a try. Furthermore, the human brain indeed can solve such
a task.

Applying a new network topology

A network of 120 neurons formed the liquid of a LSM, the synapses were simulated with
ρamp = 2. The neurons were arranged in a virtual three-dimensional integer grid with size
6 × 5 × 4 and then connected according to eq. 2.6, see sec. 2.2.1 for details. The parameters
Ã determining the relative connectivity between different neuron types were selected as sug-
gested in [15], namely CEE = 0.3, CEI = 0.2, CIE = 0.4 and CII = 0.1. The suggestions for
relative synaptic strengths in these different cases had to be adapted to the requirements of
HASTE. An elaborate derivation can be found in sec. 2.2.1, too. The adapted values chosen
for the experiments are ÃEE = 0.499, ÃEI = 1.000, ÃIE = −0.887 and ÃII = −0.887. The
value for λ, which determines the total connectivity, was swept during the experiments to
follow. The response of synapses to arriving spikes was configured according to eq. 3.10, i.e. it
was modeled as an exponential decay. 20% of the neurons were set inhibitory, 80% excitatory.
The whole setup worked with a temporal resolution of ρtemp = 1000 steps/sec.

The time constant of the exponential decay of synaptic response was set to 6ms for
inhibitory and to 3ms for excitatory synapses. The discretization method CCI proposed in
sec. 3.1.1 was applied. Since only a global (i.e. for all neurons identical) refractory period can
be defined within the hardware version of HASTE, it was set to 2ms. The global transmission
delay of feedback connections was set to 1ms.

88 CHAPTER 3. EXPERIMENTS

Injecting the input bit streams

The linear readout of the LSM was trained to solve the three bit parity problem like already
introduced for the Bertschinger-like experiments. Again both the original bit stream, its
inverse and one constant bias input were fed into the network. The speed of information inflow
was adapted to the synaptic time constants by blowing up the primarily generated input bit
stream with zeros (see sec. 2.2.2). Three zeros followed every bit that contained information,
i.e. every 4ms of simulated time a new bit was applied to the network. The bias input was
received by every single neuron. But in contrast to the input-driven network suggested by
Bertschinger, for this cortical microcircuit the two input bit streams were not stringently
connected to every neuron from the start. Eq. 2.6 describes probabilities for connections
between inner neurons, i.e. both participating neurons are part of the simulated network.
The equation can be defined separately for connections from external inputs to the network
itself. Then each of the appearing parameters is marked with a subscript in. Corresponding
to the network activation applied in the Bertschinger-like experiments, the synaptic strength
was set to 0.5 hwu for injecting the original bit stream, and to −0.5 hwu for the inverse signals.
Cin was set to 1.0 for all connection types, i.e. all neurons had the same chance to receive an
input. λin determined the total degree of input connectivity. For values of λin > 10 practically
every neuron receives both bit streams. Therefore sweeping λin does not have to exceed a
value of 10.

Results

Since the network topology suggested by Maass provides a very large number of param-
eters, a systematical search like the one proposed for the Bertschinger-like networks was not
possible due to the limited time for the work on this thesis. Two experiments are presented
here, they are to be understood as a proof of principle.

Again two-dimensional parameter sweeps were performed. Both the average memory
capacity and the course of the hamming distance have been evaluated in the same way as
for the previous experiments. The number of evaluations per data point again was 30. For
the first run λin was set to infinity, i.e. every neuron received both input bit streams. The
synaptic weight of the bias input was the first parameter to vary, the complete available range
was covered. This value shifts the effective simulated spiking threshold of all neurons and
therefore directly affects the network activity. The second parameter to be swept was λ,
determining the total connectivity of the net and consequently an important influence on the
activity, too. The evaluated values range from 0.25 to 5.0.

Fig. 3.27 shows the result. Obviously a biasing of the neurons with too large negative values
causes a complete loss of memory capacity. Since one input streams is injected with synap-
tic weights of 0.5 hwu, the onset of memory capacity for bias weights larger than −0.5 hwu
was expected. Another edge of systematic MC changes can be detected for bias weights of
0.5 hwu. This corresponds to the synaptic weights the second bit stream is fed in with, namely
−0.5 hwu.

