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Abstract - This paper presents a new VLSI archi-
tecture for ANNs based on the combination of digital
signalling and analog computing. It achieves a high
level of parallelism as well as efficient area and power
usage making very large networks possible. An imple-
mentation is presented combining 33k synapses and
256 neurons on 9 mm2 of silicon area.

I. INTRODUCTION

To be useful in real-world applications like image-
processing or data communications hardware neural net-
works should be at least as fast and easy to apply
as software implementations. Furthermore their power
consumption should not exceed that of conventional
microprocessor-based (CPU) solutions. For these rea-
sons most of the hardware realizations reported so far
are based on digital signal processing using a medium
degree of parallelism and an optimized internal data flow
to achieve high performance [1][2]. Since they are essen-
tially based on the same technology as state-of-the-art
CPUs their speed versus power consumption ratio is of
equal order of magnitude [3]. The incorporation of vector
units that perform parallel operations on limited preci-
sion data (8 to 32 bits) into nearly all modern CPUs has
reduced the architectural advantage of custom digital so-
lutions significantly in the last five years [4].

Analog solutions on the other hand are mostly fully
parallel neural network implementations. Their size is
limited by the analog nature of their internal signals.
The deterioration of the signal quality due to noise and
distortion makes it difficult to build larger systems, espe-
cially at high data rates. The operational speed of their
basic elements is usually much lower compared to digital
solutions. Therefore a high level of parallelism is neces-
sary [5]. Finally, it is difficult to interface them from a
digital system.

Our group has chosen an approach in between these
two opposite poles by combining fully analog network
blocks with digital communication between several of
these blocks. Each block is based on a feedforward net-
work and can be modelled by the standard Perceptron
formula. It consists basically of a two-dimensional array
of synapses having input and output neurons attached to
its sides. Due to the digital input (Ij) and output sig-
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Fig. 1. Left: recurrent network, right: configured as a two-
layer network by setting some synapses to zero (dashed
lines).

nals (Oi) the weight multiplication is reduced to an addi-
tion and the activation function g(x) equals the Heaviside
function Θ(x):

Oi = g(
∑
j

ωijIj), g(x) = Θ(x), I, O ∈ {0, 1} (1)

The network uses a discrete time update scheme, i.e.
Eq. 1 is calculated once for each network cycle. The net-
work can be configured as a recurrent network by feeding
some of its outputs back to the input neurons. In a re-
current network the output at time t depends not only on
the actual input, but also on the previous network cycle.
If ∆t denotes the time needed for one network cycle the
output function of one network block can be written as:

O(t + ∆t)i = Θ(
∑
j

ωijI(t)j +
∑
k

ω′ikO(t)k) (2)

As illustrated in Figure 1, the feedback can be used to
configure the network as a multi-layer Perceptron by set-
ting the appropriate weights to zero. In this setup two
network cycles are needed to propagate a signal from the
input layer to the output layer.

Multiple network blocks can be interconnected. Only
digital signals have to be exchanged. Since every net-
work block works at the same frequency fnet = 1/∆t the
blocks can be synchronized to a common network clock.
If the digital data has to travel a longer distance, it is
possible to insert clocked buffers that are synchronized
to the network operation to keep the whole chip run-
ning at fnet. A buffer increases the feedback delay by
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∆t. Each connection of l outputs, originating at block m
(Oml ) and having n clocked buffers in the data path adds
one term to Eq. 2:

O(t + ∆t)i = Θ(
∑
j

ωijI(t)j +
∑
k

ω′ikO(t)k

+
∑
l

ω′′ilO(t − n∆t)ml . . .) (3)

For the remaining inter-block connections the according
terms must be inserted. Using this technique the mixed-
mode organization of the network allows large networks
without speed penalties. The analog operation is con-
fined to the individual network blocks. Their size can
be selected according to the used circuit technology and
the desired speed and analog precision. If the power con-
sumption of the analog blocks is low enough the blocks
can be combined to networks as large as the semiconduc-
tor manufacturer allows. Our group has developed two
different neural network circuits that could be used to
build megasynapse chips in the described fashion. The
first is based on charge sharing, while this paper focuses
on the newer version using current summation.

