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High-Conductance States
on a Neuromorphic Hardware System

Bernhard Kaplan, Daniel Briderle, Johannes Schemmel and Karlheinz Meier

Abstract— Under typical synaptical stimulation, cortical neu- and analyzed. There, the membrane poteritial) is shown
rons exhibit a total membrane conductance which, compared to to follow the so-called effective reversal potentia}(t) with
a situation without any input spikes, is significantly increased. the membrane time constant, (t). Vi(¢) is defined as the

This results in a shorter membrane time constant and thus in led diff nfo(4) bet itati d
an increased capability of the neuron to detect coincidences in §o-ca € ifference currenip(¢) between excitation an

its synaptic input. For this study, a neuromorphic hardware inhibition divided by the total membrane conductame€t):

device was utilized, which does not provide direct access to In(t DNEm — ar(D)E
its membrane conductances. Motivated by the aim of finding Va(t) = p(t) = 98 Er — g1(t)| 1| (D]
biologically realistic configuration regimes for the chip operation, gr(t) gr(t)

a purely spike-based method for the estimation of membrane  Hegre, ge(t) and g;(t) denote the sum of synaptically

conductances is presented, allowing to test the hardware mem-;, .04 ‘excitatory and inhibitory conductances, respectively,
brane dynamics. A proof of principle is given by pure software

simulations. Hardware results are presented which illustrate the While Ex represents the excitatory an#l; the inhibitory
functionality of the method and show the possibility to generate reversal potential. The membrane time constaptt) is
high-conductance states in the utilized VLSt neurons. Inthe final  determined by the total membrane capacitafig and the
section, limits and useful implications of the proposed method are iqgtg| conductancer (t) = g+ gs(t)+gr(t), whereg; models

discussed. a permanent and constant leakage conductance:

Cnm,
i ) = e+ 910 2)
High-Conductance States gt T 9E g1

Membrane dvnamics of sinale neurons play an importa tThis membrane time constant determines the temporal
; Y ; ge | > play P ?esolution capability of the neuron, because a smgal(t)
role in neural information processing. Activity measurements

in the cortex show that the dynamical properties of a me”r@nakes the membrane potential immediately follow the effec-

. ) .~ 1ive reversal potential and therewith follow the synaptic input.
brane are strongly influenced by the total of its synaptical onsequently, a neuron with a smajl () can perform well
induced conductances [1], [2], [3], [4]. In this context, it is q Y: P

L '~ ."as a coincidence detector because it is able to immediately
useful to distinguish between two states of neuronal act|vat|ocq1' - .
) . étect changes in input correlation.
Up states oractivated states, where the membrane is depo-

larized by increased extracellular activity and the embeddEédden Parameters and Computational Complexity

cell fires irregularly, anclown states, where both intra- and Neural behavior can be characterized by a variety of di-
extracellular activity follow low-frequency rhythms [5]. Inmensions, e.g. spike rates, membrane potential traces, currents
the activated state, which is also called tfigh-conductance and conductances, amongst others. Depending on the observed
state neurons show stochastic firing behavior and an enhancgg/c},tem, it can be necessary to deduce unaccessible or with
responsiveness towards input stimuli. difficulty measurable magnitudes from easily accessible ones.
The high-conductance state determines the properties of g. for in-vivo and in-vitro recordings, the strength of a
single neuron’s membrane within an active network. Theggnaptic connection typically has to be deduced from the
is experimental evidence for its existence within in-vivo netorrelation of spiking and membrane activity of its pre- and
works, e.g. in awake and attentive animals [2], [3], or in-vitrpost-synaptic neurons [9], [10]. The dynamics of multiple
in localized sub-populations [4]. ion channels of various types are often combined to one
It is characteristic for neurons in the high-conductance statstal electric conductance of the membrane patch they are
to exhibit a low input resistance, a depolarized membrane wititated on. This conductance can be accessed via patch-
large membrane potential fluctuations, dominant inhibitoilamp techniques, during which voltages are applied and the
conductances and a stochastical response to stimulation pesulting currents can be measured [11]. Another example for
terns due to fluctuating background activity [2], [6]. hidden variables is the assumed depletion of readily releasable
In [7] and [8], a model based on leaky integrate-and-firgesicles at synapses in use, a popular explanation for the
neurons that can exhibit high-conductance states is descrik@dwn phenomenon of short-term synaptic depression [12].
In general, models of neuronal and synaptic dynamics often
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any variable can be accessed arbitrarily. Together with thenductance regime is essential. In the following, we study
full flexibility in defining environmental conditions, this modeland exploit the effects of synaptical contributions to the total
transparency is one main reason for the wide and successfidmbrane conductance and consequently - in conjunction
usage of software simulators in modeling neuroscience. Stillith the correlation of the applied input spike trains - on
the more complex the underlying model becomes, the mdree output spike rate. We propose a purely spike-based and
computationally expensive its simulation will be [13]. Despitbence hardware-compatible method to estimate the amount of
strong efforts towards sophisticated optimization techniquescessary synaptic stimulation in order to operate within a
and parallelization of simulations, this fact creates a rathlkigh-conductance state. Differences and hardware specific ad-
slowly receding limit for the range of computable networkantages of this method compared to a similar one introduced
sizes and experiment durations. in [19] will be discussed in section V.

