
Intrinsic Evolution of Quasi DC Solutions for Transistor Level Analog Electronic
Circuits Using a CMOS FPTA Chip

Jörg Langeheine, Karlheinz Meier, Johannes Schemmel
Heidelberg University,

Kirchhoff-Institute for Physics,
Schröderstr. 90,

D-69120 Heidelberg, Germany.
langehei@kip.uni-heidelberg.de

http://www.kip.uni-heidelberg.de/vision/projects/evo tarray.html

Abstract

In this paper the results of a series of intrinsic hard-
ware evolution experiments with a CMOS FPTA chip are
presented. The experiments discussed are restricted to the
evolution of specified target DC behaviors. In the first series
of experiments the evolution of different logic gates, namely
NAND, NOR, AND, OR and XOR, is studied. The success
rates in evolving the different logic gates are compared to
each other. Furthermore the influence of three different
methods of presenting the test patterns to the chip is ana-
lyzed. In a second series of experiments the evolution of a
Gaussian voltage transfer characteristic is tackled. Thereby
the influence of the chip area available to the genetic algo-
rithm is studied.

1 Introduction

Analog circuit design most often requires the designer to
determine position and geometry of every single transistor
in the circuit. Accordingly, there is a great interest in the
automation of this design process. CAD tools that provide
the transistor sizing of given topologies have just entered
the market (e.g. [1], [2]), but still fall short of finding new
transistor topologies. While these approaches (more can be
found e.g. in [3], [4]) use standard simulation techniques
and hence are flexible, technology independent and can be
well integrated in the design flow, intrinsic hardware evo-
lution offers other desirable perspectives: Reconfigurable
devices could be programmed in the field analogous to FP-
GAs. The integration of an evolutionary algorithm on the
chip could use the actual physical properties of the die it
is running on and thus fine tune the behavior of the circuit
(cf. [5]). Moreover, a background hardware evolution pro-

cess could adapt the used circuit to changing environments
and thereby provide a higher amount of fault tolerance (e.g.
[6], [7]). On the other hand, such a system may be used as
a circuit search engine, that may find unknown and/or bet-
ter solutions to known design problems or finds solutions
where no (human) one has been found yet ([8]).

As a first step towards such intrinsic hardware evolution
systems a Field Programmable Transistor Array (FPTA) has
been built and integrated in an evolution environment ([9],
[10], [11]). In order to test and study the system two sorts
of evolution experiments have been carried out in which the
goal has been to find circuits with a desired DC output char-
acteristic. On one hand the restriction to the DC case sim-
plifies both, problem and analysis and thus is considered a
good method to test the system. On the other hand, in con-
ventional electronics a stable DC operating point is neces-
sary for most circuits to work properly, so one has to ensure,
that stable DC solutions can be found by the evolution en-
gine. In the literal sense testing a DC solution would require
to wait for an infinite time before the measurement of each
single data point. Since this clearly is not possible, some
randomness must be added to the order of the test signals
to prevent the candidate solutions from using any temporal
correlation in this input data. The evolved circuits discussed
in this paper are referred to as quasi DC solutions.

As a first class of test problems the evolution of analog
DC characteristics for the logic gates NOR, NAND, AND,
OR and XOR has been presented to the evolution system.
Logic gates are the key element of digital electronics and
thus it is desirable to be able to evolve them. Moreover
there are known good solutions in the design space to which
the evolution results can be compared. Hardware evolution
experiments addressing the evolution of logic gates can be
found for example in [12] (AND, OR, XOR), [13] (AND)
,[6] (AND), [14] (AND, OR, XOR), [15] (NAND), [16]

(XOR), [7] (XNOR). In contrast to the problem of the well
known logic gates, most analog designers would probably
not be able to directly write down a solution for a circuit
producing a Gaussian voltage transfer characteristic (V-V
curve). Therefore it should be interesting to see how the
hardware evolution deals with this problem, which is more
analog in its nature than the logic gate problem. Compared
to other target functions like cubics or cubic roots, the Gaus-
sian shape is not monotonic and should thus be harder to
learn for the algorithm. A solution for a Gaussian transcon-
ductance can be found in [17], whereas EHW experiments
on the evolution of Gaussian DC response circuits can e.g.
be found in [18] (V-V curve) or [19] (I-V curve).

