Interfacing Binary Networks to Multi-valued Signals

Felix Schirmann, Steffen G. Hohmann, Karlheinz Meier, Johannes Schemmel
Kirchhoff Institute for Physics, University of Heidelberg
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
Email: felix.schuermann@Kkip.uni-heidelberg.de

Abstract— Data processing of real-world problems usually
leads to the use of quasi-continuous discrete quantities. If artifi-
cial neural networks are to be used they need to interface multi-
valued signals. For the case of a mixed-mode analog hardware
neural network of neurons with binary inputs and outputs, this
paper demonstrates that it is possible to combine these to form
integer input and output neurons. A precision of 6 bits has
been reached. Together with programmable synapses connecting
n-bit neurons to m-bit neurons they represent parameterizable
building blocks useful for networks of variable precision.

I. INTRODUCTION

The reasons for building hardware neural networks arise
from either performance requirements or scalability consider-
ations. Both aspects drove the development of a mixed-mode
analog neural network (ANN) ASIC [1] and resulted in the
implementation of a simplified Perceptron model which has
binary neuron inputs and outputs and analog synapses. In order
to use this ANN ASIC for real-world applications, but also for
specialized neural network benchmark problems, multi-valued
quantities need to be interfaced [2] [3] [4].

One approach is to simply present the data as a bitstream
to the network and make the enconding part of the learning
task. In other situations it may be more suitable to feed
the multi-valued data directly into the network, i.e., generate
an activation proportional to the input value. The overall
performance is influenced by this decision [5]. Although neural
networks often work as classifiers and only binary outputs are
needed, in other cases multi-valued outputs may be desirable
to obtain a fine-grained output.

In [6] it was shown how multi-valued input and output
neurons can be realized for the special case of 3-bit integer
neurons using a first prototype ANN ASIC [7]. In this paper
these results are reproduced with a second generation ANN
ASIC [1]. The initial results are generalized by showing the
parameterizablity of the variable neurons and synapses, the so
called building blocks. The parameters varied are the number
of bits, i.e., the precision of the inputs and outputs, as well
as the weighting of the synapses connecting n-bit inputs with
m-bit outputs. A precision of 6 bits is reached.

Il. ANN FRAMEWORK

All results presented were obtained using the ANN frame-
work described in [6] with the ANN ASIC called HAGEN
(Heidelberg AnaloG Evolvable neural Network). The frame-
work consists of a standard PC with a PCl-based interface
card using a programmable logic to control the ANN ASIC,
which actually performs the neural network operations.

The purpose of this ANN framework is to combine a
hardware implemented neural network of large size and good
scaling behaviour with the flexibility found in software im-
plementations. The used mixed-mode analog ANN ASIC [1]
is realized in a 0.35um CMOS process and implements a
Perceptron model with binary neuron inputs and outputs and
analog synapses. A synaptic weight is represented by an
analog current and the neuron evaluates the difference between
the summed positive and negative currents. The simplicity of
the synapses and neuron circuits allows for highly integrated
ANNSs. The used ASIC realizes 32768 synapses, distributed
across four equally sized blocks of 128 input and 64 output
neurons.

At
4
N

O & | : | |Synapse|array

d
C
switches e NN e AN

a
64 64
feedback d|

Network block of the ANN ASIC (HAGEN).

inputs
Fig. 1.

All experiments were performed using one of the four
network blocks. Nevertheless, the whole concept of the ANN
framework as described earlier is capable of extending this
to all four network blocks or even across chip boundaries.
Within the block all outputs can be individually fed back into
a predetermined set of 64 of the 128 input neurons (see Fig. 1).
The network operation is clocked, i.e., recurrent information
is fed into the network one cylce after it is available at the
outputs. This behavior is described by:

Ot + At); = 0> wijI(t); + > wirO(b)r)
J k
With At being the time needed for one network cycle, w
being the elementary synaptic weights, I € {0,1} being the
inputs and O € {0,1} being the outputs. The activation
function is the Heaviside function ©. It is therefore possible
to implement multi-layer feedforward and recursive network
topologies as seen in Fig. 2.

I1l. VARIABLE NETWORK RESOURCES

A. Setup

The results presented in this paper rely on the homogeneity
of the chip’s resources since theoretically calculated weights

input layer

output layer

input layer

intermediate layer

outputs

outputs

output layer

Fig. 2. Left: recurrent network, right: configured as a two-layer network
by setting some synapses to zero (dashed lines).

are used. The weights of the ANN ASIC are written with
10-bit digital-to-analog converters (DACs) and a sign bit,
but variations during the fabrication of the ASIC as well as
electrical fluctuations, such as noise and crosstalk, can cause
a smaller effective analog precision. The weight storage units
of the ASIC therefore have built-in correction capacitances
and it is important to note that the chosen network model
allows the compensation of the major sources of mismatch by
only additive offsets. It is possible to evaluate the variations
and use bias synapses and single synapse offsets to calibrate
the network. For the experiments, the neuron biases were
compensated, but single synapse offsets were not considered
because their fixed-pattern noise is in the order of their
variation over time. Technical details on the hardware and the
calibration procedure can be found in [8].