Neuromorphic Hardware Il. SETUP AND METHODS

The hardware system utilized in this study [14], [15f.- Hardware Neuron Model
provides a way to avoid the scaling problem of software The coincidence detector experiment described below was
simulators. Due to its intrinsic parallelism in neural circuit opeonducted on a mixed-signal VLS| neuromorphic hardware
eration, its speedup factor of up t0° compared to emulated device, which comprises 384 neurons per chip with 256
biological time is independent of the size of the implementddputs each. The hardware neuron circuits implement a leaky
network. Furthermore, the software advantages like selectaipltegrate-and-fire model with conductance-based synapses. A
parameters, definable topologies and adjustable environmeu&thiled description of the hardware system can be found in
conditions also hold for the hardware system, although in[&4], [15], [20]. In future up to 16 chips can be interconnected.
more limited way. Due to the physical nature of the analophe chip was produced using a standd&)nm CMOS?
model emulation, most variables and programmable paranpeecess and is the prototype of a large wafer-scale integration
ters within the system are subject to electronic phenomena lggstem [21], [22] which is currently under development.
noise, parasitic leakages and crosstalk. The neurons’ membrane potentials obey the following dif-

As a major difference to pure software approaches, tferential equation:
only accessible hardware observables that are relevant in this

context are the network’s spike output, its membrane potentials—C’mE =gV -E)+ ij (t)g;(t)(V — EE)

and possibly evolving synaptic weights. Membranic conduc- J

tances or currents are not directly accessible, so if necessary, + Zpk(t)gk(t)(V - Ey) ) (3)
they have to be deduced from the accessible observables. Since %

the sub-threshold membrane potentials have to be acquired Vi;‘fhe constang,, stands for the total membrane capacitance.

an _oscnloscop_e connected t(_) the hardware_and then nee f® three summands on the right hand side represent three
be integrated into the operating and evaluating software ﬂg}ﬁerent ion channels: The first one models a continuous
[17] via TCP/IP sockets [18], this acquisition channel is rath?éakage which drives the membrane to its resting potefial
slow and inefficient. The neuromorphic system design haﬁt a constant conductance gf. The two remaining terms
been optimized for the access to all action potentials generafegyel the excitatory and inhibitory ion channels with their
during an experiment via a fast digital connection. Thus, Rversal potentialZ, and E;, respectively. The indey of
deduction of hidden variables from nothing but the spikfﬁe first sum runs over all excitatory synapses, indein

output is highly desirable. the second sum over all inhibitory synapses. The conductance

_Ong impIication of high—conductance states wh_ich is eSp&iursengk(t) are shaped as very sharp increases to the
cially interesting for the (_)peratlon of neuromorphic hardv"_ariﬁdividual ’maximum valueg™, followed by an exponential
systems, namely a possible non-monotonous output vs. iNgUtrease with a time conjétaﬁrgyn. Each synapse has an

rqte relation of a neuron, is dgsc_riped €.g. in [61: Ifa neuron Jﬁ)en probabilityp; »(¢), which can be modified by short-term
stimulated by excitatory and inhibitory input spike trains wit lasticity mechanisms [23]. Furthermore, for every synapse

the same rate and if excitation is dominating, for increasiige maximum conductanc v+ can be modified by spike-

input rates its output rate will also grow. But if the totalne yenendent plasticity (STDP). The implementation of both
membrane conductance gets larger due to the stimulus, Fgﬁ:

: : ) ) - and short-term plasticity mechanisms are described in
impact of the incoming spikes can start to decrease becaus &g" in [14], [15] and are not further discussed here since
a faster membrane respectively shorter and thus less efficigH static synapses are used throughout this study. Once
post-synaptic potentials (PSPs). The phenomenon can be Upe"membrane voltage exceeds its threshold voltdgeg, the

to generate self-stabilizing states of network activity [6]'Whicﬂeuron fires an action potential, then is pulled to a reset

has the potential of serving as a mechanism for Count%ltageV,ese‘, remaining there for some refractory periog,

balancing hardware-specific inhomogeneities and fluctuationg afterwards follows the forces of its leakage, excitatory and
For future biologically realistic experiments on the netﬁ'nhibitory mechanisms again.

romorphic system, but also for the basic specification of
hardware subunits, finding a working point in the high- 2Complementary Metal Oxide Semiconductor
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B. Simulator NEST and Meta-Language PyNN

The software simulator NEST [24], [25] is a framework for
simulating large networks of biologically realistic neurons. I
provides various synapse types, recording devices and neu
models and can be extended by user-written modules. T
neuron model utilized in the simulations presented here exac
implements Equation 3 and is described in detail in [26]. Ju:
like the utilized hardware, NEST can be interfaced through tr
Python-based [27], simulator-independent scripting languay
PyNN [17], [28], allowing for a unified description and
analysis of the performed experiments [16].

Membrane potential [a.u.]

C. Spike-Based High-Conductance State Test

Test Concept: The basic idea of the proposed high-
conductance state test is to estimate the total membra
conductance of a neuron by its ability to separate excitatory
PSPs which are temporally close. The integration of successfg 1. NEST Simulation: Overlapping PSPs on a membrane with high
PSPs on a membrane is less Iikely to cause an action pOter{ﬂ%?he‘_j Il_ne) ar_]d low (§olld Ilne)‘total condyctance. Membrane potential and
. . . . time axis in arbitrary units. For this schematical example, the total membrane
'f the temporal course Qf these_ PSPs IS shorter. Assuming fiXgquctance has been determined by varyiag The shown PSPs result
time constants for the input-triggered increase and decreasé®ii conductance time courses with identical decay times. The conductance

; i Wgﬂ)litudes for both the high and the low conductance membrane have been
gE (t)’ the shape of the reSU|tlng PSP is shortened or stretc a&gsted such that the amplitudes of the single (leftmost) PSPs become the
by the total memt_)rane_condu_ctance. Thus, compared toa k%_ Me in both cases. This results in illustratively different maximum amplitudes
conductance regime, in a high-conductance state successivige four overlapping PSPs triggered by identical input spikes. For the

input spikes have to be temporally closer to cause an increffst i-e. higher conductance membrane, the accumulated potential is not high
enqugh to reach the arbitrarily set spike threshold, while for the slow one it

in OUtpyt firing rat_e_: which can be regarded as a better tempogalrhe instantaneous membrane depolarization during an action potentials is
resolution capability of the neuron. not modeled in NEST, but the reset mechanism clearly indicates the spike

In other words, the low-pass filter property of the membrargsition.
determines its quality as a coincidence detector. This makes
it possible to deduce the total membrane conductance merely
from input and output spike data. Figure 1 illustrates the effect o _
of different total membrane conductances on the superpositfé#ce; of the output firing rate. An increased output rate
of PSPs. The same sequence of spikes - a single spike follov§deriorates the responsiveness of the membrane because of
by a quadruple - arrives at a relatively slow (solid line) and #€ reset mechanism which clamps the membrane potential to
a fast (dashed line) membrane. Due to the resulting differéRg reset potential and makes the neuron insensitive to input
temporal courses of the PSPs, those on the slow membrife@ refractory period ofr,, = 1ms. This could possibly

add up to a larger effective amplitude compared to those lsad to systematic distortions in the results of the proposed
the fast membrane. method. In order to circumvent such undesired correlations

