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High-Conductance States
on a Neuromorphic Hardware System

Bernhard Kaplan, Daniel Brüderle, Johannes Schemmel and Karlheinz Meier

Abstract— Under typical synaptical stimulation, cortical neu-
rons exhibit a total membrane conductance which, compared to
a situation without any input spikes, is significantly increased.
This results in a shorter membrane time constant and thus in
an increased capability of the neuron to detect coincidences in
its synaptic input. For this study, a neuromorphic hardware
device was utilized, which does not provide direct access to
its membrane conductances. Motivated by the aim of finding
biologically realistic configuration regimes for the chip operation,
a purely spike-based method for the estimation of membrane
conductances is presented, allowing to test the hardware mem-
brane dynamics. A proof of principle is given by pure software
simulations. Hardware results are presented which illustrate the
functionality of the method and show the possibility to generate
high-conductance states in the utilized VLSI1 neurons. In the final
section, limits and useful implications of the proposed method are
discussed.

I. I NTRODUCTION

High-Conductance States

Membrane dynamics of single neurons play an important
role in neural information processing. Activity measurements
in the cortex show that the dynamical properties of a mem-
brane are strongly influenced by the total of its synaptically
induced conductances [1], [2], [3], [4]. In this context, it is
useful to distinguish between two states of neuronal activation:
Up states oractivatedstates, where the membrane is depo-
larized by increased extracellular activity and the embedded
cell fires irregularly, anddown states, where both intra- and
extracellular activity follow low-frequency rhythms [5]. In
the activated state, which is also called thehigh-conductance
state, neurons show stochastic firing behavior and an enhanced
responsiveness towards input stimuli.

The high-conductance state determines the properties of a
single neuron’s membrane within an active network. There
is experimental evidence for its existence within in-vivo net-
works, e.g. in awake and attentive animals [2], [3], or in-vitro
in localized sub-populations [4].

It is characteristic for neurons in the high-conductance state
to exhibit a low input resistance, a depolarized membrane with
large membrane potential fluctuations, dominant inhibitory
conductances and a stochastical response to stimulation pat-
terns due to fluctuating background activity [2], [6].

In [7] and [8], a model based on leaky integrate-and-fire
neurons that can exhibit high-conductance states is described
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and analyzed. There, the membrane potentialV (t) is shown
to follow the so-called effective reversal potentialVeff(t) with
the membrane time constantτm(t). Veff(t) is defined as the
so-called difference currentID(t) between excitation and
inhibition divided by the total membrane conductancegT (t):

Veff(t) =
ID(t)

gT (t)
=

gE(t)EE − gI(t)|EI |

gT (t)
. (1)

Here, gE(t) and gI(t) denote the sum of synaptically
induced excitatory and inhibitory conductances, respectively,
while EE represents the excitatory andEI the inhibitory
reversal potential. The membrane time constantτm(t) is
determined by the total membrane capacitanceCm and the
total conductancegT (t) = gl +gE(t)+gI(t), wheregl models
a permanent and constant leakage conductance:

τm(t) =
Cm

gl + gE(t) + gI(t)
. (2)

This membrane time constant determines the temporal
resolution capability of the neuron, because a smallτm(t)
makes the membrane potential immediately follow the effec-
tive reversal potential and therewith follow the synaptic input.
Consequently, a neuron with a smallτm(t) can perform well
as a coincidence detector because it is able to immediately
detect changes in input correlation.

Hidden Parameters and Computational Complexity

Neural behavior can be characterized by a variety of di-
mensions, e.g. spike rates, membrane potential traces, currents
and conductances, amongst others. Depending on the observed
system, it can be necessary to deduce unaccessible or with
difficulty measurable magnitudes from easily accessible ones.
E.g. for in-vivo and in-vitro recordings, the strength of a
synaptic connection typically has to be deduced from the
correlation of spiking and membrane activity of its pre- and
post-synaptic neurons [9], [10]. The dynamics of multiple
ion channels of various types are often combined to one
total electric conductance of the membrane patch they are
located on. This conductance can be accessed via patch-
clamp techniques, during which voltages are applied and the
resulting currents can be measured [11]. Another example for
hidden variables is the assumed depletion of readily releasable
vesicles at synapses in use, a popular explanation for the
known phenomenon of short-term synaptic depression [12].
In general, models of neuronal and synaptic dynamics often
involve variables which are hard to observe in-vivo or in-vitro.

