
Simulator-Like Exploration of Cortical Network

Architectures with a Mixed-Signal VLSI System

Daniel Brüderle∗, Johannes Bill∗, Bernhard Kaplan∗, Jens Kremkow†,

Karlheinz Meier∗, Eric Müller∗ and Johannes Schemmel∗

∗Kirchhoff Institute for Physics, Ruperto-Carola University, Heidelberg, Germany
†Neurobiology and Biophysics, Albert-Ludwig University, Freiburg, Germany

Email: bruederle@kip.uni-heidelberg.de

Abstract—In this paper we describe our approach towards
highly configurable neuromorphic hardware systems that serve
as useful and flexible tools in modeling neuroscience. We uti-
lize a mixed-signal VLSI model that implements a massively
accelerated network of spiking neurons, and we describe a
novel methodological framework that allows to exploit both the
speed and the programmability of this device for the systematic
and simulator-like exploration of cortical network architectures.
We present a variety of experimental results that illustrate
the functionality of our modeling platform, and we verify all
hardware measurements with reference software simulations.
Especially on the network level these comparison studies are
unique in terms of the quantitative correspondence between
the data. The presented hardware experiments include high-
conductance states in hardware neurons and the application of
synaptic depression and facilitation for self-adjusting network
architectures.

I. INTRODUCTION

Neuromorphic hardware devices mimic the structure and

emulate the function of biological neural networks in a phys-

ical form. With a tradition going back to the 1980s [1], today

an active neuromorphic engineering community is developing

analog or mixed-signal VLSI models of neural systems [2]–

[8]. Compared to numerical simulations with digital com-

puters, the main advantage of this physical approach arises

from the locally analog and massively parallel nature of the

computations. This leads to the fact that neuromorphic network

models are typically highly scalable, i.e. they can emulate

neural networks in real time or much faster, independent

of the realized network size. A clear disadvantage of such

systems is the limited flexibility of the implemented models.

Typically, neuron and synapse parameters as well as the

network connectivity can be programmed only to a certain

degree and always within limited ranges. Furthermore, inter-

chip event-communication bandwidths set practical limits on

the scaling of network sizes [8], [9].

In contrast to most neuromorphic engineering projects, the

hardware systems we consider in this article exhibit a speedup

factor of up to 10
5 compared to the emulated biological real

time [7], [8]. This massive acceleration and an implementation

path towards large-scale network architectures with low power

consumption [8] make such neuromorphic systems potentially

valuable research tools for the modeling neuroscience com-

munity. There, software simulators are commonplace [10], but

often impose performance limitations [11].

In order to establish neuromorphic hardware devices as

useful components within the toolboxes of neural network

modelers, a proof of such systems’ biological relevance plus

an interface that provides the operability by non-hardware-

experts are required. The novel methodological framework we

presented in [12], [13] satisfies these two conditions to a large

extent: It allows to utilize a neuromorphic system for the flex-

ible, simulator-like exploration of network architectures and

dynamics. In this paper we shortly describe the experimental

platform, i.e. the hardware device and the applied methods

and software concepts for its operation. Then we present a

selection of experimental results that indicate the practical

options emerging from the symbiotic operation of the highly

programmable device and the software structure it is embedded

into.

II. MATERIALS AND METHODS

A. The Neuromorphic System

The employed mixed-signal VLSI device [7], [14]

implements leaky integrate-and-fire neuron models with

conductance-based synapses, designed to exhibit a linear cor-

respondence with existing conductance-based modeling ap-

proaches [15]. The chip was built on a single 25 mm2 die

using a standard 180 nm CMOS process. It models networks

of up to 384 neurons and the temporal evolution of the weights

of 10
5 configurable synapses. The system can be operated with

an acceleration factor of up to 10
5 while recording the neural

action potentials with a temporal resolution of approximately

0.3 ns, which corresponds to 30 µs in the interpreted biological

time domain. For a precise description of the neuron and

synapse circuits, the connectivity model and the implemented

long-term and short-term synaptic plasticity features see [7],

[13] and [14].