2 Evolution System

The evolution system, illustrated in Fig. 1, can be divided
into three main parts: The actual FPTA chip serving as the
silicon substrate to host the candidate circuits, the software
that contains the search algorithm running on a standard PC
and a PCI interface card that connects the PC to the FPTA
chip. The software uploads the configuration bit strings to
be tested to the FPTA chip via the PCI card. In order to gen-
erate an analog test pattern at the inputs of the FPTA chip,
the input data is written to the FPGA on the PCI interface
card. There it is converted into an analog signal by a 16
bit DAC. After applying the analog signal to the FPTA, the
output of the FPTA is sampled and converted into a digi-
tal signal via a 12 bit ADC. The digital output is then fed
back to the search algorithm, which in turn generates the
new individuals for the next generation.

DAC

ADC

1/16

16/1

3/22/21/2

2/3 3/3

16/16

3/11/1 2/1

1/3

PTA Chip

Computer:
hosts EA

RAM
Local

analog test data

analog output

configuration data

dig. out

FPGA

read out configuration data (opt.)

test data
config. and test data

digital output data

PCI Interface Card Plug in BoardPersonal Computer

Figure 1. Overview of the evolution system.

2.1 FPTA Chip

The FPTA consists of 16 × 16 programmable transistor
cells. As CMOS transistors come in two flavors, namely
N- and PMOS transistors, half of the transistor cells are
designed as programmable NMOS transistors and half as

programmable PMOS transistors. P- and NMOS transistor
cells are arranged in a checkerboard pattern as depicted in
Fig. 5.

Each cell contains the programmable transistor itself,
a total of 24 SRAM bits to store its configuration, three
decoders that allow to connect the three transistor termi-
nals to one of the four cell borders, vdd or gnd, and six
routing switches. A block diagram of the transistor cell
is shown in Fig. 2. Width W and Length L of the pro-
grammable transistor can be chosen to be 1, 2, . . . , 15 µm
and 0.6, 1, 2, 4, 8 µm respectively. The three terminals
drain, gate and source of the programmable transistor can
be connected to either of the four cell borders named after
the four cardinal points, vdd or gnd. The only means of
routing signals through the chip is given by the six routing
switches that connect the four cell borders with each other.
Thus in some cases it is not possible to use a transistor cell
for routing and as a transistor.

1 10

1 10 6 bits

SRAM

1 10

1 10 6 bits

SRAM

−+

OutCellnode

1 10

1 10 6 bits

SRAM

1 10

1 10 6 bits

SRAM

3 bits

4 bits for W

3 bits for L

3 bits

3 bits

6 routing bits

W/L

1:
4

A
na

lo
g

M
ux

S

Source

Drain

E
Drain

Source

Vdd N W S gndE

1:6 Analog Mux

ESWNVdd gnd

1:6 Analog Mux

S

W

N

E

Vdd

N

gnd

E

S

W

1:
6

A
na

lo
g

M
ux

Gate

Figure 2. Block diagram of one transistor cell.

The operational amplifier drawn at the right hand side
of Fig. 2 is intended to measure the voltages at either of
the three terminals of the programmable transistor and the
currents through the terminals drain and source in order to
analyze the evolved circuits. More details on the FPTA can
be found in [9], [10] and [11].

2.2 Genetic Algorithm

2.2.1 Algorithm

A genetic algorithm was used for the evolution experiments
presented in this paper. The rank based selection scheme is
depicted in Fig. 3. From the old generation the new one is
derived in the following manner: First, after the old popu-
lation is sorted, the best reproduction fraction × generation
size individuals are reproduced. Second an individual of the
best crossover fraction individuals is chosen randomly and
mutated. Third, a crossover partner for the mutated genome
is chosen randomly from the best crossover fraction individ-
uals of the old generation. These two parents then produce

1

2

3

4

5

6

7

8

9

10

1

2

3

1’

3

3

2

1

6

5

2

1’

3

2

4’

1

2

3

4

1’

2

3

4’

1

2

3

4

5

6
Mutation

Crossover

Selection
Generation n Generation n+1

Figure 3. Visualization of the GA.

one child genome for the next generation. Steps two and
three are repeated until the new generation is filled with a
total of generation size genomes. The GA parameter values
used are listed in Table. 1.

GA Parameter Logic Gates Gaussian curve
generation size 50 50

reproduction fraction 0.2 0.2
mutation fraction 0.4 0.4
crossover fraction 0.6 0.6

crossover rate 40 % 40 %
mutation rate 3 % 3 %

edge length of used array 5 4 . . . 11
crossover block size 3 3 . . . 6

number of generations 5000 10000

Table 1. Genetic algorithm parameters used
throughout the presented experiments.

2.2.2 Representation and Genetic Operators

The Genome representation used by the GA reflects the
structure of the FPTA: The genome is divided into 256 cells
that contain the configuration information for each transis-
tor cell. Consequently, each cell contains an entry as well
for the width as for the length of the programmable transis-
tor, an entry for each of the routing connections of the tran-
sistors terminals and six entries for the routing switches. As
described in section 2.2.1 two genetic operators are used for
the GA: Mutation and Crossover.

