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6 1. Introduction

1 Introduction

All science is either physics or stamp collecting.

–E. Rutherford

1.1 Motivation

The ALICE experiment Scientists believe there was a Big Bang from which everything in the

Universe emerged. In the beginning everything was squeezed into a tiny volume no bigger than a

flea. All the particles which make up everyday matter, from which we and everything around us are

made, had yet to form. The quarks and gluons, which in today’s cold Universe are locked up inside

protons and neutrons, would have been too hot to stick together. Matter in this state is called Quark

Gluon Plasma, QGP.[6]

Now, approximately fifteen billion years later, mankind is trying to find and study QGP in the

Laboratory. To do so, they collide ions, atoms stripped off electrons, into each other at very high

energy, squeezing the protons and neutrons together to try and make them melt. Experiments at

CERN1 through the 1980s and 1990s have smashed ions of oxygen, sulphur and lead into stationary

targets. The results have given tantalizing hints that QGP might have been created for fleeting

moments before cooling down into ordinary matter again.[6]

At the LHC2, lead ions will collide head-on at energies 300 times higher than at CERN’s present

day experiments. Physicists believe that these energies will be ideal for making QGP. But how do

we search and identify quark matter?

The ALICE (A Large Ion Collider Experiment) uses a head-on collision of a Lead (208 Pb) projec-

tile with a Lead target nucleus, at the SPS beam energy of 160 GeV per nucleon in the Pb projectile,

which may compress and heat the nuclear matter contained in the two nuclei. It may thus reach

the required energy density (20-fold higher than that of the initial nuclei) in a short-lived "fireball"

volume. After about 8·10−23 sec this state expands, cools down and emits hadrons (pions, kaons,

lambdas, phi.....) into the detector system. There are about 1500-2000 charged particles created

in each of these violent collision events. The detector system thus has to have an extreme spatial

resolution to separate the particle tracks.[6]

ALICE aims to study the properties of hot QGP, its dynamical evolution, phenomena associated

with the phase transition of rehadronization and finally the evolution of the hadronic final state

until freeze-out. To achieve this goal ALICE, as the only dedicated heavy ion experiment at LHC,

is designed to measure a large set of observables over as much of phase space as achievable and

thereby covering hadronic and leptonic observables as well as photons. The ALICE experimental

setup is shown in Fig.1. The experiment will have a central barrel, housed in the L3 magnet,

covering in pseudorapidity the range−0.9 ≤ η ≤ 0.9 with complete azimuthal coverage. This

central barrel comprises an inner tracking system of Silicon detectors (ITS), a large time projection

1CERN: Organisation Europeenne pour la Recherche Nucleaire. (European organization for nuclear re-
search.

2LHC: Large Hadron Collider
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chamber (TPC), a transition radiation detector (TRD), and a time-of-flight array (TOF). In addition

there will be close to mid-rapidity two single arm detectors, an array of ring-imaging Cherenkov

counters (HMPID) to identify hadrons up to high momenta and an array of crystals (PHOS) for the

detection of photons.[5]

Figure 1:Layout of the ALICE detector. The Transition Radiation Detector (3) is

the green component placed between the TPC (8) and TOF (cyan, below 2).

The Transition Radiation Detector Every individual particle can be detected and traced inside

the ALICE detector system, where particle tracks are converted to digital electronic signals, which

are then processed online. The data readout rate in this detector exceeds 15 Terabytes/sec. In order

to cope with this massive amount of data, online-processor systems are designed to identify and

select the relevant information. A processing system is being designed that performs track fits on

about 20,000 tracks, consisting of about 20 space points within two microseconds. The estimated

necessary compute power corresponds to 40·1012 arithmetic operations per second.[11]

The chief goal of the TRD is to provide electron identification in the central barrel at momenta in

excess of 1 GeV/c where the pion rejection via energy loss measurement in the TPC is no longer suf-

ficient. As a consequence, the addition of the TRD [5] significantly expands the physics objectives

of the ALICE experiment[7, 8] .

As detailed in [5] the TRD achieves this goal by reading out and analyzing the charge induced on

1,156,032 pads located in 540 individual readout chambers arranged in 6 layers in the TRD barrel.

Most of the front-end electronics sits directly on the readout chambers. (see Fig.2).

TRAP - The TRAcklet Processor Front-end electronics (FEE), consist of preamplifiers, ana-

log digital converters, tracklet processing and global tracking. The hardware for multiple pads is
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Figure 2:The Transition Radiation Detector Architecture.

grouped into Multi Chip Modules (MCM). There are 64224 MCMs mounted on the detector, mak-

ing the MCM one of the most crucial electronics components which have to be mass produced.

The main part of the MCM is the Local Tracking Unit (LTU) with the Tracklet Processor (TRAP).

The LTU functionality includes everything after the ADC. It comprises a so called tracklet prepro-

cessor (TPP), which includes storage of the raw ADC data in the event buffer, a MIMD micropro-

cessor, which subsequently computes and selects the tracklet and the read out part. A picture of

these internal parts of the TRAP-1 can be found in chapter3.3.

slow control network In order to control and configure that large set of hardware, a network

with requirements summarized in table1 is needed: This document describes the architecture of the

"slow control network"3 for the TRD, its implementation, design details, as well as measurements

and benchmarks.

Although the motivating application is very special, during the development, the network has be-

come far more universal, than previously assumed, so further part of this documentation will not

mention the ALICE experiment any more...

The first approach was to find an existing network specification, that accomplishes all the tasks.

Several networks and field busses like CAN, SMBus, JTAG, i2c, and Ethernet have been consid-

ered, but not found appropriate. The chosen solution uses Ethernet4 to connect to the 512 chambers

of the TRD, where the data is distributed further to the MCMs. The second choice was to cre-

ate a new network on chamber level to connect the multi chip modules. Each chamber covers 2

AlteraTMExcalibur NIOS FPGA controller, that interface between Ethernet and the local network to

the MCMs. The MCMs will be subgrouped into≈ 20 MCMs5 connected in a ring6. (20 MCMs per

3slowmeans that now fast data readout is done via this network.
4even here a modified version of Ethernet is used, to work in the magnetic field. see [13]
5number varies, with the geometry of the detector
6Using a ring structure benefits to the proposed TRDs cabling architecture
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• Connect all clients (≈65000 MCMs) in a hierarchical structure.

• Provide failsafe full duplex communication.

• Allow broadcasts, since most configuration will be identical to groups of MCMs.

• Failure of a single MCM should not affect (many) others.

• Analyzation of the network (broken Links, MCM keep-alive) and system checks of network

clients should be possible.

• leave flexibility in case of failure. (When once in use, the Detector and all its internals become

almost inaccessible.)

• Complete configuration (TRD≈ 1 MByte/MCM) in≈ 1sec.

• work inside the detector system (high magnetic Field, particle beams,...) without interfering

with the measurement (as less wires as possible, low currents,...)

• (Re)Use of proposed/tested TRD architecture, specified in the TDR [5].

Table 1: TRD slow control network requirements. This list summarizes the specifications the

network has to fulfill.

ring, 3 rings per controller, 2 controllers per chamber times 540 chambers makes 64800 MCMs in

total.)

1.2 Overview and Features

Theslow control - serial network7 (scsn) is a high speed interface, that provides a reliable asyn-

chronous serial communication in between onemasterand multiple clients over a single signal wire.

To gain redundancy and full duplex communication, 4 signal wires8, two for data transmission, and

two for receiving data are used.

The network is written in VHDL9 and so can be synthesized in hardware on any kind of PLD10 or

via ASIC11.

scsn has the goal of being reusable and not bound to the application, so the design contains a lot of

generic values and plug-ins. Most of them can be changed quite easily, and require just constants to

be changed or certain parts of the vhdl code to be adjusted.

7initial development considered the slow control to be a bus. Therefore all development resources and
software had been namedscsb. The final version of scsb is postulated to be a network (scsn).

8current implementations use a differential signal, so 8 wires.
9VHDL: Very High speed integrated circuit Hardware Description Language (HDL)

10Programmable Logic Device (see FPGA, CPLD,...)
11ASIC: Application Specific Integrated Circuit
12The maximum number of slaves is a generic value in the protocol header
13There are further possibilities to extend reliability. see chapter4.1.8
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physical connection 4 twisted pair LVDS signals. (8 wires)

network speed max. 1/3 of clock speed. (tested up to 24 MBit/s @ 72MHz)

network topology double ring, with onemasterand up to 126slaves12

power consumption depends on implementation

data exchange format generic application layer, current implementation provides a 16bit

address, 32 bit data bus

data checksum Cyclic Redundancy Check (CRC-16)

Minimum Clock speed DC

Maximum Clock speed implementation specific. FPGA: 96MHz / UMCL.18µ250t2:

120MHz

Redundancy network works in half duplex mode with one broken (excluded)

client. If more than one client breaks, the nodes in between the

two will be lost.13

Table 2: TRD scsn specifications.This tables summarizes the features and specifications of the

TRD scsn network appliance.
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2 Architecture

The most brilliant decision in all of Unix

was the choice of a single character

for the newline sequence.

–Mike O’Dell, only half jokingly

In this section, the network structure and protocol definition of scsn are described. This will also

give an overview of the complete network and its capabilities. Note that the discussion of the

chosen structure has been separated from the specifications and can be found in thesection2.7.

Most of the details in data link layer are left generic, and are described only abstractly. The chosen

implementation methods are topic of the following chapters.

2.1 Network structure

The main structure of the slow control network emerged from the TRD14 Technical Design Report

(TDR) [5]. The requirements to have a redundant architecture with few wires only, and still be able

to connect≈ 65000 clients, led to a daisy-chain like architecture (Figure3). Up to 126 clients (called

slaves) are connected in a ring structure with exactly one controller (calledmaster)15. Between two

devices (master or slave) there are 2 links, one for each data flow direction, each link being single

serial signal. Current Implementations use LVDS16 @≤ 40 MHz.

To gain redundancy each of the slaves supportsX-bridging(see Figure4). In "normal" (un-bridged)

mode, a slave forwards the data to the next slave (until it arrives at the master) in the same ring.

Whereas in "bridged" mode, the data is sent back on the other ring, breaking up the full duplex ring

into two half-duplex rings. Usage of this method, allows the network to operate with broken clients,

as well.

2.2 Network protocol

First of all a two basic statements which are discussed in the following sections:

• Data is exchanged in fixed size packets calledframes. Each frame start is indicated by a

start-bit (1) and terminates after a fixed length or an receive-error.

• Principle : One Frame In - One Frame Out! Each frame is created by the master and termi-

nates there. The slaves only forward or alter the frame.

The network interface has to take care about certain services, like (de)serialization, addressing,

processing or forwarding the data. Figure5 shows, how each of these tasks are capsulated into

different abstraction layers.

14Transition Radiation Detector
15The number of clients per ring is only limited by required latency, redundancy, and header address length

restrictions.
16Low Voltage Differential Signal: 2 Wires per signal.
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Figure 3: Architecture: This figure depicts the ring-topology of the network on a

chain of 1 master and 8 slave devices.