B. The Operating Paradigm

1) Integration into PyNN: PyNN is a simulator-

independent, Python-based language that allows to describe

neural network models [16]. It offers functions and classes for

the setup and control of experiments, and it provides standard

cell models and standardized units. PyNN supports various

software simulators like NEURON [17], NEST [18], PCSIM

[19] and more. With PyNN, which is free, open source and

well documented, a user can set up a neural network model,

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 2784

PyNN

pyNN.pcsim

PyPCSIM

PCSIM

pyNN.brian

Brian

pyNN.
hardware.stage1

PyHAL

FACETS

Stage 1

Hardware

pyNN.nest

PyNEST

NEST

SLI

pyNN.neuron

nrnpy

NEURON

HOC

Simulator−specific

PyNN module

Python interpreter

Native interpreter

Simulator kernel

Fig. 1. Schematic of the simulator-independent modeling language PyNN.

run it on any of the supported back-ends without changing

the code, and directly compare the results. This provides the

possibility to conveniently port experiments between different

simulators, to transparently share models and results, and

to verify data acquired from different back-ends by direct

comparison (see Figure 1). As one important step towards

a novel neuromorphic modeling platform, the operating

software framework for the hardware system described above

has been integrated into the PyNN concept [12], [13].

2) Simulator-Based Calibration: The hardware-specific

PyNN approach incorporates quantitative translation methods

between the neuromorphic system dynamics and its biological

interpretation, both in terms of electrical variables and dif-

ferent time domains. It also incorporates calibration routines

that minimize the impact of transistor-level fluctuations onto

the behavior of neural and synaptic circuits, directly using

reference software simulations for the biologically relevant

gauging of hardware parameters. These calibration methods,

their PyNN-based implementation and the results achieved

with these efforts are described in detail in [13].

C. Experimental Verification with Simulator Reference

In order to prove the functionality of our approach, we want

to provide data that can be transparently judged. Therefore, we

exploit the benefits offered by the integration of the utilized

hardware system into the PyNN paradigm. In direct and

quantitative comparison with the software simulators NEST

and PCSIM we perform experiments with the neuromorphic

device. One PyNN description per experiment is sufficient,

only a single line of code has to be changed to choose the

utilized back-end. The results acquired with the different plat-

forms can then be checked against each other without further

modifications, as will be shown in the following section.

III. EXPERIMENTS

With the neuromorphic modeling platform presented in

Section II, we performed a variety of experiments. Here

we provide a selection of these experiments in the form of

brief setup outlines, result samples and references to more

elaborate descriptions. All hardware data are given in units

that reflect their biological interpretation, i.e. the hardware-

specific PyNN module automatically translated the original

hardware measurement values with linear transformations [13].

This is indicated by the labels BVD and BTD, which stand for

biological voltage and time domain, respectively.

A. Single Cell Experiments

All analog circuits are subject to electronic phenomena

like noise, crosstalk or transistor-level variations and therefore

should never be expected to deliver a perfect matching with

numerical simulations in terms of membrane voltages or spike

times. Nevertheless, directly comparing membrane potentials,

spike times and firing rates of individual neurons can provide

deepened insights into hardware-specific model characteristics.

1) Membrane Potentials and Spikes: Both on the hardware

system and in NEST, a single neuron was stimulated with

Ne = 48 Poisson-type spike trains via excitatory plus Ni =

16 spike trains via inhibitory synapses. All stimulation spike

trains fired with a frequency fin = 8 Hz (BTD) for the full

experiment duration of Texp = 5 s (BTD), resulting in an output

rate of the stimulated cell of approximately 3 Hz (BTD), which

is realistic for cortical cells in awake mammals. The membrane

potential and the output spikes of the stimulated neuron were

recorded. A hardware run that matches the NEST result well

in terms of a spike train difference measure described in [13]

was selected for the membrane potential comparison shown in

Figure 2. See [13] for a detailed description of the experiment,

including all applied neuron and synapse parameter values. A

more systematic hardware vs. NEST spike-time comparison

can also be found in [12], [20].

