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Bestimmung der Masse des W Bosons mit dem ALEPH Detektor

Die Masse des W Bosons wurde mit Zerfällen in die Kanäle eνqq̄ und µνqq̄ extrahiert.
Ereignisse der Datenahmeperiode 1998-2000, entsprechend einer integrierten Lumi-
nosität von etwa 650 pb−1, wurden mit dem ALEPH Detektor aufgezeichnet. Eine kine-
matische Anpassung, die die Viererimpuls-Erhaltung benutzt, verbessert die Massen-
rekonstruktion. Die Masse des W Bosons ist mit Hilfe der Umgewichtungsmethode
gemessen. Statistische und systematische Unsicherheiten sind nahezu gleich groß,
deswegen sind letztere besonders detailliert untersucht. Das vorliegende Resultat geht
in den Weltmittelwert der W Boson Masse ein, der in einer elektroschwachen Anpas-
sung benutzt wird, um eine obere Grenze für die Masse des Higgs Bosons abzuleiten.

Measurement of the W boson mass with the ALEPH detector

TheW boson mass has been extracted using W-pairs decaying into eνqq̄ and µνqq̄ final
states. The events were selected from the data collected with the ALEPH detector
during the years 1998, 1999 and 2000, corresponding to a total integrated luminosity
of about 650 pb−1. A kinematic fit imposing four-momentum conservation is then
applied to improve the invariant mass resolution. The W boson mass is obtained from
the invariant mass spectrum by aMonte Carlo reweightingmethod. Since the statistical
and systematical uncertainties are at the same level, the latter are investigated in great
detail. The presented W boson mass is then included in a preliminary world average
which is used to extract a upper limit on the Higgs boson mass.

Mesure de la masse du boson W avec le détecteur ALEPH

Les paires de boson W décroissantes en eνqq̄ ou µνqq̄ sont utilisées pour mesurer la
masse du boson W . Les évènements semi-leptonic sélectionnés proviennent de données
prises à l’aide du détecteur ALEPH entre 1998 et 2000. Un ajustement cinématique ap-
pliquant la conservation de l’impulsion améliore la résolution de la masse invariante. La
masse du boson W est extraite de la masse invariante par la méthode de repondération.
Comme l’incertitude statistique de la masse est à peu près égale à l’incertitude sys-
tematique, une étude poussée de ces dernières est présentée. Le résultat obtenu est
combiné avec d’autre mesures de la masse du boson W , la combinaison entrant dans
l’ajustement electro-faible servant à extraire une limite supérieure de la masse du boson
de Higgs.
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Chapter 1

Introduction

1.1 History of the Weak Interaction

In nuclear β decays, one observes that the energy and momentum of the measurable decay
products is not conserved. This fact caused Pauli to postulate in 1930 the existence of a new

particle, the neutrino, which carried off the missing energy and momentum. The weak inter-
action was introduced by Fermi (1934) [1] to provide a model for β decay, in analogy to the

electromagnetic process of virtual emission and absorption of a single photon. The coupling
constants for muon (µ) decay and muon-capture were found to be of the same order of magni-
tude as for beta-decay. Subsequently a universal Fermi interaction was hypothesised in 1948,

which suggested that the couplings in each of those three processes should be of the same type
and strength [2]. In 1957, a number of experiments established the parity non-conservation

in weak decays [3] showing the vector and axial-vector (V-A) coupling of the weak interaction
[4]. This motivated the need to confirm the beta decay of the pion, subsequently established

in 1958 [5]. The unification of the electromagnetic and weak interactions was achieved by
Weinberg [6], Salam [7] and Glashow [8]. The Eightfold way [9], the quark idea [10], the deep

inelastic scattering of electrons on protons [11] and asymptotic freedom helped to construct
the theory of strong interaction between quarks (Quantum Chromodynamics, QCD) [12]).

The combination of the electroweak theory and QCD forms the Standard Model. The last
force, gravity, is not included in the Standard Model. The interactions in the Standard Model

are mediated by bosons. The photon (γ) is the mediator of the electromagnetic interaction;
the two charged W+, W− bosons and the neutral Z0 boson are the mediators of the weak
interaction. The eight gluons are the mediators of the strong interaction. The fermions

are grouped in three families and constitute matter. One of the Standard Model’s biggest
successes was the observation of the W± by the UA1 [13] and UA2 [14] collaborations in

1983. But the Standard Model leaves many questions unanswered. One important problem
is that the Higgs mechanism, which is supposed to give mass to all leptons, quarks and weak

bosons, has not been verified. The Large Electron-Positron Collider (LEP) was especially
built to study the electroweak interaction. With a purely leptonic initial state, many of the

parameters of the Standard Model have been tested with great precision.

1.2 The LEP Program and the W Mass

During the first phase of LEP (called LEP I) between 1989 and 1995, the LEP machine

was operated at beam energies around half the Z0 mass. Z0 events are classified in two
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groups, hadronic and leptonic decays, where the Z0 decays into a quark pair or a lepton
pair respectively. During the second phase of LEP (called LEP II) between 1996 and 2000,

the LEP machine was operated at centre-of-mass (CM) energies at and above the W-pair
threshold, which allows a precise determination of the W mass. The search for a direct
signature of the Higgs boson required the CM energies to be pushed to the highest possible

limits.
The Z0 mass was measured with great precision at LEP I by measuring cross sections

around the Z0 peak. Using the LEP I and SLD data, the top mass (Mtop), the Higgs mass
(Mh) and the W mass were all indirectly measured or constrained. The error obtained

on the W mass is 33 MeV/c2. The top mass is directly measured from top production
at the Tevatron in perfect agreement with the indirect measurement. Therefore, a direct

measurement of the W mass, when compared with the indirect measurement, can be seen as
a further test of the Standard Model at the level of loop corrections. To make such a test

meaningful, the error on the direct measurement should be comparable to that of the indirect
measurement. Finally, the new data on the W mass can be used as independent new data,
and the Higgs mass can be further constrained.

Many methods have been developed to measure the W mass experimentally. One method
involves the measurement of the W-pair production cross section which rises rapidly near

threshold (see Section 2.3). However, the delivered luminosity is too small to reach the goal
outlined in the previous paragraph. Another method consists of measuring the lepton end-

point energy. The statistical sensitivity of the method is too small [18]. Another method
is the direct reconstruction of the W decay products which is used here. Each W boson

can decay either hadronically or leptonically. The decay channel studied in this thesis is the
semi-leptonic one, where one W decays in hadrons and the other one in leptons.

1.3 Outline of the Thesis

This thesis is organised as follows. Chapter 2 is dedicated to the principle properties of the W
bosons, which are needed for the analysis. In chapter 3, the experimental set-up is described.

Since the expected error of the W mass for LEP II is 50 MeV/c2, the precision of the Monte
Carlo simulation becomes extremely important. Chapter 4 gives a short introduction of all

Monte Carlo simulations used in this thesis. The selection of events is studied in chapter 5.
Chapter 6 gives an introduction of the direct reconstruction. Chapter 7 deals with all the

systematic uncertainties of the measurement. Finally, the result is combined with previous
ALEPH measurements [19] and with all measurements of the W boson mass. An upper limit
on the Higgs mass is derived from this measurement.



Chapter 2

Theoretical Background

“One of the most profound insights in theoretical physics is that the interactions are dictated
by symmetry principles” [20]. The connection between symmetries and conservation laws

is best discussed in the framework of a Lagrangian field theory. In the first section of this
chapter, this concept will be used to form the electroweak interaction theory. The Higgs

mechanism, which gives mass to the particles, will be introduced. The second section of
the chapter is dedicated to the general properties of the W bosons and the third section

introduces the cross section of the e+e− → W+W− process.

2.1 Gauge Symmetries

Invariance under translation, time displacement and rotation leads to the conservation of
momentum, energy and angular momentum respectively.

The Lagrangian of the Dirac equation:

(iγµ∂µ −m)ψ = 0, (2.1)

which is satisfied by free fermions with mass m, is:

L = iψ̄γµ∂µψ −mψ̄ψ. (2.2)

If the fermion fields ψ undergo a transformation ψ → ψ′(x) = eiαψ(x), the Lagrangian is

invariant under this phase transformation. This invariance can easily be verified by noting:

∂µψ → eiα∂µψ(x), (2.3)

ψ̄ → e−iαψ̄. (2.4)

The phase α is a real constant, which can be chosen arbitrarily. Therefore, the value is
specified for all space-time. This type of gauge invariance is called global. A more general
case would be if α could differ from point to point in space-time, α = α(x).

2.1.1 U(1) Local Gauge Invariance and Quantum Electrodynamics

The equation (2.3) could be generalised to the transformation

ψ(x)→ ψ′(x) = eiα(x)ψ(x), (2.5)
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where α(x) depends on space and time in a completely arbitrary way. This is called a local
(U(1)) gauge invariance. The free Dirac Lagrangian

L = iψ̄γµ∂µψ −mψ̄ψ, (2.6)

is not invariant under this transformation (the derivative of ψ does not follow equation

2.5). To impose the invariance of the Lagrangian under local phase transformation, it is
then necessary to introduce a vector field (also called a gauge field) Aµ with transformation
properties such that the change induced by ∂µ is cancelled. This could be done if ∂µ is

replaced by the covariant derivative Dµ:

∂µ → Dµ = ∂µ − ieAµ, (2.7)

where Aµ transforms as

Aµ → Aµ +
1

e
∂µα. (2.8)

Hence, the requirement of a local gauge theory leads to the fact that the Dirac particle (charge
-e) is no longer free. Invariance of the Lagrangian (2.6) is obtained by replacing ∂µ by Dµ:

L = iψ̄γµDµψ −mψ̄ψ = ψ̄ (iγµ∂µ −m)ψ + eψ̄γµψAµ. (2.9)

In order to give a physical meaning to this new field, the kinetic properties of this field should

be added to the Lagrangian. In addition, this kinetic energy term must be invariant under
equation (2.8), so this term is the gauge invariant field strength tensor:

Fµν = ∂µAν − ∂νAµ. (2.10)

This implies that the corresponding gauge particle, the photon, must be massless. We are

led to the Lagrangian of QED:

L = ψ̄ (iγµ∂µ −m)ψ + eψ̄γµψAµ −
1

4
FµνF

µν . (2.11)

2.1.2 SU(2) and the Weak Interaction

In the previous section only the QED Lagrangian was considered. The photon was introduced

as a gauge particle. However, we would like to apply the gauge theory to the weak process
as a generalisation and we want to keep the gauge invariance. The SU(2) group is chosen

to describe the weak interaction. There is no real reason to choose this group based on
fundamental principles, but this model or group has been extremely successful in describing

the data. The generalisation of local gauge invariance to a group SU(N) is:

ψ(x)→ ψ′(x) = eiΣ
n
j=1θj (x)Tjψ, (2.12)

for N greater than one, where the θj(x) are arbitrary real functions and Tj are the generators
of SU(N). Two fundamental notions are extracted from this generalisation:

• The group has now N dimensions,

• The SU(N) groups are not Abelian 1 groups.

1The definition of an Abelian group is that the members commute with respect to multiplication.
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The fermions exist in nature in two different configurations, concerning the spin and veloc-
ity vectors. These two vectors can be parallel or anti-parallel and are called left-handed

(anti-parallel) or right-handed (parallel). We know, from past experiments, that the weak
interaction treats fermions differently according to the chirality 2. The helicity is defined as
the projection of the spin onto the direction of motion. The behaviour of the weak force is

not the same for right- and left-handed particles, i.e the left-handed fermions are doublets
of SU(2) and right-handed fermions are singlets. However, the electromagnetic force affects

both right-handed and left-handed particles. We aim then to build a group composed of U(1)
and SU(2). This theory is the so-called electroweak interaction.

2.1.3 Electroweak Interaction

In order to achieve this “unification”, the transformation of the field (2.5) of U(1) is rewritten
as:

ψ → eiβ(x)Yψ, (2.13)

where Y is the generator (also named the weak hypercharge) of the group. This transforma-
tion is valid for left- and right-handed fermions. For SU(2)×U(1), it is natural to apply the

following separation:

ψL → eiα
j(x)τj+iβ(x)Y ψL, (2.14)

ψR → eiβ(x)Y ψR, (2.15)

where the index L (R) stands for left-handedness (right-) and τj are the three generators
of SU(2) (also named weak isopin). Furthermore, one would like to introduce the charge

operator Q, since the conservation of charge is a fact in nature. One needs to find a relation
between the weak operator (invariant under this gauge) and the electric charge to include the

conservation of charge in our description. This relation, known as the Gell-Mann-Nishijima
[20] relation, is relatively simple:

Q = T3 +
Y

2
, (2.16)

where T3 is the third component of the weak isospin. Using this relation, all weak quantum

numbers (Table 2.1) are determined.
To generalise the QED Lagrangian (2.11), we are forced to introduce four gauge vector

fields, three vectors W
j
µ with j=1,2,3 associated with SU(2) and one vector Bµ with U(1).

The covariant derivative is then:

∂µ → Dµ = ∂µ + igτjW
j
µ + ig′

Y

2
Bµ, (2.17)

where g and g′ are the couplings between the fermions and the SU(2)×U(1) vector fields.
The electroweak Lagrangian is then:

L = ψ̄Lγ
µ

(
i∂µ − gτjW

j
µ − g′

Y

2
Bµ

)
ψL + ψ̄Rγ

µ

(
i∂µ − g′

Y

2
Bµ

)
ψAµ

−1

4
W j

µνW
µν
j − 1

4
BµνB

µν (2.18)

2The chirality is the symmetry which belongs to the description of left (right) handed fermions.
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First generation Second generation Third generation Isospin {3rd Y Q

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

1
2

{
1
2

−1
2

-1

{
0

−1

eR µR τR 0 -2 -1

(
u

d

)
L

(
c

s

)
L

(
t

b

)
L

1
2

{
1
2

−1
2

1
3

{
2
3

−1
3

(u)R (c)R (t)R 0 4
3

2
3

(d)R (s)R (b)R 0 4
3 −1

3

Table 2.1: Electroweak quantum numbers of all fermions.

where Bµν and Wµν are the field strength tensors. This theory should reproduce all the

current knowledge of the weak and electromagnetic interactions. The gauge particles do not
correspond to the particles which “transmit” the weak interaction, the Z0 and W± gauge

bosons. The observed bosons can be related to W and B by:

Aµ = Bµ cos θW +W 3
µ sin θW, (2.19)

Zµ = −Bµ sin θW +W 3
µ cos θW, (2.20)

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
, (2.21)

where θW is the weak mixing angle (also called Weinberg angle). At this level of the theory,
the gauge bosons Aµ, Zµ, W

±
µ which are introduced by this rotation are still massless.

2.1.4 Spontaneous Symmetry Breaking

The W and Z0 bosons have masses close to 80 GeV/c2 and 90 GeV/c2 respectively. However,
this means that the Lagrangian is no longer invariant under gauge transformations, as massive

particles break gauge symmetry. A way to solve this problem is given by the Higgs mechanism.
This mechanism consists of the introduction of a new doublet of complex scalar (Higgs) fields
with a weak hypercharge Y=1 defined as:

Φ =

(
φ+

φ0

)
. (2.22)
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The associated Lagrangian of this field is the electroweak Lagrangian (equation (2.18)) where
we add the Higgs field potential:

LH = (DµΦ)
† (DµΦ)− V (Φ), (2.23)

where the potential V (Φ) is:

V (Φ) = µ2Φ†Φ+ λ
(
Φ†Φ

)2
. (2.24)

The λ parameter must be larger than 0, to ensure no divergence. Figure 2.1 shows two cases
of the Higgs potential, for µ2 positive and negative. Considering the case µ2 < 0, with a

Figure 2.1: The Higgs potential V (Φ) with:

a) unique ground state corresponding to µ2 > 0 and
b) degenerate ground state corresponding to µ2 < 0 (Mexican hat).

degenerate ground state, the minimum of the potential is obtained when:

Φ†Φ =
−µ2

2λ
=

v2

2
. (2.25)

Using pertubative theory, it is possible to expand Φ around its minimum:

< Φ >=< 0|Φ|0 >=

(
0

v/
√
2

)
. (2.26)

Any choice of a vacuum expectation value, φ(x), of Φ, will break the SU(2)×U(1) symmetry.
However, the photon is massless, so one does not want to break the U(1) symmetry. Choosing

a neutral field φ0 prevents U(1) to be broken. The gauge boson masses are then derived by
replacing the vacuum expectation value for φ(x) in the kinetic term of the Lagrangian LH :

(DµΦ)
† (DµΦ) =

∣∣∣∣
(
igτjW

j
µ + i

g′

2
Y Bµ

)
φ

∣∣∣∣2

=
1

8

∣∣∣∣
(

gW 3
µ + g′Bµ g

(
W 1

µ − iW 2
µ

)
g
(
W 1

µ + iW 2
µ

)
−gW 3

µ + g′Bµ

) (
0

v

) ∣∣∣∣
2

(2.27)

=
1

8
v2g2

[(
W 1

µ

)2
+
(
W 2

µ

)2]
+

1

8
v2
(
g′Bµ − gW 3

µ

) (
g′Bµ − gW 3µ

)
.
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Noting that W+W− = 1/2
((

W 1
)2

+
(
W 2
)2)

and diagonalising3 the remaining term, one

can extract the following equations, corresponding to the mass of the Z0 and W± bosons:

MZ0 =
1

2
v
√

g2 + (g′)2, (2.28)

and

MW =
1

2
vg. (2.29)

In addition, the ratio of the two boson masses can be written as:

MW

MZ0
= cos(θW ) =

g√
g2 + (g′)2

. (2.30)

2.2 General Properties of the W Boson

TheW mass, MW , has been measured at CERN [15] and the Tevatron pp̄ colliders at Fermilab

([16] and [17]). Before LEP II, the ‘world average’ value was [18]:

MW = 80.26± 0.16 GeV/c2. (2.31)

The goal of LEP II is to perform a direct measurement of the W mass with a precision of

30-50 MeV/c2. At LEP I, the W mass was derived from the Fermi Constant, GF (or Gµ,
historically), which is measured in muon decays:

GF =
α
(
M2

Z

)
π√

2M2
W

(
1−M2

W /M2
Z

) 1

1−∆r
(2.32)

where α
(
M2

Z

)
is the electromagnetic coupling constant at Q2 = M2

Z and ∆r are loop correc-

tions (i.e . ∆r = 0 in the lowest-order) which depend on mt (mass of the top quark) and MH

(mass of the Higgs boson). At LEP II, the W mass can be measured directly. Since the GF ,
α and MZ are measured to high precision [21], this formula can be used to test the Standard

Model.