The inter-block routing can be made configurable to al-
low a programmable topology. By the same connections
the network can communicate at full speed with exter-
nal circuits providing input or training data. Input data
is not confined to binary information since multiple sin-
gle bit inputs can be used together to feed integer values
into the network. The coding can be arbitrary and, since
there is no fixed number of bits, also optimized individu-
ally for each input signal by the training algorithm. The
network can also generate binary coded integer output
by using the arbitrary feedback depth provided by the
recurrent design. Using n network cycles and n output
neurons together, a successive approximation analog to
digital converter can be implemented by Eq. 2. Thereby
the analog sum over the Ij could be converted into the
corresponding n-bit integer value.

II. NETWORK IMPLEMENTATION

A. Basic Considerations

An analog neural network implementation based on Eq. 1
is only useful if the resources necessary to build a synapse
are low. The reduction to single bit input and output
neurons implies that a higher number of them is needed
to solve the same problems as with multi-valued neurons.
Using Eq. 1 has two advantages: first, the synapse can be
made simpler, insomuch the speed and area benefits out-
weigh the functional disadvantages. The second is linked
to the fixed pattern noise, a phenomenon caused by the
inevitable device variations in the manufacturing process

of integrated circuits. If analog circuits are reduced in
size, the deviations of the device parameters from their
design values increase. The problem becomes worse if
high speed is also a design target. Circuits built from
large devices have higher capacitances than those built
from small ones, hence, higher currents are needed to
charge them in the same time. This reduces the maxi-
mum number of copies of this circuit that can be put on
a chip if the power budget is fixed. A neural network
needs both: high speed and a large number of synapses.
Therefore the synapse circuit has to be small, fast and
limited to a current consumption in the order of magni-
tude of 10−6 Amperes to keep the total power consump-
tion of a megasynapse chip in a reasonable range. The
binary synapse does not need a multiplier, depending on
its input it just adds its weight value or not. Any er-
ror caused by device variations changes only the effective
value added. This can be fully compensated by shifting
the stored weight by the same amount in the opposite di-
rection. Any chip-in-the-loop training algorithm will do
this automatically without a performance degradation.
This is not possible for a multiplier-based synapse that
has not a single operating point, but a transfer function
that may be deformed in a complex way due to device
variations.

The weight storage is the second difficult part of an
analog neural network. The following boundary condi-
tions should be fulfilled:

• small size
• sufficient precision (> 4 bit)
• low power consumption
• fast update rate

The last item forbids the use of an EEPROM-based stor-
age, which is often utilized in analog ANNs due to its
otherwise superior properties [6]. The time needed to
reprogram EEPROM cells (usually more than 1 ms) pre-
cludes their use if some kind of chip-in-the-loop train-
ing is intended. Therefore, the memory must either be
based on a digital storage – dynamic or static – combined
with some kind of digital to analog conversion or analog
storage, i.e. as charge. We have chosen the latter since
this allows for the smallest synapse size. Furthermore
the precision of a simple charge storage is limited by the
kTC-noise:

uc =

√
kT

C
(4)

For a 60 fF capacitor (as used in the presented chip) at
a temperature of 300 K the voltage noise is 0.26 mV.
Related to the 1.5 V swing used, this leads to a weight
error of 0.17 % which is usually more than sufficient.
The disadvantage of a capacitor is the leakage current
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Fig. 2. Operation principle of the first neural network chip
based on charge-sharing.

of the transistor controlling the charge flow. A backup
of the weights must be stored elsewhere and periodically
transferred on the synapse weight capacitors. Since this
refresh must happen every 10 to 100 ms it has no impact
on the network operational speed. In the training phase
the weights must be updated much more often anyway.
Even for a megasynapse chip the external storage of the
weight values occupies about 10 to 12 Megabits. Far less
than the capacity of the smallest available SDRAM chip
from current production.

