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Abstract— This paper describes an area-efficient mixed-signal experimentally [6], an integrate-and-fire model is not ade-
implementation of synapse-based long term plasticity reated  quate. Therefore the neuron circuit was designed in a way
in a VLSI™ model of a spiking neural network. The artifi-  {ha¢ it depends not only on the membrane voltage, but on its

cial synapses are based on an implementation ddpike time derivati Il Th - - tant deviation f th
dependent plasticitySTDP). In the biological specimen, STDP eérivative as well. 1here IS one important deviation frore

is a mechanism acting locally in each synapse. The presented biological example in the microelectronic model: speed. Al
electronic implementation succeeds in maintaining this ljh  time-constants are reduced by a factor of i0the presented

level of parallelism and simultaneously achieves a synapse chip, i.e. 10 ns in the model are equal to 1 ms biological time.
density of more than 9k synapses per mr in a 180 nm A biologically plausible network model must take into

technology. This allows the construction of neural micro-cuits t th t iati f the individual \
close to the biological specimen while maintaining a speed aCCOUNt the strong variatons or the Individual neurons

several orders of magnitude faster than biological real tine. The ~ Properties [7][8]. In the presented chip this is done byistpr
large acceleration factor enhances the possibilities to Westigate about 3000 different analog parameters in a dedicated on-

key aspects of plasticity, e.g. by performing extensive pameter  chip memory. An integrated digital-to-analog converter in
searches. conjunction with a network of analog current and voltage
|. INTRODUCTION memories distributes these signals to their target neutidres
The most common contemporary approach to the mo&_ontm.uous update Of. sa|_d a”‘?"og memories 1 performed by
a dedicated control circuit which does not interfere wita th

eling of artificial spiking neural networks is the numeri- ) fth Kitself. Thus th ;
cal simulation. An alternative is their implementation in goperation of the netV\_/or ltself. Thus the neurons paramsete
n be changed during normal network activity.

physical model, which leads to the concept of an ananE]a N X o
VLSI neural network. In a physical model, important phys- Unlike in biology, an action potential is not generated by
iological quantities, like the membrane potential, shooéd membrane ion channels but by an electronic circuit monitor-

assigned an equivalent physical quantity. Currently, VIsS| ing the membrane potential. To facilitate the communicatio

the only physical system with which it is feasible to modepetween the neurons, the action potential is propagated as
a neural circuit. Several such implementations of neuro digital pulse. Conductance-based synapses connect these

and synapses have been reported [1][2]. In these cases ital neuron outpt_Jts to the membranes of other neurons.
motivation was not primarily the speed but the continuoué—n the presented chip 256 synapses connect to one neuron, a

time behavior. The approach presented in this paper focué&mber ”Pqirtfd by the.size o;the chip. '.rolreprogulce tgebtime
on an analog VLSI architecture as the starting point of gourse of the synaptic conductance, it is modulated by an

new kind of fast, continuous-time neural model [3] that coul exponential onset and decay. Similar to in-vitro and imeviv
complement diéital simulations measurements [9][10], the shortening of the membrane time

It is planned to use this system within the FACETS projec?f)nStant when the tqtal synaptic concjuctar_wce r.eaches the
[4], an interdisciplinary endeavor to model cortical micro high-conductance region could be studied with this model.

circuits from the primary visual cortex in analog VLSI as One plasticity mechanism which has received much atten-

well as numerical simulations. The neural network hardwari®n In recent years ispike time dependent plastic(§ TDP)
presented in this paper should be used as a prototype piatfo[rll][lz]j In this model each synapse measures the temppral
to evaluate the transferability of such simulations to agal correlatlo_n betwegn pre- and post-synaptic action palinti
microelectronics. (aka. spikes) which is then used to calculate long term
The chosen neural model allows a description of thghanges_ in t.he syn.aptic weights. While STDP is imple_mented
majority of the cortical neuron types [5] neglecting theirP" the circuit level in the presented system, slower adisptat

