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Abstract. This paper proposes a coprocessor architecture to speed up
hardware evolution. It is designed to be implemented in an FPGA with
an integrated microprocessor core. The coprocessor resides in the con-
figurable logic, it can execute common genetic operators like crossover
and mutation with a targeted data throughput of 420 MByte/s. Together
with the microprocessor core, a complex evolutionary algorithm can be
developed in software, but is processed at the speed of dedicated hard-
ware.

1 Introduction

An evolvable hardware platform usually consists of three main parts: the recon-
figurable hardware (RH) and two processing units: the fitness calculation unit
(FCU) and the evolutionary algorithm unit (EAU). There are different possibili-
ties to implement the processing units (FCU and EAU) like PC-based approaches
([1], [2]), DSPs [3], FPGAs [4] and ASICs.

These implementations can be classified whether they are software- (PC and
DSP) or hardware-oriented (FPGA and ASIC). While the first option provides
the advantage of variability, easier design and maintainability, it is relatively
slow. A hardware implementation allows a higher degree of parallelism and is
therefore faster, but usually needs more design effort.

Our group uses an analog neural network ASIC (ANN) [5] as the reconfigur-
able architecture (see Fig. 1). Its configuration stream consists of about 45 kByte
of data and it calculates one network layer every 20 ns. To exploit the network’s
speed, substantial computing power and data-flow rate are needed to generate
new generations in time.

In this paper we propose a coprocessor architecture to bring up the evolu-
tionary algorithm to the speed of dedicated hardware. It is customized to suit
the demands of our ANN, but the architecture is flexible enough to be trans-
ferred to other reconfigurable hardware systems. The coprocessor is designed for
a Virtex-II Pro FPGA manufactured by Xilinx [6]. This FPGA provides pro-
grammable logic cells, high speed serial links for off-chip communication and an
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Fig. 1. Setup used for the evolvable hardware experiments

IBM PowerPC 405 core immersed in the FPGA fabric. With this device we are
able to partition between soft- and hardware:

The evolutionary algorithm is written in software and executed in the micro-
processor core. The coprocessor resides in the programmable logic cells and is
coded in a hardware description language. The problem-specific fitness calcula-
tion is not a topic in this paper. It is done either by software in the microprocessor
core or in specialized hardware in the FPGA.

The instruction set and the internal structure of the coprocessor are designed
to allow a wide range of evolutionary operators. This makes it possible to use the
same hardware configuration code for a large number of different experiments
and training algorithms.

With this coprocessor system it is possible to design complex evolutionary
algorithms in a software environment, but let the time-expensive parts be ex-
ecuted in hardware. This yields a data throughput of up to 420 MByte/s of
genetic data.

2 Evolution System

Our hardware integrates a Xilinx FPGA Virtex-II Pro [6] together with
256 MByte of DDR-SDRAM [7] and an analog neural network ASIC on a single
PCB1, as shown in Fig. 2. It is interfaced to a host computer. This connection is
used only to initialize the microprocessor core, the random generators, etc. and
to monitor the evolution progress.

Analog Neural Network ASIC. The target of the evolution is a neural
network. It is implemented in a mixed-signal ASIC developed by our group,
partitioned in four network blocks containing 128 input neurons and 64 output
neurons each. This sums up to 32768 synapses. Taking into account the resolution
of 11 bit per synapse, our configuration bit stream, i.e. the genome, is 360448
bit (44 kByte) long (see [5]).
1 Printed Circuit Board (PCB)
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This ASIC is connected to the FPGA by a parallel LVDS2 link, capable of
transferring up to 1.2 GByte/s of configuration or testpattern data. To evaluate
an individual or genome, the configuration data has to be transferred to the ASIC
first. After this is done, the testpatterns are applied successively and finally the
results for each testpattern are sent back to the FPGA across the LVDS link.

Xilinx FPGA Virtex-II Pro. The coprocessor is designed for the Virtex-II
Pro FPGA. Apart from the programmable logic, it contains 504 kBit internal
dual-ported SRAM, hardware multiplier and high speed serial links for off-chip
communication. Its outstanding feature is the PowerPC, a microprocessor core
delivering 420 Dhrystone MIPS. As the PowerPC is immersed in the FPGA
fabric, it can access part of the internal SRAM as fast as its own cache. Our
coprocessor connects to the additional SRAM port, i.e. we use the dual ported
internal SRAM to communicate between microprocessor core and coprocessor.

