Imaging label-free intracellular structures by localisation microscopy

Rainer Kaufmann, Patrick Müller, Michael Hausmann, Christoph Cremer

Abstract

Localisation microscopy methods allow to realize a light optical resolution far beyond the Abbe–Rayleigh limit of about 200 nm laterally and 600 nm axially. So far, this progress was achieved using labelling with appropriate fluorochromes and fluorescent proteins. Here, we describe for the first time that optical resolution of cellular structures in the \(\lambda/10\) range (\(\sim 50\) nm) can be achieved even in label-free cells. This was obtained using Spectral Precision Distance/Position Determination Microscopy (SPDM), a method based on the general principles of localisation microscopy. Besides a substantial resolution improvement of autofluorescent structures, SPDM revealed cellular objects which are not detectable under conventional fluorescence imaging conditions.

1. Introduction

In the last decades, light microscopy has re-emerged as one of the fundamental methods in biomedical sciences and cellular biophysics. Typically, cellular structures are analysed by labelling with specific fluorophores which can be imaged using a fluorescence microscopy setup. Widely used methods for specific labelling are fluorochrome conjugated antibodies, or co-expressed fluorescent proteins (e.g. GFP).

A serious impediment to exploit the full potential of light microscopy to study cellular structures has been the conventional optical resolution of about 200 nm laterally and 600 nm axially, the Abbe–Rayleigh limit (Abbe, 1873; Rayleigh, 1896). This limit is still valid for all approaches using the basic conditions stated by Abbe and Rayleigh.

Novel approaches in light microscopy enabled effective optical resolutions down to about 20 nm. One of these methods is localisation microscopy. It is based on the fundamental concept of using fluorophores that can be switched between two different spectral states to achieve a temporal isolation and thus a spatial separation of single signals. This allows to determine the positions of the detected fluorophores even if they are close together (<200 nm). All acquired positions of fluorescent molecules can be merged into one image, in which the effective resolution is determined by the localisation accuracy and the density of the detected signals. Early localisation microscopy approaches (SPDM) describe a localisation precision of 50 nm and less for point like fluorescent objects (Esa et al., 2000; Rauch et al., 2008). Using appropriate dye molecules other techniques (PALM (Betzig et al., 2006), FPALM (Hess et al., 2006), STORM (Rust et al., 2006)) improved the localisation accuracy down to 20 nm and allowed visualisation of large cellular structures. Here, special fluorophores are required, which can be switched between two spectral states using an appropriate additional laser source.

Recently, a novel method of localisation microscopy using conventional fluorophores (e.g. fluorescent proteins or Alexa dyes) was developed (SPDM (Lemmer et al., 2008)). The molecules are switched to a “dark” state by a light induced reversible photo bleaching (Hendrix et al., 2008; Patterson and Lippincott-Schwartz, 2002; Sinnecker et al., 2005). The stochastic recovery of the fluorophores from this “dark” state is used for optical isolation of the single molecule signals. Like in other techniques of localisation microscopy, this allows a precise position determination (down to a few nanometres) of the detected fluorophores.

So far, all localisation microscopy approaches used fluorochrome labelled molecules and fluorescent proteins, respectively. Very recently a method has been described to image fluorophores with undetectable fluorescence by stimulated emission microscopy (Min et al., 2009). This technique allowed various applications to analyse the cellular distribution of so far undetectable molecules; the optical resolution, however, corresponded to the conventional one. In the present report we show that SPDM has the capability of imaging label-free cellular structures.
Fig. 1. SPDM setup. The setup used for the experiments presented in this report is shown schematically in the above figure. Excitation and detection pathway are similar to a conventional wide-field fluorescence microscopy setup, except for the lens [LL]. It allows the adjustment of the illumination intensity in the object space to achieve the appropriate conditions for SPDM.

including structures with so far undetectable fluorescence with localisation accuracies in the 20 nm range.

2. Materials and methods

2.1. SPDM setup

Measurements were accomplished by using the SPDM setup (Gunkel et al., 2009; Kaufmann et al., 2009; Lemmer et al., 2008, 2009). The light induced reversibly bleached state of the molecules, that is necessary for optical isolation, is achieved by illumination with a laser intensity of 10 kW/cm² to several 100 kW/cm². In this manner some fluorophores are either switched to a reversibly bleached state \((M_{fl} \rightarrow M_{rbl}) \) or to an irreversibly bleached state \((M_{fl} \rightarrow M_{ibl}) \). The stochastical recovery of the molecules from the reversibly bleached state \((M_{fl} \leftarrow M_{rbl}) \) is used for optical isolation of the detected molecules. This method enables localisation microscopy with conventionally labelled cells and even completely label-free cells, as it is presented in this report.

