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Abstract— This paper describes an area-efficient mixed-signal
implementation of synapse-based long term plasticity realized
in a VLSI 1 model of a spiking neural network. The artifi-
cial synapses are based on an implementation ofspike time
dependent plasticity(STDP). In the biological specimen, STDP
is a mechanism acting locally in each synapse. The presented
electronic implementation succeeds in maintaining this high
level of parallelism and simultaneously achieves a synapse
density of more than 9k synapses per mm2 in a 180 nm
technology. This allows the construction of neural micro-circuits
close to the biological specimen while maintaining a speed
several orders of magnitude faster than biological real time. The
large acceleration factor enhances the possibilities to investigate
key aspects of plasticity, e.g. by performing extensive parameter
searches.

I. I NTRODUCTION

The most common contemporary approach to the mod-
eling of artificial spiking neural networks is the numeri-
cal simulation. An alternative is their implementation in a
physical model, which leads to the concept of an analog
VLSI neural network. In a physical model, important phys-
iological quantities, like the membrane potential, shouldbe
assigned an equivalent physical quantity. Currently, VLSIis
the only physical system with which it is feasible to model
a neural circuit. Several such implementations of neurons
and synapses have been reported [1][2]. In these cases the
motivation was not primarily the speed but the continuous-
time behavior. The approach presented in this paper focuses
on an analog VLSI architecture as the starting point of a
new kind of fast, continuous-time neural model [3] that could
complement digital simulations.

It is planned to use this system within the FACETS project
[4], an interdisciplinary endeavor to model cortical micro-
circuits from the primary visual cortex in analog VLSI as
well as numerical simulations. The neural network hardware
presented in this paper should be used as a prototype platform
to evaluate the transferability of such simulations to analog
microelectronics.

The chosen neural model allows a description of the
majority of the cortical neuron types [5] neglecting their
spatial structure. It is based on a capacitive membrane model
with a linear correspondence between the biological and
the model membrane potential. If the membrane potential
reaches a threshold voltage, a spike generation process will
be triggered. To reproduce near-threshold behavior observed
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1very large scale integration

experimentally [6], an integrate-and-fire model is not ade-
quate. Therefore the neuron circuit was designed in a way
that it depends not only on the membrane voltage, but on its
derivative as well. There is one important deviation from the
biological example in the microelectronic model: speed. All
time-constants are reduced by a factor of 105 in the presented
chip, i.e. 10 ns in the model are equal to 1 ms biological time.

A biologically plausible network model must take into
account the strong variations of the individual neuron’s
properties [7][8]. In the presented chip this is done by storing
about 3000 different analog parameters in a dedicated on-
chip memory. An integrated digital-to-analog converter in
conjunction with a network of analog current and voltage
memories distributes these signals to their target neurons. The
continuous update of said analog memories is performed by
a dedicated control circuit which does not interfere with the
operation of the network itself. Thus the neurons’ parameters
can be changed during normal network activity.

Unlike in biology, an action potential is not generated by
membrane ion channels but by an electronic circuit monitor-
ing the membrane potential. To facilitate the communication
between the neurons, the action potential is propagated as
a digital pulse. Conductance-based synapses connect these
digital neuron outputs to the membranes of other neurons.
In the presented chip 256 synapses connect to one neuron, a
number limited by the size of the chip. To reproduce the time
course of the synaptic conductance, it is modulated by an
exponential onset and decay. Similar to in-vitro and in-vivo
measurements [9][10], the shortening of the membrane time
constant when the total synaptic conductance reaches the
high-conductance region could be studied with this model.

One plasticity mechanism which has received much atten-
tion in recent years isspike time dependent plasticity(STDP)
[11][12]. In this model each synapse measures the temporal
correlation between pre- and post-synaptic action potentials
(aka. spikes) which is then used to calculate long term
changes in the synaptic weights. While STDP is implemented
on the circuit level in the presented system, slower adaptation
processes—like neuro-modulators—as well as developmental
changes in neuronal connectivity will be integrated in the
digital control of the analog continuous-time model. On the
timescale of less than a second, measured in biological real
time, the synapse model includes short term facilitation and
depression [5], which may help to stabilize the operating
point of the network.