Starting a bottom up approach, will describe the architecture of the scsn:

Physical Layer The physical layer, is the abstraction layer of the wire and Input/Output electron-

ics. The LVDS signal from the wire is decoded and synchronized to the local clock signal. There

is no need for a PLL synchronization here, since scsn provides Data Link Layer synchronization. A

digital low pass filter is applied to smooth the signal before handing it data to the layer.

Data Link Layer The data link layer has to carry out specific functions to provide a well-defined

service interface to the network layer. What the Data Link Layer does, is accept a raw bit stream

and attempt to deliver it to the destination. This bit stream is not guaranteed to be error free. The

number of bits received may be less that, equal to, or more than the number of bits transmitted, and

they may have different values. It is up to the data link layer to descry, and if necessary, correct

errors[17]. First of all the bits from the wire have to be detected and deserialized. Data is sent
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Figure 4:network bridge - internal x-bar. This feature allows the split the network

into two independent Rings, necessary to exclude broken clients.

with LSB17 first. Transmission speed in scsn is usually slower than the clock speed of the slave’s

network controller, so that the job of deserialization can be done in Data Link Layer, which allows

more complex resynchronization algorithms. Since the frame is fixed size, the start-bit is used to

synchronize data to the internal clock. Every edge of the data signal can used for resynchronization.

To keep in sync, after a given period of a non changing Signal,stuff bitsare inserted to force a

transition that is used for resynchronization. (see chapter2.7.2, Fig. 11).

All the bits of the physical layer are grouped into frames which are also buffered here. Framing is

implemented via a start bit, and a bit counter, using a fixed size frame. This is discussed later in

chapter2.7.2. Dealing with transmission errors, (re)calculating the frame CRC-sum18, as well as

the implementation of the network bridge is also part of the data link layer. All buffer errors (except

the CRC-Errors) are handled internally, details are in chapter4.1.3.

If a complete frame has arrived, the data link layer sends the received frame (without checksum)

up to the network layer (NWL). Checksum errors are also reported and left to be handled by the

NWL. (Signals in Figure5 data path up:new, error, data(69)). Since it takes some time to process

the frame, frames have to be separated from each other by aninterframe space. This is done by

sendtiming/outputbuffer units. After flushing the output buffer, the buffer is locked for a short time

(not ready to send). Usually the network and application layer transactions are much faster (< 10

clocks) than the network speed (including interframe-space≈ 250 clocks, see also Eqn.2).

The data link layer provides aready to sendsignal to the layer above, which is driven to 1 (high

active) if the output buffer is empty and ready to send a frame. The network layer may then write

data and start sending by rising thesend datasignal. (Signals in Figure5: data path down)

2.3 Data frame definition

To understand the function of the network layer, the frame and addressing mode have to be defined

first. Each Frame consists of a header (like the envelope of a letter, containing the address and

17least significant bit first: 13 would result in "1011"
18CRC: cyclic redundancy check
19OSI: Open Systems Interconnection reference model
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Figure 5:OSI19Layer Diagram. This Figure shows the capsulateion of functions in

the different abstraction layers of the network. The different layers are explained in

the text.
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Figure 6:Frame payload definition: The frame is a 76 bit fixed size packet.

sender), and the "letter" itself, which is called the data or the payload.

The scsn network allows only the master to "write" a letter. It is addressed to one or all slaves in the

network. The receiver opens the letter, reads and/or alters the data and sends it back to the master.

Slaves may not address frames to any other slaves20. If a slave obtains a frame not addressed to

itself, the frame is just forwarded to the next slave until the frame is back at the server.

Figure6 shows the frame definition, and the according layers: the startbit and the checksum are han-

dled in data link layer, and the payload data will be explained later inApplication Layerparagraph.

So the header is left to be processed by the network layer...

Network Layer The network layer is concerned with getting frames from the source all the way

to the destination. This function clearly contrasts with that of the data link layer which has the

modest goal of just moving frames from one end of the wire to the other.[17] To achieve its goal,

the network layer must know about the topology of the network.

Addressing in the scsn network is done by assigning the frame to then’th hop in a row. Every

node that the frame is passed by, increments thehop counterof the frame. If the (incremented)

hop counter matches the address, the data is processed in the application layer. If the hop counter

and the address do not match, the frame is simply forwarded to the next in the row, until it arrives

back at the master. If the bridge of a slave is in crossed state, the network layer has to disable any

broadcast requests before forwarding the frame back. This is necessary because all the slaves would

process the same frame again when it is on the way back. Basically this is not a problem, since the

20although this would be possible with the actual frame specifications.
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Address src/dst Description

1 1 master sends to (requests) client 1

127 1 master broadcasts to all clients

1 0 client 1 answers the master (replacing the master request)

0 0 Error frame, forward to master, unknown sender (see hopcounter)

Table 3: Network Address Table examples.The Address and src/dst bits are part of the frame

header.

same transaction is just repeated, but there might be (and are in the TRAP-1) memory-address-auto-

incrementers as internal parts of the client.

Another job of the network layer is to schedule commands from both rings to a single application

layer interface (which might stall). This is becoming quite complex, since bridge-switches and

error handling is also part of the algorithm, which is described in chapter4.1.5. Although this

functionality would correspond to a Session Layer in the OSI reference design, it was named and

included in the network layer of scsn because of implementation and capsulateion motivations.

2.4 Frames and Frame Handling

The Header of the frame is 16 bit long (see Figure6), containing a 7 bit address, 1 source/destination

flag, and the 8 bit hopcounter. In worst case, the frame has to go completely down the chain,

is reflected at the last in the row (bridged) and goes all the way up, back to the master. So the

hopcounter has to be 1 bit larger than the address. The src/dst bit is used to determine if the frame

is a request from the master (1) or an answer of a slave (0).

Apart from addressing, the network layer (NWL) arbitrates two rings to a single application layer.

All in all this is not an easy job. The NWL is the place where all control signals congregate.

Depending on the buffer statuses (new frames, CRC errors, free send buffer(s)), the configuration

(switch X-bridge) and the application Layer (idle/busy), a decision has to be made how to handle

an arrived frame.

Each received frame can either be

• just forwarded. (thereby increasing the hop counter)

• processed, butnot altered and forwarded (thereby increasing the hop counter)

• processed, altered. This creating a new frame (hop counter 0 - by default this is an error-

frame), addressed back to the master, that is put back on the wire, instead of the original

frame.

• answered with error.

Application Layer Having finished all the preliminaries, here is the description of the application

layer, with the implementation specific interface. The layers below the application layer are to

provide reliable transport, but they do not do any real work for users[17]. There are currently two
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Signal Name width APL Description

arbiter request 1 out request the bus, wait for ack.

arbiter ack 1 in arbiter allows request in the next clock cycle. (if this device

is acting as bus master, set this statically to 1)

bus select 1 in select/use the bus. performs the bus transaction.

busR/W 1 out write enable. 0: read transaction, 1: write transaction

bus data in 32 in data from a read request

bus data out 32 out data to be written

address 16 out address where to read from/write to

Table 4: Application Layer Bus Interface Signals. This is a generic slave side interface signal

definition.

application layer appliances of the scsn. One that was used for debugging, which is a generic VHDL

interface, and the one implemented in the TRAP-1. Both are described later in chapter3.

As displayed in Figure6, the current payload definition provides 16 bit address, 32 bit data and 5

bit command requests, which allow standard input/output to almost all known bus systems.

2.5 generic Interfaces

From the outside, the scsn network has just two interfaces: The application layer of the master and

the slave. The slave’s interfaces is a generic Bus interface. The signals are summarized in Table4,

and are described in detail in chapter3.

The interface on the master side is different, because it interfaces directly to the data link layer. The

network layer (and layers above) functionality is left up to software and/or the user. For common use

a master has been mapped to a PCI-Card FPGA, and Software for standard PCs has been developed

as part of this work(see chapter4.2).21

2.6 Network Error recovery strategies

There are three kinds of error conditions, that require recovery:

• transmission errors:bad wires, clock delays may lead to wrong, incomplete or lost data.

These errors are handled by the Data Link Layer. Bitstuff errors are treated as frame end,

which may lead to a receive error for the following frame, also. The DLL will create a single

error frame instead.

• postponement errors:Due to different length executing time in the application layer, buffer

overruns may occur. If a new frame is arriving, whereas an other is still being executed in the

application layer, a postponement error error occurs in Network Layer.

21There are implementations, that reduce the master network layer to a simple state machine, that does not
support Type 3 error recovery (see2.6), but can be implemented in micro-controllers or FPGAs.
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• broken Hardware:A client board is broken, and there is no access to the network. Or even

worse, the client is broken and generates random data on the wire.

Type 1 and 2 errors are handled internal by the hardware. Transmission errors are part of the data

link layer, and postponement errors are caught by the network layer.

Changing the Network Topology In order to cope with broken clients, the network bridge was

introduced in chapter2.1. The network bridge can be configured by sending a specific command, to

induce the slave to change an internal state. A successive recovery would bridge the first client in the

row, and check if the request returns. If yes, reset bridge and test 2nd client, until the test frames run

through the complete row (frames arrive back at the master) or the broken client has been detected.

Playing the same game on the second ring allows to exclude the broken client(s). See Figure7. If

more than one client breaks, all slaves in between the two broken become unreachable.

Note also, that the master needs to know the current bridge setup, so as to correctly route frames.

Figure 7:Error recovery: Client 5 is broken. By successively bridging and testing

clients 1 to 4 and 7 downto 6, it is possible to determine and exclude the broken

client.

2.7 Discussion and Extensions

So far, there were only definitions and statements but no discussion or reasons why things have been

implemented that way. Most of the structure evolved directly follows the goals and motivation. One

of the major focuses was to capsulate the functionality and retail flexibility. The following section
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will briefly explain the major choices:

2.7.1 Topology and Redundancy

Once the TRD is installed, the clients are almost inaccessible. So the network must be able to

accomplish with possibly broken clients. From this point of view, the choice of a daisy-chain like

structure might seem to be a basic construction mistake. But as Figure8 exemplifies: In topology a),

Figure 8:Network Topologies.Discussed network structures. see text.

a single broken client might cause the whole network to fail (e.g. shortcut the wire). Furthermore,

all Ethernet like CSMA/CD22 functionality must be implemented, although cabling would have

been nice. Topology b) is not suitable to connect all clients without big wiring problems.

To gain even more redundancy, the ring topology c) has been used twice, which leaves some alterna-

tives in building a two-ring structure: Figure9 shows the two mainly discussed alternatives for using

two rings, of which option a) was chosen. Option b) here would have a lower loss rate/probability if

only few devices break (see Fig.10), but is was discarded for the following reasons, although none

of them is a really good argument against:

• loosing two in a row breaks the complete network.

22CSMA: Carrier sense multiple access; CD: collision detection
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Figure 9:Bridge topologies.

• more complicated wiring.

• only half duplex communication.

• offers less debugging methods and recovery strategies, if broken devices are in the ring.

2.7.2 Transmission Protocol

The main intention here was to adopt existing standards: CRC is fine, since the checksum can

be computed while (de)serializing in a shift-register[18]. The CRC-16 algorithm with polynom

x16+x15+x2 +1 is used, therefore all single and double bit errors, with an odd number of bits, and

all burst errors of length 16 or less, 99.997 percent of 17 bit burst errors, 99.998 percent of 18-bit

and longer bursts are caught[17].