Test Setup:For testing the input driven responsivenes@etwee” the average membrane potential, the output rate and
of a membrane, a single neuron with a constant Ieaka%@ responsiveness of the membrane, the output rate is kept low
conductance; is utilized. In order to vary the externally driven(¥a: 1S typically around 4 Hz) by changing the ratiz /N,
component of the membrane conductance, it receives a seWfle keeping the suniVp g™+ Nyg7™ constant.
uncorrelated Poisson spike trains throuljlp excitatory and  In addition to the Poisson type background, a test stimulus
Ny inhibitory synapses. Each spike train has the same firiig) injected into the neuron via a fixed number of excitatory
ratev,,. The decay time constantg, and the maximgy* (¢7) synapses, which consists of periodic packages,ofequidis-
for the excitatory (inhibitory) conductances are kept constataint spikes. The period};, from package to package is kept
during all experiments. The aim of the test is to find an averagenstant, while the inter-spike interval, within one package
synaptic conductanag, = (ge(t) + gr(t)) which results in a is varied from 0 ms tdl 7> = %’z’k With T, = T2, one
high-conductance state. With given valuesfgy, g% andgy™, package exactly fillsl;.. This approach guarantees that the
the temporal integration oveéY excitatory andV; inhibitory total spike rate fed into the neuron through the test synapses
spike trains with firing rate/, leads to the following averageis independent df .. The test stimulus is weakly connected to
total synaptically induced conductance: the neuron, its contribution to the total synaptic conductance

_ max max (never more than 5%) is neglected in the following. Its absolute
Jon = TonUn (NE gF* + N1 g7™) ’ ) contribution to the output firing rate is of no interest, while the

To control g, the frequencyy, is varied. If all other changein the output rate resulting from the variationtf, is
parameters remained constant, this would result in a corezaluated. Testing the response of the membrane without any
sponding variation of the average membrane potential ambisson background is not possible in this framework, since

Time [a.u.]
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the desired output rate can not be established with the testtain threshold frequency
stimulus only. 1

Figure 2 exemplarily illustrates the test setup: a neuron Joit = frin + B (foax = frin) . (5)
receives input from Poisson spike trains of a certain frequency ] o ] )
v, (only a subset is shown) and additionally from a test Herg,fmin is the minimum Olutput rate, i.e. the saturation rate
stimulus consisting of the packages of equidistant spike¥hich is reached for a certain value 6f, and not under-run
When the periodic spike packages arrive, the output rdfelis gets larger. The maximum output firing rate resulting

temporarily increases, indicated by an output spike histogra_ﬁﬁ?m closely coincident input spikes i§... See Figure 3 for
illustration.

| | [ (I B [ [ | I |

‘\‘H ‘\‘\‘\H\‘\ (] HH b b [ ‘\‘H ‘ ‘\H\ H‘\“ III' RESULTS
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TR R R T TR T If not explicitly stated differently, the basic set of parameters

L L T P applied for the software runs is the following:

',f:,';;':;m " Y ‘1““‘ i “ ‘ “ Neuron:
Background v e e e e s Gy = 0.20F, g = 208, Ve = —80.0mV, Er = —75.0mV,
(extract) b e e e B = —70.0mV, Vien= —57.0mV, Eg = 0.0mV.
Cow o Synapses:
S L S T Tyn = 20ms, g5* = 0.4nS, g7 = 1.6nS.
o T The leakage conductangg has been chosen particularly
o I’ s i i Jow in order to have a slow membrane for the unstimulated
Input: ; ) ) ) case. If applicable on the hardware system, the remaining
Test Stimulus T , parameters were chosen according to [26], aiming at biolog-
o ‘ ‘ ‘ ‘ ‘ ically realistic models. However, in a few cases the values
Output: were chosen to better fit the hardware system: For instance,

Accumulated 19
Spike Count
(1000 runs) o

the choice of rather large synaptic time constants reflects
hardware limitations, because the chosen speedup factor for
Time [ms] the hardware system does support only time constants in the
Fio. 2 NEST Simulation: £ e of the Soike-based methodiemb range of20 to 50 ms. Furthermore, in order to provide the
telgﬁpdral resoIut;g]nuglgiﬂéti(;(rimsphiv(v)n areesirri;)l?t aarfjeoul;r;;it gf a neuigrr:eun@eqcess_ary amount of total synaptic StImU|at_|0n’ the maximum
test. Top: Raster plot of parts of the Poisson background witk= 10Hz. ~ Synaptic conductances are large as well, since the number of
Middle: Test stimulus fed into the neuron. Bottom: Resulting output spiksynapses to a hardware neuron is limited. It also has to be
count histogram accumulated over 1000 runs. noted that neither;, nor C,, are directly measurable for the
hardware. Still, the time constant of the hardware membrane