2.2.1 W Pair Production and W Decay

The W bosons at LEP II are primarily produced in pairs. At tree-level, the production of a W
pair is described by the annihilation diagram e+e− through a Z0 or a γ (s-channel), or through

the exchange of a neutrino (t-channel). These s- and t-channel Feynman diagrams are shown
in Figure 2.2. These three processes are called the CC03 diagrams (CC for Charged Current).

Since the W boson decays into a fermion and anti-fermion (Table 2.2), the “detectable” final
states are composed of four fermions at the “parton” level (Table 2.2) [20]. At LEP II,

there are many processes with four final state fermions. In this work, the ones which come
from a W pair will be called signal and the rest of the four fermion processes will be called

background (for example e+e− → e+e−e+e− has 144 Feynman diagrams).
In the purely hadronic process, WW → qq̄qq̄, both W bosons decay hadronically, there

is also the possibility of colour reconnection (colour exchange between decay products of

different W boson) or Bose-Einstein effects between pions from jets of different W bosons

3One of the eigenvalues is zero by construction.
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Figure 2.2: CC03 diagrams.

decay Branching Ratio (in %)

W → eν 10.54 ± 0.17

W → µν 10.54 ± 0.16

W → τν 11.09 ± 0.22

W → lν 10.69 ± 0.09

W → hadrons 67.92 ± 0.27

Table 2.2: LEP [22] measured branching ratios of the W boson. The first three values do not
use the lepton universality assumption. The two last values assume the lepton universality

and l stands for a lepton, either an electron, a muon or a tau.

after the quark fragmentation. In the purely leptonic channel and in the processWW → qq̄τν,

there are multiple neutrinos in the final state. As the neutrino escapes undetected, events
with more than one neutrino are not constrained enough for accurate mass reconstruction.

Consequently, in this thesis only the semi-leptonic channel, with a muon or an electron (the
branching fractions are given in Table 2.3), will be considered.

process Branching Fraction (in %)

W+W− → qq̄qq̄ 46.1

W+W− → lν (e, µ, τ) qq̄ 43.5

W+W−→ lν (e, µ) qq̄ 29.0

W+W− → lνlν 10.3

Table 2.3: Decay channel of a W pair. The branching fractions are obtained using the value
of Table 2.2.

2.3 W Pair Cross Section

In this section, we describe the theoretical cross section for the process e+e− → W+W−.
The lowest-order cross section determines most of the features of the W pair production. In
addition, we introduce here the on-shell model which neglects the width of the W boson. We

will later introduce the W width and discuss the off-shell model.
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Figure 2.3: Preliminary WW cross section as function of the CM energy measured by the

four LEP experiments [22]. The Monte Carlo simulations RacoonWW and YFSWW will be
described in chapter 4. GENTLE [57] is a semi-analytic program.

The total cross section (Figure 2.3) of four fermion processes cannot be split into sig-
nal (σs) and background (σb) in a gauge invariant way. For practical reason, however, the

following approximation is assumed:

σtot = σs + σb. (2.33)

The WW contribution can be decomposed in the form

σs = σ0 (1 + δEW + δQCD) , (2.34)

where σ0 is the Born contribution, δEW are electroweak corrections (to lowest-order) and
δQCD is a QCD correction.

2.3.1 The On-shell Model

In this model, the W boson has no width. The WW signal cross section is given by [18]:

σ0
on ≈ πα2

s

1

sin4 θW
·β +O

(
β3
)
, (2.35)
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for an unpolarised beam, β � 1 where β =
√
1− 4M2

W/s is the velocity of the W boson and

θW is the Weinberg angle. The β term comes from the t-channel. The s-channel and the s−t

interference contributions are proportional to β3. This is a consequence of CP conservation,
fermion helicity conservation in the initial state, and the orthogonality of different partial

waves [23]. This approximation is only valid up to a few GeV above threshold, (see Figure
2.3). The top curve shows the contribution of the t-channel only. One clearly sees that the

s-channel β3 contribution cannot be neglected for energies well above threshold.
In order to determine the W mass with a precision of ≈ 30 MeV/c2, it is necessary to include

electroweak corrections. Two of the most important corrections include:

• Initial State Radiation (ISR): ISR has a large effect on the cross section (change of -20
% at threshold and -6 % at

√
s = 180 GeV [18]), and determines the effective energy

available in the CM frame of reference.

• The Coulomb singularity: Before the decay, the two W bosons can exchange a photon.

This interaction induces a correlation between the two masses, which modifies the W
mass distribution. Since this effect is proportional to 1/β at the production threshold
in the on-shell case, the Coulomb effect would diverge. In reality, because the W has a

natural width, there exists a cut-off for multiple soft photon exchange between the W
pair which eliminates the Coulomb divergence.

2.3.2 W Width

In the on-shell case, the W boson is treated as a stable particle, which is an approximation.
The width of the W boson is one of the most important parameters in the study of W pair

production. Moreover, the behaviour of the cross section and the branching ratios are affected
by this width.

Since the W boson has a finite width, the Coulomb singularity is avoided. The W width
is known theoretically with good precision, but experimentally it is relatively poorly known.

The W width is dominated by decays into fermion-antifermion pairs (at the lowest-order).
The partial width for each decay channel (massless fermions are assumed, i.e Mf � MW ) is

given by:

ΓBorn
W→fifj

=
α

6

MW

2 sin2 θW
· |Vij|2N f

c . (2.36)

For leptonic decays, the CKM [20] mixing matrix Vij is diagonal and the colour factor N f
c

is one. For hadronic decays, the element of the mixing matrix Vij is the relevant element of

the CKM matrix and the colour factor N f
c is three. The total width is obtained by summing

over the partial widths, in the Born approximation:

ΓBorn
W =

3α

2

MW

2 sin2 θW
. (2.37)

Including QCD and electroweak radiative corrections which can be accounted for by para-

meterising the lowest-order in terms of GF and MW instead of α and θW , the W width is
obtained as

ΓW→liνi =
GFM

3
W

6
√
2π

, (2.38)
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for a W → liνi decay and

ΓW→ui d̄j
=

GFM
3
W

2
√
2π

|Vij|2
(
1 +

αs

(
M2

W

)
π

)
, (2.39)

for a W → uid̄j decay. The total width is then:

ΓW =
3GFM

3
W

2
√
2π

(
1 +

2αs

(
M2

W

)
3π

)
. (2.40)

The mass dependence of the width of the W boson is clear (ΓW is proportional to the third
power of MW ). Three possibilities exist for extracting of the W mass and its relation to the

W width:

• The functional dependence ΓW = ΓW (MW ) is included as a Standard Model constraint;

• The Standard Model constraint is removed and the width is extracted with the W mass;

• The width is fixed at the Standard Model value [18]: 2.094± 0.002.

In this work, the choice of the W width is the functional dependence (2.40).

2.3.3 The Off-shell Model

The cross section (at the lowest order) can be expressed by a two-fold convolution of a hard
scattering off-shell cross section with Breit-Wigner density functions [24]:

σ (s) =

∫ s

0
ds−ρ (s−)

∫ (
√
s−√

s−)
2

0
ds+ρ (s+) σ

0 (s, s−, s+) , (2.41)

where

ρ (s) =
1

π

ΓWMW∣∣s−M2
W + iMWΓW

∣∣2 , (2.42)

is the relativistic Breit-Wigner density function associated to theW± propagators. The s+, s−
are the invariant masses (squared) for the W+, W− and the σ0 (s, s−, s+) is the cross section
at the lowest order, which contains term corresponding to the CC03 W pair production.
Explicit calculations can be found in [24]. The on-shell cross section is simply

σon (s) = σ0 (s,MW ,MW ) . (2.43)

An interpretation of equation (2.41) is that the W mass influences the cross section through
the off-shell propagators, all the other parts are approximately independent of MW and

ΓW (not including radiative corrections). To incorporate the energy dependence of loop
corrections to the W propagator, an s-dependent width

ΓW (s) =
s

M2
W

ΓW , (2.44)
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is used. ΓW (s) is called the “running width”. In the simulation described in chapter 4, a
fixed width (i.e no s-dependence) is used. The expression of the W mass in the two schemes

is closely related near resonance by a variable transformation [18]:

MW = Mmeas
W − 1

2

(Γmeas
W )2

Mmeas
W

,

MW ≈ Mmeas
W − 27 MeV/c2. (2.45)

This 27 MeV/c2 correction is applied to the measured W mass (Mmeas
W ) and this dependence

is not the one described by the equation (2.40) which concerns the MW dependence on ΓW .

As for the on-shell model, we have to take into account radiative electroweak corrections.
The largest effect to the total cross section is the Initial State Radiation (ISR). However,
ISR also affects the differential cross-section (W mass distribution) by softening the expected

Breit-Wigner resonant structure. Figure 2.4 displays the effect of ISR and other electroweak
corrections to the total WW cross-section.
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Figure 2.4: The cross-section for e+e− → W+W− in various approximations:
(i) Born (on-shell) cross-section, (ii) Born (off-shell) cross-section, (iii) with first order
Coulomb correction, and (iv) with initial state radiation.





Chapter 3

Description of the Apparatus

3.1 The LEP Collider

The Large Electron-Positron (LEP) Collider (Figure 3.1) is the world’s largest circular particle

accelerator. Its circumference is 26.66 km. Electrons and positrons are delivered to LEP by
an injector chain. The electrons are first accelerated to 200 MeV in the Linear Injector of

LEP (LIL). Some of these electrons are used to produce positrons by collision with a fixed
tungsten target [25]. The electrons and positrons are then accelerated to 600 MeV in the

Electron-Positron Accumulator (EPA).

Figure 3.1: Schematic view of the LEP ring with the four experiments and a part of the
injector chain.

The beams are injected into the Proton Synchrotron (PS) to accelerate them to 3.5 GeV.



18 CHAPTER 3. DESCRIPTION OF THE APPARATUS

center of mass energy (GeV)

0

10000

20000

30000

40000

50000

200 201 202 203 204 205 206 207 208 209

Figure 3.2: Distribution of the integrated luminosity in 2000 as a function of the CM energy.

The mean energy of 205.99 GeV is indicated by the downward vertical arrow.

The beams are then transferred to Super Proton Synchrotron (SPS), which operates as a 23
GeV injector for LEP. The electrons and positrons are guided by a lattice of bending magnets

located around the ring [25].

In the initial configuration, LEP could operate only at beam energies in the order of 45.6

GeV (called LEP I). For LEP II the accelerator was required to increase the energy of the
CM system to above 2MW � 161 GeV. This has been achieved by changing resistive radio

frequency (Rf) copper cavities with super-conducting NbTi Rf-cavities.

3.1.1 Luminosity

The rate Ṅ of a given type of interaction is determined by the total cross section σ of the
corresponding physical process and the luminosity L of the colliding beams

Ṅ = σL. (3.1)

The luminosity at LEP is given by

L =
N−N+kf

4πσxσy
, (3.2)
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where
f : frequency of the bunch collisions, f = 11.246 Hz,

k : number of bunches in each beam, k = 4,
N−, N+ : number of electrons (positrons) in a bunch, ≈ 54 · 1010,
σx, σy : transverse dimensions of the beam, σx = 145 µm,σy = 5 µm.

The integrated luminosity L, defined by L =
∫
Ldt, delivered by LEP during LEP II is

approximatively 700 pb−1 at a CM energy between 161 GeV and 209 GeV (details are given
in Table 3.1).

During the year 2000, the LEP machine was in the so-called “Higgs boson mode” to

increase the possibility of discovering the Higgs boson. Some techniques have been developed
to increase the CM energy. The beams were accelerated to a certain energy, usually 102 GeV,

using the full capacity of the machine. The Rf frequency was then shifted to gain a few GeV
(between 0.5 and 2.5 per beam). As a result, there are many different CM energy values,
between 200 GeV and 209 GeV (see Figure 3.2).

Year
√
s [ GeV ] L [pb−1]

1996 161 11.1
1996 172 10.7

1997 183 56.8

1998 189 174.2

1999 192 28.9

1999 196 79.8
1999 200 86.3

1999 202 41.9

2000 200-205* 81.6
2000 205-209* 134.6

end of LEP - 702.0

Table 3.1: Value of L, the integrated luminosity, at LEP II recorded by ALEPH

(for the year 2000, see in the text for more details.).

3.1.2 The Measurement of the LEP Energy

The LEP beam energy is the absolute scale for measuring the W boson mass if the event is
constrained to the beam energy (see chapter 6). Consequently the beam energy has to be

measured very precisely. At LEP I, the average beam energy was obtained with an uncertainty
of 1 MeV, using the technique of resonant depolarisation [26].

At LEP II this technique can not be used since the beams are not sufficiently polarised.

Instead, one must make several resonant depolarisation measurements at low energy and
then extrapolate to higher energies. Most of the beam energy error comes directly from this

extrapolation.
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3.2 ALEPH - Apparatus for LEP PHysics

The ALEPH detector [27] was built to measure the events created by e+e− collisions in

LEP and was designed to accumulate as much information as possible. ALEPH is an axially
symmetric detector (Figure 3.3) which covers as much of 4π solid angle as possible, with the

interaction point at the centre of the apparatus.
ALEPH uses a reference coordinate system, with an origin point at the theoretical beam

crossing. The positive z-axis is along the nominal e− beam direction. For the two other
components, we can use Cartesian (x, y, z) coordinates (x-axis pointing through the LEP

centre, the y direction is orthogonal to x and z) or cylindrical coordinates (r, φ, z). The
direction of the z-axis is the same for both systems.

In the following section, short descriptions of each sub-detector are given, starting with
those closest to the interaction point and working away from it.

Figure 3.3: The ALEPH-Detector. 1 : Vertex detector, VDET. 2 : Inner Tracking chamber,

ITC. 3 : Time Projection Chamber, TPC. 4 : Electromagnetic Calorimeter, ECAL. 5 :

Luminosity Monitors, LCAL. 6 : Superconducting Magnet Coil. 7 : Hadron Calorimeter,

HCAL. 8 : Muon Detection Chambers.

3.2.1 The Vertex Detector

The Vertex Detector is the first sub-detector which a secondary particle meets.
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It consists of two concentric layers of double-sided silicon wafers, at average radii 63 mm
and 110 mm from the beam pipe and has a total length of 40 cm, providing a polar angular

acceptance of |cos θ| < 0.95 for detection of charged particles. A photo of the VDET is shown
in Figure 3.4. The VDET has a resolution of 10 µm in the rφ direction and 15 µm in the z
direction for tracks perpendicular to the beam. The VDET is used to identify an accurate

position of the vertex of the decay charged products, like hadrons containing b or c quarks.

Figure 3.4: The ALEPH Vertex Detector.

3.2.2 Inner Tracking Chamber

The Inner Tracking Chamber (ITC) is a cylindrical multi-wire drift chamber with a ArCO2

gas mixture. The active volume is a cylinder of 2 m long and 570 mm in diameter. 960 sense

wires are strung in 8 concentric layers which provides 8 accurate r−φ points for | cos θ| < 0.97.
The wires run parallel to the beam direction and the r−φ coordinate is obtained by measuring

the drift time, with a precision of roughly 150 µm. The z coordinate is obtained by measuring
the difference in the arrival times of pulses at the two ends of each sense wire (Figure 3.5),

with a precision of 7 cm. It also provides the only tracking information for the level-1 trigger.

field wire

sense wire

calibration field wire

Figure 3.5: Schematic view of drift cell in the ITC.
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Detector ∆pt/p
2
t (GeV/c)−1

TPC 1.2 ·10−3

+ ITC 0.8 ·10−3

+ VDET 0.6 ·10−3

Table 3.2: Transverse momentum resolution. Every line is a step further in the
reconstruction.

3.2.3 Time Projection Chamber

The Time Projection Chamber (TPC) is the central detector in ALEPH and provides an
excellent momentum and angular resolution for charged particles. The TPC has a cylindrical

structure with two wire-chamber end-plates and a central membrane (Figure 3.6) and with
a length of 4.7 m and inner and outer radius of 0.31 m and 1.8 m respectively. An electric
field of 11 kV/m exists between the wire chambers and the central membrane. The electrons

produced from ionization of the ArCH4 gas mixture (91% Ar, 9% CH4), drift parallel to the
beam axis and towards the wire chamber. The r−φ coordinate is measured by interpolating

the signals induced on cathode pads. The z-coordinate is determined from the drift velocity
and the drift time.