�80�70�60�50

2000 2500 3000 3500

�80�70�60�50
Time [ms] (BTD)

M
em

b
ra
n
e
P
o
te
n
ti
al

N
E
S
T
[m

V
]
(B
V
D
)

M
em

b
ra
n
e
P
o
te
n
ti
al

H
ar
d
w
ar
e
[m

V
]
(B
V
D
)

Fig. 2. The sub-threshold membrane potential of a neuron stimulated by
Poisson-type spike trains as emulated with the hardware system (top) and
as simulated with NEST (bottom). Both in NEST and in the hardware
model, action potentials are not modeled with depolarization peaks, but
only registered in terms of their occurrence time and followed by a reset
mechanism. Therefore, the output spike times of the recorded neuron are
indicated by vertical dashed lines.

2) High-Conductance States in Hardware Neurons: In [21]

we introduced a purely spike-based method that allows to

determine the ability of a neuron’s membrane to act as a

coincidence detector. We showed that, based on this method,

we can experimentally determine the critical level of synaptic

stimulation that is necessary to establish a so-called high-

conductance state in our hardware neurons [22]. In this state

the low-pass filtering effect of the membrane is minimized,

and we generated it by stimulating a single cell with a set of

Poisson-type input spike trains via excitatory and inhibitory

synapses. In Figure 3 the temporal resolution τres of a neuron,

2785

defined in and measured according to [21], is plotted as a

function of the firing rate νin of the applied input spike trains

- both for a hardware and a NEST neuron. The number and

Input rate νin [Hz] (BTD)

τ
re
s
[m

s]
(B
T
D
)

0 5

10

10 15

20

20

30

40

50

60

70

(a) Hardware
Input rate νin [Hz] (BTD)

τ
re
s
[m

s]
(B
T
D
)

0 5

10

10 15

20

20

30

40

(b) NEST

Fig. 3. Temporal resolution τres of a neuron membrane as a function of its
synaptically induced conductance, which is varied via the external stimulation
rate νin [21].

ratio of excitatory and inhibitory spike trains were dynamically

adjusted such that only the input firing rate determines the

total synaptically induced membrane conductance, while the

average output firing rate of the stimulated neuron was kept

within a narrow regime.

B. Exploring Network Architectures

The presented neuromorphic modeling platform allows to

explore neural network architectures systematically and with

sufficient statistics - both being typically weak points of

numerical simulation approaches.

1) Recurrent Cortical Architectures: We studied the firing

dynamics in a recurrent, cortically inspired network archi-

tecture [23]. For a complete and full description of the

conducted experiment series, including all precise parameter

values, see [13]. In Figure 4a the setup is described: A

population of excitatory and a population of inhibitory neurons

were randomly with fixed probabilities and stimulated with

excitatory Poisson-type spike trains. All synapses were static,

i.e. neither facilitating nor depressing. The synaptic weight of

all excitatory connections was kept constant, while the weight

of all inhibitory synapses was varied. The stimulation firing

rate was also swept, and the thereby defined two-dimensional

parameter space was systematically explored. Figures 4b and

4c show the resulting average network firing rates for every

considered point in this parameter space, as emulated with the

hardware system and computed with NEST.

In [13], further statistical descriptors for comparing the

network dynamics generated with the two different platforms

are considered, namely measures for the synchrony and the

regularity of firing within the network. We show that very

different activity regimes can be generated with the hardware,

and that for large parameter regions the hardware firing

dynamics are in accordance with NEST.

2) Self-Adjusting Networks: We also implemented another,

similar network setup, again consisting of an excitatory and

an inhibitory population, both randomly connected internally

and among each other. This time the stimulation was both

excitatory and inhibitory, and we enabled short-term plasticity

(facilitation/depression) in all recurrent synapses, according to

a principle suggested in [24] and illustrated in Figure 5a. The

hardware-compatible implementation of this specific connec-

tion pattern is described in detail in [25]. With the dynamic

synapses enabled, these networks remain in a biologically

relevant and technically trouble-free activity regime for a

large variety of different input strengths and variabilities –see

Figure 5c and 5d– while their capability to process information

is not lost (not shown here). If the dynamic synapses are

replaced by static ones, the network activity strongly amplifies

itself and consequently gets critically high for most of the

studied input parameter regions, see Figure 5b. Hence, the

use of the dynamic synapses in the described way provides

a self-balancing network architecture, which can be useful

to maintain biologically relevant regimes and counterbalance

hardware-specific variations on the network level.

