
Training convolutional networks of threshold neurons suited for

low-power hardware implementation

Johannes Fieres, Johannes Schemmel, Karlheinz Meier

Abstract— Convolutional neural networks are known to be
powerful image classifiers. In this work, a method is proposed
for training convolutional networks for implementation on an
existing mixed digital-analog VLSI hardware architecture. The
binary threshold neurons provided by this architecture cannot
be trained using gradient-based methods. The convolutional
layers are trained with a clustering method, locally in each
layer. The output layer is trained using the Perceptron learning
rule. Competitive results are obtained on hand-written digits
(MNIST) and traffic signs. The analog hardware enables high
integration and low power consumption, but inherent error
sources affect the computation accuracy. Networks trained as
suggested are highly robust against random changes of synaptic
weights occuring on the hardware substrate, and work well
even with only three distinct weight values (-1, 0, +1), reducing
computational complexity to mere counting.

I. INTRODUCTION

Many models of the human visual system assume a

hierarchical set of feature detectors to play a fundamental

role in invariant object recognition [13], [18], [14], [20].

The idea is that a visual representation of a natural object is

composed of a number of smaller shapes which, each taken

by themselves, appear more invariant under transformations

than the entire object as a whole. Using a hierarchical system,

where complex features are inferred from the presence or ab-

sence of many simpler features, recognition can be performed

more robustly and with less computational effort compared

to learning each single visual representation of the whole

object.

Convolutional neural networks apply the idea of hierar-

chical feature detectors in a biologically inspired way. The

first layer usually detects simple features, e.g., oriented line

segments. By successive feature extraction through the layer

hierarchy, more and more complex shapes, and finally entire

objects can be recognized in higher layers. Such networks

have been shown to be robust image classifiers, provided

the details of the network topology are correctly chosen and

an appropriate training strategy is applied [2], [9], [12], [7].

In some reported approaches the proposed training strategies

require to a high degree the intuition and the skill of a human

supervisor, who has to pre-determine the set of features to

be recognized in each intermediate layer [2], [12], [19].

Since for many problems it is not obvious a priori which

features are optimally suited for the detection of the object(s)

in question, this step can involve time-consuming manual

adjustments.

The authors are with the Kirchhoff Institute for Physics, Ruprecht-
Karls University, Heidelberg, Germany. Email: {fieres, schemmel,
meierk}@kip.uni-heidelberg.de

Much research has been spent on how the hidden layers

can be trained automatically. On the one hand, there are

straight-forward, fully supervised methods, like error back-

propagation [9], which can get computationally demanding

for large multi-layer networks. On the other hand, various

approaches have been proposed for the emergence of a

hierarchical set of feature detectors by self-organization.

Several un-supervised learning rules have been applied to

all or some network layers, often some sort of correlation

learning (e.g., Hebbian-type [11], self-organizing maps and

auto-encoding [12], competitive learning [2]). In order to

classify natural images, hybrid learning strategies have been

successfully employed where the intermediate layers are

trained by self-organization and only a simple classifier on

top is trained by some supervised method [12].

While convolutional neural networks usually possess a

huge absolute number of computable connections, they make

heavy use of a concept called weight sharing, reducing the

actual amount of adjustable parameters: Large groups of

neurons have identical weights. Thus, the same operation

(“compute the dot-product with a given weight vector”) must

be applied over and over again to different data. Moreover,

the tree-like connection topology (see Figure 1) makes paral-

lel evaluation straight-forward. These facts lead naturally to

the idea to employ a dedicated, possibly parallely working,

hardware device optimized for this simple type of operation.

A custom hardware solution was applied sucessfully for

speeding up a convolutionary network several years ago [8].

Nowadays, where almost arbitrary amounts of computing

speed can be bought off-the-shelf, e.g., in form of linux

clusters, the development of non-standard computing devices

is motivated more by the desire for small, low-power solu-

tions, as needed for example in mobile applications, or when

economic mass production justifies the development effort

(e.g., in automotive industry). In the long run, custom analog

solutions could be an alternative to standard processors in

terms of production yield, especially in the field of “soft”

computing techniques: While inevitable defects occurring on

microchips constitute a serious issue in large digital designs,

one can envisage trainable systems working as well on

imperfect, or even partly damaged, substrates.

