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Abstract— Modeling neural tissue is an important tool to investigate
biological neural networks. Until recently, most of this modeling
has been done using numerical methods. In the European research
project ”FACETS” this computational approach is complemented by
different kinds of neuromorphic systems. A special emphasis lies in the
usability of these systems for neuroscience. To accomplish this goal an
integrated software/hardware framework has been developed which is
centered around a unified neural system description language, called
PyNN, that allows the scientist to describe a model and execute it in
a transparent fashion on either a neuromorphic hardware system or
a numerical simulator. A very large analog neuromorphic hardware
system developed within FACETS is able to use complex neural models
as well as realistic network topologies, i.e. it can realize more than
10000 synapses per neuron, to allow the direct execution of models
which previously could have been simulated numerically only.

I. INTRODUCTION

Artificial neural systems play an important role in neuroscience.
The main reason being the limited access one has to the indi-
vidual neurons and synapses in vivo. By gathering the knowledge
obtained from biological experiments and using them to build
an artificial neural system [1], computational neuroscience has
emerged as an indispensable part of brain research. In addition,
artificial neural systems will enable a lot of new applications in
the areas of robotics, ambient intelligence and human-machine
interfaces, to name a few of the most prominent examples.

The basis of an artificial neural system is the model. The model
captures a certain state of experimental data and also the modeler’s
beliefs about the biological domain in the language of mathemat-
ics. Usually, the equations derived in the modeling process are
subsequently numerically solved on a parallel computer. Thus,
the artificial neural system derived in this way is a computer
simulation.

Regarding the biological basis of neural communication it has
been shown [2] that neural systems are well suited to physical
modeling as well. In a physical model, the constituents of the
system are modeled by physical entities which obey the same
equations as the mathematical description of the system. The
most successful technology to implement such a physical model
is VLSI technology. The physical entities are small transistor
circuits, their interconnection uses the available metal wiring as
well as programmable switches to control the topology.

Using a physical model keeps a one-to-one relationship between
the neurons and synapses of the biological example and the model.
Thereby, the fault tolerance concerning the loss of individual
neurons and synapses observed in biology is preserved. This is
an especially useful property considering the reliability concerns
of future CMOS generations [3]. In addition, by using only
a few transistors to emulate the neuron’s differential equations
compared to several millions involved in the same task while
solving these equations numerically on a microprocessor core,
the power consumption is reduced by several orders of magnitude
[4]. Due to the inherent continuous time operation of a physical
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model it is much faster than the numerical approach for all
but the most simple network configurations. On the other hand,
a physical model is much less flexible compared to a generic
software module. Taking this into account, numerical and physical
models could complement each other in neuroscience research.

Considering future applications of the neural computing
paradigm a sophisticated physical model is much more likely
to satisfy the power and cost demands, although it is not yet
clear if contemporary VLSI technology can reach the necessary
complexity.

The FACETS project aims at developing a large-scale physical
model capable of implementing most of the neural systems mod-
eled in contemporary computational neuroscience. The following
sections will give an overview of the different components of this
model and its associated VLSI circuits as well as its system and
software components.

II. NEURON MODEL

At the basis of a neural VLSI implementation is the neuron
model itself, i.e. the differential equation governing the temporal
evolution of the membrane potential. The FACETS project partici-
pated in the development of a new model, the exponential integrate
and fire model (AdExp) [S] which contains several additions
compared to the standard integrate and fire mode (1&F) [6]:

,Cmﬂ = ag(V—-E)—gAnexp <VA;“1V”‘>
+ @)V =-E)+gt)(V-E)+wt) .(1)

dt

The variables C.,, g, Ei, E. and E; are the membrane capacity,
the leakage conductance and the leakage, excitatory and inhibitory
reversal potentials. The variables g.(¢) and g;(¢) represent the total
excitatory and inhibitory synaptic conductances. The exponential
term on the right hand side introduces a new mechanism to the
I&F neuron: Under certain conditions, the membrane potential
develops rapidly towards infinity. The threshold potential Vi
represents the critical value above which this process can occur,
and the slope factor A, determines the rapidness of the triggered
growth. Such a situation, which is detected by a mechanism that
permanently compares V (t) with a critical value Vi > Vj, is
interpreted as the emergence of a spike. Each time a spike is
detected, a separately generated output event signal is transmitted
to possibly connected target neurons (or to recording devices), and
the membrane potential is forced to a reset potential V. by an
adjustable, usually very strong, reset conductance.

