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Test of a Readout and Compression ASIC for the ATLAS Level-1
Calorimeter Trigger:

The subject of this thesis is a prototype readout ASIC for the �rst-level trigger

of the ATLAS experiment. This so-called readout merger ASIC (RemAsic) reads

out and compresses raw calorimeter data.

Using a test system based on VME boards, an operating environment for the

RemAsic similar to the Level-1 Trigger system was built up. Readout and access

of internal RemAsic memories was tested. The tests were largely successful.

For that purpose, a controller was developed and implemented in an FPGA. For

certain tests, another FPGA design acting as a data source for the RemAsic was

developed. Software was written to control test hardware, the RemAsic and other

prototype components. This software package will also be used for monitoring and

diagnostics in the ATLAS experiment.

For evaluating compression algorithms for the ATLAS Level-1 Calorimeter Trigger,

a software program was written. It generates calorimeter data and calculates the

compression rates for di�erent algorithms. Improved compression algorithms based

on those of the RemAsic were developed.

Test eines Auslese- und Kompressions-ASICs f�ur den ATLAS Level-1
Kalorimetertrigger:

Das Thema dieser Arbeit ist der Prototyp eines Auslese-ASICs f�ur die erste

Triggerstufe des ATLAS-Experiments. Dieser sogenannte Readout Merger ASIC

(RemAsic) liest Kalorimeterdaten aus und komprimiert sie.

Mit einem auf VME-Karten basierenden Testsystem wurde ein dem Level-1 Trigger

�ahnliches System aufgebaut, in dem der RemAsic betrieben wurde. Die Auslese

und der Zugri� auf interne Speicher des RemAsics wurde getestet. Die Tests waren

zum gr�o�ten Teil erfolgreich.

Zu diesem Zweck wurde ein Controller entwickelt und in einem FPGA imple-

mentiert. F�ur spezielle Tests wurde ein weiteres FPGA-Design entwickelt, das

als Datenquelle f�ur den RemAsic diente. Um die Testhardware, den RemAsic

und andere Prototypen zu kontrollieren, wurde Software geschrieben. Dieses Soft-

warepaket wird auch im ATLAS-Experiment zur �Uberwachung und Diagnose der

Hardware verwendet werden.

Um Kompressionsalgorithmen f�ur den ATLAS Level-1 Kalorimetertrigger zu

evaluieren, wurde ein Softwareprogramm geschrieben. Es erzeugt Kalorimeter-

daten und berechnet Kompressionsraten f�ur verschiedene Algorithmen. Aus den

Kompressionsalgorithmen des RemAsics wurden verbesserte Algorithmen ent-

wickelt.
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Introduction

The ATLAS experiment at the Large Hadron Collider (LHC) at CERN will search for the Higgs

boson and supersymmetric particles and investigate other physics questions. Since physics events

not yet observed by other experiments are rare, a highly sophisticated trigger system is required.

The Level-1 Trigger, the �rst level of the ATLAS trigger system, reduces the event rate from the

LHC bunch-crossing rate of 40 MHz to a maximum of 100 kHz. This is done by searching for

isolated particles and jets above a certain energy threshold and by requiring the global energy sum

to clear another threshold.

The Level-1 Trigger is composed of the Level-1 Calorimeter Trigger, the Level-1 Muon Trigger

and the Central Trigger Processor. The �rst two parts process data from speci�c parts of the

detector. The Central Trigger Processor takes the �nal trigger decision. The Calorimeter Trigger

contains a preprocessor system which digitises data and prepares them for the trigger.

Data are read out from the trigger for every accepted event. This serves for monitoring trigger

function and complementing other readout data. In the case of the Preprocessor of the Level-1

Calorimeter Trigger, the readout is to be done by a Field Programmable Gate Array (FPGA).

Its prototype is an Application-Speci�c Integrated Circuit (ASIC), the Readout Merger ASIC

(RemAsic). The amount of data read out is very large. To simplify data transmission downstream

of the RemAsic, it compresses readout data. Since the RemAsic is a prototype intended for

evaluation of this approach, it implements a variety of compression algorithms. Tests of the

RemAsic are the subject of this thesis.

The �rst chapter of this thesis describes the aims of the ATLAS experiment and the ATLAS

detector. The ATLAS trigger system and the Level-1 Calorimeter Trigger Preprocessor, the oper-

ating environment of the RemAsic's successor, are also treated in that chapter. Chapter 2 explains

the RemAsic and other prototype components with which it works together. In the following

chapter, the hardware used for the tests and a controller developed for it is described. Chapter 4

presents software written to control all the hardware. Chapter 5 decribes the RemAsic test setups

and the test results. In the last chapter, the compression algorithms of the RemAsic are discussed.

A software program developed for calculating compression rates is presented and its results are

given. Finally, improvements of the compression algorithms of the RemAsic are described.

1
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Chapter 1

Physical Background and Trigger

System

The ATLAS experiment is designed to investigate the existence of the Higgs boson and of su-

persymmetric particles and other physics questions. It is located at the Large Hadron Collider

accelerator which will achieve unprecedented center-of-mass energies.

The high event rate at LHC requires high trigger selectivity. The ATLAS trigger has three

trigger levels of di�erent complexity. The �rst-level trigger contains a preprocessor system for

signal preparation. The ASIC which is the subject of this thesis is a prototype of one of its

components.

1.1 The ATLAS Experiment

1.1.1 The Large Hadron Collider at CERN

The Large Hadron Collider (LHC) is designed to achieve energies never reached before in accelerator

physics. It will provide proton-proton collisions with a center-of-mass energy of 14 TeV and a

luminosity1 of 1034 cm�2s�1. The LHC accelerates bunches of protons or heavy ions in two

separate synchroton rings in opposite directions. The beams intersect at four interaction points

where experiments are located. At those points, bunches collide every 25 ns, which is called a

bunch-crossing. For that reason, 40 MHz is the characteristic frequency for LHC experiments and

their electronics. The steady series of bunch-crossings is occasionally interrupted by `bunch gaps'

needed for beam insertion and extraction (dump).

The LHC is being installed in the tunnel of an existing accelerator, the Large Electron Positron

Collider (LEP). It is scheduled to go into operation in the year 2005. Its circular tunnel has a

radius of 4.3 km and crosses the border between France and Switzerland.

At the LHC, two general-purpose experiments are located: ATLAS (A Toroidal LHC Apparatus)

and CMS (Compact Muon Solenoid). They have roughly the same aims, described in the next

section. The ALICE experiment (A Large Ion Collider Experiment) is dedicated to the physics

of strongly interacting matter at extreme energy densities. The purpose of a fourth experiment,

LHCb, is studying CP violation in decays of B mesons.

1The luminosity is the number of particle collisions per geometrical cross-section per time interval.

3
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Figure 1.1: The ATLAS detector

1.1.2 Physics Issues at ATLAS

The Standard Model is widely regarded as a comprehensive description of the known phenomena

concerning particles and their interactions (excluding gravity). However, not all of it has yet been

con�rmed by experiments. The Higgs boson which is instrumental in explaining particle masses

has never been created in an experiment because of its high mass. The LHC's energy range will

allow this, and verifying the Higgs's existence is one of the primary aims of the ATLAS experiment.

An extension of the Standard Model, Supersymmetry, introduces a symmetry between fermions

and bosons. It postulates for each Standard Model particle a supersymmetric partner whose spin

di�ers by one half. The supersymmetric particles have never been observed so far and are to be

searched for by ATLAS.

Another aim of the ATLAS experiment is to ascertain that quarks are truly elementary or

to �nd their substructure if they are not. The high energies available at the LHC may reveal

substructures not visible to earlier experiments. Besides, ATLAS will measure decays of B mesons.

On the basis of these measurements, CP violations will be searched for and the elements of the

Cabibbo-Kobayashi-Maskawa matrix will be determined more precisely.

1.1.3 The ATLAS Detector

1.1.3.1 The Inner Detector

The inner detector is for tracking particles on their way from the interaction point. From its

measurements, particle tracks and their vertices can be reconstructed. Since the inner detector

is located in a magnetic �eld, the particles' momentum can be worked out from their tracks and

their energy measured by the calorimeter.

The inner part of this detector is made up of high-resolution semiconductor pixel and strip

detectors. Farther from the beam tube, less accurate wire chambers are located.

1.1.3.2 The Calorimeters

The task of calorimeters is to measure the energy of particles. This is done with alternating layers

of detector and absorber material. The particles decay in the absorber regions, creating showers
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of particles. This process is repeated in the following absorber layers until the particles are slow

enough to be absorbed without creating others. Only a small fraction of the energy is deposited in

the detector material, but it is proportional to the energy of the shower and hence of the primary

particle.

The ATLAS detector contains several di�erent calorimeters, as can be seen in Figure 1.1. The

one closest to the interaction point is the electromagnetic calorimeter. Its absorber material is

lead. Liquid argon is used as detector material because it is tolerant to intensive radiation. The

electromagnetic calorimeter is suited only for detecting electromagnetic showers of electrons and

photons. Hadrons pass through it without depositing much energy.

Hadrons are detected by the hadron calorimeter behind the electromagnetic one. Its barrel

region is composed of staggered tiles of plastic scintillator embedded in iron which acts as absorber.

The tiles are perpendicular, not parallel to the beam axis, but their staggered arrangement ensures

good coverage.

For particles with trajectories very close to the beam axis, there is the forward calorimeter. It

consists of liquid argon as sensitive material and copper and tungsten as absorber.

1.1.3.3 The Muon Detector

Muons are the most penetrating particles of all. For that reason, the muon detector is the outermost

layer of the ATLAS detector. It consists of di�erent types of drift chambers. The barrel of the

muon detector is located in the �eld of the air core toroid magnets that gave ATLAS its name

(A Toroidal LHC Apparatus). Thus, the muons' momenta can be reconstructed from the bending

radii of their tracks.

1.2 The ATLAS Trigger System

1.2.1 Overview

The ATLAS detector generates about 50 terabytes of data each second. Storing this amount of

data for o�-line analysis is techically impossible. Furthermore, most of this information is unrelated

to the physics processes ATLAS is intended to investigate. It is the task of the trigger system to

decide whether such a process happened at any given bunch-crossing and to trigger readout of the

detector only in that case.

Deciding whether detector data represent an interesting physics event takes in the order of

seconds. Storing all data even for that time is still prohibitive. For that reason, the trigger

decision is taken in several stages. These stages, called trigger levels, are the Level-1 Trigger, the

Level-2 Trigger and the Event Filter (see Figure 1.2). Lower levels of the trigger are less selective

than higher ones. They exist to reduce the amount of data to be stored while the trigger decision

in the next level is being taken. Thus higher levels of the trigger can take more time without

requiring unacceptable amounts of storage space.

The Level-1 Trigger is the �rst level of the trigger. Since its decision must be made within

2 �s, its algorithm is implemented in hardware. The time limit applies to the sum of signal delays

(latency) through electronics and cables. The Level-1 Trigger comprises the Calorimeter Trigger

and a separate Muon Trigger. The Muon Trigger's decision is based on special trigger chambers in

the muon detector. The Calorimeter Trigger uses analogue sums of the signals of several calorimeter

cells. See next section for more detail. The third component of the Level-1 Trigger is the Central

Trigger Processor which combines the results of the other two subsystems to make the �nal trigger

decision.

The Level-1 Trigger has to reduce the data rate by a factor of 500. To do this, it searches

for isolated electrons, photons, muons and hadrons and for jets of particles. It also calculates
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Figure 1.2: ATLAS data acquisition and trigger data paths [Pfei]

global quantities like the transverse energy sum and the missing transverse energy, which must

pass tresholds for the event to be accepted. It determines the coordinats of regions of interest to

be investigated by the Level-2 Trigger.

The Level-2 Trigger, unlike the Level-1 Trigger, has access to the same data which are later

passed on to the readout. It uses the calorimeter data in their full granularity, the regular muon

detector chambers and the inner tracking detector. For the regions of interest de�ned by the Level-

1 Trigger, it converts data from several subdetectors to physical quantities. The Level-2 Trigger

algorithms are implemented in software running on dedicated multi-processor systems.

The last level of the trigger is called the Event Filter. It is functionally part of the data

acquisition (DAQ) data ow (see Figure 1.2). Unlike the Level-2 Trigger, it is not con�ned to

regions of interest but considers data from the whole detector. It builds physics events from the

fragments provided by the Level-2 Trigger and selects interesting events for storage.

1.2.2 The Level-1 Calorimeter Trigger

The ATLAS Level-1 Calorimeter Trigger is the part of the �rst-level trigger which operates exclu-

sively on calorimeter data. Its architecture is shown in Figure 1.3. The Level-1 Trigger does not

use the full granularity that single calorimeter cells provide. It processes trigger tower data which

are sums of the energies of several calorimeter cells. Trigger towers comprise the cells in an interval
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of 0:1� 0:1 in pseudorapidity2 and azimuth angle.

The signals �rst pass through the Preprocessor. It digitises them and calibrates the energies

using lookup-tables. It also performs bunch-crossing identi�cation, ie it correlates energy pulses

with the bunch-crossing of the event from which they resulted. These data are passed on to the

Cluster Processor (CP) and the Jet/Energy-Sum Processor (JEP) which work in parallel. The

Cluster Processor's task is to detect isolated particles (electrons, photons or hadrons) above a

certain energy threshold. The Jet/Energy-Sum Processor looks for jets and computes the sum of

absolute transverse energies and the missing transverse energy. Both transmit the multiplicity of

passed thresholds to the Central Trigger Processor which takes the �nal trigger decision. If the

event is accepted, the regions of interest (RoIs) are passed on to the Level-2 Trigger. That are the

locations of the cells causing the Level-1 Accept.

As has been said before, the Level-1 Trigger algorithms are implemented in hardware. This is

necessary because stringent latency requirements demand fast signal processing. The Preprocessor

relies on an application-speci�c integrated circuit (ASIC) for customised signal processing. Besides,

it uses commercial ADCs and serial transmitters. The Cluster Processor also contains commercial

components. Its algorithm will probably be implemented in an FPGA3, though an ASIC is still

being considered. The Jet/Energy-Sum Processor will also be implemented in FPGAs.

All three subsystems of the Calorimeter Trigger provide data for readout. These data will be

used for monitoring the trigger and trigger-tower summation. The Preprocessor can read out raw

or processed data. The CP and JEP provide the data they receive from the Preprocessor (for

checking data transmission) and the results of their own processing.

2Pseudorapidity (�) is used instead of the polar angle �. The fact that pseudorapidity di�erences are Lorentz

invariant simpli�es trigger algorithms. Its de�nition is: � = � ln tan �

2
3An FPGA (Field Programmable Gate Array) is a piece of con�gurable hardware. It contains logical gates and

ip-ops that can be connected to perform all sorts of functions, in the most general sense. In many cases, an FPGA

is an alternative to a digital ASIC (Application-Speci�c Integrated Circuit).
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1.2.3 The Level-1 Calorimeter Trigger Preprocessor

The Preprocessor of the Calorimeter Trigger receives about 7 200 channels of analogue trigger-

tower data. It digitises and preprocesses them for the Cluster Processor (CP) and the Jet/Energy

Sum Processor (JEP). The Preprocessor will physically consist of eight 9U VME crates with 16

Preprocessor Modules each. For high integration density and easy substitutability of defect parts,

data processing will be done by Multi-Chip Modules (MCMs). One MCM carries four ADCs, an

ASIC for customised signal processing and three serial transmitters. It can handle four channels.

The Preprocessor processes data on two data paths, as can be seen in Figure 1.4. On the trigger

data path, it digitises trigger-tower energies, calibrates them and performs bunch-crossing identi-

�cation (BCID). This means locating energy pulses in time. The latter two tasks are performed

by the Preprocessor ASIC (PPrAsic). The results are serialised and transmitted to the two trigger

processors, the CP and the JEP. This is done using LVDS technology.

The other data path serves for reading out data of interest for monitoring the Preproces-

sor. Readout data are provided by the Preprocessor ASIC. The so-called Readout Merger FPGA

(RemFPGA) collects data from all the Preprocessor ASICs on a module via serial interfaces. All

RemFPGAs transmit their readout data to one of two readout driver modules on a dedicated

parallel bus, the Pipeline Bus. The Pipeline Bus connection will be integrated in the customised

backplane of the VME crate. The readout driver transmits the data from the whole crate to the

data acquisition (DAQ) readout bu�ers via fast serial links.

