
New Genetic Operators to Facilitate Understanding
of Evolved Transistor Circuits

Martin Trefzer, Jörg Langeheine, Johannes Schemmel, Karlheinz Meier
University of Heidelberg

Kirchhoff-Institute for Physics
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

martin.trefzer@kip.uni-heidelberg.de, +49 (0)6221 54-9838
http://www.kip.uni-heidelberg.de/vision/projects/eh/

Abstract

In this paper new genetic operators are introduced that
inherently avoid floating terminals and broken routes while
evolving transistor circuits on a CMOS field programmable
transistor array (FPTA). They are designed to facilitate
understanding and improve transferability of the resulting
circuits. Comparators and logic gates (AND, OR, XOR)
have been evolved with the proposed algorithm and the re-
sults are compared to corresponding experiments that use
a straight forward implementation of the genetic operators.
Furthermore, netlists are extracted from the evolved circuits
and simulated with a SPICE simulator. The simulation re-
sults are compared with measurements performed on the
chip.

1 Introduction

Genetic algorithms (GAs) and genetic programming
(GP) are used in various implementations for analog circuit
synthesis. Two fundamental approaches are widely used:
First, the evaluation of the evolving circuits is done by a
software simulation, which is mostly in conjunction with
GP, or second, the evaluation is done by configurable hard-
ware to which the genotype representation can be mapped.
On the one hand, simulation offers full flexibility to the cir-
cuit topology while hardware substrates, e.g. analog arrays
(AAs) [8] [3], suffer from inherent constraints regarding the
placing and routing of the components. On the other hand,
valuable evaluation time is significantly higher for software
simulation than for an AA that provides the circuits output
almost instantly. Therefore, the philosophy behind using
hardware-in-the-loop is to be able to process more genera-
tions in less time to compensate for the flexibility of soft-
ware and to obtain directly a ready to use circuit.

Evolvable hardware aims to generate circuits from which
new ideas and concepts of electronic design can be derived.
To achieve this goal, the produced circuits have to be robust
against environmental influences and independent of the
evolution system. Circuits — evolved on AAs — tend to ex-
ploit inherent characteristics of the particular substrate and
therefore lack the desired properties. Hence, most evolved
circuits so far are difficult to understand and it is most of-
ten impossible to transfer them to other technologies. In the
case of AAs, which consist of identical functional blocks
that can be interconnected and configured in various ways,
this is due to commonly used straight forward implementa-
tions of the GA: The mutation operation flips random con-
figuration bits and the crossover copies parts from one in-
dividual to another without taking the environment into ac-
count. For our representation of the genotype this means
enabling or disabling random connections and random con-
figuration of the transistors. This leads to circuits that con-
tain a large number of floating terminals and discontinuous
routing. To overcome these problems, genetic operators can
be implemented that contain knowledge about the pheno-
type structure ([10] describes an approach of introducing
knowledge to the evolution process). For example, the ge-
netic algorithm can evolve circuits following the constraint
of avoiding floating nodes. Other approaches are made us-
ing knowledge about circuit design itself (methods of auto-
mated circuit design and current-flow analysis are applied
in [5] and [7]). Another possibility is to grow circuits from
small units either by consecutively connecting the available
inputs and outputs as described in [6], or by using a GP
representation as introduced in [2].

In this paper new genetic operators are introduced that
inherently avoid floating terminals and broken routes while
mutating the circuit. The GA that uses the new operators
is referred to as the Turtle GA throughout this paper. Thus,
in case of the FPTA, the main feature of the Turtle GA is

to produce circuits that are reduced to relevant components
and therefore are easier to understand according to engi-
neering criteria. SPICE netlists [9] of the evolved circuits
are generated and simulated outside the FPTA. The simu-
lation results are compared with the measurements on the
chip. In order to be able to derive new design concepts and
generally reusable solutions from evolved FPTA circuits, it
is necessary to accurately evaluate them.

The first task is to evolve logic gates (AND,OR,XOR),
which has been successfully done in previous experiments
[4] with a straight forward implementation of the GA.
Therefore, the logic gates — especially the AND / OR —
are suitable for testing the Turtle GA. The second task is to
evolve comparators. This is not only interesting because it
is quite difficult to find good solutions, but also, contrary to
the logic gates, the problem is of analog nature. Further-
more, to the authors knowledge a comparator has not yet
been successfully evolved. The performance of the Turtle
GA is compared to the straight forward implementation of
the GA used in [4], which is referred to as the Basic GA
throughout the rest of this paper.