A second equation describes the temporal evolution of the so-
called adaptation current w(t):

dw
_Twﬂ = w(t) — G(V — E|) . (2)
Additionally, every time a spike is emitted by the neuron, w
changes its value quasi-instantaneously: w — w + b. The time
constant and the efficacy of the so-called sub-threshold adaptation
mechanism are given by 7, and a, while b defines the amount of

the so-called spike-triggered adaptation.
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Fig. 1. Schematic diagram of the AdExp neuron circuit.
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Fig. 2. Exemplary firing modes of the AdExp neuron circuit.

Since both the exponential term in Equation 1 and the adapta-
tion can be deactivated, the AdExp-model can be reduced to the
standard I&F model.

The AdExp-model was implemented in a 180 nm CMOS
technology. Fig. 1 shows the individual circuit components. Fig. 2
illustrates exemplary firing modes of this neuron circuit. The
timescale of the transient simulations shown in the figure reveals
one important aspect of the FACETS neuron model: it operates at
accelerated biological time. The acceleration factor ranges from
10% up to 10° compared to the biological real time (BRT). The
neuron time constant is determined by the membrane capacitance
and the leakage conductance. Operating the VLSI model at an
accelerated time scale allows a reduction of the internal capac-
itances and an increase of the leakage current compared to the
biological model. Thereby the size of the circuits can be decreased
substantially. The membrane capacitance is implemented as a
MIM-capacitor sitting on top of the circuit, thus occupying no
additional silicon area. Most of the internal currents stay in the
range from 100 nA to 1 pA which avoids deep sub-threshold
operation and the strong fixed-pattern noise associated with it.

III. NEURON INTEGRATION

The neuron circuits are integrated together with their respective
synapses in a structure called the Analog Network Core (ANC)
as depicted in Fig. 3. To allow neurons with a variable number of
synapses, a neuron is built from multiple parts, named dendrite
membrane (DenMem) circuits. Each DenMem circuit is connected
to 224" synapses. In the middle of the ANC is the neuron builder.
It combines groups of DenMem circuits to neurons. It is freely
programmable as long as the DenMem circuits forming a neuron
are adjacent or opposite, regarding the left and right half of
the ANC, to each other. Each DenMem circuit is configured by
23 individual analog parameter inputs which are generated by

' This number is defined by the MPW-size limits of the manufacturer.
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single-poly floating-gate analog memory cells located between the
DenMem circuits and the neuron builder.

Fig. 4 shows the structure of a synapse. Each synapse contains
a four bit address decoder and is connected to one out of four
enable signals. Therefore, the synapses located in a certain column
can receive as many as 64 different pre-synaptic inputs, but
two adjacent columns share the same 64 inputs. The maximum
number of pre-synaptic inputs a neuron can receive is therefore
columns /2 x 64 x blocks = 14336, with the number of synapse
columns = 224 and the number of synapse blocks = 2.

The synapse weight is represented by a current generated by a
four bit multiplying DAC. A four bit SRAM stores the individual
synapse’s weight while the maximum conductance for a column
of synapses is controlled by the analog input gmaz. The gmaz
values of two adjacent columns sharing the pre-synaptic input can
be programmed to be a fixed multiple of each other. Thereby these
columns can combine their synapses to reach a weight resolution
of 6 to 8 bits at the expense of a twofold reduction of the synapse
number in these columns.

The synapses transmit their post-synaptic messages to the
neuron using two shared inputs per DenMem circuit. Each column
of synapses connects either to input A or B (see Fig.4). The signal
is encoded as a current pulse of defined length and an amplitude
proportional to the synapse weight. The synaptic input circuit in
the neuron clamps the line to a fixed potential and uses the integral
of the synaptic currents it receives to generate an exponentially
decaying synaptic conductance, which is subsequently used to
charge or discharge the membrane, depending on the selected
reversal potential. In a simple setup input A could for example be
excitatory and input B inhibitory, with different reversal potentials
and synaptic time constants. A more elaborate setup with larger
neurons built from several DenMem circuits may use different
kinds of membrane ion channels. This can be emulated by setting
up different reversal potentials and synaptic time constants for
different DenMem circuits.