The Mutation operator acts on entries of the cells: It
changes every entry in every cell of the genome to a new
random value with a probability given by the mutation rate.

The crossover operator works only on the cell level, but
does not touch single entries of a cell. The operation of
the crossover operator is illustrated in Fig. 4. Each of
the squares symbolizes a cell of the genome correspond-
ing to the according transistor cell in the FPTA. Once two

New member of
next generation

60 % of individuals
Member of best

(maybe mutated)
40 % of individuals
Member of best

Figure 4. Crossover operation.

crossover partners are designated to create offspring, the
size and position of a rectangle of cells to be exchanged
is randomly chosen. The child genome is then assembled
by taking this rectangle of cells from one parent (the one
that already was object to the mutation operation) and the
rest of the cells from the other one. The maximum size of
the edges of the exchanged rectangles is controlled by the
Crossover block size.

2.2.3 Fitness/Error Function

Instead of maximizing a fitness function, the genetic algo-
rithm tries to minimize the error of the candidate circuit.
The error function

RMS Error =

√

∑512
i=1(Vtar(i) − Vout(i))2

512
× 1000 (1)

calculates the root mean square error per measured input
data point with respect to the given target function Vtar(i)
in mV. Vout(i) denominates the measured output voltage
for the given input stimulus. In general Vtar(i) is given by
the desired transfer function and depends on the two input
variables Vin1 and Vin2:

Vtar = Vtar(Vin1, Vin2) . (2)

3 Evolution Experiments

3.1 Experimental Setup

The electrical setup for the intrinsic fitness evaluation of
the test candidates during the evolution is shown in Fig. 5.
All experiments are restricted to a fraction of the whole tran-
sistor cell array that is located in the lower right corner of
the chip, which is indicated by the square shaded in darker
gray in Fig. 5. Throughout the remainder of the paper the
size of this square will be described by its edge length. The
two inputs are applied to the south side of the chip and
the output voltage is measured on its east side. Both, in-
and outputs are fixed to the positions indicated in Fig. 5

P

PN

N P

PN

N P

PN

N P

PN

N

P

PN

N

P

PN

N

P

PN

N

P

PN

N

P

PN

N

P

PN

N

P

PN

N

P

PN

N

P

PN

N

P

PN

N

P

PN

N

P

PN

N

array =5

Edge length
of the used

Vin1 Vin2

0 1

0

1

Vout

10 12 13 14 1511

10

11

12

13

14

15

Figure 5. Test setup for the evolution experi-
ments.

throughout all the experiments presented here. This setup is
chosen to keep the routing effort necessary for the genetic
algorithm to a reasonable amount. For each evolution run,
a fixed number of generations is used (5000 for the logic
gates, 10000 for the evolution of the Gaussian DC curve).
The best individual of the last generation of the evolution
and its last fitness are taken as a result.

For the presented experiments the evolution system
achieves a throughput rate of about 118 individuals per sec-
ond. Since in both series of experiments a total of 512 DC
points are measured for each individual the average time per
measurement must be less than 15 µs. On the one hand this
constrains the successfully evolved circuits to settle to the
desired output values in less than these 15 µs, on the other
hand this reflects the quasi DC character of the measure-
ments.

3.2 Evolution of the DC Behavior of Logic Gates

Target Function For all logic gates evolution experi-
ments the desired output voltage Vtar is set to be 0 or 5 V
depending on the inputs and the logic function sought. The
threshold for an input to represent a logic zero is set to 2 V
and the threshold for a logic one to 3 V. In- and output
definitions are listed in table 2. On the one hand it is nei-

Input low < 2 V
Input high > 3 V
Output low 0 V
Output high 5 V

Table 2. Definition of the logic levels for in-
and output voltages.

ther necessary nor useful to specify the behavior of a logic

gate in the intermediate input range, where it has to switch
its output. On the other hand, this choice creates a selec-
tion pressure towards solutions, which provide a minimum
of amplification. This would not be the case, if the circuits
were merely tested at 0 and 5 V .