2 Evolvable Hardware System

The evolution system [3] consists of three parts: First,
the FPTA that hosts the configurable CMOS transistor ar-
ray. Second, a controller for uploading the individuals to
the FPTA, applying the test patterns and measuring the out-
puts. Third, a PC that runs the GA and configures the con-
troller. Thus, the PC generates the analog test patterns that
are to be applied to the FPTAs inputs and transfers them to
the RAM of the controller. Subsequently, the individuals —
representing configuration strings for the transistor array —
are transferred to the controller; it configures the FPTA and
measures the output of the current individual by using the
previously defined test patterns as input. Once the measure-
ment is completed, the PC reads back the results and calcu-
lates the fitness value of the corresponding individual. After
the whole generation has been evaluated, the GA creates the
new generation out of the current one. These components
provide a real time test environment for the evolved circuits.

For an easier understanding of how the presented imple-
mentation of the GA works, a closer description of the tran-
sistor array is necessary: The array consists of 16x16 con-
figurable CMOS transistor cells (Fig. 1). Half of the cells
are designed as programmable PMOS and NMOS transis-
tors respectively and are arranged in a checkerboard pattern.
Width W and length L of each transistor is adjustable within
wide ranges (W = 1, 2, ..., 15 µm, L = 0.6, 1, 2, 4, 8 µm).
Its terminals (source, drain and gate) can be connected to
one of the cells outside connections (N,S,W,E), vdd or gnd.
Additionally, it is possible to directly connect the nodes
(N,S,W,E) to each other, which provides routing capabili-

W/L

1:6 Analog Mux

1:6 Analog Mux

vdd gnd

Drain

Gate

Source

1:
6

A
na

lo
g

M
ux

gnd

vdd

N

W

S

E

N W S E

vdd gndN W S E

N

W

S

E

S

N

EW

Figure 1. The block diagram of an FPTA MOS
transistor cell.

ties. Owing to the four nodes avaliable for routing and ter-
minal connections, one cell mostly serves either as transis-
tor cell or routing cell. However, both capabilities are not
separated. The array is enclosed by IO cells that can apply
voltages to the border cells or measure the output voltages
of the evolved circuit. Please refer to [3] for a detailed de-
scription of the FPTA.

3 The Genetic Algorithms

3.1 Operation Principle of the Turtle GA

Only circuits without floating nodes can be extracted into
netlists and transferred to other technologies. As a matter
of course, the genetic operators that are called by the Turtle
GA have to ensure that no node or terminal remains discon-
nected. The Turtle GA is a recursive algorithm that features
these properties. It ’draws’—analog to a Graphics Turtle—
random parts of a circuit directly on the phenotype repre-
sentation of the transistor array. The changes made by the
Turtle GA are then mapped back to the genotype. For each
arising open end the algorithm is recursively called until the
destination node no longer represents a floating terminal or
open route. Three genetic operators are available: One mu-
tation operator (random wires) and two crossover operators
(implanting of foreign cells and logic OR). The W/L values
of the transistors are independently changed due to a given
mutation rate.

3.1.1 Random Wires (Mutation)

The mutation operator randomly selects an outside node of
an arbitrary cell to be the starting point for the algorithm.
For such a node both, the cell and the adjacent neighbor
cell, provide six possible connections: Three routing con-
nections to the remaining outside nodes and three terminal
connections to the transistor nodes. Nodes are recursively
connected to (or — in erase mode — disconnected from) its

StartRandomWire

if

elseif

endif

if

elseif

endif

(){

RandomSelectTransistorCell()

RandomSelectStartNode(return N,S,W or E)

RandomSelectDestNode (return N,S,W,E or

Gate,Source,Drain)

(StartNode is connected to DestNode)

gaMode:=erase

EraseConnection()

(not connected)

gaMode:=create

EnableConnection()

(DestNode is N,S,W or E)

RecurseRandomWire (gaMode,DestNode)

(DestNode is transistor terminal)

RecurseRandomTerminal (gaMode,DestNode)

RecurseRandomWire (gaMode,CurrentNode)

}

RecurseRandomWire

if

if

else

endif

else

if

else

endif

endif

if

elseif

endif

(gaMode,DestNode){

(gaMode is erase)

RandomDecideWheterToProceed(return stop)

(No of node connects $=0$ or $=2$ or stop$=$TRUE)

End recursion and return.