The trajectory of a charged particle in the TPC is a helix due to the strong magnetic

field. The TPC can measure 21 points (or hits), of the projected helix on the end-plates and
at least four points are required to carry out the helix reconstruction. The trajectory of the
charged particle is provided by combining the measurements of the three sub-detector VDET,

ITC and TPC. The resolution is given in Table 3.2 and obtained using e+e− → Z0 → µ+µ−

events. The other aim of the TPC is to identify different particles. For charged particles

Figure 3.6: Overall view of the TPC.
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which traverse the entire TPC volume, the ionization is sampled 340 times due to the small
spacing between sense wires (4 mm). This is a measure of dE/dx of a track because the

pulse height measured on one sense wire is a direct measure of the number of electrons
created by the track in the wire acceptance. The dE/dx measurement is important for the
identification of the electron and also provides an ability to distinguish pions, kaons, and

protons in the relativistic rise region. Using the dependence of the mean dE/dx on velocity
and the momentum information, the mass and the identity of a charged particle can be

deduced.

3.2.4 Electromagnetic Calorimeter

The first three sub-detectors give only tracking information of a charged particle. The aim of

the Electromagnetic Calorimeter (ECAL) is to measure the energy of all the electromagnetic
showers, neutral (like the photon) or charged. The ECAL is arranged as a barrel surrounding

the TPC and as two end-caps (Figure 3.7), so that the calorimeter is hermetic (3.9π solid
angle). The ECAL is an alternation of lead and wire chambers, with a nominal thickness of

nearly 22 radiation lengths. The barrel and the two end-caps are composed of 12 modules
each. In each module, the cathode pads and the wire chambers are arranged in towers,

pointing towards the interaction point. Each tower is read out in three sections of depth
(each section is called “storey”), corresponding to the first 4, the middle 9 and the last 9
radiation lengths. Cracks account for 2% of the barrel and 6% of the end-cap surfaces. The

ECAL energy resolution is

∆E

E
=

0.18√
E(GeV )

+ 0.009, (3.3)

for an electron detected in the barrel and emitted at 90o. The resolution of the calorimeter

is degraded in two regions, one due to the overlap region where the electromagnetic showers
develop into both barrel and end-cap modules and the other close to the inner edge of the
calorimeter at low polar angle.

Figure 3.7: Overall view of the ECAL.
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With the information from the TPC and the ECAL, electron estimators can be defined (and
are used for the lepton selection). The first estimator is the dE/dx estimator:

RI =
I− < I >

σI
(3.4)

where I is the measured dE/dx, < I > is the average of the measured dE/dx for an electron

and σI is the resolution. The RT and RL estimators measure the transversal and longitudinal
dimensions of the electromagnetic showers. Charged tracks are extrapolated from the TPC

and their crossing point is computed in each of the three segments in depth of the calorimeter.
The estimator RT is defined using the four storeys closest to the extrapolated track in each

segment as

RT =
E4/p− < E4/p >

σE4/p
, (3.5)

where E4 is the energy deposited in the selected towers, p is the momentum of the charged

track measured in the TPC, the ratio E4/p is the mean energy fraction deposited in four
central towers and σE4/p is the resolution of the ratio. The estimator RL is defined by:

RL =
XL− < XL >

σXL

, (3.6)

where XL is the inverse of the mean position of the longitudinal energy of the shower, defined
by:

XL =
E4∑4

i=1

∑3
j=1 E

j
i Sj

, (3.7)

where Ej
i is the energy deposited in the selected storeys i of segment j and Sj is the mean

depth of energy deposition in that segment. All the electron estimators are normalised.

3.2.5 Super-conducting Magnet

The Magnet consists of a fully calorimetrized iron yoke (HCAL, see next paragraph) and
a super-conducting solenoid producing a uniform field of 1.5 T parallel to the LEP beam

direction and corresponding in uniformity to the TPC requirements. The solenoid operates
at 4 Kelvin, using 5000 A and consuming only 100 W of power for refrigeration purposes.

3.2.6 Hadron Calorimeter

The large iron structure that constitutes the main support of ALEPH and contains the return
flux of the magnetic field also acts as the absorber for hadrons and helps to identify muons

(Figure 3.8). Like ECAL, the Hadron Calorimeter, HCAL, is subdivided in a barrel which
consist of 12 modules and two end-caps, each with 6 modules. Each module is structured

into 23 iron slabs and the active detector is inserted between two slabs. This active detector
is composed of limited streamer tubes.

The resolution of HCAL for pions is

σE
E

=
0.85√

E [GeV ]
. (3.8)
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Figure 3.8: Overall view of the HCAL, showing the individual modules of the end-caps and

barrel regions.

3.2.7 Muon Detection Chambers

On the outer side of the HCAL, two double layers of limited streamer tubes are used to detect

the muons which have traversed the full iron thickness. Since the layers are separated from
each other by 50 cm, the position and the angle can be measured. The spatial resolution of

the muon chamber is 3.5 mm.

3.2.8 Luminosity Monitors

As already mentioned, the measurement of the luminosity provides the normalisation for the

measurement of cross-sections. Using the theoretically well-known QED Bhabha scattering
process (e+e− → e+e−), the luminosity is found from the number of events detected divided

by the Bhabha cross section. The differential Bhabha cross section (lowest QED order) in
the approximation of small angle scattering is obtained by integrating the differential cross
section:

dσ

dΩ
� 4α2

E2

1

θ4
, (3.9)

where Ω is the solid angle, E the beam energy and α the fine structure constant. At low
angles, weak interference effects are strongly reduced. The luminosity monitors are composed

of:

• The Luminosity Calorimeter (LCAL), used for off-line analysis.

• The Silicon Calorimeter (SICAL) was the principal luminosity monitor for LEP I. At

the start of LEP II the SICAL provides a cross check for the LCAL.
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• The Bhabha Calorimeter (BCAL), is located closer to the beam pipe and is used for
on-line analysis.

3.3 Trigger System

The major purpose of the ALEPH trigger is to identify all events involving e+e− initial states
and to initiate the readout system, while reducing the rate of background events (non-e+e−

initial states) to a “low” level [27]. A “low” trigger rate (∼ 10 Hz) is one that is compatible
with the expected physical e+e− interaction rate.In addition, another trigger was set-up,

being sensitive to two-photon interactions.
Keeping the total trigger rate at a low level is necessary for the following technical reasons:

• The open-time for the TPC gate [27] is reduced.

• The dead-time (read-out time for the electronics) is reduced to an acceptable limit.

• The amount of unwanted data recorded on disk is reduced.

For these reasons, the trigger was designed in three different levels. The first level (Level
1) provides a decision within 5 µs, which is fast compared to the time between two beam

crossings (23 µs) [28]. This decision is based on the presence of electromagnetic energy or a
coincidence between a charged track detected in the ITC and energy in one of the calorimeters.

After a positive decision at Level 1, the second level (Level 2) verifies some of the Level
1 charged track triggers by replacing the ITC tracking information by the TPC tracking

information available 50 µs after the beam crossing (time required for the ionization electrons
to drift to the TPC end-plates). After a positive Level 2 decision, the whole detector is “read

out”.
Thus the next event which may be seen in the detector is the following third beam crossing.

The Level 3 trigger (Level 3), which is defined in software, is used to reject background
events passing Levels 1 and 2 (such as beam gas interactions or off momentum particles
hitting the collimators). The rate at Level 3 is then reduced to 1-2 Hz which is consistent

with the expected event rate at the Z0 resonance.

3.3.1 Detector Components used in the Trigger

The sub-detectors involved in the trigger scheme are HCAL, ECAL, LCAL, ITC and TPC.
In order to monitor the e+e− collision rate, trigger signals from the luminosity calorimeters

(SICAL and BCAL) are also used. To correlate the presence of the particle signals in the
various detector elements, the apparatus is divided into projective segments of the different

sub-detectors.

3.3.2 Creation of Physics Trigger

Three complementary triggers are used to select Z0 decays in Level 1 (see Table 3.3):

• The total energy trigger is derived from the ECAL modules by adding the signals from
the wire plane of the barrel and of the end-caps. An minimum energy of 5.5 GeV in

the barrel, or 4.6 GeV for one end-cap, or 1.7 GeV in each end-cap is required.

• The electromagnetic track trigger requires a track candidate in the ITC in coincidence

with an energy deposit in an ECAL module to which the track is pointing.
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• The muon track trigger is based on ITC-HCAL coincidence and requires a track in the
ITC in coincidence with four planes of HCAL tubes in the same azimuthal region.

Some of these three complementary triggers are updated at Level 2 (that is, the TPC is used

at Level 2 to confirm the ITC information used at Level 1). In addition two other triggers
are used to calculate the trigger efficiency.

• An electromagnetic track trigger is based on a low ECAL wire energy threshold (less
than 200 MeV) but with a more restrictive requirement on the ITC track. This trigger

has a higher background, especially at high energy. Therefore, it is down-scaled and
tightened by requiring the presence of two ITC tracks.

• A back-to-back trigger is constructed by requiring two track segments back-to-back in

the ITC. This trigger must be confirmed at Level 2.

Other triggers, with a larger rate, are used for verification purpose, such that every event
does not need to be written on tape. A scale factor is used, meaning that a fraction only of

these triggers is kept. Other triggers are used only for testing purpose, so they are enabled
on request.

At the Z0 peak, the Level 2 rate is of the order of 4-5 Hz, where Bhabha events in the
luminosity calorimeter contribute 2-3 Hz, Z0 events and two-photon events contribute about

0.5 Hz each, and the remainder is electronic noise, cosmic rays and beam related background.
At higher energies, the rate is of the order of 5-6 Hz, due to higher beam related back-

ground and two-photon interactions.
The basic triggers for hadronic events are the total energy trigger and the muon track trig-

gers. These two triggers are independent and are more than 99.7% efficient for the hadronic

decays. Their combined efficiency exceeds 99.999% with an uncertainty of less than 0.001%.
For the purely leptonic final states, the main triggers are the total energy, the electromag-

netic and muon track triggers. Since there are two leptons which can trigger independently,
the single lepton efficiency is measured from the observed number of events in which one

or both events have triggered and is used to calculate the overall efficiency for lepton pairs.
Since the bending of the magnetic field prevents back-to-back high momentum tracks from

simultaneously pointing to insensitive regions between modules, the trigger inefficiency for
all lepton channels is less than 3 · 10−5.

3.4 Data Acquisition

The Data Acquisition (DAQ) has the primary task of reading out the data coming from
every sub-detector, following a Level 2 “yes” decision. Following the data stream from the

sub-detector to the reconstruction of the physics events, a tree-like architecture is used. The
Readout Controllers are used to initialise the sub-detector readout and create a new data

format. Then this information is sent to the Event Builder which builds a “sub-event” for each
sub-detector. All the “sub-events” are collected by the Main Event Builder, which performs

a synchronisation and checks the event completeness. As part of the Main Event Builder,
the Level 3 trigger is called to reject unwanted events. At the end of the chain, the Main

Readout Computer collects all the accepted events. The “online” analysis, the event display
and verification tasks are then performed and the event is stored. The event reconstruction

is another task of the DAQ.
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3.4.1 Event Reconstruction

The Facility for ALeph COmputing and Networking (FALCON) performs directly the recon-

struction of the event after a “run” 1 has been taken and written on tape. FALCON operates
in two modes:

• The processing of raw data shortly after a run ends.

• At the end of the data taking periods, the full set of data is reprocessed using the
currently best knowledge of the detector.

The output of FALCON is ready to perform an analysis (the format of the output is called
Production Output Tape (POT). The POTs are then transferred to the CERN Computer

Centre, where they are stored.

The full reconstruction is performed by one single program called Job to Understand Lep
Interactions in Aleph (JULIA) which is executed from FALCON. The information from each

sub-detector is treated in the following steps:

• the charged tracks are reconstructed;

• the dE/dx of the charged tracked is obtained from the TPC wire information;

• the primary vertex is then reconstructed;

• Calorimeter energy deposits are clustered;

• the energy flow [29] analysis is performed;

• the particles are identified.

The energy flow algorithm [29] is used to improve the resolution of the visible energy in

an event. This algorithm also avoids double counting by taking into account redundant
information. One aspect of quality criteria imposed on ALEPH data is that all entries in

this algorithm are well measured. The first step of the energy flow algorithm is to remove all
possible noise of the calorimeter and exclude badly reconstructed tracks. After the so-called
“cleaning” is done, the charged tracks are required to have at least 4 hits in the TPC. The

trajectory of each track is then extrapolated through the ITC and the VDET. If the track
originated from the interaction point, the track is kept. If it is not the case, a study of the

secondary vertex allows to determine if there is a neutral particle with a short decay length
(like a B meson) or not. The tracks are then extrapolated to the calorimeter.

A list containing all objects in the detector is created. A particular treatment is then

applied for different particle types:

• For electrons, the deposit in the ECAL is analysed. If the energy measured in the
calorimeter does not agree 2 with the energy calculated from the momentum coming

from the tracking, an additional particle is created with the energy difference, and it
is attributed to be a photon bremsstrahlung. The electron and the bremsstrahlung

photon are then removed from the list.

1A run is , in ALEPH, a certain number of events, corresponding to 2 hours of data taking or at most 600
Mbytes.

2More then 3 standard deviations.
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• The muons identified in the muon chambers or with their HCAL pattern are subtracted
from the list of object.

• The identified photons are also removed.

• The remain objects, seen in the detector, are then split into 2 parts, the neutral and
the charged objects, with their respective four-momenta.

The physics analysis of interest can then start.
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Trig Scale In Short Long Name

Bit Factor Name Description

0 65000 RNDM TST Random Test Trigger (PLU-Level)
1 20 Y SNG C E2 Single Charged ElMag ∗ ITC RPZ(No TPC)

2 1 Y SNG N EL Single Neutral ElMag Energy
3 1 TAG SNGC Single Charged ElMag ∗ BCAL TRG

4 5 Y SiCAL ME SiCAL High ∗ Low
5 1 Y LW LO HI LCW A Low ∗ B high + A high ∗ B Low

6 20 Y LW A+BLO LCW A Low + LCW B low
7 1 Y LW A+BVH LCW A high + LCW B high
8 Y SNG MUON Single Muon (No TPC update)

9 Y SNG C EM Single Charged ElMag (No TPC update)
10 MIST LV2 (L1 Cycle: OFF, L2 CYCLE: ON)

11
12 LW A LOW single arm side A

13 LOW B LOW single arm side B
14 BCAL TRG Single Arm BCAL (10 GeV in 1/4 module)

15 Y SNG MUX2 SNG MUON (TPC update)

16 Y SNG EMX2 SNG C EM (TPC update)
17 Y ETT EWBA Total Energy ECW Barrel

18 Y ETT EWEA Total Energy ECW Endcap A
19 Y ETT EWEB Total Energy ECW Endcap B

20 Y ETT EWE∗ Total Energy ECW (Endcap A ∗ Endcap B)
21 Y VDET LSR MiniVertex LaserShot (External)

22
23 Y TPC LASR TPC Laser Shot (External)

24

25 Z0 Trigg SNG C EM ∗ SNG MUON
26 TRK CNT1 ITTC >2, Lv2 = TPTI >2

27 Y TRK CNT2 ITBB, Lv2 = (TPTI+TPTO)>1

28 T0 SYNCH On if T0 Module NOT synchronised to beam
29 Y DBL C E2 SNG C E2 ∗ ITTC ≥ 2 (TPC update)

30 Y COS HCBA ITBB ∗ HCW(≥ 10 double planes)
31 Y RNDM TRG DownScaled GBX-Trigger (External;TPU)

Table 3.3: Physics triggers (an example from MAY 1999, ∗ = “AND”, + = “OR”). Y means

that the trigger is enabled.



Chapter 4

Monte Carlo Simulation

In the previous chapter, a description of the treatment of the data coming from the ALEPH
detector was given. Now the simulation tools are introduced which are used to:

• compare a model to the experimental data,

• develop and test the reconstruction programs,

• check the sensitivity of variables to a physical parameter (i.e. MW ),

• design and optimise the analysis.

Monte Carlo techniques are very useful to fulfil such requirements. They are based on random
numbers which are used to simulate physics processes. A given Monte Carlo simulation is

usually composed of several programs, where each program is dedicated to reproduce a specific
model (or theory) or to simulate the experimental setup. The discussion will be limited to

the Monte Carlo simulations or programs which are used in the analysis described in this
thesis.

4.1 Generators

As a first step, a Monte Carlo package needs to be chosen to test the associated theoretical
predictions. In this context, the execution of a typical Monte Carlo simulation consists of
three steps:

• Initialisation including the input parameters;

• Event generation where an event routine is called;

• Closing evaluation where the total cross section is calculated.

4.1.1 WW Monte Carlo Simulation

KORALW

The Monte Carlo package used to simulate the production of W events in ALEPH is KO-
RALW, version 1.21 [30]. This generator is based on a so-called Master Formula, detailed

in reference [30]. This master formula represents all the knowledge of the theory, with some
simplifications due to finite calculation time. In particular, KORALW includes the full low-

est order e+e− → 4f process, but with approximations of the radiative (QED) correction.
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To generate the full set of 4-fermion diagrams and their associated matrix elements, the
GRACE package [31] with fixed W and Z widths is used. O(α) corrections can be separated

in two classes depending on the following criteria. If the radiative correction affects only one
branch, the radiative correction is said factorizable. Factorizable QED corrections are taken
into account by the YFS [32] exponentiation method. This method can include Infra-Red

(IR) photonic corrections before the Monte Carlo simulation takes place. Currently, only 3rd

order (α3) real corrections have been calculated. The generation of the 4-momenta for each

W decay is done by sampling an approximate phase space distribution (after the application
of the YFS method). In order to recover the original phase space distribution, events falling

below a certain weight are discarded. The main properties of this generator are the following:

• matrix element for W pair production,

• decay of the W boson into massive fermion,

• kinematics with exact four momentum conservation for the entire WW creation and
decay processes.