A mixed-signal analog/digital Very-Large-Scale Integra-

tion neural network architecture has been developed by some

of the authors [16]. A prototype chip is available and has

been applied successfully to real-world tasks [4]. Moreover,

a system allowing the parallel operation of multiple of

those chips is existing [1]. In the chosen hardware architec-

ture, neural computations are performed by analog circuits,

enabling high integration and low power consumption. In

contrast, communication between neurons is digital, making

data transport unaffected by noise and allowing to interface

and interconnect the chips by standard digital equipment [1].

In the present work, it is evaluated how a convolutional

neural network which is implemented on this hardware

architecture can be trained. One difficulty is rooted in the

hard-threshold activation function of the featured neuron

model. Since this function lacks a meaningful derivative,

well-proven gradient-based methods like back-propagation

cannot be applied. Most other supervised and non-supervised

automated training methods reported in the field of con-

volutional networks assume continuous neuron outputs and

therefore can as well not be applied without heavy mod-

ifications. Here, for the hidden layers, a self-organization

process is proposed which extracts features from the training

data by means of a simple clustering technique bearing

resemblance to competitive learning. The output units are

trained supervisedly using the Perceptron learning rule.

As pointed out earlier, in the considered hardware ar-

chitecture weight accumulation1 and comparison with the

threshold is carried out by analog electronics. This implies

that the computation result is never exact. Sources of errors

include for example inherent device variations or temporal

noise. Although some of the fixed-pattern variations can

be measured and compensated for by calibration routines

[16], a training strategy is preferred which is robust against

perturbations in the calculation.

In section II, the used network and the proposed training

methods are detailed. In section III, experimental results are

shown, obtained on two different recognition tasks: Hand-

written digits and traffic signs. The robustness of the network

against weight perturbation is evaluated. Moreover, it is

tested how the network’s performance is affected by coarse

weight quantization, which, in the shown case, implies an

enormous reduction of computational complexity. The paper

closes with a critical discussion and an outlook in section

IV.

II. NETWORK DETAILS AND TRAINING

The network consists of the input layer, four hidden layers,

and one output layer (Figure 1b). The synaptic weights in the

hidden layers are adjusted by self-organization, whereas the

output layer is trained in a supervised way.

A. Input layer

In order to be processed by the hard-threshold network,

the grey-level input images are transformed into a binary

representation. For the hand-written digits, this is done by

applying a threshold at half the maximum pixel value. For the

grey-value traffic sign photographs, a Laplacian-of-Gaussian

filter (LoG) is applied, which is a simple contrast detector

[6], with subsequent thresholding to mark regions with high

contrast (see Figure 5).

1The usual multiply-and-accumulate operation breaks down to mere
accumulation in networks of hard-threshold neurons.

B. Intermediate layers

One network layer consists of a stack of feature planes,

each of which is a regular grid of neurons (see Figure 1a).

A group of neurons from adjacent planes within the same

layer, located at the same grid position, shall be referred to

as a hyper column. The neurons in a given hyper column

receive input connections from the same local neighborhood

of neurons in the preceding layer (which will be called their

input region), but are each tuned to detect a different feature.

All hyper-columns within a given layer are identical with

respect to their neurons’ synaptic weights (weight sharing),

while receiving inputs from shifted input regions, depending

on their own grid position. In this sense, each plane computes

a convolution with the preceding layer, while thresholding

the result according to the steplike activation function.

Four layers of this kind are present, where—

alternatingly—the odd-numbered are S-type (or recognition)

layers, and the even-numbered are C-type (or blurring)

layers (see Figure 1b). The S/C notation is adopted from

[2].2 The S-layers have plastic synaptic weights being

adjusted during training, whereas the C-layers’ neurons

have all their weights fixed to 1. Another particularity of

C-layers is that the number of feature planes is the same

as for the preceding S-layer, and that neurons in a given

C-plane receive input only from the corresponding plane in

the preceding S-layer. This way, a C-layer spatially blurs

the S-layer’s output. The blurring operation promotes the

emergence of invariant recognition since it results in local

shift invariance [2] and thus in higher-order invariances

in higher network layers. Moreover, in the C-layers,

layer dimensions are decreased about a pre-defined factor.