The RemFPGA will compress the data before passing them on. This is done for various reasons:

If the Pipeline Bus is operated at 40 MHz, its bandwidth is not su�cient for all the data (though

it could be operated at a higher frequency). If the data were not compressed, more serial links and

inter-crate cables would be necessary for transmitting them to the DAQ. Moreover, implementing

simple compression algirithms in hardware imposes little extra cost, in design e�ort or performance.

The DAQ would in any case compress the data before storing them �nally. Pre-compressing them



1.2. THE ATLAS TRIGGER SYSTEM 9

at an early stage in the data stream makes transmission easier and adds to the total compression

rate.

1.2.4 Prototypes for Components of the Preprocessor

To establish experience in design techniques and to demonstrate feasibility, prototypes of all the

main components of the Preprocessor were developed. The prototype of the Preprocessor ASIC,

called Front-End ASIC, was successfully operated on a `demonstrator front-end module'. An MCM

carrying ADCs, Front-End ASICs and serial transmitters was developed, and its trigger data path

was tested successfully (see [Pfei]). The prototype performing the function of the RemFPGA is

an ASIC since FPGAs were too small and too expensive when it was designed. It is called the

Readout Merger ASIC (RemAsic) and is the subject of this thesis.

The RemAsic, the Preprocessor Demonstrator MCM and the Front-End ASIC are described in

detail in the next chapter. The VME-based test system used to build up a prototype Preprocessor

system is treated in Section 3.1.
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Chapter 2

The RemAsic and Associated

Hardware

The Readout Merger ASIC (RemAsic) is a prototype designed for compression and readout of

calorimeter data. It implements four di�erent compression algorithms for evaluation. It also

contains some features speci�cally intended for testing and debugging.

The RemAsic receives its data from four other ASICs on a Multi-Chip Module. These so-

called Front-End ASICs are prototypes of ASICs that do most of the preprocessing for the Level-1

Trigger.

2.1 The RemAsic

The RemAsic consists of about 160000 transistors and 2.5 kBytes of memory. It was designed using

the hardware description language Verilog, synthesized into a schematic circuit represention with

the tool Synergy and transformed into a layout. The manufacturing process was a 0.7 �m-CMOS

process from Atmel ES2. The Verilog source code is still in existence and was used for �nding the

root cause of any misbehaviour the ASIC exhibited.

A detailed account of how the RemAsic works can be found in its user manual [RemA]; for a

thorough description of its compression unit see [Nie].

2.1.1 Functional Overview

A block diagram of the RemAsic is shown in Figure 2.1. Data ow is indicated by arrows. During

normal operation, the readout data path is active. Up to four Front-End ASICs (or FeAsics, see

2.2.2 below) can be connected to each of the four ports on the left. Whenever the Level-1 Accept

signal is activated, up to eight 23-bit words are read from each of them. Those data words contain

ten-bit values representing the energies of trigger towers at successive bunch-crossings, which are

written to one of the two Event Bu�ers.

When the Event Bu�er is �lled, the compression unit compresses the data and writes the result

(plus one header word) to one of the 32 bit wide Pre-Main Bu�ers. The di�erent compression

modules produce output words of di�erent widths, none of which is 32 bits. The output words are

mapped to 32 bits with a barrel shifter, placing each to the left of its predecessor and breaking

the resulting bit stream up into 32 bit portions. Data are coded en bloc for each FeAsic channel,

ie �rst all values from the �rst channel, then all from the second and so on.

The compressed 32-bit data are transmitted on a parallel bus, the Pipeline Bus (see below for

more detail). It is used for controlling the RemAsic with command words as well as the transmission

11
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Figure 2.1: Block diagram of the RemAsic [RemA]

of readout data. When a command requesting readout data is received on the Pipeline Bus, it is

written from the Pre-Main Bu�er to the bus via the general-purpose Main Bu�er.

Since there are two Event Bu�ers and two Pre-Main Bu�ers, all three stages of processing,

ie serial input, compression and parallel output, can be performed simultaneously for data corre-

sponding to successive Level-1 Accept signals. This makes the RemAsic a pipelined system.

When the rate of Level-1 Accept signals exceeds the rate of readout, the RemAsic stores a

ag and the corresponding level-1 event number in a FIFO bu�er, the level-1 queue. As the

corresponding data are stored in a FIFO on the FeAsic, readout can catch up when the accept rate

slows down. If the level-1 queue overows, the RemAsic asserts a signal telling the Central Trigger

Processor not to generate any more Level-1 Accept signals.

2.1.2 Subdevices

Subdevices are parts of the RemAsic which can be read and/or con�gured via the Pipeline Bus

in a common way. Subdevices include the Event Bu�ers, the Pre-Main Bu�ers, the code table for

Hu�man compression and the level-1 queue. The set of four control registers that determine the

RemAsic's behaviour also represents one subdevice. The serial FeAsic interface is implemented

as a write-only subdevice. Certain con�guration data words trigger actions by the interface, eg

loading the shift register or activating the shift clock.

2.1.3 The Pipeline Bus

The Pipeline Bus is the main interface for controlling the RemAsic as well as reading out event

data. Devices connected to this bus are called bus `nodes'. The Pipeline Bus is so called because

data propagate from one bus node to the next at each bus clock cycle, as in a FIFO1 bu�er or

pipeline. In the �nal Preprocessor system, the readout driver module (1.2.3) will both control the

bus and receive readout data. Then the Pipeline Bus will have ring topology, ie the last bus node

will pass bus data back to the �rst. In the test system (3.1), the bus is controlled by a master

1First In, First Out. This is a bu�er that stores data for a certain time before passing them on in the same order.

The opposite is a LIFO (Last In, First Out) bu�er or stack, from which the last word written to it is read �rst.
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Figure 2.2: Format of the Pipeline Bus command words

node and monitored by a spectator node. As the topology of the bus is of no importance for the

RemAsic, the ring was left open for the tests.

The Pipeline Bus has 35 bits. Of them, 32 are data bits, two control bits and one the parity

bit. The control lines indicate the meaning of bus data. According to their value, they may be

RemAsic commands, user-de�ned data or `idle' words. Idle words are transmitted when the bus

is unused or as placeholders to be overwritten with readout data. Blocks of user-de�ned data are

enclosed by two special commands called BeginOfData and EndOfData.

Command words contain an eight-bit command token, a six-bit address, two ags and a 16-bit

argument (see Figure 2.2). Each RemAsic has a unique node address and a group address it may

share with others. There is also a broadcast address for addressing all RemAsics on the bus. They

react to commands containing its node, group or the broadcast address. The two ags are written

by the RemAsic in response to the command. When it is addressed by a command word, it sets

either the accept ag or the error ag. The accept ag is set if the command could be executed,

the error ag otherwise.

The argument �eld of a command word contains con�guration data or status information

written by the RemAsic, depending on the command. Commands that require larger amounts of

data are followed by a data block, enclosed by BeginOfData and EndOfData commands. For a

description of the command tokens recognised by the RemAsic and their meaning, see [RemA].

2.1.4 Compression Modes

Four di�erent compression algorithms, plus a no-operation mode, are implemented in the RemAsic.

Some of them use a special control register, the compression parameter register. Most have the

option of using only eight bits of the ten-bit input words. They work as follows:

Run-Length Encoding: Unlike the others, this is an algorithm which entails loss of information.

Data values which are less than the compression parameter are suppressed. Instead, a zero

is output (a value that is always suppressed), followed by the number of successive values

under the threshold.

Hu�man Encoding: Data words are coded according to a dedicated memory, the Hu�man code

table, which contains codes of arbitrary lengths in a certain format. The upper eight bits of

the input word are used as an index in the table, the lower two are appended to the code

from the table. The table must be con�gured by the user, for instance with codes generated

with the Hu�man algorithm (see [Le] for details).

Hu�man-Inspired Encoding: This algorithm outputs 13-bit words. If the input words di�er

from the compression parameter by less than eight, up to three of those di�erences are stored

in one word, otherwise one unchanged input value is contained. The thirteenth bit is used

for agging between those two formats. This mode cannot process eight-bit input data.

Di�erence Encoding: Same as Hu�man-inspired encoding, but the di�erences between succes-

sive data words are used instead of the di�erence between data word and parameter.
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A more detailed description of the compression modes and the compression unit can be found

in [Nie].

2.1.5 Features for Testing the RemAsic

The RemAsic contains a number of functions which are not intended for use in the running of the

Preprocessor system but for putting the ASIC into operation and testing it. They are described

in the following sections.

2.1.5.1 The Serial Pipeline Bus

Running the parallel Pipeline Bus requires several modules, which makes simple functional tests

complicated and introduces additional sources of errors. Therefore, the RemAsic contains a serial

interface that can receive and transmit Pipeline Bus words. It consists of one serial data line

for each direction plus a common serial clock line. On the test system Preprocessor Module (see

3.1), they are connected to the motherboard FPGA, which makes standalone tests of this module

possible. The Pipeline Bus clock, which is also the system clock of the RemAsic chip, acts as a

frame clock and must be a factor of 35 slower than the serial clock.

The serial Pipeline Bus is not intended for full-speed tests. The RemAsic, including the serial

interface, is guaranteed to work only at clock frequency of 40 MHz. The RemAsic's clock is

restricted to 40 MHz=35 =1.14 MHz when the serial bus is used, since it is the same as the serial

frame clock. Because the FPGA design controlling the Preprocessor Module (see 3.2) runs at only

20 MHz internally, the frequency actually used is half that, 0.57 MHz.

2.1.5.2 Data Bu�er Subdevices

All bu�ers in the data path can be directly accessed via the Pipeline Bus, as subdevices (see 2.1.2

above). When readout does not provide the expected data, intermediate bu�ers can be read to

�nd out which stage of processing produced the error. Another application of this feature is to

test the compression unit without reading data through the serial interface, which was a frequent

source of errors. This is done by writing the Event Bu�er, triggering compression, and reading the

Pre-Main Bu�er which stores compression results (Figure 2.1).

2.1.5.3 The Spy Bus

The Spy Bus is the most important debugging feature of the RemAsic. It is the only way to look

inside the black box the ASIC represents. When the RemAsic doesn't react to Pipeline Bus input

at all, it provides a way of �nding out why.

The Spy Bus connects one of eight 8-bit status words to eight output ports. Those status words

contain the RemAsic's Pipeline Bus address, state machine2 registers and other internal registers.

The desired Spy Bus word is selected by three address inputs.

2.2 The Preprocessor Demonstrator Multi-Chip Module

2.2.1 Overview

The Preprocessor Demonstrator Multi-Chip Module (MCM) is the predecessor of the Preprocessor

MCM to be used in the �nal Preprocessor system, just as the RemAsic is the preliminary version

2A state machine is a piece of digital logic that writes a succession of di�erent values to a state register. Its next

value depends on the current value and a number of inputs. Depending on the value of the state register, other

actions can be performed by separate logic. The RemAsic contains 32 such state machines. Not all state registers

are on the Spy Bus.
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Figure 2.3: Block diagram of the Preprocessor Demonstrator MCM [Pfei]

of a readout chip for that system. It represents the core of the Preprocessor system. It digitises

trigger-tower energies, processes those data and transmits the result to other components of the

Level-1 Calorimeter Trigger. In addition to this trigger data path, readout data are transmitted

to the RemAsic on demand.

The demonstrator MCM can handle four channels of trigger-tower data. Figure 2.3 shows a

block diagram of it. It contains two dual-channel ash ADCs, four Front-End ASICs (described

below), an interconnection chip (Finco) and two G-Link serial transmitters. The Finco ASIC

converts voltage levels and multiplexes the four FeAsics' Spy Buses. The trigger data path runs

from the left to the right of the diagram; the readout interfaces are shown above the FeAsics.

The MCM has four di�erent clock inputs so the timing between successive components in the

trigger data path can be adjusted. The clock frequencies must be identical, but their relative

phase should be optimised to achive maximum reliability on that data path. For most of the

RemAsic tests, only the Front-End ASICs were needed, so that timing was irrelevant. The timing

is �ne-tuned with the help of a delay chip described very briey below (2.2.3).

For more information on the MCM and the Finco ASIC, see [Pfei].

2.2.2 The Front-End ASIC

The Front-End ASICs (FeAsics) do most of the processing on the demonstrator MCM. They

calibrate energy values using a look-up table and locate the maximum of energy peaks, a task

known as bunch-crossing identi�cation (BCID). Figure 2.4 shows a block diagram of the FeAsic.

The trigger data path is at the bottom, passing through the look-up table (LUT) and the BCID

logic. Most of the rest of the ASIC is dedicated to the readout.

Readout data can originate from three di�erent positions in the trigger data path: before

the look-up table, before and after BCID. They are copied continuously to the Pipeline Memory.

Whenever the FeAsic receives a Level-1 Accept signal, a number of successive values are copied

from the Pipeline Memory to the so-called Derandomiser Bu�er. This process is in synch with the

RemAsic's level-1 accept queue. The RemAsic's handshake with the Central Trigger Processor (see

2.1.1 above) ensures the Derandomiser Bu�er does not overow. When readout data are requested

by the RemAsic, the content of the Derandomiser Bu�er is transmitted on the serial interface.
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Figure 2.4: Block diagram of the Front-End ASIC [FeA]

The serial interface transmits a 23-bit word, containing a ten-bit energy value, the address of that

value in the Pipeline Memory and some ags.

The serial interface between the RemAsic and the FeAsics serves two purposes: transmitting

readout data to the RemAsic and con�guration data to the FeAsics. It consists of �ve signals: a

serial clock, one data line for each direction, a ready signal and a so-called `acknowledge' signal.

The clock, the acknowledge and one of the data lines are driven by the RemAsic which acts as a

master. The acknowledge signal is activated by the RemAsic as a data request for readout or as a

load ag to complete a con�guration transmission. The ready signal is normally high. It is pulled

down by the FeAsic while it is busy transferring data to or from the serial interface internally.

This happens after the RemAsic has asserted the acknowledge signal. This procedure is not a

handshake since the duration of those signals is �xed by the implementation of the two ASICs.

As a test feature, data from an internal memory, the Playback Memory, can be injected into the

trigger data path at any point (see Figure 2.4). Subsequent readout by the RemAsic must produce

the pre-de�ned data. The Playback Memory is written via the serial interface. As a debug feature

for checking FeAsic function, the RemAsic can read out the Pipeline Memory address and two

mode bits instead of the energy value. They are also contained in the 23-bit word received from

the FeAsic. The resulting ten bits are then compressed and put on the Pipeline Bus like an energy

value.

2.2.3 The PHOS4 Delay Chip

The PHOS4 chip is not a component of the MCM, but it is needed to operate it. It can impose

de�ned delays on up to four signals. When it is used with the MCM, these signals are the clocks

for the di�erent MCM components. The delays are adjusted so that the timing between successive

elements in the MCM's trigger data path is right. When only the Front-End ASICs are used (as

was the case in nearly all RemAsic tests) that timing is irrelevant. But the PHOS4 still has to be

reset and con�gured to let the signals through at all.

The PHOS4 is controlled via an I2C bus, a two-line open-collector bus developed by Philips

Semiconductors (see [Phi]).



Chapter 3

Test Hardware and FPGA Designs

An existing test, evaluation and demonstrator system based on a multi-purpose VME motherboard

was used for all tests. Its purpose is testing prototype components of the Preprocessor system and

building a prototype Preprocessor.

An FPGA on that motherboard served as controller of the RemAsic and other hardware. Two

FPGA designs were written to do di�erent kinds of tests.

3.1 The VME-Based Test System

3.1.1 General

The VME test system was designed as a exible platform for doing a variety of hardware tests.

Its main purpose is testing the RemAsic and the Preprocessor Demonstrator Multi-Chip Module

(2.2.1) and building a demonstrator system with them. This system has the functionality of the

Level-1 Trigger Preprocessor System but cannot handle the number of channels. It has also been

used for testing serial transmission from the Preprocessor to the components downstream in the

trigger data path.