Much more interesting is the clear and finite range of large memory capacity determined
by λ. Values of 1.3 ± 0.3 are found to work best, at least for a negative bias weight larger
than −0.5.

In accordance with the results for the Bertschinger-like experiments, the figure again
indicates that the memory capacity of a network correlates to the onset of chaotic activity.

3.2. LIQUID COMPUTING WITH HASTE 89

Figure 3.27: Left: Average memory capacity (grey value) of liquids generated
according to Maass as a function of two parameters, namely the synaptic weight
of the bias input (axis “biasWeight”) and λ. Right: Integral over the hamming
distance of two identical networks fed with the same input bit stream after a phase
of different initialization, again as a function of the same two parameters. This
integral is considered to be a measure for the degree of chaos within the network
activity, see sec. 3.2.1. Clearly for bias weights less than −0.5 the network exhibits
highly ordered respectively probably even no activity. For bias weights right next
to this critical value chaos is strongest. It disappears again for increasing values
of this weight. This probably comes along with the permanent firing of more
and more neurons due to the large biasing. A finite region is dominated by high
integral values, in particular for bias weights around zero. Obviously there is a
correlation again between the memory capacity and the degree of chaos.

One consequence of the first experiment with the cortical microcircuit was, that for the
experiment to follow a bias weight of −0.4 hwu has been selected. For the same basic settings
a parameter sweep λ vs. λin was performed, λin being varied from 1 to 10. The goal was to
find out whether the new topology possibly works better if less neurons receive the external
input. Possibly the strong input driving inhibits some neurons from performing tasks that
require a high input sensitivity. Both the average memory capacity and the hamming integral
has been evaluated for every data point.

Fig. 3.27 shows the result. The small range of values for λ causing a high memory capacity
is confirmed, it can be seen as a band of high average MC values going from the left to the
right. Again this band corresponds to the onset of a higher degree of chaotic activity. The
first maximum of the memory capacity is found to be 1.49±0.04, which is significantly smaller
than the value found for the Bertschinger approach with 120 neurons. Nonetheless this value
denotes the actual capability of the liquid to store information and to act as a non-linear
filter.

Since the memory capacity within the dark band seems to be nearly constant for a large
spectrum of λin, a cross-section is plotted in fig. 3.29. Obviously the network is very tolerant in
its response to different degrees of input drive. The average memory capacity already reaches
its maximum value for a fragmentary connection of the input bit streams to the network.

90 CHAPTER 3. EXPERIMENTS

Figure 3.28: Left: Average memory capacity (grey value) of liquids generated
according to Maass as a function of two parameters, namely the synaptic weight
of the bias input (axis “biasWeight”) and λ. Right: Integral over the hamming
distance,

From this point the average MC keeps approximately constant when increasing the input
connectivity, at least within the occurring fluctuations. The maximum value found for the
memory capacity in this experiment is 1.84 ± 0.04, which is significantly higher than for the
λ vs. bias weight sweep.

Conclusions drawn from this section

HASTE has been utilized for liquid computing in different ways. First a typical Perceptron
experiment has successfully been reproduced, proving HASTE to be able to solve real-time
tasks. The correlation between chaotic activity of a network and its memory capacity elabo-
rately has been studied. Then features provided by HASTE to extend the Perceptron model
have systematically been applied. A way to reproducibly optimize the maximum memory ca-
pacity a HASTE configuration can exhibit was not found. Nonetheless the memory capacity
could be upheld even for synaptic shaping and stretching.

A cortical microcircuit has been constructed on the basis of the HASTE system. The same
problem as for the first approach was to be solved with really spike-based computation. For
some regions in configuration space the neural network exhibited a significant reproducible
memory capacity in the same order as for the pure Perceptron approach. Therefore the
attempt to perform spike-based real-time computation on the basis of a hardware Perceptron
can be claimed to be successful.

3.2. LIQUID COMPUTING WITH HASTE 91

Figure 3.29: Left: Same as left part of fig. 3.28, but including a red line that
marks all parameter points the memory capacity is separately plotted in the right
figure. Right: Average memory capacities of the points cut by the red line in the
left figure.