Fitness Evaluation The candidate solutions produced by
the GA are tested in the following way: One of the two input
channels is set to 8 different voltages. For each of these 8
voltages, 64 different voltages are applied to the other input
resulting in 512 voltage pairs. All applied voltages exclude
the range between 2 and 3 V in accordance with the defi-
nition of the threshold voltages for the inputs. For each of
the logic gates to be evolved a total of 90 evolution runs
are carried out. The first 30 runs are done with Vin1 stati-
cally held at 8 input voltages evenly distributed and linearly
spaced in the two valid input range subintervals, while Vin2

is swept from 0 to 5 V (again excluding the range between
2 and 3 V). The second 30 evolution runs are done in the
same fashion, except that the 64 input voltages for Vin2 now
are chosen randomly for each Vin1 input voltage. The input
test pattern for the last thirty evolution runs differs from the
second 30 runs only in that the roles of Vin1 and Vin2 are
chosen randomly before the test of each individual. The test
conditions for all 90 runs are summed up in Table. 3

Run number Vin1 Vin2

1 . . . 30 static forward sweep
31 . . .60 static random values
61 . . .90 static/rand. values static/rand. values

Table 3. Test paradigms for the fitness evalu-
ation for the evolution of the logic gates.

Verification Tests The functionality of the evolved cir-
cuits is verified for different reasons. First, it can not be
taken for granted that an evolved circuit achieves the same
fitness result a couple of days after it is evolved, because
some of the environmental conditions as for example the die
temperature may have changed. Second, it is thereby pos-
sible to analyze the effect of the fitness evaluation method
on the functionality of the evolved circuits. Third, it is in-
teresting to test how well the evolved circuits perform on
another chip in another evolution system. The verification
test patterns are similar to the test patterns used during the
evolution in that for each of 8 different input voltages pre-
sented to one input, 64 different voltages are applied to the
other one. The voltage for the ’sweep’ input is then either
swept forward from 0 to 5 V, swept backward from 5 to 0 V
or 64 times chosen randomly. To test if the output of the
evolved circuit reacts symmetrically with regard to the two

inputs, the roles of the two inputs Vin1 and Vin2 are inter-
changed and the three tests above are repeated. Finally, the
same procedure was used to test the evolved circuits on a
second chip, hosted by a different PCI interface card in a
different computer. Together with the error value obtained
from the evaluation during the evolution experiment a total
of 13 fitness results are thus obtained. All verification test
methods are summarized in Table 4. The error values from
the verification measurements used in the remainder of this
paper are the averages over 100 consecutive measurements.

Number Vin1 Vin2 Chip
1 lowest error from last generation
2 forward sweep
3 static backward sweep
4 backward sweep
5 forward sweep

1

6 backward sweep static
7 random values
8 forward sweep
9 static backward sweep

10 backward sweep
11 forward sweep

2

12 backward sweep static
13 random values

Table 4. Different test modes.

3.3 Evolution of DC V-V Gaussian Circuits

For the evolution experiments aiming at a Gaussian
shaped V-V curve, only the input Vin2 is used and Vin1

fixed to 0 V. The input voltage Vin2 is 512 times chosen
randomly within the full power supply range for the evalua-
tion of each individual. The desired output voltage is given
by

Vtar = 1 V + 3 V · exp(
(Vin2−2.5 V)

1 V)2 . (3)

In order to study the influence of the resources available to
the genetic algorithm, 10 evolution runs are done for edge
lengths of the used chip array (see Fig. 5) varying from 4 to
11. Each run is stopped after 10000 generations and the best
individual of the last generation is taken as the best circuit
solution.

4 Evolution Results

4.1 Evolution of the DC Behavior of Logic Gates

The fitness scale used is given by the error function in
Eq. 1. It is defined as the root mean square error per input
data point given in mV. The highest error value that can be

obtained for the logic gates is thus 5000 mV for circuits that
do exactly the opposite of the desired behavior. On the other
hand, error values in the order of 100 mV can be caused by
non perfect calibrations of the analog circuitry involved in
the measurements.

4.1.1 Comparison of the Results for Different Gates

The error values obtained from all 90 runs for all 5 gates are
plotted in error histograms in Fig. 6. For this plot only the
error values obtained at the end of each evolution run (test
method number 1 in Table 4) are used. The results in Fig. 6

0

5

10

15

Bin size = 19.9

NOR

0

5

10

15 NAND

0

5

10

15 AND

0

5

10

15 OR

0 500 1000 1500 2000
0

5

10

15

RMS Error

XOR

Figure 6. Results for the evolution of the DC
behavior of different logic gates.

suggest that the evolution experiments were quite success-
ful in finding solutions for the NOR and the NAND gate
behavior, but had more difficulties in finding good solutions
for the AND and OR problems. While for these four gates
solutions with an error value less than 100 mV were found
by the GA, this did not happen for the XOR problem, where
the lowest error was observed to be 470 mV.