The core of the system is a 6 U VME motherboard (Figure 3.1). It carries an FPGA1 made

by Xilinx Inc. and 32 kBytes of dual-ported RAM. The memory can be read and written by the

FPGA or via the VME bus. It contains two special addresses that assert an interrupt signal to one

side when being written by the other. The VME interface for con�guring the FPGA and accessing

the memory is implemented in an EPLD2 also made by Xilinx. Besides, the motherboard carries

a programmable clock generator that clocks the FPGA (and through it all other hardware). It has

two di�erent clock outputs with frequencies adjustable from 0.4 to 120 MHz. It is controlled via

the VME bus, by writing a register decoded by the EPLD.

Most of the space on the motherboard is taken up by two slots for CMC daughterboards. Five

connectors link them to the motherboard FPGA and to each other. Four of them are conform

to the standard for common mezzanine cards (CMCs). The �fth is compatible with the CERN

speci�cation of a high-speed serial link (`S-Link') daughtercard [SLi].

For each set of daughtercards, there is a corresponding FPGA design for controlling them.

Designing a con�guration for an FPGA is very similar to designing a digital ASIC (though FPGA

designs tend to be smaller). The design's functionality is described in a hardware description

1An FPGA (Field Programmable Gate Array) is a piece of con�gurable hardware. It contains logical gates and

ip-ops that can be connected to perform all sorts of functions, in the most general sense. In many cases, an FPGA

is an alternative to a digital ASIC (Application-Speci�c Integrated Circuit).
2An EPLD (Electrically Programmable Logical Device) is a device similar to an FPGA but less complex.
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Figure 3.1: The test system motherboard (after [Schu2])

language (in this case Verilog). This description is transformed to a schematic circuit representation

and optimised with a tool program, in our case Synopsys. A di�erent tool (made by Xilinx) maps

the circuit onto the cells of the FPGA and generates a con�guration �le that can be loaded into

the FPGA.

A motherboard with one or two daughtercards and the right FPGA design forms a VME

module that performs a speci�c function. The three types of modules needed for RemAsic tests

are described in the following sections.

3.1.2 The Pipeline Bus Master and Control Signal Source Module

This module has a dual function: It acts as a master controlling the Pipeline Bus, and it provides

global signals to all modules in the system. Both the Pipeline Bus signals and the control signals

are generated in the motherboard FPGA. The module has two daughtercards shown in Figure
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3.2. The upper one links the motherboard FPGA to the Pipeline Bus. As all other daughtercards

using the Pipeline Bus, it has two Compact PCI connectors at its front (left side of the �gure).

Successive Pipeline Bus nodes are linked by plugging small PCB bridges with pins on them into

the connectors.

The second daughtercard carries an EPLD which is programmed to provide a number of control

signals. In the �nal Preprocessor system these signals would originate from the Trigger, Timing

and Control system. Each of them is fanned out to several pins of a front connector. From there,

they are transmitted via cables to all the modules in the system. To make transmission safer,

the signals are di�erential. The two most important signals, the Level-1 Accept signal and the

bunch-crossing clock which is also the Pipeline Bus clock, are provided by the motherboard FPGA.

The Pipeline Bus master design with which the FPGA is con�gured contains all the function-

ality of this module. The daughtercards only serve as conduit to the Pipeline Bus and fanout,

respectively. Acting on a program in the memory, the master design can send a string of Pipeline

Bus commands and activate the Level-1 Accept. For a more detailed description of the Pipeline
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Pre-Processor Controller command
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Pipeline Bus command
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Figure 3.4: Format of the Preprocessor Controller commands

with the RemAsic on it and one with the demonstrator Multi-Chip Module (MCM, see 2.2.1)

mounted on top.

The RemAsic daughtercard has at its front (left-hand side of the �gure) two Compact PCI

connectors for the Pipeline Bus, as all other cards using that bus. It carries a number of multiplexers

that allow feeding in control signals generated by this module's FPGA, rather than from the

master/fanout module. These control signals include the Pipeline Bus clock, bunch-crossing clock

and the Level-1 Accept. The serial Pipeline Bus lines (2.1.5) are also multiplexed. When they are

connected to the FPGA, the Preprocessor Module can be operated stand-alone, albeit at a low

clock frequency.

The lower daughtercard carries the demonstrator MCM and a signal delay chip (2.2.3) needed

to operate it. Separately from the other daughtercard, it has inputs for the bunch-crossing clock

and the Level-1 Accept signal. As above, those signals can come from the master module (via

front-panel connectors) or from this module's FPGA. The MCM daughtercard also has front-panel

connectors for the analogue input signals to the MCM and its serial digital output.

The FPGA design associated with this module is the Preprocessor Controller design described

below. It controls the multiplexers on the upper daughtercard and generates control signals when

the Preprocessor Module is operated stand-alone. It has functions for accessing all hardware on

the daughtercards, including the RemAsic, the delay chip and the MCM.

3.2 The Preprocessor Controller

3.2.1 Introduction

This FPGA design contains functionality for accessing all the hardware on the Preprocessor Mod-

ule. It is itself controlled via the VME bus. Command words of a certain format can be written to

one of the dual-ported memory's interrupt registers from the VME side. On receiving the interrupt

signal from the RAM, the Preprocessor Controller reads the register and executes the command.

In this context, that interrupt register is called the `command register'.

The command format is shown in Figure 3.4. The most signi�cant bit distinguishes between

commands for the Preprocessor Controller proper and commands to be transmitted on the serial

Pipeline Bus. The seven next most signi�cant bits contain a command token that speci�es the

action to be taken. Valid command tokens for the Preprocessor Controller are listed in table

3.1. The actions they trigger are described below. In the Pipeline Bus commands, the token and
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Name Binary Value Hex. Value Brief Description See Section

Nop 1000 0000 80 No operation

SetI2C 1000 0001 81 Set I2C bus lines 3.2.5

LoadFinco 1000 0010 82 Send data to Finco 3.2.1

Reset 1000 0011 83 RemAsic and other resets 3.2.4

Execute 1000 0100 84 Execute RAM program 3.2.1

Stop 1000 0101 85 Stop program execution 3.2.1

Wait 1000 0110 86 Wait for some clock cycles

CtrlReg 1000 0111 87 Set control register 3.2.2

StartPipeOut 1000 1000 88 Start Pipeline Bus readback 3.2.3

StopPipeOut 1000 1001 89 Stop Pipeline Bus readback 3.2.3

PipeWait 1000 1010 8A Wait for some PipelineBus slots 3.2.3

PipeIdle 1000 1011 8B Send some idle words 3.2.3

PipeData 1000 1100 8C Send some data words 3.2.3

JtagCtrl 1000 1101 8D Load JTAG controller commands 3.2.1

Lvl1Accept 1001 0000 90 Generate one Level-1 Accept 3.2.4

GetSpyBus 1001 0001 91 Get RemAsic spy bus word 3.2.4

(miscellaneous) 0xxx xxxx 0-7F Pipeline Bus commands

Table 3.1: List of Preprocessor Controller command tokens

address-and-ags bytes are exchanged relative to the Pipeline Bus format (Figure 2.2) so the token

is at the same position as in Controller commands.

Besides executing commands written to the command register, the Preprocessor Controller can

execute a sequence of command words at any location in the RAM. When a string of commands

have to be excuted, the command register should never be used, as commands may be lost if

the frequency of writing is too high. The command Execute starts execution of a program at

the address given by its argument. The program must end with a Stop command which stops

program execution. It may contain further Execute commands for jumping to di�erent memory

locations. If the command register is written during program execution, the command from the

register is executed in between program commands. A program can be aborted by writing Stop to

the command register.

The main function of the Preprocessor Controller is controlling the serial Pipeline Bus that the

RemAsic is connected to when the Preprocessor Module is operated stand-alone (see 2.1.5). It acts

as a bus master and generates both the serial and the `bus' clock, which is both the frame clock3

for the serial transmission and the system clock for the RemAsic chip. It transmits commands and

data to the RemAsic and receives its Pipeline Bus output. It recognises the Pipeline Bus command

BeginOfData which initiates a user data block. For the Controller, this command must contain in

its argument �eld the number of following data words. This is necessary for it to set the Pipeline

Bus control lines correctly for data words and to continue with command words at the right point.

Data words are output on the Pipeline Bus as data and not interpreted as commands. When no

Pipeline Bus command or data word is given by the program, idle words are transmitted.

The Preprocessor Controller also contains functionality for accessing the interconnection chip

(Finco) on the Multi-Chip Module (MCM, see 2.2.1). The command LoadFinco transmits a 13-

bit word to it via its serial interface. However, due to problems with ip-chip bonding, on all

MCMs the reset pin for that interface was not connected, activating it permanently. Therefore,

the interface could not be used. The other command concerning the Finco is JtagCtrl which permits

3The frame clock of a serial interface indicates when the transmission of a data word is complete. Its rising edge

causes the data from the shift register (which receives them) to be passed on to the next stage of processing.
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Enable writing of status register to the RAM
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Send NOP Pipeline Bus words by default, not idle words
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Figure 3.5: The Preprocessor Controller control register

accessing the Finco's JTAG interface4. As it is of no importance for the RemAsic tests, it will not

be described here.

For executing tests of the RemAsic and controlling auxiliary hardware, many new features had

to be added to the Preprocessor Controller design. The design became too large to be �tted into

the FPGA. Even after removing the JTAG controller which needs a lot of space, the design could

not run at a clock frequency of 40 MHz.5 The problem was solved by dividing the clock by two

internally. This makes the RemAsic clock another factor of two slower when the serial Pipeline

Bus is used (0.52 instead of 1.14 MHz), but in any case it is only intended for preliminary tests.

The new features are described in the following.

3.2.2 Control and Status Register

The Preprocessor Controller now has a control register which modi�es the Controller's behaviour.

In addition, some of its bits are directly connected to outputs. The register is shown in Figure 3.5.

It is written with the command CtrlReg and can be read as part of the status register.

The PP bit of the control register was implemented to get round an inconvenience inherent in

the design of the PHOS4 delay chip (see 2.2.3). It can be reset only once after power-up. if it hangs

up during operation, as happened occasionally during testing, the whole crate has to be powered

down. Therefore, a transistor was added to the CMC board carrying the PHOS4 which switches

all its power lines. It is controlled by the control register bit in the FPGA. As we discovered later,

the �x is useless since the power is pulled up by the PHOS4's inputs such as clocks and I2C bus

lines. (All input pads contain diodes that prevent the input voltage from rising above the power

voltage. When power pins are not connected, current will ow through them and pull the power

lines up.)

The EE bit is only used by the Pipeline Bus master design which has the same control register

format except that some other bits are unused.

The three address bits for the Front-End ASIC Spy Bus select one of the eight Spy Bus words

provided for debugging. They are controlled by the FPGA even though the Spy Bus data lines are

read by the RemAsic.

Setting bit �ve of the control register (SR) enables the writing of a status register to the RAM.

4The JTAG interface is a serial interface that permits accessing a chip's input and output pads and internal

registers for testing purposes (or those of several daisy-chained chips). In the Finco, only the input pads are included.

JTAG stands for the Joint Test Action Group of companies that initiated the creation of this test interface. The

acronym is now synonymous with the IEEE standard for it. See [Pa] for more information.
5In FPGAs, routing resources (the wires connecting logical gates and ip-ops) are limited. Therefore, �tting

a large design in an FPGA can involve roundabout routing which increases delays and lowers the maximum clock

frequency.
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Unused PP EE SR SP MX CO VI NOSPYCTRL

0481216

PEPDPR

20

Control register

RAM Program execution in progress

Pipeline Bus data being transmitted

Pipeline Bus readout active

Unused

242831

Figure 3.6: The Preprocessor Controller status register

The SP bit is directly connected to the RemAsic input enabling its serial Pipeline Bus mode.

Bit three (MX) controls the multiplexers for the control signals and serial Pipeline Bus lines (see

description of the Preprocessor Module in 3.1.4). The other three bits modify the behaviour of the

Pipeline Bus interface and are described in the next section.

To make it easier to check what the Preprocessor Controller is doing, a status register was

implemented. It is written to the RAM whenever a bit in it changes, providing this procedure

is enabled. Its memory location is the second interrupt register of the dual-ported RAM so a

VME bus interrupt can be raised every time it is written. The status register contains the control

register in its lower eleven bits plus three additional status bits. The most important of them is

the PE bit. It is set while a RAM program is being executed, so it is possible to �nd out whether a

program has terminated. The PD bit indicates whether user data are being output on the Pipeline

Bus. The PR bit is set when received Pipeline Bus words are written to the memory. This can be

switched on and o� with special commands, see next section.

3.2.3 Extensions of the Pipeline Bus Interface

The NO bit of the control register (Figure 3.5) a�ects the Preprocessor Controller's Pipeline Bus

output: When it is set, no-operation Pipeline Bus command words are transmitted unless a com-

mand says otherwise. Normally, idle words are sent in that case, but they may be overwritten with

readout data. In some cases, that is undesirable.

There are some special commands concerning Pipeline Bus output. PipeIdle transmits the

number of idle words given in its argument, even when the control register setting enables no-

operation words. PipeData transmits a number of data words that follow it, without sending a

BeginOfData �rst. That makes it possible to send larger amounts of data or send command words

in between a data block. The PipeWait command waits for the time it takes to transmit a number

of Pipeline Bus words. This is useful because the RemAsic takes some time transferring data to

and from its Pipeline Bus interface. Since the RemAsic's system clock is the Pipeline Bus clock,

that time is measured in Pipeline Bus words transmitted.

In addition to Pipeline Bus transmissions, Pipeline Bus readout was implemented. This refers

to receiving Pipeline Bus words and writing them to the memory. Since the RAM is also used

for other status information and for programs, it is divided up into dedicated regions. Figure 3.7

shows a memory map. The memory region for received Pipeline Bus words starts at address 0 and

extends up to address FFF (hexadecimal).

The readout is switched on with the command StartPipeOut and deactivated with StopPipeOut.

When the end of the readout memory region is reached, it stops automatically. By default, two 32-

bit memory words are written for each received Pipeline Bus word so all 35 bits from the Pipeline

Bus are present. If control bit one (VI) is set, idle words are written in the same way. If not, they

are just counted and their number is written in a special pair of readout words.

When the CO bit in the control register is set, just the 32 Pipeline Bus data bits are written,

one memory word per Pipeline Bus word. The upper two bytes of command words are swapped,
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Figure 3.7: Memory regions used by the Preprocessor Controller

resulting in the same format as in Controller programs. This makes the format more readable.

Idle words are ignored in this concise readout mode.

3.2.4 Additional Features Concerning the RemAsic

The command GetSpyBus makes the Controller read the RemAsic Spy Bus lines. They are written

to the RAM at the location shown in Figure 3.7. One of the eight Spy Bus words is selected by

the command's argument.

The Reset command can trigger many kinds of reset depending on the bits set in its argument

�eld. The only one relevant in this context is the RemAsic reset corresponding to bit 0. The

RemAsic reset signal is activated for 64 cycles of the internal Preprocessor Controller clock. That

makes sure it is active for more than one RemAsic clock cycle even in the serial Pipeline Bus mode.

The command Lvl1Accept generates a Level-1 Accept signal which triggers a readout operation

of the system. This a�ects both the RemAsic and the Front-End ASICs on the MCM. The duration

of the signal is one cycle of the bunch-crossing clock. Since the level of the signal is sampled at

the positive edge of the clock, it has to be activated and deactivated at the negative edge. This

command will have any e�ect only if the multiplexers are set to local standalone operation of the

Preprocessor Module. Otherwise, Level-1 Accept signals are generated by the Pipeline Bus master

design and transmitted to the Preprocessor Module via di�erential cables.
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3.2.5 I2C Bus Interface

The Controller design contains a very simple I2C bus interface. It is used to access the PHOS4

delay chip on the lower CMC daughtercard of the Preprocessor Module.

The Controller has two open-collector ports connected to the two bus lines. The command

SetI2C tells it whether to pull them down or not. Immediately after updating the state of the

output drivers, the state of the lines is read and written to a special address in the RAM (see

memory map, Figure 3.7). The I2C bus protocol has to be handled by software (see 4.3.5).