spatial structure. It is based on a capacitive membrane mod? ocesses—like neuro-modulators—as well as developrhenta
with a linear correspondence between the biological arfg'@"9€s in neuronal connectivity will be integrated in the
the model membrane potential. If the membrane potentig|9ital control of the analog continuous-time model. On the
reaches a threshold voltage, a spike generation proceks \H_ﬂnescale of less than a second, measured in biological real

be triggered. To reproduce near-threshold behavior obgenfMe: th? synapse model includes short tg_rm facilitatioa an
depression [5], which may help to stabilize the operating
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iV, lout which need not be located on the same die. Events are com-
! T~ municated digitally but continuous-time inside the chip. T
X excitatory connect an event with the neuron activation parameter,
' o) — o a special circuit is used that approximates the time course o
| e Tl Lo the synaptic conductance by generating an exponentiat onse
i and offset each time an event arrives at the synapse.
.' Wz'”stp:f:m Events crossing the die frontier must use some kind
4-input mux X ‘ of transport protocol. A widely used protocol for VLSI
Al X o= =" neural networks is thdddress Event Representati¢hER)
\ < I - [13][14], which makes use of the fact that electronic commu-

T ; : S
synapse driver rates of biological neurons. AER maintains the asynchrenou

_>D_L &4@' — _L_L nication is several orders of magnitude faster than thegfirin

synapse % Lo [ _:ﬁ °”tn zgiusrﬁitszfzefor:etﬁfl action potential. Unfortunately, ABR i
- N _ _prgsented chip. The mean firing rate of
neuron— i ) a neuron in the chip is about 10 MHz due to the scaled
; E, %E( %E/IC —v—o neuron time-constants. This significantly reduces the gpee
WGe @.(X) Gli) = " reset]  advantage of electronic communication that makes AER
attractive.

Fig. 1. Operating principle of the spiking neural networkeTthree boxes Since AER transports neural events in continuous time, all
show the signal processing done by synapse drivers, symapseneurons. phase errors accumulated by the signal while travelingsacro
an AER link, manifest themselves as temporal uncertainties
o ) of the inter-neuron connections in the modeled network. To
a digital control system to feed in data and to extract resultkee'O these uncertainties below 0.1 ms (in biological time),
The presented chip uses two unidirectional 16 bit wide LVDg, ¢ 'total phase error must be smaller than 1 ns. This is
links with a data transfer rate of 1.3 GBytes/s each to seng, \\nfeasible goal to achieve in a large and distributed
and receive digitized action potentials, subsequentliedal system, interconnecting ten or more network chips. Theeefo
events. the neural events leave the continuous-time domain when
crossing the die frontier; instead they get a digital tirteayp

Il. UTILIZED MODELS i ]
marking their onset.

A. Neuron Model For the subsequent transport of these digitized events from
The membrane potentidl is governed by the following the network die to their final destination, the maximum
differential equation: latency is the only condition that must be met by the
AV transport network. Since the time-stamp resolution is 150 p
Cm o = gm(V = E) 4+, pe(t)ge(V — Ey) a temporal precision of 1B (in biological time) can be

. maintained. Any transmitted event must arrive at the target
2oV - E) @) network chip within the time interval the respective action
Each term on the right hand side contributes an individuglotential would have traveled on a real axon, taking into
current to the total membrane current, which by itself isiccount the acceleration factor between the micro-eleittro
equal to the derivative of the membrane potential multiblieneuron and its biological counterpart. With a factor of 10
by a constant,,. The first term models the contribution of (see next section) the resulting maximum transport latency
the different ion channels that determine the potenfial is in the range of 50 to 500 ns, depending on the length of
the membrane will eventually reach if no other currents arlie modeled connection.
present. The synapses use dlﬁerent_reversgl potenfials, . CHIP OVERVIEW
and E,, to model inhibitory and excitatory ion channels. ] o
The indexk in the first sum runs over all excitatory synapses, A hardware model that intends to complement digital
while the indexl in the second covers the inhibitory ones Simulations should make good use of the available resources
The individual activations of the synapses are controligd bike silicon area and electrical power. The majority of the
the parametersy,(t). Plasticity is included in the model IMPlémented devices is close to minimum-size geometry
by varyingg: andg; slowly with time. The synaptic weight which implies low parasitic capacitances. The bias cusrent

wr,.(t) denotes the relative synaptic strength at a given tin@€ Set in a way to keep the transistors out of sub-threshold
+ operation—to reduce fixed-pattern noise—while limiting th