IV. CONCLUSION

The data we presented illustrates the functionality of our

approach towards flexible, scalable and massively acceler-

ated neuroscientific modeling tools based on mixed-signal

neuromorphic devices. Integrating hardware interfaces into

the PyNN concept builds a bridge between the communities

of neuromorphic engineers and computational neuroscientists,

who have been working in rather disjoint projects so far. We

believe that also other groups who develop hardware models

of spiking neural networks could benefit from the proposed

paradigm. Considering the presented framework and data, we

are optimistic that in near future neuromorphic systems can

not only form artificial neural systems for a broad field of

technological applications, but actually contribute new insights

into neural information processing in the brain.

ACKNOWLEDGMENT

This work is supported by the European Union under the

grant no. IST-2005-15879 (FACETS).

REFERENCES

[1] C. A. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison
Wesley, 1989.

[2] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power
spiking neurons and bistable synapses with spike-timing dependent
plasticity,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp.
211–221, Jan 2006.

[3] P. A. Merolla and K. Boahen, “Dynamic computation in a recurrent
network of heterogeneous silicon neurons,” in Proceedings of the IEEE

ISCAS, 2006.
[4] R. J. Vogelstein, U. Mallik, J. T. Vogelstein, and G. Cauwenberghs,

“Dynamically reconfigurable silicon array of spiking neuron with
conductance-based synapses,” IEEE Transactions on Neural Networks,
vol. 18, pp. 253–265, 2007.

[5] P. Häfliger, “Adaptive WTA with an analog VLSI neuromorphic learning
chip,” IEEE Transactions on Neural Networks, vol. 18, no. 2, pp. 551–
72, 2007.

[6] S. Renaud, J. Tomas, Y. Bornat, A. Daouzli, and S. Saghi, “Neu-
romimetic ICs with analog cores: an alternative for simulating spiking
neural networks,” in Proceedings of the IEEE ISCAS, 2007.

[7] J. Schemmel, D. Brüderle, K. Meier, and B. Ostendorf, “Modeling
synaptic plasticity within networks of highly accelerated I&F neurons,”
in Proceedings of the IEEE ISCAS, 2007.

2786

Inhibitory

population

N

Excitatory

population

N

Excitatory

stimulation

e

i

pii

pee

pei
p iepext

(a) Setup

3.0 6.0 9.0 12.0 15.0
Recurrent Inhibition gi [nS] (BVD)

4.5

5.5

6.5

7.5

8.5

9.5

S
ti
m
u
la
ti
o
n
R
a
te

�ext[Hz](BTD)
0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

N
et
w
o
rk

R
a
te

�net[Hz](BTD)

(b) Hardware: Firing Rate νnet

3.0 6.0 9.0 12.0 15.0
Recurrent Inhibition gi [nS] (BVD)

4.5

5.5

6.5

7.5

8.5

9.5

S
ti
m
u
la
ti
o
n
R
a
te

�ext[Hz](BTD)

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

13.5

15.0

N
et
w
o
rk

R
a
te

�net[Hz](BTD)

(c) NEST: Firing Rate νnet

Fig. 4. In (a) a schematic diagram of the recurrent network architecture is shown. The labels pxy for each arrow indicate the probability of making a synapse
of a neuron in population x onto a neuron in population y, where e stands for excitatory (Ne = 120) and i for inhibitory (Ni = 40). The externally generated
Poisson processes are used to activate the neurons, pext is the probability for every possible stimulus-to-neuron connection to be established. In (b) the average
network firing rate νnet is plotted as a function of the externally applied stimulus frequency νext and the strength gi of the inhibitory feedback synapses,
implemented with the hardware system. In (c) the corresponding results as computed with NEST are plotted. Every data tile represents the average over 200
experiments of 10 s (BTD) duration each. For each of these 200 runs the network structure and the stimulation spike patterns were randomly re-generated
according to the parameter values given.