The digital nature of the spike allows the usage of
standard communication protocols to interconnect individual
microchips to large neural systems and to interface them with
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Fig. 1. Operating principle of the spiking neural network. The three boxes
show the signal processing done by synapse drivers, synapses and neurons.

a digital control system to feed in data and to extract results.
The presented chip uses two unidirectional 16 bit wide LVDS
links with a data transfer rate of 1.3 GBytes/s each to send
and receive digitized action potentials, subsequently called
events.

II. U TILIZED MODELS

A. Neuron Model

The membrane potentialV is governed by the following
differential equation:

cm

dV

dt
= gm(V − El) +

∑

k pk(t)gk(V − Ex)

+
∑

l pl(t)gl(V − Ei) (1)

Each term on the right hand side contributes an individual
current to the total membrane current, which by itself is
equal to the derivative of the membrane potential multiplied
by a constantcm. The first term models the contribution of
the different ion channels that determine the potentialEl

the membrane will eventually reach if no other currents are
present. The synapses use different reversal potentials,Ei

and Ex, to model inhibitory and excitatory ion channels.
The indexk in the first sum runs over all excitatory synapses
while the indexl in the second covers the inhibitory ones.
The individual activations of the synapses are controlled by
the parameterspk,l(t). Plasticity is included in the model
by varyinggk andgl slowly with time. The synaptic weight
ωk,l(t) denotes the relative synaptic strength at a given time
t:

gk,l(t) = ωk,l(t) · gmaxk,l (2)

B. Network Model

The network model is based on the transmission of events
from one source neuron to multiple destination neurons,

which need not be located on the same die. Events are com-
municated digitally but continuous-time inside the chip. To
connect an event with the neuron activation parameterp(t),
a special circuit is used that approximates the time course of
the synaptic conductance by generating an exponential onset
and offset each time an event arrives at the synapse.

Events crossing the die frontier must use some kind
of transport protocol. A widely used protocol for VLSI
neural networks is theAddress Event Representation(AER)
[13][14], which makes use of the fact that electronic commu-
nication is several orders of magnitude faster than the firing
rates of biological neurons. AER maintains the asynchronous
nature of the neural action potential. Unfortunately, AER is
not suitable for the presented chip. The mean firing rate of
a neuron in the chip is about 10 MHz due to the scaled
neuron time-constants. This significantly reduces the speed
advantage of electronic communication that makes AER
attractive.

Since AER transports neural events in continuous time, all
phase errors accumulated by the signal while traveling across
an AER link, manifest themselves as temporal uncertainties
of the inter-neuron connections in the modeled network. To
keep these uncertainties below 0.1 ms (in biological time),
the total phase error must be smaller than 1 ns. This is
an unfeasible goal to achieve in a large and distributed
system, interconnecting ten or more network chips. Therefore
the neural events leave the continuous-time domain when
crossing the die frontier; instead they get a digital time-stamp
marking their onset.

For the subsequent transport of these digitized events from
the network die to their final destination, the maximum
latency is the only condition that must be met by the
transport network. Since the time-stamp resolution is 150 ps,
a temporal precision of 15µs (in biological time) can be
maintained. Any transmitted event must arrive at the target
network chip within the time interval the respective action
potential would have traveled on a real axon, taking into
account the acceleration factor between the micro-electronic
neuron and its biological counterpart. With a factor of 105

(see next section) the resulting maximum transport latency
is in the range of 50 to 500 ns, depending on the length of
the modeled connection.