If such a model - typically expressed by a set of differential
equations - is numerically computed in software simulations,
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any variable can be accessed arbitrarily. Together with the
full flexibility in defining environmental conditions, this model
transparency is one main reason for the wide and successful
usage of software simulators in modeling neuroscience. Still,
the more complex the underlying model becomes, the more
computationally expensive its simulation will be [13]. Despite
strong efforts towards sophisticated optimization techniques
and parallelization of simulations, this fact creates a rather
slowly receding limit for the range of computable network
sizes and experiment durations.

Neuromorphic Hardware

The hardware system utilized in this study [14], [15]
provides a way to avoid the scaling problem of software
simulators. Due to its intrinsic parallelism in neural circuit op-
eration, its speedup factor of up to105 compared to emulated
biological time is independent of the size of the implemented
network. Furthermore, the software advantages like selectable
parameters, definable topologies and adjustable environmental
conditions also hold for the hardware system, although in a
more limited way. Due to the physical nature of the analog
model emulation, most variables and programmable parame-
ters within the system are subject to electronic phenomena like
noise, parasitic leakages and crosstalk.

As a major difference to pure software approaches, the
only accessible hardware observables that are relevant in this
context are the network’s spike output, its membrane potentials
and possibly evolving synaptic weights. Membranic conduc-
tances or currents are not directly accessible, so if necessary,
they have to be deduced from the accessible observables. Since
the sub-threshold membrane potentials have to be acquired via
an oscilloscope connected to the hardware and then need to
be integrated into the operating and evaluating software [16],
[17] via TCP/IP sockets [18], this acquisition channel is rather
slow and inefficient. The neuromorphic system design has
been optimized for the access to all action potentials generated
during an experiment via a fast digital connection. Thus, a
deduction of hidden variables from nothing but the spike
output is highly desirable.

One implication of high-conductance states which is espe-
cially interesting for the operation of neuromorphic hardware
systems, namely a possible non-monotonous output vs. input
rate relation of a neuron, is described e.g. in [6]: If a neuron is
stimulated by excitatory and inhibitory input spike trains with
the same rate and if excitation is dominating, for increasing
input rates its output rate will also grow. But if the total
membrane conductance gets larger due to the stimulus, the
impact of the incoming spikes can start to decrease because of
a faster membrane respectively shorter and thus less efficient
post-synaptic potentials (PSPs). The phenomenon can be used
to generate self-stabilizing states of network activity [6], which
has the potential of serving as a mechanism for counter-
balancing hardware-specific inhomogeneities and fluctuations.

For future biologically realistic experiments on the neu-
romorphic system, but also for the basic specification of
hardware subunits, finding a working point in the high-

conductance regime is essential. In the following, we study
and exploit the effects of synaptical contributions to the total
membrane conductance and consequently - in conjunction
with the correlation of the applied input spike trains - on
the output spike rate. We propose a purely spike-based and
hence hardware-compatible method to estimate the amount of
necessary synaptic stimulation in order to operate within a
high-conductance state. Differences and hardware specific ad-
vantages of this method compared to a similar one introduced
in [19] will be discussed in section IV.

II. SETUP AND METHODS

A. Hardware Neuron Model

The coincidence detector experiment described below was
conducted on a mixed-signal VLSI neuromorphic hardware
device, which comprises 384 neurons per chip with 256
inputs each. The hardware neuron circuits implement a leaky
integrate-and-fire model with conductance-based synapses. A
detailed description of the hardware system can be found in
[14], [15], [20]. In future up to 16 chips can be interconnected.
The chip was produced using a standard180 nm CMOS2

process and is the prototype of a large wafer-scale integration
system [21], [22] which is currently under development.

The neurons’ membrane potentials obey the following dif-
ferential equation:

−Cm

dV

dt
= gl(V − El) +

∑

j

pj(t)gj(t)(V − EE)

+
∑

k

pk(t)gk(t)(V − EI) . (3)

