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Abstract. Recently, the authors described a training method for a con-
volutional neural network of threshold neurons. Hidden layers are trained
by by clustering, in a feed-forward manner, while the output layer is
trained using the supervised Perceptron rule. The system is designed for
implementation on an existing low-power analog hardware architecture,
exhibiting inherent error sources affecting the computation accuracy in
unspecified ways. One key technique is to train the network on-chip, tak-
ing possible errors into account without any need to quantify them. For
the hidden layers, an on-chip approach has been applied previously. In the
present work, a chip-in-the-loop version of the iterative Perceptron rule
is introduced for training the output layer. Influences of various types of
errors are thoroughly investigated (noisy, deleted, and clamped weights)
for all network layers, using the MNIST database of hand-written digits
as a benchmark.

1 Introduction

Many models of the human visual system assume a hierarchical set of feature
detectors to play a fundamental role in invariant object recognition [13, 17, 12,
18]. The idea is that a visual representation of a natural object is composed of a
number of smaller shapes which, each taken by themselves, appear more invariant
under transformations than the entire object as a whole. Using a hierarchical
system, where complex features are inferred from the presence or absence of
many simpler features, recognition can be performed more robustly and with
less computational effort compared to learning each single visual representation
of the whole object.

Inspired by biology, convolutional neural networks apply this idea in the
engineering field: The first layer usually detects simple features, e.g., oriented
line segments. By successive feature extraction through the layer hierarchy, more
and more complex shapes, and finally entire objects can be recognized in higher
layers. Such networks have been shown to be robust image classifiers, provided
the details of the network topology are correctly chosen and an appropriate
training strategy is applied [3, 8, 16, 6, 11].

While convolutional neural networks usually possess a huge absolute num-
ber of computable connections, they make heavy use of a concept called weight
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sharing, reducing the actual amount of adjustable parameters: Large groups of
neurons have identical weights. Thus, the same operation (“compute the dot-
product with a given weight vector”) must be applied over and over again to
different data. Moreover, the tree-like connection topology (see Fig. 1) makes
parallel evaluation straight-forward. These facts lead naturally to the idea to
employ a dedicated, possibly parallely working, hardware device optimized for
this simple type of operation. A custom hardware solution was applied success-
fully for speeding up a convolutionary network several years ago [7]. Nowadays,
where almost arbitrary amounts of computing speed can be bought off-the-shelf,
e.g., in form of Linux clusters, the development of non-standard computing de-
vices is motivated more by the desire for small, low-power solutions, as needed for
example in mobile applications, or when economic mass production justifies the
development effort (e.g., in automotive industry). In the long run, custom analog
solutions could be an alternative to standard processors in terms of production
yield, especially in the field of “soft” computing techniques: While inevitable de-
fects occurring on microchips constitute a serious issue in large digital designs,
one can envisage trainable systems working as well on imperfect, or even partly
damaged, substrates.

A mixed-signal analog/digital Very-Large-Scale Integration neural network
architecture has been developed by some of the authors [15]. A prototype chip
is available and has been applied successfully to real-world tasks [4]. Connecting
multiple chips by digital links allows smooth scalability[1]. The authors proposed
a convolutional network implementation for this hardware architecture [2]. The
threshold neurons provided by the hardware render gradient based methods inap-
plicable. Instead, a mixture of self-organized clustering and Perceptron learning
is employed. The present paper focuses on techniques for assuring robustness of
the algorithm against variations of the hardware substrate.

2 General Setup and Training

Input layer. In order to be processed by the hard-threshold network, the grey-
level input images are transformed into a binary representation by applying a
threshold at half the maximum pixel value.

Hidden layers. Network layers consist of a stack of feature planes, each of which
is a rectangular grid of neurons (see Fig. 1). A group of neurons from adjacent
planes within the same layer, located at the same grid position, will be referred
to as a hyper column. The neurons in a given hyper column receive input con-
nections from the same local neighborhood of neurons in the preceding layer
(which will be called their input region), but are each tuned to detect a different
feature. All hyper-columns within a given layer are identical with respect to their
neurons’ synaptic weights (weight sharing), while receiving inputs from shifted
input regions, depending on their own grid position.