3.3 The Front-End Data Source

Because of problems with the Front-End ASICs on the Multi-Chip Module, it was not possible

to read out digitised data from them at a 40 MHz clock rate. To get round that problem, a new

FPGA design was created. It feeds data into the RemAsic's serial interfaces which are usually

connected to the Front-End ASICs (FeAsics). When it is used, the Preprocessor Module has only

the upper daughtercard with the RemAsic. A soldered adaptor replaces the lower daughtercard. It

links the `S-Link' connector (J2S in the �gures) to the connector number two (J22). The adaptor

is required because the serial interface lines are on the S-link connector which is not linked to the

FPGA.

Every time the RemAsic requests readout data, the Data Source FPGA design reads four

values from the memory. The upper 22 bits of the 32-bit values are discarded. The remaining

ten-bit words are transmitted to the RemAsic as energy values, one for each serial interface. The

design statically sets the multiplexers on the RemAsic daughtercard so that the parallel front-

panel Pipeline Bus is enabled. It resets the RemAsic whenever it is reset itself. Writing to a

special register on the VME bus resets the RAM read address to the beginning.
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Software Development

Both the test system and the �nal Preprocessor system have to be controlled by software. An

existing hardware diagnostic software framework was greatly extended, regarding both features

of the core program and functionality for accessing certain pieces of hardware. The immediate

purpose for this was the RemAsic tests, but the software will also be used for setting up the

Preprocessor in the ATLAS experiment. Parts of it will be integrated into the experiment's data

acquisition and run control software.

4.1 Object-Oriented Programming for Hardware Access

The test software in question is called HDMC, for Hardware Diagnostic, Monitoring and Control

software. Figure 4.1 shows a screenshot of some of its windows. It was written in C++, an object-

oriented programming language which was developed from a non-object-oriented programming

language, C, by Bjarne Stroustrup at AT&T [Strou]. This section will give an introduction to both

C++ and the test software.

The central concept of C++ is the class. A class is a variable type, usually a composite type

like a struct in C or a record in Pascal. The notion of a class also encompasses a set of subroutines

that use that type of variable and perform functions that are closely related to the `meaning' (in

the mind of the programmer) of the type. When a variable of a certain class is created in memory,

it is called an instance or object of the class, hence `object-oriented'.

What makes the class concept powerful is inheritance. A class can `inherit' the sub-variables

(called member variables) and subroutines (member functions) of another class. It is then called a

subclass of the other class (the superclass). The subclass can add member variables and functions of

its own; it can also replace member functions of the superclass by its own special implementation.

It is possible for a superclass to o�er no implementation of its member functions at all, requiring

the subclasses to implement them. It is then called an abstract class. Objects of a subclass can be

used as objects of their superclass since they have all the functionality; the part of the program

using them does not even have to know about their exact type.

Let us consider a piece of software that accesses hardware via the VME bus, on di�erent

systems. There is a variety of VME bus computers with di�erent interfaces to the VME bus, but

they all provide the same functionality, ie reading from and writing to an address on the VME bus.

That problem lends itself well to an object-oriented approach: A VME bus superclass de�nes read

and write funtions. Their implementation is done in subclasses that correspond to the di�erent

VME bus interfaces. The class diagram of VME bus classes in HDMC is shown in Figure 4.2.

The arrows point from the subclass to the superclass. The class hierarchy is larger than was said

above: The VME bus class is derived from a bus class. It is the superclass of classes that do

27
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Figure 4.1: Screenshot of the HDMC software

VMEBus

Bus

Part

VMEBusRio VMEBusMVME167 VMEBusEltec VMEBusDummy

Figure 4.2: Class diagram of VME bus access classes
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Figure 4.3: Class diagram of Xilinx FPGA classes

not necessarily access VME bus interfaces but o�er the same functionality. The Part class is the

superclass of all hardware access classes in HDMC.

The situation is similar for FPGAs1. All FPGAs can be con�gured, cleared and reset. When a

certain type of FPGA is mounted on di�erent boards, it is con�gured in the same way in principle:

A con�guration �le of a certain format has to be read and its contents have to be written to the

FPGA. Only the address the data are written to and the way of starting a con�guration process

may di�er. That is the case for the Xilinx FPGA which is both on the test system motherboard

(3.1) and on an older demonstrator front-end module. The hierarchy of the classes for accessing

FPGAs is shown in Figure 4.3. The class Fpga is the abstract superclass of all classes that control

FPGAs. The class FpgaXilinx implements a function for con�guring Xilinx FPGAs. It calls

functions of its subclasses for handling the details.

Figure 4.4 shows all Part classes and I/O frame classes (which are special Parts, see 4.2.6

below). The two most important ones are the Register and Memory classes. VME bus registers

and memories are derived from them, but also on-chip registers and memories which are more

complicated to access.

4.2 Features of the HDMC Main Program

4.2.1 Part Classes and the Concept of HDMC

In the HDMC software there exists a C++ class derived from Part for each hardware component.

The Parts are organised in hierarchies of dependencies. These hierarchies have nothing to do with

the class hierarchy but illustrate the fact that some Part objects need others for working properly.

A Part representing a register on the VME bus will need a VME bus Part for accessing its hardware

register. Part hierarchies model the structure of the hardware. For example, a memory on an ASIC

on a module connected to the VME bus is represented by an object of a Memory subclass depending

on a class for that ASIC depending on a Module class which in turn depends on a VME bus class.

The Parts needed by a speci�c Part type are called its Part dependencies.

In addition to Part dependencies, a Part can have Attribute dependencies. That are strings

containing parameters like addresses and formats of registers or memory sizes. Attributes describ-

ing more complex properties refer to the HDMC con�guration �le. In it properties like register

formats are de�ned.

Part hierarchies are built up by the user of the HDMC software. It o�ers menu options for

creating and deleting Parts and modifying their dependencies (see next section). Therefore it

1An FPGA (Field Programmable Gate Array) is a piece of con�gurable hardware. It contains logical gates and

ip-ops that can be connected to perform all sorts of functions, in the most general sense. In many cases, an FPGA

is an alternative to a digital ASIC (Application-Speci�c Integrated Circuit).
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Figure 4.4: All Part and I/O frame classes in HDMC. The black triangle in the lower right corner

indicates that a Part type has subclasses of its own.

can be used for all kinds of hardware con�gurations by persons without programming skills. All

existing Parts are displayed in HDMC's main window. Hierarchies can be saved to ASCII �les

(Parts �les in HDMC parlance) and restored later. Saved hierarchies can be merged to existing

ones.

Most Parts have graphical user interfaces (GUIs), ie windows with buttons and text inputs

with which the user can trigger actions. Here again, the object-oriented approach is useful: The

GUI classes use only functions of the most high-level superclasses. So the same GUI class can be

used for all the subclasses of Register, Memory, Fpga etc. The GUI classes were written using a

C++ class library developed by Troll Tech of Norway (see [Qt]).

Outside HDMC, �xed hierarchies of Part classes can be used to access certain hardware. This

is done in a server program for accessing hardware via a network connection (see 4.2.10). It is

also the planned way to integrate the Preprocessor into the ATLAS data acquisition software. Its

run control part will load the Preprocessor with con�guration data. It will probably use �xed

hierarchies of Parts as hardware drivers.

4.2.2 Handling of Part Hierarchies

A number of user options were added to make building and modifying Part hierarchies more

convenient. The user can now create Parts without giving its Part dependencies at once. This

is called leaving the dependency `open'. Such Parts cannot be used for hardware access, but the
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Figure 4.5: HDMC's Main window with the Part display

feature is useful when editing Part hierarchies. The Part dependencies can be created later. When

deleting a Part on which others depend, the others can be deleted along with it. Otherwise their

Part dependencies are left open.

Some changes have been made to the way Attribute dependencies may be given when creating

a Part. Part types can give a default value for Attributes. It is written to the relevant line editor

in the Part creation window. A selection box giving a limited number of choices for an Attribute

is also possible.

In HDMC's main window, all Parts are represented in a hierarchical display, similar to the

way �le hierarchies are displayed in some �le browsers (see Figure 4.5). Each Part is immediately

followed by the Parts that depend on it. They can be hidden by clicking on the �eld to the left of

the Part. Parts that have more than one Part dependency are attached to their �rst one. Parts

with open dependencies are displayed as top-level (like Parts without any Part dependencies). The

headline of the �rst column of the display contains the name of the hierarchy's Parts �le.

The other three columns give more detailed information on the Parts. The second column

displays a Part's Attribute dependencies. Additional Part dependencies are also listed there. The

third shows its initialisation state (see next section). Di�erent words are displayed depending on

whether the Part and its dependencies are properly initialised. Open dependencies are also noted

in this column. The last column of the Part display shows the state string of a Part, which is used

for saving and restoring the state of the hardware (see next but one section).

4.2.3 Initialisation of Part Objects

Part objects of some types need to initialise themselves by reading or writing the hardware. They

do this to synchronise information stored in Parts with the state of the hardware. Originally, this

was done when installing a Part's dependencies. This had the disadvantage that Parts �les could

not be edited if the hardware they were designed for was not available.

Therefore, two functions were added to the Part class. They perform or undo any kind of

initialisation for which the Part has to use the hardware. Part hierarchies can be loaded and

modi�ed without initialising the Parts. The user can initialise single Parts and their dependencies,

or the whole Part hierarchy, or a sub-hierarchy. While a Part is not initialised, its GUI cannot be

opened and it cannot parse a state string (see below).

The hardware initialisation procedure is used by VME bus Parts for activating the VME bus

interface. Parts handling a network connection establish it on initialisation. Some Parts for on-chip

memories use it in a slightly di�erent way that does not entail a hardware access. They initialise

themselves by allocating bu�er memory.
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4.2.4 State Strings

State strings are strings containing the state of a piece of hardware. State strings of registers

contain their value, those of FPGAs the name of the con�guration �le for loading the device. State

strings can be parsed by the corresponding Part. Because of the object-oriented approach the

functions for parsing have to be implemented only in the superclasses. A state string for each Part

is saved to Parts �les along with the Part hierarchy. That makes it possible to save the state of

the hardware with the hierarchy. It can be restored at the next HDMC session.

By way of a context menu, the user can make a Part parse its state string and con�gure the

hardware accordingly. He or she can also update the string from the current state of the hardware.

A state string can also be edited directly. It is possible to parse or update the state strings of all

Parts in one go. When parsing all strings, a Part is preceded by its dependencies in case a Part

can only be used if its dependency is in the right state. The information contained in a state string

can also be written to the input elements of the Part's GUI window. The user can then modify

the settings before con�guring the hardware.

4.2.5 Scripts

In most cases state strings provide a satisfactory way for restoring the state of hardware compo-

nents. They fail, however, when there are dependencies between pieces of hardware that are not

represented in the Part hierarchy. Even when it is possible to represent hardware dependencies

accurately in the Part hierarchy, it is sometimes inconvenient because it may lead to very deep

hierarchies (ie ones with quite many levels). Scripts o�er a way to load hardware in a speci�c

order. They are also a great help for developing Part classes that perform complex operations (like

accessing the RemAsic via the Pipeline Bus). Unlike code for the functions of Part classes, scripts

can be changed at runtime to try out di�erent approaches.

HDMC scripts can make a Part or its GUI take a certain action. Special script commands permit

waiting for some time between actions or repeating the whole script for a number of times. Script

lines accessing Parts start with the Part's path in inverted commas. In HDMC Part hierarchies,

all Part objects have names. If a hierarchy contains several modules of the same type, however,

equivalent registers on those modules usually have the same name. A Part's path consists of the

names of the Part in question and all Parts it depends on, down from the top level of the hierarchy.

The names are separated by slashes. Part paths are unambiguous provided there are no Parts with

the same name in the same branch of the hierarchy. This restriction is enforced when creating new

Parts and when merging additional Parts to a hierarchy.

For a hardware access, the path is followed by a state string in double quotes. A Part can also

be initialised by script, by putting the word Initialise in place of the state string. If not the

Part itself but its GUI is to take action, the Part path is followed by the word GUI. If it is followed

by a state string, the information contained in it is written to the GUI's input elements (editors,

selection boxes etc.). Otherwise a command word follows. The GUI can be opened and positioned

with script commands. It can be told to update the data it displays by reading from the hardware.

The following script uses the register reg on the module mod on the VME bus bus. First, a

value is written to it, then its GUI is opened and made to display its actual value.

'bus/mod/reg' "0x12345678"

'bus/mod/reg' GUI Open

'bus/mod/reg' GUI Read
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4.2.6 Data Interchange

For transmitting data between Part objects, HDMC provides I/O frames2. Part types derived from

the class IoFrame have ports that can be connected to other I/O frames. Through the ports, they

can exchange chunks of 32-bit words. I/O frames can have input, output or trigger ports. Input

and output ports are for receiving and transmitting data. A trigger port triggers the transmission

of the Part's data (eg the content of a memory) every time it receives a data word.

There are also `pure' I/O frame classes that do not access hardware themselves. They exist

just to generate, display or process data. There is a Histogram Part which can plot or histogram

data, a DataSource for generating de�ned data (see 4.3.6.1) and a Timer which sends single data

at regular intervals. Since registers and memories write the hardware on reception of I/O frame

data, transmissions from any I/O frame may trigger hardware access.

4.2.7 Register and Assembler Formats

On program startup, HDMC reads a con�guration �le that contains de�nitions of data word

formats. These formats divide a data word up into several bit �elds that can have names. A

register's GUI o�ers separate inputs for the bit �elds and displays the names. The Assembler

class, a pure I/O frame, also uses the formats (see next section). Special values for certain bit

�elds can also be named. These constants appear in a context menu of the register GUI and can

be used in assembler sources.

The data format may be conditional on the value of one special bit �eld. This is the case for

the command format of the Preprocessor Controller (see 3.2). The number and size of parameter

bit �elds depends on the value of a command token. Both the register GUI and the Assembler can

handle such formats. They are also de�ned in the con�guration �le.

4.2.8 The Assembler

The Assembler Part creates binary data from ASCII source �les and transmits them to the con-

nected I/O frame. Every line of a source �le gives the values of all bit �elds in the selected format

(see previous section).

The Assembler accepts two di�erent source formats which may be used in the same source

�le. In the more elaborate format, the bit �elds are given by assigning a value (or a constant) to

the name of the bit �eld. In the concise notation, just their values are given, from left to right in

the data word. If constants are used for the �rst bit �eld, this makes the source �les similar in

appearance to `real' assembler sources for processors. This mode does not work for all formats.3

It is distinguished from the long format by a number sign (#) after the �rst bit �eld.

The assembler also understands some commands that do not refer to the format it is using. They

start with a dollar sign to distinguish them from ordinary source lines. The command \$Inline"

is followed by a list of values to be transmitted without change, regardless of the format. This

was used for generating user data blocks within Pipeline Bus programs. The other two commands,

\$Loop n" and \$EndLoop", de�ne a loop. n is the number of repetitions. To date, there may be

only one loop in a source �le.

2These classes were so called because they originally were wrapper classes that used the Parts, not Parts them-

selves. We found that making I/O frames special Parts simpli�ed things, but the name has stuck.
3There may be a problem when the word format depends on the value of a bit �eld. If the number of bit �elds in

the left part of the word depends on the value of a bit �eld farther to the right, it is impossible to match bit �elds

with values. Then, the more verbose format has to be used.
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4.2.9 Command Line and Program Startup

When starting HDMC from a UNIX shell, a Parts �le may be given as a command line parameter.

HDMC will then load the Part hierarchy from the �le on startup. As a second parameter, the name

of a con�guration �le (the �le that contains register formats) can be given. If it is not speci�ed,

the name \default.conf" is used. It is searched for �rst in the current directory, then in the

user's home directory and �nally at the path where HDMC is located. For that last resort, the

environment variable HDMCDIR has to be set correctly.

Two options can be used to modify HDMC's startup behaviour. The \-i" option prevents the

loaded Parts from being initialised automatically. The option \-n" tells HDMC that no Parts �le

is given in the command line. This is necessary when passing a con�guration �le but no Parts �le.