Inhibitory

population

N

Excitatory

population

N
Excitatory

stimulation

dep

dep

Inhibitory

stimulation

fac fac

e

i

(a) Setup (b) Hardware: Static synapses (c) Hardware: Dynamic synapses (d) PCSIM: Dynamic synapses

Fig. 5. (a) shows a schematic diagram of the recurrent network architecture. Both within the excitatory (Ne = 144) and the inhibitory (Ni = 48) neuron
pool, the intra-population synapses are depressing, while all inter-population connections are facilitating. The strength and variability of external stimulation
is controlled via the neuron resting potential parameter Vrest and a scaling factor Winput applied to the weights of the static stimulation synapses. For every
data tile, 20 randomly connected networks with new external stimulation were generated. The resulting average firing rates are illustrated by different shades
of gray in (b) to (d). In (b), which shows hardware measurements, all recurrent synapses are static resulting in high firing rates, of which the maximum values
are mostly determined by an upper bandwidth limitation of the hardware spike recording circuitry. In (c) and (d) the recurrent synapses are facilitating or
depressing according to (a), which results in a stable, biologically relevant activity regime for a major part of the considered parameter space.

[8] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog
neural networks,” in Proceedings of the IJCNN, 2008.

[9] H. K. O. Berge and P. Häfliger, “High-speed serial AER on FPGA,” in
Proceedings of the 2007 IEEE ISCAS, 2007, pp. 857–860.

[10] R. Brette et al., “Simulation of networks of spiking neurons: A review
of tools and strategies,” Journal of Computational Neuroscience, vol. 3,
no. 23, pp. 349–98, December 2006.

[11] A. Morrison, C. Mehring, T. Geisel, A. Aertsen, and M. Diesmann,
“Advancing the boundaries of high connectivity network simulation with
distributed computing,” Neural Comput., vol. 17, no. 8, pp. 1776–1801,
2005.

[12] D. Brüderle, E. Müller, A. Davison, E. Muller, J. Schemmel, and
K. Meier, “Establishing a novel modeling tool: A python-based interface
for a neuromorphic hardware system,” Front. Neuroinform., vol. 3,
no. 17, 2009.

[13] D. Brüderle, “Neuroscientific modeling with a mixed-signal VLSI
hardware system,” Ph.D. dissertation, 2009. [Online]. Available:
http://www.ub.uni-heidelberg.de/archiv/9656

[14] J. Schemmel, A. Grübl, K. Meier, and E. Muller, “Implementing synaptic
plasticity in a VLSI spiking neural network model,” in Proceedings of

the IJCNN, 2006.
[15] A. Destexhe, “Conductance-based integrate-and-fire models,” Neural

Comput., vol. 9, no. 3, pp. 503–514, 1997.
[16] A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller,

D. Pecevski, L. Perrinet, and P. Yger, “PyNN: a common interface for
neuronal network simulators,” Front. Neuroinform., vol. 2, no. 11, 2008.

[17] M. L. Hines and N. T. Carnevale, The NEURON Book. Cambridge,
UK: Cambridge University Press, 2006.

[18] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[19] D. A. Pecevski, T. Natschläger, and K. N. Schuch, “PCSIM: A parallel
simulation environment for neural circuits fully integrated with Python,”
Front. Neuroinform., pending publication.

[20] D. Brüderle, A. Grübl, K. Meier, E. Muller, and J. Schemmel, “A
software framework for tuning the dynamics of neuromorphic silicon
towards biology,” in Proceedings of the IWANN, 2007, pp. 479–486.

[21] B. Kaplan, D. Brüderle, J. Schemmel, and K. Meier, “High-conductance
states on a neuromorphic hardware system,” in Proceedings of the

IJCNN, 2009.
[22] A. Destexhe, M. Rudolph, and D. Pare, “The high-conductance state of

neocortical neurons in vivo,” Nature Reviews Neuroscience, vol. 4, pp.
739–751, 2003.

[23] N. Brunel, “Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons,” Journal of Computational Neuroscience,
vol. 8, no. 3, pp. 183–208, 2000.

[24] D. Sussillo, T. Toyoizumi, and W. Maass, “Self-tuning of neural circuits
through short-term synaptic plasticity,” J Neurophysiol, vol. 97, no. 6,
pp. 4079–4095, 2007.

[25] J. Bill, “Self-stabilizing network architectures on a neuromorphic
hardware system,” Diploma thesis, 2008. [Online]. Available: http:
//www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=1893

2787

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