The mean output rate over the whole experiment duratigmder no stimulations,, .. = <=, can be easily measured.
is dependent o, because shorter time intervals lead t8y varying a steering current which controls the invisiple
stronger accumulation of PSPs on the membrane. But @as.« Can be calibrated close to the desired value.
discussed above, for a constéit the output rate also depends
on the total membrane conductance respectively on the width
of a PSP. Hence, sweepings for various values ofgg, Determining a Membrane’s Temporal Resolution Capabil-
(regulated vias,) and measuring the resulting output firing ratéy: In order to avoid that hardware-specific behavior might
will result in different response curves showing the temporalrongly confirm the functionality of the proposed method, it
resolution capability of the neuron. is first verified qualitatively utilizing the software simulator
In the following, all output rates indicated with ghactually NEST. The NEST neuron model and the parameter values are
represent the difference between the output rate acquired witiosen to optimally resemble the hardware. Still, quantitatively
a specific test stimulus configuration minus the output raggual results from hardware and software are not to be
with no test stimulus at allf (T,s) = v2""(T,s)) — v This expected, since subtle non-linear parasitic hardware effects
is done because only the response to the test stimulusais not included in the NEST model. Some of them will be
of interest, while the response to the output rate caused digcussed in the hardware result section.
the Poisson background is not. The background determine§o find the membrane temporal resolution measttethe
the conductance state and thus the responsiveness of tdst stimulus was applied with a package periodipf =
neuron, whereas the test stimulus is needed to get quantitafi0e0 ms. Each package had,... = 4 spikes, withT; being
information about the conductance state of the neuron.  varied from 0 ms to 250 ms. The target output rate was set to

To be able to distinguish the output response curves faf,. = 4 Hz.
different conductance states, a characterizing critical quantityFigure 3 shows the result for a background Poisson rate
Tes IS defined as followsr,, is the critical time intervalll* of v, = 4 Hz, fed into Ny = 48 excitatory andN; = 51
between test spikes at which the output rate falls belowirghibitory synapses. The plot shows the expected decrease in

Proof of Principle via Software Simulation
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the output firing rate with growin@ s, due to decreasing over- In [29], the transition of a membrane into the high-
lap of PSPs in the test stimulus. Every data point representsductance state is defined by a ratio of 5:1 between its total
the mean value from 250 runs with 10 seconds simulated tirmenductance and its pure leakage conductance. The input rate
each, the error-bars denote the standard error of means (SEM)ich is necessary to create this amount of total conductance
Also shown in the plot isf,; = fmm+% (fwax — fumn), indicated for the described experiment is indicated by a dashed line in
by the dotted horizontal line. The value 'Bf, where the curve Figure 4.

crossey.; defines the temporal resolution capabilify of the

neuron.
4
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Inter spike intervall, [ms] 250 Fig. 4. NEST Simulation: Temporal resolutians of a membrane plotted

versus the applied background input ratg, acquired with the method
: . . _ ) . proposed in Section II-C. Note the saturation for input rates larger than
Fig. 3. Neuron output firing rate vs. inter-spike interval of applied test spikegpprox. 15 Hz. The vertical dashed line represents the input frequency

The horizontal dotted line showg:.. fmn is defined by the mean output rate necessary to generate a high-conductance state according to the definition
for Tis in [150 ms, 250 ms]. The vertical dotted line indicates the temporalgiven in [29].

resolution s defined in the text.