Together with the connection topology, this leads to growing

receptive fields in higher-layer neurons. The receptive field

of a neuron denotes the region on the input layer from which

this neuron eventually receives input. Scaling is applied to

a hypothetical full-sized C-layer by evaluating only some

of the rows and columns in the layer grid and discarding

the rest. For example, at a scaling factor of 1/a, where a is

integer, only each ath row and column are kept. The size of

the blurring kernel (i.e., the input region) is always chosen

greater than a, so no information is lost in the sub-sampling

step. In order to compute cells at the border, two strategies

are applied: For the hand-written digits, parts of the input

region falling outside the previous layer’s dimensions are

filled with the background value (-1). For the traffic sign

images, where pseudo line-endings occur at the image

border, the S-type layers are cropped to not contain border

neurons.

All neurons compute their output according to

O = β (w · I− t) , (1)

where w = [w1, . . . , wN] and t are the neuron’s weights

resp. threshold, I = [I1, . . . , IN] are the current input values

2Fukushima named the layer types after the Simple and Complex cells
found in the mammalian visual cortex by Hubel and Wiesel (1968).

Input layer

Layer 2

Input region

K

planes

Layer 1
1

Hyper−column

Feature

F
ee

d
 f

o
rw

ar
d
 p

ro
ce

ss
in

g
Feed−forward processing

5x5

45

30x14x14

1x28x28

150x14x14

30x28x28

3x3
7x7

Input 1 (S) 2 (C) 3 (S) 4 (C) Output

150x7x7

7x7

(a) (b)

Fig. 1. Network architecture (a) Detailed view of the input layer and the first two hidden layers. Layers are organized in feature planes, which are regular
grids of neurons (neurons are represented by small squares). Neurons receive input connections from a local neighborhood in the previous layer. Each
feature plane is tuned to detect a specific feature. By successive feature extraction through the layer hierarchy, more and more complex shapes are detected.
(b) Overall schematic. Processing left-to-right for layout reasons. The hidden layers are alternatingly of the ’S’ (feature extracting) and ’C’ (blurring) type.
S-layer neurons are fully connected to their input region, while C-neurons get input from corresponding planes only. Groups of layers denoted by braces
are referred to as S/C layer pairs. Shown layer dimensions and convolution kernel sizes refer to the MNIST experiments.

(a) (b)

Fig. 2. Schematic visualization of the clustering process. Dots represent the
input vectors I located on the surface of a hyper sphere. Crosses represent
the weight vectors wk . Input vectors are clustered around shape features
typical for the presented objects. (a) Before training. wk are initialized
with random vectors from I. (b) After training. wk have settled in cluster
centers.

Ii ∈ {−1, 1}, and β(x) is the bipolar step function (1 for

x > 0, −1 otherwise).3

The threshold t is not incorporated in the training process

(see below), and is set explicitely afterwards. For the S-

layers, t is set to a fraction of the respective neuron’s

maximally achievable activation: t = TS

∑

i |wi|. For C-

layers, t = TC . The constants TS and TC are optimized

independently for each layer.

Training of the S-layers proceeds bottom-up, i.e., layer n
(n odd) is trained after training of layer n−2 has been com-

pleted. Assume that layer n, consisting of K feature planes,

is to be trained. Since weight sharing is applied, only the

weights of one prototype hyper column must be identified,

3The hardware architecture described in [16] uses 0/1 as possible neuron
outputs. Before transferring the trained network onto the hardware, the
weights and thresholds must be converted accordingly, which is always
possible by a simple transformation.

which is then duplicated to the full layer dimensions. As a

result, the trained layer can recognize every feature at every

position. For each training image (index j) and for each grid

position in layer n (indices x, y), there is one input vector

I
j
xy to the hyper column at that position. (Remember: in S-

layers, all neurons within a hyper column receive the same

input vector.) Let I := {Ij
xy/||Ij

xy||} be the set of all those

(normalized) input vectors.4 The vectors in I all lie on a

unit hyper-sphere in the input space, and, since the training

images contain the objects to be recognized, the vectors are

likely to be clustered around shape features which are typical

for the objects in question and which can be recognized in

layer n. Consequently, in the proposed approach, K clusters

in I are identified and the cluster centers are employed as

the weight vectors of the K neurons in the prototype hyper

column (see Figure 2 for an illustration). This consideration

does not depend on certain shape features to appear always at

the same positions on the input layer, since I includes data

from all grid positions. For clustering, the well known K-

Means clustering algorithm is used (see e.g. [5]). The angle

between two vectors is taken as the distance measure. for

clustering.

