Interconnecting VLSI Spiking Neural Networks
Using Isochronous Connections

Stefan Philipp, Andreas Griibl, Karlheinz Meier, and Johannes Schemmel

Ruprecht-Karls-Universitat Heidelberg, Kirchhoff-Institut fiir Physik
Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
sphilipp@kip.uni-heidelberg.de

Abstract. This paper presents a network architecture to interconnect
mixed-signal VLSI' integrate-and-fire neural networks in a way that the
timing of the neural network data is preserved. The architecture uses
isochronous connections to reserve network bandwidth and is optimized
for the small data event packets that have to be exchanged in spiking
hardware neural networks. End-to-end delay is reduced to the minimum
by retaining 100 % throughput. As buffering is avoided wherever possible,
the resulting jitter is independent of the number of neural network chips
used. This allows to experiment with neural networks of thousands of
artificial neurons with a speedup of up to 10° compared to biology. Sim-
ulation results are presented. The work focuses on the interconnection of
hardware neural networks. In addition to this, the proposed architecture
is suitable for any application where bandwidth requirements are known
and constant low delay is needed.

1 Introduction

Great efforts have been made in the field of modeling neural networks. Neural
networks have been simulated in software (see e.g. [1]) and implemented in VLSI
technology to exploit its parallel nature. An example implementation using a
perceptron-based neuron model is given in [2]. Further recent developments [3,
4] implement spiking neurons based on the integrate-and-fire neuron model in
VLSI hardware.

The mixed-signal artificial neural network (ANN) chip presented in [4] fea-
tures 384 neurons and 100K synapses including synaptic plasticity. It operates
with a speedup factor of 10 to 10° compared to biology according to the model
and contains analog as well as digital elements. Neurons and synapses use analog
computation whereas the external interface remains purely digital. This allows
to interconnect multiple chips with digital hardware to create a large network of
spiking neurons.

The ANN operates within a hardware and software framework [5], which
has been created for the parallel operation of multiple artificial hardware neural
networks. As the neural network chip models biological behavior in continuous

! Very Large Scale Integration

time, the timing is important: The time constants of the neuron operation de-
termine the timing requirements for the inter-chip connections in terms of delay,
jitter (delay variation) and throughput. This paper presents the implementation
of a global communication network which accomplishes these needs. The strong
timing requirements of spiking hardware neural networks are met by enabling
isochronous connections between the network nodes.

2 Interconnecting VLSI Neural Networks

The work presented in this paper has been done using the neural network frame-
work presented in [5]. It consists of backplanes that hold up to 16 network mod-
ules each. If the ANN of [4] is used, a single fully equipped backplane allows the
parallel operation of 6144 artificial spiking neurons with 1.57 million synapses.
Each ANN is interfaced by a commercial FPGA? that provides both, the local
ANN interface and the physical interconnection. The programmable logic allows
to implement the global communication network for neural spike events within
the FPGA. The resulting neural network consists of ANN-internal connections
as well as global connections. The physical network topology is graphed in Figure
1(a), whereas Figure 1(b) shows a photograph of a single network module.

(

Fig. 1. (a) The topology of a fully equipped backplane corresponds to a 2-dimensional
toroidal structure with an ANN at each node (depicted as a square). Nodes not di-
rectly connected communicate via intermediate nodes. An example path is shown from
node 12 to node 6. (b) A single network module with ANN (left) and FPGA (right).
Connections to other modules are provided by the connector beneath the FPGA.

The ANN operates with a speedup factor of 10 to 10° compared to biology
according to the implemented neuron model. Information transferred between
the neurons is encoded within the spike event timing. This results in certain
requirements on event throughput, delay and jitter the network has to met. Event
data loss has to be avoided. The expected data rates depend on the encoding of
a spike event and the estimated spike frequency, which in turn depends on the

2 Field Programmable Gate Array

neural network configuration. Table 1 shows an overview of expected data rates
for an estimated mean spike rate of 1 MHz for a single neuron.

Table 1. Expected mean and peak data rates at the ANN-FPGA interface (3 events
encoded using 64 bit) and on global connections (32 bit per event) at the time factor
of 10° and a biological mean firing rate of 10 Hz. Peak data rates are assumed to be 4
times higher than mean rates. The interface is limited to 1.6 GB/s in single direction.
Only parts of the chip neurons can use global interconnects at this time factor.