Four layers of this kind are present, where—alternatingly—the odd-numbered
are S-type (or recognition) layers, and the even-numbered are C-type (or blur-
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Fig. 1. Network topology Layers are organized in feature planes, which are regular
grids of neurons. Neurons receive input connections from a local neighborhood in the
previous layer.

ring) layers. The S/C notation is adopted from [3].1 The S-layer weights are
adjusted during training, whereas the C-layer neurons have all their weights
fixed to 1. Another particularity of C-layers is that neurons receive input only
from the corresponding plane in the preceding S-layer. This way, a C-layer spa-
tially blurs the S-layer’s activation pattern. The blurring operation results in
local shift invariance [3] and thus in higher-order invariances in higher network
layers. In the C-layers, layer dimensions are sub-sampled by a factor of 2. To-
gether with the connection topology, this leads to growing receptive fields in
higher-layer neurons. The receptive field of a neuron denotes the area in the
input layer from which this neuron eventually receives input. For computing
border cells, the previous layer is padded with the background value (-1).

All neurons compute their output according to

O = β (w · I− t) , (1)

where w = [w1, . . . , wN ] and t are the neuron’s weights resp. threshold, I =
[I1, . . . , IN ] are the current input values Ii ∈ {−1, 1}, and β(x) is the bipolar
step function (1 for x > 0, −1 otherwise).2 The threshold t is not incorporated
in the training process (see below), but is set explicitely afterwards. For the
S-layers, t is set to a fraction of the respective neuron’s maximally achievable
activation t = TS

∑

i |wi|. For C-layers, t = TC . The constants TS and TC are
optimized for each layer.

Training of the S-layers proceeds bottom-up. Assume that layer n, consisting
of K feature planes, is to be trained. Only the weights of one prototype hy-
per column are identified, which is then duplicated to the full layer dimensions
(weight sharing). For each training image (index j) and for each grid position

1 Fukushima named the layer types after the Simple and Complex cells found in the
mammalian visual cortex by Hubel and Wiesel (1968).

2 The hardware [15] uses 0/1 neurons. Before transferring the weights to the hardware,
they are converted accordingly which is possible by a simple transformation.
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(a) (b)

Fig. 2. Schematic visualization of the clustering process. Dots represent the input vec-
tors I, located on a hyper sphere, crosses represent the weight vectors wk. Input vectors
are clustered around typical shape features. (a) Before training, wk are initialized with
random members from I. (b) After training, wk have settled in cluster centers.

in layer n (indices x, y), there is one input vector Ij
xy to the hyper column at

that position. Let I := {Ij
xy/||Ij

xy||} be the set of all those (normalized) input
vectors. These vectors lie on a unit hyper-sphere in the input space, and, since
the training images contain the objects to be recognized, the vectors are likely
to be clustered around shape features which are typical for the objects in ques-
tion and which can be recognized in layer n. Consequently, K clusters in I are
identified and the cluster centers are set as the weight vectors of the K neurons
in the prototype hyper column (see Figure 2 for an illustration). This consider-
ation does not depend on certain shape features to appear always at the same
positions on the input layer, since I includes data from all grid positions.

For clustering, the K-Means algorithm is used (see e.g. [5]), where the angle
between two vectors is taken as the distance measure. This training scheme is
equivalent to competitive Hebbian learning [14]. The algorithm stops if either
only a small fraction (0.5%) of patterns switched their cluster assignments in the
previous epoch or a maximum of 100 epochs has elapsed. The exact definition
of the termination criterion does not seem critical. Only a subset of the training
images (200 per class) is considered for clustering. Taking 400 per class instead
does not improve results.

Output layer. The output layer is a pairwise linear classifier, fully connected to
the last intermediate layer. Each output cell is trained to discriminate only two
classes. For 10 pattern classes, and considering every possible combination of
two classes, there are 45 output units. When evaluating an unseen pattern, each
unit votes for one of the two classes it was trained with. The class receiving the
most overall votes wins. Training is done using standard Perceptron learning,
where after each pattern presentation, a neuron’s weights and threshold v =
[w1, . . . , wN , t] are updated according to:

v←

{

v −OJ, if O is incorrect
v, if O is correct

, (2)

where J = [I1, . . . , IN ,−1] is the current input vector plus an additional con-
stant component to account for the bias t in v, and O is the neuron’s current
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output. Patterns are presented in random order and the training is terminated
if the output is correct for a pre-defined number of consecutive pattern presen-
tations, The required number of consecutive correct patterns is 10,000 in all of
the experiments, resulting almost always in termination after about 1-2 million
pattern presentations.

Meta-parameters. For a concrete network implementation, various details re-
garding the network topology, as well as the threshold constants TS and TC ,
must be fixed. The meta-parameters needed for one adjacent S/C layer pair are
defined now: K denotes the number of feature planes per layer. For the S-layers,
the input region is a square of hyper-columns of size DS ×DS. C-neurons have
a circular input region with diameter DC with all their weights fixed to 1. The
threshold parameters TS and TC have already been discussed above.