Peripherals and Scalability. The internal SRAM provided by the FPGA is
neither sufficient to store the genome data nor the testpatterns. Therefore, we
added a DDR-SDRAM module to the PCB for the FPGA to use up to 1 GByte
of external memory at a transfer rate of up to 2.1 GByte/s.

The evolution system is designed in a way that allows to combine 16 systems
on one backplane. These modules are connected to each other with the serial
links described above. Each FPGA offers four links, we are targeting a 16 node,
2-dim torus, with each connection transferring up to 3.125 Gbit/s.

3 Evolutionary Algorithm Coprocessor (EAC)

3.1 Overview

The EAC pursues two aims: It must process a high data throughput and it has
to be parameterized to allow a wide range of evolutionary algorithms without
changing the hardware configuration. The first aim demands a pipelined struc-
ture. To satisfy the second this pipeline is controlled and managed by a set of
2 Low-Voltage Differential Signalling (LVDS)
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instructions. This structure is shown in Fig. 3. The microprocessor core addresses
the EAC by writing instructions to the Instruction Buffer (IB). They are read
and decoded successively. Depending on the instruction they control different
parts of the pipeline, indicated with dashed arrows in Fig. 3.

3.2 Data Flow Control

All genetic data is stored in the SDRAM. A population consists of a number of
individuals, represented by their genomes. Each genome is divided into chromo-
somes. A chromosome is stored consecutively in the SDRAM and crossover takes
place inside one chromosome. Each chromosome contains an arbitrary number
of genes, the smallest unit of the genome. The mutation operator works on single
genes. A typical ANN training setup uses 10-100 individuals and one chromo-
some per neuron. The coprocessor can handle any combination that fits into
memory.

A more detailed view of the pipeline and the surrounding control structures
is given in Fig. 4. The genes are read from the SDRAM as parents, modified in
one crossover and two mutation stages and written back as children to a new
address in the SDRAM.

In order to feed genetic data into the pipeline (or to write it back to the mem-
ory), the software must specify the SDRAM address and the number of genes
to be transferred. The SDRAM works burst-oriented, i.e. consecutive addresses
can be accessed very fast while random access is relatively slow. Therefore, the
chromosomes are stored consecutively in the SDRAM, and FIFOs accumulate
the data in order to address the SDRAM in bursts.

Parallelism. A gene is expressed with 11 bit resolution. As described below, we
need two additional bits to control the evolutionary operators. To simplify the
addressing, each gene occupies two bytes, so three bits are available for future
use.
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The design is targeted for 80 MHz. Four pipelines work in parallel to take
advantage of the SDRAM transfer rate. Fig. 4 depicts one pipeline processing
one gene per cycle. Provided, enough genetic data and instructions are supplied,
the four pipelines can process four genes per cycle.

3.3 Combinatorial Logic

Fig. 5 shows a detailed description of the evolution pipeline. There are two
different kinds of control options:

– Multiplexer Control Bits
– Global Parameters

The Multiplexer Control Bits (SelectParent, SelectRandom, SelectScale,
SelectConstant, SelectReplace and SelectMutate) in Fig. 5 are numbered
from one to six, they may change with every new gene. For example,
SelectMutate decides whether the original gene is passed down unaltered or
undergoes mutation. As this is done for each gene independently, SelectMutate
changes almost with every new gene.

The Global Parameters (RandomMaximum, Constant and Fraction) are rec-
ognizable by dashed boxes. They are at least valid for a whole chromosome, in
most cases for the entire evolution. RandomMaximum for example may be set to
1023 (210 − 1) at the beginning to get mutated genes with every possible value.
Later, as the fitness increases, RandomMaximum might be decreased to fine-tune
the population.

This difference in the update frequency is important. The Global Parameters
are updated infrequently, therefore, the software can set them with instructions.
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Fig. 5. The pipeline in detail

Since the Multiplexer Control Bits may be updated every cycle, they must be
generated faster to achieve a substantial data throughput.