The microscopy setup provides two DPSS laser sources with a wavelength of 488 nm (Sapphire HP 488, Coherent, Dieburg, Germany) and 568 nm (Sapphire 568, Coherent, Dieburg, Germany). The laser beams are combined and expanded by a factor of 2.5 before being focused into the back focal plane of an oil immersion objective lens (HCX PL APO, 63x, NA = 0.7–1.4, Leica, Wetzlar, Germany). Fluorescent light emitted by the sample passes through a dichroic mirror (AHF Analysetechnik, Tübingen, Germany) and a blocking filter (AHF Analysetechnik, Tübingen, Germany) before being focused onto the CCD chip of a sensitive camera (Sensicam QE, PCO Imaging, Kehlheim, Germany). An additional lens is mounted in the excitation pathway to increase the laser intensity in the object plane for obtaining appropriate conditions for the reversibly photo bleaching (Fig. 1).

2.2. Data acquisition and evaluation

Data stacks consisting of several thousand images were recorded with an integration time of the camera between 10 and 50 ms. The first step of the data evaluation is a conversion of the count numbers in the acquired images into the corresponding photon numbers. Due to high background noise and bleaching gradients in biological samples the signals of single molecules have to be filtered out by calculating a differential image stack. This is done by subtracting the succeeding from the preceding frame. After segmentation of the raw data, a model function (2D Gaussian) was fitted to the single molecule signals for determination of their lateral positions (for more detail see Kaufmann et al., 2009; Lemmer et al., 2008, 2009). The gathered information is used to render a localisation image. Therefore all positions of the detected molecules were merged into one image and blurred with a Gaussian corresponding to their individual localisation accuracy. The effective optical resolution of this image is given by the density of detected signals and the localisation accuracy.

2.3. Specimen preparation

Cal-51 (German Resource Centre for Biological Material—DSMZ, Braunschweig, Germany) and SKBr3 (American Type Culture Collection—ATCC, Manassas, USA) are two mamma carcinoma cell lines from pleural effusion. Cal-51 were cultivated in DMEM medium supplemented with 20% FCS, 1% l-glutamine, 1% penicillin/streptomycin and SKBr3 in McCoy’s 5a medium with 10% FCS, 1% l-glutamine, 1% penicillin/streptomycin in a standard CO₂-incubator. The cells were seeded onto cover slips (24 mm x 24 mm) and allowed to attach and to grow overnight. Cells were fixed with 4% formaldehyde in PBS and embedded with ProLong® Gold antifade reagent (Invitrogen, Carlsbad, USA). Imaging of these label-free specimens was performed by the previously described SPDM setup.

Fig. 2. Localisation image of label-free Cal-51 cell. (a) Conventional wide-field fluorescence image of a Cal-51 cell before the SPDM measurement. Structural details are visible due to autofluorescence. (b) The same region of the cell using SPDM for image acquisition. In both images membrane structures are visible. The very bright spherical objects with diameters in the 1 μm range are only visible in the localisation image. Excitation was done using a laser with a wavelength of 488 nm.
3. Results

SPDM measurements of human breast cancer cells Cal-51 and SKBr3 show that it is possible to obtain localisation images of cellular structures without any labelling. Both conventional wide-field fluorescence and SPDM measurements revealed membrane structures due to autofluorescence of the cells. In the localisation images (Figs. 2b, 3g–i and 5b and d), spherical objects with a size in the μm range are clearly visible, which cannot be observed in the conventional wide-field fluorescence images. However, bright-field images show these cellular spherical objects localised in the cytoplasm as dark spots (compare Fig. 3a, b, d and e). SPDM measurements using a yellow laser with a wavelength of 568 nm do not yield any structural details (Fig. 3f), whereas SPDM measurements with an excitation of 488 nm obviously do (Fig. 3g). The positions of the spherical objects in the localisation image match these in the bright-field image.

To investigate the fluorescence dynamics of the detected molecules, a secondary SPDM measurements of the same region as before has been performed at an excitation wavelength of 568 nm (Fig. 3h). This was done directly after the SPDM measurement with 488 nm. Only now it became possible for the excitation with 568 nm to detect the same structures as in the measurement using the 488 nm laser (Fig. 3i). The spherical objects are also visible in the wide-field fluorescence images acquired after the SPDM measurements (Fig. 3j). These results indicate a fluorescence activation of particular molecules in the cell. SPDM measurements with an excitation wavelength of 568 nm reveal structural details of the cell, only if an activation with appropriate wavelength and illumination intensity (for presented data: 488 nm at 50–100 kW/cm²) was applied before or during data acquisition.

