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Abstract

The work presented here tackles the problem of design-
ing a unipolar 6-bit digital-to-analog converter (DAC) with
a voltage mode output by hardware evolution. Thereby a
Field Programmable Transistor Array (FPTA) is used as the
analog substrate for testing the candidate solutions. The
FPTA features 256 programmable transistors, whose chan-
nel geometry and routing can be configured to form a large
variety of transistor level analog circuits. A series of experi-
ments reveals that variations of the output voltage range in-
fluence evolution’s success more severely than varying the
amount of available electronic resources or the geometri-
cal setup. Although a considerable number of runs yield
converters with a nonlinearity of less than 1 bit, no DAC is
found to maintain a nonlinearity of less than 0.5 bits under
worst case conditions, as required for a true 6-bit resolu-
tion. While the evolved circuits work comparably well at
different time scales as well as on different dice, they lack
the ability to abstract from the analog voltage levels of the
digital input signals. It is experimentally verified that this
can be remedied by inserting digital buffers at the circuits’
inputs.

1 Introduction

During the last decades, many signal processing tasks
have been shifted from the analog to the digital domain.
However, in order to interface electronic systems with the
real world, digital signals have to be translated into phys-
ical signals, which usually requires a conversion into ana-
log signals. Digital-to-analog converters (DACs) thus have
become key elements in many of today’s electronic sys-
tems. As a matter of fact, they are used in a large variety
of applications ranging from CD players to graphic cards,
from wireless communication devices to automotive appli-
cations. Accordingly, if evolvable hardware is ever to be
useful for building up complex electronic systems, it will
have to be able to interface to digital signals.

The DACs found by means of hardware evolution re-
ported in the literature so far are restricted to 3 ([1]) and
4 bits ([2], [3]). The former experiments are based on sim-
ulations using a generic SPICE 3 model called from a ge-
netic programming algorithm. It took approx.4.5 ·10 7 eval-
uations to find the best-of-run solution, which uses bipolar
transistors as well as resistors and capacitors. Since some of
these possess values down to1 Ω and up to100 µF, a direct
implementation of the circuit on one piece of silicon would
be impractical. The latter work by Zebulum et. al. presents
different divide and conquer approaches yielding 3- and 4-
bit DACs. While the 4-bit DAC obtained in [2] possesses
a current mode output and was tested using SPICE simu-
lations, the circuit proposed in [3] was evolved using the
FPTA2 chip described in [4] and produces an output volt-
age. In addition to facilitating artifical evolution by using a
hierarchical approach, a total of four human designed oper-
ational amplifiers are included in the circuit.

The work presented in this paper focuses on designing
unipolar digital-to-analog converters with a voltage mode
output and a target resolution of 6 bits. All evolution runs
were allowed to freely explore the used analog substrate – a
Field Programmable Transistor Array (FPTA) dedicated to
the evolution of transistor level circuits (for details refer to
[5]) – without any form of human guidance.

In order to be useful in real world applications a digital-
to-analog converter must not rely on the exact voltage levels
of its inputs. Hence, a number of experiments are devised to
the problem of evolving circuits that are robust against those
input voltage variations. Since this task turns out to be too
difficult to be solved with the given setup, another series of
experiments investigates if this obstacle can be overcome by
human intervention, i.e., by inserting digital buffers at each
of the six digital inputs.

2 Evolution System

The evolution system, illustrated in Fig. 1, can be divided
into three main parts: The actual FPTA chip serving as the
silicon substrate to host the candidate circuits, the software



that contains the search algorithm running on a standard PC
and a PCI interface card that connects the PC to the FPTA
chip. The software uploads the configuration bit strings to
be tested to the FPTA chip via the PCI card. In order to gen-
erate an analog test pattern at the inputs of the FPTA chip,
the input data is written to the FPGA on the PCI interface
card. There it is converted into an analog signal by a 16-
bit DAC. After applying the analog signal to the FPTA, the
output of the FPTA is sampled and converted into a digi-
tal signal via a 12-bit ADC. The digital output is then fed
back to the search algorithm, which in turn generates the
new individuals for the next generation.
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Figure 1. Overview of the evolution system.