Chapter 4

Discussion

A way has been found to utilize a Perceptron for the simulation of cortical neural networks
in awake state. This approach is based on the interpretation of the neurons’ signals as being
spike-coded and can be motivated consulting recent results from neuro-science, especially
those of so-called High Conductance States of neuron populations. The simulation method
was applied to the VLSI Perceptron HAGEN, which consists of 256 McCulloch-Pitts neurons.
The design implemented for this study is therefore called HASTE (HAGEN spike translation
environment).

To extend the hardware neurons with basic features of a conductance-based spiking neuron
model, functional units have been designed for the programmable logic device (FPGA) which
controls the HAGEN chip. The implementation was realized by the tutor of this study,
Michael Reuss, who also took part in the planning. An essential part of this extension is the
pooling of multiple binary Perceptron synapses to one multi-bit synapse with a limited range of
integer values. This allows to model shaped synaptic response to arriving spikes with a certain
resolution. The devices specifically designed for HASTE and realized on the FPGA perform
the generation and application of these shaped inputs as well as the realization of neuron
refractoriness. The generators are constructed to model the change of simulated membrane
conductances at synapses due to arriving spikes. The McCulloch-Pitts neurons superpose
these conductance courses and discriminate whether the ratio of excitatory to inhibitory
components exceeds a critical value. If this happens, the neuron exhibits an output value of
1 and is said to fire at a certain rate until the output vanishes again.

The HASTE system was integrated into a software framework that already existed for
the controlling and utilization of the HAGEN chip. Therefor classes representing the new
network model, the shape generators and others have been written. Methods for generation
of biologically oriented network topologies and their mapping to the available hardware have
been developed. Many algorithms and methods had to be adapted to the special requirements
of synapse pooling in order to apply them to experiments performed for this study.

HASTE is working, the software is well documented and the hardware extensions are de-
scribed and evaluated in this thesis. A software version of the whole system has been devel-
oped by the author in the design-phase of the hardware realization, referred to as SoftHASTE.
SoftHASTE already utilizes the real HAGEN chip as its Perceptron core. It allowed to explore
and cut down the huge parameter space that arose from first conceptual planning due to its
huge flexibility. In contrast to re-programming the FPGA, no constraints in terms of limited
hardware resources have to be considered for this software extension. It therefore was used

92

93

to support Michael Reuss in his work on the hardware implementation.
Three different types of experiments have been performed with the novel HAGEN en-

vironment. In the first run single neuron bombardments were simulated using SoftHASTE.
Methods have been found to discretize conductance courses allowing to compare experimental
results obtained with different amplitude and temporal resolutions in terms of output firing
rates. Emulating continuous membrane dynamics of a neuron with 1000 discrete cycles per
simulated second was shown to deliver reasonable output firing rates. These first experiments
proved the ability of HASTE to process data via rate coding.

A second point to test was the distribution of interspike intervals exhibited by a HASTE
neuron under biologically realistic input. A significant ISI diversity is essential for temporal
coding, a method of information processing that is found within the brain. HASTE implements
only an absolute refractory mechanism for the time being. In spite of this constraint the
results of the second sort of experiments demonstrate that it is possible to configure HASTE
such that the interspike intervals spread in the same order as data retrieved during in vivo
measurements of real neurons, at least for a realistic input bombardment.

In a third type of experiments neuron populations were simulated. A liquid state machine
developed by a member of the author’s working group was adapted to HASTE, integrating the
spike-based neural network as the high-dimensional filter component. The task to solve by this
system was a three-bit parity problem on a continuous one-dimensional bit stream fed into the
network. The three bits the parity had to be solved for were systematically shifted backwards
in time, i.e. the capability of the network to keep information (memory capacity) was tested.
In a first attempt, a setup emulating a plain Perceptron and a procedure proposed by Nils
Bertschinger et al. was applied to HASTE respectively to the liquid state machine. It was
shown that the HASTE environment configured to behave like a plain Perceptron reproduced
previous results of liquid experiments with HAGEN only performed by Felix Schürmann [28].