@) total analog power consumption below the point of self-
heating. These constraints automatically lead to a menebran
time constant much smaller than in biology. In the presented

B. Network Model VLS| model, the scaling factor for time is 10i.e. 10

The network model is based on the transmission of eventsinoseconds model time correspond to one millisecond real-
from one source neuron to multiple destination neurongime. The limiting factor is the communication bandwidth

G (t) = wr,i(t) - gmaxe,:
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Fig. 2. Block diagram of the presented neural network chip.

since a certain number of the generated spikes must beay. Two separate conductances are connected to the mem-
communicated off-chip. brane capacitance inside the neuron circuit, one repiiegent
The weight storage of the synapse is implemented as stalite excitatory and one the inhibitory synapses’ ion chasinel
RAM. Compared to a capacitance-based solution [15][1dfach is controlled by the sum of the currents generated by
this requires a larger silicon area but facilitates a carirs- the active synapses located in the respective synapse golum
time operation spanning more than a few milliseconds. Ad® third conductance models all ion channels contributing
ditionally, for the built-in STDP—where the current syniapt by their respective leakage currents to the neuron’s igstin
strengths have to be modified locally—it is not possible t@otential ;.
refresh them from an external memory which can not reflect In contrast to a biological neuron the axon of its VLSI
the adapted internal values. In contrast, a digital memogounterpart is electrically isolated from its input. It Gas a
placed within each synapse can be updated without havidggital signal that encodes the exact time of each spike’s
to transmit the modified weight off-chip. occurrence by its rising edge. This signal is also routed
Fig. 1 shows the operation principle of the synapse arfggck along the same column of synapses that comprises the
neuron circuits. The STDP circuits will be described imeuron’s input. This allows the STDP circuit located inside
Sec. IV and are therefore omitted here. The synapses fofAch synapse to measure the time between a pre-synaptic
an array of 256 rowsx 384 columns below which 384 pulse and a post-synaptic spike.
neurons are located. Each neuron contains a capacitapce A block diagram of the complete chip is depicted in Fig. 2.
that represents the membrane capacitance. Three differdiie synapse array is organized in two independent blocks of
conductances model the different ion channel currents. TA®2 columns each. This allows to place the synapse drivers
membrane leakage current flows through... It can be in the middle column of the chip which reduces the wiring
individually controlled for each neuron. The leakage regér capacitances for the incoming event signals.
potential E;, the excitatory and inhibitory reversal potentials To code the spikes into events several steps are necessary.
of the synapse conductancgs and g; as well as the An asynchronous priority encoder identifies the spiking-neu
threshold and reset voltagé$, and Viest Can be set for ron and sends its number to the next stage. If more than one
groups of 64 neurons each. neuron fires at the same time, the neuron with the highest
In most biological neurons, the synapse conductance [iority is selected. After its number has been transmijtted
generated by the ion channels of synapses that are digwibuthe one with the second highest priority gets its turn and
across the dentridic tree and, to a lesser extend, the sosfon. For each selected neuron, tiee to digital (TDC)
of the neuron. Since no area and speed efficient soluti®@@nverter measures the point in time of the spike.
is reported so far that mimics this organization, a diffetren A die photograph of the fabricated chip is depicted in
model was developed for the presented chip. Each neurbig. 3. The digital control occupies about one-third of the
receives its input signals from one column of the synapsmre area. Its main task is to manage a set of FIFO buffers for
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Fig. 3. Die-photograph of the presented neural network.chip  Fig 4, Comparison between the measured modification fumdtom [11]
and the presented VLSI model.
TABLE |
CHIP SPECIFICATIONSUMMARY .
parametersd, and A_ have also been determined experi-
process features 0.38m, 1 poly, 6 metal mentally by dividing the total modification of the synaptic
die/core size 5¢< 5 mm?/ 4.25 x 4.32 mn? strength measured for multiple spike pairs by the number
synapse size 10.& 10.5pum? of pairs. Fig. 4 shows the causal modification function for
neurons/synapses 384/98304 A = 0.005. The synapse strength changes with each pre-
supply voltage (digital and analog) 1.8 V or postsynaptic action potential according to eq. 4:
digital core clock frequency 200 MHz
adjustable analog parameters 2969 wnew = wold(1 + F(At)) (4)
parameter resolution 10 bit (nominal) ) )
event time resolution (TDC, DTC) 156 ps (nominal) Since STDP happens locally at every synapse without any
event input FIFOs 16 channels, 64 entries each  restrictions about the number of neurons firing simultane-
event output FIFOs 6 channels, 128 entries each  ously, the circuit implementing eq. 4 must be located in
LVDS bus data transfer rate 2.6 Gigabyte/s (effective) every synapse. With the given values df. the changes