2.1 FPTA Chip

The FPTA consists of16 × 16 programmable transistor
cells. As CMOS transistors come in two flavors, namely
N- and PMOS, half of the transistor cells are designed as
programmable NMOS transistors and half as programmable
PMOS transistors. P- and NMOS transistor cells are ar-
ranged in a checkerboard pattern as depicted in Fig. 2.
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Figure 2. Schematic diagram of the FPTA.

Each cell contains the programmable transistor itself,
three decoders that allow to connect the three transistor ter-

minals to one of the four cell boundaries,vdd or gnd, and
six routing switches. A block diagram of the transistor cell
is shown in Fig. 3. WidthW and LengthL of the pro-
grammable transistor can be chosen to be1, 2, . . . , 15 µm
and 0.6, 1, 2, 4, 8 µm respectively. The three terminals
drain, gate andsource of the programmable transistor can
be connected to either of the four cell edges named after
the four cardinal points, as well as tovdd or gnd. The only
means of routing signals through the chip is given by the
six routing switches that connect the four cell borders with
each other. Thus, in some cases it is not possible to use a
transistor cell for routingand as a transistor. More details
on the FPTA can be found in [5].
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Figure 3. Simplified schematic of one transis-
tor cell.

2.2 Evolutionary Algorithm

Throughout all experiments a simple genetic algorithm
was used in conjunction with truncation selection. As can
be seen from Table 1, a large fraction of 20 % was directly
promoted to the next generation in order to prevent the al-
gorithm from loosing an already good solution due to noise
in the measuring process. The individuals taking part in
crossover were chosen from the best 60 % and the ones un-
dergoing only mutations from the best 40 % of the current
generation respectively. As indicated in Table 1, the muta-
tion rates for changing routing bits, transistor terminal con-
nections and channel geometry can all be set individually.
Please note that the mutation rates define the probability
of changing the according feature of one cell; they are not
scaled with the different array sizes used throughout the pa-
per. Since the crossover block size – the maximum edge
length of rectangular blocks that can be exchanged within
a crossover operation – is limited to 2, the genetic differ-
ences between two successive generations are fairly small
and mutation was probably the driving force in the evolu-
tion process. For further details of the used GA refer to [6].



GA Parameter Value
generation size 50

number of generations 10,000
selection scheme truncation selection

reproduction fraction 0.2
mutation fraction 0.4

mutation rate Term. Connection 3 %
mutation rate Width, Length 2 %

mutation rate Routing 3 %
crossover fraction 0.6

crossover rate 30 %
crossover block size 2

Table 1. GA parameters used.

3 Experimental Setup

3.1 Experiment series

Altogether five series of eight experiments, each featur-
ing 20 runs, were carried out, as summarized in Table 2. For
the series FW1, FW4 and FWB4 the task was to map the
digital words to analog voltages in an unsigned binary en-
coding, where the lowest word (all inputs low) corresponds
to the lowest and the highest word (all inputs high) to the
highest output voltage. In the remaining two series INV1
and INV4 the encoding is inverted, that is, the output volt-
age should be at its maximum for the lowest input word and
vice versa.

Since in initial experiments the output of the evolved
DAC circuits was found to strongly depend on the in-
put voltage levels, series FW4 and INV4 were designed
to evolve circuits that rely only on the digital informa-
tion present at the inputs. This is achieved by testing the
response of each candidate circuit to all input codes at
four different input voltage levels:0/5, 0.5/4.5, 1/4 and
1.5/3.5 V (cf. Table 2). As a result, each DAC is char-
acterized by four curves.

Supposed that there is a correlation between the input
voltage level and the output of the DACs evolved in se-
ries FW1, it would be interesting to investigate whether this
could be avoided by using a reversed encoding scheme: The

Series Input Encoding Curves Inp. Voltages[ V]
FW1 Forward 1 0; 5
FW4 Forward 4 0. . . 1.5 ; 3.5. . . 5
INV1 Inverse 1 0; 5
INV4 Inverse 4 0. . . 1.5 ; 3.5. . . 5
FWB4 Forw. Buffered 4 0. . . 1.5 ; 3.5. . . 5

Table 2. The five different experiment series.

reverse encoding might bias artificial evolution to use in-
verters at the inputs, thereby gaining robustness against the
input voltage variations. This should be observable by a
comparison of series INV4 and FW4. Finally, in the ex-
periments of series FWB4 digital buffers are inserted at the
inputs of the circuit under test to restore the analog voltage
level of the input signals (cf. Fig. 4). Thereby, the evolution
of DACs robust against input voltage level variations should
be significantly facilitated.