Variations of the electronic environment and in the ASIC
itself can cause different network responses for an repeatedly
applied activation pattern. Any kind of network evaluation
and measurement therefore has to be performed several times.
The measurement of the input current of the neurons, the
network activity, is done by repeatedly applying the activation
pattern and sweeping a measurement synapse until the neuron
is activated 5 out of 10 times. This is the point where the
measurement synapse compensates the network activity and
the neuron flips from inactive to active. This is done for
two different measurement synapses. In order to perform a
measurement free of the individual synapse offsets, a third
sweep is done using both synapses simultanously. The three
measurements allow to eliminate the two synapse offsets while
still obtaining the activity. These sweeps are done bottom-
up and top-down in order to eliminate systematic errors and
are repeated twice for each activation pattern. The sweep is
done in least significant bit (LSB) increments of the 10-bit
resolution of the synapse. The maximum current of each
synapse is set by the periphery to a full scale value of about
FS =45,A.

B. Interfacing Multi-valued Inputs

A straightforward way to feed multi-valued signals into a
network with binary inputs is to consider n inputs as a group
encoding an m-bit integer. The integer value then needs to
be translated into an analog network activity according to
the significance of the representing bits. The LSB induces
w, the next bits 2w, 22w and so on. The most significant

bit (MSB) induces 2™ 'w into the network. This is a digital-
to-analog conversion with w normally chosen not to exceed
the dynamic range of a single 1-bit synapse for a full source
neuron activation, i.e., w € [-FS/(2" — 1), FS/(2" — 1)].

G

}
N
°‘%ﬁﬁgﬁf{{@?@ﬂﬁfﬁ E‘g f ﬁ%

i

non-linearity in LSB

0] 10 20 30 40 50 60
input code

Fig. 3. Differential and integral non-linearity versus the input code for a
6-bit DAC.

A good measure for the performance of a DAC is the
differential non-linearity (DNL) which describes the deviation
of any of the analog output changes caused by an LSB change
from its ideal step size. The DNL is calculated after a gain and
offset correction (linear fit). Another measure is the integral
non-linearity (INL) which accounts for the deviation from a
reference curve drawn as a staight line through the end points.
Both measures are given in LSB:

y(n) —y(m—1)

DNL = -1, 0<n<2V¥
Yideal LSB
INL = Y gcpn o
Yideal LSB

Here y(n) is the actual value measured for the n-valued digital
input code and y;q4c.011.5B IS the current ideally represented by
an LSB and N the number of bits.

Fig. 3 shows the performance of a single precalculated 6-bit
DAC versus the 64 possible input codes. The weight w is
chosen as to get a maximum activation of 0.8 of the full
scale. The given error bars are the standard deviations of the
repetitive measurements. Since the DNL is always smaller
than 1 LSB, the monotonicity of the DAC is guaranteed.
In order to characterize a DAC, one gives the maximums
of the absolute non-linearity, DNL 4, = max(|DNL|) and
INL,,02 = maz(|INL]|). Table I lists the characteristic values
together with the gain normalized to 1 and the absolute offset.
The left column shows the characteristics of the DAC plotted
in Fig. 3 with the errors being the mean measurement error.

If several integer inputs shall be connected to the same
output neuron, the variation of DACs placed in the same
synapse row is important. The characteristic values for an
exemplary neuron are given in the second column of Table I.
For the measurement, the 6-bit DAC was shifted horizontally
besides for the 10 columns at the right side of the synapse array
which are used for measurement and biasing. The horizontal
displacement measurements of 6-bit DACs done for all output
neurons are listed in the third column and give an estimation

TABLE |
CHARACTERISTICS OF VARIOUS 6-BIT DACS GIVEN IN LSB.

| single DAC | same neuron | block || block (5-bit)
DNLmaz 0.5+0.4 0.5+0.3 1.1+£0.6 0.4£0.2
INLynaz 0.7£0.2 0.9+0.2 1.7+£0.7 0.7£0.3
gain 1+0.07 1+0.07 1+0.1 1+0.1
offset 0£0.2 0£0.2 —0.1+0.7 —0.1£0.2

of the homogeneity of the whole network block. The values
are the weighted means and the errors are the widths of the
distributions covering 70% of the measurement results. For
comparison the whole block measurement is repeated for 5-bit
DACs (last column of Table I, given in corresponding LSB).