Another major decision was whether to support full duplex communication, with separate buffers

for each ring, or to merge the rings in data link layer. Trade offs are about 300 Flip-Flips and the

extra logic for the second buffers, which were taken into account.

The actual Version inserts a Bit(de)stuffing Unit in between Data Link and Physical Layer, which

can be bypassed at compile time. Bitstuffing is a standard, elucidated e.g. in [17], the implemen-

tation details can be found in chapter4.1.3. Note that scsn does not append a stuff bit at the end

of the frame (even if the lastn bits were identical). Since there is no need to escape characters, the

bitstuffing is only for:

Early error abort When the data link layer of the destination sees the start-bit, it knows how

many bit will follow, and hence where the end of the frame is. There is noEndofFramecharacter

(like the startbit). The trouble with this algorithm is the the count can be garbled by a transmission

error. Even if the checksum is incorrect, therefore the destination knows, that the frame is bad, it

still has no way of telling where the next frame starts without pausing a complete frame[17].

When using bitstuffing (see Figures11, 13), a series of 8 identical bits on the wire (all zero, or all

’1’) will be interpreted as a stuff error and the receiver resets its i/o counters, waiting for a new

startbit. This considerably simplifies framing and frame location algorithms.
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Figure 10: Bridge Topology Loss calculation. This diagram compares the loss

rates of both bridge topologies. The amount of working but inaccessible clients are

shown depending on the total number of broken clients in the ring. The loss rate of

"two-forward" bridge depends on the total number of clients, while the scsn bridge

algorithm is independent of that.

(a) 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

(b) 0 1 1 0 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 10 1 0 0 1

(a) 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

Figure 11:Bit stuffing with a stuff-length of 8 bits. (a) the original data. (b) The

data as they appear on the line. Inserted stuff bits are printed in bold letters. (c) The

data as they are stored in the receiver’s memory after destuffing.
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Timing and resynchronization The physical layer does not have a PLL. "Physical Synchroniza-

tion" is done by a flip-flop running with local clock and a low pass filter23; see section4.1.2. All

further adjustments are done in data link layer. A discussion of hardware resynchronization can

be found in [15]. Every edge of the data signal is used for resynchronizing the data signal to the

internal clock. Usually this is not necessary, since clocks go more exact than needed (see equation

3), but it allows nodes to have clock differences of≈ 4.1% (eqn.5)24.

transmission speed= clk speed·
(
network speed ratio−1)

= 72[MHz] · 1
3

[
bits

clockcycle

]
= 24

[
MBit

s

]
(1)

clock cycles
frame

= (84[bits]︸ ︷︷ ︸
frame

+ 9[bits]︸ ︷︷ ︸
interframe space

)
[

1
frame

]
· 1
3

[
clockcycles

bits

]

= 252

[
clock cycles

frame

]
(2)

Equation1: Bit timing. simple speed calculation of the scsn network. Values from the TRAP-1

implementation. Eqn.2 shows the number of (internal) clock cycles, it takes to transmit one frame.

To separate two frames, a timeoutinterframe space> stuff length(here: 8) was chosen.25

synclen−1
synclen

≤ CLKsrc

CLKdst
≤ synclen+1

synclen
(3)

Equation3: Resynchronization. The start bit is used for initial synchronization of each frame.

Until the end of the frame clocks of the sender and receiver have to stay synchronized. Depending

on the clockcycles/bit (synclen), a certain clock-shift is tolerated. Current scsn implementation has

3 clocks/bit, and thus a tolerance of 1 clock cycle. The synclen can be drastically reduced, by using

resynchronization, or a larger network clock ratio.

0.996032=
251
252

≤ CLKsrc
CLKdst

≤ 253
252

= 1.003968 (4)

0.958334=
23
24

≤ CLKsrc
CLKdst

≤ 25
24

= 1.041667 (5)

Equation4, 5: Synchronization to stuff length and not framelength. When using bit stuffing,

it is guaranteed to have a bit transition each( clocks/bit · stuff-length) = 24 clocks. As a result,

it is possible to resynchronize to (every) transitions on the wire. Thereby clock jitter can now be

maximal≈ 4.1%!

2.7.3 Frame Definition

Yes, the frame has an overhead of 30% and has no protocol version information in the header.

The frame definition is changeable in compile time. Things have been defined to be useful for the

TRAP-1 environment.

23Note: transmission (service) speed is≥ 1
3 of local clock.

24The value depends on the network clock ratio
25The interframe spaces, does not have to be larger than the bitstuff length, but it makes things safer.
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There were several discussions about the addressing method:

• Switching the bridge changes the addresses of the clients. Since the master will be written in

software, this does not seem to be a big deal. This method has the advantage, that the clients

do not have to be configured, and do not have to store a configuration (except of their bridge

state).

• Broadcasts: If the network is running in bridged mode, each client will receive broadcasts

request twice. This issue can be resolved if the bridged client catches and voids all broadcast

requests.

Figure 12:Startbit and Timing. This figure show the internal timing counter (here:

transmission speed = 1/4 clock speed: timing counter from 0 to 326. The data is

captured in stage 2. ) The counter is reset with the rising edge of the startbit data

signal.

Figure 13:Bit Stuffing example with a stuff length of 4. After 4 identical bits raw a

stuff bit is inserted, to escape the signal and force a bit transition on the wire.

26Note: this gives a jitter tolerance of 1 clock cycle. (seejitter)
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2.7.4 Routing

Routing is easy. In redundant mode there is exactly one way to reach a slave (if any), but in full

duplex mode, each slave can be addressed on both rings. The current routing algorithm sends

consecutive frames alternating on both rings. This may lead to chronological inconsistencies, i.e.

when addressing the auto incrementer. As a simple workaround for sequence transmissions, routing

can be forced to use one ring only.

2.7.5 Buffers and synchronization

As described above, every network node has two input and output buffers. Simultaneously, there

may be as many frames on the ring, as nodes (master and slaves) in the network. Note: since the

master has to keep track of all coexistent frames, it should provide a buffer that disallows contem-

porary sending of identical frames. The following figures illustrate the input/output buffer usage

forwarding a frame over two scsn devices in a chain. Figure14 a) explains the notation, while Fig.

14b) - 15show the transmission of 1,2 and finally 3 frames.
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Figure 14:a) simple Transmission: 1) The frame is generated and put in the outputbuffer of the

master (black). 2) frame is sent to first client (frame color: red). 3) frame is processed on the first

client and moved from client-1/input buffer to client-1/output buffer (blue). 4) frame is sent to 2nd

client. 5) client 2 processes the frame (see 3 ) 6) client 2 outputbuffer sends the frame. 7) master

receives frame.b) complete views: same Transmission, showing buffers for both rings.
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Figure 15: More simultaneous transmissions: This figure illustrates frame forwarding in a 2

slave chain. Things can grow quite complex in a larger network.



3. Implementations 27

3 Implementations

never underestimate the bandwidth of

a station wagon full of tapes.

–Andrew S. Tannenbaum

This chapter deals with the currently existing designs, their problems, applications and implemen-

tations. It creates an overall picture of the designs, especially the TRAP-1:

The network was implemented in Hardware using VHDL27. The physical and data-link layer of

both master and the slave are identical. Above these layers the master uses software to generate or

handle received data. The slaves are completely coded in hardware, with the application layer being

a common bus-interface to issue read and write commands.

3.1 Designflow

Before going into details about the implementations, here is some information about the tools that

were used to create the hardware designs. All VHDL code has been written with the VI editor.

Simulations have been done with ModelsimTM , so the testbenches should work out of the box with

most simulation software.

FPGA implementations have been assembled and compiled with multiple Tools, on different Oper-

ating systems, without encountering any problems. AlteraTM Max+plusTM has been used to generate

all test and sample implementations while AlteraTMQuartusTM II was needed to map the PCI designs

for the ACEX. The VHDL source of scsn has only rarely been used directly in Max+plusTMand

QuartusTM . For further use, EDIF files of scsn master and slaves have been generated from the

source with Exemplar Leonardo SpectrumTMand the SynopsysTM FPGA compiler.

The configuration unit of TRAP-1 has been synthesized with the SynopsysTM design analyzer, using

the UMCL18u250t2 library. More information about the TRAP-1 design flow can be found in [14].

3.2 The Tracklet Processor 1 (trap1)

The TRAP-1 is a 0.18µm technology integrated circuit, with the task of performing high speed

tracklet calculations on data of the TRD. Internally this is done by four CPUs (MIMD28) and a data

preprocessor, which both can be configured individually. The tracklet processor is designed that

way that all major blocks (CPU, RAM, preprocessor,...) are internal on die. So the chip just has raw

data inputs, a high speed network interface for the data readout and the scsn slave interface used as

configuration unit of the TRAP-1. A detailed description of the TRAP-1 can be found in [14].

All communication on the trap chip is done via the global I/O bus (see Fig.16). The config unit is

bus master of the global I/O. In some cases it is necessary to power up the chip29 before executing

27Very high speed integrated circuit Hardware Description Language
28Multiple Instruction, Multiple Data
29to save power, not all clocks are switched on all the time
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bus transactions. Therefore the application layer of scsn has an additional interface to theglobal

state machine (GSM). By using special read/write commands, the GSM is requested before issuing

a transaction on the bus. The configuration entity is part of thecore120, which contains all CPUs,

Figure 16:Trap1 Block Diagram. This figure shows a block diagram of the four

CPUs connected via the global bus with the configuration unit (scsn). All global I/O

devices are printed in blue, memories in green and the global register file (GRF) in

red. The data and instruction memory can be accessed, using the memory interface

to the global I/O. The exact interface descriptions can be found in [14].

and the global I/O, running at 120 MHz (see Fig.16). To access the memory which is not part of the

main core, there is an extra device in the global I/O: the I/D Memory-Auto-Incrementer, which is a

device of the global I/O and allows successive reads or writes to data and instruction memory.

3.3 scsn - Trap1 implementation specifications

The trap1 will operate in a high magnetic field close to a particle beam, which might lead to possibly

flipping bits. Therefore all state machines are protected with a hamming encoder. The hardware is

designed that way, that an error will cause the state machine to be reset in a well defined state, so

that there is no dead or life lock possible. (see also chapter4). i

Comprehensive tests have been performed with the TRAP-1’s slave interface, without encounter-

ing any problems. More on this in chapter5. On re-engineering the code, a bug was found in the

resynchronization state machine of the TRAP-1. Though it is only a minor bug, automatic resyn-

chronization does not work properly on the first Version of TRAP-1.
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Figure 17: TRAP-1 configuration unit. Blackbox view of the scsn configuration

entity for each of the the trap1 Multi chip modules. The internal signals are to the

global I/O and to the GSM, to request "configuration mode" power on, which is

acknowledged by the GSM. The reset input is to force a reset of all buffers and state

machines. Usually this is not needed. The TRAP-1 hardware has been designed that

way, that it will recover (end go to idle mode) from any possible state it wakes up

from, so there does not have to be an initial reset.

3.4 Master Implementations

The master is the interface between up to 126 slaves and a central control computer. Currently

there are only prototype and test implementations of a master, since this work is due to Tobias

Krawutschke [13].