Different attempts have been made in order to optimize the memory capacity of the
Bertschinger-like network. Shaping and stretching synaptic answers to arriving spikes was
varied in a systematic search. The ability of the HASTE network to deliver equal memory
performance with elaborate synaptic response as for the pure Perceptron approach has been
proven. A significant improvement in terms of memory capacity was not found.

In another approach to solve this real-time computation task the capabilities of the
HASTE system were used to full capacity for the first time. The network and each single neu-
ron were configured to act as close to real cortical structures as possible. Main reference for
the selection of parameter values was a publication by Wolfgang Maass about liquid comput-
ing experiments with a software model of cortical spiking neurons. The benchmark problem
was not ideal for testing a cortical circuit, since it was on a one-dimensional input, which is
in contrast to the typically multi-dimensional appearance of real stimuli in the brain. The
digital character of the task does not really fit the pseudo-continuous operation mode of the
network either. But in spite of this drawback, the cortical microcircuit for HASTE exhibited
a memory capacity in the same order as the Perceptron approach with a Bertschinger-like net-
work topology. Hence, spike-based real-time computation has been performed on a hardware
Perceptron with biologically oriented extensions.

In conclusion, the design and implementation of a spike interpretation environment for
a hardware Perceptron was successful. Powerful and flexible software has been created to
comfortably utilize this novel tool. The experiments performed with SoftHASTE and HASTE
delivered results of different usefulness. A basic and important insight is that HASTE is able
to perform both rate coding and temporal coding. Spike-based real-time computation with

94 CHAPTER 4. DISCUSSION

generic cortical circuits was proven to be possible on this platform. Thus, a good starting
position for further experiments exceeding the field of system specification has been created.

Chapter 5

Outlook

Generally, the main advantage of using hardware for the simulation of neural networks
clearly is the computational speed and the high scalability due to operation parallelism.
Hardware approaches that implement neuron models exhibiting spiking behavior are very
rare. In contrast to that, several hardware Perceptron devices exist. Utilizing these devices
for the simulation of networks of spiking neurons provides a fast tool for studying basic
mechanisms of the brain like information representation and self-organization. In spite of the
limited accuracy, the enormous simulation speed and thus the possibility of simulating large
periods of activity might make this approach the first choice in some cases.

A long term application of HASTE is the research on spike-timing dependent plasticity of
synaptic weights. Reasonably modeling and studying this way of synaptic learning promises
to give new insights into basic mechanisms of self-organization within the brain.

A very concrete plan of progressing in the field of liquid computing is to perform experi-
ments with more naturally inspired tasks to be solved by the liquid state machine. Candidates
are simple speech recognition problems or the classification of sequences of visual stimuli.

Before approaching these goals, some technical improvements should be considered. Al-
though the setup presented in this study marks a certain status of completion, there is a
number of restrictions which possibly can be eliminated or reduced. The refractoriness of
neurons for example can only be configured with a global value for the whole network. This
is not in accordance with the diversity of refractory periods found in nature. At least two
different periods should be realizable since a main distinction in real cortical networks is the
difference of values found for excitatory and inhibitory neurons. A relative refractory mecha-
nism is planned, but not yet realized. For the time being many neurons on the chip have to be
ignored if the synapse resolution is more than one bit. These neurons can be used to deliver
information about the closeness of the simulated conductance ratio to the critical value. This
information might be the basis for a relative refractoriness.

The transmission delay of feedback connections can only be selected globally as well. It is
furthermore limited to a maximum value of three network cycles, which makes this limit even
inconsistent in terms of time for different temporal resolutions. Both constraints are due to
hardware specific reasons, but they might be solvable with a larger FPGA, for example.

Maybe the most urgent improvement that has to be taken care of is creating the possibility
of a network reset. This means the need for setting all conductance course generators and
all information stored in the feedback registers to zero. Since this feature is missing for the
time being, time-consuming initialization phases had to be applied before the evaluation of

95

96 CHAPTER 5. OUTLOOK

network states was possible.
The HAGEN chip was designed as a prototype for a larger network device. This bigger

version with a synapse number in the order of 106 is still planned to be produced, especially
since HAGEN proved to work very reliably. The developments made for HASTE easily could
be expanded and adapted to such a larger chip, partly solving the problem of the neuron
number limitations coming along with increased synapse resolution.