III. C HIP OVERVIEW

A hardware model that intends to complement digital
simulations should make good use of the available resources
like silicon area and electrical power. The majority of the
implemented devices is close to minimum-size geometry
which implies low parasitic capacitances. The bias currents
are set in a way to keep the transistors out of sub-threshold
operation—to reduce fixed-pattern noise—while limiting the
total analog power consumption below the point of self-
heating. These constraints automatically lead to a membrane
time constant much smaller than in biology. In the presented
VLSI model, the scaling factor for time is 105, i.e. 10
nanoseconds model time correspond to one millisecond real-
time. The limiting factor is the communication bandwidth
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Fig. 2. Block diagram of the presented neural network chip.

since a certain number of the generated spikes must be
communicated off-chip.

The weight storage of the synapse is implemented as static
RAM. Compared to a capacitance-based solution [15][16]
this requires a larger silicon area but facilitates a continuous-
time operation spanning more than a few milliseconds. Ad-
ditionally, for the built-in STDP—where the current synaptic
strengths have to be modified locally—it is not possible to
refresh them from an external memory which can not reflect
the adapted internal values. In contrast, a digital memory
placed within each synapse can be updated without having
to transmit the modified weight off-chip.

Fig. 1 shows the operation principle of the synapse and
neuron circuits. The STDP circuits will be described in
Sec. IV and are therefore omitted here. The synapses form
an array of 256 rows× 384 columns below which 384
neurons are located. Each neuron contains a capacitanceCm

that represents the membrane capacitance. Three different
conductances model the different ion channel currents. The
membrane leakage current flows throughgleak. It can be
individually controlled for each neuron. The leakage reversal
potentialEl, the excitatory and inhibitory reversal potentials
of the synapse conductancesgx and gi as well as the
threshold and reset voltagesVth and Vreset can be set for
groups of 64 neurons each.

In most biological neurons, the synapse conductance is
generated by the ion channels of synapses that are distributed
across the dentridic tree and, to a lesser extend, the soma
of the neuron. Since no area and speed efficient solution
is reported so far that mimics this organization, a different
model was developed for the presented chip. Each neuron
receives its input signals from one column of the synapse

array. Two separate conductances are connected to the mem-
brane capacitance inside the neuron circuit, one representing
the excitatory and one the inhibitory synapses’ ion channels.
Each is controlled by the sum of the currents generated by
the active synapses located in the respective synapse column.
A third conductance models all ion channels contributing
by their respective leakage currents to the neuron’s resting
potentialEl.

In contrast to a biological neuron the axon of its VLSI
counterpart is electrically isolated from its input. It carries a
digital signal that encodes the exact time of each spike’s
occurrence by its rising edge. This signal is also routed
back along the same column of synapses that comprises the
neuron’s input. This allows the STDP circuit located inside
each synapse to measure the time between a pre-synaptic
pulse and a post-synaptic spike.

A block diagram of the complete chip is depicted in Fig. 2.
The synapse array is organized in two independent blocks of
192 columns each. This allows to place the synapse drivers
in the middle column of the chip which reduces the wiring
capacitances for the incoming event signals.

To code the spikes into events several steps are necessary.
An asynchronous priority encoder identifies the spiking neu-
ron and sends its number to the next stage. If more than one
neuron fires at the same time, the neuron with the highest
priority is selected. After its number has been transmitted,
the one with the second highest priority gets its turn and
so on. For each selected neuron, thetime to digital (TDC)
converter measures the point in time of the spike.

A die photograph of the fabricated chip is depicted in
Fig. 3. The digital control occupies about one-third of the
core area. Its main task is to manage a set of FIFO buffers for



Fig. 3. Die-photograph of the presented neural network chip.

TABLE I

CHIP SPECIFICATIONSUMMARY.

process features 0.18µm, 1 poly, 6 metal

die/core size 5× 5 mm2/ 4.25× 4.32 mm2

synapse size 10.3× 10.5µm2

neurons/synapses 384/98304

supply voltage (digital and analog) 1.8 V

digital core clock frequency 200 MHz

adjustable analog parameters 2969

parameter resolution 10 bit (nominal)

event time resolution (TDC, DTC) 156 ps (nominal)

event input FIFOs 16 channels, 64 entries each

event output FIFOs 6 channels, 128 entries each

LVDS bus data transfer rate 2.6 Gigabyte/s (effective)

the incoming and outgoing event signals and the formatting
of event packets that can be sent and received via the LVDS
external interface. The LVDS links are placed along the
left and right edges of the die in a way to facilitate the
interconnection of multiple network chips in a daisy-chain-
like fashion. It should be noted that the neurons themselves
use only a very tiny fraction of the total die area, which is
dominated by the synapse circuits. Table I summarizes the
specifications of the presented chip.