For each series of experiments, three parameters of the
setup are varied as shown in Table 3. First, the desired out-

Exp. Output range Array Size Input Order
1 0...5 V 14 × 14 forward
2 1...4 V 14 × 14 forward
3 0...5 V 10 × 10 forward
4 1...4 V 10 × 10 forward
5 0...5 V 14 × 14 reverse
6 1...4 V 14 × 14 reverse
7 0...5 V 10 × 10 reverse
8 1...4 V 10 × 10 reverse

Table 3. Experiments for each series.

put voltage range is varied between the intervals 0 to 5V
and 1 to 4 V, where the former one corresponds to the
power supply range of the programmable transistor array.
Second, two differently sized areas were made available to
the GA. The according locations used for inputs and output
are depicted in Fig. 4: The upper row contains the geomet-
ric setups for all series of experiments except for those of
series FWB4, which are depicted in the lower row. The
setups for experiments 1,2,5 and 6 are shown in the left col-
umn of Fig. 4, whereas those for experiments 3,4,7 and 8
are illustrated on the right hand side of the figure. Assum-
ing the GA uses a resistive network to solve the DAC design
problem, the task intuitively appears easier for a setup that
places the more significant bits close to the circuit’s output,
because they are expected to influence it more directly. Ac-
cordingly, thisreversed input order is used for experiments
5 to 8 to test the above hypothesis.

3.2 Fitness Function

The fitness function used throughout all experiments is
simply the sum of squared errors

SSE=
63∑

j=0

(Vout(j) − Vtar(j))2 , (1)

with regard to the target function

Vtar(j) =

{
Vlow + (Vhigh − Vlow) j

63 (2a)

Vhigh − (Vhigh − Vlow) j
63 , (2b)



Figure 4. Geometrical setups for the different
experiments.

where the integer input codej is calculated from the inputs
VIi by

j =
5∑

i=0

Ii ·2i with Ii =
{

0 if VIi < 2.5 V
1 if VIi > 2.5 V , (3)

andVlow andVhigh are the boundaries of the output ranges
listed in Table 3. While (2a) describes the target function
Vtar for the series FW1, FW4 and FWB4, (2b) is used for
INV1 and INV4. Accordingly, the sum of squared errors
has to be minimized by means of the used algorithm. This
choice of fitness function aggregates the different objectives
high linearity, exact gain and minimal offset, but does not
allow to control the weight of their contributions to the total
fitness.

3.3 Test Pattern

For series FW1 and INV1 all of the 64 input codes are
tested exactly once resulting in one output curve. In case
of the other series (FW4, INV4 and FWB4) each input code
was tested for all different input voltage levels yielding a to-
tal of four output curves. In order to prevent artificial evolu-
tion from abusing information from the timing/order of the
test pattern, one out of ten different random orders is cho-
sen randomly for each fitness test. In addition, this ensures
that varying input code transitions are used for the fitness

evaluations in the course of the evolution process. Due to
the fact that the FPTA has only one single analog input, the
input voltages have to be written sequentially to the chip,
where they are stored in sample and hold cells. During evo-
lution the time between the application of two successive
input voltages is 167ns. The output voltage is sampled ap-
proximately 1.27µs after the first input and 0.47µs after
the last input voltage is applied to the transistor array. Thus,
the sample frequency with which the different input codes
are tested amounts to 750kHz. Thesenormal values of the
test pattern timing are summarized in the second column of
Table 4.

Time Parameter Normal Slow
settling time for last input 0.47 µs 13.4 µs
settling time for first input 1.27 µs 80.6 µs

sample frequencyfS 750 kHz 12.4 kHz
time per run: FW1, INV1 ≈ 15 min -
same for remaining series ≈ 20 min -

Table 4. Time and Timing considerations for
the DAC experiments.