All things considered, much of the potential of HASTE still has to be exploited.

Appendix A

Supplement

A.1 Additional figures

Belonging to sec. 2

Figure A.1: HAGEN feedback connection overview.

97

98 APPENDIX A. SUPPLEMENT

Belonging to sec. 3.1.1

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z
Firing rate vs. synaptic weights −− 4000 steps/sec

avg dev = 14.03

1 bit shaping
2 bit shaping
4 bit shaping

(a) d = 0.3

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 4000 steps/sec

avg dev = 7.99

1 bit shaping
2 bit shaping
4 bit shaping

(b) d = 0.4

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z

Firing rate vs. synaptic weights −− 4000 steps/sec

avg dev = 7.92

1 bit shaping
2 bit shaping
4 bit shaping

(c) d = 0.5

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

synaptic weight of single input

fir
in

g
ra

te
 o

f n
eu

ro
ns

 in
 H

z
Firing rate vs. synaptic weights −− 4000 steps/sec

avg dev = 7.55

1 bit shaping
2 bit shaping
4 bit shaping

(d) d = 0.6

Figure A.2: Output firing rate of a single neuron bombarded with 30 Poisson
spike trains versus the synaptic weight of a single input (all 30 inputs have the
same weight). Each input spike train has an average firing rate of 33 Hz, the
temporal resolution is 4000 steps/sec. (a)-(d) Mapping offset d constant for all bit
resolutions, (c) with d = 0.5 represents arithmetic rounding.

A.1. ADDITIONAL FIGURES 99

Belonging to sec. 3.2.1

100 APPENDIX A. SUPPLEMENT

Figure A.3: The grey-scale coded MC values to the
left represent the data retrieved during the 256 neu-
ron P-HASTE experiment. The red plus marks a
point within the parameter space below the band of
high memory capacity. According to these parame-
ters a network was generated using the same exper-
imental setup (P-HASTE, 256 neurons). Just like
for the MC evaluation every neuron was connected
to a random bit stream, it’s inverse and a constant
bias. This can be seen in the “input” sub-window
of the lower figure: each of the four network blocks
(colored) receives the described input. The synapse
weight connecting the bias with the neuron was set
to zero. The resulting output versus time is shown in
the lower sub-window, it strongly follows the input.
The output window does not show all 256 neurons.

A.1. ADDITIONAL FIGURES 101

Figure A.4: The grey-scale coded MC values to the
left represent the data retrieved during the 256 neu-
ron P-HASTE experiment. The red cross marks a
point within the parameter space above the band of
high memory capacity. According to these parame-
ters a network was generated using the same exper-
imental setup (P-HASTE, 256 neurons). Just like
for the MC evaluation every neuron was connected
to a random bit stream, it’s inverse and a constant
bias. This can be seen in the “input” sub-window
of the lower figure: each of the four network blocks
(colored) receives the described input. The synapse
weight connecting the bias with the neuron was set
to zero. The resulting output versus time is shown in
the lower sub-window. The activity seems to much
more chaotic than that shown in fig. A.3. Again the
output window does not show all 256 neurons.

102 APPENDIX A. SUPPLEMENT

0 0.5 1

2

4

6

8

10

12

14

16

variance

average memory capacity sweep

in
pu

tN
um

be
r

0

0.5

1

1.5

2

2.5

3

0 0.5 1

2

4

6

8

10

12

14

16
Integral of d(t)

variance
in

pu
tN

um
be

r

0

10

20

30

40

50

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

M
C

 [b
it]