The width of the W boson is taken from the Standard Model predictions
(Γ = 2.094± 0.014 GeV/c2).
In order to use KORALW events, several interfaces are provided, which will be describe later

in the section 4.2. However, the QED corrections are not implemented in a complete way.
This might not be sufficient for a precision measurement [33]. Therefore, additional and

independent Monte Carlo programs are also used to check the KORALW output, e.g. the
RacoonWW (RAdiative COrrection ON e+e− → W+W− → 4f) [34] and the YFSWW [35]

Monte Carlo simulations.

RacoonWW

As explained in chapter 2, the W boson is not a stable particle. Therefore, the final state is

not composed of the twoW bosons, but their decay products instead. Problems can arise from
a singularity at the pole. At LEP II, the W bosons are produced almost on-shell 1. To take

advantage of this fact, one can project the off-shell matrix element onto the on-shell matrix
element. This approximation is called the Double Pole Approximation (DPA) in the case of

doubly resonant bosons. Usually, one refers to the leading pole approximation. More details
concerning this calculation are given in [33]. The DPA is used in the RacoonWWMonte Carlo

simulation to estimate the virtual O(α) corrections to e+e− → W+W− → 4f . No additional
approximations are applied for the virtual photonic corrections. For the real photonic part
of the higher orders corrections, the full matrix element of the process e+e− → 4fγ and the

Initial State Radiation are treated via the structure function approach [33]. Unfortunately,
the RacoonWW Monte Carlo generator has negative weights. This feature of the program

does not allow an efficient generation. This means that RacoonWW is only used at generator
level to compare its prediction with the one of YFSWW.

YFSWW

Concerning the real correction, the basic principles of YFSWW are similar to KORALW. The
YFS exponentiation is used to calculate the real radiative corrections up to 3rd order. For

the virtual correction, a leading pole approximation is also used. The three doubly resonant

1This does not mean that the W boson is stable, but it is a real particle in this case.
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CC03 WW contributions are the only diagrams used in the generation. This means that
there are two possibilities to use YFSWW, either to generate full reconstructed events or to

interface this generator with KORALW. In the context of this work, the interface approach
is used. The relevant information is that YFSWW and KORALW have a common base: the
doubly W -resonant (WW ) process with the same universal 2 radiative corrections.

4.1.2 Background

As seen in chapter 2, there are several different processes which may produce a 4-fermion

final state which is not a doubly resonant W boson. These background processes should be
rejected (if possible) or well controlled. Moreover, 2-fermion final states cannot be excluded

so easily. Therefore a brief description of all types of background generators is given in the
following section.

PYTHIA

PYTHIA [36] was used to produce the following background processes:

• e+e− → Z/γ → qq̄ (γ);

• e+e− → ZZ;

• e+e− → Weν̄;

• e+e− → Ze+e−.

Two points are worth noting. Firstly, certain topologies of ZZ events are included in the
4f-GRACE package. These “WW like” events must be removed from the ZZ sample in order

to avoid double counting. Secondly, the Weν̄ process is treated as background, since this
process is not a doubly resonant diagram.

KORALZ

KORALZ [37] has the same fundamental principle as KORALW except that it is used to

generate single Z0 production instead of doubly resonant W production. The only decay
channel considered is e+e− → Z/γ → ττ . There is the possibility that τ -pair events could

look like W pair events, since the τ can either decay into a low multiplicity jet or into a
lighter charged lepton.

PHOTO2

At LEP II, the process with the largest cross section is a two-photon initial state interaction.

For these events, it is very unlikely to see a large energy deposit in the detector or a large
multiplicity event. However, the cross section is so large that some of the events may be

produced in phase space regions similar to WW physics, so it also needs to be considered as
background. The events are simulated using PHOTO2 [38].

2Universal corrections are Initial State Radiation (ISR), Final State Radiation (FSR) and the Coulomb
correction.
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Figure 4.1: View of the parton shower and the fragmentation process. The three phase are
explained in the text.

4.2 External Packages

After the generation phase, there are 4-fermions (or 2-fermions for some background reactions)
in the final state. QCD effects [39] and the radiation in the final state have not yet been
taken into account. Therefore, external packages are used to simulate the fragmentation3 of

the quarks and to implement the Final State Radiation (FSR).

4.2.1 Fragmentation

The evolution of a quark into observable hadrons can be separated into three phases, as
shown in Figure 4.1.

The first phase: Parton branching process.
The evolution of the initial quark in the colour field is described by the Altarelli-Parisi

equation [40]. A quark may radiate a bremsstrahlung gluon, which intern may split into a
quark-antiquark pair or a pair of gluons, as shown in Figure 4.2. A parton shower develops

until the available momentum transfer for subsequent branching is below some threshold. At
that point, hadronisation sets in.

This technique is used by the JETSET [36] model and by the HERWIG [41] model.
Another approach is called the dipole cascade model in the ARIADNE [42] model. The

quark pair radiates a gluon. The resulting qq̄g is then treated as two dipoles, one between
the quark and the gluon or the gluon and the antiquark. Every produced dipole radiates a

gluon which produces a new dipole.

3The fragmentation process is defined as the hadronisation and the subsequent decay.
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Figure 4.2: Schematic view of the three possible processes in the parton shower: Radiation of

a gluon, production of a quark antiquark pair and gluon splitting.

The second phase: Hadronisation.

The hadronisation process is not (yet) theoretically calculable from fundamental principles.

Phenomenological models are used to describe the transition from colour partons to
colourless hadrons. In the string fragmentation model, a colour flux tube is stretched be-

tween quarks. As the distance between the quarks increases, the density of energy of the
string becomes larger. When the energy of the string is large enough, the string breaks to
produce a new pair of quark. As the string breaks and a new quark-antiquark is created, the

energy in the new strings is reduced. This process stops when there is not enough energy to
produce a new pair quark-antiquark. This approach is used by the JETSET and ARIADNE

package.

Another model is the so-called cluster model. At the end of the parton shower, all gluons
split into quark-antiquark pairs. Neighbouring qq̄ pairs are merged into a cluster if the

resulting cluster is colour neutral. If the cluster is heavier than a given mass, it will decay
into a pair of lighter cluster otherwise it will decay into hadrons. The difference between a

cluster and a hadron is the following: a hadron is on-shell, whereas a cluster is off-shell. If the
cluster can not decay into two on-shell hadrons, it decays into two off-shell clusters (or one

on-shell hadron and one off-shell cluster). This continues until only on-shell hadrons exist in
the final state. This approach is used by the HERWIG package.

The third phase: Decays of unstable particles.

After hadronisation, a set of primary hadrons is produced. Unstable short-lived particles
decay according to the corresponding matrix element. Measurement of lifetimes, masses and

branching fraction are incorporated into the model. The JETSET package is found to be
in better agreement [39] with the data at the Z0 resonance; therefore the HERWIG and
ARIADNE models are only used to assess a systematic uncertainty for the fragmentation.

4.2.2 Final State Radiation

The final state interaction (bremsstrahlung with matter for electrons or radiation of photons

in the final state) of the leptons is also simulated. The package which is used for final state
radiation is PHOTOS [43]. GEANT [44] is used to simulate the electron bremsstrahlung in

matter. PHOTOS [43] simulate final radiation from electrons and muons. The algorithm
used in PHOTOS is based on a second order calculation of charged particle radiation in a

leading-log approximation.
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4.3 Detector Simulation

So far, only physics processes have been simulated. However, the behaviour of the ALEPH

detector for these processes must also be simulated. The package, simulating all the sub-
detectors, is called GALEPH [45]. GALEPH is based upon GEANT [44], version 3.21 which
treats the detector (or sub-detectors) as geometrical volumes. The main duty of GEANT

(or GALEPH) is the “transport” of particles through an experimental setup. The GEANT
package simulates:

• tracking devices. A tracking device is characterised by the tracking parameter of the
media which fills the volume. Moreover, GEANT also simulates multiple-scattering,

energy loss through ionization and decays of particles using Monte Carlo techniques.

• the calorimeters. The electromagnetic and hadronic interactions of a generated par-

ticle with atoms and nuclei in the calorimeter are simulated by the Monte Carlo EGS
[46] and GHEISHA [47] packages, respectively.

• the electron bremsstrahlung. The electron bremsstrahlung is very important for

this analysis since one of the studied final states is composed of a high energetic electron.
44 % of these electrons are emitting bremsstrahlung photons with sizeable energies.

The propagation of the simulated analog signal is further simulated through the electronic

chain. This signal is digitised by simulation of the electronics from each detector, allowing
effects like thresholds, noise or gain fluctuations.

4.4 Summary

After GALEPH, the simulated events pass the program JULIA (see section 3.4.1) for recon-
struction. These events, at this level, are treated in exactly the same way as real events.

Therefore, simulated and real data can be subjected to the same analysis programs. The
generated numbers of events are given in Appendix B, for all CM energies which are studied

in this thesis.
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Event Selection

The distinguishing feature of W+W− → q̄qeν and W+W− → q̄qµν events, the signal, is the

presence of a high momentum, isolated electron or muon, originating from the interaction
point, along with a large amount of missing momentum. The data set which is used in this

work has been collected by ALEPH at energies in the range of 189 ≤
√
s ≤ 209 GeV and

corresponds to an integrated luminosity of L = 650 pb−1. The selection of semi-leptonic

events is done in the following way.
A preselection step with cuts against the dominant background is followed by the selection

of events with an isolated electron or an isolated muon. The selection searches firstly for
muon events. Remaining events are then tested against electron criteria. The remainder of

the events which are not tagged as electron or muon events is divided in two groups, namely
the 4-quarks or τνqq̄ exclusively. However, in this work, only the e(µ)νqq̄ channel will be

considered. After clustering the hadrons into jets, the selection is refined by using a neural
network analysis.

5.1 Preselection

The aim of the preselection is to remove various types of backgrounds, which have a com-
pletely different topology than the WW → e(µ)qq̄ events, such as beam gas and two-photon

interactions, without losing efficiency for selected signal events. These background events are
relatively easy to exclude as they either do not originate from the interaction point or have

a very low visible energy. In order to reject contributions from these events, one defines a
“good” charged track. Such a track fulfills the following criteria:

• It has four or more measured space points in the TPC;

• It originates from a cylinder of length 20 cm in the z-direction and a radius of maximum
2 cm centred on the interaction point;

• The angle θ between the beam and the track in question has to be |cos(θ)| < 0.95.

All events which do not have four good charged are removed. Consequently most of the

purely leptonic events are removed. In addition, the total energy of all the good charged
tracks has to be larger than 0.10

√
s. This cut removes two-photon interactions. A cut on

the missing momentum is used to reduce the e+e− → Z0/γ → qqγ contribution, where γ is
an ISR photon. The ISR photon is mainly emitted along the beam pipe. This leads to an

unbalanced longitudinal momentum in a particular topology. A set of cuts can be derived to
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remove this background. The missing momentum of the event can be calculated by applying
the four-momentum conservation1. The energy of the photon is then:

Eγ =
Ecm

2

(
1− M2

Z

E2
cm

)
, (5.1)

where MZ is the Z0 mass and Ecm the CM energy. A two dimensional cut on the longitudinal

missing momentum ( � pz) is then applied:

� pz < max

(
2Eγ −

√
� E2− � p2t − 6, Eγ − 27.5

)
, (5.2)

where � E is the missing energy and � pt is the missing transversal momentum.

5.2 Lepton Selection

In order to find the lepton, a loop runs over all the measured charged tracks belonging to
the event. Each track is then in turn excluded from the event and the rest of the event is

clustered into 2 jets, using the jet algorithm described in the next section. A discriminant
variable is then calculated for each track:

V = P ∗ sin θ, (5.3)

where P is the momentum of the particle and θ the isolation angle of track. The track which
maximises this discriminant variable is then taken as the lepton track. If the sum of the

missing momentum and the momentum of this lepton candidate is smaller than 30 GeV/c,
the event is rejected. This means that W+W− → qq̄qq̄ events, which are fully contained in

the detector and essentially have no intrinsic missing momentum, will be rejected with this
cut.

5.2.1 Electron

Three normally distributed identification variables are used to identify electrons. These are

the mean of dE/dx in the TPC (RI), the transverse (RT ) and longitudinal (RL) profiles of the
electromagnetic shower in the ECAL (see section 3.2.4). The value of the fit [29] to dE/dx is

required to converge with at least 50 measured values of dE/dx. The (RL) estimator is used
only to reject event with a wrong measured momentum in the TPC. The other two variables

depend on the ECAL geometry:

• Barrel or end-cap region: RT > −3;

• Overlap (between barrel and end-cap) region: RT > −5 or RI > −0.5 (the dE/dx is
only used when the electron shower is not fully contained.);

• Crack 2 region: RT > −7 or RI > −0.5.

1At this level of the selection, the missing four-momentum is obtained by summing all the four momenta
of all energy flow object seen in the detector.

2A crack region is defined as an un-instrumented part of the ECAL.
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5.2.2 Muon

The principal characteristic of muons is their penetration through the whole detector. The

selection criteria require at least one signal in the muon chamber or a specific pattern in
HCAL (over 7 nuclear interaction lengths). The momentum of the muon must be larger than

3 GeV/c (the minimum momentum required for a muon to transverse the detector material
in front of the muon chamber). If the lepton track fulfils both (electron and muon) criteria
(2% of the cases), it is taken as a muon candidate.

5.2.3 Corrections

The lepton was identified in the previous section. The last step of the “selection” of the
lepton is to look for possible radiation of photons, which modify the four-momentum of the

lepton. In 44 % of the W → eν events, a photon is emitted with an energy larger than 0.5
GeV. If an energy deposit is found in a cone of 2.5 degrees around the impact point of the
lepton track with ECAL, the momentum associated to this energy deposit is added to the

lepton momentum [63]. Starting from the interaction point, there is a considerable amount of
material between the different sub-detectors, i.e interfaces VDET-ITC and ITC-TPC, where

bremsstrahlung photons are likely to occur. A cone is then defined for these two cases. If an
energy deposit in the ECAL is observed which is within either of these cones, the momentum

associated to this energy is added to the electron momentum.

In addition to this detector effect, the possibility that either the electron or the muon

radiate a photon 3 is taken into account: the Final State Radiation (FSR). As described in
section 4.2, the PHOTOS model is used to generate a photon in 18 % of all the W → eν and

9% of all the W → µν, where 90% of the photons are in a cone of 30 degrees to the charged
track. In order to find this photon, the GAMPEX [48] package is used. The momentum of
each photon with an energy larger than 500 MeV is added to the lepton track. In the rest of

the analysis, the reconstructed lepton is always composed of the track and the photon.

5.3 Jet Reconstruction

Quarks have never been observed to exist as free particles. Instead, quarks are said to

fragment into “jets” of particles. This hadronisation process is characterised by the fact that
the strong force, which binds quarks together, grows as the distance between the quarks. This

causes quarks to be permanently bound within hadrons. By clustering together the particles
from the quark hadronisation process, one obtains a single entity known as jet. Thus for
our purposes, the momentum of a jet represents the best estimate of the momentum of the

original quark resulting from the decay of a W boson.

5.3.1 Algorithms

Many algorithms are available to find jets, but only two, JADE [49] and DURHAM [50],

are usually used in ALEPH. One begins by defining a metric y in the phase space of four-
momenta of reconstructed particles. The jets are constructed from pairs of four-momenta
which lie within a distance yc from each other. For each pair of four-momenta (i,j), one

calculates the corresponding distance, Yij, in the phase space.

3This algorithm is performed after the bremsstrahlung photon search.
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New objects are obtained iteratively by adding the 4-momenta of two objects with Yij <
yc. This iterative procedure stops when there are no further object-pairs which fulfil this

condition. When all the pairs have a distance larger than yc, the iteration stops and the
remaining individual four-momenta are called jets.

DURHAM Algorithm

The principal difference between the JADE and DURHAM algorithms is that the DURHAM

algorithm reflects more the role of the transverse momentum of a pair of tracks, while the
JADE algorithm emphasises the invariant mass of the pair. The DURHAM algorithm uses

the definition:

Yij = 2min
(
E2
i , E

2
j

)
(1− cosΘij) (5.4)

where Ei, (Ej) is the energy of the ith (jth) particle and Θij is the angle between them (for

JADE, the term min
(
E2
i , E

2
j

)
is replaced by Eij = EiEj). The DURHAM algorithm is used

because it provides a better angular resolution and is less sensitive to soft gluon radiation

[51].

Clustering Scheme

The jet clustering can be done in different ways, depending on the desired properties of the
reconstructed jet. To define the momentum and the energy of the reconstructed jet, we can

use the following schemes:

E Scheme FPij = FPi + FPj

Eij = Ei +Ej

P Scheme FPij = FPi + FPj

Eij =
∣∣∣ FPij

∣∣∣
E0 Scheme FPij = Eij

(
FPi + FPj

)
/
∣∣∣FPi + FPj

∣∣∣
Eij = Ei +Ej

The P scheme assigns particles to the correct jet with the highest efficiency (but only

the momentum is conserved), albeit with massless jets. The E scheme (both energy and
momentum are conserved) is then used to form the 4-momenta of each jet in a Lorentz

invariant way. The combination of the two last schemes is called the “DURHAM PE” scheme.
The event is forced into two jets. This part of the selection does not reject events.