The evolved gates are compared to the standard text book
implementations shown in Fig. 7. It has to be noted that
these solutions possess many features that are neither cov-
ered during the evolution nor the verification tests, as e.g.
their dynamic behavior or their static power consumption.
Thus a comparison of their DC behavior to the one exhib-

ited by the evolved gates misses some points of their design
goal. Nevertheless they are considered to be a good refer-
ence, because their quality of static behavior is sufficient to
use them as building blocks for the design of logic circuits.
Moreover, as was pointed out in section 3.1 the evolved cir-
cuits must at least manage to settle to their desired output in
the order of 10 µs, that is, they also have to satisfy a min-
imum of dynamic requirements (Information on the time
scales inherent to the FPTA chip can be found in [9]).

Q
A

B

Q
B

A

QA

B

ANDNOR

BA

B

A

Q

B

A

A B

Q

6AND

OR 6

10XOR

4NAND

NOR 4

Gate Implementation Transistor Count

NAND

NOR

AND

NOR
NOR

Figure 7. Typical CMOS implementation of the
5 logic gates NOR, NAND, AND, OR and XOR.

From Fig. 7 it can be seen that the complexity of these
text book solutions increases from NOR and NAND to
AND and OR to the XOR, indicated for example by the
number of necessary transistors they are built of. A com-
parison between this complexity and the evolution results
of Fig. 6 suggests that the difficulty in learning the accord-
ing gate functionality corresponds to the difficulty in imple-
menting it in CMOS technology.

The analysis of the results from the evolution exper-

0 2 4 6 8

XOR

OR

AND

NAND

NOR

Number of circuits with an rms error < 140 mV

Vin2: sweep
Vin2: random
Vin1,2 switched, random

Figure 8. Number of evolved circuits that
achieved an overall error smaller than 140 mV.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

20

40

60

80

100

120

R
M

S
 E

rr
or

Test Method

Figure 9. Error values for the best evolved
NOR gate for all 13 different test methods.
The test method numbers refer to Table 4.

iments done with Vin2 being swept forward yields that
many circuits successfully solving the problem for this test
method perform poorly when one of the other testing meth-
ods listed in Table 4 is used. Hence, the real symmetric DC
logic gate functionality was tested using the test schemes in
Table 4. In order to get a feeling for the yield of the evo-
lution experiments, the number of solutions that exhibit an
error lower than 140 mV in all of the 13 tests is plotted in
Fig. 8. The choice of a threshold of 140 is somewhat arbi-
trary, but an error below 140 mV seems realistic for a cir-
cuit that matches the desired output characteristic well. This
is partially due to imperfections in the analog test circuitry
mentioned above. As an example the error values obtained
from the 13 different tests listed in Table 4 are shown in Fig.
9 for the best of the evolved NOR gates, whose DC charac-
teristics are plotted in the upper left corner of Fig. 10.

The set of the applied test methods ensures that the suc-
cessful circuits work on two different chips, indicating a
minimum of robustness against environmental changes (cf.
[20] for a definition of robustness in the context of hardware
evolution). From Fig. 8 it can be observed that the naive fit-
ness testing method used for the first 30 evolution runs (cf.
Table 3) does not prevent the genetic algorithm from finding
solutions generalizable to all testing methods. The effect of
the evolution method is studied in more detail in section
4.1.2.

The performance of the best solutions of each of the 5
series of evolution experiments are plotted on the left side
in Fig. 10, where ’best solutions’ refers to those individu-
als whose maximum error value obtained from all 13 tests
was the lowest in comparison to the according maximum er-
ror values from all the other best individuals obtained from
the 90 evolution runs. For these measurements the voltage
Vin1 was varied in 0.5 V steps and Vin2 swept from 0 to
5 V in 100 mV steps, now including the range from 2 to
3 V. The error value in the title of each plot refers to the
error achieved for test method 2 (see Table 4). The plots in
the right column of Fig. 10 represent simulation results ob-

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]

Evolved NOR: Run 48, RMS Error= 62.22 mV

Vin1 = 0
Vin1 = 0.5
Vin1 = 1
Vin1 = 1.5
Vin1 = 2
Vin1 = 2.5
Vin1 = 3
Vin1 = 3.5
Vin1 = 4
Vin1 = 4.5
Vin1 = 5

Vin1 < 2 V

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]

Simulated NOR: DC Characteristics

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]

Evolved NAND: Run 9, RMS Error= 36.64 mV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]

Simulated NAND: DC Characteristics

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]

Evolved AND: Run 86, RMS Error= 60.68 mV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]
Simulated AND: DC Characteristics

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]

Evolved OR: Run 34, RMS Error= 82.46 mV

Vin1 = 2 V

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]

Simulated OR: DC Characteristics

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]

Evolved XOR: Run 13, RMS Error= 470.03 mV

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Vin2 [V]

V
ou

t [
V

]

Simulated XOR: DC Characteristics

Figure 10. Left: Measured performance of the best evolved gates. Right: Simulation results for the gates shown
in Fig. 7. The legend shown in the plot in the upper left corner is used for all 10 plots.

tained by simulating the circuits from Fig. 7 in the process
the chip was fabricated in (for additional information on the
FPTA chip the reader is referred to [9] or [10]).