Background Activity Increases Membrane Temporal Reg: High-Conductance States in Silicon

olution: The membrane temporal resolution, has been As indicated above, variations from the pure software results
evaluated for various Poisson background ratesFigure 4 are to be expected, since the hardware is subject to electronic
shows ., as a function ofy,. The dependence is obviousPhenomena like noise, crosstalk, parasitic capacitances and
The membrane temporal resolution capability respectively tlakages. Those introduce distortions in the dynamics which
coincidence detection property improve for higher Poissé#€ hard to be mapped to the available standard neuron models
background rates. If the synaptic contribution to the totHl NEST. E.g., the circuits which generate the synaptic conduc-
membrane conductance is large enough — in the plot starting@ce courses exhibit weight dependent leakage conductances
approximately=* ~ 15 Hz — the temporal resolution capabil-towards their corresponding reversal potentials. These leakages
ity saturates, limited by the time constanj, of the synaptic are activity and temperature dependent plus subject to process
conductance decay. In this state, the membrane potentiaV@iations during the production of the chip, hence they are
nearly immediately following the synaptic stimulation. Sinc&ard to be quantified. Furthermore, the generated conductance

the output rate is dynamically adjusted v\ and V7, the courses are implemented as increasing and decreasing currents,
critical input raters* that is sufficient for a saturation of,, Which are routed via wires to sub-circuits where they control

corresponds to two critical valueg§s and N3 as well. physical conductances to the reversal potential. The wires and
Following Equation 4, this results in a quantitative esswitches for these currents have capacitances which impose a

timation for the necessary amount of synaptically inducd@sS of synaptic efficacy for low input rates and an activity

conductance for the neuron, dependent low-pass filtering effect. Compensation methods
for the parasitic leakages are under development, but not
= = T (NB 9B + Ni'g7™) . (6) Yyet considered for this study. Their effect on the temporal

resolution capability of the hardware neuron membrane is
For this example withVy' = 44, N3 = 52 andvy* = 15Hz, difficult to be estimated. Thus, a theoretical prediction for the
an average synaptic conductanceggf~ 30nS is needed to transition to a high-conductance state as defined in [29] and as
reach a maximum responsiveness of the membrane. Thisnidicated in Figure 4 can not be made for this system. Despite
a more than ten-fold increase compared to the pure leakdgese issues, the proposed test method provides the possibility
conductancey;. to find high-conductance regimes on the hardware system.
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For the hardware model, the neuron parameters are cho

identically to the software simulations (see Section IlI-A° 70
if possible. As stated above, for a hardware neuron circt 7 6d
the absolute value of; can not be directly accessed, but £
the membrane time constant in rest can be measured. ¢ g
hardware control current which determingswas set to a g
minimum value, resulting in a membrane time constant ¢ 5 40
Tonres = (16 £ 3) ms. ?
The hardware synapse parameters were set such that E) 3G
neuron’s output rate could be kept in approximately th 8
same range as in the software simulations throughout tl g 20
covered range of input rates. The synaptic hardware weigt qE) 1d
correspond to quantized biological conductance increases =
gE* ~ 1.5nS and g7 =~ 6nS, with decay time constants of 5 5 70 75 50

T = (27 + 8) ms. _ Input ratew,, [Hz]
Figure 5 shows the result of the proposed high-conductance