3 On-Chip Training

Before operating the hardware, the neural weight values are loaded onto the
network chip. Due to substrate imperfections and inherent device variations of
the analog computing units, network results generally differ from the ones ex-
pected from exact computation. Here, it is assumed that variations in the weight
values constitute the dominating effect in the considered hardware architecture.
More specifically, we assume that the actual effective weights on the chip differ
from the explicitely programmed weights, according to some distortion model. In
order to account for these weight perturbations, on-chip training techniques are
employed. On-chip training approaches are able to compensate only for fixed-
pattern errors (i.e., perturbations which do not vary over time), which however,
according to experiences with the prototype chip, seem to play the major role.

Hidden Layers. As detailed in section 2, network layers are trained sequentially,
bottom-up. Weight training (clustering) happens in software, based on the out-
put of the previous layer. If, after training a given layer, the trained weights
are loaded onto the chip, the chip’s result can be used as training input for
consecutive layers. Since this way succeeding layers “learn” to live with the im-
perfections of the previous one, more robust behavior is expected compared to
loading a completely software-trained network onto the chip.

Output layer. The straight-forward method just described does not work for the
output layer because no further layer exists which could compensate for possible
errors. Thus, the output layer must be configured such that the effective weights
on the hardware (in contrast to the programmed weights) are optimal. For this
aim, the Perceptron learning algorithm is applied in a “chip-in-the-loop” fashion:
Let v̂ be the effective weight vector after the hardware has been configured
with the programmed weights v. Then, the update rule (2) is applied, with the
difference that the actual output O is now computed on the hardware:

O = O(v̂(v)). (3)
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If the algorithm converges, v̂ will be optimal. Note that no explicit knowledge
about v̂ is necessary, i.e., there is no need for quantitative error analysis.

Certainly, the crucial part is “if the algorithm converges”, which is not guar-
anteed any more even if the data are linearly separable. For example, a malfunc-
tioning synapse could cause the corresponding weight to grow infinitely if one
ore more patterns keep being classified uncorrectly due to this synapse failure.
However, heuristically, no ill behavior is observed in the presented experiments.

Although all 32,000 synapses of the network chip can be reconfigured in about
a tenth of a millisecond, updating the weights after each single pattern is not
very effective, due to the necessary data transfer to and from the hardware, and
other overhead associated with one network run. Minimal training speed can
be achieved by evaluating a few thousand patterns at once and then updating
the weights with the accumulated modification. Nevertheless, in the experiments
presented here, the cingle-pattern update rule is used.

4 Results

Performance with ideal synapses. The MNIST data set [9] is used as a bench-
mark recognition problem. It consists of 28x28 pixel grey-value images of the
hand-written digits “0” through “9”. Samples are shown in Fig. 3. 60,000 im-
ages are provided for training, 10,000 for testing. For finding the optimal meta-
parameters, the training images are split further into a training set (50,000)
and a validation set (10,000), each with equal distribution of digit classes. With
the parameters found to perform best on the validation set (Table 1), 100 net-
works are trained with the patterns of the training and validation set combined,
and tested on the test set. The average error rate obtained on the test set is
1.74%±0.10% (best network: 1.49%, worst network: 1.97%). Here, the error is
given as the standard deviation within the ensemble of the 100 networks.

Performance with faulty synapses. The network’s robustness is tested by ar-
tificially applying three different kinds of synaptic errors to the programmed
weights.
“Noise”: All effective synaptic weights are subject to perturbations by adding
random normally distributed offsets to the programmed weights.
“Delete”: A given fraction of all weights is set to 0, corresponding to disabled
synapses.

K DS TS DC TC

Layers 1-2 30 5 0.5 7 1
Layers 3-4 150 3 0.4 7 0

Table 1. Topology and train-
ing meta-parameters

Fig. 3. Sample digits from the MNIST data
base (binarized version)
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Fig. 4. Different types of synaptic errors in the hidden layers (top), the output layer
(middle), and all layers (bottom). Left: Errors are applied to completely trained net-
work. Right: Errors are incorporated in the training (on-chip approach). The x-axis
denotes the width of weight perturbation for the “noise” error type, resp. the fraction
of affected synapses for the “delete” and “clamp” error types. Logarithmic scale for
convenience. The shaded line corresponds to network performance with ideal synapses
(1.74% ± 0.01%). Here, errors are given as errors of the average value of an ensemble
(stdev/

√
#trials). * Marked curves appear also in [2]
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Fig. 5. Distribution of synaptic weights typically observed in the hidden layers and the
output layer. Weights are forced to the interval [-1,1] by scaling each neuron’s weight
vector to unit maximum norm after training. Histrograms are over all weights in one
trained network.