Regarding the number of detected molecules over time (100 s) for the SPDM measurements of a SKBr3 cell with 568 nm after activation and 488 nm, a very different behaviour has been observed (Fig. 4). Excitation with 488 nm resulted in an increasing number of detected signals during data acquisition (Fig. 4a). This again indicates fluorescence activation of the molecules in the sample, which are recorded during the SPDM measurement. In contrast to this result, a decreasing number of detected signals have been observed for the SPDM measurement at 568 nm after activation (Fig. 4b). The same characteristic features of the data shown in this histogram are expected for conventional fluorophores, being bleached during the measurement without fluorescence activation.
In Fig. 5 a more detailed characterisation of the structures visible in the localisation images of a label-free SKBr3 cell is depicted. The spherical structures display a remarkably high density of detected signals (several 1000/μm²). For two of these objects (highlighted in orange) the mean density was determined (Fig. 5b), which shows a density for the smaller one of 8728 signals/μm², whereas the larger object consists of 6007 signals/μm². The membrane structures, visible in both wide-field and localisation images, reveal an obviously lower density of detected signals. Therefore, the dynamic range of the localisation image has to be changed accordingly to visualise these thin structures beside the extremely “bright” spherical objects (Fig. 5d). A line-scan (drawn in yellow) with a line width of 200 nm was applied to one of the spherical objects in the conventional wide-field image after fluorescence activation (Fig. 5a) and the corresponding localisation image (Fig. 5b). A comparison of the line-scans is shown in Fig. 5c. Both line-scans illustrate clearly that more of the detected molecules are located on the periphery, rather than in the centre of the object. The shape can be determined more precisely using the localisation data due to a higher effective optical resolution in the 60 nm range for this area. Because of the lack of out of focus signals in localisation microscopy images also the contrast is enhanced compared to a conventional wide-field fluorescence image.

4. Discussion

In the last years, sub-diffraction limit light microscopy techniques of fluorescent labelled cellular structures have been firmly established. In particular, various approaches of localisation microscopy allowed the localisation single molecules with an accuracy down to the few nanometre regime.

So far no reports have been available where localisation microscopy of label-free cellular structures has been performed. In contrast to a recently published report, using stimulated emission
as a diffraction limited light optical method for visualizing unde-
tectable cellular fluorophores (Min et al., 2009). SPDM is capable to
obtain sub-diffraction limit images of structures in label-free cells.
Localization accuracy and the density of detected signals result in an
effective optical resolution down to the 20 nm range. Due to single
molecule information provided in localisation microscopy, it might be
possible to analyse these cellular structures in a quantitative
way, if the responsible fluorescent molecules could be verified and
characterised by methods of molecular biology and photo chem-
istry/physics.

Our experiments had shown that besides membrane structures,
which are also detectable in conventional wide-field fluorescence
images, spherical objects could be visualised by SPDM in label-free
cells. Our observations with excitation at different wavelengths (Fig. 3) as well as the signal amplitude vs. time (Fig. 4) evoke the
assumption of a fluorescence activation of the detected molecules.
It allows suppressing or enhancing the observed fluorescence
dynamics of particular cellular molecules by appropriate choice of
illumination.

The fluorescence activation may be some photo conversion of
the molecule itself or a conversion of a neighbouring molecule
quenching its fluorescence (e.g. most of the flavins existing as
enzyme cofactors [Kunz and Kunz, 1985; Voltti and Hassinen,
1978]. Most of the cellular autofluorescence arises from proteins
containing aromatic aminoacids, the reduced form of pyridine
nucleotides (NAD(P)H), flavins and lipopigments (Benson et al.,
1979; Dayan and Wolman, 1993; Galeotti et al., 1970; Udenfried,
1978). Most of the cellular autofluorescence arises from proteins
containing aromatic aminoacids, the reduced form of pyridine
nucleotides (NAD(P)H), flavins and lipopigments (Benson et al.,
1979; Dayan and Wolman, 1993; Galeotti et al., 1970; Udenfried,
1978). The majority is originated in mitochondria and lysosomes
and their excitation maxima are mostly in the blue and UV range of
the electromagnetic spectrum (Monici, 2005). We tried to deter-
mine the observed spherical structures by immunofluorescence
labelling of lysosomes (LAMP1 and LAMP2, Santa Cruz Biotechnol-
y, Heidelberg, Germany) and early endosomes (Anti-EEA1, BD
Transduction Laboratories, New Jersey, USA). Our results (data not
shown) yielded no coincidence of these markers with the observed
spherical objects. Further analysis has to be done for a clear identi-
fication of these cellular vesicles.