0 5 10 15 20 25
0

10

20

30

40

50

In
te

gr
al

 o
f d

(t
)

data point

Profile Along Cut

0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

d(
t)

time t

Normalized Hamming Distance

Figure A.5: Upper left: Same as left part of fig. 3.20. For the parameter pairs
on the red line the memory capacity is re-plotted in the lower left figure (red).
In another experiment a single network was generated for every parameter point
the memory capacity was evaluated at (blue circles). This network was fed with
the same input bit stream twice, being differently initialized in each case. The
hamming distance d(t) between the generated output states was recorded. The
lower right figure shows the course of this hamming distance for every parameter
point which is crossed by the green line in the upper right plot. More precisely,
every plot in the lower right figure represents the mean over 30 courses evaluated
for a fixed parameter set. Lower courses of d(t) correspond to lower values of k.
Every data point in the upper right plot denotes the integral over such a mean
course. The integrals of all parameter pairs crossed by the green line (same as for
the red one) are re-plotted in the lower left figure, too.

A.1. ADDITIONAL FIGURES 103

0 0.5 1

2

4

6

8

10

12

14

16

variance

average memory capacity sweep

in
pu

tN
um

be
r

0

0.5

1

1.5

2

2.5

3

0 0.5 1

2

4

6

8

10

12

14

16
Integral of d(t)

variance
in

pu
tN

um
be

r

0

10

20

30

40

50

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

M
C

 [b
it]

0 5 10 15 20
0

10

20

30

40

50

60

In
te

gr
al

 o
f d

(t
)

data point

Profile Along Cut

0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

d(
t)

time t

Normalized Hamming Distance

Figure A.6: Upper left: Same as left part of fig. 3.20. For the parameter pairs
on the red line the memory capacity is re-plotted in the lower left figure (red).
In another experiment a single network was generated for every parameter point
the memory capacity was evaluated at (blue circles). This network was fed with
the same input bit stream twice, being differently initialized in each case. The
hamming distance d(t) between the generated output states was recorded. The
lower right figure shows the course of this hamming distance for every parameter
point which is crossed by the green line in the upper right plot. More precisely,
every plot in the lower right figure represents the mean over 30 courses evaluated
for a fixed parameter set. Lower courses of d(t) correspond to lower values of k.
Every data point in the upper right plot denotes the integral over such a mean
course. The integrals of all parameter pairs crossed by the green line (same as for
the red one) are re-plotted in the lower left figure, too.

104 APPENDIX A. SUPPLEMENT

A.2 Software

This section gives short information about the location and installation of all software
described in this thesis.

A.2.1 Compiling HANNEE

In order to run the HANNEE software, one has to check out the hannee++ tree first, which
can be found in the project directory of the CVS (concurrent version system) repository of
the Electronic Vision(s) group. The README file included in the hannee++ folder gives
detailed instructions how to install the HANNEE program. It also contains information about
the calibration of the HAGEN chip, how to generate the documentation with Doxygen and
how to integrate personal software components into the HANNEE framework. The latter has
to be done with the modules developed for HASTE.

A.2.2 Compiling the Software for HASTE

In order to make use of the software interface and the methods provided for HASTE, a
proper version of HANNEE has to be installed first, see previous section. All necessary source
code for HASTE can be downloaded from the project directory of the CVS repository of the
Electronic Vision(s) group, too. The subtrees myhannee/bruderD and myhannee/felix have
to be checked out. The folder bruderD contains a file HowToGenerateLiquidHaste, which is a
step-by-step description of what to do in order to obtain a working program.

A.3 Experimental Raw-Data and Script-files for MATLAB

All experimental data accumulated for this thesis is stored on the host computer orion
at the Kirchhoff Institute for Physics in Heidelberg. The exact path where to find it is
orion:/users/bruederl/DATA/EXP. All script-files for the application of MATLAB to the
raw data are stored in sub-folders called ./matlabScripts.