Spike Event Interface ANN-FPGA Global Connections
rate (single direction) (single direction)
average average peak average peak
ANN Neuron 1 MHz 2.7 MB/s 10.7 MB/s 4 MB/s 16 MB/s
ANN Chip 384 MHz 1GB/s (4GB/s) 1.5 GB/s 6.1 GB/s

The delay of events being transported using global connections will be signif-
icantly larger as if using ANN-internal connections. The number of intermediate
nodes (network modules) that have to be passed causes different classes of end-
to-end delays and thus allows different classes of inter-neuron connections to be
simulated. According to the time factor of the network, the delay of single-hop
connections has to be as small as possible (in the range of few 100ns) to be able
to simulate short-range neural connections.

Incoming events have to be resynchronized at the destination to the local
ANN timing. The capacity of local resynchronization buffers is limited by the
FPGA. Therefore, it is important for the neural network operation that the delay
variation (jitter) of neuron connections introduced by the network is as small as
possible, too. Network connections with nearly constant bandwidth and delay
between two network nodes are called isochronous connections.

3 Implementation of Isochronous Connections

The implementation of isochronous connections has been done in multiple steps:
Resource reservation (c.f. Section 3.1) and global synchronization (Section 3.2)
are performed prior to the neural network experiment. At runtime, a switching
algorithm implemented within the FPGA forwards spike events through the
network according to the reserved resources (Section 3.3). Section 3.4 presents
the mapping algorithm which calculates the reservation pattern.

3.1 Resource Reservation

It is assumed that the synaptic inter-neuron connections are known and remain
fixed throughout the experiment. The knowledge about bandwidth requirements
between any two network nodes simplifies the global communication network

implementation: For any two network nodes A and B, all synaptic connections
starting at A and ending at B are aggregated to a virtual connection cap with
an estimated mean data rate r4p. Aggregating lots of neurons to a connection
reduces the additional bandwidth to be reserved for bursting and thus increases
the link utilization.

Bandwidth is reserved by framing, which is done by dividing the time axis
into time slots of equal length that last the duration of the transfer time of a
32 bit spike event. Multiple time slots are aggregated to a network frame, which
includes a globally constant number of slots. A virtual connection may consist
of one or multiple time slots depending on its bandwidth requirement and the
available link capacity (c.f. Figure 2).

LTI T
([l HE BN BN N
€d9: node 1)<
([l HE BN BN N
T T T

Fig. 2. Example frames with sync character and 12 time slots. Node 1 forwards incom-
ing event data according to its routing table. Output conflicts are removed by the slot
assignment pattern.

At runtime, all nodes forward incoming traffic to local inputs, if the node
is the destination, or to local outputs, if the event is transit data. Care has to
be taken if data arrives at different inputs and has to be forwarded to the same
output. In packet switched networks, this problem is solved by buffering incoming
packets in local queues and a scheduler decides which queue is to be served for
output [6]. Packets have to provide a header to store its destination and the
queuing process may result in unpredictable delays. The scheduler commonly is
of significant complexity to ensure fairness and throughput.

The solution presented in this paper uses a reordering scheme comparable
to [7,8] but without local buffering. Consider the packet frame of Figure 2. The
reservation of time slots is done in a way that only at most one event arriving
at a network node have to be forwarded to the same local output. Note that
the destination of an incoming event solely depends on the time slot, the event
has been placed in. Neither local queues nor routing headers are needed and
the online switching process is reduced to O(1) complexity. Furthermore, the
throughput is guaranteed and the delay introduced by the switch is constant.

3.2 Synchronization

The framing strategy relies on global synchronization of all nodes. Buffers have
been avoided to allow incoming events to be immediately forwarded to outputs,

which requires correct frame alignment up to the precision of the external data
sampling rate. Every network node implements an internal clock counter which
periodically counts the slots of the current time frame. For the initial setup of
the system, the clocks of all network nodes are shifted internally until being
synchronous. Every node sends a synchronization symbol at the beginning of
each frame to control the synchronization process. The switch at each node
monitors the occurrence of the symbol to check the synchronization with all of
its neighbors.

Care has to be taken as the FPGA design is clocked by a local oscillator, which
has only limited accuracy. For oscillator speeds of 100 MHz, even at accuracies
of 1078, the network synchronization will be lost after about a second. Due to
this, the system uses a global clock source, i.e. a single globally unique oscillator
defines the discrete time reference for all network nodes. This ensures that the
synchronization holds infinitely long if no signaling error occurs.