The constantCm stands for the total membrane capacitance.
The three summands on the right hand side represent three
different ion channels: The first one models a continuous
leakage which drives the membrane to its resting potentialEl

with a constant conductance ofgl. The two remaining terms
model the excitatory and inhibitory ion channels with their
reversal potentialsEE and EI , respectively. The indexj of
the first sum runs over all excitatory synapses, indexk in
the second sum over all inhibitory synapses. The conductance
coursesgj,k(t) are shaped as very sharp increases to the
individual maximum valuesgmax

j,k, followed by an exponential
decrease with a time constantτsyn. Each synapse has an
open probabilitypj,k(t), which can be modified by short-term
plasticity mechanisms [23]. Furthermore, for every synapse
the maximum conductancegmax

j,k can be modified by spike-
time dependent plasticity (STDP). The implementation of both
long- and short-term plasticity mechanisms are described in
detail in [14], [15] and are not further discussed here since
only static synapses are used throughout this study. Once
the membrane voltage exceeds its threshold voltageVthresh, the
neuron fires an action potential, then is pulled to a reset
voltageVreset, remaining there for some refractory periodτref,
and afterwards follows the forces of its leakage, excitatory and
inhibitory mechanisms again.

2Complementary Metal Oxide Semiconductor
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B. Simulator NEST and Meta-Language PyNN

The software simulator NEST [24], [25] is a framework for
simulating large networks of biologically realistic neurons. It
provides various synapse types, recording devices and neuron
models and can be extended by user-written modules. The
neuron model utilized in the simulations presented here exactly
implements Equation 3 and is described in detail in [26]. Just
like the utilized hardware, NEST can be interfaced through the
Python-based [27], simulator-independent scripting language
PyNN [17], [28], allowing for a unified description and
analysis of the performed experiments [16].

C. Spike-Based High-Conductance State Test

Test Concept: The basic idea of the proposed high-
conductance state test is to estimate the total membrane
conductance of a neuron by its ability to separate excitatory
PSPs which are temporally close. The integration of successive
PSPs on a membrane is less likely to cause an action potential
if the temporal course of these PSPs is shorter. Assuming fixed
time constants for the input-triggered increase and decrease of
gE(t), the shape of the resulting PSP is shortened or stretched
by the total membrane conductance. Thus, compared to a low-
conductance regime, in a high-conductance state successive
input spikes have to be temporally closer to cause an increase
in output firing rate, which can be regarded as a better temporal
resolution capability of the neuron.

In other words, the low-pass filter property of the membrane
determines its quality as a coincidence detector. This makes
it possible to deduce the total membrane conductance merely
from input and output spike data. Figure 1 illustrates the effect
of different total membrane conductances on the superposition
of PSPs. The same sequence of spikes - a single spike followed
by a quadruple - arrives at a relatively slow (solid line) and at
a fast (dashed line) membrane. Due to the resulting different
temporal courses of the PSPs, those on the slow membrane
add up to a larger effective amplitude compared to those on
the fast membrane.

Test Setup:For testing the input driven responsiveness
of a membrane, a single neuron with a constant leakage
conductancegl is utilized. In order to vary the externally driven
component of the membrane conductance, it receives a set of
uncorrelated Poisson spike trains throughNE excitatory and
NI inhibitory synapses. Each spike train has the same firing
rateνin. The decay time constantsτsyn and the maximagmax

E (gmax
I )

for the excitatory (inhibitory) conductances are kept constant
during all experiments. The aim of the test is to find an average
synaptic conductancegsyn ≡ 〈gE(t) + gI(t)〉 which results in a
high-conductance state. With given values forτsyn, gmax

E andgmax
I ,

the temporal integration overNE excitatory andNI inhibitory
spike trains with firing rateνin leads to the following average
total synaptically induced conductance:

gsyn = τsyn νin (NE gmax
E + NI gmax

I ) . (4)

To control gsyn, the frequencyνin is varied. If all other
parameters remained constant, this would result in a corre-
sponding variation of the average membrane potential and,
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Fig. 1. NEST Simulation: Overlapping PSPs on a membrane with high
(dashed line) and low (solid line) total conductance. Membrane potential and
time axis in arbitrary units. For this schematical example, the total membrane
conductance has been determined by varyinggl. The shown PSPs result
from conductance time courses with identical decay times. The conductance
amplitudes for both the high and the low conductance membrane have been
adjusted such that the amplitudes of the single (leftmost) PSPs become the
same in both cases. This results in illustratively different maximum amplitudes
of the four overlapping PSPs triggered by identical input spikes. For the
fast, i.e. higher conductance membrane, the accumulated potential is not high
enough to reach the arbitrarily set spike threshold, while for the slow one it
is. The instantaneous membrane depolarization during an action potentials is
not modeled in NEST, but the reset mechanism clearly indicates the spike
position.

hence, of the output firing rate. An increased output rate
deteriorates the responsiveness of the membrane because of
the reset mechanism which clamps the membrane potential to
the reset potential and makes the neuron insensitive to input
for a refractory period ofτref = 1 ms. This could possibly
lead to systematic distortions in the results of the proposed
method. In order to circumvent such undesired correlations
between the average membrane potential, the output rate and
the responsiveness of the membrane, the output rate is kept low
(νout is typically around 4 Hz) by changing the ratioNE/NI

while keeping the sumNEgmax
E + NIg

max
I constant.