The Technical Design report recommends using AlteraTMExcalibur NIOS softcore FPGA, running

µcLinux in the detector chambers which will be used as master for the scsn network. Hardware

resources of the Excalibur allow 4 interfaces to be mapped to a single FPGA. Frame handling, as

well as network recovery and routing is left to software. The link between the NIOS master and the

"outside world" in the TRD will be Ethernet (see figure3), so the master has to handle all the slaves

transparently.

The software has been split into several levels:
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clock speed 120 MHz

network speed 1/5 of clock speed. 24 MBit/s

bitstuffing stuff length: 8 bit

bus width 16bit address, 32 bit data

checksum CRC-16 Polynom:x16+x15+x2 +1

Technology UMCL18u250t2

scsn Nets / Cells 2285 / 2191

scsn Cell Area 87833µm2

scsn Longest Path 1,59 ns

Table 5: TRAP-1 specifications. Summary of the hardware implementation of the configuration

unit in TRAP-1.

Software - lowlevel driver . The lowlevel driver is a kernel module30 that provides a buffered

interface to the data link layer hardware via a Unix/dev/scsb* device file. File I/O reads or write

blocks of 9 bytes, the frame specifications are included in the Kernel module.

Software - network master . This program communicates with the slaves by using the lowlevel

device interface and provides full master functionality; there is an API31 that allows sending, and

receiving of frames.

Software - man machine interface (MMI) . Eventually, this is the program that allows the user

to speak with the the slaves, by calling API functions of the network master. This program can be

run remotely to allow multiple masters and therefore up to 65000 slaves to be addressed.

The software is no official part of this thesis, but for testing and debugging issues, all three software

layers32 have been implemented on GNU/Linux using system-independent autoconf, automake,

POSIX-C33. A documentation can be found in section4.2.

3.4.1 ACEX Board

Before submitting the TRAP-1 all entities have been mapped to FPGA boards and tested (see sec-

tion 5), leaving behind lot of designs: network toys, benchmark environments and "master simula-

tors". Most of them were either hard-coded state machines, or simple keyboard/mouse controlled

assembler programs34. The designs might be interesting for developers and are useful for some

demonstrations. The source code and all design files can be found to the Software CD-ROM.

30µcLinux is not modularized, so this has to become a monolithic kernel driver
31application programming interface
32Note: the network master has been implemented without automatic error recovery.
33tools for system independent software development
34sweet-16 CPU, and assembler by [2]
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Figure 18:Trap1 Prototype. The chip is a 5x5mm square. Bottom left is the (un-

bonded) analog design (ADC), the large block bottom right contains 19 preprocessor

channels, connected to the event buffers (right edge). The block top middle of the

picture is the core120 containing the global I/O configuration and 4 CPUs. The blocks

on the left and right sides are event buffers, data and instruction memory.

3.4.2 PCI Interface

One of the ACEX designs (themcm_excalibur_simulator) survived all the testing and is used

as master-hardware. The ACEX test board can be used as a standard PCI card. The scsn data link

layer is connected via a FIFO buffer to a PCI bus interface, using the Altera PCI Soft CoreTM . more

details follow in4.1.7.

3.5 Altera NIOS

The NIOS which will be used as a final version in the TRD uses a rewritten version of the

mcm_excalibur_simulator, all documentation here is due to [13].
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4 Design

6802 hackers made use of the SEX instruction.

–found on fortune(6)

This chapter delves into implementation details of the hardware projects, the documentation of the

source code of scsn and the manual for the software that have been written within the development.

To gain flexibility, efforts have been made to capsulate the hardware into pluggable modules (enti-

ties). It is possible to change any layer of the network device to adopt needs of the application. So

here follows the description of the implemented entities and how they fit together using an applica-

tion programming interface (API) for the different layers in the NIC / bus controller.

4.1 VHDL API documentation

The source code of scsn (mcm_network_interface) can be found on the Software CD-ROM (ISO is

available viaInternet download [http://ti.uni-hd.de/]). This chapter describes the structure,

implementation details and state machine algorithms. The source code is well commented, so not all

details are described here. Table6 gives a list of the source files. All functionality is implemented

in state machines, which are hamming encoded. The hamming registers, are designed to reset

themselves when the hamming decoder detects an error. Thereby the state machines are forced to

enter a reset and idle state. This documentation does not include the state machine diagrams, since

all the details are in the source code. Documentation has been moved to comments there.

4.1.1 VHDL generic Values

The code was written that way, that almost all semantic units, can be changed at compile time. This

does hold good for the network speed and timings, but also counts for the frame length, buffers and

filters. All generic values can be set in the top entity (mcm_network_interface.vhd), although

most values are used only in the Data Link Layer. In addition to the generic values, there few

constants have been defined to be even more flexible. Both generics and constants are summarized

and described in Table7 and8.

4.1.2 Physical Layer

The physical layer is kept simple. A 2 bit flip-flop shift-register, running with local clock is used to

synchronize and low pass filter the incoming data.

4.1.3 Data Link Layer

The data link layer is the most complex of all. There are two receiver and two sender units here.

http://ti.uni-hd.de/
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File Description

hamm34enc67.vhd Hamming encoder

hamm67dec34.vhd Hamming decoder

hamm_reg.vhd Hamming register

mcm_pci_sender.vhd PCI Master implementation

mcm_network_interface.vhd Slave Top Level

mcm_nw_apl.vhd Application Layer

mcm_nw_bittiming.vhd Data Link Layer - receiver deserialization

mcm_nw_destuffing.vhd Data Link Layer - destuffing unit

mcm_nw_dll.vhd Data Link Layer - Top Level

mcm_nw_inbuf.vhd Data Link Layer - input buffer

mcm_nw_nwl.vhd Network Layer - Top Level - merger

mcm_nw_nwsl.vhd Network Layer - sublayer: frame handling

mcm_nw_outbuf.vhd Data Link Layer - output buffer

mcm_nw_pl.vhd Physical Layer

mcm_nw_sendtiming.vhd Data Link Layer - serializer

mcm_snoop_switch.vhd.vhd CPLD design network switch.

mcm_nw_stuffing.vhd Data Link Layer - bit stuffing unit

mcm_nw_timer.vhd simple Counter - reused for send and receiver units

ser_int.vhd serial interface master simulator for the TRAP-1 test environment

- reads frames to send from File

ser_tb.vhd Testbench for the serial interface

Table 6:VHDL Source Files.

The Receiver See Figure19 for a block diagram. Main part is a state machine to generate a

strobe signal using a counter (bittiming-logic), which is also doing the resynchronization. The exact

documentation can be found in the source code, basically a state machine listens on the data from

the wire, resetting a counter on each transition. If the counter has a certain value (network speed

ratio; see chapter2.7.2) the data is strobed to the input buffer. The counters are generic, see Table

7. Buffering and deserialization is done by a shift-register. The data is strobed through Flip-Flops

using the generated strobe signal, and can be read out in parallel (see Fig.19). CRC is implemented

using XOR gates, a Flip-Flop shift register and a compare to zero unit. See Figure20 for a sample

CRC schematic. The destuffing unit is trivial. It can be transparently inserted in any datapath and

will remove stuff bits, with a latency of 1 clock cycle, since the data is buffered in a D-Flip-Flop.

The destuffing unit also outputs a strobe signal, which is is inserted between the bittiming and the

input buffer.

The Sender Sending works similar; see Figure21. The data to send may be written in parallel

(when buffer_ready via data_in, write_enable) to the output buffer shift register. Transmission is

started by rising the initiate_send signal, that starts a counter, which generates the strobe signal on

overflow. A counter is used keep track of sent bits and checksum calculation to switch the data to

CRC and finally close the stream. The stuffing unit is inserted after the buffer. The strobe signal is
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Name Description

timing_count_range defines the network speed in fractions of internal clock. Internally

the timing is done with a counter that starts counting at zero, up to

’timing_count_range’. Due to limitations of the Data Link Layer

state machines, the fastest possible speed is 1/3 of internal clock.

so this value has to be >1. (default : 2)

timing_recv_on timing-offset. After detecting an edge on the data_in, the bittim-

ing waits for (’timing_recv_on’ + 1) internal clocks before strob-

ing data into buffer. This needs to be < ’timing_count_range’

(default: 1)

stuff_length specifies how many identical bits are sent or received, before in-

serting/removing a stuff bit. Since a bitstuff error is treated as

EndOfTransmission this indirectly defines the timeout. (default:

8) Note: timeout is (stuff_length·(timing_count_range+1))[clock

cycles]

timing_sleep_length after transmitting a frame, wait ’timing_sleep_length’ clock cy-

cles before allowing to send the next frame. (default: 63)

Table 7:VHDL compile time generics.

Figure 19:Data Link Layer Block Diagram. This shows the receiver part. The fil-

tered data of from the physical layer arrives (left) is deserialized (bittiming), buffered

(DFF shift register) and CRC checked (inbuf). The names in the figure correspond to

the VHDL file and signal names.

fed though the "stuffer" before causing buffer shifts. Which leads to the fact, that no stuff bit can

occur at the end of a transmission. Finally a multiplexer routes the serialized data to the configured
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Name Description

BUFSIZ size of the input/output buffers. This defines the frame length.

Since the network layer hard-codes the header fields it has to be

> 16. Changing this value, requires the network and application

layer to be adapted. (default: 69)

BUFHALF "almost full". send error when DLL is still sending out data and

’BUFSIZ’-’BUFHALF’ bits of a new frame have already been

received. (default: 4)

COUNTER Since all values are generic. This number represents the bits

needed to store the bitcounter. The bitcounter has to count from

0 to (BUFSIZ+CRCLEN) (default: 7)

CRCLEN Length of the Checksum. (default: 16)

CRC_POLY Polynom of the CRC algorithm. omit the leading 1. (default:

LSB "1000000000000101" :x16+x15+x2 +1)

Table 8:VHDL compile time constants.

Figure 20:CRC shift register This shows a 4 bit CRC register with the polynom

x2 +1. The input multiplexer is used to fill the register with zeros when reading out

the checksum.

(bridge) output.

4.1.4 Network Sub Layer

The network sub layers take care of the frame handling. For each input/output buffer pair there is

one network sub layer. A state machine first analyzes the frame: increment hop counter and compare

address. If the frame is to be processed, the application layer is requested, and waited for data to

return from. Finally the frame is forwarded by copying the data into the outputbuffer (see Data

Link Layer interface). There is an extra state to send an error frame and wait for its transmission

completion. If a one or more new frames arrive and the state machine is not in idle mode, the current

execution of the frame in application layer is canceled and a single error frame is scheduled.
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Figure 21:Data Link Layer Block Diagram. This shows the sender part. a descrip-

tion can be found in4.1.3

4.1.5 Network Layer

The session layer protocol of scsn is part of the network layer: The two network sub layers get

merged to a single application layer. The network bridge is also implemented here, since a change

of the topology can only be done when none of the output buffers are currently sending. To save

logic the bridge functionality has been moved to data link layer, since there is is only a small

multiplexer what would have been a large here, with the trade off to have slightly more complex

logic: The network layer state machine simple waits for application layer requests of each sub layer.