There are two levels of plasticity implemented in the synapse
block: short-term depression and facilitation and spike-timing de-
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pendent plasticity (STDP). The former effect is generated similar
to [7]. For short-term plasticity the effective weight is modulated
by the length of the current pulse. Since there are 64 possible pre-
synaptic neurons connecting to a synapse column the plasticity
circuit located in the periphery of the synapse block keeps track
of the firing history of all 64 channels by means of a capacitive
storage array.

STDP uses a two stage algorithm: first, in each synapse the
temporal correlation between pre- and post-synaptic signal is mea-
sured and the exponentially weighted results of this measurement
are accumulated on two capacitances, one for causal and one for
acausal correlations. A digital control circuit periodically reads
these data and decides utilizing a programmable algorithm if the
digitally stored weight should be changed. In case the weight is
changed the capacitive storage is cleared and the accumulation
process starts again. This is similar to the implementation de-
scribed in [8].

IV. INTEGRATION OF THE ANALOG NETWORK CORE

The ANCs presented in the previous section are the build-
ing blocks for the FACETS artificial neural system. To reach
a sufficient complexity thousands of these blocks have to be
interconnected by a network with sufficient bandwidth and an
adequately flexible topology. The following section will give a
short summary about the solutions developed within the FACETS
project. A more detailed description can be found in [9].

A. Event Communication

Operating an ANC at an acceleration factor of 10% and a
mean firing rate of 10 Hz BRT leads to a pre-synaptic event
rate of 1.5 Gigaevent/s. This poses two problems: providing
sufficient bandwidth in-between the ANCs and limiting the power
consumption per event. An asynchronous, serial event protocol
operating at up to 2 Gb/s is used to interconnect the ANCs, called
Layer 1 (L1) routing. A single L1 event transmits six bits encoding
the pre-synaptic neuron number. To limit the power consumption,
low-voltage differential signaling is used everywhere outside of
the ANCs. Each event is framed by a start- and a stop-bit. Their
temporal distance is used as a timing reference for a DLL in each
receiver circuit. Therefore, there is no activity outside of an event
frame limiting the quiescent power consumption of the receivers.
The only part that needs a continuous bias current of about 100 uA
is the differential input stage, since it has to detect the start-bit
in time which lasts only one bit-period. The signal deteriorates
due to the RC-time constant of the on-chip transmission lines
and therefore it has to be repeated in regular intervals. To avoid
accumulating timing errors active repeater circuits using a DLL
for timing recovery have been inserted at each ANC boundary.
Fig. 5 shows an event frame (insert) measured after it has traveled
a distance of 10 mm across a prototype chip containing said
repeaters. The outer part of the figure plots the power consumption
as a function of the event rate.

B. Wafer-Scale Integration

Each L1 channel carries the pre-synaptic signals from 64
neurons, thus at most 224 channels are needed to feed the ANC.
At the nominal acceleration factor of 10? this allows event rates
of about 300 Hz BRT per pre-synaptic neuron, providing ample
head-room. 224 differential signal lines need 448 physical wires.
If the ANCs are arranged in a two-dimensional grid with L1
channels running horizontally and vertically through the ANCs,
each ANC would need at least twice as many connections. A
Wafer-Scale integration scheme was selected to implement these
channel densities. Fig. 6 shows the resulting structure: Eight
individual chips, named HICANN (High Input Count Analog
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Fig. 5. Event-rate dependent power consumption of the Layer 1 repeater
circuits. Insert: Measured Layer 1 event data packet after traveling 10 mm
on chip.
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Fig. 6. Overview of the FACETS wafer-scale system