Multiplexer Control Bits (MCB). With the setting of the MCBs, one can

1. choose from which parent the child inherits the gene (SelectParent).
2. choose between a uniform or gaussian random distribution (SelectRandom).
3. scale the new gene value (SelectScale).
4. choose between a random or a constant new gene (SelectConstant).
5. choose whether the generated gene shall be added to the original or replace

it (SelectReplace).
6. decide whether a mutation occurs or not (SelectMutate).

As stated above, the MCBs may change their values with every new gene, i.e.
every new cycle. Thus they cannot be set individually by software instructions
since this would be too slow. On the other hand, the MCBs actually define the
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underlying evolutionary algorithm. Still the description of the algorithm must
be based in software to be variable.

This contradiction is solved by introducing an additional set of bits, the
Evolution Control Bits (ECB). These ECBs generate the MCBs via a look-up
table (LUT): The LUT address is given by the ECBs, the LUT entries are written
by software, and the LUT outputs equals the MCBs (Fig. 6). There are three
kinds of ECBs:

– Instruction dependent bits
Two Evolution Control Bits, Mask1 and Mask2 are set by instructions. For
example they can be used to set crossover points: To transfer the necessary
data for a two-point crossover with crossings after the 27th and 78th bit for a
chromosome with 128 genes, the run-length-coded mask would be (27,51,50).

– Random bits
Two Evolution Control Bits, Rand1 and Rand2, are generated by a random
generator each. They are used to decide whether a mutation occurs or not.
Their output equals ’1’ with a probability given by an instruction.

– Gene dependent bits
Four Evolution Control Bits, Mother1, Mother2, Father1 and Father2 are
obtained from the parent genes. They can be used to steer the evolution,
for example, to exclude a single gene from mutation if Mother1 and Father1
equals ’0’. As stated above, our genes are 11 bit long plus two Evolution
Control Bits for each gene.

Now each of the six Multiplexer Control Bits depends on the eight Evolution
Control Bits. The exact dependency is controlled by the software. We are using
a look-up table (LUT) based structure, where the LUT address is given by the
Evolution Control Bits.

For each Multiplexer Control Bit one 8 bit LUT is needed. The ECBs form
the input or address to that LUT, while the software specifies the LUT entries.
Note that these entries are generally only written once, but can be changed if
the necessity arises.

This is best understood with an example: A mutation algorithm shall use two
different mutation rates, 2% and 5%. There are genes with the high mutation
rate, genes subject to the low mutation rate and genes without any mutation at
all. The Mother1 and Father1 bits are used to differentiate between the three
cases. A gene shall be mutated with 5% probability if both father1 and mother1
bits are set to ’1’, but with a probability of 2% if either the father’s bit or the
mother’s bit is set to ’1’. No mutation shall occur if both bits are set to ’0’.
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The LUT implementing this behavior is shown in Tab. 1 (This example uses
only a 4-bit, instead of an 8-bit LUT as described in the text. The remaining
four Evolution Control Bits (Mother2, Father2, Mask1 and Mask2) are treated
as don’t cares for this setup).

Table 1. Example LUT with four LUT-Address-Bits. An ’X’ in the table denotes
’don’t care’. To obtain the full LUT, all rows with an ’X’ must be duplicated and ’0’,
resp. ’1’ has to be inserted instead of the ’X’.

Father Mother Rand1 Rand2 Do Explanation
Bit1 Bit1 5% 2% Mutate

0 0 X X 0 Both gene bits ’0’: no mutation, inde-
pendent of the state of the rand bits

1 0 X 0 0 Exactly one gene bit ’1’:
1 0 X 1 1 mutation occurs if Rand2 (2%)
0 1 X 0 0 equals ’1’, i.e. with a
0 1 X 1 1 probability of 2%

1 1 0 X 0 Both gene bits ’1’: mutation
1 1 1 X 1 occurs if Rand1 (5%) equals ’1’

3.4 Memory Organization and Instruction Set

Memory Organization. Our system offers two kinds of memory, FPGA inter-
nal SRAM (504 kBit) and off-chip DDR-SDRAM (up to 1 GByte). The first is
used to communicate between processor core and Coprocessor. It is dual ported
and can be randomly accessed independently from both ports. The genetic data,
i.e. the genomes, are stored in the off-chip SDRAM, they are far too big to fit
into the FPGA.