B. The Charge-Sharing Neuron

Figure 2 shows the operational principle of our first neu-
ral network prototype [7]. It uses a switched two-phase
design with switch frequencies up to 100 MHz. In the
precharge phase the synapse weight is copied on the out-
put capacitor. The activated synapses share the charge
on their output capacitors in the evaluate phase. The
neuron fires if the resulting voltage is higher than the
precharge voltage. This chip, which has a total number of
4096 synapses, has proven the feasibility of mixed-mode
neural networks, but had some drawbacks that have been
removed with the presented new network chip. The dif-
ferences are listed in Table I.

C. The New Current-Sum Neuron

The neuron operation is based on the addition of cur-
rents sunk by the active synapses. Figure 3 shows the
basic components of the new network block. The input
signal of a neuron is generated by 128 synapses. Two
lines connect the synapses to the neuron. One is conduct-
ing the excitatory and the other the inhibitory current.
Each synapse connects either to the exciting (I+) or the
inhibiting (I−) line, depending on the voltage at the sign
capacitor. A voltage controlled current sink determines
the weight of the synaptic connection. Its control voltage
is stored on the weight capacitor.

If the input neuron i fires (Ni = 1), the current sink
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Fig. 3. Operation principle of the new neural network chip
presented in this paper.

is connected to either the I+ or the I− line. If the sign
switch is at the left side (S+i = 1), the current from the
I+ line flows through the synapse i. The currents sunk
by the synapses produce voltage drops ∆V± across the
resistors R+ and R− in the neuron:

∆V± = R±

128∑
i=1

S±iNiIi (5)

A comparator amplifies the voltage difference ∆V+−∆V−
to a logic zero or one which is stored in the output latch
after the comparison has finished. A logic one in the
output latch means that the neuron has fired. The two
transistors M± in the current paths act as cascodes to
isolate the comparator inputs from the large capacitance
of the I+ and I− lines, therefore speeding up the network
operation. The two current sinks Ib± force a small current
through M± even if no synapse is active, thereby keeping
them in saturation.

D. Architecture of the Presented Network Chip

Figure 4 shows a micro photograph of the neural network
chip. It is partitioned in four network blocks containing
128 synapses and 64 neurons each. The 32768 synapses
take up 3.4 mm2 of silicon area, the whole chip measures
about 12.3 mm2 (3 mm×4.1 mm). The second largest
portion of the core area is used by the digital to analog
converters (DAC) and the analog weight storage circuits.
Two opposing network blocks share one of these DAC
units. Together they constitute one half of the network.

The chip communicates with external hardware by a
fast digital bus to load the synaptic weight values and the
input data into the network and to read back the neuron
output data. It uses bidirectional low-voltage differen-
tial signalling (LVDS [8]) to achieve data rates of 600
Megabit/s on each differential pair without disturbing
the analog network operation. The usage of LVDS to-

0-7803-7278-6/02/$10.00 ©2002 IEEE



TABLE I

Enhancements made in the presented network chip

first chip presented chip advantage

method of weight summation charge sharing current sum increased precision
sign of weight voltage level different signal lines no zero reference needed

weight loading input analog digital (integrated DACs) digital IO only, faster
synapse power consumption fixed per synapse proportional to weight lower total power consumption

1m
m

1.5 mm

digital control logic 8 digital/analog convertes 128 input neurons

128x64
synapses

one network block

64 output neurons analog weight storage bidirectional LVDS IO cell

Fig. 4. Micro photograph of the presented neural network
chip.

gether with a double-data rate source-synchronous clock-
ing scheme allows to connect multiple network chips to-
gether on a common bus. The bus is organized in 16
data and 3 address lines. Its total transfer rate adds up
to 11.4 Gigabit/s.