In detail, the procedure is as follows: At the start, the

cluster centers wk, k = 1..K, are initialized with vectors

randomly drawn from I. Then, repeatedly, the following two

steps are performed in each epoch:

1) For each vector i ∈ I, assign i to the cluster k̃, the

center of which (wk̃) has the smallest angle to i (k̃ =
argmaxK

k=1
(i ·wk)).

4In practice, division by ||Ij
xy || can be omitted when constructing I.

Since bipolar vectors of a given dimension have fixed length, equations
involving vectors from I are just scaled by a constant factor, leaving the
clustering result invariant.

2) Update each cluster center wk to be the center of mass

of all vectors being assigned to the kth cluster. Re-normalize

wk to unit length.

The procedure stops if either only a small fraction of patterns

switched their cluster assignments in the previous epoch,

or a pre-defined number of epochs has elapsed. The exact

definition of the termination criterion does not seem critical.

In the experiments presented, a fraction of 0.5% and a

maximum of 100 epochs is used. In most observed cases, the

algorithm terminates after less than 50 epochs. Because the

MNIST data set is very large, to save computing time only

the first 200 samples of each class are used for clustering.

Taking the first 400 instead does not improve results. For the

traffic signs, all images in the training set are included. Input

vectors which are entirely inactive (all components equal -1)

are not considered for clustering, since they are not assumed

to contain meaningful features.

In order to understand this training technique in terms of

well-known neural network paradigms, it is instructive to

have a look at the probabilistic version of the K-Means algo-

rithm, which would produce similar results: Here, the cluster

centers are updated after each single pattern presentation. In

each iteration step, the angles between a randomly selected

normalized input vector i ∈ I and each neuron’s unit-length

weight vector are evaluated and the best-matching neuron k̃
is updated according to

wk̃ ← wk̃ + ǫi. (2)

After each such update, wk̃ is re-normalized. The constant

ǫ defines the speed of learning. The update scheme (2)

with successive weight normalization resembles Oja’s variant

of the Hebbian learning rule. Adding the winner-takes-all

scheme by which only the best matching neuron is updated,

the prototype hyper column is trained according to a com-

petitive learning scheme which is in turn known to be able

to perform data clustering [15], [3].

C. Output layer

The output layer is a pairwise linear classifier, fully

connected to the last intermediate layer. Each output cell

is trained only with patterns from two selected classes in

order to separate them from each other. For c pattern classes,

and considering every possible combination of two classes,

there are c(c−1)/2 output units. When evaluating an unseen

pattern, each unit votes for one of the two classes it was

trained with. The class receiving the most overall votes

wins. If two classes receive the same number of votes, the

respective pattern is counted as mis-classified. For the traffic-

sign problem, a different output encoding scheme is applied

(see section III).

The output neurons are trained using simple Perceptron

learning, where after each pattern presentation, a neuron’s

weights and threshold v = [w1, . . . , wN , t] are updated

according to:

v←

{

v −OJ, if O is incorrect

v, if O is correct
,

where J = [I1, . . . , IN ,−1] is the current input vector plus

an additional constant component to account for the bias

t in v, and O is the neuron’s current output. Patterns are

presented in random order and the training is terminated

if the output is always correct for a pre-defined number of

consecutive pattern presentations, or a maximum number of

iterations is reached. The required number of consecutive

correct patterns is ad-hoc set to 10,000 in all of the exper-

iments, resulting almost always in termination after about

1-2 million pattern presentations for the MNIST data set (3-

4 Million for the expanded MNIST data set).

D. Network parameters

For a concrete network implementation, various details

regarding the network topology, as well as the threshold

constants TS and TC , must be fixed. The parameters needed

for one adjacent S/C layer pair are defined here: K denotes

the number of feature planes per layer. For the S-layers, the

input region is a square of hyper-columns of size DS ×DS .

C-neurons have a circular input region with diameter DC

with all their weights fixed to 1. The threshold parameters

TS and TC have already been discussed above. The factor

by which the layers are scaled down in the C-layers shall be

denoted by α

III. RESULTS

A. Recognition Performance

1) Hand-written digits (MNIST): The MNIST data set

[10] consists of 28x28 pixel grey-value images of the hand-

written digits “0” through “9”. 60,000 images are provided

for training, 10,000 for testing. In the experiments reported

here, the training images are split further into a training

set (50,000) and a validation set (10,000), each with equal

distribution of digit classes. The validation set is used for

parameter adjustments. With the parameters found to perform

best on the validation set (Table I), 10 networks are trained

with the patterns of the training and validation set combined,

and tested on the test set. The average error rate obtained on

the test set is 1.71%±0.07% (best network: 1.56%, worst

network: 1.84%). The error given is the standard deviation

within the ensemble of the 10 networks.