In order to test whether the evolved converter circuits are
also working at a different time scale, verification tests were
done at the sample rate of 750kHz used during evolution
as well as at 12.4kHz, where the latter timing is referred
to asslow. A complete run featuring 10,000 generations
and a generation size of 50 took between 15 and 20 minutes
depending on the number of different input voltage levels.

4 Results

For each of the 40 experiments 20 evolution runs were
carried out. The best genotypes of the last generation of all
evolution runs are taken as the result of the experiment. Af-
ter all runs had been finished, the phenotypical behavior of
all these genotypes was verified by measuring the accord-
ing circuit response 100 times with the same test patterns as
used during the evolution process.

Since (1), the sum of squared errors, which is used for
the fitness evaluation during evolution, is not an intuitive
quality measure, it is converted to the root mean square error
per data point in lsb by

f = RMSE=

√
SSE
NIC

1 lsb
with

NIC =
{

64 for FW1, INV1
256 for FW4, INV4, FWB4

, (4)

which is used throughout the remainder of this paper. In this
context it is worthwhile noting that 1 lsb (least significant



bit) corresponds to 79.4mV for an output range of 0 to
5 V and 47.6mV for one of 1 to 4V, respectively.

4.1 Results for Series FW1

The influence of the eight different experimental setups
listed in Table 3 is studied exemplary for series FW1. In
Fig. 5 the results of all experiments are plotted as eight his-
tograms. For each run the worst fitness value out of 100
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Figure 5. Fitness Histograms for all experi-
ments of series FW1.

verification measurements is used for the plot. Apparently,
the runs targeted at an output range of 1 to 4V performed
significantly better than their counterparts required to cover
the full power supply range with their outputs. A more de-
tailed analysis reveals that the worse results are mostly due
to larger offsets and gain errors and not as much to larger
nonlinearities. Neither the geometrical setup nor the size of
the transistor array available to the EA influences the evolu-
tion results significantly, except for the combinations cho-
sen for experiments 1 and 2: Evolving on the large array of
14×14 cells (see Fig. 4) together with having the less signif-
icant bits closer to the output edge yields worse results than
all other combinations, independent of the output voltage
range.

One of the most important measures to evaluate the qual-
ity of digital-to-analog converters are their differential and
integral nonlinearity (INL, DNL). They are defined as

DNL(j) =
Vout(j) − Vout(j − 1)

Vlsb
− 1

for j = 1, 2, . . . , 63 and (5)

INL(j) =
Vout(j) − (Vout(0) + Vlsb · j)

Vlsb

for j = 0, 1, . . . , 63 , with (6)

Vlsb =
Vout(63) − Vout(0)

63
.

Differential as well as integral nonlinearity are plotted in
Fig. 6 for thebest circuit of series FW1, wherebest refers
to the lowest RMS error achieved. This circuit was found
among the runs of experiment 4. The INL and DNL values
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Figure 6. DNL (top) and INL (bottom) for the
best evolved DAC of series FW1 (experiment
4).

are averaged over 100 offline tests and the error bars indi-
cate the according standard deviations. As can be seen from
Fig. 6, both, INL as well as DNL amount to less than±0.5
lsb including error bars. It is thus save to say, that the lin-
earity of this DAC, on average, complies with the full target
resolution of 6 bits.

However, the histograms of Fig. 7 illustrate that this does
not hold for worst case conditions: For each of the 100 ver-
ification tests the absolute maximum DNL/INL value is de-
termined. The maximum of the resulting 100 values is taken
as the result for one run and appears in the according his-
togram. The bin size was set to 0.5 lsb for both x-axes.
While a considerable amount of evolved DACs manage to
achieve maximum nonlinearities of less than 1 lsb for ex-
periments 4,6 and 8, no single circuit was found to have a
nonlinearity of less than 0.5 lsb.