RandomSelectConnectedDestNode (return N,S,W,E

or Gate,Source,Drain)

EraseConnection()

(No of node connects>1)

End recursion and return.

RandomSelectNotConnectedDestNode (return N,S,W,E

or Gate,Source,Drain)

EnableConnection()

{DestNode is N,S,W or E}

RecurseRandomWire (gaMode,DestNode)

{DestNode is Gate, Source or Drain}

RecurseRandomTerminal (gaMode,DestNode)

}

arbitrary neighbor until the circuit is closed again. The ba-
sic operation principle of the mutation is described in pseu-
docode (Fig. 2). An example of how the mutation operator
enables one transistor and corresponding routing is shown
in Fig. 3. In the following, only connected transistors are
shown in Fig. 3, 4 and 5.

3.1.2 Implanting a Foreign Block of Cells (Crossover)

The implanting crossover operator processes two stages: In
the first stage, a crossover partner is selected, from which a
randomly sized and positioned rectangular block of cells is
copied to the current individual (Fig. 4 A+B). Since this op-
eration in general breaks the layout of the previously intact
circuit, the second stage takes care of fixing the occurring
floating nodes according to the FPTAs structure as shown in
Fig. 4 C. The implementation is described in Fig. 2.

3.1.3 Logic OR of Individuals (Crossover)

The logic OR crossover operator calculates the logic OR of
the selected crossover partner and the current individual as
can be seen from Fig. 5. Thus, the features of both individ-
uals are combined. If a transistor is present in both circuits,

RecurseRandomTerminal

for

if

else

endif

endfor

(gaMode,DestNode){

(Both remaining nodes (terminals))

RandomSelectDestNode (return N,S,W,E)

(gaMode is erase)

EraseConnection()

EnableConnection()

RecurseRandomWire (gaMode,DestNode)

}

CrossImplant

forall

if

endif

endfor

(){

RandomSelectTwoIndividuals();

RandomSelectBlockOfCells from Ind.2 (return Block;);

InsertBlockOfCells into Ind.1 ();

(BorderNodes)

(NoNodeConnections==1)

StartRandomWire();

}

CrossLogicOR

forall

if

endif

enfor

(){

RandomSelectCrossPartner();

(Terminals and Routes)

(Connection enabled in Ind.1 OR Ind.2)

EnableConnection() in offspring;

}

Figure 2. Pseudocode implementation of the
genetic operators of the Turtle GA.

the W/L values are taken from the current individual. In
Fig. 2 the implementation is described in pseudocode.

Applied to highly diverse individuals, this results in a
strong impact on the individuals structure. On the one hand,
this usually changes the circuits output completely. On the
other hand, since the logic OR does not destroy previous
structures, it enriches the diversity of the individuals within
the population and is therefore helpful in avoiding local
minima.

3.2 The Basic GA

The Basic GA is more closely described in [4] and based
on a simple genetic algorithm introduced in [1].

X

Figure 3. Principle of the Random Wires Op-
erator. The start node is marked with an X.

A B C

Figure 4. Principle of the implanting
crossover operator.

OR

Figure 5. Principle of the logic OR crossover.

The mutation operator randomly changes every connec-
tion in every cell of an individual due to a probability given
by the mutation rate.

The crossover operator works on cell level and inserts
a rectangular block of cells of a selected crossover partner
into the current individual. Size and position of the block
are randomly chosen. The execution of the crossover op-
erator is adjusted by a probability given by the crossover
rate.

3.3 GA Parameters

Tournament selection with a tournament size of 7 is used
in the presented experiments. Crossover and mutation rates
are calculated proportionally to the candidates current fit-
ness. Scaling down the rates provides high mutation and
crossover probabilities for fast exploration in the beginning
of evolution and low probabilities for fine tuning of the
circuit when a good solution is found. The GA parame-
ters used throughout the presented experiments are listed in
Tab. 1. The ’–’ indicates that the operation is not available
to the respective GA.

4 Experimental Setup

An area of 7 × 7 (8 × 8) transistor cells is used for all
experiments. The circuits inputs are applied to the west side
while the output voltage is measured on the south side. The
GA parameters are set according to Tab. 1 and in all cases
30 evolution runs are carried out. All experiments have been
performed with both, the Basic GA and the Turtle GA.