5.3.2 Jet Energy Corrections

The direct measurement of the W mass depends strongly on the Monte Carlo simulation (this

will be detailed in the following chapters). Therefore, the agreement between data and Monte
Carlo simulation is extremely relevant for the analysis. Several checks have to be performed

on the reconstructed jet. At the beginning of every running period, the detector is calibrated
using data taken at the Z0 resonance. This data set, roughly 3 pb−1 taken every year, is

also used to perform data and Monte Carlo comparisons. At the resonance, Z0 are produced
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at rest. This means that the jets are back to back and the energy of both jets is half of the
Z0 mass. The jet energy is then compared to the beam energy for data and Monte Carlo

simulation, and the double ratio is then built:

Ratio =
(Ejet/Ebeam)data
(Ejet/Ebeam)MC

. (5.5)

Figure 5.1 shows the double ratio as a function of the polar angle of the jet. There is a
small but significant discrepancy between data and Monte Carlo simulation, which needs to

be taken into account. Most of the discrepancy is in the end-cap region and in the overlap
between the barrel and the end-cap. The energy of all the simulated jets is corrected by the

value of the double ratio for a given bin in cos θ.
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Figure 5.1: The jet energy corrections (Ratio =
(Ejet/Ebeam)data
(Ejet/Ebeam)MC

) for the year 1998 as a function

of the polar angle [19].

5.4 Neural Network Selection

After reconstructing the event, the selection of events is further refined using a Neural Network
technique. This improves the purity of the sample without reducing too much the selection

efficiency. The input to the Neural Net are the following variables 4, shown in Figure 5.2 for

4These variables are, in general, correlated.
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the eνqq̄ channel and in Figure 5.3 for the µνqq̄ channel:

• Corrected momentum of the lepton;

• Missing transverse momentum;

• Isolation of the lepton.

The isolation of the lepton is defined as:

Iso = log (tan (αjet) /2) + log (tan (αch) /2) , (5.6)

where αjet is the angle between the lepton and the closest jet and αch is the angle between
the lepton and the nearest good charged track (with a momentum greater than 0.2 GeV/c).

Figure 5.4 shows the neural network output for selecting electrons and muons respectively.

The separation between the signal Monte Carlo and the background is very good and the
Figure 5.4 shows also a very good agreement between data and Monte Carlo events.

In the next chapter, kinematic cuts will be introduced (see section 6.4.1), hence the quality
of the selection is only here defined with respect to two quantities: the efficiency (ε) to select

a true (generated) semi-leptonic event and the purity (ρ) of the sample. The quality Q of
the selection is then defined:

Q =
√
ερ. (5.7)

The cut on the neural network output is chosen such that Q is maximised. Tables 5.2 and

5.3 give the efficiency and the purity of the selection. It is also clear from this table that the
quality of the selection does not change significantly with increasing CM energy. The number

of selected and expected events, given in Table 5.1, are obtained applying a cut of 0.6 on the
neural network output.

5.5 Summary

The selection and the reconstruction of semi-leptonic events have been discussed. After a
preselection which rejects events with a different signature than the signal, a selection based

on a neural network analysis is performed, leading to a purity above 90 % to select semi-
leptonic events with an efficiency at the level of 79.5 % for the eνqq̄ channel and 89.5 % for

the µνqq̄ channel.
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Figure 5.2: Distribution of c) the lepton momentum, b) the missing momentum and a) the

isolation of the eνqq̄. These three variables are the input of the neural network.
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Figure 5.3: Distribution of c) the lepton momentum, b) the missing momentum and a) the

isolation of the µνqq̄ channel. These three variables are the input of the neural network.
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eνqq̄√
s in GeV 188.6 191.6 195.5 199.5 201.6 204.9 206.5

L [in pb−1] 174.2 28.9 79.9 86.3 41.9 81.6 133.

WW → 4f 365.6 62.4 176.6 190.9 93.2 182.6 302.7

WW → eνqq̄ 352.4 59.8 168.1 182.2 88.7 173.5 287.1

WW → µνqq̄ 0.1 0.0 0.1 0.1 0.0 0.1 0.1

WW → τνqq̄ 13.0 2.5 7.9 8.3 4.3 8.5 15.1

WW → qq̄qq̄ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

WW → lνlν 0.9 0.1 0.5 0.3 0.2 0.5 0.4

qq(γ) 9.3 1.1 4.6 3.9 1.0 4.1 6.3

ZZ 1.3 0.2 0.6 0.8 0.7 0.4 1.5

Weν 2.2 0.5 1.4 1.5 0.8 1.6 3.1

Zee 4.2 0.6 1.6 2.0 0.9 2.6 3.2

Nexp 383.4 64.8 184.8 199.1 96.6 191.3 316.8

Nobs 355 63 183 199 109 179 302

µνqq̄√
s in GeV 188.6 191.6 195.5 199.5 201.6 204.9 206.5

L [in pb−1] 174.2 28. 79.9 86.3 41.9 81.6 133.

WW → 4f 393.8 67.7 189.2 209.5 102.4 199.7 327.5

WW → eνqq̄ 0.2 0.0 0.1 0.1 0.0 0.1 0.1

WW → µνqq̄ 372.2 63.6 177.3 195.1 95.0 184.2 302.2

WW → τνqq̄ 21.4 4. 11.6 14.4 7.2 15.1 24.6

WW → qq̄qq̄ 0.0 0.1 0.0 0.0 0.0 0.0 0.0

WW → lνlν 0.0 0.0 0.2 0.3 0.2 0.4 0.8

qq(γ) 0.9 0.2 1.2 0.9 0.3 1.1 1.6

ZZ 2.4 0.5 1.5 2.0 2.1 1.9 3.7

Weν 0.1 0.0 0.0 0.0 0.0 0.0 0.1

Zee 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Nexp 397.1 68.4 191.9 212.8 104.8 202.7 332.9

Nobs 393 67 175 218 100 198 354

Table 5.1: Summary of the selected data samples and comparison with the Monte Carlo

prediction for signal and background.

√
s Efficiency Purity

188.6 81.4 % 91.9 %

191.6 79.4 % 92.3 %

195.5 79.1 % 91.0 %

199.5 78.7 % 91.5 %

201.6 79.3 % 91.8 %

204.9 78.1 % 90.6 %

206.5 78.2 % 90.7 %

Table 5.2: Efficiency and purity of the selection of eνqq̄ events.
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Figure 5.4: eνqq̄ and µνqq̄ Neural Network output for Monte Carlo and data. An event with a
probability larger than 0.6 is a assumed to be a semi-leptonic event (CM energy of 207 GeV).

√
s Efficiency Purity

188.6 89.7 % 93.7 %

191.6 89.5 % 93.0 %

195.5 89.4 % 92.4 %

199.5 89.5 % 91.7 %

201.6 89.1 % 90.7 %

205 88.5 % 90.8 %

207 89.0 % 90.7 %

Table 5.3: Efficiency and purity of the selection of µνqq̄ events.
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Determination of the W Mass

The W mass is determined by using the W+W− → qq̄lν channel, containing two jets, one
electron or muon and one neutrino. To improve the invariant mass resolution of the fermion

pair forming the W boson, a kinematic fit is imposed on each event. To extract the W mass
for each data sample, a maximum likelihood fit to the resulting di-fermion invariant mass

distribution is then performed.

6.1 Concept of Constrained Fit

At LEP, the CM energy
√
s is well known. This information is used to improve the resolution

of the event. The constraints for four-momentum conservation are:

4∑
i

Ei =
√
s, (6.1)

4∑
i

FPi = F0, (6.2)

where (Ei, FPi) is the 4-momenta of each fermion i (i = 1, 2, 3, 4). This gives a total of four
constraints which may be used in a kinematic fit to improve the measured four momentum
(Emeas

i , FPmeas
i ) for each fermion i. In this work, the Lagrange multipliers technique is used.

The fitted momentum is parametrised in the following way:

FP fit
i = y1i | FPmeas

i |Furi + y2i Fuθi + y3i Fuφi (6.3)

where y1i is a longitudinal scale of the momentum of measured particles and y2i and y3i are

the two transverse components. The fitted energy is scaled with the momentum such that
the velocity (β) is held constant:

| FPmeas
i |

Emeas
i

=
| FP fit

i |
Efit

i

= β. (6.4)

The following χ2 is now introduced:

S
(
y, Fλ

)
≡ χ2 = χ2

meas + χ2
hypothesis, (6.5)
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which is defined as the sum of two χ2s, one corresponding to the statistical fluctuations of
the measurement

χ2
meas (y) =

(
y− y0

)T
W
(
y− y0

)
, (6.6)

and the other one corresponding to the 4-momentum conservation (i.e the constraints)

χ2
hypothesis = 2

k=m∑
k=1

λkfk (a, y) , (6.7)

where λk arem Lagrange multipliers corresponding tom constraints, the fk are the constraint

functions. In equation (6.6), the y are the fitted values (y1, y2, y3) defined in equation (6.3),
y0 are the measured values of the momentum components, and W = V −1 is the inverse

of the covariance matrix for the measured values. The parameter a represents a vector of
unmeasured parameters, which are here the three momentum components of the neutrino.

6.1.1 Momentum Calibration for Detector Acceptance

In order to use as much information as possible, one can use Monte Carlo studies to calibrate,

i.e. correct on average, the raw reconstructed momentum according to known acceptance ef-
fects of the detector. Such corrections factors typically depend on the true momentum and

true angles of the particle or jet. In this work, the following notation is used: reconstructed
quantities which are corrected for detector acceptance effects using Monte Carlo are called

“measured” quantities. Explicitly, the correction (i.e. calibration) factors y0 to the recon-
structed quantity are defined by:

FPmeas
i ≡ FP corr

i = y
0,1
i | FP rec

i |+ y
0,2
i Fuθi + y

0,3
i Fuφi. (6.8)

If no corrections are required, the value of these parameters y0,1i , y0,2i and y0.3i is 1, 0, 0

respectively. It is very important to note that while these correction parameters account
for detector acceptance effects on average, they do not in general satisfy the constraints of

4-momentum conservation—they merely improve the reconstruction of the event on average.

6.1.2 Minimisation of the χ2

Applying the correction parameters y
0,1
i , y

0,2
i and y

0,3
i , the measured momentum is modified.

As derived in appendix A, the minimisation of the χ2 is recursive. The massless neutrino is

directly reconstructed using three momentum conservation of the event and so three momen-
tum conservation is an implicit characteristic (or hidden quality) of all quantities, including
the χ2. As a result, in order to impose overall four momentum conservation, only one explicit

constraint is needed in the χ2. The number of parameters in the fit is then 9 (i.e three vectors
y0, one for the lepton and one for each jet). The number of free parameters is equal to the

number of parameters minus the number of constraints in the fit which is 9 - 1 = 8. Now,
the number of degrees of freedom for the fit is just the difference between the number of

measured quantities and the number of free parameters which is 1 in this case. In general,
for this type of fit, the number of degrees of freedom equals the number of constraints and so

we will use the terminology of an N constrained fit to classify a fit with N degrees of freedom.
In particular, this fit which imposes four momentum conservation with one neutrino in the

final state will be called a ”1C” fit.
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Figure 6.1: The mass resolution: for measured di-jet (hatched histogram), 1C di-jet mass

(dashed line), 2C mass (solid line).

To further improve the invariant mass resolution, one can use the additional constraint
which requires the pair produced W bosons have to have equal 1 masses for a given event.

Such a fit is characterised as a “2C” fit and results in a single mass estimator for each event.
As a matter of terminology, this event-by-event single mass estimator for the W boson will

be called the 2-constrained mass or ”2C” mass. The recursive fit process stops when the χ2

converges to a minimum. This means that the k constraints are satisfied:∑
k

|fk (a, y)| < ε. (6.9)

for a given ε.

6.1.3 Stability and Performance of the Kinematic Fit

Figure 6.1 shows the effect of the kinematic fit on the resolution which is defined as the

difference between the reconstructed (i.e fitted) mass and the true (i.e generated) mass. For
the 2C fit, the underlying “generated” quantity is the average of the generated hadronic

and leptonic masses. One clearly sees the improvement going from the raw di-jet mass to
the 1C hadronic mass and from the 1C hadronic mass to the 2C mass. Table 6.1 gives the

improvement in the resolution going from the raw di-jet mass to the 2C mass. Since the 1C
leptonic mass and the 1C hadronic mass are obtained using the 4-momentum conservation,

1This quantity is not a physical quantity, but a mass estimator, since the W boson has a finite width.
Moreover, no direct comparison with an underlying generated mass is possible.



50 CHAPTER 6. DETERMINATION OF THE W MASS

Figure 6.2: The two-dimensional mass distribution. The line represents the kinematic limit

due to energy conservation.

there should be a negative (anti-correlation) between these quantities. This is illustrated in
Figure 6.2. The calculated correlation for each event is shown in Figure 6.3.

Another useful distribution is the probability distribution of a χ2. It is used to estimate

the quality of χ2 fit. The flatness of the distribution means that the difference between the
measured and the fitted parameters is consistent with the value of the error. In other words,

this means that the χ2 probability describes a true χ2 distribution with Gaussian hypothesis.
This is in fact observed in Figure 6.4 for large value of the P(χ2) (i.e small value of the

χ2). One clearly sees a large peak at values around zero. This means the fit hypothesis was
not correct for these events with a large χ2. Typically, an event with an ISR photon or a

background event does not fulfil one of the constraints. In addition, there are events which

- W mass [in GeV/c2]

method mean R.M.S

reconstruction (W → qq̄) -2.14 9.44

1 C (W → qq̄) 1.92 7.05

1 C (W → lν) 0.06 8.88

2 C (WW → lνqq̄) 0.66 4.04

Table 6.1: Effect of the kinematic fit.
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Figure 6.3: Correlation between the 1C hadronic and leptonic mass distribution.
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Figure 6.4: χ2 Probability of the constrained fit for data and simulated events.

are badly reconstructed 2. It is worth noting that if the χ2 is too large (i.e. the χ2 probability
is too low), the fit error for the fitted quantity no longer represents a Gaussian one standard

deviation uncertainty. Nevertheless, Monte Carlo simulations agree well with the data for
both the peak region and the flat region as shown in figure 6.4, and demonstrate that badly

reconstructed events are well understood at the Monte Carlo simulation level.

6.2 Mass Extraction

In the previous sections the selection of semi-leptonic WW events has been described and
a kinematic fit3, which imposes four-momentum conservation, has been introduced. These

tools are used to extract the W mass from the invariant mass spectrum of the selected data.
There exist several methods which can be applied for the mass extraction. For example,

the W mass can be obtained by directly fitting a Breit-Wigner function to the data [53].
However, some effects must be accounted for, such as the acceptance of the detector, the
initial state radiation (ISR) and the background. The inclusion of these effects, present both

in data and in Monte Carlo simulation, distort the Breit-Wigner shape of the reconstructed
W mass distribution. Therefore, a calibration is needed which may introduce systematic

effects. A more sophisticated methods must be used. The method, studied in [55], consists
of folding a Breit-Wigner with a Gaussian function representing the detector effects. This

method has also some drawbacks. Firstly, the detector resolution is not necessarily Gaussian.
Secondly, effects such as ISR, Final State Radiation (FSR) and distortions due to detector

acceptance cuts are certainly now Gaussian. Therefore, in order to take these distortions into
account, one could vary the W mass in the Monte Carlo simulations. The reconstructed mass

distribution, obtained from “real” data, is then compared to the mass distributions from the
Monte Carlo simulations. The simulation with the mass distribution closest to that of the

2There are non-Gaussian tails in the resolution of the detector.
3In fact, two fits are performed: a 1C and a 2C.
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data gives then the “measured” W mass. Clearly, this method has the advantage of taking
into account all the distortion effects described above. However, the amount of computer

processing time required to produce many Monte Carlo samples is a restricting factor. For
this reason, only one large sample of Monte Carlo simulated events is generated at a given
reference mass, Mref

W , which is then “reweighted” to generate an “additional sample” for a

different W mass [56].

6.2.1 Reweighting Method and Maximum Likelihood Fit

To accomplish this, each event i in the reference sample is given a weight, which is determined
by the ratio of WW matrix elements between a new W mass (MW ) and the reference W

mass4 (Mref
W ):

wi (MW ,ΓW ) =

∣∣M (
MWΓW , pi1, p

i
2, p

i
3, p

i
4

)∣∣2∣∣∣M (
M

ref
W Γ

ref
W , pi1, p

i
2, p

i
3, p

i
4

)∣∣∣2 (6.10)

where pij(j = 1, 2, 3, 4) denotes the four momentum of the outgoing fermion j. The matrix
element (given in reference [24]) has been calculated for the CC03 diagrams.

The probability density function (PDF) Φ to observe a particular value for MW given a
mass estimator m (from the kinematic fit described above) is written as [56]:

Φ (mi;MW ) =
ρs (MW )N i

s (MW ) + ρb (MW )N i
b

∆miNTOT
, (6.11)

where N i
s (MW ) is the weighted number of signal events in the ith bin with mi ≤ m < mi+1

and

N i
s (MW ) =

ni
s∑

j=1

wj (MW ) , (6.12)

ni
s is the number of signal events from the reference sample found in bin i and N i

b is the

total number of background events found in the same ith bin, ρs is the purity of the selection
and ρb = 1 − ρs is the fraction of background events. An adaptive binning is incorporated

by including a variable bin width ∆mi bin in the PDF (Φ). NTOT is the total number of
reference events:

NTOT =

Nbin∑
i=1


ρs (MW )

ni
s∑

j=1

wj (MW ) + ρb (MW )N i
b


 (6.13)

whereNbin is the number of reconstructed mass bins. The calculated purity depends (slightly)

upon the W mass in the semi-leptonic WW selection. This dependence can be expressed in
terms of the cross section σs. A parameterisation (parabolic), obtained using the program

GENTLE [57], is:

σs (MW ) = σs

(
Mref

W

)(
1−A

(
MW −Mref

W

)
− B

(
MW −Mref

W

)2)
, (6.14)

The constants A and B are given in Table 6.2 for every CM energy. This parameterisation is
only acceptable if the W mass is close to the reference W mass.