in the synaptic strengthv implied by eq. 4 are small
compared to the maximum synaptic strength. Therefore a
) _ _ ) _digital implementation of the weight storage would need at
the incoming and outgoing event signals and the formattingast 12 pit resolution to implement eq. 4 with adequate
of event packets that can be sent and received via the LVQgacision. Since this is not a feasible solution for a locatp
external interface. The LVDS links are placed along thgynapse weight storage a mixed digital and analog technique
left and right edges of the die in a way to facilitate theg required. In the presented chip the synaptic weights are
interconnection of multiple network chips in a daisy-chaingiored with four bit resolution in each synapse and the
like fashion. It should be noted that the neurons themselvggyital-to-analog converter is implemented as a digitally
use only a very tiny fraction of the total die area, which i%gntrolled current source using binary weighted transssto
dominated by the synapse circuits. Table | summarizes the yossible approach would have been the addition of a

specifications of the presented chip. voltage controlled current source in parallel to the digita
controlled one. Its control voltage could be stored on a
IV. IMPLEMENTATION OF STDP capacitance and modified according to the discussed STDP

The correlation measurement for STDP is part of everjpodification function. Each time the current on this source
synapse. Itis based on the biological mechanism as degcrifould cross a threshold of one Isb above or below its starting
in [11][12]. For each occurrence of a pre- or post-synapti!alue the digital memory would have to be incremented or
action potential the synapse circuit must change the S-ynapgecremented accordingly and the voltage controlled source
strength by a factor ol + F(At). F is called the STDP be reset.

modification function [11] and is defined as follows: This straight forward implementation poses two problems:
First, the implementation of the digital increment and decr

Ay exp(f—f) if At <0 (causal) ment logic takes up too much silicon area and second, both
F(At) = _A exp(fg) if At >0 (acausal) ) current sources and the comparator must be calibrated to
B avoid jumps in the weight value when the memory gets incre-
Experimental data suggest a value of about 20 ms for thmented or decremented. An additional difficulty arises from
time constants for causat,, and acausak_, events. The the fact thatF'(At) should become'(At,w) to allow the
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Fig. 5. Circuit diagram of the STDP circuit located in eacimagyse.
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Therefore a special hybrid solution has been developeu Atlns)

Wh_lc_h IS w_nplt_am_ented In the pl’esent_ed chip. It uses an ar%ﬁ_’;. 6. Measurement of the STDP moadification function for agk,
efficient circuit implementing eq. 3 in each synapse, thugnbitrary synapse (dashed line). The theoretical modelhiswe as a
performing the correlation measurement fully in parallelreference (solid line). The parameters were set as follovs:= 27 mV,
Eq. 4 is calculated in a mixed digital/analog circuit on™! = 245ns-
the periphery of the synapse array in a sequential fashion
using programmable lookup-tables to implement the weight o ) )
dependence of the STDP modification functibnTo avoid 11, activatingM,; for a time span roughly proportional to
loosing any results each synapse accumulates the resultfi§ rémaining charge o@. M in turn removes a small
F values until the sequential readout addresses the row itgd1ount of charge froni; equivalent to the value af (At).
located in. The readout of the accumulated result 6k is done