It should be noted again that the simulated CMOS gates
are not designed to meet the specifications posed to the
ones evolved, but exhibit a bunch of advantageous features
that are not considered here. However, a comparison of
the DC characteristics of the evolved circuits and the stan-
dard CMOS gates yields the following insights: The cir-
cuits found for the NOR, AND, NAND and maybe even the
one found for the OR problem exhibit DC characteristics
that match the quality of the simulated text book solutions.
This is not the case for the circuit found for the XOR prob-
lem, as was expected from its error value. The DC charac-
teristics of the evolved AND gate look very similar to the
simulation results. The DC behavior of the evolved NOR
and NAND show higher amplification as their textbook so-
lution counterparts. Furthermore the transition region of
these evolved gates is narrower than the one of the simu-
lated gates. This may indicate that the desired DC behavior
of the target curve was more ambitious than necessary. This
may in turn have mislead the genetic algorithm and thus
may have decreased the yield of sufficiently good solutions.

As an example for the evolved circuits the one for the
NOR gate is shown in Fig. 11. A straightforward explana-

14/0.6 1/2 3/8 2/2 4/8

13/4 0/1

6/8 10/0.6 1/8 3/8 4/1

6/4 3/2 10/4 2/4

4/1 2/0.6 11/1 3/1 0/4

13/1 8/1 3/1

14/1

Vin2Vin1

Vout

Figure 11. Circuit diagram of the best evolved
NOR gate. The numbers in the left corner of
each cell denote the W/L ratios of the transis-
tors.

tion of the circuit has not been found yet, but it is planned
to analyze the evolved circuits using simulations.

4.1.2 Dependence on the Evolution Method: NOR
Gate

In order to analyze the impact of the three different testing
paradigms all of the 30 evolution runs belonging to one test-

ing paradigm are averaged for each of the 13 fitness mea-
surements. The result for the evolution runs of the NOR
gate are illustrated in Fig. 12.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

500

1000

1500

2000

Test Method

A
ve

ra
ge

 R
M

S
 E

rr
or

Vin2: sweep
Vin2: random
Vin2: rand, switched inputs

Figure 12. Mean error of all the evolved NOR
circuits for each evolution method versus the
13 test methods. The test method numbers
refer to Table 4.

The bars for the forward sweep testing paradigm are only
low for exactly this test mode and otherwise in an error
range suggesting that the according circuits, or at least most
of them, since the error values are averaged over 30 runs,
are useless under all the other testing conditions. Conse-
quently, the genetic algorithm must have produced circuit
solutions that do not only rely on the two different input
voltages, but some other information inherent to the order
of the presented test voltages. In contrast, the error aver-
ages for which the non static input voltage was chosen ran-
domly and the static and the non static inputs changed roles
randomly during the evolution are almost constant for test
methods 2 to 13. The bars for the evolution runs without the
interchange of input roles, exhibit better error values for the
measurements done with the same input order used during
their evolution. In conclusion, this data indicates that for the
evolution experiments presented here it is necessary to in-
clude all input scenarios the circuit is to be able to cope with
into the fitness evaluation during the evolution experiment.

4.2 Evolution of a Gaussian Output Voltage Char-
acteristic

Since it is not clear what kind of circuits the artifi-
cial evolution finds that possess the desired Gaussian out-
put characteristic, it’s not possible to predict how many of
the transistor cells will be necessary to solve the problem.
Therefore the resources available to the chip were varied as
described in section 3.3. In Fig. 13 the error of the best of
the ten evolution runs done per edge length of the sub ar-
ray available to the genetic algorithm is plotted versus the
respective edge length. As far as can be inferred from the
small number of runs carried out, the lowest error of the

4 5 6 7 8 9 10 11
0

20

40

60

80

100

120

140

M
in

im
um

 R
M

S
 E

rr
or

Edge length of the array available to the evolution

Figure 13. Error of the best individual versus
the edge length of the chip area used.

evolved circuits is almost independent of the chip area avail-
able to the algorithm for higher edge lengths, but is higher
for edge lengths of about 4 or 5. It has to be noted that this
result was obtained with a number of 10000 generations.
It may very well be that the algorithm could make better
use of the higher number of transistor cells if the number of
generations was higher. The DC curves obtained from the
best individuals of the 9 series of runs are shown in Fig. 14.