The IB is 32-bit wide. It holds the instructions and additional data and
addresses, which are used for indirect addressing, as described below.

Instruction Set. The IB does not only hold the instructions, but can also con-
tain data and addresses. Some instructions do not transfer all their information
directly. To transfer the LUT entries, the microprocessor core first writes them
into the data section of the IB. After that, it issues the instruction
SetLUTSelectParent(IB address). Now the coprocessor looks in the
IB at the transmitted address for the data. This indirect addressing is done
for two reasons:

First, some instructions must transfer more than 32 bit of data to the co-
processor. To keep a consistent instruction length of 32 bit, this data has to be
transferred indirectly.
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Table 2. Coprocessor instruction set

Instruction Parameters Representation

SetLUTSelectParent (IB address) Instruction identifier bit(0-7)
SetLUTSelectRandom (IB address) Instruction Buffer Address:
SetLUTSelectScale (IB address) bit(8-18)
SetLUTSelectConst (IB address)
SetLUTSelectReplace (IB address)
SetLUTSelectMutate (IB address)

SetRandomMaximum (RandomMaximum) Instruction identifier bit(0-7)
SetFraction (Fraction) Value:
SetConstant (Constant) bit(8-23)
SetOneProbability1/2 (probability1/2)

MaskIndirectBin (IB adr, words to read) Instruction identifier bit(0-7)
MaskIndirectRunLength (IB adr, words to read) Instruction Buffer Address:

bit(8-18)
words to read: bit (19-31)

MaskDirectRunLength0 (quantity of zeros) Instruction identifier bit(0-7)
MaskDirectRunLength1 (quantity of ones) quantity of ones/zeros:

bit (8-23)

ReadParent1 (IB adr) Instruction identifier bit(0-7)
ReadParent2 (IB adr) Instruction Buffer Address
WriteChild (IB adr) bit(8-18)

Second, using indirect addressing enables the microprocessor core to gener-
ate an address table in the IB. Depending on how many memory locations for
chromosomes the algorithm needs, SDRAM addresses are written into the IB,
followed by the length (i.e. the number of genes) per chromosome. To feed a
sequence of genetic data into the pipeline during the evolution, the microproces-
sor core only transmits the corresponding IB addresses. The coprocessor then
reads the SDRAM address and the number of genes to transfer from the IB. This
simplifies the address management and reduces address transmitting overhead.
The instruction set can be divided into two parts (see Tab. 2):

The first group of instructions must be given once to initialize the coprocessor
with valid data. The LUT entries are written with an indirect addressing scheme.
The Global Parameters must be specified directly. Both may change infrequently
during the evolution.

The second group of instructions is given once for each chromosome. A mask
must be given to define the crossover point(s). A mask can be defined directly
or indirectly, using a run-length-code or by transferring all mask bits in binary.

Finally, the data flow control must be told where to get the parents, where
to store the child and how many genes to transfer. This is done indirectly. As
mentioned above, an address table in the IB is created. All data flow control
instructions refer to that table.
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This instruction set provides a wide range of possibilities for the software to
implement various evolutionary algorithms. For example, the initial population
can be generated just by setting the mutation rate to 100%, crossover opera-
tors using 3 or even 4 parent can be implemented with two (or three) 2-parent
crossover operators in succession. It is also possible to just add a fraction or a
constant value to each gene.

3.5 Performance Analysis

To estimate the performance of our evolution system we must consider not only
the pipeline data throughput but the SDRAM transfer-rate and the micropro-
cessor core performance as well.

– The pipeline is able to process four 11-bit-genes per cycle. With the targeted
FPGA frequency of 80 MHz this sums up to 320 million genes or 420 MByte
per second.

– Each gene must be read twice and written once, leading to an SDRAM
transfer rate of approximately 1.26 GByte/s. This is 59% of the maximum
transfer rate provided by the DDR-SDRAM.