In order to give an impression of how the applied training

method yields a hierarchical set of feature detectors, exam-

ples of detected features are shown. The spatial distributions

of the synaptic weights of the first network layer are shown

in Figure 3(a). The 5x5 weights of 20 selected neurons are

visualized in a grey-scale coded scheme, (white=negative,

TABLE I

PARAMETERS USED IN THE EXPERIMENTS.

K DS TS DC TC α

MNIST

Layers 1-2 30 5 0.5 7 1 0.5
Layers 3-4 150 3 0.4 7 0 0.5

Traffic signs

Layers 1-2 25 5 0.5 11 1 0.33
Layers 3-4 100 3 0.5 11 3 0.33

TABLE II

CLASSIFICATION ERRORS [% FALSE PATTERNS]

Training set Weight Error (Avg, Best Worst
expansion quantization 10 runs) [%] [%] [%]

MNIST

None None 1.71±0.07 1.56 1.84
Elastic trans. None 1.48±0.10 1.26 1.65
None -1, 0, +1 2.80±1.06 1.83 5.29
None -1, 0, +1 (on-chip) 1.80±0.10 1.61 1.95

Traffic signs

None None 2.2±1.0 0 4.0

(a)

(b)

Fig. 3. Features detected in the S-layers after training. (a) Spatial
distributions of synaptic weights of 20 selected layer-1 neurons. (b) For
12 selected layer-3 neurons, receptive field samples are shown which make
the neuron fire. See text for more details.

black=positive). Obviously, oriented edges and lines are the

preferred stimuli in this network layer. In the second recogni-

tion stage (layer 3), the plain weight values are inconvenient

to interpret. Instead, effective receptive field stimuli are

shown for selected neurons, i.e., image patches which cause

strong activation. For this, the internal activation (w ·I in (1))

of each neuron is recorded for 1,000 random test images.

In Figure 3(b), for 12 selected neurons the ten receptive

field stimuli are shown which evoke the strongest activations

throughout the considered data set, each ordered from top-left

to bottom-right. Apparently, features characteristic for digits

(line-endings, loops, and other specific stroke segments)

are recognized in layer 3. Note that until this point no

explicit knowledge about the classification task has entered

the system. The investigations suggest that the proposed

method of feature extraction in the intermediate layers can be

very differentiated, such that—in the ideal case—the output

layer merely has to choose from the features presented to it.

It has been stated that the MNIST training set may be too

small to infer generalization properly, which gives raise to

expand the data set by applying spatial deformations to the

original training images [9], [17]. In this work, a deformation

based on Gaussian displacement kernels is chosen, simply

because a corresponding software program was available. In

particular, each image from the MNIST training set is subject

to the following transformation. For each pixel position r
′ =

(x′, y′) of the transformed image, the corresponding position

→ →

→ →

→ →

→ →

→ →

Fig. 4. Expanding the training data set by elastic transformations. Shown
are examples of the original and transformed images (binarized versions).

Fig. 5. Samples of the traffic sign data set. Each row shows samples of a
different class. Each image is displayed as original grey-value image (left,
75x75pixels) and LoG preprocessed version (right, 73x73pixels) as fed into
the network.

in the source image r is computed according to

r = r
′ +

G
∑

g=1

dg exp
(

−||r′ − rg||
2/σ2

)

,

where rg and dg are the positions and maximum displace-

ments of each of the G Gaussian kernels, and σ is the

(uniform) kernel width. The pixel r
′ in the transformed

image is assigned the grey-value of the original image at

position r. Grey-values at non-integer pixel positions are

inferred by bi-linear interpolation. The constants dg and rg

are drawn from a uniform distribution, separately for each

image to be transformed. Every image from the training

set is transformed, doubling the training set from 60,000 to

120,000. The parameters used are dx,y
g ∈ [−3, 3] (3 pixels

maximum displacement), rx,y
g ∈ [0, 28] (every position on a

28x28 image is a possible kernel center), σ = 8, and G = 3
(3 Gaussian kernels used). These values were chosen ad-hoc

by visual judgment of the transformation results, and have

not been subject to optimization. Deformation is applied to

the original grey-value MNIST images, before binarization.

Examples of the transformed images are shown in Figure 4.