List of Abbreviations

ANN artificial neural network
ARN arithmetic rounding
ASIC application specific integrated circuit
CC conductance course
CCI constant course integral
CVS concurrent version system
DAC digital to analog converter
EEG electroencephalogram
fMRI functional magnetic resonance imaging
FPGA field-programmable gate array
GUI graphical user interface
HAGEN Heidelberg analog evolvable network
HANNEE Heidelberg analog neural network evolution environment
HASTE HAGEN spike translation environment
HCS High Conductance State
HWU HAGEN weight unit
I/O in- and output
LSM liquid state machine
LVDS low voltage differential signal
MC memory capacity
MI mutual information
PC personal computer
PCI peripheral component interconnect
PSP post-synaptic potential
RAM random access memory
STDP spike-timing-dependent plasticity
VHDL virtual hardware describing language
VLSI very large scale integration
VSD voltage-sensitive dye

105

106 APPENDIX A. SUPPLEMENT

Bibliography

[1] N. Bertschinger and T. Natschläeger. Real-time computation at the edge of chaos in
recurrent neural networks. Neural Computation, 16(7):1413 – 1436, July 2004.

[2] Alain Destexhe, Michael Rudolph, and Denis Pare. The high-conductance state of neo-
cortical neurons in vivo. Nature Reviews Neuroscience, 4:739–751, 2003.

[3] Wulfram Gerstner and Werner Kistler. Spiking Neuron Models: Single Neurons, Popu-
lations, Plasticity. Cambridge University Press, 2002.

[4] D. Goldenholz. Liquid computig: A real effect. Technical report, Boston University
Department of Biomedical Engineering, 2002.

[5] Robert Hecht-Nielsen. Perceptrons. Technical report, Institute for Neural Computation,
University of California, San Diego, 2004.

[6] S. Hohmann, J. Schemmel, F. Schürmann, and K. Meier. Exploring the parameter space
of a genetic algorithm for training an analog neural network. In W.B. et. al. Langdon,
editor, Proceedings of the Genetic and Evolutionary Computation Conference GECCO
2002, pages 375–382. Morgan Kaufmann Publishers, July 2002.

[7] S.G. Hohmann, J. Fieres, K. Meier, J. Schemmel, T. Schmittz, and F. Schürmann.
Training fast mixed-signal neural networks for data classification. In Proceedings of the
2004 International Joint Conference on Neural Networks (IJCNN’04), pages 2647–2652.
IEEE Press, 2004.

[8] Steffen Hohmann. Personal communication, Oct. 2004.

[9] Steffen G. Hohmann, Johannes Schemmel, Felix Schürmann, and Karlheinz Meier. Pre-
dicting protein cellular localization sites with a hardware analog neural network. In
Proceedings of the Int. Joint Conf. on Neural Networks, pages 381–386. IEEE Press,
2003.

[10] H. Jaeger. The ”echo state” approach to analysing and training recurrent neural net-
works. Technical Report GMD Report 148, German National Research Center for Infor-
mation Technology, 2001.

[11] C. G. Langton. Computation at the edge of chaos. Physica D, 42, 1990.

[12] Volker Lindenstruth. Informatik II (Technische Informatik), lecture notes, University of
Heidelberg, summer term 2004.

107

108 BIBLIOGRAPHY

[13] W. Maass. Networks of spiking neurons: the third generation of neural network models.
Neural Networks, 10:1659–1671, 1997.

[14] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural Computation,
14(11):2531–2560, 2002.

[15] W. Maass, T. Natschläger, and H. Markram. On the computational power of circuits of
spiking neurons. Journal of Physiology (Paris), (in press), 2004.

[16] W. Maass, T.Natschlger, and H.Markram. Computational models for generic cortical
microcircuits, chapter 18, pages 575–605. Number ISBN 1-58488-362-6. J. Feng, Boca
Raton, 2004.

[17] J. Madrenas, E. Alarcon, J. Cosp, and J.M. Moreno. Vlsi design of a flexible-structure
sequential mixed-signal neural processor. In Proceedings of the 6th International Con-
ference Mixed-Signal Design of Integrated Circuits and Systems (MIXDES’99), Krakw
(Poland), June1999, 1999.

[18] D.A. McCormick, Z. Wang, and J.R. Huguenard. Neurotransmitter control of neocortical
neuronal activity and excitability. Cerebral Cortex, 3:387–398., 1993.

[19] J. Montalvo, Gyurcsik R., and Paulos J. An analog vlsi neural network with on-chip
perturbation learning. IEEE Journal of Solid-State Circuits, 32(4):535–543, April 1997.