4The W width is assumed to vary as a function of the W mass, see section 2.3.3.
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√
s A B

189 GeV 0.003358 -0.002178

192 GeV 0.007098 -0.001406

196 GeV 0.011353 -0.001026

200 GeV 0.014698 -0.000774

202 GeV 0.016179 -0.000652

205 GeV 0.018202 -0.000319

207 GeV 0.019146 -0.000519

Table 6.2: Value of the constants used in the parameterisation as a function of the CM energy.

The purity can then be written as:

ρs (MW ) =
εsσs (MW )

εsσs (MW ) + εbσb
(6.15)

where εs, εb are the efficiencies of the selection for signal and background, respectively. The

best estimate of the W mass is then that MW which maximises the likelihood function:

L (MW ) =

Nevt∏
i=1

Φ (mi;MW ) (6.16)

where Nevt is the number of selected data events which enter in the maximisation. Numeri-

cally, it is more convenient to use the logarithm of the likelihood function:

l(MW ) = −2logL (MW ) = −2

Nevt∑
i=1

log (Φ (mi;MW )) (6.17)

6.2.2 Multi-dimensional Reweighting

In the description of the concept of the reweighting method in the previous section, a single

mass estimator was used. This method can be generalised to several dimensions for a given
set of variable, as it was done in [60]. To achieve this, one introduces d estimators m1, m2,

m3, ... spanning a d-dimensional space with bins in that space designated by mijk... so that
the number of reweighted signal events in bin mijk... is given by

N ijk...
s =

n
ijk...
s∑
n=1

wn (MW ) , (6.18)

similarly to equation (6.12), N ijk...
s being the number of signal events in bin ijk. Rewriting

the PDF (6.11) in the general case, one gets:

Φ (mijk...;MW ) =
ρs (MW )N ijk...

s (MW ) + ρb (MW )N ijk...
b

∆Vijk...NTOT
(6.19)

where N ijk...
b is the number of background, in the same N ijk...

s bin. The hyper-volume ∆Vijk...

is the replacement of the bin width ∆mi. Using these additional quantities, one can build
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Correlation (in %) M2C ∆M2C Mh
1C M l

1C ∆Mh
1C ∆M l

1C

M2C 100 - - - - -

∆M2C -13 100 - - - -

Mh
1C 37 -18 100 - - -

M l
1C 50 10 -39 100 - -

∆Mh
1C -5 12 6 9 100 -

∆M l
1C 9 13 -4 9 35 100

Table 6.3: Correlations between the different W mass estimators and their errors.

the following multi-variate likelihood function

L (MW ) =
Nevt∏
i=1

Nevt∏
j=1

Nevt∏
k=1

....Φ (mijk...;MW ) . (6.20)

This likelihood provides an unbiased estimator of the W mass [56]. Moreover, using this
construction of the PDF, the correlations between the chosen estimators are automatically

taken into account. These estimators are chosen according to their sensitivity to the W mass.

6.2.3 Choice of Estimators

As discussed in section 6.1.2, the 2C mass provides an exceptionally good estimator of the
W mass. Hence, the 2C mass is used as an estimator in the likelihood (see reference [63] for

an example of a one dimensional likelihood fit).
In addition to variables directly related to the W mass (1C hadronic W mass, 1C leptonic

Wmass, 2Cmass), the three independent elements of the event-by-event covariance matrix for
the two 1C masses as well as the single event-by-event fit error for the 2C mass are considered

as other dimensions in a multi-dimensional likelihood fit. One motivation for including the
event-by-event kinematic fit errors in the unbinned likelihood is that events are categorised

according to their mass error. This allows the PDF to more accurately describe these “groups”
of events. The expected exclusive sensitivities for all of the considered estimators are given
in Table 6.4. The correlations between the different estimators are given in Table 6.3.

Due to the enormous amount of Monte Carlo statistics required to construct a multi-
dimensional reference PDF, we restrict our likelihood to at most three dimensions. Table 6.5

shows that a three-dimensional likelihood fit using the 1C hadronic W mass, the 2C mass
and the fit error of the 2C mass improves the statistical sensitivity to the W mass by 10%

over the one-dimensional likelihood fit which uses only the 2C mass.
It has been shown in [61] and [62] that the lepton energy carries independent information

on the W mass. However, the information comes only from the rapidly changing part near
the end-points of the lepton spectrum. In [60], the lepton energy was tested as an estimator.

However, obtaining an accurate PDF describing the end-point energy spectrum requires a
too large sample of Monte Carlo simulated events.

6.2.4 Choice of the binning

Figure 6.5 is a two dimensional projection of the three dimensional binning, where the x-axis

is the 2C mass and the y-axis is the 1C hadronic mass. The bins are chosen such that every
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estimator M2C Mh
1C M l

1C M2C ⊗Mh
1C Mh

1C ⊗M l
1C

sensitivity (in MeV/c2) 170 ± 7 309 ± 17 368 ± 21 164 ± 7 177 ± 8

Table 6.4: Expected errors for different mass estimators (eνqq̄ channel, CM of 189 GeV) .

bin has the same number of events.

Figure 6.5: Two dimensional projection of the binning of the 2C mass and the 1C hadronic

mass. The dots represent Monte Carlo events used to build the reference. The number of
events per bin is required to be greater than 200.

As discussed in section 6.1.3, the error on the 2C mass has only a statistical meaning if
the χ2 probability distribution is flat. For low χ2 probabilities, the error on the 2C mass is

then not reliable and a cut is introduced:

• For P(χ2) ≥ 0.03, a 3-dimensional reweighting is used, with the 1C hadronic mass as the
second dimension and the error on the 2C mass as the third one: M2C ⊗Mh

1C ⊗∆M2C.

• For P(χ2) < 0.03, only the 2C mass is used as estimator.
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ECM Channel Exp. error (GeV/c2)

188.6 eνqq̄ 0.156± 0.007

188.6 µνqq̄ 0.142± 0.007

191.6 eνqq̄ 0.378± 0.035

191.6 µνqq̄ 0.348± 0.034

195.6 eνqq̄ 0.232± 0.015

195.6 µνqq̄ 0.223± 0.013

199.6 eνqq̄ 0.246± 0.017

199.6 µνqq̄ 0.213± 0.010

201.6 eνqq̄ 0.328± 0.027

201.6 µνqq̄ 0.312± 0.027

204.5 eνqq̄ 0.271± 0.015

204.5 µνqq̄ 0.248± 0.010

206.5 eνqq̄ 0.213± 0.013

206.5 µνqq̄ 0.190± 0.008

Table 6.5: Expected statistical error for every CM energy.

Both PDF’s are combined before the minimisation. The standard binning which depends on
the Monte Carlo sample, is then: 12 * 10 * 3 for the 3-dimensional reweighting and 20 * 1 *

1 for the 1-dimensional one. The sizes of the generated Monte Carlo samples (see Appendix
B) are chosen such that this requirement is fulfilled. To insure stable results of the fit, the
number of events per bin is required to be larger then 200 [59].

6.3 Cross Check of the Method

6.3.1 Expected Statistical Errors

The expected statistical sensitivity of a given method is usually obtained by performing

a fit to several simulated samples, each of which has the size of the data sample. Each
simulated sample is subsequently treated like the real “data”. The distribution obtained
by histograming the subsequent measurements provides an indication of the quality of the

analysis:

• the mean of the distribution should be compatible with the Monte Carlo generated

mass,

• the RMS of the distribution should be compatible with the fit error averaged over all

of the samples.

The pull5 distribution is also checked. A Gaussian fit is performed to the pull distribution

and the results are in agreement with a Gaussian hypothesis which is a mean value of zero
and a width of one unit. The distributions obtained are shown in Figure 6.6. The numerical

results are given in Table 6.5.

5The definition of a pull distribution is the difference between the the fitted value of the sample and the
input (or generated) value, divided by the error of the fit, since the error of the generated value is neglected.
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Figure 6.6: Pull distributions and expected statistical errors of MW for the electron and muon
channels, at ECM = 188.6GeV/c2.
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Channel
√
s a b (in GeV/c2)

eνqq̄ 188.6 0.937± 0.027 80.348± 0.013

µνqq̄ 188.6 0.996± 0.019 80.37± 0.01

eνqq̄ 195.6 0.975± 0.061 80.401± 0.025

µνqq̄ 195.6 0.913± 0.057 80.338± 0.023

eνqq̄ 206.6 0.927± 0.048 80.375± 0.019

µνqq̄ 206.6 0.998± 0.042 80.36± 0.017

Table 6.6: Numerical value of the slope and offset of the calibration curve. All of them are
compatible with an offset equal to the reference mass (no bias) and a unit slope.

6.3.2 Linear Behaviour

One of the main reasons for using the reweighting method is that the likelihood is by con-
struction unbiased.

In order to verify this, several samples of Monte Carlo simulated events are generated,
each with a different input W mass, and a linearity cross-check is performed. Background

events are added according to the purity of the selection and their cross sections. Figure 6.7
shows six fitted masses as a function of the generated one. A straight line

mfitted = a ∗ (Mtrue) + b, (6.21)

is then fitted to the points. The dotted line is the result of the fit. For comparison, the ideal
line (a unit slope and an offset of 80.35 GeV/c2) is also plotted. The value of the slope, a,

and the offset, b, are given in Table 6.6, in agreement with the expectation.

6.4 Data Results

The distribution of the 2C mass is shown in Figure 6.4 for all the data with
√
s > 202 GeV

where the reference W mass distribution from Monte Carlo simulation is reweighted to the

measured W mass.As explained in section 3.1.1, the data set corresponding to Monte Carlo
events generated at 205 GeV CM energy is composed of LEP CM energies between 200 GeV

and 206 GeV. For stability reasons, all data which have CM energies between 200 GeV and
203 GeV are discarded as they are too far away from the Monte Carlo generated CM energy

of 205 GeV. This corresponds to approximately 2 pb−1. The results of the fits to the data
taken in 1998, 1999 and 2000 are listed in Table 6.7. All fit errors presented in Table 6.7 are in

agreement with the expected statistical errors shown in Table 6.5. The results presented here
are obtained from a likelihood fit which uses a PDF constructed from Monte Carlo generated

with a fixed W width. Therefore the 27 MeV/c2 from equation (2.45) is added to the fitted
W mass.

6.4.1 Mass Window

Since an invariant mass is fitted, the results should not depend on a mass window cut. A

default mass window is chosen at 189 GeV CM energy, which is: [70., 90.] (in GeV/c2) for
2C mass 6, [60., 110.] (in GeV/c2) for the 1C mass and [0.,5.] (in GeV/c2) for the error on

6The same mass windows are used for the 3-dimensional PDF as well as the 1-dimensional PDF.
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Figure 6.7: The fitted mass, Mfit, as a function of the generated mass. The result of a straight
line fit to the point is shown as a dotted line. The solid line correspond to the ideal case, i.e
the fitted mass is equal to the generated one. The values of the slope and the offset are given

in Table 6.6. The CM energy is also indicated.
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eνqq̄, in GeV/c2 µνqq̄, in GeV/c2√
s Fitted Mass Statistical Error Fitted Mass Statistical Error

188.6 80.337 0.155 80.278 0.141

191.6 80.980 0.398 80.293 0.350

195.5 80.500 0.240 80.934 0.225

199.5 80.608 0.243 80.129 0.218

201.6 80.403 0.333 80.990 0.317

204.5 80.711 0.267 80.393 0.273

206.5 80.798 0.202 80.219 0.173

Table 6.7: W mass measured in the eνqq̄ channel and in the µνqq̄ channel.
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Figure 6.8: eνqq̄ and µνqq̄ Invariant Mass Distributions for the data taken in 2000. The

histograms represent the Monte Carlo simulation, split into non WW background and signal.
The signal Monte Carlo has been weighted to the measured W mass in the data sample. The

dots represent the data.
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Figure 6.9: Mass windows study for the 2C mass (upper plot) and for the hadronic mass

(lower plot). All the units are in GeV/c2.

the 2C mass. The upper limit of the mass window of the 2C mass is chosen to be 90 GeV/c2

as it allows enough phase space for the kinematic fit to give realistic errors. The lower limit

can be seen as a additional cut to remove further background events. Since the W mass is
extracted from an invariant mass distribution, the mass window cuts are kept constant for

all CM energies. The W mass extracted is stable for different mass windows7, as shown in
Figure 6.9.

7This study has been performed for a CM energy of 207 GeV.



Chapter 7

Systematic Error

In the previous chapter, we have obtained a statistical error on the W mass measurement.
But several other sources of error, coming from our lack of knowledge of the theory or un-

certainties coming from the experimental apparatus need to be carefully investigated. The
ALEPH detector is only known to a certain level of precision. The first section of this chap-

ter is dedicated to determine the uncertainties concerning the detector. In addition, a small
amount of background events still survives the selection criteria and may cause systematical

bias. Hence, the second section is dedicated to estimate the impact of uncertainties in the
background contamination. The beam energy is also known to only a finite uncertainty and

is particularly important as this uncertainty propagates directly into the W mass measure-
ment. Furthermore, the multi-dimensional reweighting uses a large sample of Monte Carlo

simulated data to construct the reference PDF. As the number of events in each bin is finite,
statistical fluctuations limit the accuracy of the PDF. Finally, the last section is devoted to
the uncertainty of theoretical calculations used in the Monte Carlo generators.

Table 7.6 summarises the uncertainties from all the considered sources at the end of the
chapter.

7.1 Detector related Errors

The method used to extract the W mass relies on a very good agreement between data and

Monte Carlo simulation. At different stages of the analysis, Monte Carlo simulations are
corrected to compensate any discrepancy between data and Monte Carlo simulation. The
source of systematic uncertainty is parametrised in the Monte Carlo simulation and is varied

by an estimated one standard deviation from its nominal value. The propagated effect on
the W mass shift is taken as systematic error from this particular source. This is repeated

for all known sources. If the statistical error on the shift is larger than the uncertainty itself,
the statistical error is then quoted as a systematic uncertainty.

7.1.1 Detector Alignment

The alignment of the VDET, ITC and TPC tracking sub-detectors is crucial for the mea-
surement of the track’s momentum. After the final alignment of the three tracking detectors,

small and residual distortions remain in the tracks. The alignment itself is performed using
Z0/γ → µ+µ− events produced at the Z0 resonance 1. Corrections for these distortions are

1For calibration and alignment purpose, approximatively 3 pb−1 of Z0 event are taken at the beginning of
every data taking period.
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modified ∆ MeV/c2 (189 GeV) ∆ MeV/c2 (207 GeV)

angle eνqq̄ µνqq̄ eνqq̄ µνqq̄

θ + 1 mrad 1.2 ± 1.5 1.2 ± 2.5 1.6 ± 1.8 -1.2±1.0

θ - 1 mrad -1.6 ± 1.7 3.6 ± 1.4 -1.0 ± 1.6 2.8± 1.9

θ smeared -2.4 ± 2.8 4.4 ± 1.6 0.4 ± 1.3 1.8± 1.0

φ + 1 mrad -1.6 ± 1.5 2.0 ± 2.4 0.2 ± 1.0 1.2± 1.5

φ - 1 mrad -1.6 ± 1.0 2.8 ± 1.8 -0.2 ± 1.3 2.2± 1.5

φ smeared 1.2 ± 1.4 1.6 ± 1.8 -0.2 ± 1.1 1.2±1.3

Table 7.1: Shifts as a result of an artificial bias of 1 mrad. No bias is seen at the
level of 1.5 standard deviations.

evaluated by equalising the momentum of the charged track of 45.6 GeV/c in Z0γ → µ+µ−

events. The maximal observed discrepancy is at the level of 2% for cos θ > 0.9. The positive
and negative charged tracks are then equalised using the di-muon events. This correction is

then systematically applied to all tracks of the data. A conservative systematic error of 10
MeV/c2 is quoted for both channels, obtained by modifying the Monte Carlo by half of the

full correction.

7.1.2 Lepton Angle

The measurement depends strongly on the characteristic of the lepton, since it is well mea-

sured. Therefore, additional checks are performed on the lepton polar and azimuthal angles.
The alignment procedure shows a discrepancy in the angular distribution between data and

Monte Carlo simulation at the level of 0.5 mrad [63]. In order to conservately estimate any
systematic uncertainty in the W mass, an artificial bias is created by adding or subtracting 1

mrad of the polar or the azimuthal angle of the lepton track in Monte Carlo simulated data.
A sample of 10 k signal events is used at a CM energy of 189 GeV and a larger sample of 20

k is used at 207 GeV. All the shifts given in Table 7.1 are compatible with no effect at the
level of 1.5 standard deviations. The systematic uncertainty from this source is neglected.