IV. I MPLEMENTATION OF STDP

The correlation measurement for STDP is part of every
synapse. It is based on the biological mechanism as described
in [11][12]. For each occurrence of a pre- or post-synaptic
action potential the synapse circuit must change the synaptic
strength by a factor of1 + F (∆t). F is called the STDP
modification function [11] and is defined as follows:

F (∆t) =

{

A+ exp(∆t
τ+

) if ∆t < 0 (causal)

−A− exp(−∆t
τ
−

) if ∆t > 0 (acausal)
(3)

Experimental data suggest a value of about 20 ms for the
time constants for causal,τ+, and acausal,τ−, events. The

Dt [s], 10ns = 1ms

F( t) [mV], 12mV = 0.5%D

Song/Abbott

VLSI model

(Nature Neuroscience, 2000)

(simulated)

Fig. 4. Comparison between the measured modification function from [11]
and the presented VLSI model.

parametersA+ and A− have also been determined experi-
mentally by dividing the total modification of the synaptic
strength measured for multiple spike pairs by the number
of pairs. Fig. 4 shows the causal modification function for
A = 0.005. The synapse strengthω changes with each pre-
or postsynaptic action potential according to eq. 4:

ωnew = ωold(1 + F (∆t)) (4)

Since STDP happens locally at every synapse without any
restrictions about the number of neurons firing simultane-
ously, the circuit implementing eq. 4 must be located in
every synapse. With the given values ofA± the changes
in the synaptic strengthω implied by eq. 4 are small
compared to the maximum synaptic strength. Therefore a
digital implementation of the weight storage would need at
least 12 bit resolution to implement eq. 4 with adequate
precision. Since this is not a feasible solution for a local per-
synapse weight storage a mixed digital and analog technique
is required. In the presented chip the synaptic weights are
stored with four bit resolution in each synapse and the
digital-to-analog converter is implemented as a digitally
controlled current source using binary weighted transistors.
A possible approach would have been the addition of a
voltage controlled current source in parallel to the digital
controlled one. Its control voltage could be stored on a
capacitance and modified according to the discussed STDP
modification function. Each time the current on this source
would cross a threshold of one lsb above or below its starting
value the digital memory would have to be incremented or
decremented accordingly and the voltage controlled source
be reset.

This straight forward implementation poses two problems:
First, the implementation of the digital increment and decre-
ment logic takes up too much silicon area and second, both
current sources and the comparator must be calibrated to
avoid jumps in the weight value when the memory gets incre-
mented or decremented. An additional difficulty arises from
the fact thatF (∆t) should becomeF (∆t, ω) to allow the
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modeling of saturation effects ifω approaches its maximum
resp. minimum value.

Therefore a special hybrid solution has been developed
which is implemented in the presented chip. It uses an area
efficient circuit implementing eq. 3 in each synapse, thus
performing the correlation measurement fully in parallel.
Eq. 4 is calculated in a mixed digital/analog circuit on
the periphery of the synapse array in a sequential fashion
using programmable lookup-tables to implement the weight
dependence of the STDP modification functionF . To avoid
loosing any results each synapse accumulates the resulting
F values until the sequential readout addresses the row it is
located in.