Figure 5 shows the interconnection between two net-
work blocks that share a DAC unit. The input neurons at
the top and the bottom feed the signals into the network
block. Each input neuron has two inputs. A configura-
tion bit stored in each input neuron selects one of them.
The inputs named data inputs can be directly set by the
external data bus of the chip, the feedback inputs are
connected to the output neurons. With each network
cycle the selected input signal is amplified and sent to
the column of synapses connected to the input neuron.
There is always a direct feedback connection between the
output neurons and the input neurons of one block. But
there are also connections from the opposite block as well
as from the other half of the chip (named other inputs
in Figure 5). Each neuron data output can also be read
back by the external data bus.

Figure 6 shows the feedback connections between the
four network blocks. The routing of the neuron output
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signals is biased towards two layered network structures
with data flowing from left to right. This is also reflected
by the direct in and direct out signals that connect di-
rectly to standard CMOS IO pads of the chip. They
allow the direct connection of external data sources and
sinks to the network. If the chip is used in data commu-
nication applications for example, an analog front/back
end could be connected there. The direct input data bits
are connected to the input neurons twice: inverted and
non-inverted. Thereby binary coded signals could be fed
into the network in a way that for each code value an
equal number of synapses is activated.

The DAC unit consists of 8 DACs with 10 bit resolu-
tion. The conversion time of each DAC is 40 ns. Be-
tween the DACs and the synapses there are 64 analog
weight storage units that store the analog output cur-
rents of the DACs. Since each DAC has two banks of
digital input latches capable of the full interface speed,
the time to load the digital data can be totally hidden
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in the conversion time. After 8 conversion cycles all the
64 analog weight storage units have their weight values
stored. While they are transferred into one selected row
of synapses the DAC unit is used to load the weight stor-
age units of the opposite network block. The digital
sign bits are transferred together with the weight val-
ues into the storage units. They get programmed into
the synapses in parallel with the weight currents. The
weight data is transmitted to the DACs in the top and
bottom half of the network chip simultaneously.

By using the scheme described above a total weight
storage rate of 400 Megaweights/s is achieved. All the
weights of the chip can therefore be refreshed in 82 µs. By
using a 10 ms refresh rate, the network speed is reduced
by less than 1 %.

E. Synapse Operation

The circuit diagram of the synapse is depicted in
Figure 7. The main parts are the current sink (transistors
M1 to M6) and the sign storage (M7 to M12). Transis-
tors M1 to M4 form the current memory cell. M1 acts as
a current sink, controlled by the voltage on M3, which is
connected as a capacitor. Since its capacitance decreases
if its gate voltage falls below its threshold voltage Vt, the
source voltage of M1 is raised by the voltage drop over
the diode-connected NMOS transistor M2, which has the
same W/L ratio as M1. M2 keeps the gate voltage of M3
always above Vt and also increases the output resistance
of the current sink.

The dependency between the gate voltage of M1 and
its channel current is not linear and also differs between
each synapse due to the transistor parameter variations.
Therefore the synapse weight is programmed by a current
instead of a voltage. The current is stored by activat-

TABLE II

Chip Performance Summary.

process features 0.35 µm, 1 poly, 3 metal
die/core size 4.1 × 3 mm2/3.6 × 2.5 mm2

blocks/neurons/synapses 4/256/32768
supply voltage 3.3 V

network frequency fnet 50 Mhz typ.
connections/s 1.64 Teracps

weight update rate 400 Megaweigths/s max.
weight resolution 10 bit (nominal) + sign

bus data transfer rate 11.4 Gigabit/s max.

ing the write signal and keeping the evaluate signal low.
Thereby M4 and M6 are conducting while M5 isolates
the current memory from M7 and M8. M1 will sink any
current forced into it through the Ipark input by the ana-
log storage unit. After deactivating the write signal the
gate voltage necessary to sink the desired weight current
by M1 and M2 is kept on M3. The voltage error caused
by the charge injection of M4 can be compensated by a
slight shift in the weight value.