In addition to the Poisson type background, a test stimulus
is injected into the neuron via a fixed number of excitatory
synapses, which consists of periodic packages ofnpack equidis-
tant spikes. The periodTPP from package to package is kept
constant, while the inter-spike intervalTISI within one package
is varied from 0 ms toT max

ISI ≡ TPP
npack

. With TISI = T max
ISI , one

package exactly fillsTPP. This approach guarantees that the
total spike rate fed into the neuron through the test synapses
is independent ofTISI. The test stimulus is weakly connected to
the neuron, its contribution to the total synaptic conductance
(never more than 5%) is neglected in the following. Its absolute
contribution to the output firing rate is of no interest, while the
changein the output rate resulting from the variation ofTISI is
evaluated. Testing the response of the membrane without any
Poisson background is not possible in this framework, since
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the desired output rate can not be established with the test
stimulus only.

Figure 2 exemplarily illustrates the test setup: a neuron
receives input from Poisson spike trains of a certain frequency
νin (only a subset is shown) and additionally from a test
stimulus consisting of the packages of equidistant spikes.
When the periodic spike packages arrive, the output rate
temporarily increases, indicated by an output spike histogram.
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Fig. 2. NEST Simulation: Example of the spike-based method for membrane
temporal resolution evaluation. Shown are input and output of a neuron under
test. Top: Raster plot of parts of the Poisson background withνin = 10Hz.
Middle: Test stimulus fed into the neuron. Bottom: Resulting output spike
count histogram accumulated over 1000 runs.

The mean output rate over the whole experiment duration
is dependent onTISI, because shorter time intervals lead to
stronger accumulation of PSPs on the membrane. But as
discussed above, for a constantTISI the output rate also depends
on the total membrane conductance respectively on the width
of a PSP. Hence, sweepingTISI for various values ofgsyn

(regulated viaνin) and measuring the resulting output firing rate
will result in different response curves showing the temporal
resolution capability of the neuron.
In the following, all output rates indicated with anf actually
represent the difference between the output rate acquired with
a specific test stimulus configuration minus the output rate
with no test stimulus at all,f(TISI) ≡ νstim

out (TISI) − νnostim
out . This

is done because only the response to the test stimulus is
of interest, while the response to the output rate caused by
the Poisson background is not. The background determines
the conductance state and thus the responsiveness of the
neuron, whereas the test stimulus is needed to get quantitative
information about the conductance state of the neuron.

To be able to distinguish the output response curves for
different conductance states, a characterizing critical quantity
τres is defined as follows:τres is the critical time intervalT crit

PP

between test spikes at which the output rate falls below a

certain threshold frequency

fcrit ≡ fmin +
1

2
(fmax − fmin) . (5)

Here,fmin is the minimum output rate, i.e. the saturation rate
which is reached for a certain value ofTISI and not under-run
if TISI gets larger. The maximum output firing rate resulting
from closely coincident input spikes isfmax. See Figure 3 for
illustration.

III. R ESULTS

If not explicitly stated differently, the basic set of parameters
applied for the software runs is the following:

Neuron:
Cm = 0.2 nF, gl = 2 nS, Vreset = −80.0 mV, EI = −75.0 mV,
El = −70.0 mV, Vthresh = −57.0 mV, EE = 0.0 mV.

Synapses:
τsyn = 20 ms, gmax

E = 0.4 nS, gmax
I = 1.6 nS.

The leakage conductancegl has been chosen particularly
low in order to have a slow membrane for the unstimulated
case. If applicable on the hardware system, the remaining
parameters were chosen according to [26], aiming at biolog-
ically realistic models. However, in a few cases the values
were chosen to better fit the hardware system: For instance,
the choice of rather large synaptic time constants reflects
hardware limitations, because the chosen speedup factor for
the hardware system does support only time constants in the
range of20 to 50 ms. Furthermore, in order to provide the
necessary amount of total synaptic stimulation, the maximum
synaptic conductances are large as well, since the number of
synapses to a hardware neuron is limited. It also has to be
noted that neithergl nor Cm are directly measurable for the
hardware. Still, the time constant of the hardware membrane
under no stimulation,τm,rest = Cm

gl

, can be easily measured.
By varying a steering current which controls the invisiblegl,
τm,rest can be calibrated close to the desired value.