GA Parameter logic gates comparators
basic/turtle basic/turtle

gen. size 50 50
no. of gen. 20000 20000

mut. fraction 0.6 0.6
mut. rate 4 . . . 0.8 %/ – 4 . . . 0.8 %/ –

rand. wires rate – /2.5 . . . 0.5 % – /1.25 . . . 0.25 %
cross. fraction 0.6 0.6

cross. rate 1 . . . 0.2 % 1 . . . 0.2 %
cross. block size 4x4 4x4
cross. rate (OR) – /1 . . . 0.2 % – /1 . . . 0.2 %

Table 1. Genetic algorithm parameters used
throughout the presented experiments.

4.1 Experimental Setup for the Logic Gates

In these experiments, the task is to evolve one of the
more complex logic gates, namely AND, OR and XOR.
The output target voltage had to be Vout = 0 V (= logic
zero) or Vout = 5 V (= logic one) depending on the com-
putational result of Vin1 AND (OR, XOR) Vin2. A set of ten
curves, each consisting of 64 sample voltages, is used in the
test pattern depicted in Fig. 6. The transition region is not
considered during evolution in order to facilitate the search
for good solutions. This is admissible, because the speci-
fication of logic gates demands a fast and correct decision
depending on digital input voltages that are outside the tran-
sition region, e.g. Vin1/2 < 2 V and Vin1/2 > 3 V. This test
pattern is only used during evolution. For testing, the volt-
ages in the transition region are measured as well to obtain
the full characteristic curve of the output voltage.

4.2 Experimental Setup for the Comparators

The task is to evolve a comparator. That is, the output
target voltage has to be Vout = 0 V if Vin1 < Vin2 and

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

V
sweep

 [V]

v se
t [V

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

V
sweep

 [V]

v se
t [V

]

Figure 6. Input voltage pattern used for com-
parators (left) and logic gates (right).

Vout = 5 V if Vin1 > Vin2. A set of seven curves, each
consisting of 90 sample voltages, is used in the test pat-
tern illustrated in Fig. 6. The switching points are set to
Vset = 1, 1.5, 2, . . . , 4 V. Within a range of Vset ± 1 V the
density of the sample points for Vsweep increases towards the
switching point. Thereby, a high emphasis on the transition
region is achieved. The increasing density of sample points
is shown in Fig. 6, left. The remaining range is covered by
equally spaced sample points. For measuring the voltage
characteristics, a continuous linear ramp is used for Vsweep
(in steps of 20 mV) in order to facilitate calculation of RMS,
offset and gain.

4.3 Fitness Calculation

Different fitness functions are used for the evolution of
logic gates and comparators. In all fitness functions the
range of Vtarget − Vout = 0 . . . 5 V is divided into 11 in-
tervals, the upper limits of which represent a threshold for
additional penalties. The penalty schemes of both fitness
functions are illustrated in Fig. 7. Finally, the fitness value
is calculated as follows:

fitness =

#samples∑

i=1

penalty
i
. (1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12
Fitness Penalty
Logic Gates

|V
target

−V
out

| [V]

P
en

al
ty

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12
Fitness Penalty
Comparators

|V
target

−V
out

| [V]

P
en

al
ty

Figure 7. Fitness penalty for each sample.
Left: logic gates. Right: comparators.

For calculating the penalty in case of the comparators,
the absolute value of Vtarget − Vout is taken. This makes the
GA exploit even small changes of the output as long as the
fitness is high and preserve found solutions if it is low. For
the logic gates the absolute value of Vtarget −Vout is quadrat-
ically weighted. Otherwise, for problems (e.g. the AND
gate) with non equally distributed states, the case of all out-
put voltages stuck at 0 V (logic zero) would result in a bet-
ter fitness than all at 5 V (logic one). Depending on how the
GA explores the solution space, this would already result in
a local minimum right in the beginning.

In order to make the algorithm more stable under the in-
fluence of noise and fluctuations of the analog output, dis-
crete fitness functions are used. The first and last intervals

are set to Vthresh = 0.04 V and Vthresh = 4.96 V considering
the precision of the applied voltages. Measurements have
shown that a precision of at least 8 bits can be assumed for
the measurements.