First one requesting will be first to be processed. If both request simultaneously, the first sublayer

(sublayer 0) will win. If a bridge change is pending, none of the sublayers are allowed to access the
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application layer (until both outbutbuffers are flushed and the bridge can be switched35).

4.1.6 Application Layer

The application layer processes the 52 bit payload. According to the command bis of the data

from the network layer, either a bus transaction is requested or an internal state change (bridge,

cycle time) is executed. The commands are summarized in Table9. Finally the resulting answer is

strobed to the network layer.

hex LSB-binary Description

0x0 0000 network error reply. (invalid checksum, bitstuff error, execution

time exceeded)

0x1 1000 read.

0x2 0100 write.

0x3 1100 read broadcast. slave performs read. and if read_data[0] = ’1’

this command is interpreted as read and therefore replied, else

the command-request is forwarded to the next slave.

0x4 0010 bridge set/reset. data bit[0] determines state of bridge.

0: serial (non bridged)

1: crossed (bridged) mode

0x5 1010 CYCLE : bit(31) determines the the state of the internal bus trans-

action mode.

0: single cycle. All bus transactions take 1 clock cycle.

1: long cycle. Bus access times are doubled, to (possibly) allow

bus access when the chip has timing problems.

0x6 0110 reserved.

0x7 1110 NOP : no operation (ping).

0x8 0001 reserved.

0x9 1001 read. with requesting test mode from the global state machine

(GSM) before issuing the bus transaction.

0xA 0101 write. with GSM request.

0xB 1101 broadcast read. with GSM request.

0xC 0011 reserved.

0xD 1011 reserved.

0xE 0111 unknown Command error reply.

0xF 1111 reserved. (snoop switch configuration see4.1.8)

Table 9:Command Setof the scsn application layer for the TRAP-1.

35multiplexing the data before the output buffers would allow processing data at any time, but since a
network topology change is performed only when the network is under error recovery, there is no need to
support fast frame processing here.
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Bus interface The TRAP-1 global I/O is an arbitrated 16 bit address, 32 bit data single cycle bus36.

Separate read and write data lines are used, to avoid internal tri state busses. The configuration

unit is bus master, thus all bus requests will be successful. A write cycle puts data and address

simultaneously on the bus with the write enable and bus select set high; a read transaction can

buffer the data one clock after requesting the specified address with rising edge clock signal (see

[14]). Before issuing the bus transaction the chip can requested to power up, which sets the request

signal to high and waits for the acknowledgment. Note that, this request method can also be used as

a bus grant signal, when the interface is not a bus master.

4.1.7 Network Master PCI

The PCI master is an FIFO buffered interface to the data link layer of scsn, for standard PCs. A

Linux driver for the PCI card and software is available on the software CD. This design uses the

Altera PCI Soft CoreTMpci core, LPM RAM FIFO buffers running at scsn network speed and some

small state machine logic, with local PCI bus clock. The PCI is a 64-bit/66MHz PCI design, using

only 32 data bits for compatibility reasons. The data of the frame to be sent is written in 3 steps

(69 bit on 32 bit PCI bus). The third write enqueues the frame in the output FIFO. The input buffer

can be read out in the same manner, reading the header address flushes the frame of the FIFO. The

output buffer is flushed as fast as possible, transmitting at scsn network speed. Newly arrived frames

are pushed on the input buffer. If the buffer is already full, or the frame checksum is incorrect, the

frame is discarded. The buffer status flags (empty, full) are available via a status register.

4.1.8 Network Snoop Switch

If more than one client in the network breaks, all slaves in between the two broken become inac-

cessible. To gain more redundancy in the TRD for testing and debugging reasons a "back door"

has been created: The needs were to have an easy way to bypass broken clients with less further

hardware and without interfering with the given structure and underlying network topology.

A CPLD37 is used as an extra network bridge. Instead of a slave, a CPLD is inserted in the ring.

The CPLD is connected to a sub-ring of slaves, which is either inserted or bypassed in the main

ring. The implementation requires the master to know about the network topology, and the network

switches. The master configures the switches by sending special frames. These are ignored (and

just forwarded) by all slaves, but are snooped off the wire by the switches, which then change their

configuration.

This allows to build groups of slaves that can either be bypassed (disabled) or included in the ring.

If some of the slaves break, the complete group can be bypassed to gain access to the network. To

gain full flexible access, the switches can be reconfigured any time, but the master has to keep track

of pending frames, since the CPLD just snoops the wire and does not have buffers at all.

The implementation goal was to have a really small design, that a single CPLD chip can provide

snoop switches for multiple sub groups. The current design uses the bittiming unit and needs 52

36the TRAP-1 configuration unit supports a failsafe double time bus transaction mode. see Command Set
Table

37Complex Programmable Logic Device
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Flip-Flops to check the frame checksum and count the bits and state machine logic. In addition

to that for each sub group, two flip flops to snoop and remember the state (bypassed:0 | active:1)

are required, as well as two 2-bit multiplexers, which bridge the sub ring. Bypassed output lines

are forces to ground (0). SynopsysTMreports 203 cells for a 4 subring design. The switch can be

configured by sending a frame with the command "1111" (0xF), and specifying the bridge states in

the data field of the frame. The number of subrings is generic, data bit(0) corresponds to sub ring

0, data bit(1) to sub group 1, and so on. Rising the bit activates the bypass. By default all rings are

included (configuration "0"). The Header and payload address field of the configuration frame are

ignored.

4.1.9 Testbenches

There were mainly two testbenches in use for simulations of the trap1 with ModelsimTM . The first

one was generated by a small c program reading the values to send via the configuration network

from a file, without using any VHDL code. The second (ser_int.vhd) uses the VHDL code

of a scsn master and also reads the data to send from file. This file is a simple text file, space

separated value. Each line is a frame to be sent, in formatdestination command address data

in decimal values38. The scsb software is able to produce this scripts.

Additionally there is a testbench (ser_tb.vhd) to simulate a plain scsn network with multiple

clients. During the development process, most of the generic testbenches became obsolete.

4.2 PCI Interface Driver

In order to have nice access to the TRAP-1 chip for testing issues, a PCI-card slow control interface

was developed, which gives nice access to user space software, allowing complex test runs.

The internals of the hardware PCI interface can be found in theVHDL documentation. The design

has been mapped to an Altera-AXEC-EP1K100 FPGA card using QuartusTMSoftware and the Al-

tera PCI Soft CoreTM . The Programming/Software Files are available on the Software CD-ROM.

See also How To in AppendixB, a picture of the ACEX board can be found inAppendixD.

The Card can be plugged in any Computer with PCI bus39. To access it, simply map the cards

I/O address space and use thememory map. The TRAP-1 test setup, includes a complete Linux

driver set, and API for the scsn. They are capsulated in 3 Layers: The lowlevel driver is a ker-

nel module, handling the pci card I/O, and allows user space programs to access the pci card as

device (/dev/scsb[0-n]). Above that there is a tool that provides transparent access to the net-

work for read/write transactions. This Tool handles network errors, buffering, network recovery,...

And finally a small shell interpreter allows the user to run more complex tests combing read/write

transactions, using a nice ’easy to use’ UI.

38VHDL: conv_std_logic_vector is used, so values > 16 bit have to be represented with negative values.
39the currently used ACEX FPGA, is a 3.3 V device. So only PCs with a 3.3V PCI bus can be used with

this FPGA card.
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4.2.1 Linux kernel lowlevel driver

To impart knowledge of the internals can not circumvent citing the program code. For appropri-

ate reasons, the documentation of the lowlevel driver has been included in the source code. The

source code is well documented and can be found on the Software CD-ROM. The driver has been

successfully tested on Linux-2.4.18 and Linux-2.5.27.

Since this is not a main part of the diploma thesis, here is only a short summary of has been imple-

mented and how it works:

• Kernel PCI lowlevel I/O using hardware interrupts. On load of the driver, the pci bus is

scanned for devices. All found cards are activated. An system IRQ is requested, and the pci

memory bar is mapped.

• There may ben rings per device, each ring has an offset of 0x20 bits in the cards memory

I/O space. For each ring, the user space interface devices/dev/scsb[0−n] are generated,

wheren is the number of rings connected to the hardware, which is identical to the minor ker-

nel hardware number (see /usr/src/linux/Documentations/devices.txt [4]). The major device

numbers is dynamically allocated. There is a load script included in the software package,

that callsmknod(1) to create the device files.

• Sending and receiving a frame to ringn is simply done by writing to or reading 9-byte blocks

from /dev/scsb[n]. The device supports system poll functionality to supportselect(1), and

fast interrupt driven lowlevel I/O. The kernel driver knows the frame format and reads/generates

data like this: 8bit hopcounter, (7+1)bit header address, 1byte command, (2+4)bytes address

and data.

• The driver registers in the system proc filesystem. Reading from/proc/scsb generates a

status report of the hardware buffers and driver configuration.

• A small benchmark tool is included in the driver distribution, which also provides sample

code to communicate via the lowlevel I/O. If called without any arguments it runs a complete

benchmark, using all possible FIFO buffer sizes and reports statistics in a gnuplot readable

text format. The benchmark program accepts a integer value 0< n < 127 as first argument,

and then performs a single write cycle sendingn frames, reporting detailed timing informa-

tion.

4.2.2 Linux network device driver

This is a collection of ANSI-C routines interfacing to/dev/scsb[0-n] and providing an undocu-

mented API (use theSource. The API has become quite obsolete, because the configuration shell

(which interfaces to this) provides a better one:

As, until now, not all error recovery functions have been implemented, most of the errors will just

ask for a device reset. This work is left as part of Tobias Krawutschke’s doctor thesis.[13].

40reading this register resets the new-frame arrived IRQ.
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Offset r/w Description

0x00 r/w Ring 0 - send: I/O-Data

0x04 r/w Ring 0 - send: I/O-Command(20-16) I/O-Addr(15-0)

0x08 r/w Ring 0: enable IRQ

0x0c r/w Ring 0 - send: Network slave destination address.

writing here also starts sending.

address "0" is the reserved id for this master-unit.

so first slave in row is addressed with "1".

127 means broadcast to all.

0x10 r Ring 0 - recv: I/O-Data

0x14 r Ring 0 - recv: I/O-Command(20-16) I/O-Addr(15-0)

0x18 r40 Ring 0 - recv: Network slave source address.

0x1c r Ring 0: recv-hopcounter(15-8) Interface-Status(7-0) ; the status

register shows the hardware FIFO flags of both interfaces. sta-

tus(0): input buffer 0 not empty (new frame(s)), status(1): un-

used, status(2): unused, status(3): output buffer 0 full, status(4):

new frame(s) in input buffer 1, status(5): unused, status(6) un-

used, status(7): output buffer 1 full.

Table 10:PCI interface memory map.

4.2.3 Linux network configuration shell

The intention here was to build an easy usable tool for sending commands to scsn devices. This

program became quite complex, since it transparently manages the network by forkingAPI threads.

On the other hand, it parses user commands and processes them.

The user interface was designed to be as intuitive to use as possible: a command prompt in a shell

environment!

• On line Help. pressing? immediately outputs a short list of possible commands or options.