4.2.10 Remote Hardware Access

HDMC o�ers a way of accessing hardware on a di�erent computer from the one running the main

program. This is necessary if the VME bus computer is too small for HDMC to compile and run on

it. It also makes it possible to control hardware in several VME crates from one HDMC window.

There is a small `bus server' program that runs on the VME bus system. It translates instruction

packets it receives via the network into VME bus accesses and sends back data from read operations.

In the HDMC program running on a remote computer, a NetBus Part replaces the usual VMEBus.

It uses another Part which is responsible for the network connection.

The bus server program contains a �xed hierarchy of three Parts, one of which is the appro-

priate VME bus Part for the system. When it is compiled, the right VME bus subclass is used

automatically.

When reading a register on a di�erent computer via the network, a message requesting data

is �rst transmitted. Then, the computer running the bus server program will respond with the

register's value. Reading a memory word by word in this way is very slow, since for every memory

cell network packets have to be exchanged.

To improve this, a block read operation was created. The request packet contains the length of

the data block along with the address. Only one packet containing the whole block is sent back.

For the sake of completeness, a block write operation was also implemented. Both block accesses

can be performed without incrementing the address, ie reading or writing several times to the same

address. This is useful for loading FPGAs, where con�guration data have to be written to the

same address one after the other.

These changes entailed extensions of the Module class and all VME bus classes. Since each Part

only calls functions of its Part dependencies, block accesses have to propagate up in the hierarchy,

eg from a Memory Part via a Module and a Bus to the Part handling the network connection. New

functions for block read and write were implemented in those classes.

4.2.11 Online Help

HDMC o�ers an extensive online help of more than 16 000 words in total. It describes features of

the main window and of all Part GUIs. Documentation of all Part classes and the formats of their

state strings is included. There are two tutorials: One describes how to build and use an exemplary

Part hierarchy. The other one is about remote access of hardware. The register/assembler formats

and the assembler source syntax are also treated in the online help.

The online help is written in HTML format. It can be viewed with the HDMC help window

which contains a small browser. It can also be read at:

http://wwwasic.kip.uni-heidelberg.de/atlas/DATA/hdmc/onlinehelp/
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4.3 Part Classes Developed for RemAsic Tests

4.3.1 Components of the Motherboard

A subclass of the class FpgaXilinx was created to con�gure the Xilinx FPGA on the test system

motherboard. Since most of the functionality is contained in the superclass, it was su�cient to

write some low-level functions. They clear the device or start a con�guration process. Separately,

the con�guring function in the superclass was reimplemented to make use of the new block write

functions (see 4.2.10 above).

Another important component on the motherboard is the clock generator made by Integrated

Circuit Systems (ICS) Inc. It contains two phase-locked loops (PLLs) that are controlled with a set

of registers. One of them has three associated registers, the other only one. Each of the registers

contains settings for the divider in the PLL feedback and for an output divider.

Two classes were written for the ICS clock generator: An abstract superclass and a subclass

speci�c for the motherboard clock generator. Since the register settings of the chip allow only a

limited number of frequencies, the best match has to be found for each desired clock rate. This is

done in the superclass ICS9161 (named after the number designating the chip). It also implements

functions for parsing and updating state strings. The state string for this Part type contains a

register number and a frequency. On parsing, the speci�ed register is loaded according to the

frequency. If the register is one of those associated with the �rst PLL, it is also selected for use.

Because the registers cannot be read, they are bu�ered. That way, a state string can be updated

from the current state of the device.

The subclass ICS9161MB contains low-level functions speci�c for the motherboard. They can

load a register value into the chip and detect transmission errors. On initialisation, a ICS9161MB

Part sets the clock chip's control register and determines the selected PLL register. Its Attribute

dependency is the frequency of the clock quartz used as a reference input to the clock generator.

This information is necessary for calculating the right divider factors. The quartz frequency usually

used on the motherboard is provided as a default value to help the user.

4.3.2 Pipeline Bus

The RemAsic can be accessed in two ways: with the parallel Pipeline Bus, or via the serial

Pipeline Bus that exists locally on the Preprocessor Module. In the former case, the Pipeline Bus

is controlled by the master FPGA design on the master module and monitored by a spectator

FPGA. There are two Part types called PipeMaster and PipeSpectator which control those

FPGAs. They have no GUIs since they exist exclusively as dependencies for other Parts.

The master Part o�ers functions for writing a program to the memory or a command to the

command register. The binary values of speci�c command words are returned by functions in the

PipeMaster class. That way Parts that have a PipeMaster as a dependency (such as the RemAsic

class) do not have to know about the command format. In the future they could work equally well

with a di�erent Pipeline Bus master using a di�erent format.

The spectator Part class controls the FPGA which monitors the Pipeline Bus. It can obtain

the contents of its readout memory and reset its write address counter. The most important task

of this class, however, is comparing the received data with those transmitted by the master. It

can check whether commands were accepted by a Pipeline Bus node (RemAsic) by looking at the

accept ag of those command words (see 2.1.3).

When the serial Pipeline Bus is used, the Preprocessor Controller performs the functions of

Pipeline Bus master and spectator combined. It would be logical for the corresponding Part

class to be a subclass of both PipeMaster and PipeSpectator. Though possible in principle,

this leads to problems when casting that type, ie transforming it into one of its superclasses and
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Figure 4.6: Class diagram of Pipeline Bus master and spectator classes
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Figure 4.7: Class diagram of RemAsic and RemAsic memory classes

using it as such. So the Part type PPMController4 is derived only from PipeMaster. Figure 4.6

shows a diagram of classes related to the Pipeline Bus. The class PPMController implements

functions for some additional binary commands that the (parallel) master does not support. Just

as the PipeSpectator class, it can check the accept ags of received Pipeline Bus commands. On

initialisation, PPMController objects enable the status register write in the Preprocessor Controller

(3.2.2, page 23). The status bit indicating program execution is read before a new program is

started. This prevents the previous program from being interrupted.

4.3.3 RemAsic

There are two classes for the RemAsic which share a common superclass. One is for accessing it

locally on the Preprocessor Module via the serial Pipeline Bus. It is called RemAsicPPM and has

a Preprocessor Controller Part as a dependency. The other one, RemAsicPar, uses the parallel

Pipeline Bus and depends on a master and a spectator Part. The class diagram is shown in Figure

4.7.

The RemAsic Parts have a GUI that allows the setting of operation modes and con�guring of

the level-1 queue in a user-friendly way (see Figure 4.8). For reading the control and level-1 queue

registers, there is a separate class derived from Memory. It contains the four control registers and

the three level-1 queue registers as its memory cells. They are displayed in the memory GUI, which

is not so user-friendly but is hardly ever necessary except for debugging the software.

The RemAsic contains three on-chip memories that are implemented as subdevices: the Event

Bu�ers, the Pre-Main Bu�ers and the Hu�man code table. These are represented in HDMC by

three classes derived from RemAsicMemory. They are shown in the right part of Figure 4.7. As the

way of accessing them is common to all subdevices, the superclass contains the relevant functions.

4
PPMController stands for `Preprocessor Module Controller'
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Figure 4.8: The RemAsic GUI

The subclasses just di�er in the subdevice number and the size of the memory.

The Part corresponding to the RemAsic Spy Bus is a read-only memory containing the eight

Spy Bus words. Its dependency has to be a RemAsicPPM since the Spy Bus can be read only with

the Preprocessor Controller.

4.3.4 Front-End ASIC

Four Front-End ASICs (FeAsics) are located on the Preprocessor Demonstrator MCM. They are

accessed by way of the RemAsic's four serial interfaces. An older module, the Demonstrator Front-

End Module, also carries four FeAsics. The HDMC software can access FeAsics in both hardware

con�gurations. This is done by the classes FeAsicAccessPPM and FeAsicAccessFEM, respectively.

Both are derived from the class FeAsicAccess.

As usual, the superclass implements high-level functions. These functions set operation modes

and con�gure internal memories. They call functions from the subclasses that handle the transmis-

sion of con�guration words to the FeAsics. On the Preprocessor Module of the test system, that

is done by way of the RemAsic. Its FeAsic interface is implemented as a subdevice and transmits

data to the FeAsics when a subdevice con�guration is performed. On the Front-End Module, the

FeAsics are con�gured more directly by a controller FPGA.

As in the case of the RemAsic, these FeAsic classes have a GUI that allows the comfortable

con�guration of control registers. The on-chip memories are represented by classes derived from

the Memory class. The look-up table and the Playback Memory, can only be con�gured, not read.

The pipeline memory can only be read. The FeAsic Spy Bus was implemented as a read-only

memory containing all the Spy Bus words. Accessing it on the Preprocessor Module is rather

complex. Both the RemAsic and the Preprocessor Controller are involved. The Controller controls

the address lines which have to be set �rst. Then the Pipeline Bus command GetSpyBus is sent

to the RemAsic. It reads the FeAsic Spy Bus data lines and writes the result into the argument

�eld of the command word. The word is read back by the Preprocessor Controller, written to the

RAM. It is obtained from there by the PPMController Part which checks it for errors. If no error



38 CHAPTER 4. SOFTWARE DEVELOPMENT

occurred, the FeAsicSpyBus Part writes it to an internal bu�er.

4.3.5 I2C Bus and PHOS4

To make the Preprocessor Demonstrator MCM work, the clock delay chip, PHOS4, has to be

initialised. This is done via the I2C bus (see [Phi] for detailed information on it). To save space on

the FPGA, only the rudiments of an I2C interface were implemented in the Preprocessor Controller.

The protocol for controlling the bus as a bus master was written in software, in the class I2CMaster.

It supports the I2C clock synchonising mechanism and bus arbitration. When there are multiple

masters on the bus and several of them try to start a transmission at the same time, bus arbitration

decides which of them gets its way. The clock synchronising mechanism allows a slow receiver to

cope with a transmission from a faster device. The state of the I2C bus lines is the logical and of

all output driver states, since those are open-collector outputs. A slow device can extend the clock

cycle by pulling the clock line down after the master has released it. Both features can be disabled

in the I2CMaster Part because they involve read operations which may be time-consuming when

doing a remote access over the network.

A subclass, I2CMasterPPM, interfaces the high-level functions of I2CMasterwith the functional-

ity provided by the Preprocessor Controller. It has a PPMController Part as a dependency. With

its help it writes Controller programs setting the state of the I2C lines and obtains the I2C status

word (Figure 3.7). It disables both clock synchronisation and bus arbitration in its superclass.

There is no other master on the bus, and the PHOS4 is fast enough to cope with a transfer as fast

as allowed by the I2C speci�cation. That is still much slower than the Preprocessor Controller.

Therefore, a Wait command is inserted after each command changing the state of the I2C lines.

Naturally, there is also a Part class for the PHOS4. It uses an I2CMaster Part for tranmitting

con�guration bytes to the PHOS4. It has as an Attribute dependency the I2C bus address of the

chip. Four bits of that address are (constant) inputs to the PHOS4 so several of them can be on

the same bus. The Phos4 Part has a GUI with which the user can set the delay or activate special

output modes for each channel. The Part can also parse a state string that contains the delays of

all channels.

4.3.6 Pure I/O Frames

4.3.6.1 The DataSource

The Part type DataSource is an I/O frame that does not itself access hardware. As its name

suggests, its task is generating data and transmitting it via the I/O frame mechanism. The user

can select the number of words and its operation mode in its GUI. It can be used to trigger other

I/O frames or to con�gure hardware with pre-de�ned values.

The data source has four di�erent operation modes. It can transmit constant or random data.

It can also generate ramps with a de�ned initial value and slope. The slope is input as a fraction.

For instance, a value of one half will result in values that are incremented by one after each second

word.

The fourth mode generates calorimeter pulses with noise and a pedestal added. This is the

sort of data the RemAsic would receive in the ATLAS experiment. The heights of the generated

pulses have a realistic probability distribution and are generated with the technique described in

appendix C. The data model is rather simpler than the one used for calculating compression modes

(chapter 6). It does not take into account the superposition of pulses from di�erent bunch-crossings

(pile-up).

This operation mode is called the `front-end data mode' and was used to generate realistic data

for the Front-End Data Source FPGA. This FPGA reads data from the dual-ported RAM and

feeds them into the RemAsic (see 3.3). The DataSource can create multiple channels of calorimeter
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data. A word from each channel is transmitted in turn. This is the way the FPGA design reads

the data from memory.

The DataSource can be operated with a state string. It contains the number of values to be

transmitted, a character giving the operation mode and some more parameters depending on the

operation mode. Parsing a state string triggers a transmission of data in the desired mode. This

makes it possible to use the data source in a script. An example can be found in Section 5.1.3,

especially Figure 5.4.

4.3.6.2 I/O Frames for Automatic Tests

An automatic test was set up to check the correct coding of data by the RemAsic. For that purpose,

two I/O frame Part classes were written. The �rst, Compressor10, emulates the compression of ten-

bit words done by the RemAsic. It receives data in the same order as the Front-End Data Source

FPGA and the DataSource: one word from each of the four channels in turn. It can operate in

three of the compression modes the RemAsic implements, namely no operation, Hu�man-inspired

coding and di�erence coding. The latter are the most promising modes (see 6.3). Like the RemAsic,

the Compressor10 class has a bit mask to disable some channels. Member variables contain the

number of channels and the number of bunch-crossings read out. All parameters can be set with

a state string. A GUI does not yet exist.

The other I/O frame needed for automatic tests is the Comparator. It has two input ports.

Whenever data from the ports di�er, it writes both values and the data count to a log �le. It can

bu�er data from either or both ports until transmissions to the other port catch up. Bu�ering

only one port makes sense when the other one may receive irrelevant surplus data. The length of

the data block to be compared is determined by the bu�ered port. The Comparator can stop the

execution of a script when it �nds a mismatch. This is done with exceptions, a C++ mechanism

that allows aborting nested function calls until the exception is `caught' by the ultimate caller.

The Comparator is controlled with state strings; a GUI does not exist.
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Chapter 5

Test Setups and Results

As a preliminary test, the Preprocessor Module with the RemAsic was operated stand-alone at a

low clock frequency. This was followed by tests within a larger system at the full clock frequency.

Di�culties due to defective Front-End ASICs were overcome by using a new FPGA design as a

data source (described in Section 4.3.6.1). To check reliability over a period of hours, an automated

readout test was set up.

For the largest part, the RemAsics worked well as intended. The exceptions were some minor

design aws in all RemAsics and manufacturing defects in one of the chips. The Front-End ASIC

(FeAsic) interface is impractical in some ways, which has already been taken into account for the

FeAsic's successor, the Preprocessor ASIC.

5.1 Executed Tests

5.1.1 Standalone Tests of the Preprocessor Module

5.1.1.1 Setup and Test Procedure

For some initial tests, only the Preprocessor Module was used. The RemAsic was accessed via the

serial Pipeline Bus controlled by the Preprocessor Controller. That limited the RemAsic's clock

frequency to 0.57 MHz. The Front-End ASICs on the Multi-Chip Module had to be clocked with

the same frequency for the serial interface to the RemAsic to work.

The hardware setup for the standalone tests is shown in a symbolic representation in Figure

5.1. The VME crate contains the test system Preprocessor Module and a computer which controls

the VME bus. On that VME computer, the bus server program is running. It is part of the HDMC

package and translates network packets sent by HDMC into VME bus accesses. HDMC runs on a

workstation or a PC which is linked to the VME computer by a network (TCP/IP) connection.

All standalone tests follow the same pattern. A program for the Preprocessor Controller is

written to the dual-ported RAM on the Preprocessor Module. Then, it is started by writing an

Execute command to the Controller's command register. Finally, the readout memory region that

by now contains the RemAsic's Pipeline Bus reply is read. The Controller program is given as a

source code which can be processed by the Assembler Part. The Assembler transmits the binary

values to the program memory Part, which writes it to the right region of the dual-ported RAM.