3.3 FPGA Implementation

The network architecture has been implemented within the Xilinx Virtex-II Pro
FPGA [9] of each network module. Figure 3 shows a design overview.

I

«~L—| ANN control & i
1 routing table
ANN I—| switch interface <

bo-- - v Tt !

I
I
I
I
I
switching & crossbar |
I
I
I
I
I

- ; «| scheduler
routing logic

physical layer

Fig. 3. Schematic of the FPGA logic at every network module. The crossbar has an
equal number of event input and output ports, which are served in parallel for each
time slot according to the local routing table.

The physical layer of the network performs the external communication. It
is implemented using four of the FPGA internal multi-gigabit serial transceivers
(MGT) [10], which operate at an external line rate of 3.125 Gbit/s allowing a
usable data rate of 312.5 MB/s. Additional adjustments [11] have been made to
reduce the delay of the MGTs to 128 ns.

The switching and routing logic consists of a crossbar and a scheduler. Queu-
ing has been avoided as described in Section 3.1. The crossbar has n bidirectional
ports for packet input and output which are connected to the local ANN inter-
face and the MGT links. The routing table contains the time slot assignment
of the virtual connections. Every time slot, the scheduler makes a forwarding
decision based on the table information. Events are then forwarded in parallel

from each input via the central crossbar to its dedicated output. Note that no
header processing of incoming event data is necessary.

The interface to the ANN control logic is realized with multiple ports oper-
ating at the same data rate as the external ports. It is kept as simple as possible
to allow for a convenient exchange of the current neural network hardware with
upcoming applications. The timing at the interface is determined by the network
frame timing. The scheduler informs the ANN control logic at every time slot,
when incoming event data is available and output data can be accepted. Events
have to be dropped if the amount of event data generated by the ANN exceeds
the bandwidth reserved.

Note that the ANN switch interface is the only point where delay variations
may be introduced. Neural network events created within the ANN have to wait
for a time slot belonging to its virtual connection. After being accepted by the
switch, event data will arrive at its destination with a fized delay.

3.4 Mapping Process

The mapper is a software algorithm created in C++ and calculates the framing
scheme. It uses experimental setups (neural network configurations) as input
and generates table entries for the switching logic at every network node.

First, the mapper calculates the mean bandwidth requirement of each virtual
connection. In the next step, the shortest path algorithm from Dijkstra [6] is
carried out to find an interconnected set of physical links from the source node
to its destination. Next, the time slot reservation pattern is calculated for all
virtual connections. The algorithm calculates a collision-free assignment in which
each local output is assigned to at most one input within each time slot. This is
done by translating the problem to the common wvertex-color[12] problem from
graph theory which is then solved. After the algorithm converged, all time slots
for each connection are found and the local routing tables at every node are
initialized.

4 Performance and Results

The network architecture has been implemented in the programmable hardware
of the FPGA network module. As described in section 3, the throughput of the
virtual connections is guaranteed by design. To measure the delay performance,
the system has been set up with a delay measurement logic at the ANN interface
which counts reference clock cycles of 6.4ns. The results can be seen in Table 2.
Each hop adds a delay of 147.2ns. Note that 128ns (87%) of the delay is in-
troduced by the physical layer (MGT) of the programmable logic device. The
switching and routing logic introduces only 13 % due to its simplicity.

Delay variation (jitter) is introduced only at the source node at the ANN
interface to the switch if spike events wait for its associated time slot. As an
example, with a frame size of 12 time slots and equally distributed slots, a
connection using 33 % bandwidth will have to wait for at most 32ns. Once

Table 2. Delay results at the switch interface for global ANN interconnects.

Cycles Delay (ns) Biological Time (ms)
at 10° at 10°

Direct Interconnect 24 153.6 1.5 15
One Intermediate Node 47 300.8 3.0 30
Two Intermediate Nodes 70 448.0 4.5 45
Three Intermediate Nodes 93 595.2 6.0 60

sent to the network, spike events arrive with constant delay at the destination,
hence the jitter is independent of the number of intermediate network nodes.
The numbers show that the isochronous connections of the network are able
to guarantee the throughput and delay requirements necessary for VLSI neural
networks operating at time factors of up to 10° compared to biology.

A software simulation has been created in C++ to verify the operation in a
cycle-accurate precision. Figure 4 shows results for the simulation of 250 neurons.
Only about 1.2% of the events have to be dropped in the case of simulated
bursting whereas no drops at all occur during the non-bursting operation.