Using the definition of the DNL given in (5), it can be
deduced that a DAC’s output is bound to be monotonic if
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Figure 7. Histograms for the DNL (left) and
INL (right) of all experiments of series FW1.

|DNL| < 1 is satisfied. Hence, the histograms in Fig. 7
indicate that for experiments 3 to 8 in the order of five to ten
evolved DACs possess a monotonic output characteristic.

4.2 Comparison of the Different Series of Exper-
iments

As described in section 4.1 the best results or series FW1
were evolved in experiments 4 and 8 (described in Table 3).
Since this also holds for the remaining four series of exper-
iments, the runs performed under the conditions of exper-
iment 4 are used to compare the results of all five differ-
ent series. Applying (4) to this data yields the histograms
shown in Fig. 8, where again the fitness is taken as the max-
imum value measured in 100 verification tests.

The histograms of Fig. 8 show that it is significantly
harder to find digital-to-analog converters that use an in-
verse encoding as required in series INV1 (cf. section 3.1).
The results for the two series FW4 and INV4, in which the
output characteristic is tested for four different input volt-
age levels, are even worse. This indicates that the EA is
strongly relying on the analog voltage level of the digital in-
puts instead of extracting the digital information included.
As was expected, the circuits produced in series INV4 be-
have – on average – slightly better than their counterparts
of series FW4. The necessary inversion of the input signals
seems to be helpful in abstracting the digital information
from the analog input signals. However, as can be inferred
from the histogram for series INV1, the algorithm did never
choose to place inverters at the inputs, because this would
have resulted in circuits with fitness values similar to those
of the runs in series FW1. It is worth noting though, that
the gain of one stage inverters realizable with the FPTA’s
transistor cells is not sufficient to restore all four different
input voltage levels to exactly 0 and 5V. Hence, inverting

0

10
Series FW1

0

10
Series FW4

0

10

R
un

s 
[#

]

Series INV1

0

10
Series INV4

0 5 10 15 20
0

10

Fitness [lsb]

Series FWB4

Figure 8. Fitness histograms: Experiment 4,
all five series.

the input signals once would not solve the problem entirely.

Finally, the histogram at the bottom of Fig. 8 proves that
the desired robustness against variations of the input volt-
age levels can be achieved by inserting buffers (two invert-
ers in series) at the inputs of the prospective DAC circuits.
Thereby, the total number of used transistor cells was al-
most preserved, as illustrated in Fig. 4. Thus, the resources
available to the EA for implementing the D/A converter are
reduced accordingly; in fact, for the setup using the smaller
array size, they are actually halved. This and/or the harder
timing constraints caused by the additional two gate delays
of the input buffers may be responsible for the fact, that the
circuits evolved in series FWB4 are slightly less performant
than those obtained from series FW1.

To further illuminate the differences between the five dif-
ferent series of experiments, the output characteristics of the
best of series DACs are plotted in Fig. 9. From left to right
and top to bottom the graphs belong to series FW1, INV1,
FW4, INV4 and FWB4. Each plot shows the mean volt-
age characteristic averaged over 100 consecutive measure-
ments. For series FW1 and INV1 the error bars indicate the
according standard deviation; this is omitted for the remain-
ing three graphs for clarity, since they contain four curves
each. The graphs contain information about the best, mean
and worst fitness value calculated from the 100 verification
tests as well as the fitness achieved during evolution. The
proximity of these four values proves the underlying circuits
to be stable.

While the output characteristic of the best circuit of se-
ries FW1 looks almost perfect, the corresponding curve for
the best DAC of series INV1 does not form a perfectly
straight line. Moreover, both ends resemble the character-
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Figure 9. Output characteristics of the best
evolved DACs for all five series.

istic curve of an inverter. The situation is worse for series
FW4 and INV4: The four characteristic curves exhibit large
nonlinearities and differ significantly in offset and gain. Fi-
nally, the four curves shown for the best individual found
for series FWB4 compare well with that belonging to series
FW1and perfectly coincide.