To make this procedure more convenient, a short script was written. It executes the three steps

described in the last paragraph, after clearing the readout memory for clarity. It looks as follows:

'NetClient/LANtoVME/PPM/readout memory' GUI Clear

'PPMAss' "../prg/RemAsic.prg"

41
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Figure 5.1: Test setup for standalone tests of the Preprocessor Module

'NetClient/LANtoVME/PPM/command' "0x84001100"

'NetClient/LANtoVME/PPM/readout memory' GUI Read

The readout memory and command register are on the Preprocessor Module called PPM, which

depends on the remote VME bus LANtoVME, which in turn depends on the Part called NetClient

for network access. The value written to the command register starts program execution at the

beginning of the program memory. The assembler PPMAss has no dependencies, but its output port

is connected to the input port of the program memory. The source �le \RemAsic.prg" contains the

Preprocessor Controller program to be executed. Di�erent �le names can be substitued for di�erent

tests. The source �les �rst load the Controller's control register, reset the RemAsic and switch on

the Controller's Pipeline Bus readout. Then some Pipeline Bus commands for transmission to the

RemAsic follow.

5.1.1.2 Results

All the tests using only the Preprocessor Module were functional, `in principle' tests. The RemAsic

clock was 0.57 MHz, much slower than its usual operating frequency. All the same, these tests were

very important for putting the RemAsic into operation and verifying its functionality. Besides, in

the course of these tests the RemAsic Part classes for HDMC were developed (see 4.3.3, page 36).

At �rst, the module was operated without the lower CMC card carrying the Preprocessor

Multi-Chip Module (MCM). RemAsic subdevices were con�gured and read via the serial Pipeline

Bus. This allowed verifying the function of the serial Pipeline Bus interface and of the internal

subdevice interface. In one of the three RemAsics tested in this way, an error was encountered:

Bit 15 of the level-1 queue registers was sometimes set regardless of what had been written to it

and even after a reset. This is probably due to a manufacturing defect in that ASIC. The other

two RemAsics and the other subdevices worked �ne.

As a next step, the compression unit was put into operation. The data to be compressed were
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Figure 5.2: Test setup for tests with the parallel Pipeline Bus

written to one of the Event Bu�ers. This makes the compression unit process the data and write

the result to one of the Pre-Main Bu�ers. They can be read by a subdevice read or by an ordinary

readout operation that will be the rule during the running of the ATLAS experiment. Both

possibilities were tried and found to work. All compression modes implemented in the RemAsic

were tested. Since the results were checked by hand, only a small number of data sets could be

processed. No errors occurred in these compressed data, even though later tests revealed small

errors in the implementation of two compression modes (see 5.2.1 and appendix A).

Finally, the lower CMC card was added to the PreprocessorModule. The RemAsic was operated

together with the Front-End ASICs (FeAsics), using the serial interface between them. The FeAsics

were con�gured via that interface, and the result was checked with the FeAsic Spy Bus. The Spy

Bus words contain, among others, the values of internal registers that can be set by a con�guration

process.

The most complex test done in this con�guration was a complete readout operation. To make

the readout data predictable, the FeAsics' Playback Memories were loaded with pre-de�ned data.

The multiplexers inside the FeAsics were set to make the Playback Memory data directly available

for readout. Then a readout operation was initiated by asserting the Level-1 Accept signal with

the Preprocessor Controller. The readout data were obtained from the RemAsic via the Pipeline

Bus. At this low clock frequency, the readout worked correctly without problems.

5.1.2 Tests using the Parallel Pipeline Bus

5.1.2.1 Setup and Test Procedure

The same tests done previously with the serial Pipeline Bus were now carried out with the parallel

bus. The test setup is shown in Figure 5.2. The wide arrows on the left represent the parallel
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Figure 5.3: Test setup using the Front-End Data Source design

Pipeline Bus. The Preprocessor Module was placed to the right of the other boards so the RemAsic

pins were accessible with an oscilloscope. The Pipeline Bus connection to the spectator module

was made with a at ribbon cable. The VME modules were accessed from a remote computer as

described in the last section (see 5.1.1.1 and Figure 5.1).

Contrary to the situation in the standalone tests, the RemAsic is now clocked with 40 MHz.

The Pipeline Bus clock, which is also the clock of the RemAsic chip, is generated by the Pipeline

Bus master FPGA. It is fanned out by the lower CMC card on the master module and transmitted

to all modules via wires. The Level-1 Accept signals that initiate readout are also generated by

the master and fanned out like the clock.

Only details of the test procedure di�er from the standalone tests: The program and readout

memories were located on di�erent modules. The program containing the Pipeline Bus commands

for the RemAsic were executed by the Pipeline Bus master instead of the Preprocessor Controller.

The Controller program source �les from the standalone tests could be reused for these tests

since the Pipeline Bus master has the same command format. It ignores commands which only

the Controller supports. There is a script for the parallel tests which is very similar to the one

shown in 5.1.1.1. It performs a few additional tasks before assembling and starting the Pipeline

Bus master program. First, it makes the Preprocessor Controller execute a program resetting the

RemAsic and adjusting some settings. The parallel Pipeline Bus and the front-panel clock and

Level-1 Accept inputs have to be enabled. Besides, the script resets the Pipeline Bus spectator's

address counter so it starts writing the Pipeline Bus data to the beginning of the memory.

5.1.2.2 Results

Reading and writing subdevices worked correctly with the parallel Pipeline Bus. The compression

of data loaded into the Event Bu�ers also worked properly. As in the standalone tests of the

Preprocessor Module, the checks were done by hand, so only small amounts of data could be

processed.
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Finally, the Front-End ASICs were used as a source of readout data. This led to two problems.

For one thing, the serial interface between RemAsic and FeAsics did not work without transmission

errors at 40 MHz. This a�ected both con�guring the FeAsics and reading data from them. (Con-

�guration was necessary to put the FeAsics into the right readout mode for the tests.) That the

FeAsic con�guration failed could be seen on the FeAsic's Spy Bus which provides internal registers

set by the con�guration process. The errors were due to the relative timing of the clock and data

lines (see 5.2.2 for more details). To be able to continue tests with the FeAsics, the data signal was

delayed by soldering a capacitance between the signal line and ground. This improved the timing.

When the interface was working, the Playback Memory of the FeAsics was con�gured with

de�ned data so the result of a readout was predictable. However, the readout data from three of

the four channels were incorrect. Those channels always provided the same data value, regardless

of what was written to the Playback Memory. This was not due to transmission errors or processing

errors in the RemAsic: The serial interfaces were monitored with an oscilloscope and showed the

same wrong data. An incorrect con�guration of the Playback Memory could not have been the

reason either. The resulting data values were the same when the FeAsics were con�gured to use

the ADC input instead. Save for the one intact FeAsic, the data were independent of the voltage

applied to the analogue inputs of the ADCs. It was concluded that the cause was a manufacturing

defect in the FeAsics concerned. That defect was slight enough for the ASICs to work at the low

clock frequency applied in the standalone tests, but not at 40 MHz.

To continue testing the readout data path as far as the RemAsic was concerned, data was fed

into the serial interfaces from the FPGA on the motherboard. For that purpose, a new FPGA

design was created which is described in Section 3.3. The lower CMC card on the Preprocessor

Module is replaced by a soldered adaptor that connects the FPGA to the RemAsic's interface pins.

The modi�ed setup is shown in Figure 5.3. Using the FPGA as a data source has the disadvantage

that not all the functionality of the Preprocessor Controller is available any more. For instance,

the RemAsic's Spy Bus cannot be read with the Data Source design.

Readout operations with the Front-End Data Source design did not produce any errors.

5.1.3 Automated Test

5.1.3.1 Motivation, Setup and Test Procedure

The disadvantage of the readout tests described in the last two chapters is that error checks are

done manually. This implies that only small amounts of data can be processed and rare errors

are missed. It is also error-prone since the 32-bit Pipeline Bus words containing code words of

di�erent lengths are hard to read. But the Preprocessor system in the ATLAS experiment has

to run continually for months. A test involving large amounts of data was necessary to prove

reliability of the RemAsic.

To check the integrity of readout data over a period of hours, an automated test was set up.

The compression performed by the RemAsic was done in parallel by an I/O frame Part in the

HDMC software (4.3.6.2). After reading out the compressed data, they were compared with the

result of the software compression by another I/O frame. The hardware setup was the same as for

the last parallel tests, shown in Figure 5.3. The one di�erence is that a modi�ed version of the

Pipeline Bus spectator FPGA design was used. It only writes user data blocks to the memory and

discards the �rst data word of each block. In readout data blocks, the �rst word is a status word

not containing any readout data.

The test is controlled by the HDMC software. The sript in Figure 5.4 executes the �ve steps

necessary for one run of the test. Their e�ect is shown in Figures 5.5 and 5.6. Besides Parts

corresponding to the hardware components on the VME modules, the HDMC Part hierarchy

contains I/O frame Parts for handling the data ow. The connections between those I/O frames

are represented in Figure 5.5.
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’Trigger Data Source’ "1 C 0"
// Trigger transmission readout memory -> comparator:

Repeat 1000

Wait 300
’NetClient/LANtoVME/Master/command’ "0x84000000"
// Execute Pipeline Bus master program:

’NetClient/LANtoVME/PPM/Xildat0’ "0"
// Reset Front-End Data Source read address counter:

Wait 10
’Raw Data Source’ "0x1000 F 8 4 10"
// Generate new data and write it to front-end data memory:

’NetClient/LANtoVME/Spectator/Xildat0’ "0"
// Reset Pipeline Bus spectator:

Figure 5.4: HDMC script for the automatic test. The Wait commands make sure that the current

operation is �nished before the next one starts. The Repeat command repeats script execution for

the given number of times. The DataSource state string in step two and �ve contains the number

of data words to be transmitted, a character specifying the operation mode and some additional

parameters. The mode character `C' stands for constant mode, `F' for `front-end' data.

Step one of the script resets the Pipeline Bus spectator's address counter. This makes it write

Pipeline Bus data to the beginning of the memory. The second step generates the raw data to

be compressed and read out. They are generated by a DataSource Part and passed on along two

data paths (see Figure 5.5): One leads to the Memory Part which writes them to the dual-ported

RAM on the Preprocessor Module. On the other path, the data are compressed by an I/O frame

and fed into one port of the comparator. Step three of the script resets the address counter of the

Front-End Data Source on the Preprocessor Module. This is necessary to make it restart reading

data at the beginning of the RAM.

Step four is central to the test: An Execute command is written to the Pipeline Bus master's

command register. This starts a program in the dual-ported RAM which triggers 128 readout

operations. For each operation, the master asserts the Level-1 Accept signal once and transmits

a BeginOfData command on the Pipeline Bus. This command requests readout data from the

RemAsic. Since the master program is the same for each run of the test, it does not have to be

rewritten every time. Instead, it is written by an initialisation script which has to be executed

before the test. This script also loads the FPGAs and sets compression modes in the RemAsic and

the software.

The last, �fth step of the script uses a DataSource Part to trigger an I/O frame transmission

from the readout memory (Figure 5.5). When receiving a value on its trigger port, the Memory

Part reads the dual-ported RAM on the spectator module. The data written there by the Pipeline

Bus spectator are transmitted to the second port of the comparator. When the Comparator Part

detects mismatches between the data from software and hardware compression, it writes them to

a log �le. It is con�gured to ignore surplus data from the second port. The whole memory content

is transmitted to it regardless how much of it is readout data. The number of data words to be

compared is determined by the result of the software compression arriving on the �rst port.
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Figure 5.5: HDMC I/O frames and data paths in the automatic test. The `Fanout' I/O frame is

necessary only because the Data Source cannot be connected to more than one input port.
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Figure 5.6: Test procedure for automatic tests (see text and Figures 5.4 and 5.5)
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5.1.3.2 Results

In the longest automatic tests, the script was repeated 50 000 times. This means 204.8 million

data words were compressed and read out. The test lasted about ten hours. It was performed

for both the Hu�man-inspired and the di�erence compression mode, with two di�erent RemAsics.

The DataSource I/O frame generating the raw data was in `front-end data' mode, producing

calorimeter trigger tower data. No errors were found. It can be concluded that the RemAsic works

reliably. The word error rate is below 2:59 � 10�8 with a con�dence level of 99% (see appendix B).

Shorter tests were carried out with slightly di�erent parameters. Random data as well as

realistic data were generated for compression. All three available RemAsics were used. On a hot

afternoon, one of them produced wrong data: In about one in every thousand Pipeline Bus words,

bit �ve was not set when it should have been. The following morning, when the air was cooler, it

worked correctly. It was the same ASIC which had already shown a manufacturing defect in the

subdevice readout (see 5.1.1.2 above). The observed malfunction was probably caused by a defect

in the Pipeline Bus interface which makes it extremely sensitive to heat.

5.2 Further Results

5.2.1 Discovered Design Errors

On some occasions during the RemAsic tests, all three RemAsics misbehaved in the same way.

This was due to aws in the RemAsic's source code. Some small points have been implemented

incorrectly in the hardware description language code.

The �rst error was discovered during problems with the serial Front-End ASIC interface. The

Spy Bus does not contain the state register of the FeAsic interface as speci�ed in the RemAsic

manual [RemA]. Instead, the three bits concerned are constant. The second design error concerns

the subdevice con�guration process. Because the reinitialisation of an internal register is missing,

it is impossible to con�gure both Pre-Main Bu�ers in sequence.

The other two design errors found are in the compression unit. As was found during tests of

the Front-End Data Source, the eight-bit no-operation mode does not work properly. It should

discard the upper two bits of each ten-bit energy value. Instead, these bits are logical or combined

with the lower bits of the next datum. The last design aw was found only during the automated

tests, since it occurs rather rarely. It concerns the Hu�man-inspired and di�erence modes. Both

output 13-bit data which may contain three short codes. For some combinations of data, data

words are not completed at the end of a data set. When an output word is partly �lled by the last

values of one data set, it is continued at the beginning of the next.

These design errors are described in more detail in appendix A. Their deeper reasons found in

the RemAsic's source code are also treated there.

5.2.2 The Front-End ASIC Interface

The serial interface between the RemAsic and the Front-End ASICs (FeAsics, see 2.2.2) was a

frequent source of problems. By design, the bits on the serial data line are latched at the same

clock edge which operates the shift register. It must have been assumed by the designers that

because of signal delays the data would be latched just before the data line changes. That is not

the case. Instead, the bits are read just at the time it changes, which often results in unde�ned

data. This problem was exacerbated by the fact that the output drivers for the serial interface

could drive a current of only 4 mA. That made the slopes of the signals slow and extended the

time intervals during which their level was unde�ned.
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These results have already been taken into account for the successor of the Front-End ASIC, the

Preprocessor ASIC. Its serial con�guration and readout interface is a totally di�erent, synchronous

interface.

A second point about the serial interface concerns the RemAsic. To request readout data, the

RemAsic activates the acknowledge signal. It then waits for the ready signal from the FeAsic to

be toggled before activating the serial clock. When no FeAsics are connected to any port, the

RemAsic gets stuck and has to be reset. This is the case even when no port is enabled in the

RemAsic's port mask.

Even when FeAsics are connected, there may be problems. During setup and testing it may

happen that the Level-1 Accept is not delivered to the FeAsics. In that case, they keep the ready

line down because they have no readout data. The RemAsic's hang-up is no sensible way to react

to this and makes diagnosis much harder. A timeout on the interface would have been desirable.

The same problem occurs during con�guration transmissions from the RemAsic to the FeAsics.

Con�guring the FeAsics through the serial interface is handled in the RemAsic as a subdevice

con�guration process (2.1.2). The con�guration is not complete until they have responded on the

ready line. While a subdevice con�guration is in progress, the RemAsic does not accept most

Pipeline Bus commands. Therefore it can only be reset if the FeAsics do not answer correctly.
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Chapter 6

Evaluation of Compression Modes

The RemFPGA, the RemAsic's successor, has to compress data provided by the Preprocessor

ASICs (see 1.2.3). For every Level-1 Accept, a number of energy values corresponding to adjacent

bunch-crossings are read out.

The RemAsic implements a number of compression modes suitable for trigger-tower data. A

piece of software was written to calculate compression rates for these and some new compression

modes. The new compression algorithms retain the advantages of the best RemAsic algorithms

but achieve better compression.

6.1 Introduction

The RemAsic is the prototype of a readout chip in the Level-1 Calorimeter Trigger Preprocessor.

As has been described in Section 1.2.3, readout data are compressed for several reasons. Though

the data would be compressed in any case before being stored, it makes sense to precompress them

early in the data stream. For one thing, this increases the total compression rate achieved. For

another, it makes transmitting the data easier. The RemAsic outputs data on the Pipeline Bus.