Additionally, in all experiments minimization of used re-
sources is included in the fitness by adding extra penalty. In
the phase of exploration minimizing the resources would be
counterproductive. Hence, below a fitness threshold of 500
for the comparators and 700 for the gates an offset penalty
of 1× no. of used routes + 2× no. of used transistors is
added. The maximum offset penalty is calculated by insert-
ing the amount of all available resources. By setting the
additional penalty to the maximum above this threshold, it
is ensured that a better fitness always represents a better cir-
cuit. In the presented fitness values the offset penalty is
replaced by the penalty calculated from the actually used
resources.

4.4 Simulation Setup

Spice netlists are extracted from the circuits that have
been evolved with the Turtle GA. The simulations are car-
ried out with the SPICE3 simulator, described in [9]. Basic
transistor models are used for computation and the resis-
tance of the switches is approximated by its mean value.
The input voltage patterns correspond to those used for the
on-chip test measurements of the logic gates and the com-
parators respectively.

5 Evolution Results of the Logic Gates

2

6

R
un

s
[#

]

AND
Turtle GA

2

6

R
un

s
[#

]

AND
Basic GA

2

6

R
un

s
[#

]

OR
Turtle GA

2

6

R
un

s
[#

]

OR
Basic GA

2

6

R
un

s
[#

]

XOR
Turtle GA

0 200 400 600 800 1000 1200 1400 1600
0
2

6

R
un

s
[#

]

Fitness

XOR
Basic GA

Figure 8. Results for the evolution of different
logic gates using both GA representations.

The range of fitness values of the logic gates covers
0 . . . 7040. Each run is initialized with a random genera-

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

V
ou

t [
V

] Turtle GA
XOR

Basic GA
XOR

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

V
ou

t [
V

] Turtle GA
AND

Basic GA
AND

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Vin [V]

V
ou

t [
V

] Turtle GA
OR

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Vin [V]

Basic GA
OR

Figure 9. Voltage characteristics of the best
evolved logic gates (AND, OR, XOR).

tion and most individuals start with a fitness value of about
3500. The fitness values of the experiments are shown in the
histograms in Fig. 8. As observed in other experiments [4],
the XOR is the most difficult of the presented logic gates to
evolve. Neither of the algorithms is able to find good so-
lutions for it. Contrary to that, both algorithms succeeded
in reliably finding solutions for the AND and the OR. Con-
sidering the pure fitness values, the Basic GA performed
slightly better in evolving OR gates than the Turtle GA.

For both algorithms all experiments ended with similar
fitness values, where the best are in the order of 50 for the
AND / OR and in the order of 200 for the XOR. As can be
seen from Fig. 9, the measured output voltage schemes of
the best circuits look quite similar for the Basic GA and the
Turtle GA.

During evolution, the samples of the test pattern are ran-
domly applied with a frequency of 0.25 MHz which cor-
responds to switching the output at least within 4 µs. The
best logic AND / OR (Fig. 9) are also performing well un-
der a test frequency up to 0.9 MHz and therefore are able to
switch within 1.1 µs.

5.1 Comparison of the Results of Both GAs

With regard to the used resources, it can be seen from
Fig. 11 that the circuits produced by the Turtle GA are sub-

stantially improved compared to the solutions found by the
Basic GA. On average, the circuits evolved with the Tur-
tle GA use only one-quarter of the transistors than those
evolved with the Basic GA at comparable RMS error. It
is expected that circuits (netlists) with less components and
circuits that are proven to operate on the chip as well as
in simulation can be easier converted to human readable
schematics. Therefore, such circuits will be easier to under-
stand according to engineering criteria. The first two steps
are successfully done by the Turtle GA.

5.2 Simulation Results for the Logic Gates

5

10

15

20

R
un

s
[#

]

Logic Gates − XOR Measured
Simulated

5

10

15

20

R
un

s
[#

]

Logic Gates − AND Measured
Simulated

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

5

10

15

20
R

un
s

[#
]

RMS Error [mV]

Logic Gates − OR Measured
Simulated

Figure 10. Comparison of the evolution re-
sults and the corresponding circuit simula-
tions.

The simulation results of the logic gates are compared
with the on-chip measurements in Fig. 10. For all evolved
gates the simulation results are worse than those obtained
from the measurement on the FPTA. As simulation shows,
about 30% of the gates do not work at all outside the tran-
sistor array. Despite of that, the best logic gates perform at
least similar in simulation and on the FPTA. In case of the
AND gate the simulation results correspond nearly perfectly
to the measurement. The simulation results of the voltage
characteristics are shown in Fig. 11.