state test conducted on a hardware neuron with the giveg 5. Hardware: Temporal resolutiones of a VLS| membrane plotted
parameters. Like in Figure 4, the decrease,ofas a function versus the applied background input rate Saturation is reached at approx-
. .. imately 17 Hz.
of v, and the saturation from a certain input rate can both be
observed.
Analogously to Section IlI-A, the critical amount of synaptic
conductance can be determined for this hardware neurdhis is necessary because leakage conductances towards the
In the shown example setup, saturation is reached fraggsting potential, parasitic leakages towards reversal potentials
v, ~ 17Hz, with N& = 28 and N3* = 27. Together and parasitic capacitances affecting post synaptic currents’
with the values forgy, ¢t and 7, the necessary averageshapes can differ from circuit to circuit. A comparison between
synaptically induced leakage to put the hardware neuron irigst results acquired from different neurons, which are not
a maximally input sensitive regime igt, ~ 94 nS. Due to the shown in this paper, yields qualitatively equal results.
hardware specific effects mentioned above, this value has to bé similar method applied to neuron models in software
interpreted with care. The difference compared to the NESS described in [19] and is also spike-based, but has a few
model is assumed to be caused mainly by the capacitancedtfw-backs compared to the presented one. This is mainly
the wires which route the synaptic conductance courses ahie to portability issues for the hardware platform, which
which - as mentioned above - distort the synaptic impact aloes not offer the flexibility for artificial setups as software
the neuron in efficacy and time, depending on the input ragmulators do. First, the method in [19] requires in the order
This capacitance probably also explains the large valueg,of of 30 synaptic inputs which synchronously generate very
for small background rates, where the given valuesfpand strong conductance courses. This is hard to be adopted for the
Tm es SUGGeESt smaller values - especially since in the NESFesented system, because the hardware platform is limited
reference experiment,. decreased very fast with growingin terms of both number of synaptic inputs and the avail-
synaptic stimulation. But as can be seen from the data, itable range and reliability of synaptic efficacies. Additionally,
still possible to find a level of background stimulation whiclsending more than 4 perfectly synchronous spikes into one
is sufficient to put the neuron into a high-conductance statglieuron at a time is not possible on the utilized chip, although
the technically necessary and automatically generated fan-
IV. Discussion out of input spike times in the order of tenths of biological
For a neuromorphic hardware system, we have presentailliseconds is probably negligible. Sweeping arbitrary input
a spike-based method which allows to find the amount &fing rates is not possible either, the proposed ranges of
synaptic stimulation necessary for a neuron to operate inup to 150 Hz (corresponds td 5 MHz in chip time domain)
high-conductance state. In order to avoid possible misleadiegceed the hardware bandwidths. Furthermore, the method
hardware-specific behavior, we first have tested our approgwposed in [19] brings difficulties for automation due to
by pure software simulations. Subsequently, we have applidg fact that it requires the detection of peaks in inter-spike
the method to the hardware system, and the results cledriferval histograms which often are ambiguous. An algorithm
demonstrate the functionality of the proposed technique. Coneeds to find the height of a peak that is not necessarily the
pared to possible alternatives based on e.g. sub-threshgliebal, but just a local maximum within the histogram, and
analyses via oscilloscope, this method is faster and can d@n be determined only by its expected location. Finally, the
robustly automated. Both speed and robustness are particulfalt that the measure,., suggested in this paper is given in
important for the hardware system since the presented highillisecond dimension represents an intuitive quantity for a
conductance state test has to be applied for several neuronganron’s temporal resolution capability.
order to find a reliable setting that is valid for the whole chip. One drawback of the presented approach is that changing
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the ratio of excitatory to inhibitory stimuli in order to keep [6] A.Kumar, S. Schrader, A. Aertsen, and S. Rotter. The high-conductance

the output rate in a low range makes it difficult to apply
the proposed method to many neurons at the same time
which would have made the presented test faster. Furthermore,

[7]

the functionality of the method is dependent on the outpufl
firing rate: If the output rate without test stimuluge™ is
chosen too large, the firing rate with applied test stimulus angd]

hence the difference raté(T)

— VE(Tiy) — v would

out

not decrease monotonously - as seen in Figure 3 - and t
finding the critical quantityr,.. would not be possible. We

interpret this as a too high firing sensitivity which leads t&1l
a high probability that the first test spike within a packa

already triggers an output spike and pulls the membrane to

the reset potential. This effectively reduces the impact 88l

the following spikes due to the reset mechanism and has to

be avoided. Thus, for the proposed method the quality p#

the important signalf (7,,) strongly depends on the output

rate. In order to benefit from the scalability advantages of
neuromorphic systems also for this high-conductance staig
test, neuron-specific output rate calibration mechanisms are

needed. These calibration mechanisms could be based on

modifications of individual weights taking into account that thae]

total input conductance stays constant during the adjustment of

weights and is determined by the input rate. A neuron-specific
firing threshold calibration could also be used to adjust the
output rate, a feature which will be implemented in successér!
systems.

Nevertheless, the spike-based high-conductance state EgtR. T. Braden. RFC 1122: Requirements for Internet hosts — commu-
provides an automatable tool for tuning neuromorphic systems
towards an input-sensitive regime even if direct measuremé&ht
of conductances is impossible. The principle might help to
avoid extra wiring and analog-to-digital converters in futur&0l

neuromorphic designs since the indirect conductance access

method during a system'’s specification phase can be sufficient.
Thus, prototypes could exploit more of the available chip area.
More spike-based methods, e.g. for the calibration of leaka! &
conductances and for the specification of analog noise, are
currently under development.
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