Data from eight RemAsics on that bus are collected by a readout driver module and transferred to

the data acquisition (DAQ) via a serial link. Reducing the amount of data to be transmitted lowers

the bandwidth requirements for the Pipeline Bus and cuts the number of serial links required.

The Pipeline Bus is planned to operate at a clock frequency of 40 MHz. At this frequency

it can transfer 153 MBytes per second. This is much less than the amount of data output by

the RemAsics. Eight RemAsics process data from 64 channels on their Preprocessor Module.

Typically, for each Level-1 Accept �ve raw energy values and one BCID value1 are to be read out.

The envisaged maximum Level-1 Accept rate is 75 kHz, with the option to raise it to 100 kHz. This

amounts to a data rate of 275 or 366 MBytes, respectively. A compression rate of 1.8 is necessary

for the smaller �gure, 2.4 for the higher one.

The compression rate aimed at is not a strict requirement. The bandwidth of the Pipeline Bus

could be increased by operating it at a higher clock frequency. The number of serial links trans-

mitting data from the readout driver modules could also be increased. Since the �nal Preprocessor

system is still being designed, it could be adapted without problems. Alternatively, the number of

values to be read out per Level-1 Accept could be reduced. It can be adjusted in the Preprocessor

ASIC. Reading out one or two values less would be su�cient for monitoring the trigger. Further-

more, compression performance could be improved by compressing the BCID values separately

1That value is a result of the bunch-crossing identi�cation done by the Preprocessor ASIC. It is 0 if no peak

is identi�ed or the height of the peak otherwise. These are the data transmitted to the trigger processors on the

trigger data path, see 1.2.3.
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Figure 6.1: Liquid argon calorimeter drift current (a) and shaped pulse (b) [At]. The dots are

the points in time at which the shaped pulse is sampled by the ADC at 40 MHz, once per bunch-

crossing. Signal delays are adjusted so that one sample is always taken at the peak.

from the raw data with a di�erent algorithm. This is beyond the scope of this thesis, which treats

only the compression of raw trigger-tower data.

6.2 Calculating Compression Rates

6.2.1 Overview

A software program called COMCALC was written for evaluating the performance of di�erent

compression algorithms. It generates realistic calorimeter data and calculates the length of the

code words which result from the compression. The number of bits for each data set is rounded

up to a multiple of 32. That is done because the code words will be mapped onto Pipeline Bus

words and any unused bits at the end of a data set will be wasted. It is the number of Pipeline Bus

words that is relevant for the compression rate because the bandwidth of the bus is the limiting

element. The program outputs the number of Pipeline Bus words and the compression rate for all

compression algorithms. The compression rate is de�ned in terms of Pipeline Bus words, ie it is

the factor by which the number of words is less than without compression.

Special care was taken to make the program e�cient. No oating-point operations are used for

data generation. Small inaccuracies are acceptable since the size of code words does not depend

critically on the data for any of the algorithms. Further gains in e�ciency were achieved by not

computing the actual code words or Pipeline Bus words, just the amount of data. Forming of the

codes and mapping them onto 32-bit words involves logical and shifting operations which can be

very time-consuming.

COMCALC is started from a UNIX shell and provides text output. Its behaviour can be

modi�ed by giving some parameters in the command line. The number of data sets to process and

the number of channels and bunch-crossings per data set can be adjusted. The energy pedestal and

the intensity of noise can be given. These parameters inuence data generation. The compression

parameter used by some compression modes can also be passed in the command line.

As a special feature, a histogram of all generated data is recorded. The program prints their

entropy (see 6.3.1 below) and the theoretical maximum compression rate derived from it.
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6.2.2 Generation of Test Data

The part of the program generating data produces calorimeter pulses and adds noise and a pedestal

value to them. The shape of a calorimeter pulse is shown in Figure 6.1. The calorimeter cell

provides a triangular drift current which is then shaped to reduce the noise. Since the width of

the pulse is always the same, pulses of di�erent energies can be generated by scaling them.

The probability distribution of trigger tower energies is the same as that of particle transverse

energies. It was simulated before the RemAsic was designed (see [Nie]) and is proportional to

the energy to the power of -1.8. Since this function has a singularity at 0, it must be cut o� for

low energies. Pulses with heights below 1 GeV or four counts are not generated by COMCALC.

Smaller signals are treated as noise. The fraction of particles with transverse energies under the

threshold can be estimated from simulations of minimum-bias (ie low-energy) particals published

in [Calo]. It is one tenth [Nie]. This is the fraction of bunch-crossings for which a pulse must be

generated.

Since a pulse extends over more than 20 bunch-crossings, a given energy value may be a�ected

by pulses that occurred far earlier. When generating trigger-tower data, these pulses have to be

taken into account. The probability distribution discussed in the last paragraph applies to each

bunch-crossing separately. All pulses contributing to one bunch-crossing have to be superimposed.

The data model used by the designers of the RemAsic for compression rate calculations is rather

simpler. It generates at most one pulse for each data channel, no matter how many bunch-crossings

are to be read out. For this reason the compression rates from [Nie] are much higher than the ones

determined with the more accurate data model.

To the calorimeter pulses, Gaussian-distributed noise and a pedestal value is added. The noise

comprises electronic noise and pile-up noise2 and typically has a mean deviation of slightly less

than 500 MeV or two counts [Cha]. To investigate compression performance in situations when

the noise is more intense, its mean deviation is a parameter of COMCALC. The pedestal value

models the ADC's reference voltage and is zero when it is adjusted properly. Since the Preprocessor

readout is of special interest in debugging situations, the reference voltage cannot be assumed to

be correct in this context. Therefore the pedestal is a free parameter of COMCALC.

Numbers with a certain probability distribution were generated by using homogenously dis-

tributed pseudo-random numbers as an index to a look-up table. The technique is described in

detail in appendix C. It was used for the heights of pulses as well as for Gaussian noise.

6.2.3 Usage of the Compression Rate Software

When calculating compression rates with COMCALC, certain default parameters were used as a

rule. Unless otherwise stated below, the program's parameters were as follows.

Typically, six values are to be read out per channel for each Level-1 Accept. Five of them are

raw calorimeter data and one is the result of the bunch-crossing identi�cation (BCID) algorithm

of the Preprocessor ASIC. COMCALC was made to use six raw data instead (since it cannot

emulate the BCID algorithm). As the BCID value is often zero and contains no noise, compression

performance can only be underestimated that way. The error is on the side of caution.

A data set read from each Preprocessor Module consists of data from the 64 channels on the

module. This number was always passed to COMCALC. One thousand data sets were generated for

most compression rate calculations, corresponding to 1000 Level-1 Accept signals. Occasionally,

10 000 or 50 000 were used, but the compression rates obtained did not di�er signi�cantly. A

number of 1000 was found to be su�cient.

The typical mean deviation of the noise on calorimeter signals is given in [Cha] as 420 MeV,

2The superimposed calorimeter pulses of low-energy particles arriving at a high rate can be treated as noise.

This is called the pile-up noise of minimum-bias events.
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which amounts to two counts3. A higher noise intensity can be expected when the trigger system

is being put into operation and was also simulated. The pedestal value was usually either zero or

ten. It should be zero when the ADC's reference voltage is adjusted correctly. The other value

was often used to simulate a small maladjustment which can be expected in debugging and setup

situations.

6.3 Compression Algorithms and Their Performance

6.3.1 A Word about Information Theory

Information theory is concerned with the information content of data, their compression and trans-

mission. This section cannot be an introduction to information theory, but it will give an overview

of some of its concepts which were used for evaluating compression modes.

One central concept of information theory is entropy. A probability distribution pi is given

which states how likely a data word is to take each possible value i. Then entropy is de�ned as

follows:

H = �
X
i

pi log pi

This is the same de�nition as for thermodynamic entropy, just without the Boltzmann constant.

The information-theoretic entropy is a measure of the information content of a stream of data

words. It may be given in the unit `bits' by choosing two as the base of the logarithm. (In that

sense, 1 bit = 1 � log 2.) If the data words are wider than the entropy in bits, space is wasted and

the data can be compressed. It cannot be compressed to fewer bits than the entropy without loss

of information. (This is a rough formulation of Shannon's source coding theorem.)

The Hu�man algorithm provides a way of generating a suitable code from the probability

distribution pi. It is asymptotically optimal, ie for large amounts of data the average code word

length approaches entropy, its theoretical minimum. The main disadvantage of Hu�man codes is

that they are inexible: If the data turn out to have a somewhat di�erent probability distribution,

it yields bad results.

Entropy values have to be taken with a pinch of salt. They depend on the de�nition of what

constitutes a data word. Consider the following string of bytes: (1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4). If

you choose a byte as the size of a data word, the entropy is two bits (since four di�erent values are

transmitted with equal frequency of occurrence). If one data word contains four successive bytes,

the entropy is zero because only one value occurs. The probability distribution and the entropy

value contain no information about correlations between data words. What was said above about

entropy and Hu�man codes holds only if data words are totally uncorrelated, which they rarely

are. Compression algorithms which exploit such correlations or code sequences of data at a time

can get round the maximal compression rate derived from the entropy of single data.

For a brief introduction to information theory, see [Ma].

6.3.2 Algorithms Involving Loss of Information

One of the algorithms implemented in the RemAsic involves loss of information. The so-called

run-length algorithm discards all energies below a certain threshold. In their stead, an indicator

value and the number of values below the threshold are transmitted. Values over the threshold are

transmitted without change.

Though it is highly desirable to read out the data without any loss of information, the run-

length algorithm should be retained for the RemFPGA. The readout in the trigger is intended

primarily for monitoring and debugging the trigger. Therefore it will often be used in exceptional

3One count represent 250 MeV.
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Threshold parameter ! 10 10+2 10+4 10+6 10+8

Noise mean deviation #
2 1.30 1.86 2.82 3.67 4.44

4 1.22 1.49 1.97 2.71 3.61

6 1.17 1.35 1.62 2.03 2.62

Table 6.1: Compression rates for run-length encoding for di�erent noise intensities and compression

parameters. The pedestal of the data was always 10.

situations. The noise may be higher than usual, increasing the entropy of the data. Achieving a

reasonable compression rate with an information-preserving algorithm may then be impossible. By

adjusting the threshold of the run-length algorithm, by contrast, the amount of data it outputs can

be reduced to �t the bandwidth of the Pipeline Bus. Since the energy peaks resulting from physics

events are higher than the noise, they will be preserved even when strong noise is discarded.

There is no single compression rate for the run-length method. It can be increased inde�nitely

by raising the energy threshold. This is limited only by the amount of information one is prepared

to lose. Table 6.1 shows compression rates for di�erent noise intensity and di�erent thresholds. As

a rule, a threshold of the noise's mean deviation plus the pedestal yields good enough compression

for a Level-1 Accept rate of 75 kHz. To achieve the better compression required for an Accept rate

of 100 kHz, the threshold should exceed the pedestal by one and a half times to twice the noise

RMS.

6.3.3 Information-Preserving Algorithms of the RemAsic

Of the RemAsic's information-preserving compression modes, the Hu�man mode was dropped for

practical reasons. It requires for operation a code table which can be generated with the Hu�man

algorithm4. Since Hu�man compression yields bad results when data deviate from the foreseen

probability distribution, the code table would have to be changed occasionally. This makes this

compression mode di�cult to handle since data sets would have to be matched with the code tables

with which they were compressed.

The two remaining compression modes, the Hu�man-inspired5 and the di�erence method, are

closely related. Both output 13-bit words and achieve compression by transmitting up to three

short (4-bit) codes in one word. These short codes contain values between -7 and 7 and are intended

for the majority of the data which consist only of noise. Larger values are transferred unchanged,

one per output word. The di�erence method writes di�erences between successive data words in

short codes, the Hu�man-inspired mode the di�erence of data words relative to the parameter.

Table 6.2 compares compression rates for the Hu�man-inspired and the di�ernce mode. There

are several things to be learned from it: The Hu�man-inspired method becomes ever less e�ective

when the pedestal increases. The di�erence method is more tolerant in that respect but its com-

pression rate is less than that of a well-adjusted Hu�man-inspired compression. That fact can be

understood from the way it works: Since the small codes in both compression modes are suitable

mainly for noise, the probability distribution of the data derived from noise matter. In the case

of Hu�man-inspired compression the energy values are stripped of their pedestal by subtraction

of the well-adjusted compression parameter, which shifts but does not widen their distribution.

For the di�erence mode, the di�erence of successive data is formed, which increases their mean

4The Hu�man algorithm that gives this compression mode its name is really an algorithm for obtaining an

optimal code from a probability distribution. The Hu�man mode is so called because it is intended to be used with

Hu�man-generated code tables.
5This is not an automatically adapting Hu�man algorithm. It is named after Hu�man because it occurred to

the RemAsic's designers while experimenting with Hu�man compression.
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Pedestal value 0 2 5 7 10

Entropy of data [bits] 2.6 3.4 4.1 4.4 4.6

Compression rate of : : :

Hu�man-inspired mode 1.79 1.79 1.79 1.79 1.37

Di�erence mode 1.74 1.70 1.65 1.60 1.54

Hu�man-inspired, parameter 7 1.94 1.91 1.84 1.79 1.37

Table 6.2: Hu�man-inspired versus di�erence compression mode. The compression parameter used

for the Hu�man-inspired mode was either set to the pedestal or kept constant at 7. The decrease

in the compression rates is natural since the data's entropy rises with the pedestal. For small

pedestal values the negative tail of calorimeter pulses (Figure 6.1) and part of the noise is cut o�.

deviation by a factor of
p
2. The share of data values which can be represented in short codes is

therefore lower. For high pedestal values, this does not matter any more because calorimeter pulses

and their undershoot predominate. This favours di�erence coding since it allows for short-coding

of data series which deviate from the pedestal.

The second lesson from the rates in table 6.2 is that both algorithms fall short of the rate of

1.8 required for a Level-1 Accept rate of 75 kHz. However, using the Hu�man-inspired mode with

a �xed parameter solves the problem of the low compression rate and at the same time saves the

parameter. Having a variable parameter is undesirable for the practical reasons that speak against

the Hu�man mode. Fixing the parameter of the Hu�man-inspired mode at 7 allows a maximal

interval of data (from 0 to 14) to be represented in short codes. This works well for a pedestal of

up to 6. When the noise is intensi�ed by a factor of two (to a mean deviation of 1 GeV / four

counts), the compression rate is still 1.80 for a pedestal of 5.

The Hu�man-inspired compression mode is therefore suitable for day-to-day operation when

the system has been correctly con�gured and the ADC reference voltage is near its optimum.

However, the di�erence method has the edge when the reference voltage is wide o� the mark,

resulting in a high pedestal value of the data. Its compression is not good enough for it to be

retained in its present form, but as will be explained in the next section, it can be improved.

6.3.4 Improvements of the RemAsic's Algorithms

The Hu�man-inspired and di�erence compression modes produce output words of a �xed width.

This was done because �xed-length codes are less susceptible to transmission errors than variable-

length codes. In variable-length codes, the length of the data words is indicated by some of their

bits. If these are transmitted wrongly, word boundaries will be lost and the whole rest of the data

set may be misunderstood.

As could be seen in Section 5.1.3.2, the rate of transmission errors during readout is very low.

The serial links to data acquisition are also very reliable. Therefore, codes producing words with

di�erent lengths are an option.

The two RemAsic modes can be improved by doing without �xed word lengths. For large

energy values, their code word contains an unchanged input value. Energy values are ten bits

wide. This means that two bits of the 13-bit code word remain unused (one is needed for a ag

bit; see upper part of Figure 6.2). If one gives up �xed word lengths, they can be saved.

If input data are small enough to be compressed, up to three short codes are contained in one

code word. They are four bits wide and can therefore �ll the code word completely. If the series

of short codes ends in the middle of a code word, however, this has to be indicated with a `skip'

code. Since the series of short codes tend to be long, it makes sense not to repeat the ag bit in

each code word. This implies that a short `end' code for signalling its end is needed in all cases.
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Unused UnusedUnused

Modified algorithm:

End

00 Skip01

1

0 0 0

0 1

1

Huffman-inspired or difference algorithm:

Figure 6.2: Modi�cation of the Hu�man-inspired/di�erence method output format. The data have

to be read from right to left. In the modi�ed version, the unused bit �elds are no longer there.