With training the output units using the expanded training

set, the average classification error on the test set goes down

to 1.48% (see Table II).

2) Traffic Signs: In order to illustrate that the training

method works invariant of position and scale, and also with

noise present, the network is applied to photographs of traffic

signs. 400 pictures of 4 classes of traffic signs (100 per

class) were taken and cropped to 75x75 pixels dimension,

while making sure that the images still show variances in

shift and scale. The images are pre-processed as described in

section II. The preprocessed images are 73x73 pixels in size.

Figure 5 shows examples. The images are available from the

authors on request. The data set is split randomly in two parts

(300/100) serving as training and test data sets, respectively.

Network parameters are shown in Table I, bottom two rows.

Parameter optimization is done on the test set. This may be

not 100% clean, but introcuding an extra validation set would

have decreased the already small training set even further.

Here, the pairwise linear classifier used for the MNIST

images does not produce good results, probably due to the

smaller number of image classes. Instead, each output unit

is trained to separate one given class from all the others. Per

class, five units are trained, making an overall number of

4x5=20 output units. On the test set, voting among these units

determines the answer of the network. If two or more classes

receive an equal number of votes, the image is supposed to

be mis-classified. Training and evaluation of the network is

conducted ten times. The average, best, and worst achieved

classification errors are 2.2%, 0.0%, and 4.0%, respectively.

The standard deviation within the ensemble of ten networks

is 1.0%.

B. Robustness against random weight perturbation

In analog computing devices various phenomena influence

the accuracy of the computation result. In the following

investigation it is assumed that variations in the network’s

weight values constitute the dominating effect in the con-

sidered hardware architecture. In particular, the effective

synapse strengths are supposed to deviate from the values

the chip was configured with by a random amount, drawn

from a normal distribution of a given width. Throughout this

paragraph, the unperturbed weight vectors are assumed to be

scaled to unit maximum norm (the strongest weight has an

absolute value of 1), and the thresholds are realized by one

or many additional constant inputs with weights of absolute

value not larger than 1.

Two scenarios are considered: In the first scenario, the

weights of the hidden S-type layers of a completely trained

network are perturbed and the influence on the classification

performance is measured. This corresponds to loading a

network fully trained in software onto the chip. The output

layer is assumed to be evaluated in software and thus is not

subject to perturbation. Results are shown in the diagram in

Figure 6, upper curve. The shaded area corresponds to no

perturbation. A perturbation width of 0.02 of the maximum

weight value results in only a small performance loss.

With stronger perturbations, the average error and sandard

deviation both start to increase. Although in the chosen view

the curve seems very steep, it should be noted that the

network’s performance never breaks down completely. Even

when the width of the perturbation reaches as much as 50%

of the maximum weight value, approx. 93% of all patterns

are correctly recognized on average.

In the second scenario, an on-chip training approach is

simulated: The weights of a layer are perturbed immediately

after training that layer. Consecutive layers (including the

Width of perturbation (units of max weight)

T
es

t
er

ro
r

[%
 f

al
se

 i
m

ag
es

]

6.7 +/− 1.6

 1.5

 2.0

2.5

3.0

3.5

 0.01 0.02 0.05 0.1 0.2 0.5 1

Fig. 6. Recognition performance on the MNIST test set with random
weight perturbation. The shaded area corresponds to network performance
without perturbation (1.71% ± 0.07%). Upper curve: Perturbation of fully
trained network. Lower curve: Perturbation with on-chip training approach
(see text). Errors shown are the standard deviations among 10 training runs.
X-axis is logarithmic for convenience.

output units) are trained with the patterns produced by the

already perturbed previous layer. Since succeeding layers

“learn” to live with the imperfections of the previous one,

more robust behavior is expected as in the first scenario.

Figure 6, lower curve, shows the results. Until a perturbation

width of 0.2, the classification performance deviates only

marginally from a network without perturbation (shaded

area). Only very strong perturbations with a width of 0.5

result in significant performance loss. The on-chip approach

is able to compensate only for fixed-pattern errors (i.e.,

perturbations which do not vary over time), which however,

according to experiences with the prototype chip, seem to

play the major role. The on-chip approach is not easily

applicable when multiple chips are operated in parallel,

because here an identical behavior of all chips is preferred.