In general the measured points of all the curves are lo-
cated close to the desired output curve defined by Eq. 3. On
the other hand, the obtained curves do not exactly look like
Gaussian curves. Moreover they do not look smooth over
the whole plotting range, but rather as if they were put to-
gether from several curve pieces. Usually most sub circuits,
as for example current mirrors or differential pairs cannot
operate properly over the full power supply range. Thus the
only possibility to match the desired output behavior is to
construct a circuit that does a piecewise approximation.

5 Conclusions and Outlook

Two different kinds of intrinsic hardware evolution ex-
periments performed on a CMOS Field Programmable
Transistor Array have been presented. The results show that
the proposed evolution system is capable of finding quasi
DC solutions for simple analog circuit design tasks. For
the DC functionality of the four logic gates NOR, NAND,
AND and OR perfect DC solutions have been found, while
a perfect DC XOR behavior could not be obtained. The best
successful circuits of each experiment are found to work on
two different chips and thus are believed to be portable to
different dice of the FPTA chip. The analysis of the ef-
fect of using different input test patterns during the evolu-
tion recommends to carefully design these input test pat-
terns general and randomly enough as to prevent the search
algorithm from using any information not belonging to the
posed problem. The successful evolution of Gaussian volt-
age characteristics demonstrates that it is feasible to find cir-

cuits approximating basic mathematical functions with the
evolution system presented.

Future experiments including the dynamic behavior as
an objective for the artificial evolution are planned. Further-
more it will be interesting to see, if it is possible to simulate
and analyze the successfully evolved circuits. After improv-
ing the test system the evolution of more complex circuits
using bigger portions of the FPTA chip shall be tackled.

6 Acknowledgment

This work is supported by the Ministerium f ür Wis-
senschaft, Forschung und Kunst, Baden-W ürttemberg,
Stuttgart, Germany.

References

[1] E. Henning, R. Sommer, and L. Charlack. An automated
approach for sizing complex analog circuits in a simulation-
based flow. Conference and Exhibition on Design Automa-
tion & Test in Europe (DATE 2002), Mar. 2002.

[2] A. H. Shah, S. Dugalleix, and F. Lemery. Technology mi-
gration of a high performance CMOS amplifier using an au-
tomated fron-to-back analog design flow. Conference and
Exhibition on Design Automation & Test in Europe (DATE
2002), Mar. 2002.

[3] R. Phelps, M. J. Krasnicki, R. A. Rutenbar, L. R. Carley,
and J. R. Hellums. A case study of synthesis for industrial-
scale analog IP: Redesign of the equalizer/filter frontend for
an ADSL CODEC. In Proc. ACM/IEEE Design Automation
Conference, pages 1–6, Los Angeles, CA, USA, June 2000.

[4] M. J. Krasnicki, R. Phelps, R. A. Rutenbar, and L. R. Car-
ley. MAELSTROM: Efficient simulation-based synthesis
for custom analog cells. In Proc. ACM/IEEE Design Au-
tomation Conference, pages 945–950, New Orleans, LA,
USA, June 1999.

[5] M. Murakawa, S. Yoshizawa, A. Toshio, S. Suzuki, K. Taka-
suka, M. Iwata, and T. Higuchi. Analogue EHW chip for
intermediate frequency filters. In Proc. ICES 1998, LNCS
1478, pages 134–143, Lausanne, Switzerland, Sept. 1998.
Springer Verlag.

[6] A. Stoica, D. Keymeulen, and R. S. Zebulum. Evolv-
able hardware solutions for extreme temperature electronics.
In Proc. of the Third NASA/DOD Workshop on Evolvable
Hardware, pages 93–97, Long Beach, CA, USA, July 2001.
IEEE Press.

[7] D. Keymeulen, A. Stoica, R. Zebulum, Y. Jin, and V. Duong.
Fault-tolerant approaches based on evolvable hardware and
using a reconfigurable electronic devices. In Proc. of the
IEEE Int. Integrated Reliability Workshop, pages 32–39,
Lake Tahoe, CA, USA, Oct. 2000. IEEE Press.

[8] A. Thompson, P. Layzell, and R. S. Zebulum. Explorations
in design space: Unconventional electronics design through
artificial evolution. IEEE Trans. on Evolutionary Computa-
tion, 3:167–196, Sept. 1999.