Numerous applications have been reported using the fluores-
cence of granules accumulated in the cytoplasm as a diagnostic
technique (e.g. ageing (Shimasaki et al., 1980; Tsuchida et al., 1987),
cancer (Matsumoto, 2001; Shin et al., 2000), and retinal degener-
ation (Stark et al., 1984). Due to sub-diffraction limit resolution
and single molecule information provided in SPDM, label-free cel-
lular structures could be analysed in a precise and quantitative
way and thus also be used as a diagnostic tool in future applica-
tions.

To summarize, the study presented here shows that sub-
diffraction limit light microscopy using a localisation microscopy
method (SPDM) can be applied not only to fluorescence labelled
cells but even also to label-free cellular structures.

Acknowledgements

The financial support of the University Heidelberg (Frontier
Project grant to M. Wassenegger); of the Deutsche Forschungs-
gemeinschaft (SPP1128); and of the European Union (In Vivo
Molecular Imaging Consortium, www.molimg.gr) to Christoph Cre-
mer is gratefully acknowledged. Patrick Müller is supported by a
grant of the Federal Ministry of Education and Research (BMBF) to
Michael Hausmann (Services@MediGRID).

We also thank our colleagues Dr. Paul Lemmer, Manuel Gunkel,
Yanina Weiland, Heinz Eipel, Margund Bach and Dr. Sascha Keller
(DKFZ) for great support.

References

Abbe, E., 1873. Beiträge zur Theorie des Mikroskops und der mikroskopischen

autofluorescence—is it due to flavins? J. Histochim. Cytochem. 27, 44–48.

Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S.,

ESA, A., Edelmann, P., Trakhtenbrot, L., Amariglio, N., Rechavi, G., Hausmann, M.,
Cremer, C., 2000. Three-dimensional spatial precision distance microscopy of
chromatin nanostructures after triple-colour DNA labelling: a study of the BCR
region on chromosome 22 and the Philadelphia chromosome. J. Microsc. 199
(2), 96–105.

of NAD(P)H in whole cell preparations of tumors and normal tissues. Eur. J.
Biochem. 17, 485–596.

Gunkel, M., Gao, F., Ripp, E., Lemmer, P., Kaufmann, R., Hörmann, C., Amberger, R.,

monomeric red fluorescent proteins studied by fluorescence correlation and

fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–
4272.

Kaufmann, R., Lemmer, P., Gunkel, M., Weiland, Y., Müller, P., Hausmann, M., Badde-

Kunz, W.S., Kunz, W., 1985. Contribution of different enzymes to flavoprotein fluo-

Lemmer, P., Gunkel, M., Baddeley, D., Kaufmann, R., Urich, A., Weiland, Y., Rey-
mann, J., Müller, P., Hausmann, M., Cremer, C., 2008. SPDM: light microscopy with

Lemmer, P., Gunkel, M., Baddeley, D., Kaufmann, R., Weiland, Y., Möller, A., Urich,
fluorescent markers for far-field fluorescence localization nanoscopy allows res-

Min, W., Lu, S., Chong, S., Roy, R., Holtom, G.R., Xie, S., 2009. Imaging chromophores
with undetectable fluorescence by stimulated emission microscopy. Nature 461,
1105–1109.

Monici, M., 2005. Cell and tissue autofluorescence research and diagnostic applica-

Patterson, G.H., Lippincott-Schwartz, J., 2002. A photoactivatable GFP for selective
photolabelling of proteins and cells. Science 297, 1873–1877.

Rayleigh, L., 1896. On the theory of optical images, with special reference to the

Rauch, J., Knoch, T.A., Solovoi, I., Teller, K., Stein, S., Buiting, K., Horsthemke, B.,
Langowski, J., Cremer, T., Hausmann, M., Cremer, C., 2008. Lighthual precision
measurements of the active and inactive Prader–Willi syndrome imprinted
regions in human cell nuclei. Differentiation 76, 66–82.

Shimasaki, H., Ueta, N., Privett, O.S., 1980. Isolation and analysis of age-related flu-

cient cytoplasmic lipofuscin granules mimicking melanocytic differentiation.
Histopathology 37, 456–459.

as it applies to the detection of lipofuscin and blue- and yellow-emitting fluo-

Press, New York.

Voltti, H., Hassinen, I.E., 1978. Oxidation-reduced midpoint potentials of mito-
ochondria flavoproteins and their intramitochondrial localization. J. Bioenerg.
 Biomembr. 10, 45–58.