7.1.3 Radiation in the Final State

Approximately 40% of the eνqq̄ events have a bremsstrahlung photon reconstructed in the
final state. When a bremsstrahlung photon is emitted close to the electron, a specific algo-

rithm is used [48]. This algorithm consist of a search of energy deposit around the electron
track, within a cone of 2.5 degrees. Since the electron and the photon are not really well

separated, saturation effects happen, however independent of the angle [27]:

Em/E = 1− αE, (7.1)

where α = (7.8±0.6) · 10−4 GeV−1 is the value of the saturation, Em is the measured energy

and E the incident one. The uncertainty of the saturation correction is applied to a Monte
Carlo sample and the analysis was redone. A shift of 5 MeV/c2 is observed and quoted as

a systematic uncertainty for the eνqq̄ channel. The impact of this correction is marginal for
the µνqq̄ channel, since a much smaller fraction of the events emit a bremsstrahlung photon

from the muon.
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7.1.4 Jet Corrections

As described in the section 5.3.2, the jet energy in the Monte Carlo simulation does not

reproduce the jet energy in the data. The jet energy of every simulated event is then corrected
by a certain amount. The uncertainty of the correction itself is used to estimate the maximal

allowed fluctuation. This is then quoted as a systematic uncertainty. The shift is found to be
stable as shown in Figure 7.1 where the correction is plotted for different years (1998, 1999

and 2000) [64]. A systematic shift is found at the level of 4 MeV/c2 for the eνqq̄ channel and
8 MeV/c2 for the µνqq̄ channel.

Figure 7.1: Ratio (Ejet/Ebeam)data/(Ejet/Ebeam)MC of the jet correction as a function of the

polar angle for the 1998, 1999 and 2000 Z0 calibration run.

7.1.5 Jet Angular Bias

Another use of the calibration Z0 data is to evaluate the uncertainty of the jet angular bias.
Jets are selected and arranged into two types of particles: photons and charged tracks. This

classification is done, since ECAL and tracking chambers are aligned independently. To study
the jet angular bias, a variable defined as the difference between the angle of the photonic

and the charged part, θphoton−θcharged is studied for calibration Z0 data and Monte Carlo

simulation. The difference (θphoton−θcharged)data−(θphoton−θcharged)MC is calculated
in bins of the jet polar angle and is represented by the points in Figure 7.2. The function

plotted in the same figure is not fitted to the points, but it is a fit to the same difference
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Figure 7.2: Mean difference Data and Monte Carlo simulation: the variable θhadrons−θphoton
as a function of the cos(θjet) of jet of 45 GeV taken at the Z0 resonance. The full line is a

fit to the large Z0 1994 sample, showing a discrepancy in the overlap region [19].

obtained with a much larger Z0 data sample (roughly 62 pb−1, taken in 1994) to reduce
the statistical uncertainty. The maximal difference observed is of the order of 2 mrad in the

region where end-cap and barrel overlap. Moreover, other functions have been fitted to the
1994 data distribution. Monte Carlo simulated events are modified by these functions and

the W mass is extracted with these events. The largest shift is found to be 5 ± 2 MeV/c2

for the eνqq̄ channel and 8± 3 MeV/c2 for the µνqq̄ at 207 GeV, consistent with the value
obtained with the 189 GeV sample, 6±3 MeV/c2 for the eνqq̄ channel and 4±2 MeV/c2 for

the µνqq̄ channel respectively. No CM energy dependence is observed.

7.1.6 Jet Angular Resolution

The calibration Z0 sample is then used to measure the angular jet resolution. Since Z0 are

produced at rest in this sample, the jets should be back to back. The resolution is found to
be better in the Monte Carlo simulation. To take this difference into account, a smearing

of 3.5 mrad [63] is applied on the Monte Carlo simulation at the Z0 resonance for the polar
angle and 2.6 mrad for the φ angle. The shift observed for a single angle or both is shown in
Table 7.2. The quoted systematic uncertainty is found to be 7.5 MeV/c2 for the eνqq̄ channel

and 5 MeV/c2 for the µνqq̄.

7.1.7 Calorimeter Calibration

In the previous section, the discrepancy between Data and Monte Carlo has been investigated

after the full reconstruction of all the events. In addition, one may wish to test the recon-
struction itself. The energy content of the jet is tested before the reconstruction. The energy

flow algorithm is redone and the jet corrections are recalculated. With this modification,
the W mass measurement is redone to obtain the systematic error. The energy calibration

of the calorimeters for the Monte Carlo are obtained using the Z0 calibration run. In fact,



7.1. DETECTOR RELATED ERRORS 67

smeared ∆ MeV/c2 (189 GeV) ∆ MeV/c2 (207 GeV)

angle eνqq̄ µνqq̄ eνqq̄ µνqq̄

φ 0.± 5.5 7.2± 4.3 -2.4± 3.5 3.2 ± 2.5

θ 1.8± 3.6 7.4 ± 3.0 0.4 ± 3.4 4.4 ± 3.5

θ+φ 4.4± 6.6 8.4 ± 5.6 7.4 ± 4.9 5.0 ± 3.7

Table 7.2: Jet angular resolution. The last line is a smearing applied to both

angles simultaneously.

∆MW (in MeV/c2)

Source eνqq̄ channel µνqq̄

Charged tracking 10 10

Jet energy Correction 4 8

Jet Angular Resolution 10 8

Jet energy Resolution 10 8

Calorimeter Simulation 20 5

Final State Radiation 5 0

Total 27 18

Table 7.3: Summary of the detector systematic uncertainties.

this assumes that the energy calibration remains constant during the full data taking period.

The energy calibration of the calorimeters are monitored and as a result, the uncertainties of
the calibration of the calorimeter ECAL and HCAL energy were assessed to be ±0.4% and
±1.5%, respectively [19]. To take both effect into account, the energy deposition for each

event is smeared by this uncertainty. A Monte Carlo sample of 100 K WW events at a CM
energy of 189 and 200 k WW events at a CM energy of 207 GeV are used to study this effect.

The W mass measurement is then redone, and the difference between this modified Monte
Carlo and the same Monte Carlo with the standard calibration is quoted as the systematic

uncertainty for the calorimetry. The value obtained as 189 GeV and 207 GeV are 5 MeV/c2

for the µνqq̄ channel and 20 MeV/c2 for eνqq̄ channel.

7.1.8 Summary

All systematic effects discussed so far are listed in Table 7.3 and combined quadratically to
obtain a detector systematic uncertainty.

The two large samples of Monte Carlo events (189 GeV and 207 GeV) allow a check for
any systematic change in the detector as a function of the CM energy. No significant CM

energy dependency is found.
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7.2 Background

Some background processes still survive the selection criteria. The error from this source is

expected to be small, due to the high purity of the selection and the mass cuts. The purity is
at the level of 95% for the eνqq̄ channel and 99% for the µνqq̄ channel after the mass window
cut. There is a probability that one two-photon interaction survive the selection cuts. The

normalisation of the background is modified by ± 30% since the background distribution in
the eνqq̄ and µνqq̄ channels is expected to be flat. This variation of the cross section leads

to an uncertainty on the W mass of 1 MeV/c2 for the muon channel and 9 MeV/c2 for the
electron one. Both uncertainties are assumed to be uncorrelated.

7.3 Beam energy uncertainty

Every event entering the analysis was constrained to the beam energy. Therefore, the uncer-

tainty of the beam energy has a large impact on the W mass measurement, especially since
this uncertainty is correlated between years and channels. The LEP beam energy is recorded

every 15 minutes or more frequently if significant shifts are observed in the Rf frequency of
the accelerating cavities. The instantaneous values recorded nearest in time to the selected
events are used in this analysis. The beam energy uncertainty is found to be:

• 20 MeV for the data taken in 1998 [66];

• 20 MeV for the data taken in 1999 [67];

• 25 MeV for the data taken in 2000 [68].

To propagate this uncertainty into the measurements, a linear transformation is applied:

δMW

MW
=

δE

E
. (7.2)

The equation 7.2 is tested by modifying the beam energy before the kinematic fit. As shown in

Figure 7.3, the fitted mass depends linearly on the beam energy. As a result, the uncertainty
quoted for both channel is 17 MeV/c2 for the years 1998 and 1999 and 21 MeV/c2 for the

year 2000.

7.4 Method Related Uncertainty

The finite statistics of the reference sample may introduce a systematic effect in the measure-
ment. The description of the PDF in terms of bins is not perfect and subject to statistical

fluctuations. The uncertainty (∆MW ) can be written as:

1

(∆MW )2
=

(
N∑
i=1

(∆MW )2i

)−1

, (7.3)

summed over the uncertainty from any particular ith (out of N bins). The cross section of
the ith bin is defined as σi = Ni/L, where Ni is the number of selected events and L is the

integrated luminosity. Rewriting the uncertainty of the W mass for the ith bin, one gets

(∆MW )i = ∆σi

(
∂σi

∂MW

)−1

. (7.4)
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Figure 7.3: Dependence of the W mass as a function of the CM energy. This study is

performed for the eνqq̄ channel at a CM energy of 188.6 GeV. A straight line fit with slope
P1 and offset P2 (in GeV/c2) is also shown.
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Introducing the density of bin ρi, defined as: ρi = σi/σtot, the gradient of this variable per
bin is given by:

∂ρi
∂MW

=
1

σtot

∂σi
∂MW

=
L

Ntot

∂σi
∂MW

. (7.5)

Assuming that the uncertainty on the cross section σi is Poisson-like (i.e ∆σi =
√
Ni/L) and

including equation (7.5) in equation (7.3), the uncertainty on the (MW )i is given by:

(∆MW)i =

√
Ni

Ntot

(
∂ρi
∂MW

)−1

, (7.6)

Hence, one sees that the precision of the reweighting method relies on the statistics of the

reference sample. At all CM energies, the reference sample is composed of 1 million (see
appendix B) generated 4f events. This method gives an uncertainties of 9 MeV/c2 for the

eνqq̄ channel and 9 MeV/c2 for the µνqq̄ channel. For the data taken in 2000, the Monte
Carlo statistic simulation was produced before the end of the data taking period. The data
taken in 2000 present the particularity that the CM energy is between 200 and 209 GeV.

Therefore, the uncertainty due to the different CM energy is added to the finite reference and
20 MeV/c2 is quoted as a systematic error for the finite reference Monte Carlo statistic for

the year 2000.
This error describes the “knowledge” of the PDF, so the error is not assumed to be

correlated, between year or between channel.

7.5 Theoretical Uncertainties

7.5.1 Fragmentation Process

As mentioned in chapter 4, the fragmentation is not yet fully understood theoretically. Hence,

one must invent fragmentationmodels (ARIADNE, HERWIG, JETSET). The JETSET pack-
age, which uses a string (or LUND) model for the parton shower, is used for this analysis. The

parameters used in JETSET to describe the fragmentation model are tuned using hadroni-
cally decaying Z0 events from data collected at the Z0 resonance. To test this model, two

other fragmentation models are used. The fragmentation systematic uncertainty on the W
mass is difficult to estimate since the fragmentation effect is folded with the detector reso-

lution and jet clustering. To reduce these effects as much as possible, the same generated
partons are fragmented using JETSET, HERWIG and ARIADNE (see section 4.2 for the
details of the Monte Carlo simulation). If one replaces JETSET by HERWIG or ARIADNE,

one observes a small effect in the W mass (see Table 7.4). The maximal shift observed be-
tween any two of the models in the eνqq̄ channel is -11.2 MeV/c2 and -15.2 MeV/c2 for the

µνqq̄ channel. As there is no reason that the fragmentation uncertainty should differ between
the eνqq̄ channel and the µνqq̄ channel, a common systematic uncertainty of 15 MeV/c2 is

quoted. In order to cross check this estimate, a second method comparing variables which
are sensitive to fragmentation effects in the data and in the Monte Carlo simulation were

studied [19]. The largest observed shift was at the level of 15 MeV/c2 for both channels, in
good agreement with the quoted fragmentation systematic uncertainty.

7.5.2 Radiative Corrections

In order to obtain an estimate of the systematic uncertainty due to the incomplete treatment

of the radiative corrections, the results of two other generators are also considered. This
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- eνqq̄ channel µνqq̄ channel

JETSET - HERWIG -11.2 ± 8.9 MeV/c2 -15.2 ± 9.4 MeV/c2

JETSET - ARIADNE -6.8 ± 5.8 MeV/c2 0.8 ± 10.5 MeV/c2

HERWIG - ARIADNE -14.0 ± 12.1 MeV/c2 -15.2 ± 10.4 MeV/c2

Table 7.4: difference of the fitted mass for ARIADNE, HERWIG and JETSET. The last line

shows the consistency of the result. The maximal shift observed is quoted as a systematic
uncertainty.

- ∆MW
eνqq in MeV/c2 ∆MW

µνqq in MeV/c2

Effect Pseudo exp. Pseudo exp.

Standard - ISR -7 ± 3 -6 ± 2

Standard - Coulomb screening 11 ± 2 11 ± 1

Standard - (ISR + Coulomb screening) 2 ± 4 4 ± 3

Table 7.5: Effect of the missing radiative correction on the W mass measurement.

lack of radiative corrections might cause a significant systematic bias. Firstly, the two other

generators, RacoonWW and YFSWW (see section 4.1.1) are compared. Since the generator
RacoonWW can have negative weight, this generator can only be used to verify the prediction

of YFSWW at truth level. The maximal observed deviation is at the level of 5 MeV/c2 in
the W mass [33]. Comparing the generator KORALW and YFSWW and taking into account

that KORALW and YFSWW are based on the same principle, one can reweight CC03 events
of KORALW by YFSWW. The reference PDF is then calculated three times (there are two
main improvements in YFSWW with respect to KORALW):

• with the inclusion of the exact O(α) electroweak correction,

• with the Coulomb screening approximation,

• with both effects applied.

Pseudo experiments samples are then fitted with these three references and the results are
listed in Table 7.5. The effects of the ISR and Coulomb correction [69] in fact compensate, but

they are at the level of 11 MeV/c2. However, in the evaluation of the systematic uncertainty,
both effects are applied. Therefore the only systematic uncertainty comes from the difference

between RacoonWW and YFSWW. The uncertainty quoted is then 5 MeV/c2 for all the
semi-leptonic channels2.

7.6 Summary

The systematic uncertainties are summarised in Table 7.6. Since some uncertainties are
correlated, the combination will be explained in the next chapter.

2The situation is different in the 4q channel. In the 4q channel, a systematic shift of 5 MeV/c2 is observed
[65].
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Source eνqq̄ µνqq̄

Detector uncertainty * 27 18

MC Fragmentation* 15 15

Finite reference MC statistics 6 6

Finite reference MC statistics (2000 only) 20 20

Missing Radiative correction* 5 5

Background contamination 9 1

LEP energy (1999 and 1998) * 17 17

LEP energy (2000) * 21 21

Table 7.6: Summary of the systematic errors onMW . The errors which are correlated between
all the channels (not only the semi-leptonic channel, but also the qq̄qq̄ and τνqq̄) are marked

with *.



Chapter 8

Discussion of the Results

The W mass measured in this thesis will now be combined with other ALEPH measurements.
Then the obtained result will be combined with the other LEP experiments. At the end, this

W mass is compared and combined with those from pp̄ collider measurement. The new
“preliminary” world average obtained by direct measurement is then used to derive improved

limits on the Higgs mass.

8.1 W Mass Measurement in the Semi-leptonic Channel

The measurement of the W mass in the semi-leptonic channel has the advantage of a very
clear topology: a high energetic isolated lepton along with a large amount of missing energy.
An efficient neural network is developed to select WW → lνqq̄ events and to exclude other

processes. The selected events are reconstructed via a kinematic fit to improve the mass
resolution, using Lagrange Multipliers and the well known CM energy. In this thesis, a

maximum likelihood fit is performed to extract the W mass. Moreover, systematic studies
are carried out and the W mass in the semi-leptonic channel is found to be:

Meνqq̄
W = 80.572± 0.082 (stat.)± 0.035 (syst.) GeV/c2

M
µνqq̄
W = 80.414± 0.077 (stat.)± 0.030 (syst.) GeV/c2.

These results are consistent1 with earlier but still preliminary ALEPH results:

Meνqq̄
W = 80.542± 0.083 (stat.)± 0.035 (syst.) GeV/c2

Mµνq̄q
W = 80.404± 0.076 (stat.)± 0.030 (syst.) GeV/c2.

The small difference between these two measurements are explained as follows.
For the 189 GeV sample, the changes with respect to the previous analysis are due to the

fact that firstly the selection is now based on a neural network analysis and secondly the
kinematic fit is different. However, the discriminant variables used in the neural network are
the same. The method remains unchanged for the data set at highest energy. Moreover,

the saturation effect in ECAL (see section 5.2.3 and 7.1.3) was not taken into account in
the previous analysis. The effect is larger in the eνqq̄ channel since the probability for the

electron to emit a bremsstrahlung photon is larger. The difference observed is 30 MeV/c2 in
the eνqq̄ channel and 10 MeV/c2 in the µνqq̄ channel which leads to a change of the measured

ALEPH W mass at the level of 7 MeV/c2.

1Both measurements are within one standard deviation.
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8.2 Combination of the W Mass Measurement

8.2.1 In ALEPH

The ALEPH results in all channels published for the 2001 Winter conferences [65] are:

Meνqq̄
W = 80.542± 0.083 (stat.)± 0.035 (syst.) GeV/c2,

M
µνq̄q
W = 80.404± 0.076 (stat.)± 0.030 (syst.) GeV/c2,

M τνqq̄
W = 80.370± 0.122 (stat.)± 0.029 (syst.) GeV/c2,

M qqqq
W = 80.507± 0.054 (stat.)± 0.026 (syst.)± 0.037 (FSI) GeV/c2.

The combined result for the W mass in the semi-leptonic channel (all LEP II data) is:

M
lνqq
W = 80.456± 0.051 (stat.) ± 0.032 (syst.) GeV/c2.