A. Proof of Principle via Software Simulation

Determining a Membrane’s Temporal Resolution Capabil-
ity: In order to avoid that hardware-specific behavior might
wrongly confirm the functionality of the proposed method, it
is first verified qualitatively utilizing the software simulator
NEST. The NEST neuron model and the parameter values are
chosen to optimally resemble the hardware. Still, quantitatively
equal results from hardware and software are not to be
expected, since subtle non-linear parasitic hardware effects
are not included in the NEST model. Some of them will be
discussed in the hardware result section.

To find the membrane temporal resolution measureτres, the
test stimulus was applied with a package period ofTPP =
1000 ms. Each package hadnpack = 4 spikes, withTISI being
varied from 0 ms to 250 ms. The target output rate was set to
νtarget = 4 Hz.

Figure 3 shows the result for a background Poisson rate
of νin = 4 Hz, fed into NE = 48 excitatory andNI = 51
inhibitory synapses. The plot shows the expected decrease in
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the output firing rate with growingTISI due to decreasing over-
lap of PSPs in the test stimulus. Every data point represents
the mean value from 250 runs with 10 seconds simulated time
each, the error-bars denote the standard error of means (SEM).
Also shown in the plot isfcrit = fmin +

1

2
(fmax − fmin), indicated

by the dotted horizontal line. The value ofTISI where the curve
crossesfcrit defines the temporal resolution capabilityτres of the
neuron.
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Fig. 3. Neuron output firing rate vs. inter-spike interval of applied test spikes.
The horizontal dotted line showsfcrit. fmin is defined by the mean output rate
for TISI in [150 ms, 250ms]. The vertical dotted line indicates the temporal
resolutionτres defined in the text.

Background Activity Increases Membrane Temporal Res-
olution: The membrane temporal resolutionτres has been
evaluated for various Poisson background ratesνin. Figure 4
showsτres as a function ofνin. The dependence is obvious:
The membrane temporal resolution capability respectively the
coincidence detection property improve for higher Poisson
background rates. If the synaptic contribution to the total
membrane conductance is large enough – in the plot starting at
approximatelyνsat

in ≈ 15 Hz – the temporal resolution capabil-
ity saturates, limited by the time constantτsyn of the synaptic
conductance decay. In this state, the membrane potential is
nearly immediately following the synaptic stimulation. Since
the output rate is dynamically adjusted viaNE and NI , the
critical input rateνsat

in that is sufficient for a saturation ofτres

corresponds to two critical valuesN sat
E andN sat

I as well.
Following Equation 4, this results in a quantitative es-

timation for the necessary amount of synaptically induced
conductance for the neuron,

gsat
syn = τsyn ν

sat
in (N sat

E gmax
E + N sat

I gmax
I ) . (6)

For this example withN sat
E = 44, N sat

I = 52 andνsat
in = 15 Hz,

an average synaptic conductance ofgsat
syn ≈ 30 nS is needed to

reach a maximum responsiveness of the membrane. This is
a more than ten-fold increase compared to the pure leakage
conductancegl.

In [29], the transition of a membrane into the high-
conductance state is defined by a ratio of 5:1 between its total
conductance and its pure leakage conductance. The input rate
which is necessary to create this amount of total conductance
for the described experiment is indicated by a dashed line in
Figure 4.
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Fig. 4. NEST Simulation: Temporal resolutionτres of a membrane plotted
versus the applied background input rateνin, acquired with the method
proposed in Section II-C. Note the saturation for input rates larger than
approx. 15Hz. The vertical dashed line represents the input frequency
necessary to generate a high-conductance state according to the definition
given in [29].