6 Evolution Results for the Comparators

For the comparators the range of the fitness values covers
0 . . . 6930. The observed initial fitness of each individual is
about 3500 and all runs are started with a random genera-
tion.

The fitness values of the experiments are shown in the
histograms in Fig. 12. As can be seen, it is possible to

500

1000

1500

2000

2500

3000

R
M

S
 E

rr
or

 [m
V

]

Turtle GA − XOR
Basic GA − XOR

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

V
ou

t [
V

] Turtle GA
XOR

400
600
800

1000
1200
1400
1600
1800
2000
2200

R
M

S
 E

rr
or

 [m
V

]

Turtle GA − AND
Basic GA − AND

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

V
ou

t [
V

] Turtle GA
AND

0 10 20 30 40 50 60 70
400
600
800

1000
1200
1400
1600
1800
2000
2200

R
M

S
 E

rr
or

 [m
V

]

Used Transistors [#]

Turtle GA − OR
Basic GA − OR

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Vin [V]

V
ou

t [
V

] Turtle GA
OR

Figure 11. Left: Comparison of the RMS fit-
ness over the number of used transistors for
the logic gates. Right: Voltage characteris-
tics of the logic gates featuring the best sim-
ulation fitness values.

evolve good comparators with either of the GAs considering
the pure fitness value.

0
1
2
3

R
un

s
[#

] Comparator
Turtle GA

0 200 400 600 800 1000 1200 1400 1600
0
1
2
3

R
un

s
[#

]

Fitness

Comparator
Basic GA

Figure 12. Results for the evolution of com-
parators with both GA representations.

Since all experiments ended with similar fitness values
where the best are in the order of 200, the voltage charac-
teristics look quite similar as well. The measured output
voltages of the best evolved circuits are plotted in Fig. 13.
The comparator evolved with the Turtle GA has a gain of
65 ± 33; the one evolved with the Basic GA of 90 ± 25.
Taking the errors into account, the gain of the comparators
is similar. Both have an offset of at most 20 mV which cor-

responds to the available accuracy. Gain and offset are cal-
culated as the average value of the set of curves.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Vin [V]

V
ou

t [
V

] Turtle GA
gain=65±33
offset=0.03V±0.02V

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Vin [V]

Basic GA
gain=90±25
offset=0.02V±0.02V

Figure 13. Voltage characteristics of the best
evolution run for the comparators.

During evolution the test pattern is randomly applied
with a frequency of 0.2 MHz which ensures a settling time
of at least 5 µs. The best circuits (Fig. 13) perform equally
well when using a test frequency of 0.8 MHz and therefore
feature a settling time of 1.3 µs.

6.1 Comparison of the Results of Both GAs

Once again, with regard to the resource requirement, it
can be seen from Fig. 15 that the circuits produced by the
Turtle GA are extensively improved compared to the solu-
tions found by the Basic GA. On average, the comparators
evolved with the Turtle GA use only one-third of the transis-
tors allocated by the Basic GA at equal RMS error. Thus, the
Turtle GA achieved to minimize the number of used transis-
tors and routes in case of the comparators and the logic gates
described in Sect. 5.1.

6.2 Simulation Results for the Comparators

0 200 400 600 800 1000 1200 1400 1600
0
2
4
6

R
un

s
[#

]

RMS Error [mV]

Comparators Measured
Simulated

Figure 14. Comparison of the evolution re-
sults and the corresponding circuit simula-
tions.

The histogram shown in Fig. 14 compares the RMS er-
rors of the evolved circuits obtained directly from the mea-
surement on the FPTA with those calculated from the sim-
ulation result. As expected, the circuits perform worse in

0 10 20 30 40 50

500

1000

1500

2000

R
M

S
 E

rr
or

 [m
V

]

Used Transistors [#]

Turtle GA
Basic GA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Vin [V]

V
ou

t [
V

] Turtle GA
gain=31±15
offset=0.06±0.06

Figure 15. Left: Comparison of the RMS er-
ror over the no. of used transistors for both
GA representations. Right: Voltage charac-
teristic of the comparator featuring the best
fitness in simulation.

simulation than in measurement. Two circuits with an RMS
Error of about 1400 mV did not work at all in simulation.

However, as can be seen from Fig. 15, the voltage char-
acteristic of the best comparator is similar to that shown in
Fig. 13. The gain is still 30 ± 15, while the offset has dou-
bled 0.06 ± 0.06 V. This is a promising result, because it
suggests that even more complex circuits can be extracted
into netlists and simulated.