Besides, the `0' bits indicating short codes are not repeated.

Pedestal value 0 5 10

Noise mean deviation 2 4 2 4 2 4

Hu�man-inspired mode 1.94 1.93 1.84 1.80 1.65 1.49

Di�erence mode 1.74 1.65 1.65 1.42 1.54 1.29

Modi�ed Hu�man-insp. 2.30 2.29 2.24 2.23 2.11 2.06

Modi�ed Di�erence 2.15 2.12 2.08 1.98 1.99 1.88

Table 6.3: Compression rates of modi�ed compression modes. The compression parameter of the

Hu�man-inspired modes is �xed at 7. The improved algorithms perform well even for intensive

noise and relatively high pedestals.

But this disadvantage is compensated by the fact that in some cases an additional unused short

code is saved (see Figure 6.2).

As can be seen from table 6.3, these modi�cations increase the compression rates signi�cantly.

Even for more intense noise than is expected, they are well above the requirement of 1.8. But

further improvements can be achieved. Small energy values occur more often than large ones.

This holds also for those which cannot be represented in short codes. Therefore it makes sense to

introduce absolute values of `medium' width which are longer than short codes but shorter than

ten bits. This is worthwhile even though an extra bit is needed to ag between the medium and

the long words. A width of �ve bits was found to be optimal for medium codes.

It is worth reconsidering the width of the short codes, too. They are intended to contain mostly

noise. Since the expected noise has a mean deviation of only two counts, it is su�cient to allow

an interval of seven values for short codes. This reduces their width from four to three bits. (One

End 0Sequence of short Codes:

0 1

4

Medium Code:

11Long Code:
11 8 2 1 0

2 1 06

4 3 1 0

4

Figure 6.3: The output format of the new algorithms. The data words have to be read from right

to left. The size of the words is indicated by the preceding ag bits. The end of a series of short

codes is marked with an `end' code.
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Absoute algorithm

Pedestal ! 0 5 10

Noise mean deviation #
2 2.84 2.52 1.74

4 2.80 2.43 1.86

6 2.74 2.39 1.94

Di�erence algorithm

Pedestal ! 0 5 10

Noise mean deviation #
2 2.62 2.34 2.22

4 2.52 2.15 2.01

6 2.41 2.05 1.88

Table 6.4: Compression rates of new algorithms. The absolute method achieves better compression

but the di�erence method is more tolerant to high pedestals.

code value is reserved as an `end' code.) Figure 6.3 shows the resulting format. For the di�erence

algorithm, the short codes contain the signed di�erence of successive data. In the case of the

`absolute' method, they are small unsigned data values. The sequence of short codes is initiated

by the ag bit and ended by the `end' code. Each medium and long code is preceded by ag bits.

Table 6.4 shows compression rates for the new compression algorithms. The absolute algorithm

achieves better compression on the whole. For a low pedestal its rates are higher than 2.4. This is

the requirement if the maximum Level-1 Accept rate is raised to 100 kHz. The absolute mode is

also tolerant to high levels of noise. Curiously, for a high pedestal (10) the compression rate rises

when the noise intensi�es. This is because intensive noise contains large negative values. After the

pedestal is added, they result in small values which are easy to compress.

The di�erence method is less e�ective but more tolerant towards high pedestals. Even for a

pedestal of 35 the compression rate is above 1.8, su�cient for an Accept rate of 75 kHz. If the

pedestal is 0, the compression rate exceeds 2.4 even for intensive noise.

6.3.5 Summary

The favourites of the RemAsic compression modes are the Hu�man-inspired mode and the di�er-

ence mode. They were considered for day-to-day operation of a correctly con�gured Preprocessor

system. Only the Hu�man-inspired mode achieves a compression mode su�cient for the expected

Level-1 Accept rate of 75 kHz. New compression algorithms developed on the basis of the two

RemAsic algorithms are suitable for the envisaged upgrade Accept rate of 100 kHz.

In debug situations and during setup of the system, data may be harder to compress. Noise

may be intense and the ADC reference voltage maladjusted, resulting in a high pedestal value.

The RemAsic's runlength algorithm is useful in that case. It involves loss of information, but the

compression rate is the higher the more information is discarded.

The no-operation mode of the RemAsic compression unit has not been mentioned above. It

should be retained as it is quite useful for debugging the RemAsic itself.



Conclusions and Outlook

On the whole, the RemAsic tests were very successful. The ASIC was found to work as intended

at the desired clock rate of 40 MHz. Writing and reading of internal memories and registers was

tested. Readout was found to work reliably for ten hours. The word error rate during readout

is below 2:59 � 10�8 with a con�dence level of 99%. Four minor design errors discovered in the

RemAsic can be easily �xed and would not have rendered it useless.

In one of the three RemAsics tested, manufacturing defects prevented proper functioning of

some parts. This was although it had passed some less rigorous tests on a chip tester. This will

not pose problems in the future since the RemAsic's successor will be an FPGA. Yield problems

will therefore be no issue.

Only one of the RemAsic's information-preserving compression modes reaches the required

compression rate. The new algorithms developed from it are much better. They are even suitable

for the Level-1 Accept rate envisaged for upgrading, 100 kHz. One compression mode of the

RemAsic which is not information-preserving is useful when data are unfavourable for the other

algorithms. This may be the case when the Preprocessor system is not yet properly con�gured.

The successor of the RemAsic will be an FPGA, the RemFPGA. Large parts of the RemAsic

design can be reused for it. This will involve porting the source code for a di�erent synthesis tool.

Some parts of the RemAsic will have to be changed: The serial interface receiving readout data will

have to be rewritten completely. The compression unit will provide a di�erent set of compression

modes, including the new algorithms described in this thesis.

The RemFPGA will �rst be operated within the test system. There exists a daughtercard with

a large enough FPGA and Pipeline Bus connectors. The RemFPGA will then be employed on the

�nal Preprocessor Module to be presented at the beginning of the year 2001.

Much work remains to be done on the Hardware Diagnostic, Monitoring and Control software

(HDMC). It is beginning to be used by collaboration members outside Heidelberg. Code for

controlling the Preprocessor System and other components of the ATLAS Level-1 Calorimeter

Trigger has to be written. HDMC's hardware drivers will have to be integrated into the ATLAS

data acquisition software.
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Appendix A

Design Errors of the RemAsic

Contrary to expectations, the tests revealed some design aws in the RemAsic whose deeper causes

could be traced in its hardware description language source code. They are listed here, in order of

declining importance. None of them would have seriously impaired the usefulness of the RemAsic,

had it been the �nal chip design for its purpose. The readout data could still have been decoded,

so the RemAsic could have been used.

Hu�man-Inspired and Di�erence Modes of Compression Unit

These two modes are very similar and in fact share a submodule in the RemAsic design. That

is why this error occurs in both of them. Both codes achieve compression by writing to a 13-bit

output word three short di�erences instead of one unchanged input word. The string of short codes

is not interrupted by the end of a data set. This cannot have been intended by the RemAsic's

designers since it complicates decoding and is not mentioned in the user manual. When an output

word is partially �lled by the last values of one data set and the �rst value of the next can also be

short-coded, no new output word is started. The remaining one or two short codes for which there

would have been room in the last output word are placed at its beginning without a ag to indicate

that. The situation is illustrated in Figure A.1. The readout data could still be decoded, but one

would have to remember the number of short codes, if any, that the last word of the previous data

set contained.

The reason for this behaviour is that the counter for the remaining number of bits in an output

word is not reset at the start of a data set. Because it has to be reset whenever an input value is

too large for a short code, it has a synchronous reset signal1 of its own. It is independent of the

synchronous reset that initialises all other registers before starting on a new data set. Activating

the bit counter's synchronous reset at the start of each data set was simply forgotten. Since the

e�ect does not show for most combinations of data, it probably did not occur in simulations of the

RemAsic design.

Eight-Bit No-Operation Mode of Compression Unit

This operation mode was intended to output the lower eight bits of each ten-bit data word. The

resulting bytes are mapped to 32 bits as usual by placing each to the left of its predecessor. The

output data bus of a compression module is always 32 bits wide. Successive output words are

logical or combined after being shifted to the right position. The error in this operation mode

1A synchronous reset is not to be confused with the (asynchronous) reset of all ip-ops in a chip triggered by

asserting the external reset pin. Any signal that initialises a register to a de�ned constant value may be called a

synchronous reset.
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last one is continued with a third short code

unused (0) 0

13-bit code word

32-bit readout data word

Flag for short codes

Two short codes before end of data set

Last data set

Next data set

No new 13-bit word is started, but the

Figure A.1: Design aw in the Hu�man-inspired and Di�erence compression modes (see text)

8-bit word0

Intended:

0 8-bit word

0 8-bit word0

010-bit word

10-bit word

10-bit word

10-bit word10-bit word 0

32-bit readout data:

0 8-bit word0

10-bit word0

Actual:

OR

OR

OR

10-bit word

10-bit word

0

0

0

Input data

module

mode

NOP

8-bit

Figure A.2: Design aw in the 8-bit no-operation compression mode (see text)

consists in that the two most signi�cant bits of input data are not cleared. This has the e�ect that

the lowest two bits of each word are logical or combined with the upper two bits of the previous

datum, as shown in Figure A.2. This yields wrong output data whenever the most signi�cant bits

are not zero.

Con�guration of Pre-Main Bu�ers

Immediately after con�guring one Pre-Main Bu�er in continuous mode, no other Pre-Main Bu�er

con�guration can be carried out. For instance, con�guring both Pre-Main Bu�ers in sequence in

continuous mode is impossible. This is inconvenient since it is the obvious way to con�gure both

bu�ers.

The Pre-Main Bu�ers are the only subdevices that contain 32-bit data. This makes it impossible

to include an address in each con�guration data word. The RemAsic provides two ways to con�gure

Pre-Main Bu�ers: In random access modes, address and data words alternate. In continuous mode,

one address word is followed by data written to successive addresses. The address word also selects

which Pre-Main Bu�er to con�gure.

After a con�guration in continuous mode, the address words of following con�gurations are

not interpreted. Instead, they are taken for data words belonging to the �rst con�guration pro-

cess. Only after a di�erent subdevice has been con�gured or read a renewed Pre-Main Bu�er

con�guration is possible.

In continuous mode con�guration the RemAsic sets a ag indicating that all following words
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are data. The error occurs because this ag bit is not reset before a repeated Pre-Main Bu�er

con�guration. Only subdevice read operations or con�guration of a di�erent subdevice clear it.

This error represents more of an inconvenience than a serious problem. One of the ways

round it is to initiate the con�guration of a di�erent subdevice between the two Pre-main Bu�er

con�gurations. It is possible to do this without actually sending any data to the other subdevice.

Spy Bus

The last error concerns the Spy Bus. Since the Spy Bus is a feature only used for testing, it is of

little importance. It just makes testing less easy. Due to three awed assignments in the source

code, three bits of one Spy Bus word are always set. They were intended to give the state of a

state machine.

To avoid glitches2, the eight states were coded as eight-bit values with only one bit set. To save

space on the Spy Bus, the eight-bit state register was to be mapped to three bits. In the right-hand

side of the assignments, only the state constants are present. Comparing the state register with

them was forgotten. The bits are therefore assigned to non-zero values, setting them permanently.

2When a register containing several bits changes, not all the bits change at precisely the same time. Interme-

diately, the register may have a value that di�ers from both its initial and �nal state. This may cause spikes on

signals resulting from comparisons of that register value. To avoid this, state machines are sometimes written in a

way that the state register takes only values with just one bit set.
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Appendix B

Calculating Upper Limits for

Error Rates

In the long-time compression and readout tests with the RemAsic, no errors occurred. All the

same, the error rate to be expected is clearly not 0. The error rate can be plausibly said to be

below a certain limit with a certain level of con�dence. That limit can be calculated from the

desired con�dence level using probability theory.

In textbooks (for instance [Kri]), the following problem is treated: A probability experiment

yielding a result of either 1 or 0 is performed n times. The result 1 has the probability p, 0 the

probability 1� p. k 2 f0; 1; : : : ; ng is the sum of all results. Then the con�dence interval C(k) for

p with a con�dence level of 1� � is

C(0) = [0; p00(0)[

C(k) = ]p0(k); p00(k)[ for k = 1; : : : ; n� 1 (B.1)

C(n) = ]p0(n); 1]

where p0 and p
00 are de�ned as follows:

p
0(k) = maxfp : 1�B(k � 1;n; p) � �

2
g (B.2)

p
00(k) = minfp : B(k;n; p) � �

2
g (B.3)

B(k;n; p) is the cumulative binomial distribution with parameter p, de�ned as follows:

B(k;n; p) =

kX
i=0

�
n

i

�
p
i(1� p)n�i (B.4)

It gives the probability of the above experiment resulting in 1 not at all, once, twice or up to k

times.

In our case, the probability experiment is the serial transmission of one data word to the

RemAsic, its compression and transmission on the Pipeline Bus. A result of 1 means the word

was not transmitted and compressed correctly, a result of 0 that it was. p is the rate of wrongly

transmitted words. Since no errors were observed, k is 0, which simpli�es things signi�cantly.

Formula B.4 defaults to

B(0;n; p) = (1� p)n (B.5)
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Since the mapping p 7! (1� p)n is monotonous, the con�dence interval becomes

C(0) = [0; p00[= [0; 1�
�
�

2

� 1

n

[ (B.6)

For large n, computing p
00 with this formula is beyond any oating-point package. But it can be

approximated very well in those cases:

p
00 = 1�

�
�

2

� 1

n

= 1� exp

�
1

n
ln
�

2

�
� � 1

n
ln
�

2
(B.7)

For a con�dence level of 99%, this is

p
00 � � 1

n
ln 0:005 =

1

n
� 5:3 (B.8)



Appendix C

Generation of Pseudo-Random

Numbers with an Arbitrary

Probability Distribution

For calculating compression rates, realistic data had to be generated. That required the generation

of random numbers with certain, non-homogenous distributions for energy values and Gaussian-

distributed noise. For reasons of performance, it was desirable to be able to calculate these numbers

with exclusively �xed-point operations.

That was done using a table in which the more probable results occur more frequently. A ho-

mogenously distributed pseudo-random number was used as an index to that table. This approach

involves a discretisation of the desired probability distribution, in two respects. First, the gen-

erated numbers are integer (or �xed-point) numbers. This corresponds to the analogue-to-digital

conversion also done by the electronics.1 Second, the probabilities for each value are multiples of

the inverse of the table length, as the index is homogenously distributed and the number of equal

table entries is an integer. That has the e�ect that continuous distribution functions that extend

to in�nity, like the Gaussian distribution, are cut o� at some point. To model the continuous

distribution reasonably well, the table should be signi�cantly larger than the number of di�erent

values to be generated. If the pseudo-random numbers are to be scaled by a factor, this has to be

taken into account when estimating this number.

How to generate such a table? It can be seen as the look-up table of a function f(x) for

equidistant values of x. The larger the table has to be, the �ner the steps for x and the more

accurately f(x) is scanned. f is assumed to be continuous. In that sense, f is the limit of a

table of in�nite size and precision, de�ned in an interval in which the in�nite set of x values used

for sampling f is dense. As it depends on the probability distribution to be modelled, it must be

possible to calculate it analytically from the probability distribution function p(y). Without loss of

generality, f can be assumed to be monotonic and increasing; this results in look-up tables whose

entries are also increasing. The number of equal entries in the table is `roughly' proportional to

their value's probability. This number is an approximation of the inverse of the derivative of f .

Since f is the idealisation of a table, this means that

dx

df(x)
/ p(y) =

dP (y)

dy
: (C.1)

1There is a small error of up to one point if two such values are added up, as an energy pulse and a noise value

often are in our case. Since the compression rates do not depend noticeably on such small inaccuracies, that is

acceptable.
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That makes f proportional to the inverse of the cumulative distribution function P (y) =
R
p(y) dy.

f can be chosen as P�1, which is de�ned in the interval ]0; 1[ if p is normalised.
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