B. High-Conductance States in Silicon

As indicated above, variations from the pure software results
are to be expected, since the hardware is subject to electronic
phenomena like noise, crosstalk, parasitic capacitances and
leakages. Those introduce distortions in the dynamics which
are hard to be mapped to the available standard neuron models
in NEST. E.g., the circuits which generate the synaptic conduc-
tance courses exhibit weight dependent leakage conductances
towards their corresponding reversal potentials. These leakages
are activity and temperature dependent plus subject to process
variations during the production of the chip, hence they are
hard to be quantified. Furthermore, the generated conductance
courses are implemented as increasing and decreasing currents,
which are routed via wires to sub-circuits where they control
physical conductances to the reversal potential. The wires and
switches for these currents have capacitances which impose a
loss of synaptic efficacy for low input rates and an activity
dependent low-pass filtering effect. Compensation methods
for the parasitic leakages are under development, but not
yet considered for this study. Their effect on the temporal
resolution capability of the hardware neuron membrane is
difficult to be estimated. Thus, a theoretical prediction for the
transition to a high-conductance state as defined in [29] and as
indicated in Figure 4 can not be made for this system. Despite
these issues, the proposed test method provides the possibility
to find high-conductance regimes on the hardware system.
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For the hardware model, the neuron parameters are chosen
identically to the software simulations (see Section III-A)
if possible. As stated above, for a hardware neuron circuit
the absolute value ofgl can not be directly accessed, but
the membrane time constant in rest can be measured. A
hardware control current which determinesgl was set to a
minimum value, resulting in a membrane time constant of
τm,rest = (16 ± 3)ms.

The hardware synapse parameters were set such that the
neuron’s output rate could be kept in approximately the
same range as in the software simulations throughout the
covered range of input rates. The synaptic hardware weights
correspond to quantized biological conductance increases of
gmax

E ≈ 1.5 nS and gmax
I ≈ 6 nS, with decay time constants of

τsyn = (27 ± 8)ms.
Figure 5 shows the result of the proposed high-conductance

state test conducted on a hardware neuron with the given
parameters. Like in Figure 4, the decrease ofτres as a function
of νin and the saturation from a certain input rate can both be
observed.

Analogously to Section III-A, the critical amount of synaptic
conductance can be determined for this hardware neuron.
In the shown example setup, saturation is reached from
νin ≈ 17 Hz, with N sat

E = 28 and N sat
I = 27. Together

with the values forgmax
E , gmax

I and τsyn, the necessary average
synaptically induced leakage to put the hardware neuron into
a maximally input sensitive regime isgsat

syn ≈ 94 nS. Due to the
hardware specific effects mentioned above, this value has to be
interpreted with care. The difference compared to the NEST
model is assumed to be caused mainly by the capacitance of
the wires which route the synaptic conductance courses and
which - as mentioned above - distort the synaptic impact on
the neuron in efficacy and time, depending on the input rate.
This capacitance probably also explains the large values ofτres

for small background rates, where the given values forτsyn and
τm,rest suggest smaller values - especially since in the NEST
reference experimentτres decreased very fast with growing
synaptic stimulation. But as can be seen from the data, it is
still possible to find a level of background stimulation which
is sufficient to put the neuron into a high-conductance state.

IV. D ISCUSSION

For a neuromorphic hardware system, we have presented
a spike-based method which allows to find the amount of
synaptic stimulation necessary for a neuron to operate in a
high-conductance state. In order to avoid possible misleading
hardware-specific behavior, we first have tested our approach
by pure software simulations. Subsequently, we have applied
the method to the hardware system, and the results clearly
demonstrate the functionality of the proposed technique. Com-
pared to possible alternatives based on e.g. sub-threshold
analyses via oscilloscope, this method is faster and can be
robustly automated. Both speed and robustness are particularly
important for the hardware system since the presented high-
conductance state test has to be applied for several neurons in
order to find a reliable setting that is valid for the whole chip.
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Fig. 5. Hardware: Temporal resolutionτres of a VLSI membrane plotted
versus the applied background input rateνin. Saturation is reached at approx-
imately 17 Hz.

This is necessary because leakage conductances towards the
resting potential, parasitic leakages towards reversal potentials
and parasitic capacitances affecting post synaptic currents’
shapes can differ from circuit to circuit. A comparison between
test results acquired from different neurons, which are not
shown in this paper, yields qualitatively equal results.