7 Conclusions and Future Work

A GA with new genetic operators — the Turtle GA —
is introduced and compared with a straight forward imple-
mentation of the GA. Comparators and logic gates have
been successfully evolved with both algorithms. While the
voltage characteristics of the best circuits perform equally
well in both cases, the Turtle GA substantially reduced the
required resources in all experiments; the number of used
transistors decreased on average about 70%. The fact that
the Turtle GA achieved to reduce resource allocation in both
cases suggests that successful application is not restricted to
a specific problem. With the help of the Turtle GA, floating
gates and discontinuous routing can be inherently avoided
in the evolved circuits. Therefore, the evolved circuits are
extracted into netlists and simulated. The simulation re-
sults are compared with the on-chip measurements. The
comparators performed slightly worse, whereas some of the
logic gates do not work in simulation. Nevertheless, the
best circuits performed well in both, simulation and on-chip
measurements. Thus, it has been proven that it is possible
to evolve circuits on the FPTA which can be transfered to
other technologies with the new implementation of the GA.
Future work will be done to find a more accurate equiva-
lent circuit for the FPTAs cells to further improve the qual-
ity of simulations of evolved circuits. Additionally, human
readable schematics will be generated to advance the under-

standing of the circuits according to engineering criteria.

8 Acknowledgment

This work is supported by the Ministerium für Wis-
senschaft, Forschung und Kunst, Baden-Württemberg,
Stuttgart, Germany.

References

[1] D. E. Goldberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley, 1989.

[2] John E. Koza, Forrest H. Bennet III, David Andre, Martin
A. Keane. Genetic Programming III: Darwinian Invention
and Problem Solving. Morgan Kaufmann Publishers, 1999.

[3] J. Langeheine, J. Becker, S. Fölling, K. Meier, and J. Schem-
mel. A CMOS FPTA chip for intrinsic hardware evolution of
analog electronic circuits. In Proc. of the Third NASA/DOD
Workshop on Evolvable Hardware, pages 172–175, Long
Beach, CA, USA, July 2001. IEEE Computer Society Press.

[4] J. Langeheine, K. Meier, and J. Schemmel. Intrinsic Evo-
lution of Quasi DC Solutions for Transistor Level Analog
Electronic Circuits Using a CMOS FPTA chip. In Proceed-
ings of the 2002 NASA/DoD Conference an Evolvable Hard-
ware.

[5] J. D. Lohn and S. P. Colombano. A circuit representa-
tion technique for automated circuit design. IEEE Transac-
tions on Evolutionary Computation, 3(3):205–219, Septem-
ber 1999.

[6] J. F. Miller and P. Thomson. A developmental method for
growing graphs and circuits. In A. M. Tyrrell, P. C. Haddow,
and J. Torresen, editors, Evolvable Systems: From Biology to
Hardware, Fifth International Conference, ICES 2003, vol-
ume 2606 of LNCS, pages 93–104, Trondheim, Norway, 17-
20 Mar. 2003. Springer-Verlag.

[7] T. Sripramong and C. Toumazou. The invention of cmos am-
plifiers using genetic programming and current-flow analy-
sis. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 21(11):1237–1252, November
2002.

[8] A. Stoica, D. Keymeulen, R. S. Zebulum, A. Thakoor,
T. Daud, G. Klimeck, Y. Jin, R. Tawel, and V. Duong. Evo-
lution of analog circuits on field programmable transistor
arrays. In Proc. of the Second NASA/DOD Workshop on
Evolvable Hardware, pages 99–108, Palo Alto, CA, USA,
July 2000. IEEE Computer Society Press.

[9] T. Quarles, A.R.Newton, D.O.Pederson, A.Sangiovanni-
Vincentelli. SPICE3 Version 3f3 User s Manual. Depart-
ment of Electrical Engineering and Computer Sciences, Uni-
versity of California Berkeley, Ca., 94720, May 1993.

[10] G. Tufte and P. C. Haddow. Building knowledge into de-
velopmental rules for circuit design. In A. M. Tyrrell, P. C.
Haddow, and J. Torresen, editors, Evolvable Systems: From
Biology to Hardware, Fifth International Conference, ICES
2003, volume 2606 of LNCS, pages 69–80, Trondheim, Nor-
way, 17-20 Mar. 2003. Springer-Verlag.