C. Weight quantization

The experiments in the previous paragraph provide evi-

dence that layers trained with the clustering approach are

quite robust against random weight perturbations especially

when employing an on-chip training approach. For un-

derstanding where this high degree of robustness comes

from, a look at the distribution of weights in the trained

convolutional layers is helpful. Figure 7 (solid line) shows

a bimodal distribution, as usually observed after Hebbian-

type re-inforcement learning with a weight saturation condi-

tion [11] (cf., Formula (2) + normalization): Most synaptic

weights are either near their maximum or near their minimum

allowed weight value. As a result, the global preference of

a neuron (whether it likes an input to be on or off) is rather

little affected by small or medium weight changes. As an

indication of this behavior, the overall shape of the weight

distribution vanishes only for very strong perturbations (Fig-

Weight value

W
ei

g
h
t

co
u
n
t

No perturbation
width=0.2
width=0.5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Fig. 7. Solid line: Distribution of synaptic weights of stages 1 and 3
after training (histogram bin-size 0.2). Weights are forced to the interval
[-1,1] by scaling the weight vectors to unit maximum norm after training.
Strong weight values (excitatory and inhibitory) dominate. This pronounced
bimodal distribution is not easily destroyed by perturbation: Dashed line:
After strong perturbation (width=0.2) Dotted line: After very strong pertur-
bation (width=0.5).

ure 7, dashed and dotted lines).

These observations raised the question if weights being

able to code only extreme values (-1, 0, +1) are sufficient for

the implementation of the hidden layers. Such quantization

reduces a neuron’s task to plain pattern matching (“how many

pixels are correct?”) while requiring only most basic com-

puting operations. Additional training runs were conducted

where, after training, the weights of the hidden layers are

quantized by the following scheme:

w ←

+1 if w > 0.5
−1 if w < −0.5
0 else

.

Like in the previous experiments, the weight change is

applied either to a completely trained network, or applied

successively to each layer, where consecutive layers, includ-

ing the output layer, are trained with patterns produced by the

quantized layer(s) (“on-chip” approach). The results (Table

II) confirm that the performance is not severely affected by

the quantization. Again, as expected the performance loss is

smaller when using the on-chip training approach.

All presented results were obtained using a software imple-

mentation of the described networks. This is in part due to the

fact that the parallelly ongoing development of the hardware

system has not quite kept pace with the requirements of the

presented application (cf., section IV). On the other hand,

this way the properties of the network model and training

method are evaluated isolated from the particularities of a

concrete hardware substrate, and reproducability is ensured.

IV. DISCUSSION AND OUTLOOK

It is shown that a neural network consisting of binary

threshold neurons, suited for being implemented in mixed-

signal low-power hardware, trained using simple strategies,

can produce good results on two natural image classification

tasks.

The presented methods are robust against random weight

perturbations, especially when employing an on-chip training

approach. This property facilitates the implementation in

highly integrated low-power analog circuits which usually

exhibit a certain degree of inaccuracy. During the experi-

ments it turned out that even very coarse weight quantization

does not severely affect the feature-extracting property of the

hidden layers. Experiments using only three distinct weight

values (-1, 0, +1) are able to produce results comparable

to using continuous weight values. In networks where both

the neuron’s outputs and the weights are quantized in this

rigorous way, the normal multiply-and-accumulate operations

followed by the evaluation of an activation function reduce to

mere counting and subsequent thresholding. It is remarkable

that a powerful feature extraction system can work using only

such simple computing instructions.

The error rates achieved on the MNIST data set do not

yet quite reach the best rates reported for convolutional

networks trained by back-propagation. The best values found

are 0.95% [10] (without preprocessing the images, e.g.,

de-slanting, and without expanding the training set, e.g.,

elastic distortions), respectively 0.4% [17] (with expansion

of the training set by elastic distortions). This may be due

to information loss introduced when binarizing the images.

For comparison, a continuous-valued linear classifier trained

using MSE was found to achieve about 14.5% error rate on

the binarized images in contrast to reported 12% for the un-

processed grey-value images [10]. However, the performance

of the presented system can probably be improved, e.g., by

optimizing the parameters for the elastic transformations or

by employing a more sophisticated read-out mechanism than

the pairwise linear classifier.

The final aim is to implement the system on a mixed-

signal hardware architecture. Setups for recognizing simple

geometric shapes have been already run successfully on the

prototype chip. Ample evaluations of the hardware system

(possible speed gain, power consumption per image, effects

on classification performance) will be conducted. However,

due to limitations of the prototype chip (a maximum of 128

inputs per neuron), the evaluation of large networks as shown

in this work may have to be postponed for a future larger

implementation of the architecture.