4.3 Verification at a Second Time Scale

As already explained in section 3.3, special precautions
were taken to prevent the algorithm from abusing temporal
correlations in the test pattern: For each fitness test, the in-
put codes were applied in fixed random orders. Since the
exploitation of temporal information was observed in pre-
studies for other experiments as well as in the work reported
in [2], the functionality of the evolved digital-to-analog con-
verters of series FW1 was nevertheless tested on a different
time scale. Table 4 sums up the larger settling times and
lower sample frequencies of the crosscheck as well as those
used for all other verification tests and during evolution;
they are referred to asslow andnormal respectively. The
settling times differ by a factor of 63 for the first and 28 for
the last input.

The fitness values achieved under the two different tim-

ing conditions are plotted in Fig. 10: For each experiment
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Figure 10. Comparison of the performance of
the evolved DACs operated at two different
time scales.

of series FW1 the worst fitness values measured in 100 ver-
ification tests are used to calculate the mean worst fitness of
all 20 runs, once for the sample rate of750 kHz used dur-
ing evolution and once for the sampling rate of12.4 kHz
used for crosschecking. Since the resulting curves do not
differ significantly (less than a tenth of an lsb) the evolved
converters can be said to work well on both time scales and
can be expected to do so for the whole frequency range in
between.

4.4 Verification on a Second Chip

An important issue in the field of hardware evolution is
whether the evolved solutions can be generalized to work
under realistic conditions, or if they are bound to the partic-
ularities of the very special substrate/model they are evolved
on: While simulation based approaches may produce cir-
cuits that rely on the special models and parameters of the
used simulator, circuits found on one particular die may rely
on its exact electrical qualities and fail to work on another
die. Therefore the performance of the circuits evolved in
series FW1 was tested on a second chip.

The results are plotted in Fig. 11: Again, the worst fitness
values obtained in 100 verification tests are used to calcu-
late the mean fitness averaged over all 20 runs belonging
to one experiment. On average, the evolved circuits per-
form slightly worse on the second die; the effect is stronger
for the experiments using the smaller output range (2,4,6
and 8). Supposedly, most circuits still work properly on the
second die, but their analog performance may be slightly
degraded.

The observed discrepancies may be explained in differ-
ent ways: First, the output of some of the evolved circuits
may be strongly deteriorated when measured on the second
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chip, while other circuits may exhibit almost the same out-
put characteristic. Second, it is conceivable that the perfor-
mance of all circuits is evenly degraded, which may be par-
tially due to differences in the analog processing of the in-
and output signals of the FPTA and/or to a different power
supply voltage, because the second chip was plugged into a
different PCI card hosted by a different computer. This hy-
pothesis is also sustained by a more detailed analysis, which
reveals that the performance differences are rather caused
by deviations of gain and offset than by an increase in non-
linearity.

5 Conclusion and Outlook

The analysis of different series of experiments targeted
at finding 6-bit digital-to-analog converters revealed the fol-
lowing: Choosing an output range of 1 to 4V in conjunc-
tion with a suited geometrical setup allows to evolve DAC
circuits with an effective resolution of 5 bits. This raises
the question whether it is possible to increase the effective
resolution by using more sophisticated fitness functions and
optimized algorithms.

Further analysis yields that the evolved DACs fail to pro-
vide a digital interface, i.e., strongly rely on the analog volt-
age level of their inputs. It is demonstrated that this flaw can
be remedied by inserting buffers at the circuit’s inputs. Fu-
ture experiments will thus provide a pair of reference volt-
ages to the candidate solution, which define the output volt-
age range. On one hand, this may aid the EA in abstracting
from the analog voltage of the input signals, on the other
hand it supports the evolution of multiplying DACs.

Moreover, the evolving DACs have not been exposed to a
resistive load, which will have to be included to find circuits
useful in real world applications. A randomly varied resis-
tive load however, will further constrain the design space to
solutions that do not rely on the analog voltage level of the

inputs. Since these additional constraints increase the prob-
lem difficulty, they may raise the need for more elaborate
methodologies as, for example, hierarchical approaches.

The average performance of the evolved circuits grace-
fully degrades when they are tested on a second chip. In
order to get circuits working well on different dice, they
could either be fine tuned to the specific electrical properties
of the particular die, or be evolved to work equally well on
different dice. The latter goal could be achieved by aggre-
gating the fitness values achieved on different dice during
the process of artificial evolution, as e.g. done in [7].
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