Neural Network), containing one ANC each together with the L1
repeaters as well as the necessary support circuitry, constitute one
reticle. This fine granularity allows the production of prototypes
by MPW runs. Fig. 7 shows the first prototype of HICANN. 44
reticles containing 352 HICANN chips fit on a 20 cm wafer.
Within the reticle, horizonal and vertical L1 channels connect
the HICANN chips. An additional metal layer is deposited on
top of the wafer by a post-processing step, which allows the
interconnection of the individual reticles with a metal pitch well
below 10 pm. Since within the reticle this metal layer is not
needed for L1 connections, it is used to redistribute the bond-
pads of the HICANN chips into rows of equally spaced rectangular
200 1000 zzm? pads. These pads connect the wafer to the system
board by an array of elastomeric strip connectors. Fig. 8 shows
photographs of the inter-reticle connections formed by the wafer
post-processing step”.

2The fan-out structures visible are necessary because the size of the
pad-windows is larger than the line pitch.
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Fig. 7. Photograph of the HICANN die.
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Fig. 8.

Photograph of the inter-reticle connections (8 pm pitch).

Fig. 9. Drawing of a complete wafer module.

C. Inter-Wafer connections

A single wafer contains 4-107 synapses and up to 180k neurons.
Larger systems can be built by interconnecting several wafer
modules. For this purpose a second communication protocol is
implemented into the HICANN chips, the Layer 2 routing. Instead
of the continuous time L1 protocol, it uses time-stamps to code the
precise firing-time of the neuron. A full-duplex 2 Gb/s connection
links each HICANN to the system PCB, resulting in a total band-
width of 176 GB/s for the whole wafer. Since a data packet uses
32 bit, 44 Gigaevents/s can be exchanged between two wafers.
The packet-based protocol is handled on the system PCB by a
set of specialized ASICs® containing dedicated buffer algorithms
to sort all arriving packets by their time-stamps. Thereby, the
maximum jitter of an L2 connection is 4 ns. The wafer-to-wafer
communication is handled by standard FPGAs and OTS switches
via 1 or 10 Gbit Ethernet links. Fig. 9 shows the arrangement of
the wafer and its surrounding digital communication hardware.
The host communication uses specialized packets with lower
priority sharing the L2 connections. Due to the standard Ethernet
protocol used throughout the wafer-to-wafer communication any
amount of computing power necessary to control the system can
be incorporated into the network.

V. SOFTWARE MODEL

The hardware model described in the previous sections allows
to perform modeling experiments which previously have been
possible only as numerical simulations on supercomputers. But
if these experiments should be performed by computational neu-
roscientists the usage of such a machine has to be similar to
the way these experiments are set up on conventional computers.
To reach this goal a new software interface based on the script

3The Layer 2 circuits have been developed by the TU Dresden.

language Python [10] was introduced by the FACETS project into
the neuroscience community, called PyNN [11]. PyNN allows
to describe the experimental paradigm, the used models and
the evaluation of the experiment’s outcome without referring to
a specific simulation engine. Therefore, a PyNN setup can be
transferred to the hardware model as well. From an internal graph-
based representation of the biological network the configuration
data has to be calculated similar to the place and route process
used for mapping an HDL design to an FPGA. All external stimuli
are then sent in real time via the L2 communication links to the
hardware neurons while simultaneously the firing pulses of those
neurons selected for recording are read back for analysis.

VI. CONCLUSION

The FACETS project has developed solutions to enable large
scale analog hardware to complement numerical simulation as
modeling tools for neuroscience. It has successfully addressed the
following prerequisites for this endeavor:

o programmability of topology and model parameters,

« a flexible and biologically realistic neuron model,

« a low-power communication technology for neural events,

« a scalable packet-based inter-wafer and host communication
which includes the possibility of interactive simulations to
close the sensor-actor loop,

o a software framework for the translation of experiments
from biology to hardware including a serious attempt at the
unification of the electronic specification of such experiments
through the PyNN initiative.

What lies ahead of the involved groups now is the consolidation
and finalization of the numerous developments made. Concerning
the hardware, the first HICANN prototype is in the lab for
measurements now while the remaining parts of the system
have been tested by numerous prototypes. On the software side,
there has been the successful transfer of exemplary neuroscience
experiments to the hardware. A behavioral simulation of the
wafer-scale system allows to execute them in simulation.
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