• Tab expansion. All commands as well as Data are extended reasonable to the context. By

pressingTab twice, a list of all possible options is generated.

• Built in help. executing a command without any arguments, shows a more detailed help

function of the command.

• Command line buffer. Previously exerted commands are accessible via↑ and ↓ keys. The

buffer can be searched backwards by pressingCTRL - r

• Automatization. There shell is script able, and provides commands to produce scripts and log

output.

• TRAP-1 global I/O address parser. There is a plug-in that parses the address map of the

TRAP-1. It is possible to type commands likewrite GSM lowpower instead ofwrite 5004

0123 .
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Most of the documentation was build in the scsn Tool and in theSource, but here is a usage:

Starting the shell - command mode:

This shell allows to control any scsn-devices "connected" to /dev/scsb*, starting the shell initialized

the devices and locks them. The software starts incommand modewhich allows to change default

settings, enable debugging, choose an interface to transmit configuration commands, or exit.

Command Usage/Description

assembler assembler <file.asm>

run TRAP-1 CPU assembler on file. This generates a .o and .mif file for the

given .asm assembler code.

channel [no] channel [console|stdout|timings]

select output channels to dump on screen. If called without any arguments, the

currently selected channels are displayed.

seechannels.

command command [debug|extended|standard|none]

undocumented features for debugging facilities. If called without any argu-

ments, the currently chosen command-set is printed on screen.

defaultdestination defaultdestination [ID]

set address for read/write commands in configuration mode. If called without

argument, the current value is printed on screen. (default: 1)

exit exit

exit the scsn shell.

gpib gpib <status|power <on|off>

Yet hard-coded access to a power supply using an IEEE488.2 GPIB-ENET

interface.Code is under development.

interface interface n

Enter interface configuration mode for interface n.

output [no] output [csv|csverr|short|full|parse]

Set style how to display frames. If called without any arguments, the currently

chosen output style is printed on screen (default: parse).

parse: print nice (colorful) address/data parsed output.

csv: comma separated value

csverr: comma separated value to standard error

short: print only frame payload
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full: print only frame header and data

pretrigger pretrigger <0-7>

call system set_mem to send send a pretrigger signal to TRAP-1. Pretrigger

signals 0-7 and their usage are documented in [3].

print print [text]+

prints all given arguments on as info text screen. Nice for making comments

in scripts.

sleep sleep <0-99>

delay for 0< n < 100 1/10 seconds

pause pause [0-99]

wait for user to press theenter key. If a numeric value 0< n < 100 is given

as first argument, the command automatically continues aftern seconds

Table 11:command mode commands.Short description and usage information of the main scsn

commands.

Invoke interface configuration mode:

Typing interface 0, selects the first interface and changes the config mode. Right now it’s up

to the user to directly communicate with the clients via read/write commands. The command set

in interface mode has been extended to needs of the TRAP-1 configuration. Data exchange format

has been adopted from the simulation testbenches. Some of the command mode commands (e.g.

channel and sleep) have also been mapped in the interface command set, to simplify the writing of

scripts. Table12gives a list and usage information of all configuration commands.

Command Usage/Description

read read <addr> [compare-value|X] [(compare-fail)message]

sends a frame on the selected interface to thedefault network destination ad-

dress, requesting a read of the given address. and displays the result.

The address is parsed by a parser-plug-in and thereby the read command is

generated.

An optional compare-value can be specified. If the read data is not equal to the

given value, an error message will be created. If the read instruction is part of

a script, the script will be able to generate read-compare-errors. see also:file.

On specifyingX as compare value, the message will be printed always with the

arrived data.

write write <addr> <data> [bool-OR-data]*
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issues a write transaction (see read).

According to the given address, the data argument(s) are parsed to reasonable

values. Appending more than one data argument, disjunctive combines (wired-

or) the values.

alter alter <addr> <set|clear|or|nor|and|nand|xor|xnor> <HEX|DEC|[BIT]+>

read address, alter data and write back. Set and clear accept up to 32 integer

arguments (value 0-31); all logic operations accept a single hexadecimal or a

decimal value (as for all data: decimal values have to be prepended with an

ampersand ’&’).

.

aread aread <startaddr> <endaddr> [compare-value] [compare-fail-message]

read (and compare) memory region.

assembler assembler <file.asm>

run TRAP-1 CPU assembler on file

seecommand mode commands.

awrite awrite <startaddr> <endaddr> <data>

fill memory area with given data.

close close

close all open channel log files. This closes files opened withsaveandnet-

dump.

channel [no] channel <console|stdout|timings>

select output channels to dump on screen.

seechannelsandcommand mode commands.

dmem dmem <read|write|compare|dump> <baseaddress> <endaddress|filename>

access the TRAP-1 data memory via the address auto incrementer.

write and compare: specify startaddress and file to store/compare the values

read or dump: specify start and end address of memory region to read. Dump

produces a hexdump, while read displays all single read frames.

done done

leave interface configuration mode.

file file <filename>

read commands from file.savegenerated scripts can be reread with the file

command. The parser reading the script file is currently being rewritten, to

allow shortcuts and special script commands. Use the built in documentation.
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imem imem <read|write|compare|dump> <baseaddress> <endaddress|filename>

nice access to the TRAP-1 instruction memory via the memory auto incre-

menter. The syntax of this command is identical todmem.

netdump netdump [-a|-o] <filename>

dump all sent/received frames to a file using internal channels. This generated

file can be used as input for the scsn simulation testbench. -o overwrites a file

if it exists, -a appends to an existing file. The file must be closed with theclose

command.

pause pause [0-99]

wait for user to press theenter key. If a numeric value 0< n < 100 is given

as first argument, the command automatically continues aftern seconds

seecommand mode commands.

ping ping

Send a dummy frame to benchmark and check the network. This command

activates the timingchannelto report timing statistics.

print print [text]+

prints all given arguments on as info text screen.

seecommand mode commands.

repeat repeat <0-99> <...>

repeat a given command 0< n < 100 times.

reset reset

reset internal buffers and interface configuration. This also sends a ping frame

to discover the network, and might be useful, since automatic recovery is not

completely implemented, and yet disabled by default.

save save [-o|-a] <filename>

log all subsequent commands until the close command to file. -o overwrites a

file if it exists, -a appends to an existing file.

seecloseandfile.

scan scan <startaddr> <endaddr>

clear, set and read memory region. Display data bitwidth of the read address.

send send <dest> <command> <addr> [data]
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send a frame to network destination.

sleep sleep <0-99>

delay for 0< n < 100 1/10 seconds

seecommand mode commands.

Table 12:configuration mode commands.Short description and usage information of the config-

uration commands .

Channels The scsn shell provides an abstract communication layer, that is based on communi-

cation channels. All log messages and command output are piped into different queues (called

channel). The user decides how these channels are displayed or handled. A channel can be con-

nected to the local console (standard output), syslog, a file or any combination of these, including

none (discard messages). The[no] channelcommand can be used to attach channels to the current

terminal. The write and netdump commands use channels to write output to files.

The current version provides three user accessible channels:console-, stdout-,and atiming infor-

mation channel. The internal buffer structure includes time information of each frame in the buffer;

when flushing the buffer, this information is piped to the timing channel. Theconsoleandstdout

channels are special, since they are internally identical: Both contain the same information (the

standard output), if at least one of both is connected the standard output is shown on screen. If

both are enabled, the information is shown only once. This allows the scripts to suppress output (by

disabling the stdout), and the user can still force it to be printed by using the console channel.

Programming internals The scsn forks a complete buffer interface process, that connects to the

kernel device and provides software buffering of frames. The buffers contain relevant information to

provide a network layer functionality and network recovery information. The user front end simply

access these buffers. The different commands are mapped to a combinations of buffer functions.

The initial intention to keep the API separated from the user front end failed, since lot of complex

functions have been reused in the buffer code, and direct linking was easier to implement in a

development version. The source code is distrubuted in terms of the GPL, and a MMI is needed for

the TRD, so it seems that there will be other Versions or rewrites of this software, soon.
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Figure 22:Screenshotof the configuration utility
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5 Tests and Measurements

jah work is never ever done.

–Ben Harper

Finally, here follows the documentation of the measurements and benchmarks done of the scsn

network. The complete development process has been iterated several times after testing the com-

ponents of the network to ensure stability and increase performance.

5.1 Physical Layer Measurements

The most basic speed limitation is the underlying physical layer. Signal transport in time and space

over a electrical wire limits the bandwidth and restricts the performance of the network.[9] The

LVDS circuit provides a nearly ideal termination to the differential transmission lines. This ter-

mination permits the circuit to reliably drive data at speeds of up to 622 Mb/s. Data and clocks

can be transmitted over longer cables exceeding 5 ns in electrical propagation delay, limited only

by the quality of the cable, namely the cable attenuation caused by skin effect losses at high

frequencies[12]. Tests ranged from "no wire" (master and slave on a single FPGA) to 10m plain

copper (Klingeldraht) in between two FPGAs running at different clock rates up to 40Mbit/s, and

have all been successful. Figure23shows a LVDS signal transition.

5.2 Data Link Test Setups

Synchronization and network timing have mostly been simulated, using ModelsimTM . There seemed

to be a problem with the state machine algorithm when using certain generic values for the coun-

ters. There were few tests to proof it working and measure the maximum possible clock jitter. The

TRAP-1 does have a bug in the resynchronization state machine, so test setups had to be done with

ACEX boards.

Measurements brought up, that in case of sender and receiver clocks oscillating around some slightly

different values, the resynchronization state machine can also start to oscillate. This bug was fixed

by limiting synchronization loops. A rewritten version now does not reset the counters when de-

tecting a transition, but inserts a leap second or skips one counter clock. Actual tests have been

done with the broken TRAP-1 (30 MHz; 1/5 network clock ratio; 6Mbit/s) connected to a PCI

master (36/2 MHz; 1/3 network clock ratio; 6Mbit/s). The clock of TRAP-1 can be changed by

0.58% before frames start getting lost. Clock differences above 0.68% lead to loosing of the link.

The new resynchronization algorithm has only been tested using a fixed clock ratio 33.000MHz /

33.333MHz≡≈ 1% clock jitter. Two ACEX boards (33.000MHz, 33.333MHz; 1/3 network clock

ratio;≈ 11.0Mbit/s) could communicate fine. No frames were lost during a 24 hour test.

5.3 Frames on the wire

To analyze the load of the network, and test its functionality, it was most useful to attach a scope to

the wires in between the clients. Figure24 shows a typical frame being processed by a slave and
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Figure 23:LVDS 0/1 transition. This Signal was traced off a scsn frame using a 1.5m twisted pair

cable and standard "off the shelf" header connectors (the LVDS standard recommends using 100

mil IDC connectors).
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the answer that is sent shortly after the frame has arrived.

Figure 24:Frames on the wire. Frame and it’s answer being transmitted over the

wire.

To test the network layer functionality, checksum algorithm and general functionality, some long

test runs have been performed, trying to send any kind of possible frames over the network. Since

the payload is 69 bits, it would take too long to try sending all frames after each other. All extensive

tests have been performed using up to 3 ACEX boards (with own clock oscillators). And a maximum

chain of length 6.41 The longest successful test ran over a weekend (≈ 72 hours) and successfully

transmitted 43217348832 frames (50MHz; 1/3 network clock ratio, 16.6Mbit/s). The first incorrect

frame was detected, when the "Tester" switched on the light, causing the power supply to flicker.