“Clamp”: A given fraction of all weights is set to the extreme positive or neg-
ative value (-1,1, each 50% chance), corresponding to clamped synapses, e.g., as
caused by electric shortcuts.
All presented results are obtained using a software implementation of the de-
scribed network model. This is mostly due to the fact that the parallelly on-
going development of the hardware system has not quite kept pace with the
requirements of the presented application. In particular, the prototype chip is
too small for large networks as used here (see also section 5). Looking at it pos-
itively, this way the properties of the network model and training method are
evaluated isolated from the particularities of a concrete hardware substrate, and
reproducibility is ensured.

All three error types are applied separately to the hidden layers and the
output layer, and, in a third setting, to the entire network. All settings are first
evaluated when applying the synapse errors to a fully trained network (Fig.
4, left diagrams), and then with employing the on-chip training (Fig. 4, right
diagrams). Each data point represents the average test error rate from a series of
10 independently trained and distorted networks. Clearly, the on-chip training
approach is to a large extent able to compensate for the tested synaptic errors.

It is interesting to observe that the hidden layers show relatively high sensi-
tivity to the deletion of synapses, but can cope quite well with large amounts of
noise, while the output layer behaves the opposite way. This fact can be under-
stood from the different training strategies applied: The hidden layers are trained
by correlation-based learning, which is known to tend to produce extreme synap-
tic weights, c.f., [10]. Fig. 5, left hand side, shows a typical weight distribution
in the hidden layers. In such a bi-modal weight distribution, adding noise will
not easily destroy the overall behavior of a neuron, but setting synapses to zero
(i.e., deleting), is very likely to strongly affect a neuron’s behavior. On the other
hand, a typical weight distribution in the output layer is depicted in Fig. 5, right
side. Here, most weights are close to zero, so deleting synapses will with a high
probability do not much harm to a neuron, while adding noise with an absolute
width will likely alter a synapse’s stength by a large relative factor.
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It should be noted that the low sensitivity of the output layer to synapse
deletion might also be promoted by the large number of synapses present per
neuron: Each output neuron receives more than 7,000 inputs which are highly
inter-correlated, because of the blurring C-layers, neighboring pixels on a feature
plane tend to be in an equal state. When working with pruned networks in the
future (see Outlook), this effect can be better quantified.

5 Conclusion and Outlook

A neural network consisting of binary threshold neurons, trained using a com-
bination of self-organization and supervised learning, is applied to hand-written
digits classification. With regard to the envisaged analog hardware implementa-
tion, robustness to computation errors is required. Therefore, the influences of
various modes of synaptic malfunction are thoroughly evaluated. Two on-chip
approaches are described for coping with fixed-pattern errors. Although initially
not obvious, a simple chip-in-the-loop version of the Perceptron learning rule
produces satisfying results. With the on-chip learning, the network shows to
be remarkably resistant to unknown, but temporally invariable, synaptic errors.
However, it should be noted that even with spontaneous synaptic errors which
were not seen during training, the performance degrades gracefully (Fig. 4, plots
to the left). For example, even with 10% randomly deleted synapses in all layers,
still over 90% of all digits are correctly classified.

The error rates achieved on the MNIST data set do not quite reach the best
rates reported for convolutional networks trained by back-propagation, see [9] for
a “high score”. But taking into account the simplicity of the training methods,
the low complexity of evaluating the network (threshold neurons), and the focus
on robustness, the presented method can certainly be said to be competitive.
Moreover, it has been shown previously that by adding a preprocessing stage
(expanding the training data set by elastic distortions), the test error can be
further decreased [2].

The final aim is to implement the system on a mixed-signal hardware archi-
tecture. Setups for recognizing simple geometric shapes have been already run
successfully on the prototype chip. This chip however features a maximum num-
ber of 128 inputs per neuron, which limits the number of feature planes in the
first convolutional layer to 14 (corresponding to 3 x 3 x 14 = 125 inputs to the
3rd layer), and restricts also the number of possible inputs to the output layer.
The evaluation of a network as shown in this paper has to be postponed for a
larger implementation of the hardware architecture. However, in order to allow
the most realistic evaluation of the hardware system using the prototype chip,
methods are being developed for pruning the network size with comparably little
drawback in performance.



10

Acknowledgments

This work was funded in part by the European Union, contracts nos. IST-2001-
34712 (SenseMaker) and IST-2004-2.3.4.2 (FACETS). The first author was sup-
ported by a scholarship of the Landesgraduiertenförderung, Baden-Württemberg.
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