Fig. 5 shows the STDP circuit which is part of the synapse.
It occupies an area of only 5×10 µm2 and is symmetrical
with respect to the pre- and post-synaptic inputs, therefore
only the causal part is shown. The measurement circuit
switches between two states—delay measurement and result
accumulation—stored in the central latch build fromM1 to
M4. Considering the case thatM1 andM3 are conducting,
M6 isolates the three series-connected transistorsM8 to M10

from the supply whileM7 connectsC1 to the supply via the
current sourceM11. The gate voltage ofM13 is also kept
high by M11, and while both, row and column reset inputs
are held inactive,C2 maintains its charge. The voltage on
C2 represents the accumulated STDP modification result for
all causal events that have occurred at the respective synapse
since the last reset signal.

When a pre-synaptic spike arrives at the synapse,M2

and M4 will start conducting and the latch switches to the
measurement state for the causal part. The spike signal is a
positive pulse with a fixed duration of a few nanoseconds.
SinceM7 now isolatesC1 from M11, M12 can chargeC1

to the initial voltageV1. The PMOS string built fromM8 to
M10 is connected to the positive supply byM6 during the
measurement phase. Due to the sub-threshold behaviour of
these devices the discharge characteristic ofC1 is a decaying
exponential, thus implementing eq. 3. Any additional pre-
synaptic spikes restart the measurement process by pre-
chargingC1 again toV1. With the arrival of a post-synaptic
input the measurement phase is ended and the latch switches
back to the accumulation phase for the causal side. Now
C1 gets discharged viaM7 by a constant current set with
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Fig. 6. Measurement of the STDP modification function for a single,
arbitrary synapse (dashed line). The theoretical model is shown as a
reference (solid line). The parameters were set as follows:A = 27 mV,
∆t = 245ns.

M11, activatingM13 for a time span roughly proportional to
the remaining charge onC1. M13 in turn removes a small
amount of charge fromC2 equivalent to the value ofF (∆t).

The readout of the accumulated result onC2 is done
for each synapse row in parallel via the source follower
M16 and the row enable switchM17. The STDP circuit
for each synapse column compares the absolute difference
between the accumulated causal and acausal values against
a programmable threshold and changes the digital weight
storage accordingly. In this case the row and column reset
signals are activated andC2 is charged to its reset value by
M14 andM15. Since the dynamic range ofC2 is large enough
to store about 100 events there will be no loss of pre-post
correlation information in normal network operation. Fig.4
shows the result of a series of simulations from the presented
circuit using different values of∆t. The obtained results and
the curve that has been derived from biological data match
well.

Fig. 6 shows first measurements of the STDP modification
function from the fabricated chip. Due to the early state of
the test setup these measurements are limited to a single
synapse, located at row 252 and column 66 in the left half
of the chip. Pairs of pre- and post-synaptic spikes with a
given time difference∆t were sent into the chip. After each
pair the voltage onC2 was compared against a threshold
voltage of 50 mV. The number of pairs necessary to cross
this threshold was recorded. This process was repeated 10
times for each time difference∆t. After each data point∆t

was incremented by 5 ns. The step-like behaviour of the
activation function for small values of∆t, as it is visible in
Fig. 6, is an artefact of this measurement procedure, since for
small time differences only a few pulse-pairs are necessary
to cross the 50 mV threshold. This results in a rather large
quantization error inversely proportional to∆t. Since the



threshold voltage will be increased in the final setup, this
effect can be greatly reduced.

V. CONCLUSION

This paper presents a new approach to model synaptic
long term plasticity as it is observed in biological neural
systems in VLSI. By combining local temporal correlation
measurement and a digitally controlled weight update, a high
synapse density has been achieved while allowing adjustment
of the STDP modification function using lookup tables.
Since multiple chips can be connected via the 2.6 GByte/s
LVDS interface, it is possible to build systems modeling
in the order of 106 synapses. In conjunction with the high
operation speed this will allow the investigation of adaptation
in cortical microcircuits covering biological time spans of
several minutes. Since such an experiment lasts less than a
millisecond extensive parameter searches will become a new
research possibility.

First measurements of the fabricated chip have been per-
formed successfully. Especially the functionality of the STDP
circuits, as described in this paper, has been verified.
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