Fig. 5 shows the STDP circuit which is part of the synapsd0r each synapse row in parallel via the source follower
It occupies an area of only>8l0 um? and is symmetrical Mie and the row enable switcii/,7. The STDP circuit
with respect to the pre- and post-synaptic inputs, theeefofor each synapse column compares the absolute difference
only the causal part is shown. The measurement circuietween the accumulated causal and acausal values against
switches between two states—delay measurement and regulprogrammable threshold and changes the digital weight
accumulation—stored in the central latch build frdmy to  storage accordingly. In this case the row and column reset
M,. Considering the case thaf; and M5 are conducting, Signals are activated an@, is charged to its reset value by
Mg isolates the three series-connected transistyso My,  Mi4 @andM;s. Since the dynamic range 6% is large enough
from the supply whileM; connectg’; to the supply via the to store about 100 events there will be no loss of pre-post
current sourceM;;. The gate voltage of\/,3 is also kept correlation information in normal network operation. Fj.
high by M;1, and while both, row and column reset input§hows the result of a series of simulations from the presgente
are held inactive(C; maintains its charge. The voltage oncircuit using different values oA¢. The obtained results and
C, represents the accumulated STDP modification result fge curve that has been derived from biological data match
all causal events that have occurred at the respective sgnap/ell.
since the last reset signal. Fig. 6 shows first measurements of the STDP modification

When a pre-synaptic spike arrives at the synapgl, function from the fabricated chip. Due to the early state of
and M, will start conducting and the latch switches to thehe test setup these measurements are limited to a single
measurement state for the causal part. The spike signal isynapse, located at row 252 and column 66 in the left half
positive pulse with a fixed duration of a few nanosecondef the chip. Pairs of pre- and post-synaptic spikes with a
Since M, now isolatesC; from M;i;, M5 can chargel;  given time difference\t were sent into the chip. After each
to the initial voltagel;. The PMOS string built from\/g to  pair the voltage onC; was compared against a threshold
M is connected to the positive supply Bys during the voltage of 50 mV. The number of pairs necessary to cross
measurement phase. Due to the sub-threshold behaviourtlois threshold was recorded. This process was repeated 10
these devices the discharge characteristi€'pfs a decaying times for each time differencAt. After each data poinf\t
exponential, thus implementing eq. 3. Any additional prewas incremented by 5 ns. The step-like behaviour of the
synaptic spikes restart the measurement process by paetivation function for small values akt, as it is visible in
chargingC; again toV;. With the arrival of a post-synaptic Fig. 6, is an artefact of this measurement procedure, sorce f
input the measurement phase is ended and the latch switclsesall time differences only a few pulse-pairs are necessary
back to the accumulation phase for the causal side. Naw cross the 50 mV threshold. This results in a rather large
C; gets discharged vid/; by a constant current set with quantization error inversely proportional tt. Since the



threshold voltage will be increased in the final setup, thig4]
effect can be greatly reduced.

V. CONCLUSION

This paper presents a new approach to model synap{ilc?
long term plasticity as it is observed in biological neural
systems in VLSI. By combining local temporal correlation;
measurement and a digitally controlled weight update, b hig
synapse density has been achieved while allowing adjustmen
of the STDP madification function using lookup tables.
Since multiple chips can be connected via the 2.6 GByte/s
LVDS interface, it is possible to build systems modeling
in the order of 16 synapses. In conjunction with the high
operation speed this will allow the investigation of adéipta
in cortical microcircuits covering biological time span o
several minutes. Since such an experiment lasts less than a
millisecond extensive parameter searches will become a new
research possibility.

First measurements of the fabricated chip have been per-
formed successfully. Especially the functionality of tHECH
circuits, as described in this paper, has been verified.
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