A similar method applied to neuron models in software
is described in [19] and is also spike-based, but has a few
draw-backs compared to the presented one. This is mainly
due to portability issues for the hardware platform, which
does not offer the flexibility for artificial setups as software
simulators do. First, the method in [19] requires in the order
of 30 synaptic inputs which synchronously generate very
strong conductance courses. This is hard to be adopted for the
presented system, because the hardware platform is limited
in terms of both number of synaptic inputs and the avail-
able range and reliability of synaptic efficacies. Additionally,
sending more than 4 perfectly synchronous spikes into one
neuron at a time is not possible on the utilized chip, although
the technically necessary and automatically generated fan-
out of input spike times in the order of tenths of biological
milliseconds is probably negligible. Sweeping arbitrary input
firing rates is not possible either, the proposed ranges of
up to 150 Hz (corresponds to15 MHz in chip time domain)
exceed the hardware bandwidths. Furthermore, the method
proposed in [19] brings difficulties for automation due to
the fact that it requires the detection of peaks in inter-spike
interval histograms which often are ambiguous. An algorithm
needs to find the height of a peak that is not necessarily the
global, but just a local maximum within the histogram, and
can be determined only by its expected location. Finally, the
fact that the measureτres suggested in this paper is given in
millisecond dimension represents an intuitive quantity for a
neuron’s temporal resolution capability.

One drawback of the presented approach is that changing
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the ratio of excitatory to inhibitory stimuli in order to keep
the output rate in a low range makes it difficult to apply
the proposed method to many neurons at the same time -
which would have made the presented test faster. Furthermore,
the functionality of the method is dependent on the output
firing rate: If the output rate without test stimulusνnostim

out is
chosen too large, the firing rate with applied test stimulus and
hence the difference ratef(TISI) = νstim

out (TISI) − νnostim
out would

not decrease monotonously - as seen in Figure 3 - and thus
finding the critical quantityτres would not be possible. We
interpret this as a too high firing sensitivity which leads to
a high probability that the first test spike within a package
already triggers an output spike and pulls the membrane to
the reset potential. This effectively reduces the impact of
the following spikes due to the reset mechanism and has to
be avoided. Thus, for the proposed method the quality of
the important signalf(TISI) strongly depends on the output
rate. In order to benefit from the scalability advantages of
neuromorphic systems also for this high-conductance state
test, neuron-specific output rate calibration mechanisms are
needed. These calibration mechanisms could be based on
modifications of individual weights taking into account that the
total input conductance stays constant during the adjustment of
weights and is determined by the input rate. A neuron-specific
firing threshold calibration could also be used to adjust the
output rate, a feature which will be implemented in successor
systems.

Nevertheless, the spike-based high-conductance state test
provides an automatable tool for tuning neuromorphic systems
towards an input-sensitive regime even if direct measurement
of conductances is impossible. The principle might help to
avoid extra wiring and analog-to-digital converters in future
neuromorphic designs since the indirect conductance access
method during a system’s specification phase can be sufficient.
Thus, prototypes could exploit more of the available chip area.
More spike-based methods, e.g. for the calibration of leakage
conductances and for the specification of analog noise, are
currently under development.
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[20] S. Philipp, A. Grübl, K. Meier, and J. Schemmel. Interconnecting VLSI
spiking neural networks using isochronous connections. InProceedings
of the 9th International Work-Conference on Artificial Neural Networks
(IWANN’2007), volume LNCS 4507, pages 471–478. Springer Verlag,
September 2007.

[21] J. Fieres, J. Schemmel, and K. Meier. Realizing biological spiking
network models in a configurable wafer-scale hardware system. In
Proceedings of the 2008 International Joint Conference on Neural
Networks (IJCNN), 2008.

[22] J. Schemmel, J. Fieres, and K. Meier. Wafer-scale integration of
analog neural networks. InProceedings of the 2008 International Joint
Conference on Neural Networks (IJCNN), 2008.

[23] P. Dayan and L. F. Abbott.Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. The MIT press,
Cambride, Massachusetts, 2001.

[24] The Neural Simulation Technology (NEST) Initiative. Website.
http://www.nest-initiative.org, 2008.

[25] M.-O. Gewaltig and M. Diesmann. NEST (NEural Simulation Tool).
Scholarpedia, 2(4):1430, 2007.

[26] E. B. Muller. Markov Process Models for Neural Ensembles with
Spike-Frequency Adaptation. PhD thesis, Ruprecht-Karls University
Heidelberg, 2006.

[27] The Python Programming Language. Website.http://www.
python.org, 2008.

[28] PyNN – a Python package for simulator-independent specifica-
tion of neuronal network models. Website. http://www.
neuralensemble.org/PyNN, 2008.

[29] R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity.J. Neurophysiol., 94:3637
– 3642, 2005.

1530


	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help