– A chromosome on the average needs four instructions to be fed into the
pipeline3. Considering the microprocessor core frequency of 300 MHz, a typ-
ical chromosome length of one chromosome per neuron (176 Byte for our
ANN) and the pipeline data throughput of 420 MByte/s, the microprocessor
core has around 125 cycles to compute and issue the four instructions men-
tioned above to process a chromosome and to keep pace with the pipeline.

This rough estimation shows that our system is able to run at the calculated
speed of the pipeline.

4 Example: Crossover and Simple Mutation

This section presents an example of how to instruct the coprocessor to perform a
crossover followed by a simple mutation. The software sets the crossover points
directly and demands a mutation rate of 5%.

Tab. 3 shows the complete LUT, which is quite simple: All four parent bits,
the MaskBit2 and the RandomBit2 are not used. The SelectParent equals
MaskBit1 and the SelectMutate equals RandBit1. All other MCBs are con-
stant, SelectRandom is ’0’ to choose a uniform distribution, SelectScale is ’1’
to scale with RandomMaximum, SelectConstant is ’0’ to use a randomly chosen
new gene, SelectReplace is ’1’, i.e. in case of a mutation we replace the original
gene, instead of adding something to it.

3 These four instructions are: ReadParent1, ReadParent2, WriteChild and one mask
instruction.
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Table 3. Example LUT with four LUT-Address-Bits (X : don’t care)

Mask Mask Rand Rand Mother Father Select Select Select Select Select Select
Bit1 Bit2 Bit1 Bit2 Bit1/2 Bit1/2 Parent Rand Scale Const Replace Mutate

0 X 0 X X X 0 1 0 1 0 0
1 X 0 X X X 1 1 0 1 0 0
0 X 1 X X X 0 1 0 1 0 1
1 X 1 X X X 1 1 0 1 0 1

Global Parameters. Our mutated genes are completely random with mutation
rate 5%, they cover all 11 bit, therefore we set the instructions:

SetRandomMaximum (1023);
SetOneProbability1 (51);

Note that the remaining Global Parameters are not used in this setup and
that the mutation probability is not expressed in per cent, but in per 1024
(51 / 1024 ' 0.05).

Specifying the Crossover Mask. The SelectParent LUT is programmed
to let the MaskBit1 decide from which parent the child inherits its gene. This
MaskBit1 is set with:

for (ChromoCount=0; ChromoCount<MaxChromo; ChromoCount++){
MyRand = Random(128); // between [1..128]
MaskDirectRunLength0(MyRand);
MaskDirectRunLength1(128-MyRand);}

Each loop cycle will take (MyRand) genes from the first parent and (128-MyRand)
genes from the second.

Data Flow Commands. Prior to issuing any data flow commands, the software
has to write an address table into the IB. With this table, all chromosomes are
addressable by pointers. To cross, for example, the fittest with the second-fittest
genome, we need to issue the instructions:

ReadParent1(IB_adr = Genome[Best]);
ReadParent2(IB_adr = Genome[Second]);
WriteChild (IB_adr = Genome[Unused1]);

Note that the pointers Best, Second, etc. in general change their value with
every new generation.

A complete evolution starts with the creation of an initial population (by
setting the mutation rate to 100%). This population is evaluated and ranked ac-
cording to the fitness. Based on this ranking, the software decides which genomes
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are crossed and issues the appropriate data flow and mask instructions, as shown
in the examples above. After all genomes have been crossed and mutated, the
evaluation starts again. This circle is continued until a satisfactory fitness is
reached.

5 Conclusion and Outlook

We have introduced a coprocessor architecture to speed up evolutionary algo-
rithms designed for the FPGA Virtex-II Pro. The coprocessor is able to perform
common genetic operators like crossover and mutation with a data throughput of
up to 420 MByte/s due to pipelining and parallelism. It still has the flexibility of
software. Therefore, wide range of evolutionary algorithms can be designed and
maintained in software, but are processed at high speed in dedicated hardware.

In the future we plan to implement additional operators, e.g. the possibility
to add two genes together during the crossover. Also, we are going to adapt
the coprocessor to another reconfigurable hardware: The field programmable
transistor array (FPTA) developed by our group (see [2]).

We also want to connect several of the proposed systems using the high
speed serial links offered by the FPGA. This distributed, autonomous hardware
evolution system will give us the resources to tackle large scale optimization
problems.
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