These benchmarks show that the homogeneity for a single
output neuron is quite good. Even for the whole block the non-
linearity errors are below 2 LSB. A closer examination shows
that the increased non-linearity error is mainly caused by
every eighth output neuron. They show non-equidistant steps
in the characteristic curve, but monotonicity is not violated.
This effect may be due to an incorrect timing during the
programming of the weight storage process, in which case
the problem may be fixed in the future. In case the observed
effect is inherent to the hardware, appropriate offsets may be
used to correct it.

C. A Variable Synapse

Physically, a synapse in the ANN ASIC connects a single
binary input to a single neuron with binary output. In case of
n input neurons forming a multi-valued input, their synapses
connecting to the same output have to be treated as a fixed
group. However, it is possible to introduce a common scaling
factor Q € [—1,1]. This ensemble then represents a synapse
of weight 2 capable to interface an n-bit neuron (see Fig. 5),
in the following it is referred to as an n-to-1 bit synapse. If
m output neurons are used and their synapses connecting the
same n-bit input are identically configured and simultaneously
scaled by 2, they form an n-to-m bit synapse. The case
n = m = 1 is the elementary synapse and Q = w.

a0t

NS

\

current in pA
°

L L L L L L
-60 -40 -20 0 20 40 60

input code

Fig. 4. Characteristic curves of a synapse varying .

In Fig. 4 the analog activity for a single output neuron is
plotted versus the inducing 6-bit integer input for a scaled (2.

In order to obtain equidistant angles, Q2 was scaled according
to @ = tan(n/N = x/2) with N = 9 and n going from
—N to N. The error bars show the standard deviation from
the mean of 6 identically configured neurons, which together
form the n-to-m-bit synapse used to obtain the ADC shown
below. For visualization reasons the errorbars are not plotted
for all input codes. Negative Q2 are flipped to the lower left
quadrant for visualization, i.e., the presented input codes are
positive. The INL,,,. is below 3 LSB besides for the zero
weight. Towards smaller currents the neuron circuit works less
precise. Theoretically, the 6-to-m-bit synapse has a resolution
of 5 bits (the remaining resolution of the weight storage units
plus the sign bit) in the range of Q € [—1,1]. It can have
values outside this interval, but then the synapse is not 6-bit
anymore since it saturates for higher input codes.

D. Obtaining Multi-valued Outputs

Similar to the combination of binary input neurons for
multi-valued inputs it is possible to group elementary output
neurons to act as an m-bit integer output in the range of
[0,2™ —1]. The task to be performed by this group of neurons
is to measure the analog network activity present at their
inputs and represent this activity as an integer. They act as
analog-to-digital converters (ADCs). This can be realized by
configuring a recurrent network topology with self-inhibiting
feedback connections acting as a successive approximation
ADC. The proposed solution imposes two conditions: First,
the participating output neurons need to be excited by the
same analog activity and, second, the analog activity has to
stay stable over the course of the successive approximation.

common scaling factor
Omega %

™\ input neuron

} output neuron @ w=0synapse

MSB

O O O O\

[Multi-Valued Input
feedback

Fig. 5. Network configuration of a 4-bit input being connected to a 4-bit
ADC by a 4-to-4-bit synapse of weight Q.

For an m-bit output with linear activation function the
necessary resources are found in a straightforward fashion:
one binary input is used as a bias (constantly activated) and
adjusts the threshold values for the participating bits according
to their significance, i.e., for the LSB 0, for the next bit w and
for the MSB (2™ —1)w. After one network cycle, the MSB has
reached its final state and subtracts 2w from all other bit lines
if active. After the second cycle, the second most significant
bit is stable and will go on to adjust the lower significant bit
lines and so on. This process is completed after m network
cycles. The easiest way to ensure stability of the solution is to
prohibit feedback connections of bits to themselves or higher

significant bits, i.e., the upper left and the diagonal of the
weight matrix need to be zero. Compare Fig. 5 to see the
exemplary network configuration of a 4-bit ADC. On the right
hand side a 4-bit input with a common weight of € is shown
and the left side depicts the bias and the 4-bit ADC.

A single m-bit output neuron requires, besides its obligatory
m elementary output neurons, m — 1 feedback connections
to m — 1 elementary input neurons and binds (m — 1) x m
synapses. The outputs are valid after m — 1 network cycles. If
used within a network of variable neurons, all m outputs need
to be fed back increasing the required network cycles by 1.
The necessary bias neuron can be shared.

precision = 5 bits

of ..;.;.;..-.;..-.;.;..;.;.;..;};. g

INL in LSB

t
precision = 6 bit]

“"EI?"I’%}F k[z{oi«?& ﬂ} Foe 13-

%’

075 1

[=]
T T T T

[0] 0.25 0.5
Input

Fig. 6. Integral non-linearity of a 5-bit and a 6-bit ADC plotted in
corresponding LSB versus the normalized input code.