1 50
I . 11 1 45
T + + b4
I + + o+ -
+ : I + i+ 4 40
c + P Pt #
g o1 ;fj ﬁ’%ﬁ% ﬁ&{ o %; %F%rﬁfhé %f% 1% =
N : P i, T
z P RN TN R R 1 g 5
S S * oy . =
< + + I,,‘ + ok hd
£ [+ L 1 25
- + : P + g)
g - =
c P L . 1% -
g om ¥ i s |5 @
o Ll % @
b Drop:Rate © e ;
Link Utilization — + P : 4 10
Biol. Firing:Rate - - ;
P 415
0.001 0
0 01 02 03 04 05 06 07 08 09 1

Biol. Time [s]

Fig. 4. Software simulation of link utilization and drop rate at the switch input in-
terface. Spikes of 250 local neurons are transferred with the maximum bandwidth
available. Bursting behavior is simulated by modulating the spike event rate of all neu-
rons between 3 Hz for 250 ms and 28 Hz for 25 ms with a speedup of 10*. The system
can handle burst rates close to the maximum link capacity of 30 Hz per neuron at this
setup. Less than about 1.2 % of the events are dropped during a burst.

5 Conclusion

This paper presented a solution to satisfy the transmission requirements which
arise at the interconnection of VLSI spiking neural networks. The concept has
successfully been set up in real hardware. It has been shown that a network
infrastructure using isochronous connections can satisfy the strong delay and
throughput needs to create a large neural network consisting of thousands of
neurons and millions of synapses. With constant delay and an online complexity
of O(1), the network architecture is scalable in terms of the number of network
nodes and external line speed. A single backplane currently provides 6144 neu-
rons and 1.6 million synapses. However, the network architecture can also be
used to interconnect multiple backplanes by using remaining FPGA transmit-
ters. Furthermore, the network can be used in the next stage of the current
project to interconnect spiking neurons using wafer-scale integration [13].3

References

1. The Neural Simulation Technology (NEST) Initiative: Homepage.
http://www.nest-initiative.org (2007)

2. Schemmel, J., Hohmann, S., Meier, K., Schiirmann, F.: A mixed-mode analog
neural network using current-steering synapses. Analog Integrated Circuits and
Signal Processing 38(2-3) (2004) 233-244

3. Indiveri, G., Chicca, E., Douglas, R.: A VLSI array of low-power spiking neurons
and bistable synapses with spike-timing dependent plasticity. IEEE Transactions
on Neural Networks 17(1) (Jan 2006) 211-221

4. Schemmel, J., Gribl, A., Meier, K., Mueller, E.: Implementing synaptic plasticity
in a VLSI spiking neural network model. In: Proceedings of the 2006 International
Joint Conference on Neural Networks (IJCNN’06), IEEE Press (2006)

5. Fieres, J., Griibl, A., Philipp, S., Meier, K., Schemmel, J., Schiirmann, F.: A
platform for parallel operation of VLSI neural networks. In: Proc. of the 2004
Brain Inspired Cognitive Systems Conference (BICS2004). (2004)

6. Tanenbaum, A.S.: Computer Networks. Pearson Education Int. (2004)

7. Hung, A., Kesidis, G., McKeown, N.: ATM input-buffered switches with
guaranteed-rate property. In: Proc. of IEEE ISCC’98, Athens. (1998) 331-335

8. Li, S., Ansari, N.: Input-queued switching with QoS guarantees. In: Proceedings
of IEEE INFOCOM’99, New York (1999) 1152-1159

9. Xilinx, Inc. www.xilinx.com: Virtex-II Pro Platform FPGA Handbook. (2002)

10. Xilinx, Inc. www.xilinx.com: RocketIO Ttransceiver User Guide. (2003)

11. Xilinx, Inc. www.xilinx.com: Xilinx Application Note 670, Minimizing Receiver
Elastic Buffer Delay in the Virtex-II Pro RocketIO Transceiver. (2003)

12. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4)
(1979) 251-256

13. Ehrlich, M., Mayr, C., Eisenreich, H., Henker, S., Srowig, A., Griibl, A., Schem-
mel, J., Schiiffny, R.: Wafer-scale VLSI implementations of pulse coupled neural
networks. In: Proc. of IEEE SSD07, Hammamet, Tunisia (March 2007)

3 This work is supported in part by the European Union under the grants no. IST-
2001-34712 (SenseMaker) and no. IST-2005-15879 (FACETS).