As explained in chapter 7, there exist some correlations on the systematic uncertainties for

different channels and/or years, which were carefully taken into account. The fully correlated
errors are averaged over years and channels. The semi-leptonic channel has a better sensitivity

to the W mass due to large theoretical uncertainties2 in the 4q channel. The weight of the
semi-leptonic channel in the combination is 73%. Looking at the difference between the fully
hadronic and the semi-leptonic channel, a bias due to Final State Interactions (FSI) in the

fully hadronic channel might be observed. However, no Final State Interactions are observed
in ALEPH at the level of 150 MeV/c2:

M qqqq
W −M lνqq

W = 51± 75 (stat. + syst.) MeV/c2,

where the FSI uncertainties are not included. Combining the fully hadronic and the semi-
leptonic W mass measurements, the W mass obtained in ALEPH from the direct reconstruc-

tion, is:

MW = 80.477± 0.038 (stat.)± 0.023 (syst.)± 0.015 (theo.)± 0.017 (lep) GeV/c2.

Adding the W mass obtained by the cross section measurement, the W mass obtained in

ALEPH using all LEP II statistics is:

MW = 80.471± 0.038(stat.)± 0.023(syst.)± 0.015(theo.)± 0.017(lep) GeV/c2.

The statistical, systematic and theoretical errors are added in quadrature to obtain the total
error on the W mass measurement. The total error of the W mass in ALEPH is 49 MeV/c2.

For comparison purposes, the preliminary measurement of the four LEP collaborations are
shown in Figure 8.1 and are summarised here:

MW (ALEPH) = 80.471± 0.049 GeV/c2,

MW (DELPHI, [71]) = 80.401± 0.066 GeV/c2,

MW (L3, [72]) = 80.398± 0.069 GeV/c2,

MW (OPAL, [73]) = 80.490± 0.065 GeV/c2.

A good agreement is found between the results of the four LEP experiments (χ2/d.o.f of 32.5

/ 39). The combination procedure to compute the LEP value will be described in the next
section. The main difference between ALEPH and the three other LEP experiments is that

ALEPH is using the three dimensional “reweighting” method, which brings an improvement
of 15% with respect to the one dimensional one, used by the other LEP experiments.

2The fully hadronic channel is systematically biased by colour reconnection or Bose-Einstein correlation.
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Figure 8.1: The W mass measured at LEP II from the 4 LEP experiments. The data taking
period used to extract MW in each experiment is also indicated.

8.2.2 Combination Of All LEP W Mass Measurements

The four LEP experiments provide a more detailed input for the combination as the value

given in the previous section. The four LEP experiments provide their results of the direct
reconstruction (10 measurements 3 for ALEPH and DELPHI, 8 for OPAL 4 and L3 5) for

the LEP combination. As explained in chapter 7, the subdivision per year allows a proper
treatment of the correlation. Some correlated systematic uncertainties are year dependent,
for example the beam energy or part of the detector systematics. Other systematic effects

are fully correlated between the experiments, in particular the fragmentation and the Final
State Interaction for the qq̄qq̄ channel. For example, studies have shown that the sensitivity

of the four LEP experiments on colour reconnection is the same [70]. There is no such study
for Bose Einstein correlation, but it is assumed that this uncertainty is model dependent,

implying that it is also fully correlated between the LEP experiments. Therefore, a common
value for the FSI and the fragmentation uncertainties is taken for the combination of the

3An already combined measurement for the non-hadronic channel and a measurement of the hadronic
channel per year.

4The results of the year 2000 are not yet public.
5The results of the year 1996 and 1997 are already combined.
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four LEP experiments. In addition to the direct reconstruction of the W mass, the cross
section at threshold for W pair production measurements6 of the four LEP experiments has

also been taken into account. Therefore a χ2 composed of 40 measurements is minimised.
The preliminary LEP W Mass obtained from these measurements is:

MW = 80.450± 0.039 GeV/c2,

which includes all LEP published results. As shown in Figure 8.1, the different measurements

are in a good agreement with a χ2/d.o.f of 32.5/39.

8.2.3 World Average of Direct Measurement

In a pp̄ collider, the measurement of the W mass is more difficult. Since there are quarks and
gluons in the initial state, the energy of the collision and the longitudinal component of the

momentum are not known. The only information which can be used is the transverse mass or
the transverse energy. In addition, the spectator quarks or gluons have also a none negligible

probability to interact. This leads to an unavoidable QCD background and prevents the
study of the hadronic decays of the W boson and W → τν. The W mass obtained at the

Tevatron is [75]:

MW = 80.454± 0.060 GeV/c2,

which is in good agreement with the value obtained by the LEP collaborations. The new
preliminary world average W mass is [75]:

MW = 80.451± 0.033 GeV/c2.

8.3 Relevance of Precision in W Mass Determination on the
Standard Model

Figure 8.2 shows different results of the W mass measurement. The three first entries in the
“table” have been described in the previous section. There are two main issues concerning

the W mass measurement:

• Test of the Standard Model,

• Extract an upper limit on the Higgs mass.

Firstly, one can perform a fit, assuming the Standard Model, to the electroweak data [75]
obtained mainly at LEP I, SLD (both operating at the Z0 resonance), NuTeV and CCFR

(both measuring sin θW in neutrino-nucleon scattering). This is the fifth value of the W mass
in Figure 8.2 and is equal to:

MW (indirect) = 80.363± 0.032 GeV/c2.

This value is obtained to check the agreement between the Standard Model and the LEP II
data set. In this fit, the top mass and the Higgs mass are left as free parameters. The last

6This measurement has a weight of 2% in the combination, since the only common systematic uncertainty
is the beam energy.
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W-Boson Mass  [GeV/c2]

mW  [GeV/c2]

χ2/DoF: 0.0 / 1

80 80.2 80.4 80.6

pp
−
-colliders 80.454 ± 0.060

LEP2 80.450 ± 0.039

Average 80.451 ± 0.033

NuTeV/CCFR 80.25 ± 0.11

LEP1/SLD/νN/APV 80.363 ± 0.032

LEP1/SLD/νN/APV/mt 80.373 ± 0.023

Figure 8.2: The preliminary world average W mass (summer 2001). The value pp̄-collider is
the combined mass from hadron machine whereas the value LEP2 is the LEP combination.

The indirect W mass measurement is also shown, with and without the top mass as a fixed
parameter.

value of Figure 8.2 is obtained by fixing the top mass as well, which leads to a reduction in
the error:

MW (indirect+ top) = 80.373± 0.023 GeV/c2.

Before using the top mass in a global electroweak fit, one wants to verify the agreement
between the direct and indirect measurements of both the top and the W masses.

The measured top mass by D0 and CDF at the Tevatron is [75]:

Mtop = 174.3± 5.1 GeV/c2,

and the one obtained by the electroweak (without the measured W mass) fit is:

Mtop = 180.3+11.7
−9.2 GeV/c2,

these are in excellent agreement.
Figure 8.3 shows the one standard deviation contours of the direct measurement and the

indirect measurement of the top and the W masses. The Standard Model predictions for
Higgs masses between 114 and 1000 GeV/c2 are also shown. Both data sets prefer a low

Higgs mass. The direct searches for the Higgs boson have so far not been successful [74]
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Figure 8.3: Preliminary comparison between the indirect and direct measurement of the top
mass and the W mass. The straight lines represent the relationship for the W and top masses

as the function of the Higgs mass. The lower bound is the current limit obtained by direct
searches.

and have merely resulted in an exclusion region for the Higgs mass. As we have obtained
a W mass and a top mass by direct and indirect measurements, one can hope to extract

an indirect Higgs mass. The curve in Figure 8.4 is the result of the electroweak fit using
all data. However, a precise value cannot be extracted since the Higgs contribution to the
radiative corrections depends logarithmically7 on the Higgs mass whereas that of the top

enters quadratically. Using the parabolic form of the χ2, one can extract a value of the Higgs
mass assuming the validity of the Standard Model:

MH = 88+53
−35 GeV/c2,

or in term of limits:

MH < 196 GeV/c2 at 95% C. L..

7This is directly observed in the highly asymmetric error on the Higgs mass.
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(5)
had which is the contribution of the light quarks to the photon vacuum

polarisation ([77] and [78]) .

The ALEPH experiment has observed a 3 standard deviations excess in the search for the
Standard Model Higgs boson [74] with a mass near 114 GeV/c2, in good agreement with the

above limit.





Appendix A

Constrained Fit

A.1 Introduction

The problem is the following: suppose there is a set of n measurements y0i , i = 1, 2, ..., nwhich
deviate from their true value. Requiring that these variables fulfil m constraints f (a, y) = 0

(let k = 1, 2, ...m be the coordinate of the vector f) (for example, energy and momentum
conservation). In the general case (for a detailed treatment of the mathematics, see reference

[52]), we introduce a model which depends upon p parameters aj, j = 1, 2, ..., p which are
unmeasured. Using the least squares method, the quadratic sum (also called the multi-variate
χ2 bilinear form)

S (y) =
(
y− y0

)T
W
(
y− y0

)
(A.1)

has to be minimised, where

• y are the fitted values

• y0 are the measured values

• W = V −1 is the inverse of the covariance matrix for the measured values

For convenience, the difference y − y0 (a − a0) will be written as ∆y =
(
y− y0

)
(∆a =(

a− a0
)
).

In order to impose the constraints, we will introduce m parameters λk, known as Lagrange
multipliers, one for each constraint. We define a new function:

L
(
y, Fλ

)
= S (y) + 2

k=m∑
k=1

λkfk (a, y) (A.2)

where the number of degrees of freedom is given by the number m of Lagrange multipliers.
Since both S (y) and the constraint term are positive definite, the condition for a minimum

of this function with respect to all the parameters y and λk is equivalent to the condition for
a minimum of S(y) with fk(a, y) = 0. If the constraints are linear, one can find the solution

in one step. If not, the constraints are linearised with a first-order Taylor expansion and the
solution can be found by an iterative process with a linear approximation [52].

The starting value for y is taken to be the measured y0 and the starting value for the
unmeasured parameters a is set to a0 where a0 is taken from the simulation. In general, the

starting value does not satisfy the constraints.
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The first step is to calculate a correction to y and a, and introduce the improved values
yl and al which can be calculated by a Taylor expansion [52]:

fk

(
al−1, yl−1

)
+

p∑
j=1

∂fk

∂alj
(∆a−∆a∗) +

n∑
i=1

∂fk

∂yli
(∆y−∆y∗) ≈ 0 (A.3)

with ∆a∗ = al − al−1 and ∆y∗ = yl − yl−1. In matrix notation, equation (A.3) is

f∗ +A (∆a−∆a∗) +B (∆y−∆y∗) ≈ 0 (A.4)

or

A∆a+B∆y − c = 0 with c = A∆a∗ + B∆y∗ − f∗ (A.5)

where the matrix A, B and the vector f∗ are defined as:

A =




∂f1/∂a1 ∂f1/∂a2 · · · ∂f1/∂ap
∂f2/∂a1 ∂f2/∂a2 · · · ∂f2/∂ap
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂fm/∂a1 ∂fm/∂a2 · · · ∂fm/∂ap




f∗ =




f1

(
al−1, yl−1

)
f2

(
al−1, yl−1

)
. . . . . . . . . . . . . . .

fm

(
al−1, yl−1

)




B =




∂f1/∂y1 ∂f1/∂y2 · · · ∂f1/∂yn
∂f2/∂y1 ∂f2/∂y2 · · · ∂f2/∂yn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂fm/∂y1 ∂fm/∂y2 · · · ∂fm/∂yn




The function L, which leads to the minimisation of ∆a, ∆y and λ is now

L = ∆yTW∆y + 2λT (A∆a+B∆y − c) (A.6)

The condition for an extremum for L is given by:

∂L/∂y = W∆y+ BTλ = 0
∂L/∂a = +ATλ = 0
∂L/∂λ = B∆y+ A∆a− c = 0

(A.7)

which is equal to:

W∆y +BTλ = 0
+ATλ = 0

B∆y +A∆a = c

(A.8)
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A.2 Without the Unmeasured Parameters

In this case, no unmeasured parameters are assumed so that the constraints are applied only

on measured variables. Then equation (A.8) becomes

W∆y +BTλ = 0
B∆y = c

(A.9)

The solution is found by multiplying the first equation by W−1 from the left:

∆y = −W−1BTλ (A.10)

by replacing ∆y in second equation of (A.9), we get:

λ = −WBc (A.11)

with WB =
(
BW−1BT

)−1
. Including equation (A.11) in equation (A.10) we obtain

∆y = W−1BTWBc. (A.12)

this is the first step of a recursion for the non-linear problem. The next step consists of

setting ∆y∗ = ∆y so that the constraints are explicitly fulfilled. Applying this, the new
value yl+1 = y0 + ∆y, where ∆y is the previous calculated correction, is taken as the

solution. Using c = B(yl−y0)−f∗ and W−1 = V we can rewrite equation (A.12) and obtain
the recursive formulae1:

yl+1 = y0 + V BTWB

(
B
(
yl − y0

)
− f
(
yl
))

(A.13)

A.3 General Case

We now want to treat the possibility of unmeasured parameters a. We follow the same idea
as in the previous section. The system of equations (A.8) is written in matrix notation:

 W 0 BT

0 0 AT

B A 0




 ∆y

∆a
λ


 =


 0

0
c


 (A.14)

The inverse of the matrix is:
 W 0 BT

0 0 AT

B A 0




−1

=


 C11 CT

21 CT
31

C21 C22 CT
32

C31 C32 C33


 (A.15)

with the following component (with WA = ATWBA ):

C11 = W−1 −W−1BTWBBW−1 +W−1BTWBAW−1
A ATWBBW−1

C21 = W−1
A ATWBBW−1

C22 = W−1
A

C31 = WBBW−1 −WBAW−1
A ATWBBW−1

C32 = WBAW−1
A

C33 = −WB +WBAW−1
A ATWB

1For example, this is used for the 4 jet events [74] where all four fermions in the event are measured.
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The correction factor ∆y, ∆a and the Lagrange multiplier λ are given by the following

set of equation:

∆y = CT
31c =

(
W−1BTWB −W−1BTWBAW−1

A ATWB

)
c

∆a = CT
32c = W−1

A ATWBc

λ = CT
31c =

(
−WB +WBAW−1

A ATWB

)
c

The recursion formulae are given by:

yl+1 = y0 + V BTWB

(
1− AW−1

A ATWB

) (
B(yl − y0)− f

(
al, yl

))
(A.16)

Given a numerical accuracy ε, the condition for convergence is:∑
k

|fk (a+∆a, y+∆y)| < ε. (A.17)



Appendix B

Monte Carlo Statistics

This Appendix lists in detail all the Monte Carlo statistic used for the analysis (there is one

million event of W-pair generated per centre of mass energy), classified by centre-of-mass
energy. When background events are not available for one energy, the closest set in energy is

then used.

Monte Carlo generated with a CM energy of 188.6 GeV

Type Generated number Cross section (in pb−1)

e+e− → W+W− 1000 k 16.932

e+e− → qq̄ (γ) 725 k 99.

e+e− → ZZ 90 k 2.874

e+e− → Weν̄ 15 k 0.8351

e+e− → Ze+e− 1957 k 99.11

e+e− → e+e−γ 600 k 970

e+e− → µ+µ−γ 150 k 8.3

e+e− → τ+τ−γ 150 k 8.3

Monte Carlo generated with a CM energy of 191.6 GeV

Type Generated number Cross section (in pb)

e+e− → W+W− 1000 k 17.265

e+e− → qq̄ (γ) 600 k 96.379
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Monte Carlo generated with a CM energy of 195.5 GeV

Type Generated number Cross section (in pb−1)

e+e− → W+W− 600 k 17.621

e+e− → qq̄ (γ) 600 k 90.632

e+e− → ZZ 50 k 2.855

e+e− → Zνν 20 k 0.015

e+e− → Ze+e− 100 k 6.997

e+e− → Weν̄ 20 k 0.75

e+e− → e+e−γ 15000 k 894.49

e+e− → t+t−γ 50 k 7.54

Monte Carlo generated with a CM energy of 199.5 GeV

Type Generated number Cross section (in pb−1)

e+e− → W+W− 1000 k 17.812

e+e− → qq̄ (γ) 1000 k 86.572

e+e− → ZZ 50 k 2.847

e+e− → Zνν 20 k 0.016

e+e− → Ze+e− 100 k 7.072

e+e− → Weν̄ 20 k 0.811

e+e− → e+e−γ 400 k 859.030

e+e− → t+t−γ 30 k 7.223

Monte Carlo generated with a CM energy of 201.6 GeV

Type Generated number Cross section (in pb−1)

e+e− → W+W− 100 k 17.902

e+e− → qq̄ (γ) 500 k 84.53

e+e− → ZZ 100 k 2.847

e+e− → Zνν 20 k 0.016

e+e− → Weν̄ 20 k 0.835

e+e− → Ze+e− 100 k 98.948

e+e− → e+e−γ 400 k 842.980

e+e− → t+t−γ 50 k 7.043



87

Monte Carlo generated with a CM energy of 205 GeV

Type Generated number Cross section (in pb−1)

e+e− → W+W− 1000 k 17.976

e+e− → qq̄ (γ) 1000 k 84.53

e+e− → ZZ 50 k 2.83

e+e− → Weν̄ 20 k 0.866

e+e− → Ze+e− 1800 k 98.948

e+e− → e+e−γ 1000 k 818.630

e+e− → τ+τ−γ 100 k 6.824

Monte Carlo generated with a CM energy of 207 GeV

Type Generated number Cross section (in pb−1)

e+e− → W+W− 1000 k 18.00

e+e− → qq̄ (γ) 1000 k 84.53

e+e− → ZZ 50 k 2.81

e+e− → Weν̄ 20 k 0.8845

e+e− → Ze+e− 100 k 7.18

e+e− → Zνν 20 k 0.019

e+e− → e+e−γ 1000 k 802

e+e− → t+t−γ 100 k 6.678
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