In Fig. 6 the scaling behavior of the ADC building block
is shown. The used setup is similar to the one shown in
Fig. 5, but with 5 and 6 bits. The activity is induced by DAC
building blocks with a maximum current of 0.8 of the full
scale F'S. For 5-bit and 6-bit ADCs the integral non-linearity
is plotted versus the input code. Each input code is applied
10 times. The plotted error bars show the standard deviation.
The performance of the 5-bit ADC is almost perfect. In the
6-bit case there are deviations of a few LSB for input codes
where the MSB or the second most important bit turn on and
the lower bits go off.

IV. NETWORKS OF VARIABLE NETWORK RESOURCES

In the previous section it was demonstrated that the analog
properties of the ANN ASIC allow to combine its elementary
resources to multi-bit resources. One aspect is to be able to
connect several multi-bit inputs to a single output neuron by
weighted connections. The second is the ability to reproduce
the activity to several neurons as to get a multi-valued output.

In terms of resources used this allows to build whole
networks of neurons with variable precision efficiently. Input
can be provided by the variable neuron input blocks, which
then can be connected via the proposed n-to-m-bit synapses to
the variable output blocks acting as inner and output neurons.
The blocks for the output neurons remain unchanged once
configured according to the desired precision, whereas the
synapse blocks are scaled in order to represent the connection
strength.

V. CONCLUSIONS & OUTLOOK

In the presented paper it has been shown that the concepts of
combining the elementary resources of a mixed-mode analog
ANN ASIC introduced in [6] can be (a) transferred to a second
generation ANN ASIC and (b) generalized to parameterizable
building blocks. These building blocks are variable network
resources, namely multi-bit inputs and outputs scaling in
the number of bits. Variable synapses connecting neurons of
variable precision were realized up to a precision of 6 bit.
The ANN ASIC provides enough analog precision to connect
several 6-bit inputs operating as DACSs to a single neuron while
maintaining a scalable weight Q with 5-bit resolution. For the
multi-bit outputs it was shown that it is possible to induce
the same activity onto several output neurons, thus making it
possible to use a group of m 1-bit output neurons as an m-bit
successive approximation ADC for m up to 6.

The presented results show that the simplified Perceptron
model implemented in the ANN ASIC can be used to interface
multi-valued signals in a straightforward fashion, although
physically there are only single bit inputs and outputs pro-
vided. It is possible to configure only the input and/or output
layer of a network with these variable network resources
while using the elementary neurons and synapses for the inner
layers. Current projects in our group use the variable inputs for
interfacing real-world data for a classifier task. Ultimately, the
training algorithm can choose what kind of network resources
are needed to solve the given problem. Under the constraint of
minimizing the used resources, it may come up with networks
using a variety of different types of neurons, thus allowing
to analyze the criticality of precision in certain stages of the
problem solving.

REFERENCES

[1] J. Schemmel, F. Schirmann, S. Hohmann, and K. Meier. An integrated
mixed-mode neural network architecture for megasynapse ANNSs. In Pro-
ceedings of the 2002 International Joint Conference on Neural Networks
IJCNN'02, pages 2704-2710. IEEE Press, 2002.

[2] S. Hettich and S. D. Bay. The UCI KDD archive [http://kdd.ics.uci.edu].
University of California, Department of Information and Computer Sci-
ence, Irvine, USA, 1999.

[3] L. Prechelt. Probenl: A set of neural network benchmark problems
and benchmarking rules. Technical Report 21/94, 38 pages, Fakultét fir
Informatik, Universitat Karlsruhe, 1994.

[4] K.J. Lang and M.J. Witbrock. Learning to tell two spirals apart. In D.S.
Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of 1988
Connectionist Models Summer School, pages 52-59. Morgan Kaufmann
Publishers Inc., 1988.

[5] P.J. B. Hancock. Data representations in neural nets: an empirical study.
In D.S. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of
the 1988 Connectionist Models Summer School, pages 11-20. Morgan
Kaufmann Publishers Inc., 1988.

[6] F. Schiirmann, S. Hohmann, J. Schemmel, and K. Meier. Towards an
Artificial Neural Network Framework. In A. Stoica, J. Lohn, R. Katz,
D. Keymeulen, and R.S. Zebulum, editors, Proceedings of the 2002
NASA/DoD Conference on Evolvable Hardware, pages 266-273. |IEEE
Computer Society, 2002.

[7] J. Schemmel, K. Meier, and F. Schirmann. A VLSI implementation of
an analog neural network suited for genetic algorithms. In Proceedings
of the International Conference on Evolvable Systems ICES 2001, pages
50-61. Springer Verlag, 2001.

[8] J. Schemmel, S. Hohmann, K. Meier, and F. Schiirmann. A mixed-
mode analog neural network using current-steering synapses. In Analog
Integrated Circuits and Sgnal Processing. Kluwer, in press.