5.4 Lowlevel Benchmarks

The linux kernel driver has been benchmarked in a loopback mode and also with a real scsn network.

The frames are each 9 byte data blocks, which is a very small granularity for the linux operating

system. This causes the system overhead to limit the bandwidth. Loopback mode benchmarks

simply measure the time, the operating system takes to process a transmission.

Measurements have been done with the benchmark tool (see chapter4.2.1) that simply repeats

sending 1 up ton frames and wait for them to return. The benchmark tool is running in user-space

and uses raw device access to the kernel driver. Benchmarks on a dual AMD-Athlon 1600 MHz

resulted in < 2.300 MBit/s sending a single frame and up to 99.037 MBit/s sending 127 frames in

41chains up to length 127 have been simulated using modelsim.
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parallel.

Using the TRAP-1 prototype test environment which is described in section5.5, realtime bench-

marks have been done; with the result, that speed is heavily limited when not using the input/output

buffers and burst writes. The hardware FIFOs of the PCI design should be increased42 and the kernel

driver has to be checked for waitstates.

The theoretical maximum of 6Mbit/s throughput has been approached up to average 4.6Mbit/s. The

average transmission speed varies with the output FIFO buffer usage of the master. Furthermore,

the interframe space of the pci master is conservatively43 above the hard edge limit (here: 63 clock

cycles delay, min. 24≡ stufflength/network clock ratio), and the data exchange rate is reduced

by inserted stuff bits. So the actual maximal data transport speed is < 5.2 Mbit/s. This rate is

approached when using the output buffer for burst transactions.

Figure 25:Speed benchmark depending on buffer usage.Output generated with

the benchmark tool. Frame bursts of 0 to 127 frames have been timed. This figure

shows an average of 1389888 totally transmitted frames.

5.5 Application Benchmarks

The tests so far have considered the lowlevel hardware, but no real time application. To really

learn about performance, the design has been benchmarked with the PCI card master (30 MHz;

42the ACEX card which is currently used, is too small to hold buffers with depth > 127
43it may occur, that due to a checksum recalculation and hop counter increment, the stuffed frame grows.

Execution time in application layer may also differ, so the choice was, to give it the maximum time needed
to be on the safe side. This can be optimized even more, when considering frame and client internals.
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1/5 network clock ratio; 6Mbit/s) and the TRAP-1 prototype. Test environment is a GNU/Linux

operating system44, scsn kernel device driver and the scsn user interface application.

The network was designed, to configure the TRAP-1 chip, which in general is a lot of broadcast

write traffic, that can be sent in larger units than single frames. Instruction and data memory as well

as global I/O configuration writes are examples for that kind of very fast traffic. The data can be

enqueued to the FIFO, and after all frames have returned, they are checked in parallel.

Real Time applications using the network for chip configuration and communication often take

decisions of how to proceed upon results of read/write requests. In most of these cases, a single

frame is sent and the software waits for it to return. Depending on the number of slaves in the

ring the maximum latency for a frame to return is (clients+1)· (time to transmit a single frame).

The operating system has to access the PCI card (sending is fast) and wait for a interrupt and user-

space read request. The average transmission speed sending and receiving a single frame is 1.076

Mbit/s. User-space terminal i/o and file access reduce the speed even more. A typical scsn software

configuration run takes≈ 2 seconds45.

The current software does not allow two identical frames to be enqueued at the same time. There-

fore all read requests addressing the auto incrementer are sent separately, which drastically increases

instruction/data memory access times (> factor 4). Table13shows times for typical user-space con-

figuration commands. The measured time is the real time from command execution start until end

of the output and command prompt return. So it is not appropriate calculate a overall configuration

speed (which would be around 512 kbits/sec average here).

Operation Time [µs]

read or write any address (1 frame) 19,841µs

read and dump memory area 0x000 - 0x100 (256 frames) 37,364µs

write program to instruction memory (76 frames, some identical)158,734µs

scan bit-width of a memory region 0x00 - 0x100 (300 single

frames)

1,016,834µs

read and dump instruction/data memory 0x000 - 0x100 (258

frames)

3,831,840µs

complete TRAP-1 selftest program 5,559,000µs

Table 13:scsb real application benchmark.This table summarizes the transaction speed of com-

mon configuration commands. All measurements have been made with a 6Mbit/sec scsn network,

using the Linux software suite.

44The PCI card is plugged in 3.3V / 33MHz 32-bit PCI bus (chipset AMD-760MP) on a dual AMD-Athlon
1600.092 MHz, running Linux 2.4.18-4GB-SMP.

45Note: the test network is yet running 4 times slower than the final TRAP-1 in the TRD.
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6 Conclusions and summary

...und wenn du dieses Buch gelesen hast, dann binde

einen Stein daran und wirf es in den Euphrat.

– Jeremia 51,63

6.1 Summary and Outlook

Nowadays, with electronics becoming faster, smaller and more complex, there is a great need for

adequate network technologies, which transparently46 provide access to larger structures. With

FPGAs and CPLDs being available off the shelf, it is time to think about new possibilities. Currently

existing networks were designed for communication between microcontrollers or computers, and in

many cases also fit the needs of FPGA communication.

The Transition Radiation Detector hardware has been tested on FPGAs and is implemented in ASIC.

The Man-Machine-Interface(MMI) is a standard Computer. The underlying structure uses Ethernet

and scsn to communicate with the hardware. As discussed in this diploma thesis, there was no

known network that fits the TRD’s needs. Although it has been tried to generalize scsn it does not

claim to be a universal FPGA network.

But it seems that scsn has some unique features and unprecedented applications. It provides a

reliable fixed speed communication between a limited number of clients, using a simple network

structure. Data information is exchanged by issuing read/write transactions on an abstract bus inter-

face. This is leaving a large field for applications. Designs for use in FPGAs and the VHDL source

code of scsn are freely available. Software tools and drivers are distributed in terms of the GPL47.

Measurements and Benchmarks proof the reliability of scsn, but also point out some weak points,

that have to be reengineered:

• Resynchronization is not really needed, since clocks show enough accuracy.

• Bitstuffing is nice and useful, but not necessary.

• The frame header format is hard-coded in VHDL. To change the frame format, the bit assign-

ments have to be done by hand. This can become better generic VHDL code.

• Snoop switch protocol should be extended, to allow to ping and detect switches. It should be

become possible to build larger hierarchic plain scsn networks.

• Current master buffer sizes are too small, but this is application specific, anyway.

Table 14:Weak Points of the current scsn implementations.

Finally Table15lists a comparison between scsn similar networks that have been considered for use

46transparently means, invisible to the user
47GNU General Public License [10].
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in the TRD:

scsn i2c SMBus 10Base2 802.3

Transmission asynchron synchron synchron asynchron

Wires 2 (148) 2 2 1

Speed 40 Mbit/s 2Mbit/s 100kBit/s 10 Mbit/s

Minimum Clock speed DC49 DC 10kHz -

Maximum Clock speed 96MHz/120MHz50 2MHz 100kHz -

max clients per segment generic (127) 127 127 100

Table 15:Comparison of proprietary field busses and networks with scsn.

6.2 Future Applications - Trap2

Although there were requests to generalize and more standardize scsn as a configuration network,

the first major milestone of scsn is still the Transition Radiation Detector. The design and software

has been optimized for expected traffic and configuration commands of the TRD. The current design

of the scsn unit in TRAP-1 has been revised and the following changes have been committed:

• New resynchronization logic. A bug in the TRAP-1 bittiming state machine has been fixed.

• Extended application layer interface. The application layer becomes more application specific

by including an direct interface to the data and instruction memory of TRAP2.

• Some global I/O DFF-memory has to be added to the global I/O bus for a) broadcast-read

checks and b) debugging/testing issues. So far other unused registers have been abused for

this.

Apart from changes for the TRAP2, scsn is further developed and tested. A 64 bit version of the

bus has been simulated and a "future-save" standardized protocol version is worked on. An alter-

nate master implementation for FPGAs was written from scratch according to the scsn architecture

specifications by Tobias Krawutschke et al.[16, 13]. Furthermore, the software tools are under con-

stant development and there are rumors that the developer is secretly experimenting with a wireless

physical layer.

48The scsn network can run with a single data wire, but current implementations use a differential signal.
49Some FPGAs require minimum clock speeds.
50FPGA: 96MHz / ASIC: 120MHz. The PCI card master is limited due to FPGA speed. Using a faster

FPGA than the ACEX allows to increase speed. The TRAP-1 is a.18µ UMC process. The design has been
stopped optimizing at 120MHz.
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Appendix

A CD-Rom

Here is a overview of the Software on the Software CD-ROM:

CD-ROM

|-- ACEX

| |-- digital_scope

| |-- lib

| |-- pci

| | |-- core

| | ‘-- programming_files

| |-- scsb_debug

| |-- terminal_sender

| |-- terminal_sof

| |-- terminal_trace

| ‘-- trap1_debug

|-- software

| |-- other_trap1_software

| |-- pci_linux

| |-- scsb-0.91

| |-- sweet16

| ‘-- texdiff

|-- thesis

‘-- trap1

|-- top_sim

|-- top_gatelevel.zip

‘-- trap1_scsn

A.1 ACEX

All designs for the ACEX boards, including the KIP51 library (libkip) have been copied to a separate

directory. All temporary data and compiled designs are left in these folders. So it should be easy to

just reopen the project files with the according software. Version information about the used tools

is available in the sources and scripts on the CD.

Thedigital_scope Folder contains a design to use the ACEX board as a digital oscilloscope. This

design was reused and extended in the terminal tracer. The lib directory contains commonly used

hardware designs for the ACEX, such as a VGA module or Keyboard/Mouse interfaces, written by

R. Gareus and V. Angelov[1].

Subdirectorypci contains the PCI design, to be used with the Linux kernel driver. The pci core

has been separated from the scsn files. The most recent design, stored in the main folder, is a

51Kirchoff Institute for Physics
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QuartusTM II.1 project. There were problems with the pci core, when compiling this design with

other software. Old ACEX-programming files have been stored in a subdirectory. Note that the

ACEX LPM FIFO is too small to provide buffers for both rings. So the current design contains a

PCI and scsn interface for two rings, but buffers for only one. For safety the second ring has been

disabled. (comments are in the source; it’s easy).

scsb_debug andtrap1_debug contain older designs that have been used to do "real" simulations

and tests. Thetrap folder contains a reduced version of the TRAP-1 hardware for FPGA, before it

has been implemented in.18µ technology.scsb_debug directory includes designs from the initial

development, that might be useful when iterating the engineering process for a new scsn release.

They are mainly undocumented.

The last ACEX designs have been made for an eye-catching presentation at the "Heidelberger Wis-

senschaftsmarkt". Two ACEX cards are connected together by only two wires (1 scsn ring) one

ACEX card (terminal_sender) is connected to a keyboard, and the other one has a mouse and a

VGA Screen connected. The keyboard ACEX uses the sweet16 CPU and an assembler program to

interface to a scsn master. On the other ACEX board (terminal_trace), the slave’s bus interface

is directly connected to the VGA video buffer. The video memory is split into two displays. One

showing the data the user typed on the keyboard. and another one, that is connected to a signal trace

design (also on the ACEX), that traces the LVDS signal off the wire on screen.