[20] Dominik Niedenzu. Aufbau eines binären Neocognitrons. Diploma Thesis (german),
Heidelberg University, HD-KIP-03-11, 2003.

[21] Carl C. H. Petersen, Amiram Grinvald, , and Bert Sakmann. Spatiotemporal dynamics of
sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive
dye imaging combined with whole-cell voltage recordings and neuron reconstructions.
The Journal of Neuroscience, 23(3):1298 –1309, February 2003.

[22] Daniel S. Reich, Ferenc Mechler, Keith P. Purpura, and Jonathan D. Victor. Interspike
intervals, receptive fields, and information encoding in primary visual cortex. The Journal
of Neuroscience, 20(5):1964–1974, March 2000.

[23] F. Rosenblatt. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological Review, 65:386–408, 1958.

[24] F. Rosenblatt. Perceptron simulation experiments. In Proceedings of the IRE, pages
301–309, 1960.

[25] S. Satyanarayana, P. Tsividis, and H.P. Graf. A reconfigurable vlsi neural network. IEEE
Journal of Solid-State Circuits, 27(1):67–81, January 1992.

[26] J. Schemmel, S. Hohmann, K. Meier, and F. Schürmann. A mixed-mode analog neural
network using current-steering synapses. Analog Integrated Circuits and Signal Process-
ing, 38(2-3):233–244, 2004.

[27] T. Schmitz, S. Hohmann, K. Meier, J. Schemmel, and F. Schürmann. Speeding up
Hardware Evolution: A Coprocessor for Evolutionary Algorithms. In Andy M. Tyrrell,
Pauline C. Haddow, and Jim Torresen, editors, Proceedings of the 5th International
Conference on Evolvable Systems ICES 2003, pages 274–285. Springer Verlag, 2003.

[28] F. Schürmann, K. Meier, and J. Schemmel. Edge of Chaos Computation in Mixed Mode
VLSI - ”A Hard Liquid”. In Conference on Neural Information Processing 2004 (NIPS04)
- accepted, to be published.

[29] Felix Schürmann, Steffen G. Hohmann, Karlheinz Meier, and Johannes Schemmel. In-
terfacing binary networks to multi-valued signals. In Supplementary Proceedings of the
Joint International Conference ICANN/ICONIP, pages 430–433. IEEE Press, 2003.

[30] Michael Shelley, David McLaughlin, Robert Shapley, and Jacob Wielaard. States of high
conductance in a large-scale model of the visual cortex. J. Comp. Neurosci., 13:93–109,
2002.

[31] S. Song, K. Miller, and L. Abbott. Competitive hebbian learning through spiketiming-
dependent synaptic plasticity. Nat. Neurosci., 3:919–926, 2000.

[32] R.J. Staba, C.L. Wilson, I. Fried, and J. Enge Jr. Single neuron burst firing in the human
hippocampus during sleep. Hippocampus, 12:724–734, 2002.

[33] Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-based strategies for rapid
processing. Neural Networks, 14:715–725, 2001.

[34] P. White, B. Biskup, J. Elzenga, U. Homann, G. Thiel, F. Wissing, and F. Maathuis.
Advanced patch-clamp techniques and single-channel analysis. Journal of Experimental
Botany, 50:1037–1054, 1999.

109

110

Acknowledgments

I want to express my gratitude to all who made this work possible, especially:

My father for supporting me in all I ever aimed for.

Prof. Dr. Karlheinz Meier for accepting me into the research group, for his friendly direction,
his interest and his support.

Michael Reuss for being a patient, helpful and humorous tutor and partner for this work.

Felix Schürmann for his care, interest and support, for generously sharing his knowledge and
tools, for pushing the project.

Thorsten Maucher for Latex support and his special friendliness.

Jörg Langeheine for introducing me into the research group, for patiently teaching me basics
of experimental computer science and for his helpful hints.

All members of the Electronic Vision(s) group for their friendliness and for the nice atmo-
sphere.

Grazyna Gorny (University of Lethbridge, Canada) for allowing me to print her photograph
of a stained neuron.

All who helped on the correction of this thesis.

Bettina Ehrlich for being around when things got stressful, for making even these times nice
times.

111