The sign of the synapse is determined by the state of
M9 and M10. While the write signal is active, either
the I+ or I− line is set to Vdd by the analog storage
unit. This causes charge flowing on the gates of either
M9 or M10, letting it conduct and thereby discharge the
gate of its crosscoupled counterpart. The charge injection
caused by M11 and M12 in the moment write becomes
inactive (switches to Vdd) increases the voltage on the
activated side even further while the other side is held
low by the conducting transistor. This ensures that the
selected output transistor, either M7 or M8, is switched
on. It is also possible to disable a synapse completely by
setting both I+ and I− to ground.

During normal network operation the input neuron ac-
tivates the synapse with the evaluate signal. This con-
nects the current sink to the I+ or I− line, depending
on the state of M9 and M10, i.e. the programmed sign.
To keep the current sink in its correct operational region
and avoid voltage drifts at the drain terminal of M1 the
current sink is connected to the Ipark line once it is de-
activated by the input neuron. Ipark is connected to Vdd
via a transistor acting as a cascode set to the same bias
voltage Vc as I+ and I− in the neuron (see Figure 3).

The right half of Figure 7 shows the layout drawing
of a synapse embedded in the synapse array. Every sec-
ond row is mirrored. This allows adjacent rows to share
their n- respectively p-well with each other. The mis-
match introduced by this mirroring can be calibrated by
the weight value. One synapse occupies only 104.4 µm2.
Table II summarizes the features of the network chip.
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III. EXPERIMENTAL SETUP AND FIRST
RESULTS

The network chip is connected to a digital control unit
that generates the synaptic weights and initializes the
internal configuration registers. If the data transmission
capacity of the direct IOs is too low or their connection to
the network block not adequate for the application, the
digital control unit can also route any input and output
data across the external bus to the network blocks. Chip-
in-the-loop training algorithms can use the external bus
for their training and result data transfers.

Figure 8 shows the setup used for the experiments with
the neural network chip. Since the training algorithms
are implemented in C++, the network is connected via
a PCI-card to a standard PC. The PCI-card carries a
Virtex-E FPGA1 that acts as the digital controller for
the network chip. It is also capable of directly interfacing
to the LVDS-signals. To avoid unnecessary data trans-
fers across the PCI-bus the FPGA has its own memory.
The DACs generate the bias voltages and the reference
currents needed by the network chip. If the training al-
gorithm was implemented completely in the FPGA, no
software interaction would be necessary.

As the training system is in an early phase we have
only been able to run a few tests to verify that the chip
is working properly. A genetic algorithm was successfully
used to train the network for the 4 and 5 bit parity prob-
lem. Two network cycles were performed by one network
block. A similar configuration has been reported as a
software solution for the 4 bit parity problem in [9]. A
more detailed description of the algorithm used can be
found in [7]. Figure 9 shows the results.

IV. CONCLUSION AND OUTLOOK

We have introduced a mixed-mode neural network ar-
chitecture that allows ANNs to be realized in VLSI mi-
crochips that combine high performance with low area
requirements. With a synapse size of about 100 µm2

more than a million synapses could be integrated with
today’s process technologies. The small synapse size is
made possible by using digital input and output neurons

1The Virtex-E FPGA is manufactured by Xilinx Inc., San Jose,
CA, USA
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combined with an analog weight summation. We have
presented an implementation of this architecture having
33k synapses. The neuron operation is based on the com-
parison of excitatory and inhibitory current sums. Due
to the integrated DACs for the weight input any host
communication uses only digital signals. First results of
this chip show that it is possible to train the 4 and 5 bit
parity problem with a genetic algorithm using a chip-in-
the-loop configuration. In the future we plan to train the
chip for time-domain problems, like data communication
applications, filtering, etc. We also intend to develop hi-
erarchical training methods to make the best use out of
the large possible number of synapses.
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