A.2 software

Here is the Linux Software to be used with the PCI design. Since the software emulates a bus the

development namescsbhas been kept for the software. A linux kernel module, including make-

file and load scripts can be found in thepci_linux directory. The user space program requires

pthread libraries52 and has been developed in a POSIX53 autoconf/automake environment. The au-

toconf/automake suite is required to compile this source on other systems than Linux. Otherwise

scsb can simply build by typing./configure; make install.

Furthermore, the software folder contains some c programs that have been used to generate a hard-

coded testbench and other small hacks for scsn debugging in folderother_trap1_software. The

assembler (DOS executable) to compile sweet16 code is included by friendly permission of V.

Angelov [2].

Finally the texdiff folder, contains bash scripts to mark differences between two latex files. Execute

texdiff <tag/revision> in the source directory of the latex files. It will commit the current files

to a CVS repository, find the differences between the actual and a previously tagged release, and

patch the files to mark differences with LATEX diffbars. Since the diffbars are not available in all TEX

environmentstexclean is used to fix all LATEX errors, that are caused by the diffbars. Both tools are

not yet for universal use, and have been specialized to work with this document.texdiff requires

few LATEXcommands to be defined. seediploarbeit.sty style file.

52GPL thread library
53Portable Operating System Interface
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A.3 thesis

This folder contains the LATEX source, figures and pictures of this document. If the university does

not claim rights, I would like this document to be distributed in terms of the GNU Free Documen-

tation License (FDL) [10]

The source includes a makefile for GNU Make (GNU Make version 3.79.1), and uses latex (TeX,

Version 3.14159 (Web2C 7.3.7)), pdflatex( pdfTeX, Version 3.14159-1.00a pretest 20011114 ojmw

(Web2C 7.3.7)), figtodev (xfig 3.2.3d), gnuplot (Linux version 3.7 patchlevel 1), convert (Im-

ageMagick 5.4.2), and optionally some psutils p17-501. The complete document (including the

plots) can be rebuilt by just typingmake, which generates the filesmain.pdf main.ps book.ps.

book contains a Din-A5 printable version of the main document.

Other make options aremake [ all | showpdf | show | main.ps | main.pdf | book.ps

| book.ps.gz | version | clean ]. showpdfbuilds the pdf file and launches the acrobat

reader. same withshowthat calls gv with the postscript being build.all is just the same as calling

make without any arguments and builds all of the filesmain.[pdf|ps] book.[ps|ps.gz]. clean

removes all generated files as well as temporary and backup data in the source directory. There is a

build counter (filebuild.cnt, comments indiplomarbeit.sty) which is incremented every time

a changed source-code is compiled. An increment can be forced by issuing amake version or by

editing the counter file.

There is additional software to mark changes between two releases of this document, using CVS

version control. These scripts are in the software folder on the CD.

A.3.1 Trap1 sources

Finally here are the TRAP-1 design files. As a spin-off of the scsb implementation, the whole

TRAP-1 design has been simulated by the author. So this Folder contains the complete TRAP

simulation source (Foldertop_sim), which includes the slow control source. Additionally to the

functional simulation, a gate-level simulations have been done, source files can be found in a zip file.

Again the source, and its final resource Files, including reports and build scripts for SynopsysTM

have been separated and sorted intrap1_scsn (this is directly copied from the final TRAP-1 backup

tape).
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B How To

Here is a short description about how to set it all up without really having to know about internal

details. As prerequisite at least one of the ACEX boards, or knowledge of how to build and map the

designs to a FPGA that is essential.

The user design, that interfaces to scsn should provide an internal bus to the application layer of

scsn. This can also be a simple buffer connected to a LED for testing. And indeed, there is no need

to have a slave anyway. Simple tests can be done by looping the signal back to the master without

any clients. This can be done in the top level design of the master in FPGA, or on physical layer via

wires.

B.1 Setup Master

So first of all, a master is needed to initiate data transfer. It is recommend using the PCI card and

software, but since the ACEX card is currently only available for 3.3V PCI busses only, there are

few designs that require no other hardware than the FPGA, but are mostly undocumented, so far.

ACEX - PCI card use the compiledsof or .pof Programming files from the CD (or recompile

the source), and configure the ACEX. To be flexible with the transmission speed, network clock and

PCI clock have been separated. To use the ACEX-PLL for the network clock a small change to the

board has to be applied. Note that the design on the Software CD-ROM uses a pinout corresponding

to these changes.

The output of the FPGA pin 39 has to be connected to the PLL input of the FPGA. Furthermore,

the PCI clock has not to be routed to the PLL input but to some other clock input. This is easily be

done by removing R500, R501, R502, and putting a 0Ω resistor in between R500/R502 (PCI_sys0

to FPGA_pin 71). The oscillator clock is routed to the PLL by soldering a wire from the ADC

connector Pin1(FPGA_pin 39) to the common pad of R500/R501 (ACEX PLLCLK pin 79). see

Fig. 26and the ACEX schematics available at [1].

Wiring Before plugging the card in, LVDS cables have to be connected. It is needed to retain

LVDS polarity and reverse the send/receive lines. To avoid getting confused, this problem is al-

ready solved by the pinout of the ACEX design, and the LVDS transponder hardware. The LVDS

connector of the ACEX board is shown in Fig.27. Two boards can be connected by just reversing

the wires on both connectors (0-12← 12-0). Connection of three or more boards can easily be

arranged by using two 4pin plugs with crossed cables in between each client.

B.2 Software

lowlevel driver After booting gnu/linux (version≥ 2.4.0) anduntar of the source, the kernel

module can be build by typingmake. When run asroot, the script./scsb_load loads the mod-

ule and creates the /dev/scsb device files. There should be initialization or error messages to

syslog (/var/log/messages). When the load was successful, status information is readable in
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Figure 26:ACEX board modification. For use as a PCI card, the clock signals to

the FPGA have to be rerouted. Although this bottom view of the ACEX board is not

very good, the added wire for the PLL clock input and the place where to resistors

have to be rearranged becomes more obvious.

Figure 27:Pinout of the ACEX LVDS header. This Figure shall give a hint, how to

construct scsn cables for use with the ACEX board.
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/proc/scsb. Test the network by running./benchmark 1, which should send a single frame and

report timings.

scsb configuration shell The configuration shell provides a bus abstraction layer of the scsnet-

work which is documented in chapter4.2.3. Compile and build information is included in the

source code. The shell right now includes lot of TRAP-1 specific commands, and uses only one of

the two rings. Although the API is almost capable of this functionality, due to lack to time, they

have not been debugged and tested completely. Quick start:interface 0 enter ping enter

. send enter will display a short help for the lowlevel command to transmit a frame. When the

clients use the TRAP-1 scsn application layer, the TRAP-1read andwrite commands can be used.

B.3 Setup Slave

The easiest way to set up a slave is to use an EDIF file of scsn (note that the network speed ratio is

no longer generic in the EDIF files) and insert it as a block in the top layer. It provides the described

TRAP-1 global I/O bus. One of the easiest test designs can be found in the ACEX folders on the

Software CD-ROM: Thecfg_ackis stuck at VCC, the bus_req, bus_we andbus_dout(0) are

connected to a D-Flip-Flop. The output of the DFF drives an LED and is sent back tobus_din(0).

All other bus data lines are driven to Ground.



C. Internal interfaces 63

C Internal interfaces

AppendixC contains plain signal lists and short descriptions of the major internal parts. Refer to

figure5 for an overview.

C.1 Data Link to Network Layer

Per Data Path there are 4 Signal lines. Since there are 2 path, replace X with either of 0 or 1:

Data-Path Signal Name width DLL NWL Description

send dX_send 6954 in out the data to be buffered/sent.

send dX_we 1 in out write enable signal for data dX_send.

send dX_send 1 in out initiate sending of the buffered data.

send dX_buffer_ready 1 out in status of the outputbuffer:

0: busy - currently sending data

(valid and send signals are ignored).

1: idle - data may be written. start of

send causes this signal to become 0.

recv dX_to_nwl 69 out in data that arrived and is currently

buffered.

recv sX_to_nwl 1 out in strobe line. is ’1’ as long as dX_to_nwl

holds valid data. (until next first bit of

next next frame arrives

recv bufX_half 1 out in the input buffer is almost full.

recv bufX_err 1 out in the checksum of the arrived frame is in-

valid.

- bridge 1 in out cross the outgoing data lines. break

topology, into two Rings.

Table 16:Signals between Data Link and Network Layer.

C.2 Network to Application Layer

The Network Layer does not buffer data: So if the data in the input buffer is lost (due to receiving

a new frame), there is no chance to forward the data to the layers above. There is functionality to

cause sending of an error-frame if this happens. The Network layer also includes a simple arbiter,

to decide which input-path may currently ”use” the interface to the upper layer.

Note: When there is a request to switch the X-bar, there is some logic in the network layer, that

ensures, that there is no data on the outgoing line, when switching the X-bar.

All requests have to be executed, and require a reply. Setting thereply_validsignal, enqueues the

54The bit-width of the buffers are generic values, and can easily be changed for the data link layer.
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Signal Name width Data-Path NWL APL Description

request 53 recv out in the request to be executed (com-

mand,address,data)

request_valid 1 recv out in strobe. is ’1’ as long as request data is

valid.

reply 53 send in out the (generated) reply to the request.

reply_valid 1 send in out setting this to ’1’ signals the NWL, that

the bus-transaction has been com-

pleted

and the reply is to be sent.

altered_frame 1 send in out the reply is an answer packet.

bridge_mode 1 - in out mode to set the bridge to.

0: serial (non bridged)

1: crossed (bridged) mode

bridge_alter 1 - in out bridge write enable. request change of

bridge.

Table 17: Signals between Network and Application Layer.

replydata to the output buffer. If no operation is to be done in application layer, simply forward the

requestwithout raising thealtered_framesignal.

C.3 Application Layer bus interface

The bus interface is described in chaptergeneric Interfaces and [14]. See table4 for the bus signals.
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D Pictures

Figure 28:First Testboard of the Trap 1. All prototype tests were performed with

this board.

Figure 29: ACEX board. These multi-functional FPGA boards, developed by V.

Angelov [1], have been used for testing and debugging the design process of scsn.
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Figure 30:Scope: transmitting ping Frames on the wire.The top frame is hard to read, but the

Figure b) shows two nice frames: After the startbit (1), the hopcounter follows "0000001", then the

address(3)+src/dst(1) bit. "..001111". Next follow is the command (7) "1110...", address0xabcd ,

data"0x12345600" (LSB, w/ stuffing), and the checksum.
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Figure 31:Benchmark: 1 and 8 frames. Software benchmark. a) transmission of 1 frame, wait

until it arrives back, then send another one. b) same with 8 frames.
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Figure 32:Benchmark: 64 and 128 frames.Software benchmark. a) transmission of 64 frame,

wait until they arrive back, then send another 64 frames. b) same with 128 frames.
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