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

Vin2 [V]

V
ou

t [
V

]

Edge length: 4, Run 7, RMS Error: 123.18 mV

Vout
Vgoal

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

Vin2 [V]

V
ou

t [
V

]

Edge length: 5, Run 2, RMS Error: 94.59 mV

Vout
Vgoal

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

Vin2 [V]

V
ou

t [
V

]

Edge length: 6, Run 6, RMS Error: 71.45 mV

Vout
Vgoal

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

Vin2 [V]

V
ou

t [
V

]

Edge length: 7, Run 6, RMS Error: 90.71 mV

Vout
Vgoal

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

Vin2 [V]

V
ou

t [
V

]

Edge length: 8, Run 7, RMS Error: 77.65 mV

Vout
Vgoal

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

Vin2 [V]

V
ou

t [
V

]

Edge length: 9, Run 9, RMS Error: 82.61 mV

Vout
Vgoal

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

Vin2 [V]

V
ou

t [
V

]

Edge length: 10, Run 6, RMS Error: 69.61 mV

Vout
Vgoal

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

4

Vin2 [V]

V
ou

t [
V

]

Edge length: 11, Run 4, RMS Error: 82.03 mV

Vout
Vgoal

Figure 14. Output characteristic of the best Gaussian circuit for each available array size.

[9] J. Langeheine, J. Becker, S. F ölling, K. Meier, and J. Schem-
mel. Initial studies of a new VLSI field programmable tran-
sistor array. In Proc. ICES 2001, LNCS 2210, pages 62–73,
Tokio, Japan, Oct. 2001. Springer Verlag.

[10] J. Langeheine, J. Becker, S. F ölling, K. Meier, and J. Schem-
mel. A CMOS FPTA chip for intrinsic hardware evolution of
analog electronic circuits. In Proc. of the Third NASA/DOD
Workshop on Evolvable Hardware, pages 172–175, Long
Beach, CA, USA, July 2001. IEEE Press.

[11] J. Langeheine, S. F ölling, K. Meier, and J. Schemmel. To-
wards a silicon primordial soup: A fast approach to hard-
ware evolution with a VLSI transistor array. In Proc. ICES
2000, LNCS 1801, pages 123–132, Edinburgh, UK, Apr.
2001. Springer Verlag.

[12] R. Zebulum, M. Vellasco, and M. Pacheco. Evolutionary de-
sign of logic gates. In Proc. of the Workshop in Evolutionary
Design, AID98, pages 12–17. Lisbon, July 1998.

[13] A. Stoica, R. S. Zebulum, and D. Keymeulen. Mixtrinsic
evolution. In Proc. ICES 2000, LNCS 1801, pages 208–217,
Edinburgh, UK, Apr. 2001. Springer Verlag.

[14] A. Stoica, R. S. Zebulum, and D. Keymeulen. Polymorphic
electronics. In Proc. ICES 2001, LNCS 2210, pages 291–
302, Tokio, Japan, Oct. 2001. Springer Verlag.

[15] F. H. Bennett III, J. R. Koza, M. A. Keane, J. Yu, W. Myd-
lowec, and O. Stiffelman. Evolution by means of genetic
programming of analog circuits that perform digital func-
tions. In Proc. of the Genetic and Evolutionary Computation

Conference, pages 1477–1483, Orlando, Florida, USA, July
1999. Morgan Kaufmann.

[16] C. C. Santini, R. S. Zebulum, M. A. C. Pacheco, M. M. R.
Vellasco, and M. H. Szwarcman. Evolutionary experi-
ments with a fine-grained reconfigurable architecture for
analog and digital CMOS circuits. In Proc. of the Third
NASA/DOD Workshop on Evolvable Hardware, pages 36–
43, Long Beach, CA, USA, July 2001. IEEE Press.

[17] S.-Y. Lin, R.-J. Huang, and T.-D. Chiueh. A tunable gaus-
sian/square function computation circuit for analog neural
networks. IEEE Transs on Circuits and Systems II: Analog
and Digital Signal Processing, 45(3):441–446, Mar. 1998.

[18] A. Stoica, D. Keymeulen, R. S. Zebulum, A. Thakoor,
T. Daud, G. Klimeck, Y. Jin, R. Tawel, and V. Duong. Evo-
lution of analog circuits on field programmable transistor
arrays. In Proc. of the Second NASA/DOD Workshop on
Evolvable Hardware, pages 99–108, Palo Alto, CA, USA,
July 2000. IEEE Press.

[19] A. Stoica, G. Klimeck, C. Salazar-Lazaro, D. Keymeulen,
and A. Thakoor. Evolutionary design of electronic devices
and circuits. In Proc. of the Congress on Evolutionary Com-
putation, pages 1271–1278, Washington DC, USA, July
1999. IEEE Press.

[20] A. Thompson. On the automatic design of robust electron-
ics through artificial evolution. In Proc. ICES 1998, LNCS
1478, pages 13–24, Lausanne, Switzerland, Sept. 1998.
Springer Verlag.