In the presented system, the neuron thresholds are not

included in the automatic training, but are left as meta-

parameters to be chosen appropriately. Although the choice

turns out not to be too critical, it remains a time-consuming

task. Methods will be evaluated to determine the optimal

thresholds automatically.

ACKNOWLEDGMENTS

This work was funded in part by the European Union,

contracts nos. IST-2001-34712 (SenseMaker) and IST-2004-

2.3.4.2 (FACETS). The first author was supported by

a scholarship of the Landesgraduiertenförderung, Baden-

Württemberg. He also likes to thank A. Kovatcheva for help

with taking the traffic sign photographs. We thank all persons

who contributed to this work with useful comments.

REFERENCES

[1] J. Fieres, A. Grubl, S. Philipp, K. Meier, J. Schemmel, F. Schürmann:
A platform for parallel operation of VLSI neural networks. Conference
on Brain Inspired Cognitive Systems (BICS 2004), Stirling, Scotland
(2004)

[2] K. Fukushima: Neocognitron: A hierarchical neural network capable
of visual pattern recognition. Neural Networks 1, 119-130 (1988)

[3] S. Haykin: Neural networks: a comprehensive foundation. 2nd ed.,
Prentice Hall, New Jersey (1999)

[4] S. G. Hohmann, J. Fieres, K. Meier, J. Schemmel, T. Schmittz, F.
Schürmann: Training Fast Mixed-Signal Neural Networks for Data
Classification. Proceedings of the 2004 International Joint Conference
on Neural Networks (IJCNN’04), 2647-2652, IEEE Press (2004)

[5] J.-S. R. Jang, C.T. Sun, E. Mizutani: Neuro-Fuzzy and Soft Comput-
ing, Prentice-Hall (1997)

[6] B. Jähne: Digital Image Processing. 6th ed., Springer Verlag Berlin,
Heidelberg, New York (2005)

[7] S. Lawrence, C.L. Giles, A.C. Tsoi, A.D. Back: Face recognition:
a convolutional neural network approach. Transactions on Neural
Networks 8(1) 98-113 (1997)

[8] Y. LeCun, L. D. Jackel, B. Boser, J.S. Denker, H. P. Graf, I. Guyon,
D. Henderson, R.E. Howard, W. Hubbard: Handwritten digit recogni-
tion: Applications of neural net chips and automatic learning. IEEE
Communications Magazine, November 1989, 41-46 (1989)

[9] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner: Gradient-Based Learning

Applied to Document Recognition. Proceedings of the IEEE, 86(11),
2278-2324 (1998)

[10] Y. LeCun: The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist

[11] R. Linsker: From basic network principles to neural architecture.
(Series of 3 papers) Proc. Natl. Sci. USA 83, 7508-7512 (1983)

[12] C. Neubauer: Evaluation of convolutional neural networks for visual
recognition. Transactions on Neural Networks 9(4), 685-696 (1998)

[13] M.W. Oram, D.I. Perret: Modeling visual recognition from neurobio-
logical constraints. Neural Networks (7) 945-972 (1994)

[14] M. Riesenhuber, T. Poggio: Hierarchical Models of Object Recognition
in Cortex. Nature Neuroscience 2 , 1019-1025 (1999)

[15] D. E. Rumelhart, D. Zipser: Feature discovery by competitive learning.
Cognitive Science, 9, 75-112 (1985)

[16] J. Schemmel, S. Hohmann, K. Meier, F. Schurmann: A mixed-
mode analog neural network using current-steering synapses. Analog
Integrated Circuits and Signal Processing 38, 233-244 (2004)

[17] P.Y. Simard, D. Steinkraus, J.C. Platt: Best Practices for Convolutional
Neural Networks Applied to Visual Document Analysis. Intl. Conf.
Document Analysis and Recognition, 958-962 (2003)

[18] K. Tanaka: Inferotemporal cortex and object vision. Annu. Rev.
Neurosci 19, 109-139 (1996)

[19] J. Teichert, R. Malaka: A Component Association Architecture for Im-
age Understanding. Lecture Notes in Computer Science 2415 (ICANN
2002), 125-130.

[20] S. Ullmann, S. Soloviev: Computation of pattern invariance in brain-
like structures. Neural Networks 12, 1021-1036, (1999)

